JTEC Panel report on electronic manufacturing and packaging in Japan
NASA Technical Reports Server (NTRS)
Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John; Meieran, Gene; Pecht, Michael; Peeples, John; Tummala, Rao; Dehaemer, Michael J.; Holdridge, Geoff (Editor); Gamota, George
1995-01-01
This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies.
Electronic manufacturing and packaging in Japan
NASA Technical Reports Server (NTRS)
Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John A.; Meieran, Eugene S.; Pecht, Michael; Peeples, John W.; Tummala, Rao R.
1995-01-01
This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies. Japan has established this marked competitive advantage in electronics as a consequence of developing low-cost, high-volume consumer products. Japan's infrastructure, and the remarkable cohesiveness of vision and purpose in government and industry, are key factors in the success of Japan's electronics industry. Although Japan will continue to dominate consumer electronics in the foreseeable future, opportunities exist for the United States and other industrial countries to capture an increasingly large part of the market. The JTEC panel has identified no insurmountable barriers that would prevent the United States from regaining a significant share of the consumer electronics market; in fact, there is ample evidence that the United States needs to aggressively pursue high-volume, low-cost electronic assembly, because it is a critical path leading to high-performance electronic systems.
Japan's technology and manufacturing infrastructure
NASA Astrophysics Data System (ADS)
Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.
1995-02-01
The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.
Japan's technology and manufacturing infrastructure
NASA Technical Reports Server (NTRS)
Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.
1995-01-01
The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.
Air Force Manufacturing Technology. Year 2000 Project Book
2000-01-01
Electronic Warfare Component Manufacturing 13 National Center for Manufacturing Science 14 Product Research Market Analysis System 15 Electronics Acoustic...other agile organizations that can respond to rapidly changing market demands. Approach This program demonstrated and evaluated the advanced design...production worker contact with customers and suppliers; shopfloor identification of new technologies, markets , and products; and strategic planning to assure
Electronics manufacturing and assembly in Japan
NASA Technical Reports Server (NTRS)
Kukowski, John A.; Boulton, William R.
1995-01-01
In the consumer electronics industry, precision processing technology is the basis for enhancing product functions and for minimizing components and end products. Throughout Japan, manufacturing technology is seen as critical to the production and assembly of advanced products. While its population has increased less than 30 percent over twenty-five years, Japan's gross national product has increase thirtyfold; this growth has resulted in large part from rapid replacement of manual operations with innovative, high-speed, large-scale, continuously running, complex machines that process a growing number of miniaturized components. The JTEC panel found that introduction of next-generation electronics products in Japan goes hand-in-hand with introduction of new and improved production equipment. In the panel's judgment, Japan's advanced process technologies and equipment development and its highly automated factories are crucial elements of its domination of the consumer electronics marketplace - and Japan's expertise in manufacturing consumer electronics products gives it potentially unapproachable process expertise in all electronics markets.
NASA Technical Reports Server (NTRS)
Nanzetta, Philip
1992-01-01
The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.
All-printed smart structures: a viable option?
NASA Astrophysics Data System (ADS)
O'Donnell, John; Ahmadkhanlou, Farzad; Yoon, Hwan-Sik; Washington, Gregory
2014-03-01
The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure.
Technology transfer from NASA to targeted industries, volume 2
NASA Technical Reports Server (NTRS)
Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl
1993-01-01
This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.
ELECTRONIC TECHNICIAN PERSONNEL AND TRAINING NEEDS OF IOWA INDUSTRIES.
ERIC Educational Resources Information Center
WEEDE, GARY DEAN
THE PURPOSE OF THIS STUDY WAS TO PROVIDE DATA FOR USE IN DEVELOPING OR IMPROVING ELECTRONIC TECHNOLOGY PROGRAMS. A POSTAL CARD QUESTIONNAIRE WAS SENT TO 678 MANUFACTURING AND PROCESSING INDUSTRIES IN IOWA EMPLOYING MORE THAN 50 PERSONS AND ALL ELECTRICAL, ELECTRONIC, AND PRECISION INSTRUMENT MANUFACTURERS EMPLOYING FEWER THAN 50 PERSONS. DATA WERE…
NASA Technical Reports Server (NTRS)
1998-01-01
A local electronics manufacturer, the Sterling Manufacturing Company, was presented with the opportunity to supply 30,000 automotive cellular antennas to a European subsidiary of a large U.S. auto manufacturer. Although the company built an antenna that they believed would meet the auto manufacturer's specifications, they were unable to conduct the necessary validation tests in-house. They decided to work with NASA Lewis Research Center's Space Electronics Division, which, as part of its technology development program, evaluates the performance of antennas in its Microwave Systems Lab to assess their capabilities for space communications applications. Data measured in Lewis' Microwave Systems Lab proved that Sterling's antenna performed better than specified by the auto manufacturer.
Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa
2017-04-01
A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Agent-based services for B2B electronic commerce
NASA Astrophysics Data System (ADS)
Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun
2000-12-01
The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.
Near Net Shape Rapid Manufacture & Repair by LENS(registered trademark)
2006-05-01
J. Vlcek, “Property Investigation of Laser Cladded , Laser Sintered and Electron Beam Sintered Ti 6Al 4V”, AVT-139 Specialists Meeting on Cost...manufactured from advanced materials such as titanium alloys, superalloys or special steels are critical to the performance of the armed forces...10 years, CAD driven, additive manufacturing technologies have been developed. The leading technology for defence applications is Laser Engineered
75 FR 76011 - Annual Guidance Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... Section 522 of the Federal Food, Drug, and Cosmetic Act Electronic Registration and Listing Manufacturing..., CFSAN (HFS- Manufacturing Process Changes, 205), Food and Drug Including Emerging Technologies, on... Chemistry, Manufacturing, Veterinary Medicine (HFV-140), and Controls Information. Food and Drug...
Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing
NASA Astrophysics Data System (ADS)
Coleman, Rashadd L.
Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.
The Future of Product Design Utilising Printed Electronics
ERIC Educational Resources Information Center
York, Nicola; Southee, Darren; Evans, Mark
2017-01-01
This paper addresses the teaching of emerging technologies to design students, using "printed electronics" as an example as it recently became viable to mass manufacture and is ready for use in designs. Printed electronics is introduced as a disruptive technology, and approaches employed in knowledge transfer to industrial/product…
Applying CLIPS to control of molecular beam epitaxy processing
NASA Technical Reports Server (NTRS)
Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.
1990-01-01
A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.
NASA Astrophysics Data System (ADS)
Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.
2013-05-01
Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
Employment Lessons from the Electronics Industry.
ERIC Educational Resources Information Center
Alic, John A.; Harris, Martha Caldwell
1986-01-01
Semiskilled and "unskilled" workers in semiconductors, computer manufacturing, and consumer electronics industries are more likely than other workers to lose jobs because of technology, imports, and offshore production. However, advances in technology do tend to create jobs for skilled workers. (CT)
A study on Aerosol jet printing technology in LED module manufacturing
NASA Astrophysics Data System (ADS)
Rudorfer, Andreas; Tscherner, Martin; Palfinger, Christian; Reil, Frank; Hartmann, Paul; Seferis, Ioannis E.; Zych, Eugeniusz; Wenzl, Franz P.
2016-09-01
State of the art fabrication of LED modules based on chip-on-board (COB) technology comprises some shortcomings both with respect to the manufacturing process itself but also with regard to potential sources of failures and manufacturing impreciseness. One promising alternative is additive manufacturing, a technology which has gained a lot of attention during the last years due to its materials and cost saving capabilities. Especially direct-write technologies like Aerosol jet printing have demonstrated advantages compared to other technological approaches when printing high precision layers or high precision electronic circuits on substrates which, as an additional advantage, also can be flexible and 3D shaped. Based on test samples and test structures manufactured by Aerosol jet printing technology, in this context we discuss the potentials of additive manufacturing in various aspects of LED module fabrication, ranging from the deposition of the die-attach material, wire bond replacement by printed electrical connects as well as aspects of high-precision phosphor layer deposition for color conversion and white light generation.
Models for formation and choice of variants for organizing digital electronics manufacturing
NASA Astrophysics Data System (ADS)
Korshunov, G. I.; Lapkova, M. Y.; Polyakov, S. L.; Frolova, E. A.
2018-03-01
The directions of organizing digital electronics manufacturing are considered by the example of surface mount technology. The basic equipment choice has to include not only individual characteristics, but also mutual influence of individual machines and the results of design for manufacturing. Application of special cases of the Utility function which are complicated in the general representation of polynomial functions are proposed for estimation of product quality in a staged automation.
Additive manufacturing of hybrid circuits
Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; ...
2016-03-26
There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less
Logistics for the implementation of lead-free solders on electronic assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vianco, P.T.; Artaki, I.
1993-12-31
The prospects of legislative and regulatory action aimed at taxing, restricting or banning lead-bearing materials from manufactured products has prompted the electronics community to examine the implementation of lead-free solders to replace currently used lead-containing alloys in the manufacture of electronic devices and assemblies. The logistics for changing the well established ``tin-lead solder technology`` require not only the selection of new compositions but also the qualification of different surface finishes and manufacturing processes. The meniscometer/wetting balance technique was used to evaluate the wettability of several candidate lead-free solders as well as to establish windows on processing parameters so as tomore » facilitate prototype manufacturing. Electroplated and electroless 100Sn coatings, as well as organic preservatives, were also examined as potential alternative finishes for device leads and terminations as well as circuit board conductor surfaces to replace traditional tin-lead layers. Sandia National Laboratories and AT&T have implemented a program to qualify the manufacturing feasibility of surface mount prototype circuit boards using several commercial lead-free solders by infrared reflow technology.« less
Web-enabling technologies for the factory floor: a web-enabling strategy for emanufacturing
NASA Astrophysics Data System (ADS)
Velez, Ricardo; Lastra, Jose L. M.; Tuokko, Reijo O.
2001-10-01
This paper is intended to address the different technologies available for Web-enabling of the factory floor. It will give an overview of the importance of Web-enabling of the factory floor, in the application of the concepts of flexible and intelligent manufacturing, in conjunction with e-commerce. As a last section, it will try to define a Web-enabling strategy for the application in eManufacturing. This is made under the scope of the electronics manufacturing industry, so every application, technology or related matter is presented under such scope.
Electron beam additive manufacturing with wire - Analysis of the process
NASA Astrophysics Data System (ADS)
Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz
2018-05-01
The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.
[INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology
NASA Astrophysics Data System (ADS)
Delaporte, Philippe; Alloncle, Anne-Patricia
2016-04-01
Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.
NASA Tech Briefs, Winter 1977. Volume 2, No. 4
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1979. Volume 4, No. 2
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of neW products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1981. Volume 6, No. 2
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1980. Volume 5, No. 4
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1980. Volume 5, No. 3
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovatio.ns of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1978. Volume 3, No. 3
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1984. Volume 8, No. 4
NASA Technical Reports Server (NTRS)
1984-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Science.
NASA Tech Briefs, Fall/Winter 1981. Vol. 6, No. 3
NASA Technical Reports Server (NTRS)
1981-01-01
Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1978. Volume 3, No. 1
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1978. Volume 3, No. 4
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1983. Volume 8, No. 2
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Winter 1982. Volume 7, No. 2
NASA Technical Reports Server (NTRS)
1982-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1981. Volume 6, No. 1
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1984. Volume 8, No. 3
NASA Technical Reports Server (NTRS)
1984-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1976. Volume 1, No. 3
NASA Technical Reports Server (NTRS)
1976-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of seloc.ted Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Technical Reports Server (NTRS)
1978-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Solar Energy; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1979. Volume 4, No. 4
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1977. Volume 2, No. 3
NASA Technical Reports Server (NTRS)
1977-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1980. Volume 5, No. 2
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1977. Volume 2, No. 1
NASA Technical Reports Server (NTRS)
1977-01-01
Topics: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selted innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1982. Volume 7, No. 1
NASA Technical Reports Server (NTRS)
1982-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the develop ment of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1979. Volume 4, No. 1
NASA Technical Reports Server (NTRS)
1979-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Fall 1983. Volume 8, No. 1
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Winter 1976. Volume 1, No. 4
NASA Technical Reports Server (NTRS)
1976-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of val ue to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1977. Volume 2, No. 2
NASA Technical Reports Server (NTRS)
1977-01-01
Topics: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Spring 1983. Volume 7, No. 3
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;
NASA Tech Briefs, Spring 1980. Volume 5, No. 1
NASA Technical Reports Server (NTRS)
1980-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Fall 1979. Volume 4, No. 3
NASA Technical Reports Server (NTRS)
1979-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, Summer 1983. Volume 7, No. 4
NASA Technical Reports Server (NTRS)
1983-01-01
Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and information Sciences.
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.
2013-01-01
Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.
NASA Electronic Parts and Packaging Program
NASA Technical Reports Server (NTRS)
Kayali, Sammy
2000-01-01
NEPP program objectives are to: (1) Access the reliability of newly available electronic parts and packaging technologies for usage on NASA projects through validations, assessments, and characterizations, and the development of test methods/tools; (2)Expedite infusion paths for advanced (emerging) electronic parts and packaging technologies by evaluations of readiness for manufacturability and project usage consideration; (3) Provide NASA projects with technology selection, application, and validation guidelines for electronic parts and packaging hardware and processes; nd (4) Retain and disseminate electronic parts and packaging quality assurance, reliability validations, tools, and availability information to the NASA community.
Additive Manufacturing Technology for Biomedical Components: A review
NASA Astrophysics Data System (ADS)
Aimi Zaharin, Haizum; Rani, Ahmad Majdi Abdul; Lenggo Ginta, Turnad; Azam, Farooq I.
2018-03-01
Over the last decades, additive manufacturing has shown potential application in ranging fields. No longer a prototyping technology, it is now being utilised as a manufacturing technology for giant industries such as the automotive, aircraft and recently in the medical industry. It is a very successful method that provides health-care solution in biomedical sectors by producing patient-specific prosthetics, improve tissues engineering and facilitate pre-operating session. This paper thus presents a brief overview of the most commercially important additive manufacturing technologies, which is currently available for fabricating biomedical components such as Stereolithography (SLA), Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Fused Deposition Modelling (FDM) and Electron Beam Melting (EBM). It introduces the basic principles of the main process, highlights some of the beneficial applications in medical industry and the current limitation of applied technology.
Eisler, Matthew N
Historians of science and technology have generally ignored the role of power sources in the development of consumer electronics. In this they have followed the predilections of historical actors. Research, development, and manufacturing of batteries has historically occurred at a social and intellectual distance from the research, development, and manufacturing of the devices they power. Nevertheless, power source technoscience should properly be understood as an allied yet estranged field of electronics. The separation between the fields has had important consequences for the design and manufacturing of mobile consumer electronics. This paper explores these dynamics in the co-construction of notebook batteries and computers. In so doing, it challenges assumptions of historians and industrial engineers and planners about the nature of computer systems in particular and the development of technological systems. The co-construction of notebook computers and batteries, and the occasional catastrophic failure of their compatibility, challenges systems thinking more generally.
NASA Tech Briefs, November 1993. Volume 17, No. 11
NASA Technical Reports Server (NTRS)
1993-01-01
Topics covered: Advanced Manufacturing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Astrophysics Data System (ADS)
Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.
2017-02-01
In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.
Applications and Advances in Electronic-Nose Technologies
Wilson, Alphus D.; Baietto, Manuela
2009-01-01
Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man. PMID:22346690
Spinoff from Wind Tunnel Technology
NASA Technical Reports Server (NTRS)
1985-01-01
Douglas Juanarena, a former NASA Langley instrument design engineer, found a solution to the problem of long, repetitive tunnel runs needed to measure airflow pressures. Electronically scanned pressure (ESP) replaced mechanical systems with electronic sensors. Juanarena licensed the NASA-patented technology and now manufactures ESP modules for research centers, aerospace companies, etc.
Engineering Technology Education: Bibliography, 1988.
ERIC Educational Resources Information Center
Dyrud, Marilyn A.
1989-01-01
Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…
NASA Tech Briefs, Summer 1976. Volume 1, No. 2
NASA Technical Reports Server (NTRS)
1976-01-01
Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences. Also included are; NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; and New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products.
3D Printing Multi-Functionality: Embedded RF Antennas and Components
NASA Technical Reports Server (NTRS)
Shemelya, C. M.; Zemba, M.; Liang, M.; Espalin, D.; Kief, C.; Xin, H.; Wicker, R. B.; MacDonald, E. W.
2015-01-01
Significant research and press has recently focused on the fabrication freedom of Additive Manufacturing (AM) to create both conceptual models and final end-use products. This flexibility allows design modifications to be immediately reflected in 3D printed structures, creating new paradigms within the manufacturing process. 3D printed products will inevitably be fabricated locally, with unit-level customization, optimized to unique mission requirements. However, for the technology to be universally adopted, the processes must be enhanced to incorporate additional technologies; such as electronics, actuation, and electromagnetics. Recently, a novel 3D printing platform, Multi3D manufacturing, was funded by the presidential initiative for revitalizing manufacturing in the USA using 3D printing (America Makes - also known as the National Additive Manufacturing Innovation Institute). The Multi3D system specifically targets 3D printed electronics in arbitrary form; and building upon the potential of this system, this paper describes RF antennas and components fabricated through the integration of material extrusion 3D printing with embedded wire, mesh, and RF elements.
Carbon footprint of electronic devices
NASA Astrophysics Data System (ADS)
Sloma, Marcin
2013-07-01
Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.
NASA Technical Reports Server (NTRS)
Paquette, Beth; Samuels, Margaret; Chen, Peng
2017-01-01
Direct-write printing techniques will enable new detector assemblies that were not previously possible with traditional assembly processes. Detector concepts were manufactured using this technology to validate repeatability. Additional detector applications and printed wires on a 3-dimensional magnetometer bobbin will be designed for print. This effort focuses on evaluating performance for direct-write manufacturing techniques on 3-dimensional surfaces. Direct-write manufacturing has the potential to reduce mass and volume for fabrication and assembly of advanced detector concepts by reducing trace widths down to 10 microns, printing on complex geometries, allowing new electronic concept production, and reduced production times of complex those electronics.
Practical 3D Printing of Antennas and RF Electronics
2017-03-01
Passive RF; Combiners Introduction Additive manufacturing can reduce the time and material costs in a design cycle and enable the on-demand printing of...performance, and create Computer Assisted Manufacturing (CAM) files. By intelligently leveraging this process, the design can be readily updated or...advances in 3D printing technology now enable antennas and RF electronics to be designed and prototyped significantly faster than conventional
Application of ICME Methods for the Development of Rapid Manufacturing Technologies
NASA Astrophysics Data System (ADS)
Maiwald-Immer, T.; Göhler, T.; Fischersworring-Bunk, A.; Körner, C.; Osmanlic, F.; Bauereiß, A.
Rapid manufacturing technologies are lately gaining interest as alternative manufacturing method. Due to the large parameter sets applicable in these manufacturing methods and their impact on achievable material properties and quality, support of the manufacturing process development by the use of simulation is highly attractive. This is especially true for aerospace applications with their high quality demands and controlled scatter in the resulting material properties. The applicable simulation techniques to these manufacturing methods are manifold. The paper will focus on the melt pool simulation for a SLM (selective laser melting) process which was originally developed for EBM (electron beam melting). It will be discussed in the overall context of a multi-scale simulation within a virtual process chain.
NASA Tech Briefs, Spring/Summer 1982. Volume 6, No. 4
NASA Technical Reports Server (NTRS)
1982-01-01
Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; and Machinery.
1986 Bibliography of Information on Engineering Technology Education.
ERIC Educational Resources Information Center
Gourley, Frank A., Jr.
1987-01-01
Lists articles, papers, and reports on engineering technology education that were published in 1986. Categorizes the citations under headings of administration, computers, curriculum, electronics, industry/government/employers, instructional technology, laboratories, liberal studies, manufacturing, mechanical, minorities, research, robotics, and…
Status review of field emission displays
NASA Astrophysics Data System (ADS)
Ghrayeb, Joseph; Daniels, Reginald
2001-09-01
Cathode ray tube (CRT) technology dominates the direct view display market. Mature CRT technology for many designs is still the preferred choice. CRT manufacturers have greatly improved the size and weight of the CRT displays. High performance CRTs continue to be in great demand, however, supply have to contend with the vanishing CRT vendor syndrome. Therefore, the vanishing CRT vendor syndrome fuels the search for an alternate display technology source. Within the past 10 years, field emission display (FED) technology had gained momentum and, at one time, was considered the most viable electronic display technology candidate [to replace the CRT]. The FED community had advocated and promised many advantages over active matrix liquid crystal displays (AMLCD), electro luminescent (EL) or Plasma displays. Some observers, including potential FED manufacturers and the Department of Defense, (especially the Defense Advanced Research Project Agency (DARPA)), consider the FED entry as having leapfrog potential. Despite major investments by US manufacturers as well as Asian manufacturers, reliability and manufacturing difficulties greatly slowed down the advancement of the technology. The FED manufacturing difficulties have caused many would-be FED manufacturing participants to abandon FED research. This paper will examine the trends, which are leading this nascent technology to its downfall. FED technology was once considered to have the potential to leapfrog over AMLCD's dominance in the display industry. At present the FED has suffered severe setbacks and there are very few [FED] manufacturers still pursuing research in the area. These companies have yet to deliver a display beyond the prototype stage.
NASA Astrophysics Data System (ADS)
Chang, Chun-Yen; Trappey, Charles V.
2003-06-01
Taiwan's electronics industry emerged in the 1960s with the creation of a small but well planned integrated circuit (IC) packaging industry. This industry investment led to bolder investments in research, laboratories, and the island's first semiconductor foundries in the 1980s. Following the success of the emerging IC manufacturers and design houses, hundreds of service firms and related industries (software, legal services, substrate, chemical, and test firms among others) opened for business and completed Taiwan's IC manufacturing supply chain. The challenge for Taiwan's electronics industry is to take the lead in the design, manufacture, and marketing of name brand electronic products. This paper introduces the Si-Soft (silicon software) Project, a national initiative that builds on Taiwan's achievements in manufacturing (referred to as Si-Hard or silicon hardware) to launch a new wave of companies. These firms will contribute to the core underlying technology (intellectual property) used in the creation of electronic products.
Job Prospects for Industrial Engineers.
ERIC Educational Resources Information Center
Basta, Nicholas
1985-01-01
Recent economic growth and improved manufacturing profitability are supporting increased employment for industrial engineers. Promising areas include modernizing manufacturing technology and productivity with large amounts of hiring in aerospace, electronics, and instrumentation. Percentages of women employed in these fields for 1982 and 1983 are…
Revilla León, M; Klemm, I M; García-Arranz, J; Özcan, M
2017-09-01
An edentulous patient was rehabilitated with maxillary metal-ceramic and mandibular metal-resin implant-supported fixed dental prosthesis (FDP). Metal frameworks of the FDPs were fabricated using 3D additive manufacturing technologies utilizing selective laser melting (SLM) and electron beam melting (EBM) processes. Both SLM and EBM technologies were employed in combination with computer numerical control (CNC) post-machining at the implant interface. This report highlights the technical and clinical protocol for fabrication of FDPs using SLM and EBM additive technologies. Copyright© 2017 Dennis Barber Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Nelson S.; Sarobol, Pylin; Cook, Adam
There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less
Integrated automation for manufacturing of electronic assemblies
NASA Technical Reports Server (NTRS)
Sampite, T. Joseph
1991-01-01
Since 1985, the Naval Ocean Systems Center has been identifying and developing needed technology for flexible manufacturing of hybrid microelectronic assemblies. Specific projects have been accomplished through contracts with manufacturing companies, equipment suppliers, and joint efforts with other government agencies. The resulting technology has been shared through semi-annual meetings with government, industry, and academic representatives who form an ad hoc advisory panel. More than 70 major technical capabilities have been identified for which new development is needed. Several of these developments have been completed and are being shared with industry.
A Techno-Economic Look at SiC WBG from Wafer to Motor Drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bench Reese, Samantha R; Horowitz, Kelsey A; Remo, Timothy W
Techno-economic analysis helps benchmark and deliver supply chain and manufacturing insights that can be leveraged by decision-makers to inform investment strategies, policy, and other decisions to promote economic growth and competitiveness. Silicon Carbide (SiC) wide-band gap (WBG) technologies is poised to be an integral contributor to the clean energy economy. We use bottoms-up regional manufacturing cost models to show SiC power electronics, manufactured in volume, could result in final product cost parity with those manufactured with silicon. The models are further leveraged to show innovation pathways to lower cost and potentially expanded technology adoption.
NREL in the News | Transportation Research | NREL
Promises Power Electronics Innovation Wide bandgap (WBG) technology promises to dramatically increase performance, reduce cost, and improve reliability of electronics packaging in electric-drive vehicles and Department's new Manufacturing Innovation Institute for Next Generation Power Electronics to accelerate
The Next Technology Revolution - Nano Electronic Technology
NASA Astrophysics Data System (ADS)
Turlik, Iwona
2004-03-01
Nanotechnology is a revolutionary engine that will engender enormous changes in a vast majority of today's industries and markets, while potentially creating whole new industries. The impact of nanotechnology is particularly significant in the electronics industry, which is constantly driven by the need for higher performance, increased functionality, smaller size and lower cost. Nanotechnology can influence many of the hundreds of components that are typically assembled to manufacture modern electronic devices. Motorola manufactures electronics for a wide range of industries and communication products. In this presentation, the typical components of a cellular phone are outlined and technology requirements for future products, the customer benefits, and the potential impact of nanotechnology on many of the components are discussed. Technology needs include reliable materials supply, processes for high volume production, experimental and simulation tools, etc. For example, even routine procedures such as failure characterization may require the development of new tools for investigating nano-scale phenomena. Business needs include the development of an effective, high volume supply chain for nano-materials and devices, disruptive product platforms, and visible performance impact on the end consumer. An equally significant long-term industry need is the availability of science and engineering graduates with a multidisciplinary focus and a deep understanding of the fundamentals of nano-technology, that can harness the technology to create revolutionary products.
CMOS technology: a critical enabler for free-form electronics-based killer applications
NASA Astrophysics Data System (ADS)
Hussain, Muhammad M.; Hussain, Aftab M.; Hanna, Amir
2016-05-01
Complementary metal oxide semiconductor (CMOS) technology offers batch manufacturability by ultra-large-scaleintegration (ULSI) of high performance electronics with a performance/cost advantage and profound reliability. However, as of today their focus has been on rigid and bulky thin film based materials. Their applications have been limited to computation, communication, display and vehicular electronics. With the upcoming surge of Internet of Everything, we have critical opportunity to expand the world of electronics by bridging between CMOS technology and free form electronics which can be used as wearable, implantable and embedded form. The asymmetry of shape and softness of surface (skins) in natural living objects including human, other species, plants make them incompatible with the presently available uniformly shaped and rigidly structured today's CMOS electronics. But if we can break this barrier then we can use the physically free form electronics for applications like plant monitoring for expansion of agricultural productivity and quality, we can find monitoring and treatment focused consumer healthcare electronics - and many more creative applications. In our view, the fundamental challenge is to engage the mass users to materialize their creative ideas. Present form of electronics are too complex to understand, to work with and to use. By deploying game changing additive manufacturing, low-cost raw materials, transfer printing along with CMOS technology, we can potentially stick high quality CMOS electronics on any existing objects and embed such electronics into any future objects that will be made. The end goal is to make them smart to augment the quality of our life. We use a particular example on implantable electronics (brain machine interface) and its integration strategy enabled by CMOS device design and technology run path.
Development of Critical Technologies for the COSMO/SkyMed Hyperspectral Camera
2000-10-01
Carbide (SiC) material (SiC or lightweighted Zerodur mirrors , carbon fiber technology. structures). - development of electronics blocks at high - High...investigation was Kcarried out to get the highest lightening factors on the Zerodur mirror substrates. Several samples of the TMA Fig. 5 - Prototypes of...implementation of state-of-the-art - manufacturing of very light mirrors with special manufacturing techniques for light components emphasis on Silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinwiddie, Ralph Barton; Dehoff, Ryan R; Lloyd, Peter D
2013-01-01
Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from themore » melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.« less
Technology review for electronically controlled braking systems
DOT National Transportation Integrated Search
1998-09-22
Electronically Controlled Braking Systems (ECBS) offer many potential benefits to the trucking industry in the areas of safety, reliability, enhanced driver feedback, and maintainability. ECBS are being tested by a number of manufacturers. These syst...
Technology Projects for the Classroom [and] Teacher's Guide.
ERIC Educational Resources Information Center
Kaufman, Allan; Flowers, Jim
This book presents 20 projects for technology education students. The emphasis is on problem solving and hands-on learning through projects dealing with a wide variety of technologies/industries, including the following: robotics, information storage and retrieval, communications, transportation, electronics, manufacturing, construction, materials…
Reference Points: Engineering Technology Education Bibliography, 1987.
ERIC Educational Resources Information Center
Engineering Education, 1989
1989-01-01
Lists articles and books published in 1987. Selects the following headings: administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, liberal studies, manufacturing, mechanical, minorities, research, robotics,…
Materials Characterization of Additively Manufactured Components for Rocket Propulsion
NASA Technical Reports Server (NTRS)
Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary
2015-01-01
To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.
Material Characterization of Additively Manufactured Components for Rocket Propulsion
NASA Technical Reports Server (NTRS)
Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary
2015-01-01
To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.
Advances in High Temperature Materials for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin
2017-08-01
In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.
Electron beam curing — taking good ideas to the manufacturing floor
NASA Astrophysics Data System (ADS)
Saunders, C.; Lopata, V.; Barnard, J.; Stepanik, T.
2000-03-01
Acsion is exploiting several emerging electron beam EB applications ranging from composite curing and repair to viscose manufacturing. EB curing of composite structures offers several advantages: significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; improvements in material handling; and reduced overall manufacturing costs compared to thermal curing. The aerospace industry is developing EB technology in all of their market sectors, including military aviation and space products. Some specific products include cryogenic fuel tanks, improved canopy frames for jet aircraft, and the all-composite military aircraft. This paper discusses each of these opportunities.
NASA Tech Briefs, June 1995. Volume 19, No. 6
NASA Technical Reports Server (NTRS)
1995-01-01
Topics include: communications technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, life sciences, books and reports, a special section of laser Tech Briefs.
NASA Technical Reports Server (NTRS)
1985-01-01
A visual alert system resulted from circuitry developed by Applied Cybernetics Systems for Langley as part of a space related telemetry system. James Campman, Applied Cybernetics president, left the company and founded Grace Industries, Inc. to manufacture security devices based on the Langley technology. His visual alert system combines visual and audible alerts for hearing impaired people. The company also manufactures an arson detection device called the electronic nose, and is currently researching additional applications of the NASA technology.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... decision consolidated pursuant to Section 6(c) of the Educational, Scientific, and Cultural Materials... 07470. Instrument: Electron Microscope. Manufacturer: Hitachi High Technologies America, Inc., Japan... educational uses requiring an electron microscope. We know of no electron microscope, or any other instrument...
Launching the dialogue: Safety and innovation as partners for success in advanced manufacturing.
Geraci, C L; Tinkle, S S; Brenner, S A; Hodson, L L; Pomeroy-Carter, C A; Neu-Baker, N
2018-06-01
Emerging and novel technologies, materials, and information integrated into increasingly automated and networked manufacturing processes or into traditional manufacturing settings are enhancing the efficiency and productivity of manufacturing. Globally, there is a move toward a new era in manufacturing that is characterized by: (1) the ability to create and deliver more complex designs of products; (2) the creation and use of materials with new properties that meet a design need; (3) the employment of new technologies, such as additive and digital techniques that improve on conventional manufacturing processes; and (4) a compression of the time from initial design concept to the creation of a final product. Globally, this movement has many names, but "advanced manufacturing" has become the shorthand for this complex integration of material and technology elements that enable new ways to manufacture existing products, as well as new products emerging from new technologies and new design methods. As the breadth of activities associated with advanced manufacturing suggests, there is no single advanced manufacturing industry. Instead, aspects of advanced manufacturing can be identified across a diverse set of business sectors that use manufacturing technologies, ranging from the semiconductors and electronics to the automotive and pharmaceutical industries. The breadth and diversity of advanced manufacturing may change the occupational and environmental risk profile, challenge the basic elements of comprehensive health and safety (material, process, worker, environment, product, and general public health and safety), and provide an opportunity for development and dissemination of occupational and environmental health and safety (OEHS) guidance and best practices. It is unknown how much the risk profile of different elements of OEHS will change, thus requiring an evolution of health and safety practices. These changes may be accomplished most effectively through multi-disciplinary, multi-sector, public-private dialogue that identifies issues and offers solutions.
ERIC Educational Resources Information Center
Oskooie, Kamran Rezai
2012-01-01
This exploratory mixed methods study quantified and explored leadership interest in legacy-data conversion and information processing. Questionnaires were administered electronically to 92 individuals in design, manufacturing, and other professions from the manufacturing, processing, Internet, computing, software and technology divisions. Research…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
... respond, including through the use of appropriate automated electronic, mechanical, or other technological... and vehicle manufacturers may not legally introduce their products into U.S. commerce unless EPA has... vehicle manufacturers must warrant that vehicles are free from defects in materials and workmanship that...
Manufacturing Demonstration Facility: Roll-to-Roll Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious
This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less
All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis.
Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L; Terés, Lluís; Baumann, Reinhard R
2016-09-21
We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-30
...-manufacturing activity in biological sciences (particularly bio electronics and synthetic biology), chemical engineering, directed energy, materials, space technologies (including satellite systems). The purpose of this... science and engineering to conduct a ``zero- based'' annual review of the list of technologies on the CCL...
NASA Tech Briefs, December 1995. Volume 19, No. 12
NASA Technical Reports Server (NTRS)
1995-01-01
Topics include: a special focus section on Bio/Medical technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section on Laser Tech Briefs.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Technology Focus: Mechanical Components; Electronics/Computers; Software; Materials; Mechanics/Machinery; Manufacturing; Bio-Medical; Physical Sciences; Information Sciences; and Books and Reports.
Polymer multimode waveguide optical and electronic PCB manufacturing
NASA Astrophysics Data System (ADS)
Selviah, David R.
2009-02-01
The paper describes the research in the Â#1.3 million IeMRC Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) Flagship Project in which 8 companies and 3 universities carry out collaborative research and which was formed and is technically led by the author. The consortium's research is aimed at investigating a range of fabrication techniques, some established and some novel, for fabricating polymer multimode waveguides from several polymers, some formulations of which are being developed within the project. The challenge is to develop low cost waveguide manufacturing techniques compatible with commercial PCB manufacturing and to reduce their alignment cost. The project aims to take the first steps in making this hybrid optical waveguide and electrical copper track printed circuit board disruptive technology widely available by establishing and incorporating waveguide design rules into commercial PCB layout software and transferring the technology for fabricating such boards to a commercial PCB manufacturer. To focus the research the project is designing an optical waveguide backplane to tight realistic constraints, using commercial layout software with the new optical design rules, for a demonstrator into which 4 daughter cards are plugged, each carrying an aggregate of 80 Gb/s data so that each waveguide carries 10 Gb/s.
Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1
NASA Technical Reports Server (NTRS)
1991-01-01
Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement.
NASA Tech Briefs, October 1998. Volume 22, No. 10
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage sections on sensors/imaging and mechanical technology, and sections on electronic components and circuits, electronic systems, software, materials, machinery/automation, manufacturing/fabrication, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.
Prospects for applications of electron beams in processing of gas and oil hydrocarbons
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.
2015-12-01
Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.
Using Powder Cored Tubular Wire Technology to Enhance Electron Beam Freeform Fabricated Structures
NASA Technical Reports Server (NTRS)
Gonzales, Devon; Liu, Stephen; Domack, Marcia; Hafley, Robert
2016-01-01
Electron Beam Freeform Fabrication (EBF3) is an additive manufacturing technique, developed at NASA Langley Research Center, capable of fabricating large scale aerospace parts. Advantages of using EBF3 as opposed to conventional manufacturing methods include, decreased design-to-product time, decreased wasted material, and the ability to adapt controls to produce geometrically complex parts with properties comparable to wrought products. However, to fully exploit the potential of the EBF3 process development of materials tailored for the process is required. Powder cored tubular wire (PCTW) technology was used to modify Ti-6Al-4V and Al 6061 feedstock to enhance alloy content, refine grain size, and create a metal matrix composite in the as-solidified structures, respectively.
NASA Tech Briefs, Spring 1976. Volume 1, No. 1
NASA Technical Reports Server (NTRS)
1976-01-01
Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. Also included are NEW PRODUCT IDEAS: A summary of selected innovations of value to manufacturers for the development of new products.
EBF3 Design and Sustainability Considerations
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.
2015-01-01
Electron beam freeform fabrication (EBF3) is a cross-cutting technology for producing structural metal parts using an electron beam and wire feed in a layer-additive fashion. This process was developed by researchers at NASA Langley to specifically address needs for aerospace applications. Additive manufacturing technologies like EBF3 enable efficient design of materials and structures by tailoring microstructures and chemistries at the local level to improve performance at the global level. Additive manufacturing also facilitates design freedom by integrating assemblies into complex single-piece components, eliminating flanges, fasteners and joints, resulting in reduced size and mass. These same efficiencies that permit new design paradigms also lend themselves to supportability and sustainability. Long duration space missions will require a high degree of self-sustainability. EBF3 is a candidate technology being developed to allow astronauts to conduct repairs and fabricate new components and tools on demand, with efficient use of feedstock materials and energy.
Get Students Excited--3D Printing Brings Designs to Life
ERIC Educational Resources Information Center
Lacey, Gary
2010-01-01
Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…
NASA Astrophysics Data System (ADS)
Boulton, William R.
1995-02-01
The purpose of this JTEC study is to evaluate Japan's electronic manufacturing and packaging capabilities within the context of global economic competition. To carry out this study, the JTEC panel evaluated the framework of the Japanese consumer electronics industry and various technological and organizational factors that are likely to determine who will win and lose in the marketplace. This study begins with a brief overview of the electronics industry, especially as it operates in Japan today. Succeeding chapters examine the electronics infrastructure in Japan and take an in-depth look at the central issues of product development in order to identify those parameters that will determine future directions for electronic packaging technologies.
NASA Technical Reports Server (NTRS)
Boulton, William R.
1995-01-01
The purpose of this JTEC study is to evaluate Japan's electronic manufacturing and packaging capabilities within the context of global economic competition. To carry out this study, the JTEC panel evaluated the framework of the Japanese consumer electronics industry and various technological and organizational factors that are likely to determine who will win and lose in the marketplace. This study begins with a brief overview of the electronics industry, especially as it operates in Japan today. Succeeding chapters examine the electronics infrastructure in Japan and take an in-depth look at the central issues of product development in order to identify those parameters that will determine future directions for electronic packaging technologies.
All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis
Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L.; Terés, Lluís; Baumann, Reinhard R.
2016-01-01
We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement. PMID:27649784
Additive Manufacturing of Low Cost Upper Stage Propulsion Components
NASA Technical Reports Server (NTRS)
Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda
2014-01-01
NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.
With Corporate Help, We're Building the School of the Future Right Now.
ERIC Educational Resources Information Center
Herlihy, John J.; Day, C. William
1989-01-01
When Toyota Motor Manufacturing moved into a Kentucky community, it provided technological expertise and substantial financial backing to the school system. "Smart classrooms" are being designed with a spectrum of technological tools including computerized science laboratories and electronically linked media centers. (MLF)
Managing the Manpower Aspects of Applying Micro-Electronics Technology.
ERIC Educational Resources Information Center
Thornton, P.; Routledge, C.
1980-01-01
Outlines major effects that the application of micro-electronics devices in products/processes and in office systems will have on future manpower and skill requirements in manufacturing organizations. Identifies the type of problems these changes will pose for manpower managers. Provides general guidelines for the successful management of these…
NASA Tech Briefs, December 1998. Volume 22, No. 12
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage section on design and analysis software, and sections on electronic components and circuits, electronic systems, software, materials, mechanics, machinery/automation, manufacturing/fabrication, physical sciences, and special sections of Photonics Tech Briefs, Motion Control Tech briefs and a Hot Technology File 1999 Resource Guide.
Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2015-01-01
The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in the area of microelectronics packaging, this report presents only a number of key packaging technologies detailed in three industry roadmaps for conventional microelectronics and a more recently introduced roadmap for organic and printed electronics applications. The topics for each category were down-selected by reviewing the 2012 reports of the International Technology Roadmap for Semiconductor (ITRS), the 2013 roadmap reports of the International Electronics Manufacturing Initiative (iNEMI), the 2013 roadmap of association connecting electronics industry (IPC), the Organic Printed Electronics Association (OE-A). The report also summarizes the results of numerous articles and websites specifically discussing the trends in microelectronics packaging technologies.
Investigation of the technology of conductive yarns manufacturing
NASA Astrophysics Data System (ADS)
Ryklin, Dzmitry; Medvetski, Sergey
2017-10-01
The paper is devoted to development of technology of electrically conductive yarn production. This technology allows manufacturing conductive yarns of copper wire and polyester filament yarns. Method of the predicting of the conductive yarn breaking force was developed on the base of analysing of load-elongation curves of each strand of the yarn. Also the method of the predicting of the conductive yarn diameter was offered. Investigation shows that conductive yarns can be integrated into the textiles structure using sewing or embroidery equipment. Application of developed conductive yarn is wearable electronics creating with wide range of functions, for example, for specific health issue monitoring, navigation tools or communication gadgets.
Electron-processing technology: A promising application for the viscose industry
NASA Astrophysics Data System (ADS)
Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.
1998-06-01
In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.
NASA Tech Briefs, March 1998. Volume 22, No. 3
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage of computer aided design and engineering, electronic components and circuits, electronic systems, physical sciences, materials, computer software, special coverage on mechanical technology, machinery/automation, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section of Electronics Tech Briefs. Profiles of the exhibitors at the National Design Engineering show are also included in this issue.
Moschou, Despina; Trantidou, Tatiana; Regoutz, Anna; Carta, Daniela; Morgan, Hywel; Prodromakis, Themistoklis
2015-01-01
Lab-on-Chip is a technology that could potentially revolutionize medical Point-of-Care diagnostics. Considerable research effort is focused towards innovating production technologies that will make commercial upscaling financially viable. Printed circuit board manufacturing techniques offer several prospects in this field. Here, we present a novel approach to manufacturing Printed Circuit Board (PCB)-based Ag/AgCl reference electrodes, an essential component of biosensors. Our prototypes were characterized both structurally and electrically. Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS) were employed to evaluate the electrode surface characteristics. Electrical characterization was performed to determine stability and pH dependency. Finally, we demonstrate utilization along with PCB pH sensors, as a step towards a fully integrated PCB platform, comparing performance with discrete commercial reference electrodes. PMID:26213940
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Cheng-Po; Shaddock, David; Sandvik, Peter
2012-11-30
A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200°C to 300°C and beyond. The SiC integrated circuits and packaging methods can bemore » used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.« less
2005-06-01
South Korea Samsung Electronics, Suwon, South Korea US Embassy Country Brief, Beijing, China US Consulate General Brief, Hong Kong Joint US... employees . Innovation, leveraged by science and technology (S&T), has created opportunities within the manufacturing sector. This paper summarizes the...productivity, both per hour and per employee . This fact has enabled the US to maintain a labor cost advantage despite the higher wages/benefits paid to US
A simple, low-cost conductive composite material for 3D printing of electronic sensors.
Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A
2012-01-01
3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.
Air Force Manufacturing Technology Electronics Program, FY72-FY85.
1985-04-01
magnetic films of the composition Yl.52 EuO.30 TmO.30 CaO.88 Fe4.12 012 on 1.5 inch and 2.0 inch gadolinium gallium garnet substrates. Ten film were...volume manufacturing of hybrid MIC’s. A systematic integrated cost effective approach to testing, trimming/matching, fabri - cation, and assembly is...ESTABLISH MANUFACTURING METHODS FOR LOW COST HIGH RELIABILITY FABRI - CATION AND ACTIVATION OF OXIDE CATHODES FOR USE IN SPACE TRAVELING WAVE TUBES
NASA Astrophysics Data System (ADS)
Porojan, Sorin; Bîrdeanu, Mihaela; Savencu, Cristina; Porojan, Liliana
2017-08-01
The integration of digitalized processing technologies in traditional dental restorations manufacturing is an emerging application. The objective of this study was to identify the different structural and morphological characteristics of Co-Cr dental alloys processed by alternative manufacturing techniques in order to understand the influence of microstructure on restorations properties and their clinical behavior. Metallic specimens made of Co-Cr dental alloys were prepared using traditional casting (CST), and computerized milling (MIL), selective laser sintering (SLS) and selective laser melting (SLM). The structural information of the samples was obtained by X-ray diffraction, the morphology and the topography of the samples were investigated by Scanning Electron Microscopy and Atomic Force Microscope. Given that the microstructure was significantly different, further differences in the clinical behavior of prosthetic restorations manufactured using additive techniques are anticipated.
NASA Tech Briefs, August 2002. Volume 26, No. 8
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on computers, electronic components and systems, software, materials, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and Motion control Tech Briefs.
Verification of E-Beam direct write integration into 28nm BEOL SRAM technology
NASA Astrophysics Data System (ADS)
Hohle, Christoph; Choi, Kang-Hoon; Gutsch, Manuela; Hanisch, Norbert; Seidel, Robert; Steidel, Katja; Thrun, Xaver; Werner, Thomas
2015-03-01
Electron beam direct write lithography (EBDW) potentially offers advantages for low-volume semiconductor manufacturing, rapid prototyping or design verification due to its high flexibility without the need of costly masks. However, the integration of this advanced patterning technology into complex CMOS manufacturing processes remains challenging. The low throughput of today's single e-Beam tools limits high volume manufacturing applications and maturity of parallel (multi) beam systems is still insufficient [1,2]. Additional concerns like transistor or material damage of underlying layers during exposure at high electron density or acceleration voltage have to be addressed for advanced technology nodes. In the past we successfully proved that potential degradation effects of high-k materials or ULK shrink can be neglected and were excluded by demonstrating integrated electrical results of 28nm node transistor and BEOL performance following 50kV electron beam dry exposure [3]. Here we will give an update on the integration of EBDW in the 300mm CMOS manufacturing processes of advanced integrated circuits at the 28nm SRAM node of GLOBALFOUNDRIES Dresden. The work is an update to what has been previously published [4]. E-beam patterning results of BEOL full chip metal and via layers with a dual damascene integration scheme using a 50kV VISTEC SB3050DW variable shaped electron beam direct writer at Fraunhofer IPMSCNT are demonstrated. For the patterning of the Metal layer a Mix & Match concept based on the sequence litho - etch -litho -etch (LELE) was developed and evaluated wherein several exposure fields were blanked out during the optical exposure. Etch results are shown and compared to the POR. Results are also shown on overlay performance and optimized e-Beam exposure time using most advanced data prep solutions and resist processes. The patterning results have been verified using fully integrated electrical measurement of metal lines and vias on wafer level. In summary we demonstrate the integration capability of EBDW into a productive CMOS process flow at the example of the 28nm SRAM technology node.
Variations in surface roughness of seven orthodontic archwires: an SEM-profilometry study
Rakhshan, Vahid; Pousti, Maryam; Rahimi, Hajir; Shariati, Mahsa; Aghamohamadi, Bahareh
2012-01-01
Objective The purpose of this study was to evaluate the surface roughness (SR) of 2 types of orthodontic archwires made by 4 different manufacturers. Methods This in vitro experimental study was conducted on 35 specimens of 7 different orthodontic archwires, namely, 1 nickel-titanium (NiTi) archwire each from the manufacturers American Orthodontics, OrthoTechnology, All-Star Orthodontics, and Smart Technology, and 1 stainless steel (SS) archwire each from the manufacturers American Orthodontics, OrthoTechnology, and All-Star Orthodontics. After analyzing the composition of each wire by energy-dispersive X-ray analysis, the SR of each wire was determined by scanning electron microscopy (SEM) and surface profilometry. Data were analyzed using the Kruskal-Wallis and Mann-Whitney U tests (α < 0.05). Results The average SR of NiTi wires manufactured by Smart Technology, American Orthodontics, OrthoTechnology, and All-Star Orthodontics were 1,289 ± 915 A°, 1,378 ± 372 A°, 2,444 ± 369 A°, and 5,242 ± 2,832 A°, respectively. The average SR of SS wires manufactured by All-Star Orthodontics, OrthoTechnology, and American Orthodontics were 710 ± 210 A°, 1,831 ± 1,156 A°, and 4,018 ± 2,214 A°, respectively. Similar to the results of profilometry, the SEM images showed more defects and cracks on the SS wire made by American Orthodontics and the NiTi wire made by All-Star Orthodontics than others. Conclusions The NiTi wire manufactured by All-Star Orthodontics and the SS wire made by American Orthodontics were the roughest wires. PMID:23112943
Application of carbon nanoclusters in electronics
NASA Astrophysics Data System (ADS)
Krachkovskaya, T. M.; Sahadji, G. V.; Emelyanov, A. S.; Silaeva, M. V.
2018-04-01
Nanocarbon material (Ugleron and Astralens) is used for the first time for the production of metal porous cathode (MPC). It can be assumed that its implementation in the MPC matrix can change the mechanism and rate of occurrence of three-phase reactions of formation of active elements and oxygen and, thereby, improve its emission properties. The new technology of manufacturing MPC is aimed at solving the problem of increasing the durability of electro vacuum devices - more than 100,000 hours. The obtained results are intended for use in technologies for manufacturing of electron sources for electro vacuum devices used in space communication and navigation systems. In addition, they can be useful for other areas of electronics that use a metal-porous thermal cathode as sources of electron emission. There are manufactured models with the use of Ugleron and Astralens in a sponge and emission substance. A layout using Ugleron in the emission substance is tested for durability and currently has an operating time of 40,000 hours. A model with the use of Astralens and Ugleron in a sponge and emission substance respectively is tested for maximum current density. To date, it shows results comparable to the standard cathode. However, there is a suggestion that cathodes with Astralens and Ugleron have a lower evaporation rate of the active substance. There is predicted longer durability than for the standard cathode at the same emissivity.
Space processing: A projection
NASA Technical Reports Server (NTRS)
Mccreight, L. R.; Griffin, R. N.
1972-01-01
Estimates concerning space manufacturing, which might well become the largest and most specific application of space technology by the end of the century are given. Two classes of materials are considered - electronic crystals and biologicals.
Prosperity game for the national electronics manufacturing initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, M.; VanDevender, J.P.; Berry, I.
1995-05-01
Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents the Prosperity Game conducted under the sponsorship of the Electronics Subcommittee of the Civilian Industrialmore » Technology Committee (under the National Science and Technology Council), and the Electronics Partnership Project. Players were drawn from the electronics industry, from government, national laboratories, and universities, and from Japan and Austria. The primary objectives of this game were: To connect the technical and non-technical (i.e., policy) issues that were developed in the roadmap-making endeavor of the National Electronics Manufacturing Initiative (NENI);to provide energy, enthusiasm and people to help the roadmap succeed; and to provide insight into high-leverage public and private investments. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, the robustness of strategic thinking and planning, and the development, delivery and commercialization of new technologies.« less
Body of Knowledge for Silicon Carbide Power Electronics
NASA Technical Reports Server (NTRS)
Boomer, Kristen; Lauenstein, Jean-Marie; Hammoud, Ahmad
2016-01-01
Wide band gap semiconductors, such as silicon carbide (SiC), have emerged as very promising materials for future electronic components due to the tremendous advantages they offer in terms of power capability, extreme temperature tolerance, and high frequency operation. This report documents some issues pertaining to SiC technology and its application in the area of power electronics, in particular those geared for space missions. It also serves as a body of knowledge (BOK) in reference to the development and status of this technology obtained via literature and industry survey as well as providing a listing of the major manufacturers and their capabilities. Finally, issues relevant to the reliability of SiC-based electronic parts are addressed and limitations affecting the full utilization of this technology are identified.
Numerical Control/Computer Aided Manufacturing (NC/CAM), A Descom Study
1979-07-01
CAM machines operate directly from computers, but most get instructions in the form of punched tape. The applications of NC/CAM are virtually...Although most NC/CAM equipment is metal working, its applications include electronics manufacturing, glass making, food processing, materiel handling...drafting, woodworking, plastics and inspection, just to name a few. Numerical control, like most technologies, is an advancing and evolutionary process
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
... is a decision consolidated pursuant to Section 6(c) of the Educational, Scientific, and Cultural...: 13-004. Applicant: Georgia Institute of Technology, Atlanta, GA 30332. Instrument: Electron Microscope. Manufacturer: Hitachi High-Technologies Corp., Japan. Intended Use: See notice at 78 FR 13860-61...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... consolidated pursuant to Section 6(c) of the Educational, Scientific, and Cultural Materials Importation Act of... 82072. Instrument: Electron Microscope. Manufacturer: Hitachi High- Technologies Corporation, Japan...-Technologies Corporation, Japan. Intended Use: See notice at 76 FR 20952, April 14, 2011. Docket Number: 11-024...
JPRS Report, Science & Technology, Europe & Latin America
1988-04-06
courses and in polytechnics a growing number of undergraduate research theses [ tesi di laurea] are increasingly coming to resemble authentic feasibility...Information Science Eleven Priorities Research Priority Actions — Microbiological engineering —Enzyme engineering —Biotechnological engineering —Food...Foodstuffs Medicine Human and social sciences Technology, computer-integrated manufacturing Electronics, data processing Microbiological
Future direction of direct writing
NASA Astrophysics Data System (ADS)
Kim, Nam-Soo; Han, Kenneth N.
2010-11-01
Direct write technology using special inks consisting of finely dispersed metal nanoparticles in liquid is receiving an undivided attention in recent years for its wide range of applicability in modern electronic industry. The application of this technology covers radio frequency identification-tag (RFID-tag), flexible-electronics, organic light emitting diodes (OLED) display, e-paper, antenna, bumpers used in flip-chip, underfilling, frit, miniresistance applications and biological uses, artificial dental applications and many more. In this paper, the authors have reviewed various direct write technologies on the market and discussed their advantages and shortfalls. Emphasis has given on microdispensing deposition write (MDDW), maskless mesoscale materials deposition (M3D), and ink-jet technologies. All of these technologies allow printing various patterns without employing a mask or a resist with an enhanced speed with the aid of computer. MDDW and M3D are capable of drawing patterns in three-dimension and MDDW, in particular, is capable of writing nanoinks with high viscosity. However, it is still far away for direct write to be fully implemented in the commercial arena. One of the hurdles to overcome is in manufacturing conductive inks which are chemically and physically stable, capable of drawing patterns with acceptable conductivity, and also capable of drawing patterns with acceptable adhesiveness with the substrates. The authors have briefly discussed problems involved in manufacturing nanometal inks to be used in various writing devices. There are numerous factors to be considered in manufacturing such inks. They are reducing agents, concentrations, oxidation, compact ability allowing good conductivity, and stability in suspension.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
... information technology, e.g., permitting electronic submission of responses. Summary of Information Collection... investigations and compliance inspections in fulfilling the Bureau's mission to enforce the Gun Control Law. (5...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... techniques or other forms of information technology, e.g., permitting electronic submission of responses... criminal investigations and compliance inspections in fulfilling the Bureau's mission to enforce the Gun...
NASA Tech Briefs, May 2002. Volume 26, No. 5
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on engineering materials, electronic components and circuits, software, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.
[RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING TECHNIQUE FOR SPINAL IMPLANTS].
Lu, Qi; Yu, Binsheng
2016-09-08
To summarize the current research progress of three-dimensional (3D) printing technique for spinal implants manufacture. The recent original literature concerning technology, materials, process, clinical applications, and development direction of 3D printing technique in spinal implants was reviewed and analyzed. At present, 3D printing technologies used to manufacture spinal implants include selective laser sintering, selective laser melting, and electron beam melting. Titanium and its alloys are mainly used. 3D printing spinal implants manufactured by the above materials and technology have been successfully used in clinical. But the problems regarding safety, related complications, cost-benefit analysis, efficacy compared with traditional spinal implants, and the lack of relevant policies and regulations remain to be solved. 3D printing technique is able to provide individual and customized spinal implants for patients, which is helpful for the clinicians to perform operations much more accurately and safely. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal implants will be developed and used clinically.
Structural Integrity of an Electron Beam Melted Titanium Alloy.
Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin
2016-06-14
Advanced manufacturing encompasses the wide range of processes that consist of "3D printing" of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response.
Small Scale Turbopump Manufacturing Technology and Material Processes
NASA Technical Reports Server (NTRS)
Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank
2011-01-01
As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.
Lithium-Ion Batteries for Aerospace Applications
NASA Technical Reports Server (NTRS)
Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.
1999-01-01
This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.
Approaches to eliminating chlorofluorocarbon use in manufacturing.
Boyhan, W S
1992-01-01
Until quite recently, chlorofluorocarbons (CFCs) had been considered the safest and most benign of industrial chemicals. Their physical and chemical properties made them an integral part of manufacturing processes for electronics products. The recognition that CFCs destroy the stratospheric ozone layer, with consequent enormous consequences to all forms of life on earth, has led to international agreements which will end virtually all possibly before. This impending phaseout of CFCs has caused electronics manufacturers to examine alternative chemicals and processing methods. This manuscript documents the steps AT&T has taken to reach its goal of 100% phaseout of CFCs by years-end 1994. These actions include top-down management support with combined bottom-up thrusts, an internal information gathering and dissemination center, internal technology transfer, and external corporate activism. Images PMID:11607258
Recent progress on biodegradable materials and transient electronics.
Li, Rongfeng; Wang, Liu; Kong, Deying; Yin, Lan
2018-09-01
Transient electronics (or biodegradable electronics) is an emerging technology whose key characteristic is an ability to dissolve, resorb, or physically disappear in physiological environments in a controlled manner. Potential applications include eco-friendly sensors, temporary biomedical implants, and data-secure hardware. Biodegradable electronics built with water-soluble, biocompatible active and passive materials can provide multifunctional operations for diagnostic and therapeutic purposes, such as monitoring intracranial pressure, identifying neural networks, assisting wound healing process, etc. This review summarizes the up-to-date materials strategies, manufacturing schemes, and device layouts for biodegradable electronics, and the outlook is discussed at the end. It is expected that the translation of these materials and technologies into clinical settings could potentially provide vital tools that are beneficial for human healthcare.
JPRS Report, Science & Technology, Europe & Latin America
1987-08-12
there is significant international interest in this today. Going beyond the original applications the thermoluminescent dosimeters ( TLD ) developed...manufacturing; --Applications in the health and teaching sectors; —Correspondence management; -- Electronic mail. The competitive advantages of the multimedia...objective of the MOSES project is to make the multimedia electronic documentation system much more powerful than its paper counterpart. To achieve
NASA Tech Briefs, November 2002. Volume 26, No. 11
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on engineering materials, electronic components and systems, software, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences book and reports, and a special section of Photonics Tech Briefs.
NASA Tech Briefs, October 2002. Volume 26, No. 10
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus on sensors, electronic components and systems, software, materials, materials, mechanics, manufacturing, physical sciences, information sciences, book and reports, motion control and a special section of Photonics Tech Briefs.
NASA Tech Briefs, July 2002. Volume 26, No. 7
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include: a technology focus sensors, software, electronic components and systems, materials, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.
Commercial space opportunities - Advanced concepts and technology overview
NASA Technical Reports Server (NTRS)
Reck, Gregory M.
1993-01-01
The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.
A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors
Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.
2012-01-01
3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319
NASA Astrophysics Data System (ADS)
de Ridder, Luc; Filies, Olaf; Rodriguez, Ben; Kuijken, Aart
2001-04-01
Through application of modern supply chain concepts in combination with state-of-the-art information technology, mask manufacturing performance and customer satisfaction can be improved radically. The AutoMOPS solution emphasizes on the elimination of the order verification through paperless, electronically linked information sharing/exchange between chip design, mask production and prototype production stages.
Technological trends in automobiles.
Horton, E J; Compton, W D
1984-08-10
Current technological trends in the automotive industry reflect many diverse disciplines. Electronics and microprocessors, new engine transmission concepts, composite and ceramic materials, and computer-aided design and manufacture will combine to make possible the creation of advanced automobiles offering outstanding quality, fuel economy, and performance. A projected "average" vehicle of the 1990's is described to illustrate the application of these new concepts.
77 FR 74225 - Proposed Extension of the Approval of Information Collection Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... Reduction Act of 1995 (PRA95). 44 U.S.C. 3056(c)(2)(A). This program helps to ensure that requested data can...- and 15-year-olds in occupations other than manufacturing and mining if the Secretary of Labor... technological collection techniques or other forms of information technology, e.g., permitting electronic...
76 FR 52693 - Proposed Extension of the Approval of Information Collection Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
... Reduction Act of 1995 (PRA95). 44 U.S.C. 3056(c)(2)(A). This program helps to ensure that requested data can... manufacturing and mining or deemed hazardous, if the Secretary of Labor determines such employment is confined... technological collection techniques or other forms of information technology, e.g., permitting electronic...
Evaluation of ARCAM Deposited Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Slattery, Kevin; Slaughter, Blake; Speorl, Emily; Good, James; Gilley, Scott; McLemore, Carole
2008-01-01
A wide range of Metal Additive Manufacturing (MAM) technologies are becoming available. One of the challenges in using new technologies for aerospace systems is demonstrating that the process and system has the ability to manufacture components that meet the high quality requirements on a statistically significant basis. The widest-used system for small to medium sized components is the ARCAM system manufactured in Gothenburg, Sweden. This system features a 4kW electron-beam gun, and has a chamber volume of 250mm long x 250mm wide x 250mm to 400mm tall. This paper will describe the basis for the quality and consistency requirements, the experimental and evaluation procedures used for the evaluation, and an analysis of the results for Ti-6Al-4V.
Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2
NASA Technical Reports Server (NTRS)
1991-01-01
Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering.
NASA Tech Briefs, February 2002. Volume 26, No. 2
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include:a technology focus on computers, electronic components and systems, software, materials, mechanics,physical sciences machinery, manufacturing/fabrication, mathematics, book and reports, motion control tech briefs and a special section on Photonics Tech Briefs.
NASA Astrophysics Data System (ADS)
Ushimaru, Kenji
1990-08-01
Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.
Huang, Yin; Zheng, Ning; Cheng, Zhiqiang; Chen, Ying; Lu, Bingwei; Xie, Tao; Feng, Xue
2016-12-28
Flexible and stretchable electronics offer a wide range of unprecedented opportunities beyond conventional rigid electronics. Despite their vast promise, a significant bottleneck lies in the availability of a transfer printing technique to manufacture such devices in a highly controllable and scalable manner. Current technologies usually rely on manual stick-and-place and do not offer feasible mechanisms for precise and quantitative process control, especially when scalability is taken into account. Here, we demonstrate a spatioselective and programmable transfer strategy to print electronic microelements onto a soft substrate. The method takes advantage of automated direct laser writing to trigger localized heating of a micropatterned shape memory polymer adhesive stamp, allowing highly controlled and spatioselective switching of the interfacial adhesion. This, coupled to the proper tuning of the stamp properties, enables printing with perfect yield. The wide range adhesion switchability further allows printing of hybrid electronic elements, which is otherwise challenging given the complex interfacial manipulation involved. Our temperature-controlled transfer printing technique shows its critical importance and obvious advantages in the potential scale-up of device manufacturing. Our strategy opens a route to manufacturing flexible electronics with exceptional versatility and potential scalability.
2016-02-29
A-E) Ring Resonators (RR); (F) Optically Pumped Laser in RR; G) Coupled RR; H) Ultra-High Q-factor [942...tendency of particulates suspended in coffee to move towards the edges of a coffee spill, causing a ring -like stain after the solvent has evaporated...variety of functions, including to make the surface non-sticky (anti-blocking), to allow the surfaces to slide over one another ( slip aid), to cause the
A thin-film microprocessor with inkjet print-programmable memory
NASA Astrophysics Data System (ADS)
Myny, Kris; Smout, Steve; Rockelé, Maarten; Bhoolokam, Ajay; Ke, Tung Huei; Steudel, Soeren; Cobb, Brian; Gulati, Aashini; Rodriguez, Francisco Gonzalez; Obata, Koji; Marinkovic, Marko; Pham, Duy-Vu; Hoppe, Arne; Gelinck, Gerwin H.; Genoe, Jan; Dehaene, Wim; Heremans, Paul
2014-12-01
The Internet of Things is driving extensive efforts to develop intelligent everyday objects. This requires seamless integration of relatively simple electronics, for example through `stick-on' electronics labels. We believe the future evolution of this technology will be governed by Wright's Law, which was first proposed in 1936 and states that the cost of a product decreases with cumulative production. This implies that a generic electronic device that can be tailored for application-specific requirements during downstream integration would be a cornerstone in the development of the Internet of Things. We present an 8-bit thin-film microprocessor with a write-once, read-many (WORM) instruction generator that can be programmed after manufacture via inkjet printing. The processor combines organic p-type and soluble oxide n-type thin-film transistors in a new flavor of the familiar complementary transistor technology with the potential to be manufactured on a very thin polyimide film, enabling low-cost flexible electronics. It operates at 6.5 V and reaches clock frequencies up to 2.1 kHz. An instruction set of 16 code lines, each line providing a 9 bit instruction, is defined by means of inkjet printing of conductive silver inks.
Innovative, wearable snap connector technology for improved device networking in electronic garments
NASA Astrophysics Data System (ADS)
Kostrzewski, Andrew A.; Lee, Kang S.; Gans, Eric; Winterhalter, Carole A.; Jannson, Tomasz P.
2007-04-01
This paper discusses Physical Optics Corporation's (POC) wearable snap connector technology that provides for the transfer of data and power throughout an electronic garment (e-garment). These connectors resemble a standard garment button and can be mated blindly with only one hand. Fully compatible with military clothing, their application allows for the networking of multiple electronic devices and an intuitive method for adding/removing existing components from the system. The attached flexible cabling also permits the rugged snap connectors to be fed throughout the standard webbing found in military garments permitting placement in any location within the uniform. Variations of the snap electronics/geometry allow for integration with USB 2.0 devices, RF antennas, and are capable of transferring high bandwidth data streams such as the 221 Mbps required for VGA video. With the trend towards providing military officers with numerous electronic devices (i.e., heads up displays (HMD), GPS receiver, PDA, etc), POC's snap connector technology will greatly improve cable management resulting in a less cumbersome uniform. In addition, with electronic garments gaining widespread adoption in the commercial marketplace, POC's technology is finding applications in such areas as sporting good manufacturers and video game technology.
Ramakrishnaiah, Ravikumar; Al Kheraif, Abdulaziz Abdullah; Mohammad, Ashfaq; Divakar, Darshan Devang; Kotha, Sunil Babu; Celur, Sree Lalita; Hashem, Mohamed I; Vallittu, Pekka K; Rehman, Ihtesham Ur
2017-05-01
The current study was aimed to fabricate customized root form dental implant using additive manufacturing technique for the replacement of missing teeth. The root form dental implant was designed using Geomagic™ and Magics™, the designed implant was directly manufactured by layering technique using ARCAM A2™ electron beam melting system by employing medical grade Ti-6Al-4V alloy powder. Furthermore, the fabricated implant was characterized in terms of certain clinically important parameters such as surface microstructure, surface topography, chemical purity and internal porosity. Results confirmed that, fabrication of customized dental implants using additive rapid manufacturing technology offers an attractive method to produce extremely pure form of customized titanium dental implants, the rough and porous surface texture obtained is expected to provide better initial implant stabilization and superior osseointegration.
Structural Integrity of an Electron Beam Melted Titanium Alloy
Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin
2016-01-01
Advanced manufacturing encompasses the wide range of processes that consist of “3D printing” of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response. PMID:28773590
Fibre optic gyroscopes for space use
NASA Astrophysics Data System (ADS)
Faussot, Nicolas; Cottreau, Yann; Hardy, Guillaume; Simonpietri, Pascal; Gaiffe, Thierry
2017-11-01
Among the technologies available for gyroscopes usable in space, the Fibre Optic Gyroscope (FOG) technology appears to be the most suitable: no moving parts, very good lifetime, low power consumption, very low random walk, arbitrarily low angular resolution and very good behaviour in radiations and vacuum. Benefiting from more than ten years of experience with this technology, Ixsea (formerly the Navigation Division of Photonetics) is developing space FOG under both CNES and ESA contracts since many years. In the 1996-1998 period, two space FOG demonstrators in the 0,01°/h class were manufactured, including an optical head (optic and optoelectronic part) designed for space use and a standard ground electronics. Beyond the demonstration of the specified FOG performances, the behaviour of the optical head has been validated for use in typical space environment: vibrations, shocks, radiations (up to 50 krad) and thermal vacuum. Since the beginning of 1999, Ixsea is developing a space electronics in order to manufacture two complete space FOG. The first one entered in qualification in October. The second one will be delivered beginning of next year, it will be used in a CNES attitude measurement experiment (MAGI) onboard the FrenchBrazilian Microsatellite (FBM) partly dedicated to technology evaluation.
NASA Astrophysics Data System (ADS)
Wang, Xi Vincent; Wang, Lihui
2017-08-01
Cloud computing is the new enabling technology that offers centralised computing, flexible data storage and scalable services. In the manufacturing context, it is possible to utilise the Cloud technology to integrate and provide industrial resources and capabilities in terms of Cloud services. In this paper, a function block-based integration mechanism is developed to connect various types of production resources. A Cloud-based architecture is also deployed to offer a service pool which maintains these resources as production services. The proposed system provides a flexible and integrated information environment for the Cloud-based production system. As a specific type of manufacturing, Waste Electrical and Electronic Equipment (WEEE) remanufacturing experiences difficulties in system integration, information exchange and resource management. In this research, WEEE is selected as the example of Internet of Things to demonstrate how the obstacles and bottlenecks are overcome with the help of Cloud-based informatics approach. In the case studies, the WEEE recycle/recovery capabilities are also integrated and deployed as flexible Cloud services. Supporting mechanisms and technologies are presented and evaluated towards the end of the paper.
An Industry Viewpoint on Electron Energy Distribution Function Control
NASA Astrophysics Data System (ADS)
Ventzek, Peter
2011-10-01
It is trite to note that plasmas play a key role in industrial technology. Lighting, laser, film coating and now medical technology require plasma science for their sustenance. One field stands out by virtue of its economic girth and impact. Semiconductor manufacturing and process science enabling its decades of innovation owe significant debt to progress in low temperature plasma science. Today, technology requires atomic level control from plasmas. Mere layers of atoms delineate good and bad device performance. While plasma sources meet nanoscale specifications over 100s cm scale dimensions, achieving atomic level control from plasmas is hindered by the absence of direct control of species velocity distribution functions. EEDF control translates to precise control of species flux and velocities at surfaces adjacent to the plasma. Electron energy distribution function (eedf) control is a challenge that, if successfully met, will have a huge impact on nanoscale device manufacturing. This lunchtime talk will attempt to provide context to the research advances presented at this Workshop. Touched on will be areas of new opportunity and the risks associated with missing these opportunities.
Solid-State Additive Manufacturing for Heat Exchangers
NASA Astrophysics Data System (ADS)
Norfolk, Mark; Johnson, Hilary
2015-03-01
Energy densities in devices are increasing across many industries including power generation, high power electronics, manufacturing, and automotive. Increasingly, there is a need for very high efficiency thermal management devices that can pull heat out of a small area at higher and higher rates. Metal additive manufacturing (AM) technologies have the promise of creating parts with complex internal geometries required for integral thermal management. However, this goal has not been met due to constraints in fusion-based metal 3D printers. This work presents a new strategy for metal AM of heat exchangers using an ultrasonic sheet lamination approach.
Multichip module technology for automotive application
NASA Astrophysics Data System (ADS)
Johnson, R. Wayne; Evans, John L.; Bosley, Larry
1995-01-01
Advancements in multichip module technology are creating design freedoms previously unavailable to design engineers. These advancements are opening new markets for laminate based multichip module products. In particular, material improvements in laminate printed wiring boards are allowing multichip module technology to meet more stringent environmental conditions. In addition, improvements in encapsulants and adhesives are enhancing the capabilities of multichip module technology to meet harsh environment. Furthermore, improvements in manufacturing techniques are providing the reliability improvements necessary for use in high quality electronic systems. These advances are making multichip module technology viable for high volume, harsh environment applications like under-the-hood automotive electronics. This paper will provide a brief review of multichip module technology, a discussion of specific research activities with Chrysler for use of multichip modules in automotive engine controllers and finally a discussion of prototype multichip modules fabricated and tested.
NASA Astrophysics Data System (ADS)
Dolimont, Adrien; Rivière-Lorphèvre, Edouard; Ducobu, François; Backaert, Stéphane
2018-05-01
Additive manufacturing is growing faster and faster. This leads us to study the functionalization of the parts that are produced by these processes. Electron Beam melting (EBM) is one of these technologies. It is a powder based additive manufacturing (AM) method. With this process, it is possible to manufacture high-density metal parts with complex topology. One of the big problems with these technologies is the surface finish. To improve the quality of the surface, some finishing operations are needed. In this study, the focus is set on chemical polishing. The goal is to determine how the chemical etching impacts the dimensional accuracy and the surface roughness of EBM parts. To this end, an experimental campaign was carried out on the most widely used material in EBM, Ti6Al4V. Different exposure times were tested. The impact of these times on surface quality was evaluated. To help predicting the excess thickness to be provided, the dimensional impact of chemical polishing on EBM parts was estimated. 15 parts were measured before and after chemical machining. The improvement of surface quality was also evaluated after each treatment.
1996 Laboratory directed research and development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.
Tuomi, Jukka T; Björkstrand, Roy V; Pernu, Mikael L; Salmi, Mika V J; Huotilainen, Eero I; Wolff, Jan E H; Vallittu, Pekka K; Mäkitie, Antti A
2017-03-01
Custom-designed patient-specific implants and reconstruction plates are to date commonly manufactured using two different additive manufacturing (AM) technologies: direct metal laser sintering (DMLS) and electron beam melting (EBM). The purpose of this investigation was to characterize the surface structure and to assess the cytotoxicity of titanium alloys processed using DMLS and EBM technologies as the existing information on these issues is scarce. "Processed" and "polished" DMLS and EBM disks were assessed. Microscopic examination revealed titanium alloy particles and surface flaws on the processed materials. These surface flaws were subsequently removed by polishing. Surface roughness of EBM processed titanium was higher than that of DMLS processed. The cytotoxicity results of the DMLS and EBM discs were compared with a "gold standard" commercially available titanium mandible reconstruction plate. The mean cell viability for all discs was 82.6% (range, 77.4 to 89.7) and 83.3% for the control reconstruction plate. The DMLS and EBM manufactured titanium plates were non-cytotoxic both in "processed" and in "polished" forms.
Reusable Rapid Prototyped Blunt Impact Simulator
2016-08-01
for a nonclassical gun experimental application. 15. SUBJECT TERMS rapid prototype, additive manufacturing, reusable projectile, 3-axis accelerometer... gun -launched applications.1,2 SLS technology uses a bed of powdered material that is introduced to a laser. The laser is controlled by a computer to...in creating internal gun -hardened electronics for a variety of high-g applications, GTB developed an internal electronics package containing a COTS
1984-09-01
Application Cited Deere and Company e Assist in design of electronic systems for tractors, crawlers, graders, scrapers, etc. Defense Contract Audit Agency . Aid...in developing and enhancing operational audits . DoD, Cameron Station e Conduct affordability analyses; evalu- ate new start systems. DoD, Defense...document productivity gains. e Promotes better inLustry and customer re~latons by providing a common baseline or starting polut for cost vs. perfor- vanz
Suska, Felicia; Kjeller, Göran; Tarnow, Peter; Hryha, Eduard; Nyborg, Lars; Snis, Anders; Palmquist, Anders
2016-08-01
In the field of maxillofacial reconstruction, additive manufacturing technologies, specifically electron beam melting (EBM), offer clinicians the potential for patient-customized design of jaw prostheses, which match both load-bearing and esthetic demands. The technique allows an innovative, functional design, combining integrated porous regions for bone ingrowth and secondary biological fixation with solid load-bearing regions ensuring the biomechanical performance. A patient-specific mandibular prosthesis manufactured using EBM was successfully used to reconstruct a patient's mandibular defect after en bloc resection. Over a 9-month follow-up period, the patient had no complications. A short operating time, good esthetic outcome, and high level of patient satisfaction as measured by quality-of-life questionnaires-the European Organisation for Research and Treatment of Cancer QLQ-C30 (30-item quality-of-life core questionnaire) and H&N35 (head and neck cancer module)-were reported for this case. Individually planned and designed EBM-produced prostheses may be suggested as a possible future alternative to fibular grafts or other reconstructive methods. However, the role of porosity, the role of geometry, and the optimal combination of solid and porous parts, as well as surface properties in relation to soft tissues, should be carefully evaluated in long-term clinical trials. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics.
Ye, Dong; Ding, Yajiang; Duan, Yongqing; Su, Jiangtao; Yin, Zhouping; Huang, Yong An
2018-05-01
Nanofibers/nanowires usually exhibit exceptionally low flexural rigidities and remarkable tolerance against mechanical bending, showing superior advantages in flexible electronics applications. Electrospinning is regarded as a powerful process for this 1D nanostructure; however, it can only be able to produce chaotic fibers that are incompatible with the well-patterned microstructures in flexible electronics. Electro-hydrodynamic (EHD) direct-writing technology enables large-scale deposition of highly aligned nanofibers in an additive, noncontact, real-time adjustment, and individual control manner on rigid or flexible, planar or curved substrates, making it rather attractive in the fabrication of flexible electronics. In this Review, the ground-breaking research progress in the field of EHD direct-writing technology is summarized, including a brief chronology of EHD direct-writing techniques, basic principles and alignment strategies, and applications in flexible electronics. Finally, future prospects are suggested to advance flexible electronics based on orderly arranged EHD direct-written fibers. This technology overcomes the limitations of the resolution of fabrication and viscosity of ink of conventional inkjet printing, and represents major advances in manufacturing of flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Metalworking Solutions For Naval Systems That Go In Harm’s Way
2015-01-01
destroyers USS Momsen (DDG 92) and USS Preble (DDG 88) are underway in formation. U.S. Navy photo Front cover: Ingalls Shipbuilding welding photo...applies a variety of innovative welding technologies to address the challenges associated with joining weapon system components. Joining Technologies...friction stir welding process to manufacture edge-cooled naval electronic cold plate assemblies. The modular, high- performance, and scalable
Large space systems technology electronics: Data and power distribution
NASA Technical Reports Server (NTRS)
Dunbar, W. G.
1980-01-01
The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.
Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith
2016-03-01
Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Industry Training: Causes and Consequences.
ERIC Educational Resources Information Center
Smith, Andrew; Freeland, Brett
Research on Australian organizations in five industry sectors--building and construction, food processing, electronics manufacturing, retailing, and finance and banking--has identified these three key drivers of enterprise training: workplace change, quality assurance, and new technology. Operation of the training drivers is moderated by a range…
78 FR 72750 - Reports, Forms, and Record Keeping Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-03
... Vehicle Safety Compliance (NVS-223), National Highway Traffic Safety Administration, West Building--4th... automated, electronic, mechanical, or other technological collection techniques or other forms of.... OMB Control Number: 2127-0043. Affected Public: New manufacturers of motor vehicles and motor vehicle...
Active Pixel Sensors: Are CCD's Dinosaurs?
NASA Technical Reports Server (NTRS)
Fossum, Eric R.
1993-01-01
Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.
The meniscus-guided deposition of semiconducting polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Xiaodan; Shaw, Leo; Gu, Kevin
The electronic devices that play a vital role in our daily life are primarily based on silicon and are thus rigid, opaque, and relatively heavy. However, new electronics relying on polymer semiconductors are opening up new application spaces like stretchable and self-healing sensors and devices, and these can facilitate the integration of such devices into our homes, our clothing, and even our bodies. So, while there has been tremendous interest in such technologies, the widespread adoption of these organic electronics requires low-cost manufacturing techniques. Fortunately, the realization of organic electronics can take inspiration from a technology developed since the beginningmore » of the Common Era: printing. Here, this review addresses the critical issues and considerations in the printing methods for organic electronics, outlines the fundamental fluid mechanics, polymer physics, and deposition parameters involved in the fabrication process, and provides future research directions for the next generation of printed polymer electronics.« less
The meniscus-guided deposition of semiconducting polymers
Gu, Xiaodan; Shaw, Leo; Gu, Kevin; ...
2018-02-07
The electronic devices that play a vital role in our daily life are primarily based on silicon and are thus rigid, opaque, and relatively heavy. However, new electronics relying on polymer semiconductors are opening up new application spaces like stretchable and self-healing sensors and devices, and these can facilitate the integration of such devices into our homes, our clothing, and even our bodies. So, while there has been tremendous interest in such technologies, the widespread adoption of these organic electronics requires low-cost manufacturing techniques. Fortunately, the realization of organic electronics can take inspiration from a technology developed since the beginningmore » of the Common Era: printing. Here, this review addresses the critical issues and considerations in the printing methods for organic electronics, outlines the fundamental fluid mechanics, polymer physics, and deposition parameters involved in the fabrication process, and provides future research directions for the next generation of printed polymer electronics.« less
Creating XML/PHP Interface for BAN Interoperability.
Fragkos, Vasileios; Katzis, Konstantinos; Despotou, Georgios
2017-01-01
Recent advances in medical and electronic technologies have introduced the use of Body Area Networks as a part of e-health, for constant and accurate monitoring of patients and the transmission as well as processing of the data to develop a holistic Electronic Health Record. The rising global population, different BAN manufacturers and a variety of medical systems pose the issue of interoperability between BANs and systems as well as the proper way to propagate medical data in an organized and efficient manner. In this paper, we describe BANs and propose the use of certain web technologies to address this issue.
Trevisan, Francesco; Calignano, Flaviana; Aversa, Alberta; Marchese, Giulio; Lombardi, Mariangela; Biamino, Sara; Ugues, Daniele; Manfredi, Diego
2018-04-01
The mechanical properties and biocompatibility of titanium alloy medical devices and implants produced by additive manufacturing (AM) technologies - in particular, selective laser melting (SLM), electron beam melting (EBM) and laser metal deposition (LMD) - have been investigated by several researchers demonstrating how these innovative processes are able to fulfil medical requirements for clinical applications. This work reviews the advantages given by these technologies, which include the possibility to create porous complex structures to improve osseointegration and mechanical properties (best match with the modulus of elasticity of local bone), to lower processing costs, to produce custom-made implants according to the data for the patient acquired via computed tomography and to reduce waste.
Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG)
NASA Astrophysics Data System (ADS)
Beaucamp, Anthony T.; Namba, Yoshiharu; Charlton, Phillip; Jain, Samyak; Graziano, Arthur A.
2015-06-01
In recent years, rapid prototyping of titanium alloy components for medical and aeronautics application has become viable thanks to advances in technologies such as electron beam melting (EBM) and selective laser sintering (SLS). However, for many applications the high surface roughness generated by additive manufacturing techniques demands a post-finishing operation to improve the surface quality prior to usage. In this paper, the novel shape adaptive grinding process has been applied to finishing titanium alloy (Ti6Al4V) additively manufactured by EBM and SLS. It is shown that the micro-structured surface layer resulting from the melting process can be removed, and the surface can then be smoothed down to less than 10 nm Ra (starting from 4-5 μm Ra) using only three different diamond grit sizes. This paper also demonstrates application of the technology to freeform shapes, and documents the dimensional accuracy of finished artifacts.
Silicon material technology status. [assessment for electronic and photovoltaic applications
NASA Technical Reports Server (NTRS)
Lutwack, R.
1983-01-01
Silicon has been the basic element for the electronic and photovoltaic industries. The use of silicon as the primary element for terrestrial photovoltaic solar arrays is projected to continue. The reasons for this projection are related to the maturity of silicon technology, the ready availability of extremely pure silicon, the performance of silicon solar cells, and the considerable present investment in technology and manufacturing facilities. The technologies for producing semiconductor grade silicon and, to a lesser extent, refined metallurgical grade silicon are considered. It is pointed out that nearly all of the semiconductor grade silicon is produced by processes based on the Siemens deposition reactor, a technology developed 26 years ago. The state-of-the-art for producing silicon by this process is discussed. It is expected that efforts to reduce polysilicon process costs will continue.
Technology: Taking It to the Streets.
ERIC Educational Resources Information Center
Rizvi, Teri
1999-01-01
Explains how one university extended the electronic reach of its students without sacrificing the university's nearly 150-year-old mission of personalized education. The five-year partnership between the school and a communications company and other cooperative arrangements with suppliers, service, and software manufacturers in transforming the…
Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; ...
2016-04-26
The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) andmore » also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. Furthermore, the results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.« less
Global industry status report and roadmap for high performance displays
NASA Astrophysics Data System (ADS)
Bardsley, J. Norman; Pinnel, M. Robert
2003-09-01
A summary is provided of a comprehensive industry status report and roadmap available from www.usdc.org. Continued improvements in LCD technology are being driven by home entertainment applications, leading to better color and video response. Competing technologies, such as PDP and OLED and electronic paper must either exploit inherent advantages for such applications or focus on other market niches that are not being addressed well by mainline LCD technology. Flexible displays provide an opportunity for innovative technologies and manufacturing methods, but appear to bring no killer applications.
Wide Strip Casting Technology of Magnesium Alloys
NASA Astrophysics Data System (ADS)
Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.
Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.
NASA Astrophysics Data System (ADS)
Iebba, Maurizio; Astarita, Antonello; Mistretta, Daniela; Colonna, Ivano; Liberini, Mariacira; Scherillo, Fabio; Pirozzi, Carmine; Borrelli, Rosario; Franchitti, Stefania; Squillace, Antonino
2017-08-01
This paper aims to study the genesis of defects in titanium components made through two different additive manufacturing technologies: selective laser melting and electron beam melting. In particular, we focussed on the influence of the powders used on the formation of porosities and cavities in the manufactured components. A detailed experimental campaign was carried out to characterize the components made through the two additive manufacturing techniques aforementioned and the powders used in the process. It was found that some defects of the final components can be attributed to internal porosities of the powders used in the manufacturing process. These internal porosities are a consequence of the gas atomization process used for the production of the powders themselves. Therefore, the importance of using tailored powders, free from porosities, in order to manufacture components with high mechanical properties is highlighted.
The AMTEX Partnership. Third quarterly report, FY 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemon, D.K.; Quisenberry, R.K.
1995-06-01
Key activities for the quarter were the initiation of tactical work on the OPCon Project, development of a draft of the AMTEX Policies and Procedures document, and a meeting of the Industry Technical Advisory Committee. A significant milestone was reached when a memorandum of understanding was signed between the DOE and The Department of Commerce. The agreement signified the official participation of the National Institute of Standards and Technology on the Demand Activated Manufacturing Architecture (DAMA) project in AMTEX. Project accomplishments are given for: computer-aided manufacturing, cotton biotechnology, DAMA, electronic embedded fingerprints, rapid cutting, sensors for agile manufacturing, and textilemore » resource conservation.« less
Thermoplastic Adhesives based on polyolefin and olefinic copolymers
NASA Astrophysics Data System (ADS)
Paul, Rituparna
2014-03-01
H.B. Fuller has been a leading global industrial adhesive manufacturer for over 125 years. It is a company with a rich history of consistently delivering adhesive innovations for enhancing product performance in the market place. H.B. Fuller technologies/products find application in several markets including packaging, personal hygiene and nonwovens, durable assembly and electronics. In this presentation, H. B. Fuller's technology innovation journey will be shared with emphasis on groundbreaking technologies/products based on polyolefin and olefin copolymers.
Aspects regarding manufacturing technologies of composite materials for brake pad application
NASA Astrophysics Data System (ADS)
Craciun, A. L.; Hepuţ, T.; Pinca-Bretotean, C.
2018-01-01
Current needs in road safety, requires the development of new technical solutions for automotive braking system. Their safe operation is subject to following factors: concept design, materials used and electronic control. Among the factors previously listed, choice of materials and manufacturing processes are difficult stage but very important for achieving technical performance and getting a relatively small cost of constituting parts of brake system. The choice is based on the promotion of organic composite material, popular in areas where the weight of materials plays an important role. The brake system is composed of many different parts including brake pads, a master cylinder, wheel cylinders and a hydraulic control system. The brake pads are an important component in the braking system of automotive. These are of different types, suitable for different types of automotive and engines. Brake pads are designed for friction stability, durability, minimization of noise and vibration. The typology of the brake pads depends on the material which they are made. The aim of this paper is to presents the manufacturing technologies for ten recipes of composite material used in brake pads applications. In this work will be done: choosing the constituents of the recipes, investigation of their basic characteristics, setting the proportions of components, obtaining the composite materials in laboratory, establishing the parameters of manufacturing technology and technological analysis.
Center for Applied Radiation Research (CARR)
NASA Technical Reports Server (NTRS)
Fogarty, Thomas N.
1997-01-01
Prairie View A&M University (PVAMU) Center for Applied Radiation Research (CARR) was established in 1995 to address the tasks, missions and technological needs of NASA. CARR is built on a tradition of radiation research at Prairie View A&M started in 1984 with NASA funding. This continuing program has lead to: (1) A more fundamental and practical understanding of radiation effects on electronics and materials; (2) A dialog between space, military and commercial electronics manufacturers; (3) Innovative electronic circuit designs; (4) Development of state-of-the-art research facilities at PVAMU; (5) Expanded faculty and staff to mentor student research; and (6) Most importantly, increased flow in the pipeline leading to expanded participation of African-Americans and other minorities in science and technological fields of interest to NASA.
Additively Manufactured Low Cost Upper Stage Combustion Chamber
NASA Technical Reports Server (NTRS)
Protz, Christopher; Cooper, Ken; Ellis, David; Fikes, John; Jones, Zachary; Kim, Tony; Medina, Cory; Taminger, Karen; Willingham, Derek
2016-01-01
Over the past two years NASA's Low Cost Upper Stage Propulsion (LCUSP) project has developed Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. High pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design fabrication to be costly and time consuming due to the number of individual steps and different processes required. Under LCUSP, AM technologies in Sintered Laser Melting (SLM) GRCop-84 and Electron Beam Freeform Fabrication (EBF3) Inconel 625 have been significantly advanced, allowing the team to successfully fabricate a 25k-class regenerative chamber. Estimates of the costs and schedule of future builds indicate cost reductions and significant schedule reductions will be enabled by this technology. Characterization of the microstructural and mechanical properties of the SLM-produced GRCop-84, EBF3 Inconel 625 and the interface layer between the two has been performed and indicates the properties will meet the design requirements. The LCUSP chamber is to be tested with a previously demonstrated SLM injector in order to advance the Technology Readiness Level (TRL) and demonstrate the capability of the application of these processes. NASA is advancing these technologies to reduce cost and schedule for future engine applications and commercial needs.
77 FR 8217 - Evaluating the Usability of Electronic Health Record (EHR) Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... interface design guidelines for EHRs. Manufacturers interested in participating in this research will be... the usability of health information technology (HIT) systems. NIST research is designed to: (1... develop performance-oriented user interface design guidelines for EHRs, and a framework for assessing the...
A Fibre-Optic Communications Network for Teaching Clinical Medicine.
ERIC Educational Resources Information Center
Williams, Robin
1985-01-01
Describes an interactive television system based on fiber-optic communications technology which is used to facilitate participation by University of London medical students in lecture/tutorials by teachers in different hospital locations. Highlights include advantages of fiber-optics, cable manufacture and installation, opto-electronic interface,…
Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping
2014-03-13
Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.
Overview of superconductivity in Japan Strategy road map and R&D status
NASA Astrophysics Data System (ADS)
Tsukamoto, O.
2008-09-01
Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R&D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R&D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R&D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R&D by clearly defining the objectives and inspire autonomous R&D actives in various fields of industries. R&D activities in the superconducting technologies are to be scheduled following this strategy map.
Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koger, J.
1995-02-10
The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less
Advanced diesel electronic fuel injection and turbocharging
NASA Astrophysics Data System (ADS)
Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.
1993-12-01
The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To Provide... regulation to amend the calculation and monitoring provisions in the Electronics Manufacturing portion of the... Electronics Manufacturing 334111 Microcomputer manufacturing facilities. 334413 Semiconductor, photovoltaic...
Hussain, Aftab M; Hussain, Muhammad M
2016-06-01
Flexible and stretchable electronics can dramatically enhance the application of electronics for the emerging Internet of Everything applications where people, processes, data and devices will be integrated and connected, to augment quality of life. Using naturally flexible and stretchable polymeric substrates in combination with emerging organic and molecular materials, nanowires, nanoribbons, nanotubes, and 2D atomic crystal structured materials, significant progress has been made in the general area of such electronics. However, high volume manufacturing, reliability and performance per cost remain elusive goals for wide commercialization of these electronics. On the other hand, highly sophisticated but extremely reliable, batch-fabrication-capable and mature complementary metal oxide semiconductor (CMOS)-based technology has facilitated tremendous growth of today's digital world using thin-film-based electronics; in particular, bulk monocrystalline silicon (100) which is used in most of the electronics existing today. However, one fundamental challenge is that state-of-the-art CMOS electronics are physically rigid and brittle. Therefore, in this work, how CMOS-technology-enabled flexible and stretchable electronics can be developed is discussed, with particular focus on bulk monocrystalline silicon (100). A comprehensive information base to realistically devise an integration strategy by rational design of materials, devices and processes for Internet of Everything electronics is offered. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sandia National Laboratories Institutional Plan FY1994--1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defensemore » imperatives.« less
75 FR 56536 - Agency Information Collection Activities; Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... reducing their paperwork burden under the Rule. As e-commerce continues to grow, it is likely that even... other forms of information technology, e.g., permitting electronic submission of responses. All comments... clerical in nature, e.g., shipping or otherwise providing copies of manufacturer warranties to retailers...
Heat pipes. [technology utilization
NASA Technical Reports Server (NTRS)
1975-01-01
The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.
Virtual Reality: A Dream Come True or a Nightmare.
ERIC Educational Resources Information Center
Cornell, Richard; Bailey, Dan
Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…
InP Transferred Electron Cathodes: Basic to Manufacturing Methods
2007-08-29
Source: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films ; January/February 2003; v.21, no.1, p.219-225 Optimization and...Vacuum, Surfaces and Films ; Sept/Oct 2007 V. 25, No. 5 List of papers submitted or published that acknowledge ARO support during this reporting period...technologies. Night vision devices gather existing ambient light (starlight, moonlight or infra-red light) through a front lens. This light goes into a
NASA Astrophysics Data System (ADS)
Lam, Carl
Due to technology proliferation, the environmental burden attributed to the production, use, and disposal of hazardous materials in electronics have become a worldwide concern. The major theme of this dissertation is to develop and apply hazardous materials assessment tools to systematically guide pollution prevention opportunities in the context of electronic product design, manufacturing and end-of-life waste management. To this extent, a comprehensive review is first provided on describing hazard traits and current assessment methods to evaluate hazardous materials. As a case study at the manufacturing level, life cycle impact assessment (LCIA)-based and risk-based screening methods are used to quantify chemical and geographic environmental impacts in the U.S. printed wiring board (PWB) industry. Results from this industrial assessment clarify priority waste streams and States to most effectively mitigate impact. With further knowledge of PWB manufacturing processes, select alternative chemical processes (e.g., spent copper etchant recovery) and material options (e.g., lead-free etch resist) are discussed. In addition, an investigation on technology transition effects for computers and televisions in the U.S. market is performed by linking dynamic materials flow and environmental assessment models. The analysis forecasts quantities of waste units generated and maps shifts in environmental impact potentials associated with metal composition changes due to product substitutions. This insight is important to understand the timing and waste quantities expected and the emerging toxic elements needed to be addressed as a consequence of technology transition. At the product level, electronic utility meter devices are evaluated to eliminate hazardous materials within product components. Development and application of a component Toxic Potential Indicator (TPI) assessment methodology highlights priority components requiring material alternatives. Alternative recommendations are provided and substitute materials such as aluminum alloys for stainless steel and high-density polyethylene for polyvinyl chloride and acrylonitrile-based polymers show promise to meet toxicity reduction, cost, and material functionality requirements. Furthermore, the TPI method, an European Union focused screening tool, is customized to reflect regulated U.S. toxicity parameters. Results show that, although it is possible to adopt U.S. parameters into the TPI method, harmonization of toxicity regulation and standards in various nations and regions is necessary to eliminate inconsistencies during hazard screening of substances used globally. As a whole, the present work helps to assimilate material hazard assessment methods into the larger framework of design for environment strategies so toxics use reduction could be achieved for the development and management of electronics and other consumer goods.
Slotwiner, David J
2016-10-01
The anticipated advantages of electronic health records (EHRs)-improved efficiency and the ability to share information across the healthcare enterprise-have so far failed to materialize. There is growing recognition that interoperability holds the key to unlocking the greatest value of EHRs. Health information technology (HIT) systems including EHRs must be able to share data and be able to interpret the shared data. This requires a controlled vocabulary with explicit definitions (data elements) as well as protocols to communicate the context in which each data element is being used (syntactic structure). Cardiac implantable electronic devices (CIEDs) provide a clear example of the challenges faced by clinicians when data is not interoperable. The proprietary data formats created by each CIED manufacturer, as well as the multiple sources of data generated by CIEDs (hospital, office, remote monitoring, acute care setting), make it challenging to aggregate even a single patient's data into an EHR. The Heart Rhythm Society and CIED manufacturers have collaborated to develop and implement international standard-based specifications for interoperability that provide an end-to-end solution, enabling structured data to be communicated from CIED to a report generation system, EHR, research database, referring physician, registry, patient portal, and beyond. EHR and other health information technology vendors have been slow to implement these tools, in large part, because there have been no financial incentives for them to do so. It is incumbent upon us, as clinicians, to insist that the tools of interoperability be a prerequisite for the purchase of any and all health information technology systems.
Role of superconducting electronics in advancing science and technology (invited) (abstract)
NASA Astrophysics Data System (ADS)
Faris, S. M.
1988-08-01
The promises of the ultrahigh-performance properties of superconductivity and Josephson junction technologies have been known for quite some time. This presentation describes the first superconducting electronics and measurement system and its important role as a major tool to advance microwave and millimeter wave technologies. This breakthrough tool is a sampling oscilloscope with 5-ps rise time, 50-μV sensitivity, and a time domain reflectometer with 8-ps rise time. In order to achieve these performance goals, several technological hurdles had to be overcome including perfecting a manufacturing process for building Josephson junction IC chips, developing an innovative cooling technique, developing interfaces and interconnections with bandwidths in excess of 70 GHz, and developing the room-temperature hardware and software necessary to make the instruments convenient, easy to use, easy to learn, in addition to making available functions and features users have come to expect from sophisticated digital test instrumentation. These technological developments are stepping stones leading to the realization of more sophisticated and complex electronic systems satisfying the needs of scientists, technologists, and engineers. The unprecedented speed and sensitivity make it possible to attack new frontiers.
Feasibility and Testing of Additive Manufactured Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; Hummelt, Ed; Solovyeva, Lyudmila
2016-09-01
This project focused on demonstrating the ability to fabricate two parts with different geometry: an arc flash interrupter and a hydraulic manifold. Eaton Corporation provided ORNL solid models, information related to tolerances and sensitive parameters of the parts and provided testing and evaluation. ORNL successfully manufactured both components, provided cost models of the manufacturing (materials, labor, time and post processing) and delivered test components for Eaton evaluation. The arc flash suppressor was fabricated using the Renishaw laser powder bed technology in CoCrMo while the manifold was produced from Ti-6Al-4V using the Arcam electron beam melting technology. These manufacturing techniques weremore » selected based on the design and geometrical tolerances required. A full-scale manifold was produced on the Arcam A2 system (nearly 12 inches tall). A portion of the manifold was also produced in the Arcam Q10 system. Although a full scale manifold could not be produced in the system, a full scale manifold is expected to have similar material properties, geometric accuracy, and surface finish as could be fabricated on an Arcam Q20 system that is capable of producing four full scale manifolds in a production environment. In addition to the manifold, mechanical test specimens, geometric tolerance artifacts, and microstructure samples were produced alongside the manifold. The development and demonstration of these two key components helped Eaton understand the impact additive manufacturing can have on many of their existing products. By working within the MDF and leveraging ORNL’s manufacturing and characterization capabilities, the work will ensure the rapid insertion and commercialization of this technology.« less
NASA Technical Reports Server (NTRS)
Trent, Jonathan
2005-01-01
Hosts of technologies, most notably in electronics, have been on the path of miniaturization for decades and in 2005 they have crossed the threshold of the nano-scale. Crossing the nano-scale threshold is a milestone in miniaturization, setting impressive new standards for component-packing densities. It also brings technology to a scale at which quantum effects and fault tolerance play significant roles and approaches the feasible physical limit form many conventional "top-down" manufacturing methods. I will suggest that the most formidable manufacturing problems in nanotechnology will be overcome and major breakthroughs will occur in a host of technologies, when nanotechnology converges with bio-technology; i.e. I will argue that the future of bio-technology is in nanotechnology. In 2005, methods in molecular biology, microscopy, bioinformatics, biochemistry, and genetic engineering have focused considerable attention on the nano-scale. On this scale, biology is a kind of recursive chemistry in which molecular recognition, self-assembly, self-organization and self-referencing context-control lead to the emergence of the complexity of structures and processes that are fundamental to all life forms. While we are still far from understanding this complexity, we are on the threshold of being able to use at least some of these biological properties for .technology. I will discuss the use of biomolecules, such as DNA, RNA, and proteins as "tools" for the bio-technologist of the future. More specifically, I will present in some detail an example of how we are using a genetically engineered 60-kDa protein (HSP60) from an organism living in near boiling sulfuric acid to build nano-scale templates for arranging metallic nanoparticles. These "extremophile" HSP60s self-assemble into robust double-ring structures called "chaperonins," which further assemble into filaments and arrays with nanometer accuracy. I will discuss our efforts to use chaperonins to organize quantum dots, electronic and magnetic nano-particles for electronic and photonic applications.
NASA Astrophysics Data System (ADS)
Zhu, Feng; Macdonald, Niall; Skommer, Joanna; Wlodkowic, Donald
2015-06-01
Current microfabrication methods are often restricted to two-dimensional (2D) or two and a half dimensional (2.5D) structures. Those fabrication issues can be potentially addressed by emerging additive manufacturing technologies. Despite rapid growth of additive manufacturing technologies in tissue engineering, microfluidics has seen relatively little developments with regards to adopting 3D printing for rapid fabrication of complex chip-based devices. This has been due to two major factors: lack of sufficient resolution of current rapid-prototyping methods (usually >100 μm ) and optical transparency of polymers to allow in vitro imaging of specimens. We postulate that adopting innovative fabrication processes can provide effective solutions for prototyping and manufacturing of chip-based devices with high-aspect ratios (i.e. above ration of 20:1). This work provides a comprehensive investigation of commercially available additive manufacturing technologies as an alternative for rapid prototyping of complex monolithic Lab-on-a-Chip devices for biological applications. We explored both multi-jet modelling (MJM) and several stereolithography (SLA) processes with five different 3D printing resins. Compared with other rapid prototyping technologies such as PDMS soft lithography and infrared laser micromachining, we demonstrated that selected SLA technologies had superior resolution and feature quality. We also for the first time optimised the post-processing protocols and demonstrated polymer features under scanning electronic microscope (SEM). Finally we demonstrate that selected SLA polymers have optical properties enabling high-resolution biological imaging. A caution should be, however, exercised as more work is needed to develop fully bio-compatible and non-toxic polymer chemistries.
Flexible and stretchable electronics for biointegrated devices.
Kim, Dae-Hyeong; Ghaffari, Roozbeh; Lu, Nanshu; Rogers, John A
2012-01-01
Advances in materials, mechanics, and manufacturing now allow construction of high-quality electronics and optoelectronics in forms that can readily integrate with the soft, curvilinear, and time-dynamic surfaces of the human body. The resulting capabilities create new opportunities for studying disease states, improving surgical procedures, monitoring health/wellness, establishing human-machine interfaces, and performing other functions. This review summarizes these technologies and illustrates their use in forms integrated with the brain, the heart, and the skin.
Recent progress in printed 2/3D electronic devices
NASA Astrophysics Data System (ADS)
Klug, Andreas; Patter, Paul; Popovic, Karl; Blümel, Alexander; Sax, Stefan; Lenz, Martin; Glushko, Oleksandr; Cordill, Megan J.; List-Kratochvil, Emil J. W.
2015-09-01
New, energy-saving, efficient and cost-effective processing technologies such as 2D and 3D inkjet printing (IJP) for the production and integration of intelligent components will be opening up very interesting possibilities for industrial applications of molecular materials in the near future. Beyond the use of home and office based printers, "inkjet printing technology" allows for the additive structured deposition of photonic and electronic materials on a wide variety of substrates such as textiles, plastics, wood, stone, tiles or cardboard. Great interest also exists in applying IJP in industrial manufacturing such as the manufacturing of PCBs, of solar cells, printed organic electronics and medical products. In all these cases inkjet printing is a flexible (digital), additive, selective and cost-efficient material deposition method. Due to these advantages, there is the prospect that currently used standard patterning processes can be replaced through this innovative material deposition technique. A main issue in this research area is the formulation of novel functional inks or the adaptation of commercially available inks for specific industrial applications and/or processes. In this contribution we report on the design, realization and characterization of novel active and passive inkjet printed electronic devices including circuitry and sensors based on metal nanoparticle ink formulations and the heterogeneous integration into 2/3D printed demonstrators. The main emphasis of this paper will be on how to convert scientific inkjet knowledge into industrially relevant processes and applications.
NASA Technical Reports Server (NTRS)
1991-01-01
Lightning Technologies, Inc., Pittsfield, MA, - a spinoff company founded by president J. Anderson Plumer, a former NASA contractor employee who developed his expertise with General Electric Company's High Voltage Laboratory - was a key player in Langley Research Center's Storm Hazards Research Program. Lightning Technologies used its NASA acquired experience to develop protective measures for electronic systems and composite structures on aircraft, both of which are particularly susceptible to lightning damage. The company also provides protection design and verification testing services for complete aircraft systems or individual components. Most aircraft component manufacturers are among Lightning Technologies' clients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan
Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: Thismore » presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing (Subpart I) To... proposing changes to the calculation and monitoring provisions in the Electronics Manufacturing portion... Category Examples of affected Category NAICS facilities Electronics Manufacturing......... 334111...
Application of Temperature-Controlled Thermal Atomization for Printing Electronics in Space
NASA Technical Reports Server (NTRS)
Wu, Chih-Hao; Thompson, Furman V.
2017-01-01
Additive Manufacturing (AM) is a technology that builds three dimensional objects by adding material layer-upon-layer throughout the fabrication process. The Electrical, Electronic and Electromechanical (EEE) parts packaging group at Marshall Space Flight Center (MSFC) is investigating how various AM and 3D printing processes can be adapted to the microgravity environment of space to enable on demand manufacturing of electronics. The current state-of-the art processes for accomplishing the task of printing electronics through non-contact, direct-write means rely heavily on the process of atomization of liquid inks into fine aerosols to be delivered ultimately to a machine's print head and through its nozzle. As a result of cumulative International Space Station (ISS) research into the behaviors of fluids in zero-gravity, our experience leads us to conclude that the direct adaptation of conventional atomization processes will likely fall short and alternative approaches will need to be explored. In this report, we investigate the development of an alternative approach to atomizing electronic materials by way of thermal atomization, to be used in place of conventional aerosol generation and delivery processes for printing electronics in space.
2010-02-01
commercial “ pull ” to enable rapid establishment of domestic 21st century manufacturing and to rapidly reduce product cost. CNT electronics...Opportunities for Academic Liaison with Industry ( GOALI ), Partnerships for Innovation (PFI) , and Industry-University Cooperative Research Centers (IUCRC
Photonic Technology for Implementation of Generalizable Neural Networks: A Synthetic Approach
1993-10-28
holographic medium, thus permitting duplication of a pretrainedI neural network in a manufacturing environment. Iamnfatrn I n • n wrnrm •mrmTv...usual heavy hole (hh) to first confined o. electron (le) excitonic transitions at - ljrm Co 05 wavelength, but even the light hole (1h) to leand
MNOS BORAM Manufacturing Methods and Technology Project.
1981-08-01
served primarily as a learning vehicle to allow formulation of more complete investigations. 1-12 Table 1-1. Repeatability Data for RP Test BORAM 6008 Chip...and Electronic SYSleMS Center * Baltimore. Maryland June 1981 pageI of I0 5.7 Event Sequence it) Store [)a(& in All Cells of a Hibrid Circuit I sing
ERIC Educational Resources Information Center
Sanders, Janet H.; Udoka, Silvanus J.
2010-01-01
Fundamental concepts and definitions of electronic learning (eLearning) continue to emerge, and theories of eLearning that have been advanced thus far cover an array of academic perspectives including training and education, learning and knowledge, and technology and applications to specific market segments. Any study of the effectiveness and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, Adam
For photovoltaic (PV) manufacturing to thrive in the U.S., there must be an innovative core to the technology. Project Automate builds on 1366’s proprietary Direct Wafer® kerfless wafer technology and aims to unlock the cost and efficiency advantages of thin kerfless wafers. Direct Wafer is an innovative, U.S.-friendly (efficient, low-labor content) manufacturing process that addresses the main cost barrier limiting silicon PV cost-reductions – the 35-year-old grand challenge of manufacturing quality wafers (40% of the cost of modules) without the cost and waste of sawing. This simple, scalable process will allow 1366 to manufacture “drop-in” replacement wafers for the $10more » billion silicon PV wafer market at 50% of the cost, 60% of the capital, and 30% of the electricity of conventional casting and sawing manufacturing processes. This SolarMat project developed the Direct Wafer processes’ unique capability to tailor the shape of wafers to simultaneously make thinner AND stronger wafers (with lower silicon usage) that enable high-efficiency cell architectures. By producing wafers with a unique target geometry including a thick border (which determines handling characteristics) and thin interior regions (which control light capture and electron transport and therefore determine efficiency), 1366 can simultaneously improve quality and lower cost (using less silicon).« less
NASA Astrophysics Data System (ADS)
Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing
2014-04-01
Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.
Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.
Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming
2014-08-20
Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing
2014-04-04
Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.
Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing
2014-01-01
Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society. PMID:24699375
Technology-design-manufacturing co-optimization for advanced mobile SoCs
NASA Astrophysics Data System (ADS)
Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey
2014-03-01
How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.
Fabricating specialised orthopaedic implants using additive manufacturing
NASA Astrophysics Data System (ADS)
Unwin, Paul
2014-03-01
It has been hypothesised that AM is ideal for patient specific orthopaedic implants such as those used in bone cancer treatment, that can rapidly build structures such as lattices for bone and tissues to in-grow, that would be impossible using current conventional subtractive manufacturing techniques. The aim of this study was to describe the adoption of AM (direct metal laser sintering and electron beam melting) into the design manufacturing and post-manufacturing processes and the early clinical use. Prior to the clinical use of AM implants, extensive metallurgical and mechanical testing of both laser and electron beam fabrications were undertaken. Concurrently, post-manufacturing processes evaluated included hipping, cleaning and coating treatments. The first clinical application of a titanium alloy mega-implant was undertaken in November 2010. A 3D model of the pelvic wing implant was designed from CT scans. Novel key features included extensive lattice structures at the bone interfaces and integral flanges to fix the implant to the bone. The pelvic device was implanted with the aid of navigation and to date the patient remains active. A further 18 patient specific mega-implants have now been implanted. The early use of this advanced manufacturing route for patient specific implants has been very encouraging enabling the engineer to produce more advanced and anatomical conforming implants. However, there are a new set of design, manufacturing and regulatory challenges that require addressing to permit this technique to be used more widely. This technology is changing the design and manufacturing paradigm for the fabrication of specialised orthopaedic implants.
Arms production in Japan: The military applications of civilian technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drifte, R.
1986-01-01
The author examines both the domestic and international environments encouraging Japan's leaders not only to strengthen the country's defense, but to do so more independently. Until recently, the arms industry has been nurtured by U.S. weapons technology, but growing dependence on electronics dramatically increases Japan's contribution to modern weapons systems. The electronics revolution is creating more and more dual-purpose products, undermining the Japanese cabinet policy of prohibiting arms export. The discovery of wider applications for Japanese manufacturers' most advanced civilian technology is a strong motivation for entering the arms arena. The book illustrates that Japan's entry into the field ismore » a dynamic example of the success of Japanese industry as it enters new technological areas. The author discusses: Development and the Present Situation of Japan's Arms Production Capability; Research and Development; The Shipbuilding Industry; The Aircraft Industry; The Space and Missile Industry; and Arms Exports with conclusions.« less
Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry
Wilson, Alphus D.
2013-01-01
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191
Diverse applications of electronic-nose technologies in agriculture and forestry.
Wilson, Alphus D
2013-02-08
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.
Apparel for Cleaner Clean Rooms
NASA Technical Reports Server (NTRS)
1983-01-01
In the 1960s NASA pioneered contamination control technology, providing a base from which aerospace contractors could develop control measures. NASA conducted special courses for clean room technicians and supervisors, and published a series of handbooks with input from various NASA field centers. These handbooks extended aerospace experience to the medical, pharmaceutical, electronics, and other industries where extreme cleanliness is important. American Hospital Supply Company (AHSC) felt that high technology products with increasingly stringent operating requirements in aerospace, electronics, pharmaceuticals and medical equipment manufacturing demanded improvement in contamination control techniques. After studying the NASA handbooks and visiting NASA facilities, the wealth of information gathered resulted in Micro-clean non-woven garments and testing equipment and procedures for evaluating effectiveness.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... related to the electronics manufacturing source category. DATES: This rule will be effective on March 23...
Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping
2014-01-01
Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining. PMID:28788558
3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites
NASA Astrophysics Data System (ADS)
Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra
2017-04-01
As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.
A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors
Lee, Wookyu; Koo, Hyunmo; Sun, Junfeng; Noh, Jinsoo; Kwon, Kye-Si; Yeom, Chiseon; Choi, Younchang; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-01
Roll-to-roll (R2R) printing has been pursued as a commercially viable high-throughput technology to manufacture flexible, disposable, and inexpensive printed electronic devices. However, in recent years, pessimism has prevailed because of the barriers faced when attempting to fabricate and integrate thin film transistors (TFTs) using an R2R printing method. In this paper, we report 20 × 20 active matrices (AMs) based on single-walled carbon nanotubes (SWCNTs) with a resolution of 9.3 points per inch (ppi) resolution, obtained using a fully R2R gravure printing process. By using SWCNTs as the semiconducting layer and poly(ethylene terephthalate) (PET) as the substrate, we have obtained a device yield above 98%, and extracted the key scalability factors required for a feasible R2R gravure manufacturing process. Multi-touch sensor arrays were achieved by laminating a pressure sensitive rubber onto the SWCNT-TFT AM. This R2R gravure printing system overcomes the barriers associated with the registration accuracy of printing each layer and the variation of the threshold voltage (Vth). By overcoming these barriers, the R2R gravure printing method can be viable as an advanced manufacturing technology, thus enabling the high-throughput production of flexible, disposable, and human-interactive cutting-edge electronic devices based on SWCNT-TFT AMs. PMID:26635237
Roadmap evolution: from NTRS to ITRS, from ITRS 2.0 to IRDS
NASA Astrophysics Data System (ADS)
Gargini, Paolo A.
2017-10-01
The semiconductor industry benefitted from roadmap guidance since the mid-60s. The roadmap anticipated and outlined the main needs of the semiconductor industry for years to come and identified future challenges and possible solutions. Making transistor smaller by means of advanced lithographic technologies enabled both increased integration levels and improved IC performance. The roadmap methodology allowed the removal of multiple "red brick walls". The NTRS and the ITRS constituted primarily a "bottom up" approach as standard microprocessors and memories where introduced at a blistering pace barely allowing time for system houses to integrate them in their products. The 1998 ITRS provided the vision that triggered research, development and manufacturing communities to develop a completely new transistor structure in addition to replacing aluminum interconnects with a more advanced technology. The advent of Foundries and Fabless companies transformed the electronics industry into a "top down" driven industry in the past 15 years. The ITRS adjusted to this new ecosystem and morphed into the International Roadmap for Devices and Systems (IRDS) sponsored by IEEE. The IRDS is addressing the requirements and needs of the renewed electronics industry. Furthermore, by the middle of the next decade the ability to layout integrated circuits in a 2D geometry grid will reach fundamental physical limits and the aggressive conversion to 3D architecture for integrated circuit must be pursued across the board as an avenue to continuously increasing transistor count and improving performance. EUV technology is finally approaching the manufacturing stage but with the advent of 3D monolithically integrated heterogeneous circuits approaching in the not-toodistant future should the semiconductor industry concentrate its resources on the next lithographic technology generation in order to enhance resolution or on providing a smooth transition to the new revolutionary 3D architecture of integrated circuits? It is essential for the whole semiconductor industry to come together and make fundamental choices leading to a cooperative and synchronized allocation of adequate resources to produce viable solutions that once introduced in a timely manner into manufacturing will enable the continuation of the growth of the electronic industry at a pace comparable or exceeding historical trends.
Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Sampath, Sanjay
2010-09-01
Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray's versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are "passive" protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.
HVM die yield improvement as a function of DRSEM ADC
NASA Astrophysics Data System (ADS)
Maheshwary, Sonu; Haas, Terry; McGarvey, Steve
2010-03-01
Given the current manufacturing technology roadmap and the competitiveness of the global semiconductor manufacturing environment in conjunction with the semiconductor manufacturing market dynamics, the market place continues to demand a reduced die manufacturing cost. This continuous pressure on lowering die cost in turn drives an aggressive yield learning curve, a key component of which is defect reduction of manufacturing induced anomalies. In order to meet and even exceed line and die yield targets there is a need to revamp defect classification strategies and place a greater emphasize on increasing the accuracy and purity of the Defect Review Scanning Electron Microscope (DRSEM) Automated Defect Classification (ADC) results while placing less emphasis on the ADC results of patterned/un-patterned wafer inspection systems. The increased emphasis on DRSEM ADC results allows for a high degree of automation and consistency in the classification data and eliminates variance induced by the manufacturing staff. This paper examines the use of SEM based Auto Defect Classification in a high volume manufacturing environment as a key driver in the reduction of defect limited yields.
NASA Astrophysics Data System (ADS)
Doering, Robert
In the early 1980s, the semiconductor industry faced the related challenges of ``scaling through the one-micron barrier'' and converting single-level-metal NMOS integrated circuits to multi-level-metal CMOS. Multiple advances in lithography technology and device materials/process integration led the way toward the deep-sub-micron transistors and interconnects that characterize today's electronic chips. In the 1990s, CMOS scaling advanced at an accelerated pace enabled by rapid advances in many aspects of optical lithography. However, the industry also needed to continue the progress in manufacturing on ever-larger silicon wafers to maintain economy-of-scale trends. Simultaneously, the increasing complexity and absolute-precision requirements of manufacturing compounded the necessity for new processes, tools, and control methodologies. This talk presents a personal perspective on some of the approaches that addressed the aforementioned challenges. In particular, early work on integrating silicides, lightly-doped-drain FETs, shallow recessed isolation, and double-level metal will be discussed. In addition, some pioneering efforts in deep-UV lithography and single-wafer processing will be covered. The latter will be mainly based on results from the MMST Program - a 100 M +, 5-year R&D effort, funded by DARPA, the U.S. Air Force, and Texas Instruments, that developed a wide range of new technologies for advanced semiconductor manufacturing. The major highlight of the program was the demonstration of sub-3-day cycle time for manufacturing 350-nm CMOS integrated circuits in 1993. This was principally enabled by the development of: (1) 100% single-wafer processing, including rapid-thermal processing (RTP), and (2) computer-integrated-manufacturing (CIM), including real-time, in-situ process control.
Commercial Parts Technology Qualification Processes
NASA Technical Reports Server (NTRS)
Cooper, Mark S.
2013-01-01
Many high-reliability systems, including space systems, use selected commercial parts (including Plastic Encapsulated Microelectronics or PEMs) for unique functionality, small size, low weight, high mechanical shock resistance, and other factors. Predominantly this usage is subjected to certain 100% tests (typically called screens) and certain destructive tests usually (but not always) performed on the flight lot (typically called qualification tests). Frequently used approaches include those documented in EEE-INST-002 and JPL DocID62212 (which are sometimes modified by the particular aerospace space systems manufacturer). In this study, approaches from these documents and several space systems manufacturers are compared to approaches from a launch systems manufacturer (SpaceX), an implantable medical electronics manufacturer (Medtronics), and a high-reliability transport system process (automotive systems). In the conclusions section, these processes are outlined for all of these cases and presented in tabular form. Then some simple comparisons are made. In this introduction section, the PEM technology qualification process is described, as documented in EEE-INST-002 (written by the Goddard Space Flight Center, GSFC), as well as the somewhat modified approach employed at the Jet Propulsion Laboratory (JPL). Approaches used at several major NASA contractors are also described
Ryan, S E; Blasi, D A; Anglin, C O; Bryant, A M; Rickard, B A; Anderson, M P; Fike, K E
2010-07-01
Use of electronic animal identification technologies by livestock managers is increasing, but performance of these technologies can be variable when used in livestock production environments. This study was conducted to determine whether 1) read distance of low-frequency radio frequency identification (RFID) transceivers is affected by type of transponder being interrogated; 2) read distance variation of low-frequency RFID transceivers is affected by transceiver manufacturer; and 3) read distance of various transponder-transceiver manufacturer combinations meet the 2004 United States Animal Identification Plan (USAIP) bovine standards subcommittee minimum read distance recommendation of 60 cm. Twenty-four transceivers (n = 5 transceivers per manufacturer for Allflex, Boontech, Farnam, and Osborne; n = 4 transceivers for Destron Fearing) were tested with 60 transponders [n = 10 transponders per type for Allflex full duplex B (FDX-B), Allflex half duplex (HDX), Destron Fearing FDX-B, Farnam FDX-B, and Y-Tex FDX-B; n = 6 for Temple FDX-B (EM Microelectronic chip); and n = 4 for Temple FDX-B (HiTag chip)] presented in the parallel orientation. All transceivers and transponders met International Organization for Standardization 11784 and 11785 standards. Transponders represented both one-half duplex and full duplex low-frequency air interface technologies. Use of a mechanical trolley device enabled the transponders to be presented to the center of each transceiver at a constant rate, thereby reducing human error. Transponder and transceiver manufacturer interacted (P < 0.0001) to affect read distance, indicating that transceiver performance was greatly dependent upon the transponder type being interrogated. Twenty-eight of 30 combinations of transceivers and transponders evaluated met the minimum recommended USAIP read distance. The mean read distance across all 30 combinations was 45.1 to 129.4 cm. Transceiver manufacturer and transponder type interacted to affect read distance variance (P < 0.05). Maximum read distance performance of low-frequency RFID technologies with low variance can be achieved by selecting specific transponder-transceiver combinations.
JPRS Report, Science & Technology, Japan, SOR Technology Update
1990-12-18
GUN Electron gun c3 GV Gate valve R- ± HL Helmholtz coil IG Ion vacuum gauge IP Ion pump KFC Klystron focusing coil KLY Klystron PB Pre-buncher Q...Therefore, we started studying the manufacture of this kind of film. Recently, such films have been placed on the market as test samples by some foreign... Mixing of sputtered particles from the two targets can also be prevented by making the structure of the bulkhead in the sputtering chamber most
Characterization of Electron Beam Free-Form Fabricated 2219 Aluminum and 316 Stainless Steel
NASA Technical Reports Server (NTRS)
Ekrami, Yasamin; Forth, Scott C.; Waid, Michael C.
2011-01-01
Researchers at NASA Langley Research Center have developed an additive manufacturing technology for ground and future space based applications. The electron beam free form fabrication (EBF3) is a rapid metal fabrication process that utilizes an electron beam gun in a vacuum environment to replicate a CAD drawing of a part. The electron beam gun creates a molten pool on a metal substrate, and translates with respect to the substrate to deposit metal in designated regions through a layer additive process. Prior to demonstration and certification of a final EBF3 part for space flight, it is imperative to conduct a series of materials validation and verification tests on the ground in order to evaluate mechanical and microstructural properties of the EBF3 manufactured parts. Part geometries of EBF3 2219 aluminum and 316 stainless steel specimens were metallographically inspected, and tested for strength, fatigue crack growth, and fracture toughness. Upon comparing the results to conventionally welded material, 2219 aluminum in the as fabricated condition demonstrated a 30% and 16% decrease in fracture toughness and ductility, respectively. The strength properties of the 316 stainless steel material in the as deposited condition were comparable to annealed stainless steel alloys. Future fatigue crack growth tests will integrate various stress ranges and maximum to minimum stress ratios needed to fully characterize EBF3 manufactured specimens.
Sandia National Labs: Manufacturing Science and Technology
Additional Resources R&D Projects Current Partnerships Creating Partnerships Welcome to the Manufacturing Science and Technology home page Manufacturing Science and Technology Showcase The Manufacturing Science & Technology Center develops and applies advanced manufacturing processes for realization of
Advanced Manufacturing Technologies
NASA Technical Reports Server (NTRS)
Fikes, John
2016-01-01
Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.
Technology Directions for the 21st Century, volume 1
NASA Technical Reports Server (NTRS)
Crimi, Giles F.; Verheggen, Henry; McIntosh, William; Botta, Robert
1996-01-01
For several decades, semiconductor device density and performance have been doubling about every 18 months (Moore's Law). With present photolithography techniques, this rate can continue for only about another 10 years. Continued improvement will need to rely on newer technologies. Transition from the current micron range for transistor size to the nanometer range will permit Moore's Law to operate well beyond 10 years. The technologies that will enable this extension include: single-electron transistors; quantum well devices; spin transistors; and nanotechnology and molecular engineering. Continuation of Moore's Law will rely on huge capital investments for manufacture as well as on new technologies. Much will depend on the fortunes of Intel, the premier chip manufacturer, which, in turn, depend on the development of mass-market applications and volume sales for chips of higher and higher density. The technology drivers are seen by different forecasters to include video/multimedia applications, digital signal processing, and business automation. Moore's Law will affect NASA in the areas of communications and space technology by reducing size and power requirements for data processing and data fusion functions to be performed onboard spacecraft. In addition, NASA will have the opportunity to be a pioneering contributor to nanotechnology research without incurring huge expenses.
NASA Technical Reports Server (NTRS)
1994-01-01
Measurement of the total organic carbon content in water is important in assessing contamination levels in high purity water for power generation, pharmaceutical production and electronics manufacture. Even trace levels of organic compounds can cause defects in manufactured products. The Sievers Model 800 Total Organic Carbon (TOC) Analyzer, based on technology developed for the Space Station, uses a strong chemical oxidizing agent and ultraviolet light to convert organic compounds in water to carbon dioxide. After ionizing the carbon dioxide, the amount of ions is determined by measuring the conductivity of the deionized water. The new technique is highly sensitive, does not require compressed gas, and maintenance is minimal.
Heat Transfer Enhancement by Finned Heat Sinks with Micro-structured Roughness
NASA Astrophysics Data System (ADS)
Ventola, L.; Chiavazzo, E.; Calignano, F.; Manfredi, D.; Asinari, P.
2014-04-01
We investigated the benefits of micro-structured roughness on heat transfer performance of heat sinks, cooled by forced air. Heat sinks in aluminum alloy by direct metal laser sintering (DMLS) manufacturing technique were fabricated; values of the average surface roughness Ra from 1 to 25 microns (standard milling leads to roughness around 1 micron) under turbulent regimes (Reynolds number based on heating edge from 3000 to 17000) have been explored. An enhancement of 50% in thermal performances with regards to standard manufacturing was observed. This may open the way for huge boost in the technology of electronic cooling by DMLS.
Redox active polymer devices and methods of using and manufacturing the same
Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise
2018-06-05
The disclosed technology relates generally to apparatus comprising conductive polymers and more particularly to tag and tag devices comprising a redox-active polymer film, and method of using and manufacturing the same. In one aspect, an apparatus includes a substrate and a conductive structure formed on the substrate which includes a layer of redox-active polymer film having mobile ions and electrons. The conductive structure further includes a first terminal and a second terminal configured to receive an electrical signal therebetween, where the layer of redox-active polymer is configured to conduct an electrical current generated by the mobile ions and the electrons in response to the electrical signal. The apparatus additionally includes a detection circuit operatively coupled to the conductive structure and configured to detect the electrical current flowing through the conductive structure.
Computer Technology for Industry
NASA Technical Reports Server (NTRS)
1982-01-01
Shell Oil Company used a COSMIC program, called VISCEL to insure the accuracy of the company's new computer code for analyzing polymers, and chemical compounds. Shell reported that there were no other programs available that could provide the necessary calculations. Shell produces chemicals for plastic products used in the manufacture of automobiles, housewares, appliances, film, textiles, electronic equipment and furniture.
Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara
2018-01-17
In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...
Nano-Magnets and Additive Manufacturing for Electric Motors
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
2014-01-01
High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.
NASA Astrophysics Data System (ADS)
Balalykin, N. I.; Minashkin, V. F.; Nozdrin, M. A.; Shirkov, G. D.; Zelenogorskii, V. V.; Gacheva, E. I.; Potemkin, A. K.; Huran, J.
2017-10-01
Photocathode electron guns are key to the generation of high-quality electron bunches, which are currently the primary source of electrons for linear electron accelerators. The photogun test bench built at the Joint Institute for Nuclear Research (JINR) is currently being used to further develop the hollow (backside irradiated) photocathode concept. A major achievement was the replacement of the hollow photocathode by a technologically more feasible transmission photocathode made from a metal mesh that serves as a substrate for films of various photomaterials. A number of thin-film cathodes on quartz glass substrates are fabricated by photolithography. The vectorial photoeffect (related to the surface-normal component of the wave electric field) is observed and found to significantly affect the quantum efficiency. The dependence of the quantum efficiency of diamond-like carbon photocathodes on the manufacturing technology is investigated. The Rutherford backscattering and elastic recoil detection techniques are combined to carry out an elemental analysis of the films. An estimate of the emittance of a 400 pC electron beam is obtained using the cross-section method.
Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics.
Xie, Ling-Hai; Yang, Su-Hui; Lin, Jin-Yi; Yi, Ming-Dong; Huang, Wei
2013-10-13
Nanotechnology not only opens up the realm of nanoelectronics and nanophotonics, but also upgrades organic thin-film electronics and optoelectronics. In this review, we introduce polymer semiconductors and plastic electronics briefly, followed by various top-down and bottom-up nano approaches to organic electronics. Subsequently, we highlight the progress in polyfluorene-based nanoparticles and nanowires (nanofibres), their tunable optoelectronic properties as well as their applications in polymer light-emitting devices, solar cells, field-effect transistors, photodetectors, lasers, optical waveguides and others. Finally, an outlook is given with regard to four-element complex devices via organic nanotechnology and molecular manufacturing that will spread to areas such as organic mechatronics in the framework of robotic-directed science and technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dryepondt, Sebastien N; Pint, Bruce A; Ryan, Daniel
2016-04-01
The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayedmore » significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.« less
Mask automation: need a revolution in mask makers and equipment industry
NASA Astrophysics Data System (ADS)
Moon, Seong-yong; Yu, Sang-yong; Noh, Young-hwa; Son, Ki-jung; Lee, Hyun-Joo; Cho, Han-Ku
2013-09-01
As improving device integration for the next generation, high performance and cost down are also required accordingly in semiconductor business. Recently, significant efforts have been given on putting EUV technology into fabrication in order to improve device integration. At the same time, 450mm wafer manufacturing environment has been considered seriously in many ways in order to boost up the productivity. Accordingly, 9-inch mask has been discussed in mask fabrication business recently to support 450mm wafer manufacturing environment successfully. Although introducing 9-inch mask can be crucial for mask industry, multi-beam technology is also expected as another influential turning point to overcome currently the most critical issue in mask industry, electron beam writing time. No matter whether 9-inch mask or multi-beam technology will be employed or not, mask quality and productivity will be the key factors to survive from the device competition. In this paper, the level of facility automation in mask industry is diagnosed and analyzed and the automation guideline is suggested for the next generation.
Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; ...
2016-01-14
The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less
Robust Low-Cost Cathode for Commercial Applications
NASA Technical Reports Server (NTRS)
Patterson, Michael J.
2007-01-01
Under funding from the NASA Commercial Technology Office, a cathode assembly was designed, developed, fabricated, and tested for use in plasma sources for ground-based materials processing applications. The cathode development activity relied on the large prior NASA investment and successful development of high-current, high-efficiency, long-life hollow cathodes for use on the International Space Station Plasma Contactor System. The hollow cathode was designed and fabricated based on known engineering criteria and manufacturing processes for compatibility with the requirements of the plasma source. The transfer of NASA GRC-developed hollow cathode technology for use as an electron emitter in the commercial plasma source is anticipated to yield a significant increase in process control, while eliminating the present issues of electron emitter lifetime and contamination.
Hot-Electron Bolometer Mixers on Silicon-on-Insulator Substrates for Terahertz Frequencies
NASA Technical Reports Server (NTRS)
Skalare, Anders; Stern, Jeffrey; Bumble, Bruce; Maiwald, Frank
2005-01-01
A terahertz Hot-Electron Bolometer (HEB) mixer design using device substrates based on Silicon-On-Insulator (SOI) technology is described. This substrate technology allows very thin chips (6 pm) with almost arbitrary shape to be manufactured, so that they can be tightly fitted into a waveguide structure and operated at very high frequencies with only low risk for power leakages and resonance modes. The NbTiN-based bolometers are contacted by gold beam-leads, while other beamleads are used to hold the chip in place in the waveguide test fixture. The initial tests yielded an equivalent receiver noise temperature of 3460 K double-sideband at a local oscillator frequency of 1.462 THz and an intermediate frequency of 1.4 GHz.
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert
2012-10-01
Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.
Measures of International Manufacturing and Trade of Clean Energy Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel-Cox, Jill; Sandor, Debbie; Keyser, David
The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metricsmore » for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.« less
Benchmarks of Global Clean Energy Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandor, Debra; Chung, Donald; Keyser, David
The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?
Industrialization of Superconducting RF Accelerator Technology
NASA Astrophysics Data System (ADS)
Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter
2012-01-01
Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project currently being designed by the international collaboration GDE (`global design effort'). If the ILC will be built, about 18,000 SRF cavities need to be manufactured worldwide within about five years. The industrialization of SRF accelerator technology is analyzed and reviewed in this article in view of the main accelerator projects of the last two to three decades.
Technology CAD for integrated circuit fabrication technology development and technology transfer
NASA Astrophysics Data System (ADS)
Saha, Samar
2003-07-01
In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.
Hwang, Suk-Won; Tao, Hu; Kim, Dae-Hyeong; Cheng, Huanyu; Song, Jun-Kyul; Rill, Elliott; Brenckle, Mark A.; Panilaitis, Bruce; Won, Sang Min; Kim, Yun-Soung; Yu, Ki Jun; Ameen, Abid; Li, Rui; Su, Yewang; Yang, Miaomiao; Kaplan, David L.; Zakin, Mitchell R.; Slepian, Marvin J.; Huang, Yonggang; Omenetto, Fiorenzo G.; Rogers, John A.
2013-01-01
A remarkable feature of modern silicon electronics is its ability to remain functionally and physically invariant, almost indefinitely for many practical purposes. Here, we introduce a silicon-based technology that offers the opposite behavior: it gradually vanishes over time, in a well-controlled, programmed manner. Devices that are ‘transient’ in this sense create application possibilities that cannot be addressed with conventional electronics, such as active implants that exist for medically useful timeframes, but then completely dissolve and disappear via resorption by the body. We report a comprehensive set of materials, manufacturing schemes, device components and theoretical design tools for a complementary metal oxide semiconductor (CMOS) electronics of this type, together with four different classes of sensors and actuators in addressable arrays, two options for power supply and a wireless control strategy. A transient silicon device capable of delivering thermal therapy in an implantable mode and its demonstration in animal models illustrate a system-level example of this technology. PMID:23019646
World Key Information Service System Designed For EPCOT Center
NASA Astrophysics Data System (ADS)
Kelsey, J. A.
1984-03-01
An advanced Bell Laboratories and Western Electric designed electronic information retrieval system utilizing the latest Information Age technologies, and a fiber optic transmission system is featured at the Walt Disney World Resort's newest theme park - The Experimental Prototype Community of Tomorrow (EPCOT Center). The project is an interactive audio, video and text information system that is deployed at key locations within the park. The touch sensitive terminals utilizing the ARIEL (Automatic Retrieval of Information Electronically) System is interconnected by a Western Electric designed and manufactured lightwave transmission system.
ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT
Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC
2017-01-01
Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678
Electronic Information Systems and User Contexts; Emerging Social Science Issues,
1981-09-01
long-term national significance. Clearly alternative choices in the management of that process can have substantially different economic and social...systems, reflecting primarily an intersection of eco- nomic needs and technological opportunities. Among the economic factors behind the drive to automate...productivity improvements have lagged far behind industrial and manufacturing growth ( Keating , 1980; Bennis, 1980). These problems are exacerbated by
Waste Minimization in Circuit Board Manufacturing by PARMOD(TM) Technology
1998-06-24
a foil package in air or in a plastic syringe. Thermogravimetric Analysis (TGA) Ink samples were evaluated using thermogravimetric analysis in...DTA Differential Thermal Analysis FEP Fluorinated Ethylene Propylene (Teflon®) FTIR Fourier Transform Infrared spectroscopy MOD Metallo-Organic...Decomposition ROM Reactive Organic Medium SEM Scanning Electron Microscopy TGA Thermal Gravimetry Analysis Torr Unit of pressure (one mm mercury
2002-05-01
technology for polarization-maintaining fiber amplification and an ultrashort pulsed fiber laser to Calmar Optcom. Calmar Optcom will be manufacturing...June 1995. This facility is made up of 56 laser beams and is single pulsed (4 nanosecond pulse ). This facil- ity provides intense radiation for studying...plasma interactions, in- tense laser -electron beam interactions, and intense laser -matter interactions. The division is building a repetitively pulsed (5
JPRS Report, Science & Technology, Japan
1991-01-31
final test. Keywords: Spherical Pressure Hull, Titanium Alloy , Three-Dimensional Machining, Electron Beam Welding . 1. Introduction In bodies like... processed (the heat treatment involving high-temperature heating and rapid quenching in order to obtain finer grains of the titanium alloy ) and...given m Table 3. The test results were all satisfactory. Forged material of titanium alloy , manufactured by forging, beta processing , and billet
NASA Technical Reports Server (NTRS)
Vickers, John; Fikes, John
2015-01-01
The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.
48 CFR 235.006-70 - Manufacturing Technology Program.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive procedures...
48 CFR 235.006-70 - Manufacturing Technology Program.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive procedures...
48 CFR 235.006-70 - Manufacturing Technology Program.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive procedures...
48 CFR 235.006-70 - Manufacturing Technology Program.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive procedures...
48 CFR 235.006-70 - Manufacturing Technology Program.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive procedures...
NASA Astrophysics Data System (ADS)
Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.
The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.
International Space Station (ISS) 3D Printer Performance and Material Characterization Methodology
NASA Technical Reports Server (NTRS)
Bean, Q. A.; Cooper, K. G.; Edmunson, J. E.; Johnston, M. M.; Werkheiser, M. J.
2015-01-01
In order for human exploration of the Solar System to be sustainable, manufacturing of necessary items on-demand in space or on planetary surfaces will be a requirement. As a first step towards this goal, the 3D Printing In Zero-G (3D Print) technology demonstration made the first items fabricated in space on the International Space Station. From those items, and comparable prints made on the ground, information about the microgravity effects on the printing process can be determined. Lessons learned from this technology demonstration will be applicable to other in-space manufacturing technologies, and may affect the terrestrial manufacturing industry as well. The flight samples were received at the George C. Marshall Space Flight Center on 6 April 2015. These samples will undergo a series of tests designed to not only thoroughly characterize the samples, but to identify microgravity effects manifested during printing by comparing their results to those of samples printed on the ground. Samples will be visually inspected, photographed, scanned with structured light, and analyzed with scanning electron microscopy. Selected samples will be analyzed with computed tomography; some will be assessed using ASTM standard tests. These tests will provide the information required to determine the effects of microgravity on 3D printing in microgravity.
Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
Andrew, Trisha L; Zhang, Lushuai; Cheng, Nongyi; Baima, Morgan; Kim, Jae Joon; Allison, Linden; Hoxie, Steven
2018-04-17
Body-mountable electronics and electronically active garments are the future of portable, interactive devices. However, wearable devices and electronic garments are demanding technology platforms because of the large, varied mechanical stresses to which they are routinely subjected, which can easily abrade or damage microelectronic components and electronic interconnects. Furthermore, aesthetics and tactile perception (or feel) can make or break a nascent wearable technology, irrespective of device metrics. The breathability and comfort of commercial fabrics is unmatched. There is strong motivation to use something that is already familiar, such as cotton/silk thread, fabrics, and clothes, and imperceptibly adapt it to a new technological application. (24) Especially for smart garments, the intrinsic breathability, comfort, and feel of familiar fabrics cannot be replicated by devices built on metalized synthetic fabrics or cladded, often-heavy designer fibers. We propose that the strongest strategy to create long-lasting and impactful electronic garments is to start with a mass-produced article of clothing, fabric, or thread/yarn and coat it with conjugated polymers to yield various textile circuit components. Commonly available, mass-produced fabrics, yarns/threads, and premade garments can in theory be transformed into a plethora of comfortably wearable electronic devices upon being coated with films of electronically active conjugated polymers. The definitive hurdle is that premade garments, threads, and fabrics have densely textured, three-dimensional surfaces that display roughness over a large range of length scales, from microns to millimeters. Tremendous variation in the surface morphology of conjugated-polymer-coated fibers and fabrics can be observed with different coating or processing conditions. In turn, the morphology of the conjugated polymer active layer determines the electrical performance and, most importantly, the device ruggedness and lifetime. Reactive vapor coating methods allow a conjugated polymer film to be directly formed on the surface of any premade garment, prewoven fabric, or fiber/yarn substrate without the need for specialized processing conditions, surface pretreatments, detergents, or fixing agents. This feature allows electronic coatings to be applied at the end of existing, high-throughput textile and garment manufacturing routines, irrespective of dye content or surface finish of the final textile. Furthermore, reactive vapor coating produces conductive materials without any insulating moieties and yields uniform and conformal films on fiber/fabric surfaces that are notably wash- and wear-stable and can withstand mechanically demanding textile manufacturing routines. These unique features mean that rugged and practical textile electronic devices can be created using sewing, weaving, or knitting procedures without compromising or otherwise affecting the surface electronic coating. In this Account, we highlight selected electronic fabrics and garments created by melding reactive vapor deposition with traditional textile manipulation processes, including electrically heated gloves that are lightweight, breathable, and sweat-resistant; surface-coated cotton, silk, and bast fiber threads capable of carrying large current densities and acting as sewable circuit interconnects; and surface-coated nylon threads woven together to form triboelectric textiles that can convert surface charge created during small body movements into usable and storable power.
Flywheel Energy Storage Technology Workshop
NASA Astrophysics Data System (ADS)
Okain, D.; Howell, D.
Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in flywheel energy storage (FES) technologies. FES offers several advantages over conventional electrochemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.
Impact of Scaled Technology on Radiation Testing and Hardening
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Cohn, Lewis M.
2005-01-01
This presentation gives a brief overview of some of the radiation challenges facing emerging scaled digital technologies with implications on using consumer grade electronics and next generation hardening schemes. Commercial semiconductor manufacturers are recognizing some of these issues as issues for terrestrial performance. Looking at means of dealing with soft errors. The thinned oxide has indicated improved TID tolerance of commercial products hardened by "serendipity" which does not guarantee hardness or say if the trend will continue. This presentation also focuses one reliability implications of thinned oxides.
Additive Manufacturing of Porous Metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; Kirka, Michael M.
2017-06-01
Currently, helium is obtained through separation from natural gas. The current industrial process incurs significant costs and requires large energy resources to successfully achieve separation. Through utilizing Additive Manufacturing (AM) technologies it is possible to reduce both of these burdens when refining helium gas. The ability to engineer porosity levels within Inconel 718 discs for controlled separation of helium from natural gas was investigated. Arrays of samples fabricated using the electron beam melting process were analyzed for their relative porosity density. Based upon the measurements, full scale discs were fabricated, and subsequently tested to determine their effectiveness in separating heliummore » from liquefied natural gas.« less
Additive Manufacturing of Advanced High Temperature Masking Fixtures for EBPVD TBC Coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
List, III, Frederick Alyious; Feuerstein, Albert; Dehoff, Ryan
2016-03-30
The purpose of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Praxair Surface Technologies, Inc. (PST) and Oak Ridge National Laboratory (ORNL) was to develop an additive manufacturing process to fabricate next generation high temperature masking fixtures for coating of turbine airfoils with ceramic Thermal Barrier Coatings (TBC) by the Electron Beam Physical Vapor Deposition (EBPVD) process. Typical masking fixtures are sophisticated designs and require complex part manipulation in order to achieve the desired coating distribution. Fixtures are typically fabricated from high temperature nickel (Ni) based superalloys. The fixtures are fabricated from conventional processes by welding of thin sheetmore » material into a complex geometry, to decrease the weight load for the manipulator and to reduce the thermal mass of the fixture. Recent attempts have been made in order to fabricate the fixtures through casting, but thin walled sections are difficult to cast and have high scrap rates. This project focused on understanding the potential for fabricating high temperature Ni based superalloy fixtures through additive manufacturing. Two different deposition processes; electron beam melting (EBM) and laser powder bed fusion were evaluated to determine the ideal processing route of these materials. Two different high temperature materials were evaluated. The high temperature materials evaluated were Inconel 718 and another Ni base alloy, designated throughout the remainder of this document as Alloy X, as the alloy composition is sensitive. Inconel 718 is a more widely utilized material for additive manufacturing although it is not currently the material utilized for current fixtures. Alloy X is the alloy currently used for the fixtures, but is not a commercially available alloy for additive manufacturing. Praxair determined it was possible to build the fixture using laser powder bed technology from Inconel 718. ORNL fabricated the fixture geometry using the EBM technology in order to compare deposition features such as surface roughness, geometric accuracy, deposition rate, surface and subsurface porosity, and material quality. It was determined that the laser powder bed technology was ideal for the geometry and requirements of the fixture set by Praxair, and Praxair moved forward with the purchase of a laser powder bed system. The subsequent portion of the project focused on determining the ideal processing parameters for alloy X for the laser powder bed system using ORNL’s Renishaw laser powder bed system. Praxair supplied gas atomized powders of alloy X material with properties specified by ORNL. ORNL printed text cube arrays in order to determine the ideal combination of laser powder and laser travel speed in order to maximize material density, improve surface quality, and maintain geometric accuracy. Additional powder supplied by Praxair was used to fabricate a full-scale fixture component.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith
ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in themore » expansion of United States operations for ECM Technologies.« less
Laser microprocessing technologies for automotive, flexible electronics, and solar energy sectors
NASA Astrophysics Data System (ADS)
Nikumb, Suwas; Bathe, Ravi; Knopf, George K.
2014-10-01
Laser microprocessing technologies offer an important tool to fulfill the needs of many industrial sectors. In particular, there is growing interest in applications of these processes in the manufacturing areas such as automotive parts fabrication, printable electronics and solar energy panels. The technology is primarily driven by our understanding of the fundamental laser-material interaction, process control strategies and the advancement of significant fabrication experience over the past few years. The wide-ranging operating parameters available with respect to power, pulse width variation, beam quality, higher repetition rates as well as precise control of the energy deposition through programmable pulse shaping technologies, enables pre-defined material removal, selective scribing of individual layer within a stacked multi-layer thin film structure, texturing of material surfaces as well as precise introduction of heat into the material to monitor its characteristic properties are a few examples. In this research, results in the area of laser surface texturing of metals for added hydrodynamic lubricity to reduce friction, processing of ink-jet printed graphene oxide for flexible printed electronic circuit fabrication and scribing of multi-layer thin films for the development of photovoltaic CuInGaSe2 (CIGS) interconnects for solar panel devices will be discussed.
IDENTIFYING PERFORMANCE ASSURANCE CHALLENGES FOR SMART MANUFACTURING.
Helu, Moneer; Morris, Katherine; Jung, Kiwook; Lyons, Kevin; Leong, Swee
2015-10-01
Smart manufacturing has the potential to address many of the challenges faced by industry. However, the manufacturing community often needs assistance to leverage available technologies to improve their systems. To assure the performance of these technologies, this paper proposes a shared knowledge base that collects problem areas, solutions, and best practices for manufacturing technology. An Implementation Risk Assessment Framework (IRAF) is also described to identify the primary weaknesses of technologies in specific manufacturing contexts. Such approaches have the potential to stimulate new ideas and drive standardization activities critical to scale up and deploy smart manufacturing technologies successfully and quickly.
IDENTIFYING PERFORMANCE ASSURANCE CHALLENGES FOR SMART MANUFACTURING
Helu, Moneer; Morris, Katherine; Jung, Kiwook; Lyons, Kevin; Leong, Swee
2015-01-01
Smart manufacturing has the potential to address many of the challenges faced by industry. However, the manufacturing community often needs assistance to leverage available technologies to improve their systems. To assure the performance of these technologies, this paper proposes a shared knowledge base that collects problem areas, solutions, and best practices for manufacturing technology. An Implementation Risk Assessment Framework (IRAF) is also described to identify the primary weaknesses of technologies in specific manufacturing contexts. Such approaches have the potential to stimulate new ideas and drive standardization activities critical to scale up and deploy smart manufacturing technologies successfully and quickly. PMID:26783512
Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties
NASA Astrophysics Data System (ADS)
Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu
2015-12-01
By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a
Status and Needs of Power Electronics for Photovoltaic Inverters
NASA Astrophysics Data System (ADS)
Qin, Y. C.; Mohan, N.; West, R.; Bonn, R.
2002-06-01
Photovoltaics is the utility connected distributed energy resource (DER) that is in widespread use today. It has one element, the inverter, which is common with all DER sources except rotating generators. The inverter is required to transfer dc energy to ac energy. With all the DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. Today, the PV inverter is a costly and complex component of PV systems that produce ac power. Inverter MTFF (mean time to first failure) is currently unacceptable. Low inverter reliability contributes to unreliable fielded systems and a loss of confidence in renewable technology. The low volume of PV inverters produced restricts the manufacturing to small suppliers without sophisticated research and reliability programs or manufacturing methods. Thus, the present approach to PV inverter supply has low probability of meeting DOE reliability goals.
EUV process establishment through litho and etch for N7 node
NASA Astrophysics Data System (ADS)
Kuwahara, Yuhei; Kawakami, Shinichiro; Kubota, Minoru; Matsunaga, Koichi; Nafus, Kathleen; Foubert, Philippe; Mao, Ming
2016-03-01
Extreme ultraviolet lithography (EUVL) technology is steadily reaching high volume manufacturing for 16nm half pitch node and beyond. However, some challenges, for example scanner availability and resist performance (resolution, CD uniformity (CDU), LWR, etch behavior and so on) are remaining. Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACK LITHIUS Pro Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Ltd. and imec are continuously collabo rating to develop manufacturing quality POR processes for NXE:3300. TEL's technologies to enhance CDU, defectivity and LWR/LER can improve patterning performance. The patterning is characterized and optimized in both litho and etch for a more complete understanding of the final patterning performance. This paper reports on post-litho CDU improvement by litho process optimization and also post-etch LWR reduction by litho and etch process optimization.
CVD-Enabled Graphene Manufacture and Technology
2015-01-01
Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for “electronic-grade” large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth. PMID:26240694
Manufacturing Innovation and Technological Superiority
2016-09-01
Defense AT&L: September-October 2016 2 From the Under Secretary of Defense for Acquisit ion, Technology, and Logist ics Manufacturing Innovation ...program to establish Manufacturing Innovation Institutes (MIIs) that would create incubators for advanced manufacturing technology in key
Baudana, Giorgio; Lorusso, Massimo; Ugues, Daniele; Fino, Paolo
2018-01-01
In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti3Al followed by Al3NiTi2 and AlNi2Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached. PMID:29342074
Code of Federal Regulations, 2011 CFR
2011-07-01
... GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.98 Definitions. Except as provided in this section... and N2O in waste streams from one or more electronics manufacturing production processes. Actual gas...-product formation means the creation of fluorinated GHGs during electronics manufacturing production...
Subelectron readout noise focal plane arrays for space imaging
NASA Astrophysics Data System (ADS)
Atlas, Gene; Wadsworth, Mark
2004-01-01
Readout noise levels of under 1 electron have long been a goal for the FPA community. In the quest to enhance the FPA sensitivity, various approaches have been attempted ranging from the exotic Photo-multiplier tubes, Image Intensifier tubes, Avalanche photo diodes, and now the on-chip avalanche charge amplification technologies from the CCD manufacturers. While these techniques reduce the readout noise, each offers a set of compromises that negatively affect the overall performance of the sensor in parameters such as power dissipation, dynamic range, uniformity or system complexity. In this work, we overview the benefits and tradeoffs of each approach, and introduce a new technique based on ImagerLabs" exclusive HIT technology which promises sub-electron read noise and other benefits without the tradeoffs of the other noise reduction techniques.
5 CFR 532.313 - Private sector industries.
Code of Federal Regulations, 2010 CFR
2010-01-01
... electrical signals. 335311 Power, distribution, and specialty transformer manufacturing. 48531 Taxi service... Electronic coil, transformer, and other inductor manufacturing. 334417 Electronic connector manufacturing...
EMPFASIS: A Publication of the National Electronics Manufacturing Center of Excellence
2010-01-01
for moisture, salt spray, and wind driven rain protection. • Conversion to ruggedized electrical and fluid connectors. • Additional circuitry, if...computer control technology, designed for safe lead free and eutectic rework applications. Available in two models, the RD-500 series features a three-stage...shock, Temperature Humidity Bias (THB) Testing, Highly Accelerated Stress Testing (HAST), salt fog, high temperature storage, or other environmental
USSR Report, Electronics and Electrical Engineering, No. 104
1983-06-13
shaping of silicon crystals during their growth is a modification of inductive contactless forming of rods and tubes directly from the melt on a...MANUFACTURING TECHNOLOGY Induction Systems for Electromagnetic Shaping of Silicon Crystal During.Growth (L. R. Lev; ELEKTROTEKHNIKA, Feb 83) • • • x...et al.; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: ELEKTROMEKHANIKA, Dec 82) 18 Basic Design of Linear- Induction Traction Motors for High-Speed
Manufacturing Methods and Technology Project Summary Reports
1981-06-01
a tough urethane film. The basic principle is to pump two components to a spinning disc, mixing the components just prior to depositing in a well...and check out an electronic target scoring device using developed scientific principles without drastically modifying existing commercial...equipment. The scoring device selected and installed was an Accubar Model ATS-16D using the underlying physics principle of acoustic shock wave propagation
2013-01-01
reentrant cavities) Corrugated or fluted tubes Screens Inner grooved tubes ( microfin tubes ) Fins Electrohydrodynamic field effect 3.1 Convective... microfin geometries, including 3-D geometries, but most commercial vendors continue to manufacture seamless tubes (46). Figure 6a shows the...enhancement technologies are compiled in table 4. Table 4. Comparison of leading refrigeration tube performance (42). Metric Microfin Tube Twisted
High-precision and high-speed laser microjoining for electronics and microsystems
NASA Astrophysics Data System (ADS)
Gillner, Arnold; Olowinsky, Alexander; Klages, Kilian; Gedicke, Jens; Sari, Fahri
2006-02-01
The joining processes in electronic device manufacturing are today still dominated by conventional joining techniques like press fitting, crimping and resistance welding. Laser beam joining techniques have been under intensive investigations and subsequently new processes for mass manufacturing and high accuracy assembling were established. With the newly developed SHADOW (R) welding technology technical aspects such as tensile strength, geometry and precision of the weld could be improved. This technology provides highest flexibility in weld geometry with a minimum welding time as well as new possibilities in using application adapted materials. Different parts and even different metals can be joined by a non-contact process. The application of a relative movement between the laser beam and the part to be joined at feed rates of up to 60 m/min produces weld seams with a length from 0.6 mm to 15.7 mm using a pulsed Nd:YAG laser with a pulse duration of up to 50 ms. Due to the low energy input, typically 1 J to 6 J, a weld width as small as 50 μm and a weld depth as small as 20 pm have been attained. This results in low distortion of the joined watch components. Within this paper this new welding process will be explained and several examples of joined components will be presented with respect to fundamentals and the sustainable implementation of the SHADOW (R) welding technique into watch manufacturing and electronic industry. For microsystem applications the laser joining technology is modified to join even silicon and glass parts without any melting based on the formation of a thermally induced oxygen bond. New fields of applications for joining different materials such as steel to brass or steel to copper for electrical interconnects will be discussed. Here the SHADOW (R) welding technique offers new possibilities for the combination of good electrical properties of copper with high mechanical stiffness of steel. The paper will give a closer look to microjoining applications especially using the SHADOW (R) welding technique. Basics of the process as well as its application on dedicated examples will be shown for small parts such as axis-wheel combinations and electrical connectors.
Integrated MEMS-based variable optical attenuator and 10Gb/s receiver
NASA Astrophysics Data System (ADS)
Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James
2005-03-01
MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.
Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li
2016-01-01
A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.
Sekitani, Tsuyoshi; Takamiya, Makoto; Noguchi, Yoshiaki; Nakano, Shintaro; Kato, Yusaku; Sakurai, Takayasu; Someya, Takao
2007-06-01
The electronics fields face serious problems associated with electric power; these include the development of ecologically friendly power-generation systems and ultralow-power-consuming circuits. Moreover, there is a demand for developing new power-transmission methods in the imminent era of ambient electronics, in which a multitude of electronic devices such as sensor networks will be used in our daily life to enhance security, safety and convenience. We constructed a sheet-type wireless power-transmission system by using state-of-the-art printing technologies using advanced electronic functional inks. This became possible owing to recent progress in organic semiconductor technologies; the diversity of chemical syntheses and processes on organic materials has led to a new class of organic semiconductors, dielectric layers and metals with excellent electronic functionalities. The new system directly drives electronic devices by transmitting power of the order of tens of watts without connectors, thereby providing an easy-to-use and reliable power source. As all of the components are manufactured on plastic films, it is easy to place the wireless power-transmission sheet over desks, floors, walls and any other location imaginable.
NASA Astrophysics Data System (ADS)
Marya, Manuel; Singh, Virendra; Marya, Surendar; Hascoet, Jean Yves
2015-08-01
Additive manufacturing (AM) brings disruptive changes to the ways parts, and products are designed, fabricated, tested, qualified, inspected, marketed, and sold. These changes introduce novel technical challenges and concerns arising from the maturity and diversity of today's AM processes, feedstock materials, and process parameter interactions. AM bears a resemblance with laser and electron beam welding in the so-called conduction mode, which involves a multitude of dynamic physical events between the projected feedstock and a moving heat source that eventually influence AM part properties. For this paper, an air vent was selected for its thin-walled, hollow, and variable cross section, and limited size. The studied air vents, randomly selected from a qualification batch, were fabricated out of 316L stainless steel using a 4 kW fiber laser powder-fed AM system, referred to as construction laser additive direct (CLAD). These were systematically characterized by microhardness indentation, visual examination, optical and scanning electron microscopy, and electron-back-scattering diffraction in order to determine AM part suitability for service and also broadly discuss metallurgical phenomena. The paper then briefly expands the discussion to include additional engineering alloys and further analyze relationships between AM process parameters and AM part properties, consistently utilizing past experience with the same powder-fed CLAD 3D printer, the well-established science and technology of welding and joining, and recent publications on additive manufacturing.
Pellet to Part Manufacturing System for CNCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roschli, Alex C.; Love, Lonnie J.; Post, Brian K.
Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.
NASA Game Changing Development Program Manufacturing Innovation Project
NASA Technical Reports Server (NTRS)
Tolbert, Carol; Vickers, John
2011-01-01
This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.
Highly Conductive Nano-Silver Circuits by Inkjet Printing
NASA Astrophysics Data System (ADS)
Zhu, Dongbin; Wu, Minqiang
2018-06-01
Inkjet technology has become popular in the field of printed electronics due to its superior properties such as simple processes and printable complex patterns. Electrical conductivity of the circuits is one of the key factors in measuring the performance of printed electronics, which requires great material properties and a manufactured process. With excellent conductivity and ductility, silver is an ideal material as the wire connecting components. This review summarizes the progress of conductivity studies on inkjet printed nano-silver lines, including ink composition and nanoparticle morphology, deposition of nano-silver lines with uniform and high aspect ratios, sintering mechanisms and alternative methods of thermal sintering. Finally, the research direction on inkjet printed electronics is proposed.
NASA Astrophysics Data System (ADS)
Babu, S. S.; Raghavan, N.; Raplee, J.; Foster, S. J.; Frederick, C.; Haines, M.; Dinwiddie, R.; Kirka, M. K.; Plotkowski, A.; Lee, Y.; Dehoff, R. R.
2018-06-01
Innovative designs for turbines can be achieved by advances in nickel-based superalloys and manufacturing methods, including the adoption of additive manufacturing. In this regard, selective electron beam melting (SEBM) and selective laser melting (SLM) of nickel-based superalloys do provide distinct advantages. Furthermore, the direct energy deposition (DED) processes can be used for repair and reclamation of nickel alloy components. The current paper explores opportunities for innovation and qualification challenges with respect to deployment of AM as a disruptive manufacturing technology. In the first part of the paper, fundamental correlations of processing parameters to defect tendency and microstructure evolution will be explored using DED process. In the second part of the paper, opportunities for innovation in terms of site-specific control of microstructure during processing will be discussed. In the third part of the paper, challenges in qualification of AM parts for service will be discussed and potential methods to alleviate these issues through in situ process monitoring, and big data analytics are proposed.
Galvanic Manufacturing in the Cities of Russia: Potential Source of Ambient Nanoparticles
Golokhvast, Kirill S.; Shvedova, Anna A.
2014-01-01
Galvanic manufacturing is widely employed and can be found in nearly every average city in Russia. The release and accumulation of different metals (Me), depending on the technology used can be found in the vicinities of galvanic plants. Under the environmental protection act in Russia, the regulations for galvanic manufacturing do not include the regulations and safety standards for ambient ultrafine and nanosized particulate matter (PM). To assess whether Me nanoparticles (NP) are among environmental pollutants caused by galvanic manufacturing, the level of Me NP were tested in urban snow samples collected around galvanic enterprises in two cities. Employing transmission electronic microscopy, energy-dispersive X-ray spectroscopy, and a laser diffraction particle size analyzer, we found that the size distribution of tested Me NP was within 10–120 nm range. This is the first study to report that Me NP of Fe, Cr, Pb, Al, Ni, Cu, and Zn were detected around galvanic shop settings. PMID:25329582
Technological assessment of local manufacturers for wind turbine blade manufacturing in Pakistan
NASA Astrophysics Data System (ADS)
Mahmood, Khurram; Haroon, General
2012-11-01
Composite materials manufacturing industry is one of the world's hi-tech industry. Manufacturing of wind turbine blades is one of the specialized fields requiring high degree of precision and composite manufacturing techniques. This paper identifies the industries specializing in the composite manufacturing and is able to manufacture wind turbines blades in Pakistan. In the second phase, their technology readiness level is determined, based on some factors and then a readiness level are assigned to them. The assigned technology readiness level will depict the absorptive capacity of each manufacturing unit and its capability to take on such projects. The individual readiness level of manufacturing unit will then be used to establish combined technology readiness level of Pakistan particularly for wind turbine blades manufacturing. The composite manufacturing industry provides many spin offs and a diverse range of products can be manufactured using this facility. This research will be helpful to categorize the strong points and flaws of local industry for the gap analysis. It can also be used as a prerequisite study before the evaluation of technologies and specialties to improve the industry of the country for the most favorable results. This will form a basic data base which can be used for the decision making related to transfer of technology, training of local skilled workers and general up-gradation of the local manufacturing units.
Fousová, Michaela; Vojtěch, Dalibor; Doubrava, Karel; Daniel, Matěj; Lin, Chiu-Feng
2018-03-31
Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture-selective laser melting (SLM) and electron beam melting (EBM)-in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.
Precision laser processing for micro electronics and fiber optic manufacturing
NASA Astrophysics Data System (ADS)
Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.
2008-02-01
The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.
Multiproject wafers: not just for million-dollar mask sets
NASA Astrophysics Data System (ADS)
Morse, Richard D.
2003-06-01
With the advent of Reticle Enhancement Technologies (RET) such as Optical Proximity Correction (OPC) and Phase Shift Masks (PSM) required to manufacture semiconductors in the sub-wavelength era, the cost of photomask tooling has skyrocketed. On the leading edge of technology, mask set prices often exceed $1 million. This shifts an enormous burden back to designers and Electronic Design Automation (EDA) software vendors to create perfect designs at a time when the number of transistors per chip is measured in the hundreds of millions, and gigachips are on the drawing boards. Moore's Law has driven technology to incredible feats. The prime beneficiaries of the technology - memory and microprocessor (MPU) manufacturers - can continue to fit the model because wafer volumes (and chip prices in the MPU case) render tooling costs relatively insignificant. However, Application-Specific IC (ASIC) manufacturers and most foundry clients average very small wafer per reticle ratios causing a dramatic and potentially insupportable rise in the cost of manufacturing. Multi-Project wafers (MPWs) are a way to share the cost of tooling and silicon by putting more than one chip on each reticle. Lacking any unexpected breakthroughs in simulation, verification, or mask technology to reduce the cost of prototyping, more efficient use of reticle space becomes a viable and increasingly attractive choice. It is worthwhile therefore, to discuss the economics of prototyping in the sub-wavelength era and the increasing advantages of the MPW, shared-silicon approach. However, putting together a collection of different-sized chips during tapeout can be challenging and time consuming. Design compatibility, reticle field optimization, and frame generation have traditionally been the biggest worries but, with the advent of dummy-fill for planarization and RET for resolution, another layer of complexity has been added. MPW automation software is quite advanced today, but the size of the task dictates careful consideration of the alternative methods.
Thermal Skin fabrication technology
NASA Technical Reports Server (NTRS)
Milam, T. B.
1972-01-01
Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.
New electron beam facility for R&D and production at acsion industries
NASA Astrophysics Data System (ADS)
Lopata, V. J.; Barnard, J. W.; Saunders, C. B.; Stepanik, T. M.
2003-08-01
Since its incorporation in 1998, Acsion Industries Inc. has been working with clients to develop industrial uses of electron processing for improving products and manufacturing processes. Acsion has promoted this technology for sterilizing medical devices and pharmaceuticals, for treating wood pulp in the viscose/rayon process, for reducing pathogens in food and animal feed, and for curing advanced composites for the aerospace industry. As a result of significant developments in its composite curing programs, Acsion has recently made major modifications to its facility to increase its production and R&D capabilities. These modifications are described in this paper.
Earth abundant thin film technology for next generation photovoltaic modules
NASA Astrophysics Data System (ADS)
Alapatt, Githin Francis
With a cumulative generation capacity of over 100 GW, Photovoltaics (PV) technology is uniquely poised to become increasingly popular in the coming decades. Although, several breakthroughs have propelled PV technology, it accounts for only less than 1% of the energy produced worldwide. This aspect of the PV technology is primarily due to the somewhat high cost per watt, which is dependent on the efficiency of the PV cells as well as the cost of manufacturing and installing them. Currently, the efficiency of the PV conversion process is limited to about 25% for commercial terrestrial cells; improving this efficiency can increase the penetration of PV worldwide rapidly. A critical review of all possibilities pursued in the public domain reveals serious shortcomings and manufacturing issues. To make PV generated power a reality in every home, a Multi-Junction Multi-Terminal (MJMT) PV architecture can be employed combining silicon and another earth abundant material. However, forming electronic grade thin films of earth abundant materials is a non-trivial challenge; without solving this, it is impossible to increase the overall PV efficiency. Deposition of Copper (I) Oxide, an earth abundant semiconducting material, was conducted using an optimized Photo assisted Chemical Vapor Deposition process. X-Ray Diffraction, Ellipsometry, Transmission Electron Microscopy, and Profilometry revealed that the films composed of Cu2O of about 90 nm thickness and the grain size was as large as 600 nm. This result shows an improvement in material properties over previously grown thin films of Cu2O. Measurement of I-V characteristics of a diode structure composed of the Cu2O indicates an increase in On/Off ratio to 17,000 from the previous best value of 800. These results suggest that the electronic quality of the thin films deposited using our optimized process to be better than the results reported elsewhere. Using this optimized thin film forming technique, it is now possible to create a complete MJMT structure to improve the terrestrial commercial PV efficiency.
Manufacturing Laboratory | Energy Systems Integration Facility | NREL
Manufacturing Laboratory Manufacturing Laboratory Researchers in the Energy Systems Integration Facility's Manufacturing Laboratory develop methods and technologies to scale up renewable energy technology manufacturing capabilities. Photo of researchers and equipment in the Manufacturing Laboratory. Capability Hubs
Training for New Manufacturing Technologies.
ERIC Educational Resources Information Center
Jacobs, James
1988-01-01
Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…
Technology Roadmaps for Compound Semiconductors
Bennett, Herbert S.
2000-01-01
The roles cited for compound semiconductors in public versions of existing technology roadmaps from the National Electronics Manufacturing Initiative, Inc., Optoelectronics Industry Development Association, Microelectronics Advanced Research Initiative on Optoelectronic Interconnects, and Optoelectronics Industry and Technology Development Association (OITDA) are discussed and compared within the context of trends in the Si CMOS industry. In particular, the extent to which these technology roadmaps treat compound semiconductors at the materials processing and device levels will be presented for specific applications. For example, OITDA’s Optical Communications Technology Roadmap directly connects the information demand of delivering 100 Mbit/s to the home to the requirement of producing 200 GHz heterojunction bipolar transistors with 30 nm bases and InP high electron mobility transistors with 100 nm gates. Some general actions for progress towards the proposed International Technology Roadmap for Compound Semiconductors (ITRCS) and methods for determining the value of an ITRCS will be suggested. But, in the final analysis, the value added by an ITRCS will depend on how industry leaders respond. The technical challenges and economic opportunities of delivering high quality digital video to consumers provide concrete examples of where the above actions and methods could be applied. PMID:27551615
Gao, Lihua; Liu, Ting; An, Xinjing; Zhang, Jinlan; Ma, Xiaoran; Cui, Jinmei
2017-01-01
Soy sauce contains a variety of volatiles that are highly valuable to its quality with regard to sensory characteristics. This paper describes the analysis of volatile compounds influencing the flavor quality of Chinese-type soy sauces. Gas chromatography-mass spectrometry (GC-MS) combined with headspace-solid phase microextraction and electronic nose (E-nose) were applied for identifying the volatile flavor compounds as well as determining their volatile profiles of 12 soy sauces manufactured by different fermentation process. Forty one key volatile components of these 12 soy sauce products, a pure soy sauce and an acid-hydrolyzed vegetable protein sample, were compared in semi-quantitative form, and their volatile flavor profiles were analyzed by E-nose. The substantially similar results between hierarchical cluster analysis based on GC-MS data and E-nose analysis suggested that both techniques may be useful in evaluating the flavor quality of soy sauces and differentiating soy sauce products. The study also showed that there were less volatile flavor compounds in soy sauces produced through low-salt solid-state fermentation process, a traditional manufacturing technology and a widely adopted technology in Chinese soy sauce industries. In addition, the investigation suggested that the flavor quality of soy sauce varied widely in Chinese domestic market, and that the present Chinese national standards of soy sauce should be further perfected by the addition of flavor grades of soy sauce in the physical and chemical index. Meanwhile, this research provided valuable information to manufacturers and government regulators, which have practical significance to improve quality of soy sauces.
Design for manufacturability production management activity report
NASA Astrophysics Data System (ADS)
Miyazaki, Norihiko; Sato, T.; Honma, M.; Yoshioka, N.; Hosono, K.; Onodera, T.; Itoh, H.; Suzuki, H.; Uga, T.; Kadota, K.; Iriki, N.
2006-05-01
Design For Manufacturability Production Management (DFM-PM) Subcommittee has been started in succession to Reticle Management Subcommittee (RMS) in Semiconductor Manufacturing Technology Committee for Japan (SMTCJ) from 2005. Our activity focuses on the SoC (System On Chip) Business, and it pursues the improvement of communication in manufacturing technique. The first theme of activity is the investigation and examination of the new trends about production (manufacturer) technology and related information, and proposals of business solution. The second theme is the standardization activity about manufacture technology and the cooperation with related semiconductors' organizations. And the third theme is holding workshop and support for promotion and spread of the standardization technology throughout semiconductor companies. We expand a range of scope from design technology to wafer pattern reliability and we will propose the competition domain, the collaboration area and the standardization technology on DFM. Furthermore, we will be able to make up a SoC business model as the 45nm node technology beyond manufacturing platform in cooperating with the design information and the production information by utilizing EDA technology.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
... Electronics Manufacturing and the Petroleum and Natural Gas Systems Categories of the Greenhouse Gas Reporting...: Technical Revisions to the Electronics Manufacturing and the Petroleum and Natural Gas Systems Categories of... to the Electronics Manufacturing and the Petroleum and Natural Gas Systems Categories of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... DEPARTMENT OF COMMERCE [Docket T-1-2010] Foreign-Trade Zones Board Foreign-Trade Zone 22; Temporary/Interim Manufacturing Authority; LG Electronics Mobilecomm USA, Inc. (Cell Phones); Notice of.../ interim manufacturing (T/IM) authority, on behalf of LG Electronics Mobilecomm USA, Inc. (LGEMU), to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... Monitoring Provisions for Electronics Manufacturing AGENCY: Environmental Protection Agency (EPA). ACTION... monitoring methods in Subpart I: Electronics Manufacturing of the Mandatory Greenhouse Gas Reporting Rule...: Electronics Manufacturing of the Greenhouse Gas Reporting Rule on December 1, 2010 (75 FR 74774). This subpart...
Towards a service bus for distributed manufacturing
NASA Astrophysics Data System (ADS)
Delgado-Gomes, Vasco; Oliveira-Lima, José A.; Martins, João F.; Jardim-Gonçalves, Ricardo
2013-10-01
The electronic exchange of data between industrial equipment, manufacturing and information systems of companies is becoming increasingly important with the current trend of reducing products' life cycle, wide range of diversified products, and the need to answer the specific needs of each consumer. In this context, quality, time, costs involved in integrating information over the company's internal processes, and in the interaction of these processes with their customers, suppliers and other business partners are in many sectors, far beyond what the current technology and communications solutions enable. This paper presents a communication infrastructure to integrate several companies from different sectors of the supply chain, to exchange their heterogeneous information using a data model which is composed by different standards.
Technology Transfer Demonstration Project. Progress report, December 1993--January 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
The Rural Enterprises Industrial Incubator program offers beginning business a stable foundation on which to build long-term profitable concerns. These incubator facilities consist of buildings for the specific purpose of starting a new manufacturing business and are designed to accommodate a variety of manufacturing firms. Incubators are located on the Kiamichi Area Vocational Technical School system (KAVTS) campuses in Durant, Atoka, Hugo, McAlester, Stigler, Poteau, Idabel, at the REI headquarters and one in Bennington, OK. These facilities range in size from 4,800 sq.ft. to 14,000 sq.ft. and have housed businesses such as machine shops, metal fabrication companies, electronic assembly andmore » biomedical engineering firms.« less
Integrated control system for electron beam processes
NASA Astrophysics Data System (ADS)
Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.
2018-03-01
The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.
The international electronics industry.
LaDou, J; Rohm, T
1998-01-01
High-technology microelectronics has a major presence in countries such as China, India, Indonesia, and Malaysia, now the third-largest manufacturer of semiconductor chips. The migration of European, Japanese, and American companies accommodates regional markets. Low wage rates and limited enforcement of environmental regulations in developing countries also serve as incentives for the dramatic global migration of this industry. The manufacture of microelectonics products is accompanied by a high incidence of occupational illnesses, which may reflect the widespread use of toxic materials. Metals, photoactive chemicals, solvents, acids, and toxic gases are used in a wide variety of combinations and workplace settings. The industry also presents problems of radiation exposure and various occupational stressors, including some unresolved ergonomic issues. The fast-paced changes of the technology underlying this industry, as well as the stringent security precautions, have added to the difficulty of instituting proper health and safety measures. Epidemiologic studies reveal an alarming increase in spontaneous abortions among cleanroom manufacturing workers; no definitive study has yet identified its cause. Other health issues, including occupational cancer, are yet to be studied. The microelectronics industry is a good example of an industry that is exported to many areas of the world before health and safety problems are properly addressed and resolved.
High speed micromachining with high power UV laser
NASA Astrophysics Data System (ADS)
Patel, Rajesh S.; Bovatsek, James M.
2013-03-01
Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.
NASA Technical Reports Server (NTRS)
Tayon, Wesley A.; Domack, Marcia S.; Hoffman, Eric K.; Hales, Stephen J.
2013-01-01
In order to improve manufacturing efficiency and reduce structural mass and costs in the production of launch vehicle structures, NASA is pursuing a wide-range of innovative, near-net shape manufacturing technologies. A technology that combines friction stir welding (FSW) and spin-forming has been applied to manufacture a single-piece crew module using Aluminum-Lithium (AL-Li) Alloy 2195. Plate size limitations for Al-Li alloy 2195 require that two plates be FSW together to produce a spin-forming blank of sufficient size to form the crew module. Subsequent forming of the FSW results in abnormal grain growth (AGG) within the weld region upon solution heat treatment (SHT), which detrimentally impacts strength, ductility, and fracture toughness. The current study seeks to identify microstructural factors that contribute to the development of AGG. Electron backscatter diffraction (EBSD) was used to correlate driving forces for AGG, such as stored energy, texture, and grain size distributions, with the propensity for AGG. Additionally, developmental annealing treatments prior to SHT are examined to reduce or eliminate the occurrence of AGG by promoting continuous, or uniform, grain growth
NextFlex Flexible Hybrid Electronics Manufacturing
2016-10-01
Defense AT&L: September-October 2016 32 ADVANCED MANUFACTURING N NextFlex Flexible Hybrid Electronics Manufacturing Eric Forsythe, Ph.D. Benjamin...New York, in both Physics and Chemistry, where he worked on electronic interfaces and carrier transport in organic light-emitting devices in...Ohio. extFlex, America’s Flexible Hybrid Electronics Manu- facturing Innovation Institute, is a program formed out of a cooperative agreement awarded
A new e-beam application in the pharmaceutical industry
NASA Astrophysics Data System (ADS)
Sadat, Theo; Malcolm, Fiona
2005-10-01
The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.
Common Principles of Molecular Electronics and Nanoscale Electrochemistry.
Bueno, Paulo Roberto
2018-05-24
The merging of nanoscale electronics and electrochemistry can potentially modernize the way electronic devices are currently engineered or constructed. It is well known that the greatest challenges will involve not only miniaturizing and improving the performance of mobile devices, but also manufacturing reliable electrical vehicles, and engineering more efficient solar panels and energy storage systems. These are just a few examples of how technological innovation is dependent on both electrochemical and electronic elements. This paper offers a conceptual discussion of this central topic, with particular focus on the impact that uniting physical and chemical concepts at a nanoscale could have on the future development of electroanalytical devices. The specific example to which this article refers pertains to molecular diagnostics, i.e., devices that employ physical and electrochemical concepts to diagnose diseases.
Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.
JPRS Report Science & Technology Japan
1989-10-20
plant callus o Adaptation of protozoans to microgravity o Fertilization and embryogeny of newt in space o Fertilization and embryogeny of sea urchin ...for by the mining and manufacturing branch. Moreover, about 50 percent of the energy consumed is exhausted to air, river, sea , etc., as waste heat...Cross section of substrate Figure 6. Photo of Cross Section of Coating Film Taken by Scanning Electron Microscope ( SEM ) It was heated for 60 hours
An Assessment of the Science and Technology Predictions in the Army’s STAR21 Report
2008-07-01
electronics, optics, and photonics; aeromechanics; molecular genetics ; clinical medicine ; atmospheric sciences; and terrain sciences. Both the Navy and the...for medical diagnostics, functional materials, and manufacturing at the nano-scale. There were a few serious misses, such as significant developments...overstatement. The predictions for vaccines and medicines are right. The study did not mention the key interactions between biomolecules and their
Lithographic technologies that haven't (yet) made it: lessons learned (Plenary Paper)
NASA Astrophysics Data System (ADS)
Pease, R. Fabian
2005-05-01
Since the introduction of the integrated circuit we have been inventing ways to extend the feature resolution beyond the optical limit. Using a focused electron beam linewidths of less than 100nm were demonstrated in 1960 and a mere three years later we achieved a 10nm feature. In the 1970's and 80's several semiconductor manufacturers undertook programs to introduce electron beam lithography (EBL) and X-ray lithography (XRL) based primarily on the rationale that both had superior resolution. Those programs consumed many millions of dollars and yielded, and continue to yield, very imaginative systems but have failed to displace deep ultraviolet lithography (DUVL) despite its inferior resolution. One lesson learned is an old one: to displace an established technology the new must be 10x better than the old. Thus it is irrational that even today a form of XRL employing 13nm X-rays is still being pursued despite showing performance inferior to that of DUVL. What constitutes 'better' depends on the application and thus there are niche markets for forms of lithography other than DUVL. But for mainstream semiconductor chip manufacturing there is no prospect within the next decade of displacing optical lithography which can be stretched even to 10nm features by applying novel techniques coupled with massive computation.
NASA-DoD Lead-Free Electronics Project. DRAFT Joint Test Report
NASA Technical Reports Server (NTRS)
Kessel, Kurt
2011-01-01
The use of conventional tin-lead (SnPb) in circuit board manufacturing is under ever-increasing political scrutiny due to increasing regulations concerning lead. The "Restriction of Hazardous Substances" (RoHS) directive enacted by the European Union (EU) and a pact between the United States National Electronics Manufacturing Initiative (NEMI), Europe's Soldertec at Tin Technology Ltd. and the Japan Electronics and Information Technology Industries Association (JEITA) are just two examples where worldwide legislative actions and partnerships/agreements are affecting the electronics industry. As a result, many global commercial-grade electronic component suppliers are initiating efforts to transition to lead-free (Pb-free) in order to retain their worldwide market. Pb-free components are likely to find their way into the inventory of aerospace or military assembly processes under current government acquisition reform initiatives. Inventories "contaminated" by Pb-free will result in increased risks associated with the manufacturing, product reliability, and subsequent repair of aerospace and military electronic systems. Although electronics for military and aerospace applications are not included in the RoHS legislation, engineers are beginning to find that the commercial industry's move towards RoHS compliance has affected their supply chain and changed their parts. Most parts suppliers plan to phase out their non-compliant, leaded production and many have already done so. As a result, the ability to find leaded components is getting harder and harder. Some buyers are now attempting to acquire the remaining SnPb inventory, if it's not already obsolete. Original Equipment Manufacturers (OEMs), depots, and support contractors have to be prepared to deal with an electronics supply chain that increasingly provides more and more parts with Pb-free finishes-some labeled no differently than their Pb counterparts-while at the same time providing the traditional Pb parts. The longer the transition period, the greater the likelihood of Pb-free parts inadvertently being mixed with Pb parts and ending up on what are supposed to be Pb systems. As a result, OEMs, depots, and support contractors need to take action now to either abate the influx of Pb-free parts, or accept it and deal with the likely interim consequences of reduced reliability due to a wide variety of matters, such as Pb contamination, high temperature incompatibility, and tin whiskering. Allowance of Pb-free components produces one of the greatest risks to the reliability of a weapon system. This is due to new and poorly understood failure mechanisms, as well as unknown long-term reliability. If the decision is made to consciously allow Pb-free solder and component finishes into SnPb electronics, additional effort (and cost) will be required to make the significant number of changes to drawings and task order procedures. This project is a follow-on effort to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Pb-free Solder Project which was the first group to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... engine and engine parts manufacturing,'' ``Motor vehicle electrical and electronic equipment... manufacturing,'' ``Other motor vehicle electrical and electronic equipment manufacturing,'' and ``All other motor vehicle parts manufacturing'' in the second column from the list of required NAICS codes for the...
Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis
NASA Astrophysics Data System (ADS)
Nan, Song
2018-03-01
Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.
Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo
2016-05-09
Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.
Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators.
Memon, Muhammad Usman; Lim, Sungjoon
2017-09-09
The significant improvements observed in the field of bulk-production of printed microchip technologies in the past decade have allowed the fabrication of microchip printing on numerous materials including organic and flexible substrates. Printed sensors and electronics are of significant interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing amount of research and deployment of specially printed electronic sensors in a number of applications demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving wider-scale electronics on different dielectric materials. Although there are many traditional methods for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated, and require more power for operation than additive fabrication methods. This paper serves as a summary/review of improvements made to the additive printing technologies. The article focuses on three recently developed printing methods for the fabrication of wireless sensors operating at microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional (3D) printing, and screen printing.
Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators
2017-01-01
The significant improvements observed in the field of bulk-production of printed microchip technologies in the past decade have allowed the fabrication of microchip printing on numerous materials including organic and flexible substrates. Printed sensors and electronics are of significant interest owing to the fast and low-cost fabrication techniques used in their fabrication. The increasing amount of research and deployment of specially printed electronic sensors in a number of applications demonstrates the immense attention paid by researchers to this topic in the pursuit of achieving wider-scale electronics on different dielectric materials. Although there are many traditional methods for fabricating radio frequency (RF) components, they are time-consuming, expensive, complicated, and require more power for operation than additive fabrication methods. This paper serves as a summary/review of improvements made to the additive printing technologies. The article focuses on three recently developed printing methods for the fabrication of wireless sensors operating at microwave frequencies. The fabrication methods discussed include inkjet printing, three-dimensional (3D) printing, and screen printing. PMID:28891947
Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo
2016-01-01
Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914
Mapper: high throughput maskless lithography
NASA Astrophysics Data System (ADS)
Kuiper, V.; Kampherbeek, B. J.; Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Boers, J.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.
2009-01-01
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. A new platform has been designed and built which contains a 300 mm wafer stage, a wafer handler and an electron beam column with 110 parallel electron beams. This manuscript describes the first patterning results with this 300 mm platform.
Prosperity Games prototyping with the American Electronics Association, March 8--9, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, M.; VanDevender, J.P.
1994-08-01
Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents the Prosperity Game conducted under the sponsorship of the American Electronics Association in conjunction withmore » the Electronics Subcommittee of the Civilian Industrial Technology Committee of the National Science and Technology Council. Players were drawn from government, national laboratories, and universities, as well as from the electronics industry. The game explored policy changes that could enhance US competitiveness in the manufacturing of consumer electronics. Two teams simulated a presidentially appointed commission comprised of high-level representatives from government, industry, universities and national laboratories. A single team represented the foreign equivalent of this commission, formed to develop counter strategies for any changes in US policies. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, and the development, delivery and commercialization of new technologies.« less
Clean Energy Manufacturing Initiative Solid-State Lighting
Thomas, Sunil; Edmond, John; Krames, Michael; Rama
2018-05-30
The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.
Jin, Xiaoning; Siegel, David; Weiss, Brian A; Gamel, Ellen; Wang, Wei; Lee, Jay; Ni, Jun
A research study was conducted (1) to examine the practices employed by US manufacturers to achieve productivity goals and (2) to understand what level of intelligent maintenance technologies and strategies are being incorporated into these practices. This study found that the effectiveness and choice of maintenance strategy were strongly correlated to the size of the manufacturing enterprise; there were large differences in adoption of advanced maintenance practices and diagnostics and prognostics technologies between small and medium-sized enterprises (SMEs). Despite their greater adoption of maintenance practices and technologies, large manufacturing organizations have had only modest success with respect to diagnostics and prognostics and preventive maintenance projects. The varying degrees of success with respect to preventative maintenance programs highlight the opportunity for larger manufacturers to improve their maintenance practices and use of advanced prognostics and health management (PHM) technology. The future outlook for manufacturing PHM technology among the manufacturing organizations considered in this study was overwhelmingly positive; many manufacturing organizations have current and planned projects in this area. Given the current modest state of implementation and positive outlook for this technology, gaps, future trends, and roadmaps for manufacturing PHM and maintenance strategy are presented.
The present status and future growth of maintenance in US manufacturing: results from a pilot survey
Jin, Xiaoning; Siegel, David; Weiss, Brian A.; Gamel, Ellen; Wang, Wei; Lee, Jay; Ni, Jun
2016-01-01
A research study was conducted (1) to examine the practices employed by US manufacturers to achieve productivity goals and (2) to understand what level of intelligent maintenance technologies and strategies are being incorporated into these practices. This study found that the effectiveness and choice of maintenance strategy were strongly correlated to the size of the manufacturing enterprise; there were large differences in adoption of advanced maintenance practices and diagnostics and prognostics technologies between small and medium-sized enterprises (SMEs). Despite their greater adoption of maintenance practices and technologies, large manufacturing organizations have had only modest success with respect to diagnostics and prognostics and preventive maintenance projects. The varying degrees of success with respect to preventative maintenance programs highlight the opportunity for larger manufacturers to improve their maintenance practices and use of advanced prognostics and health management (PHM) technology. The future outlook for manufacturing PHM technology among the manufacturing organizations considered in this study was overwhelmingly positive; many manufacturing organizations have current and planned projects in this area. Given the current modest state of implementation and positive outlook for this technology, gaps, future trends, and roadmaps for manufacturing PHM and maintenance strategy are presented. PMID:27525253
Low work function materials for microminiature energy conversion and recovery applications
Zavadil, Kevin R.; Ruffner, Judith A.; King, Donald B.
2003-05-13
Low work function materials are disclosed together with methods for their manufacture and integration with electrodes used in thermionic conversion applications (specifically microminiature thermionic conversion applications). The materials include a mixed oxide system and metal in a compositionally modulated structure comprised of localized discontinuous structures of material that are deposited using techniques suited to IC manufacture, such as rf sputtering or CVD. The structures, which can include layers are then heated to coalescence yielding a thin film that is both durable and capable of electron emission under thermionic conversion conditions used for microminiature thermionic converters. Using the principles of the invention, thin film electrodes (emitters and collectors) required for microconverter technology are manufactured using a single process deposition so as to allow for full fabrication integration consistent with batch processing, and tailoring of emission/collection properties. In the preferred embodiment, the individual layers include mixed BaSrCaO, scandium oxide and tungsten.
A Review on Functionally Gradient Materials (FGMs) and Their Applications
NASA Astrophysics Data System (ADS)
Bhavar, Valmik; Kattire, Prakash; Thakare, Sandeep; patil, Sachin; Singh, RKP, Dr.
2017-09-01
Functionally gradient materials (FGM) are innovative materials in which final properties varies gradually with dimensions. It is the recent development in traditional composite materials which retains their strengths and eliminates their weaknesses. It can be formed by varying chemical composition, microstructure or design attributes from one end to other as per requirement. This feature allows FGM to have best material properties in required quantities only where it is needed. Though there are several methods available for manufacturing FGMs, additive based metal deposition (by laser, electron beam, plasma etc.) technologies are reaping particular interest owing to their recent developments. This paper presents evolution, current status and challenges of functionally gradient materials (FGMs). Various manufacturing processes of different types of FGMs are also presented. In addition, applications of FGMs in various fields including aerospace, defence, mining, power and tools manufacturing sectors are discussed in detail.
2001 Industry Studies: Advanced Manufacturing
2001-05-28
oriented, 19 and manufacturers are employing the Internet and associated information technologies to better integrate supply chains and form extended...ways to compete in world markets . As part of this ongoing transformation, the broad implementation of advanced manufacturing technologies , processes...competitive advantages and better performance in world markets . Importantly, advanced manufacturing involves the innovative integration of new technology
NASA Technical Reports Server (NTRS)
Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve
2016-01-01
Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from November through December of that year. Phase I flight operations yielded 14 unique parts (21 total specimens) that could be directly compared against ground-based prints of identical geometry manufactured using the printer prior to its launch to ISS. The 3DP unit functioned safely and produced specimens necessary to advance the understanding of the critical design and operational parameters for the FDM process as affected by the microgravity environment. From the standpoint of operations, 3DP demonstrated the ability to remove parts from the build-tray on-orbit, teleoperate the printer from the ground, perform critical maintenance functions within defined human factors limits, produce a functional tool that could be evaluated for form/fit/function, and uplink a new part file from the ground and produce it on the printer. The flight parts arrived at NASA Marshall Space Flight Center in Huntsville, Alabama in April 2015, where they underwent months of testing in the materials and processes laboratory. Ground and flight prints completed the following phases of testing: photographic/visual inspection, mass and density evaluation, structured light scanning, XRay and CT, mechanical testing, optical microscopy, scanning electron microscopy, and chemical analysis. This presentation will discuss the results of this testing as well as phase II operations for the printer, which took place in June and July of 2016. Lessons learned from the tech demo and their impacts on the design and development of the second generation 3D printer for ISS, the Additive Manufacturing Facility (AMF) by Made In Space will also be presented. In addition, progress in other elements of NASA's In Space Manufacturing (ISM) initiative such as the on-demand ISM utilization catalog, in-space Recycler ISS Technology Demonstration development, launch packaging recycling, in-space printable electronics, development of higher strength polymeric materials for 3D printing and Additive Construction by Mobile Emplacement (ACME) will also be addressed.
Advanced optical manufacturing digital integrated system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong
2012-10-01
It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.
Klingvall Ek, Rebecca; Hong, Jaan; Thor, Andreas; Bäckström, Mikael; Rännar, Lars-Erik
This study aimed to evaluate how as-built electron beam melting (EBM) surface properties affect the onset of blood coagulation. The properties of EBM-manufactured implant surfaces for placement have, until now, remained largely unexplored in literature. Implants with conventional designs and custom-made implants have been manufactured using EBM technology and later placed into the human body. Many of the conventional implants used today, such as dental implants, display modified surfaces to optimize bone ingrowth, whereas custom-made implants, by and large, have machined surfaces. However, titanium in itself demonstrates good material properties for the purpose of bone ingrowth. Specimens manufactured using EBM were selected according to their surface roughness and process parameters. EBM-produced specimens, conventional machined titanium surfaces, as well as PVC surfaces for control were evaluated using the slide chamber model. A significant increase in activation was found, in all factors evaluated, between the machined samples and EBM-manufactured samples. The results show that EBM-manufactured implants with as-built surfaces augment the thrombogenic properties. EBM that uses Ti6Al4V powder appears to be a good manufacturing solution for load-bearing implants with bone anchorage. The as-built surfaces can be used "as is" for direct bone contact, although any surface treatment available for conventional implants can be performed on EBM-manufactured implants with a conventional design.
Evaluation of consolidation method on mechanical and structural properties of ODS RAF steel
NASA Astrophysics Data System (ADS)
Frelek-Kozak, M.; Kurpaska, L.; Wyszkowska, E.; Jagielski, J.; Jozwik, I.; Chmielewski, M.
2018-07-01
In the present work, the effects of the fabrication method on mechanical and structural properties of 12%Cr, 2%W, 0.25%Ti, 0.25%Y2O3 steels were investigated. Materials obtained by Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and Hot Extrusion (HE) methods were studied. The microstructure was characterized by using Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction analysis (EBSD). Mechanical properties of the studied samples were evaluated by using Vickers micro hardness HV0.1, Small Punch Test (SPT) and nanoindentation (NI) methods. The analysis revealed that samples manufactured via HIP and SPS processes exhibit very similar properties, whereas SPS method produces material with slightly lower hardness. In addition, significantly lower mechanical properties of the specimens after HE process were observed. The study described in this article addresses also the problems of mechanical parameters measured in micro- and nano-scale experiments and aims to identify possible pitfalls related to the use of various manufacturing technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menchhofer, Paul A.; Becker, Benjamin
Oak Ridge National Laboratory (ORNL) and HotEnd Works teamed to investigate the use of pressurized spray deposition (PSD) technology for the production of ceramic parts via additive manufacturing. Scanning electron microscopy of sintered parts provided by HotEnd Works revealed voids large enough to compromise the mechanical properties of PSD manufactured parts. Scanning electron microscopy and particle size analysis of the alumina oxide powder feedstocks indicated that the powders contained some large particles and some agglomerations in the powder. Further classification of the powder feedstocks and removal of the agglomerates by sonication in the liquid used for the PSD process aremore » recommended. Analysis of sintered parts indicated that the sonic modulus for the alumina part is consistent with other known values for alumina. The density for this part was determined by standard Archimedes immersion density methods and was found to be > 99.7 % of the theoretical density for pure alumina.« less
Chaibva, Faith A; Khamanga, Sandile M M; Walker, Roderick B
2010-12-01
Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.
Hong, Deokhwa; Lee, Hyunki; Kim, Min Young; Cho, Hyungsuck; Moon, Jeon Il
2009-07-20
Automatic optical inspection (AOI) for printed circuit board (PCB) assembly plays a very important role in modern electronics manufacturing industries. Well-developed inspection machines in each assembly process are required to ensure the manufacturing quality of the electronics products. However, generally almost all AOI machines are based on 2D image-analysis technology. In this paper, a 3D-measurement-method-based AOI system is proposed consisting of a phase shifting profilometer and a stereo vision system for assembled electronic components on a PCB after component mounting and the reflow process. In this system information from two visual systems is fused to extend the shape measurement range limited by 2pi phase ambiguity of the phase shifting profilometer, and finally to maintain fine measurement resolution and high accuracy of the phase shifting profilometer with the measurement range extended by the stereo vision. The main purpose is to overcome the low inspection reliability problem of 2D-based inspection machines by using 3D information of components. The 3D shape measurement results on PCB-mounted electronic components are shown and compared with results from contact and noncontact 3D measuring machines. Based on a series of experiments, the usefulness of the proposed sensor system and its fusion technique are discussed and analyzed in detail.
Some problems in mechanics of growing solids with applications to AM technologies
NASA Astrophysics Data System (ADS)
Manzhirov, A. V.
2018-04-01
Additive Manufacturing (AM) technologies are an exciting area of the modern industrial revolution and have applications in engineering, medicine, electronics, aerospace industry, etc. AM enables cost-effective production of customized geometry and parts by direct fabrication from 3D data and mathematical models. Despite much progress in AM technologies, problems of mechanical analysis for AM fabricated parts yet remain to be solved. This paper deals with three main mechanical problems: the onset of residual stresses, which occur in the AM process and can lead to failure of the parts, the distortion of the final shape of AM fabricated parts, and the development of technological solutions aimed at improving existing AM technologies and creating new ones. An approach proposed deals with the construction of adequate analytical model and effective methods for the simulation of AM processes for fabricated solid parts.
Clean Energy Manufacturing Initiative Solid-State Lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Sunil; Edmond, John; Krames, Michael
2014-09-23
The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reducemore » risk, improve quality, increase yields, and lower costs.« less
Clean Energy Manufacturing Initiative Solid-State Lighting Video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Sunil; Edmond, John; Krames, Michael
2014-09-23
The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reducemore » risk, improve quality, increase yields, and lower costs.« less
Clean Energy Manufacturing Initiative Solid-State Lighting Video
Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar
2018-01-16
The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1005 [Docket No. FDA-2007-N-0091; (formerly 2007N-0104)] Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United States; Agent Designation; Change of Address AGENCY: Food and Drug...
Radiation Effects on Current Field Programmable Technologies
NASA Technical Reports Server (NTRS)
Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.
1997-01-01
Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.
NASA Astrophysics Data System (ADS)
Bleul, Regina; Thiermann, Raphael; Marten, Gernot U.; House, Michael J.; Pierre, Timothy G. St.; Häfeli, Urs O.; Maskos, Michael
2013-11-01
Micromixer technology was used to prepare polymeric vesicles (Pluronic® L-121) dual loaded with the anti-cancer drug camptothecin and magnetic nanoparticles. Successful incorporation of the magnetic nanoparticles was confirmed by transmission electron microscopy. Dynamic light scattering measurements showed a relatively narrow size distribution of the hybrid polymersomes. Camptothecin polymersomes reduced the cell viability of prostate cancer cells (PC-3) measured after 72 h significantly, while drug-free polymersomes showed no cytotoxic effects. Covalent attachment of a cancer targeting peptide (bombesin) as well as a fluorescent label (Alexa Fluor® 647) to the hybrid polymersomes was performed and specific cell binding and internalization were shown by flow cytometry and confocal microscopy. Relaxometry measurements clearly demonstrated the capacity of magnetic polymersomes to generate significant T2-weighted MRI contrast and potentially allow for direct monitoring of the biodistribution of the polymersomes. Micromixer technology as an easy, fast and efficient way to manufacture hybrid polymersomes as theranostic drug delivery devices is a further step from basic research to personalized medicine.
Johnson, Amber E; Winner, Laura; Simmons, Tanya; Eid, Shaker M; Hody, Robert; Sampedro, Angel; Augustine, Sharon; Sylvester, Carol; Parakh, Kapil
2016-05-01
Heart failure (HF) patients have high 30-day readmission rates with high costs and poor quality of life. This study investigated the impact of a framework blending Lean Sigma, design thinking, and Lean Startup on 30-day all-cause readmissions among HF patients. This was a prospective study in an academic hospital in Baltimore, Maryland. Thirty-day all-cause readmission was assessed using the hospital's electronic medical record. The baseline readmission rate for HF was 28.4% in 2010 with 690 discharges. The framework was developed and interventions implemented in the second half of 2011. The impact of the interventions was evaluated through 2012. The rate declined to 18.9% among 703 discharges (P < .01). There was no significant change for non-HF readmissions. This study concluded that methodologies from technology and manufacturing companies can reduce 30-day readmissions in HF, demonstrating the potential of this innovations framework to improve chronic disease care. © The Author(s) 2014.
Skill-Biased Technological Change. Evidence from a Firm-Level Survey.
ERIC Educational Resources Information Center
Siegel, Donald S.
A study addressed the effects of technological change using a new, rich source of firm-level data on technology usage and labor force composition. The empirical investigation is based on a survey of Long Island manufacturers' usage of computer-integrated manufacturing systems (CIMS) or advanced manufacturing technologies (AMTs). The study also…
Methods for fabrication of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos
2017-08-01
Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.
Single Molecule Electronics and Devices
Tsutsui, Makusu; Taniguchi, Masateru
2012-01-01
The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345
2008-12-01
manufacturing variability and thermal effects can be easi- ly compensated for electronically during operation by adjusting PZT amplitudes and phases... thermal and optical processes in the PEM bar and PZT array. An interface between COMSOL and the Trilinos solvers running in parallel on the cluster was...contaminants of low vapor pressure and/or low intrinsic fluorescence. Thermal luminescence (TL) is a technology aimed at solving the standoff
1993-11-01
Recover Nitramine (Yxidizers from Solid Propellants Using Liquid Ammonia * Co~ial Engine for Ducted Hybrid , and Gel BI-propu~uion Systems S ltravolet...Surface Optical Testing Device * Electron Beam Driven Negative Ion Source * Method of Manufacturing Hybrid Fber-Reinforced Composite Nozzle Materials...Modeling Software FRED Partner I ty * Class VDrnng Simulation Parow. Academia * Combustion and Tribology Partne. Academia * Hybrid Electric Drive/High
FY 1999 Laboratory Directed Research and Development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
PJ Hughes
2000-06-13
A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.
Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Paul
2014-06-27
The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.
Challenges in teaching modern manufacturing technologies
NASA Astrophysics Data System (ADS)
Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng
2015-07-01
Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform.
Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.
Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng
2018-05-07
Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Junjun; Chen, Ming
2012-11-01
Recycling companies play a leading role in the system of end-of-life vehicles (ELVs) in China. Automotive manufacturers in China are rarely involved in recycling ELVs, and they seldom provide dismantling information for recycling companies. In addition, no professional shredding plant is available. The used automotive electronic control components recycling industry in China has yet to take shape because of the lack of supporting technology and profitable models. Given the rapid growth of the vehicle population and electronic control units in automotives in China, the used automotive electronic control components recycling industry requires immediate development. This paper analyses the current recycling system of ELVs in China and introduces the automotive product recycling technology roadmap as well as the recycling industry development goals. The strengths, weaknesses, opportunities and challenges of the current used automotive electronic control components recycling industry in China are analysed comprehensively based on the 'strengths, weaknesses, opportunities and threats' (SWOT) method. The results of the analysis indicate that this recycling industry responds well to all the factors and has good opportunities for development. Based on the analysis, new development strategies for the used automotive electronic control components recycling industry in accordance with the actual conditions of China are presented.
E-waste management and sustainability: a case study in Brazil.
Azevedo, Luís Peres; da Silva Araújo, Fernando Gabriel; Lagarinhos, Carlos Alberto Ferreira; Tenório, Jorge Alberto Soares; Espinosa, Denise Crocce Romano
2017-11-01
The advancement of technology and development of new electronic and electrical equipment with a reduced life cycle has increased the need for the disposal of them (called Waste of Electric and Electronic Equipment or simply e-waste) due to defects presented during use, replacement of obsolete equipment, and ease of acquisition of new equipment. There is a lack of consumer awareness regarding the use, handling storage, and disposal of this equipment. In Brazil, the disposal of post-consumer waste is regulated by the National Solid Waste Policy, established by Law No. 12305 and regulated on the 23rd December 2010. Under this legislation, manufacturers and importers are required to perform a project for the Reverse Logistics of e-waste, though its implementation is not well defined. This work focuses on the verification of the sustainability of reverse logistics suggested by the legislation and the mandatory points, evaluating its costs and the possible financial gain with recycling of the waste. The management of reverse logistics and recycling of waste electrical and electronic equipment, or simply recycling of e-waste, as suggested by the government, will be the responsibility of the managing organization to be formed by the manufacturers/importers in Brazil.
3M's Dry Silver technology: an ideal media for electronic imaging
NASA Astrophysics Data System (ADS)
Morgan, David A.
1991-08-01
In recent years there has been great interest and growth in the ability to create images electronically. This trend has been driven by the lower cost of computing and storing data, and the speed in which this can be accomplished. The ability to scan, create, and transmit color images is possible even with the enormous amount of data needed to create color images with gray scale and high resolution. In the past, there has not been a great demand for color copiers because few color images were in existence. The above-mentioned trend is changing this, and in addition scanners can quickly translate color graphics into electronic forms at affordable costs. The replacement of black and white televisions and monitors with color was rapid and nearly 100% once the technology was available at a reasonable cost. It is felt by some equipment manufacturers that soft copy will replace hard copy and there will be a diminishing need for imaging media. The author believes, however, that the need for hard copy will continue, and in fact may increase, but with new technology. To create black and white or color hard copy from electronically generated data, some essential characteristics are needed. They are: (1) total dryness, (2) rapid access, (3) gray scale, (4) high resolution, (5) good image quality, and (6) easy to use, low-cost, reliable equipment. Some of the leading technologies for this are electrostatic, thermal dye transfer, ink jet, instant silver photography, and 3M's Dry Silver. This paper gives a general overview of these technologies, but its main emphasis is 3M's Dry Silver approach.
15 CFR 290.3 - Program description.
Code of Federal Regulations, 2012 CFR
2012-01-01
... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE... subject of research in NIST's Automated Manufacturing Research Facility (AMRF). The core of AMRF research... manufacturing technology. (b) Program objective. The objective of the NIST Manufacturing Technology Centers is...
15 CFR 290.3 - Program description.
Code of Federal Regulations, 2014 CFR
2014-01-01
... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE... subject of research in NIST's Automated Manufacturing Research Facility (AMRF). The core of AMRF research... manufacturing technology. (b) Program objective. The objective of the NIST Manufacturing Technology Centers is...
15 CFR 290.3 - Program description.
Code of Federal Regulations, 2013 CFR
2013-01-01
... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE... subject of research in NIST's Automated Manufacturing Research Facility (AMRF). The core of AMRF research... manufacturing technology. (b) Program objective. The objective of the NIST Manufacturing Technology Centers is...
Performance analysis of a proposed tightly-coupled medical instrument network based on CAN protocol.
Mujumdar, Shantanu; Thongpithoonrat, Pongnarin; Gurkan, D; McKneely, Paul K; Chapman, Frank M; Merchant, Fatima
2010-01-01
Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN™ technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. The instruments are in turn becoming more sophisticated; however, the operation of an instrument is still expected to be locally done by authorized medical personnel. Unfortunately, each medical instrument has its unique proprietary API (application programming interface - if any) to provide automated and electronic access to monitoring data. Integration of these APIs requires an agreement with the manufacturers towards realization of interoperable health care networking. As long as the interoperability of instruments with a network is not possible, ubiquitous access to patient status is limited only to manual entry based systems. This paper demonstrates an attempt to realize an interoperable medical instrument interface for networking using MediCAN technology suite as an open standard.
Electronic Design Automation: Integrating the Design and Manufacturing Functions
NASA Technical Reports Server (NTRS)
Bachnak, Rafic; Salkowski, Charles
1997-01-01
As the complexity of electronic systems grows, the traditional design practice, a sequential process, is replaced by concurrent design methodologies. A major advantage of concurrent design is that the feedback from software and manufacturing engineers can be easily incorporated into the design. The implementation of concurrent engineering methodologies is greatly facilitated by employing the latest Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and support virtual prototyping, rapid prototyping, and hardware-software co-design. This report presents recommendations for enhancing the electronic design and manufacturing capabilities and procedures at JSC based on a concurrent design methodology that employs EDA tools.
Integrated input protection against discharges for Micro Pattern Gas Detectors readout ASICs
NASA Astrophysics Data System (ADS)
Fiutowski, T.; Dąbrowski, W.; Koperny, S.; Wiącek, P.
2017-02-01
Immunity against possible random discharges inside active detector volume of MPGDs is one of the key aspects that should be addressed in the design of the front-end electronics. This issue becomes particularly critical for systems with high channel counts and high density readout employing the front-end electronics built as multichannel ASICs implemented in modern CMOS technologies, for which the breakdown voltages are in the range of a few Volts. The paper presents the design of various input protection structures integrated in the ASIC manufactured in a 350 nm CMOS process and test results using an electrical circuit to mimic discharges in the detectors.
Inspection of additive manufactured parts using laser ultrasonics
NASA Astrophysics Data System (ADS)
Lévesque, D.; Bescond, C.; Lord, M.; Cao, X.; Wanjara, P.; Monchalin, J.-P.
2016-02-01
Additive manufacturing is a novel technology of high importance for global sustainability of resources. As additive manufacturing involves typically layer-by-layer fusion of the feedstock (wire or powder), an important characteristic of the fabricated metallic structural parts, such as those used in aero-engines, is the performance, which is highly related to the presence of defects, such as cracks, lack of fusion or bonding between layers, and porosity. For this purpose, laser ultrasonics is very attractive due to its non-contact nature and is especially suited for the analysis of parts of complex geometries. In addition, the technique is well adapted to online implementation and real-time measurement during the manufacturing process. The inspection can be performed from either the top deposited layer or the underside of the substrate and the defects can be visualized using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). In this work, a variety of results obtained off-line on INCONEL® 718 and Ti-6Al-4V coupons that were manufactured using laser powder, laser wire, or electron beam wire deposition are reported and most defects detected were further confirmed by X-ray micro-computed tomography.
NASA Astrophysics Data System (ADS)
Sutton, Akil K.
Hydrocarbon exploration, global navigation satellite systems, computed tomography, and aircraft avionics are just a few examples of applications that require system operation at an ambient temperature, pressure, or radiation level outside the range covered by military specifications. The electronics employed in these applications are known as "extreme environment electronics." On account of the increased cost resulting from both process modifications and the use of exotic substrate materials, only a handful of semiconductor foundries have specialized in the production of extreme environment electronics. Protection of these electronic systems in an extreme environment may be attained by encapsulating sensitive circuits in a controlled environment, which provides isolation from the hostile ambient, often at a significant cost and performance penalty. In a significant departure from this traditional approach, system designers have begun to use commercial off-the-shelf technology platforms with built in mitigation techniques for extreme environment applications. Such an approach simultaneously leverages the state of the art in technology performance with significant savings in project cost. Silicon-germanium is one such commercial technology platform that demonstrates potential for deployment into extreme environment applications as a result of its excellent performance at cryogenic temperatures, remarkable tolerance to radiation-induced degradation, and monolithic integration with silicon-based manufacturing. In this dissertation the radiation response of silicon-germanium technology is investigated, and novel transistor-level layout-based techniques are implemented to improve the radiation tolerance of HBT digital logic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao
With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. Themore » wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ran, E-mail: liuran@tsinghua.edu.cn; Yang, Xueyao; Chen, Weixing
2013-11-04
A method of manufacturing three-dimension microneedle electrode arrays is presented in this paper using the micromolding technology with liquid metal at room temperature, based on the physical property of the Bi-In-Sn liquid metal alloy, being its melting point especially low. Observed under scanning electron microscopy, the needle body of the electrode chip manufactured using this method has a good consistency. Skin penetration test in-vitro indicates that the microneedle electrode can pierce the stratum corneum and cross the high-impedance layer to acquire electrical signals. Electrical impedance and polarization voltage experimental results show that the electrode chips have great electric characteristics andmore » meet the practical application demands.« less
Gearing up to the factory of the future
NASA Astrophysics Data System (ADS)
Godfrey, D. E.
1985-01-01
The features of factories and manufacturing techniques and tools of the near future are discussed. The spur to incorporate new technologies on the factory floor will originate in management, who must guide the interfacing of computer-enhanced equipment with traditional manpower, materials and machines. Electronic control with responsiveness and flexibility will be the key concept in an integrated approach to processing materials. Microprocessor controlled laser and fluid cutters add accuracy to cutting operations. Unattended operation will become feasible when automated inspection is added to a work station through developments in robot vision. Optimum shop management will be achieved through AI programming of parts manufacturing, optimized work flows, and cost accounting. The automation enhancements will allow designers to affect directly parts being produced on the factory floor.
ESA's satellite communications programme
NASA Astrophysics Data System (ADS)
Bartholome, P.
1985-02-01
The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.
Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center
NASA Technical Reports Server (NTRS)
1997-01-01
This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at the Marshall Space Flight Center (MSFC), is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a Fresnel lens. Weighing much less than conventional optics, Fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.
NASA Astrophysics Data System (ADS)
Beaman, Joseph
2015-03-01
Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.
Developing novel 3D antennas using advanced additive manufacturing technology
NASA Astrophysics Data System (ADS)
Mirzaee, Milad
In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.
Prabhakar, P.; Sames, William J.; Dehoff, Ryan R.; ...
2015-03-28
Here, a computational modeling approach to simulate residual stress formation during the electron beam melting (EBM) process within the additive manufacturing (AM) technologies for Inconel 718 is presented in this paper. The EBM process has demonstrated a high potential to fabricate components with complex geometries, but the resulting components are influenced by the thermal cycles observed during the manufacturing process. When processing nickel based superalloys, very high temperatures (approx. 1000 °C) are observed in the powder bed, base plate, and build. These high temperatures, when combined with substrate adherence, can result in warping of the base plate and affect themore » final component by causing defects. It is important to have an understanding of the thermo-mechanical response of the entire system, that is, its mechanical behavior towards thermal loading occurring during the EBM process prior to manufacturing a component. Therefore, computational models to predict the response of the system during the EBM process will aid in eliminating the undesired process conditions, a priori, in order to fabricate the optimum component. Such a comprehensive computational modeling approach is demonstrated to analyze warping of the base plate, stress and plastic strain accumulation within the material, and thermal cycles in the system during different stages of the EBM process.« less
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.
The course materials included in this guide are intended to introduce students to the manufacturing industry and its relationships with society, individuals, and the environment. The following topics are covered in the nine learning modules: manufacturing and society and manufacturing systems; manufacturing materials and processes (types of…
Crossword Puzzle Makes It Fun: Introduce Green Manufacturing in Wood Technology Courses
ERIC Educational Resources Information Center
Iley, John L.; Hague, Doug
2012-01-01
Sustainable, or "green," manufacturing and its practices are becoming more and more a part of today's industry, including wood product manufacturing. This article provides introductory information on green manufacturing in wood technology and a crossword puzzle based on green manufacturing terms. The authors use the puzzle at the college level to…
Embedded Thermal Control for Spacecraft Subsystems Miniaturization
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2014-01-01
Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.
QUENCH STUDIES AND PREHEATING ANALYSIS OF SEAMLESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palczewski, Ari; Geng, Rongli; Eremeev, Grigory
One of the alternative manufacturing technologies for SRF cavities is hydroforming from seamless tubes. Although this technology has produced cavities with gradient and Q-values comparable to standard EBW/EP cavities, a few questions remain. One of these questions is whether the quench mechanism in hydroformed cavities is the same as in standard electron beam welded cavities. Towards this effort Jefferson Lab performed quench studies on 2 9 cell seamless hydroformed cavities. These cavities include DESY's - Z163 and Z164 nine-cell cavities hydroformed at DESY. Initial Rf test results Z163 were published in SRF2011. In this report we will present post JLABmore » surface re-treatment quench studies for each cavity. The data will include OST and T-mapping quench localization as well as quench location preheating analysis comparing them to the observations in standard electron beam welded cavities.« less
Tansel, Berrin
2017-01-01
Advancements in technology, materials development, and manufacturing processes have changed the consumer products and composition of municipal solid waste (MSW) since 1960s. Increasing quantities of discarded consumer products remain a major challenge for recycling efforts, especially for discarded electronic products (also referred as e-waste). The growing demand for high tech products has increased the e-waste quantities and its cross boundary transport globally. This paper reviews the challenges associated with increasing e-waste quantities. The increasing need for raw materials (especially for rare earth and minor elements) and unregulated e-waste recycling operations in developing and underdeveloped counties contribute to the growing concerns for e-waste management. Although the markets for recycled materials are increasing; there are major challenges for development of the necessary infrastructure for e-waste management and accountability as well as development of effective materials recovery technologies and product design. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advanced Technology Vehicle (ATV) and Alternative Fuel Infrastructure Manufacturing Incentives Through the Advanced Technology Vehicles Manufacturing Loan Program, manufacturers may be eligible for direct loans for up to 30% of the cost of re-equipping, expanding, or establishing manufacturing
Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers,
Manufacturers | News | NREL Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers, Manufacturers Regional Technical Exchange Centers Connect Fuel Cell Technology Suppliers fuel cell and hydrogen components and systems and improve U.S. manufacturing competitiveness. The
Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective
Thomas, Douglas
2017-01-01
There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective. The paper then goes on to propose an approach for examining and understanding the societal costs and benefits of this technology both from a monetary viewpoint and a resource consumption viewpoint. The final section discusses the trends in the adoption of additive manufacturing. Globally, there is an estimated $667 million in value added produced using additive manufacturing, which equates to 0.01 % of total global manufacturing value added. US value added is estimated as $241 million. Current research on additive manufacturing costs reveals that it is cost effective for manufacturing small batches with continued centralized production; however, with increased automation distributed production may become cost effective. Due to the complexities of measuring additive manufacturing costs and data limitations, current studies are limited in their scope. Many of the current studies examine the production of single parts and those that examine assemblies tend not to examine supply chain effects such as inventory and transportation costs along with decreased risk to supply disruption. The additive manufacturing system and the material costs constitute a significant portion of an additive manufactured product; however, these costs are declining over time. The current trends in costs and benefits have resulted in this technology representing 0.02 % of the relevant manufacturing industries in the US; however, as the costs of additive manufacturing systems decrease, this technology may become widely adopted and change the supplier, manufacturer, and consumer interactions. An examination in the adoption of additive manufacturing reveals that for this technology to exceed $4.4 billion in 2020, $16.0 billion in 2025, and $196.8 billion in 2035 it would need to deviate from its current trends of adoption. PMID:28747809
Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective.
Thomas, Douglas
2016-07-01
There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective. The paper then goes on to propose an approach for examining and understanding the societal costs and benefits of this technology both from a monetary viewpoint and a resource consumption viewpoint. The final section discusses the trends in the adoption of additive manufacturing. Globally, there is an estimated $667 million in value added produced using additive manufacturing, which equates to 0.01 % of total global manufacturing value added. US value added is estimated as $241 million. Current research on additive manufacturing costs reveals that it is cost effective for manufacturing small batches with continued centralized production; however, with increased automation distributed production may become cost effective. Due to the complexities of measuring additive manufacturing costs and data limitations, current studies are limited in their scope. Many of the current studies examine the production of single parts and those that examine assemblies tend not to examine supply chain effects such as inventory and transportation costs along with decreased risk to supply disruption. The additive manufacturing system and the material costs constitute a significant portion of an additive manufactured product; however, these costs are declining over time. The current trends in costs and benefits have resulted in this technology representing 0.02 % of the relevant manufacturing industries in the US; however, as the costs of additive manufacturing systems decrease, this technology may become widely adopted and change the supplier, manufacturer, and consumer interactions. An examination in the adoption of additive manufacturing reveals that for this technology to exceed $4.4 billion in 2020, $16.0 billion in 2025, and $196.8 billion in 2035 it would need to deviate from its current trends of adoption.
2014-09-01
manufacturing, direct part manufacturing, manufacturing institute, public- private partnership, rapid manufacturing, 3D printing 16. SECURITY CLASSIFICATION...Manufacturing Science and Technology Pro- gram and selected Additive Manufacturing (or more popularly known as 3D printing ) as the technical subject. Working...operations, America Makes is starting to hit its stride in developing technology for 3D printing and in leading the way in how the United States should
Laboratory directed research and development annual report 2004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Densitymore » Sciences; and (15) Corporate Objectives.« less
O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L
2016-07-25
Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. Published by Elsevier B.V.
Potential Opportunities for Investment in Space Technologies in Latin-America: a Case for Mexico
NASA Astrophysics Data System (ADS)
Sanchez, G.
2002-01-01
Student, Master of Space Studies. International Space University. Strasbourg Central The objective of this paper is to analyze the possible commercial benefits that the global manufacturing space industry could obtain by investing in Latin-American countries. Spacecraft manufacturers have recently been complaining about small margins. They claim that customers demand technological advancement at the same time as they push for quick delivery and competitive prices. They also argue that operators (their main customers) do have great profits. Thus, manufacturers would like to raise the prices of their spacecraft (SpaceNews. January 7, 2002. P.17). This may sound logical, but it would be interesting to analyze if the industry could find alternative ways of saving money while remaining competitive. Mexico is a good example of a Latin-American country that has received foreign investment for establishing manufacturing and assembly plants for different industries. This has been mainly due to two special characteristics of the Mexican manufacturing workforce: low labor costs and qualified, reliable human resources. As a result, Mexican manufacturing industry has acquired a solid reputation worldwide. A similar story can be told about other industries such as electronics, computer assembly, clothes, etc. It is probably worth to make an analogy with a labor-demanding industry that already has experience in the Mexican market: the car industry has found a formula to keep manufacturing costs low while maintaining production and quality levels. Mexico currently manufactures and assembles cars for European, Japanese and American companies for the international market. If the same success story could be repeated for the spacecraft manufacturing industry, the benefits would be enormous. Manufacturers could consider relocating their plants to Mexico to manufacture and test parts or entire spacecraft. This would help reduce the cost of human labor, especially because of the long periods of time required for manufacturing, assembling and testing. Evidently, such and endeavor requires a successful transfer of technology as well as many other considerations. In 1997 Mexico signed a Free Trade Agreement with the European Union and in 2000 a similar agreement with Israel. As of today, Mexico has trade agreements with USA, Canada, and many Latin-American countries. Additionally, some important companies of the aerospace industry met recently in Monterrey, Mexico with the purpose of evaluating whether investment in manufacturing plants for aircraft parts was feasible. A logical judgement indicates that the high rates that have to be paid to US workers and the small tax restrictions in the commercial activities between the two countries make it very attractive to start such operations in Mexico. Although USA and Canada could be, apparently, the most benefited countries with spacecraft assembly and manufacturing outside their territories, it will also make sense for many European countries if low transportation costs are obtainable. On the other hand, there are a number of factors to consider before attempting serious investment. Just to name a few, the transfer of sensitive technologies, security of the long-term investments, potential local investors, political issues, legal considerations, etc; are topics that have to be taken into account by interested enterprises. This paper analyzes most of these topics trying to derive a broad scenario for potential investors, and to serve as the frame of a future business plan.
3D printing of high-strength aluminium alloys
NASA Astrophysics Data System (ADS)
Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M.
2017-09-01
Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.
3D printing of high-strength aluminium alloys.
Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M
2017-09-20
Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.
Liu, Hongwei; Weng, Yiping; Zhang, Yunkun; Xu, Nanwei; Tong, Jing; Wang, Caimei
2015-09-01
To study the feasibility of preparation of the individualized femoral prosthesis through computer assisted design and electron beammelting rapid prototyping (EBM-RP) metal three-dimensional (3D) printing technology. One adult male left femur specimen was used for scanning with 64-slice spiral CT; tomographic image data were imported into Mimics15.0 software to reconstruct femoral 3D model, then the 3D model of individualized femoral prosthesis was designed through UG8.0 software. Finally the 3D model data were imported into EBM-RP metal 3D printer to print the individualized sleeve. According to the 3D model of individualized prosthesis, customized sleeve was successfully prepared through the EBM-RP metal 3D printing technology, assembled with the standard handle component of SR modular femoral prosthesis to make the individualized femoral prosthesis. Customized femoral prosthesis accurately matching with metaphyseal cavity can be designed through the thin slice CT scanning and computer assisted design technology. Titanium alloy personalized prosthesis with complex 3D shape, pore surface, and good matching with metaphyseal cavity can be manufactured by the technology of EBM-RP metal 3D printing, and the technology has convenient, rapid, and accurate advantages.
Novel Nanotube Manufacturing Streamlines Production
NASA Technical Reports Server (NTRS)
2007-01-01
Nanotubes have novel qualities that make them uniquely qualified for a plethora of uses, including applications in electronics, optics, and other scientific and industrial fields. The NASA process for creating these nanostructures involves using helium arc welding to vaporize an amorphous carbon rod and then form nanotubes by depositing the vapor onto a water-cooled carbon cathode, which then yields bundles, or ropes, of single-walled nanotubes at a rate of 2 grams per hour using a single setup. This eliminates costs associated with the use of metal catalysts, including the cost of product purification, resulting in a relatively inexpensive, high-quality, very pure end product. While managing to be less expensive, safer, and simpler, the process also increases the quality of the nanotubes. Goddard's Innovative Partnerships Program (IPP) Office promoted the technology, and in 2005, Boise-based Idaho Space Materials Inc. (ISM) was formed and applied for a nonexclusive license for the single-walled carbon nanotube (SWCNT) manufacturing technology. ISM commercialized its products, and the inexpensive, robust nanotubes are now in the hands of the scientists who will create the next generation of composite polymers, metals, and ceramics that will impact the way we live. In fact, researchers are examining ways for these newfound materials to be used in the manufacture of transistors and fuel cells, large screen televisions, ultra-sensitive sensors, high-resolution atomic force microscopy probes, supercapacitors, transparent conducting films, drug carriers, catalysts, and advanced composite materials, to name just a few of the myriad technologies to benefit.
Advanced manufacturing: Technology and international competitiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesar, A.
1995-02-01
Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforcemore » requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.« less
NASA Astrophysics Data System (ADS)
Chatwin, Christopher R.; McDonald, Donald W.; Scott, Brian F.
1989-07-01
The absence of an applications led design philosophy has compromised both the development of laser source technology and its effective implementation into manufacturing technology in particular. For example, CO2 lasers are still incapable of processing classes of refractory and non-ferrous metals. Whilst the scope of this paper is restricted to high power CO2 lasers; the design methodology reported herein is applicable to source technology in general, which when exploited, will effect an expansion of applications. The CO2 laser operational envelope should not only be expanded to incorporate high damage threshold materials but also offer a greater degree of controllability. By a combination of modelling and experimentation the requisite beam characteristics, at the workpiece, were determined then utilised to design the Laser Manufacturing System. The design of sub-system elements was achieved by a combination of experimentation and simulation which benefited from a comprehensive set of software tools. By linking these tools the physical processes in the laser - electron processes in the plasma, the history of photons in the resonator, etc. - can be related, in a detailed model, to the heating mechanisms in the workpiece.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Guo, Wei; Wenning, Thomas J.
Smart manufacturing and advanced data analytics can help the manufacturing sector unlock energy efficiency from the equipment level to the entire manufacturing facility and the whole supply chain. These technologies can make manufacturing industries more competitive, with intelligent communication systems, real-time energy savings, and increased energy productivity. Smart manufacturing can give all employees in an organization the actionable information they need, when they need it, so that each person can contribute to the optimal operation of the corporation through informed, data-driven decision making. This paper examines smart technologies and data analytics approaches for improving energy efficiency and reducing energy costsmore » in process-supporting energy systems. It dives into energy-saving improvement opportunities through smart manufacturing technologies and sophisticated data collection and analysis. The energy systems covered in this paper include those with motors and drives, fans, pumps, air compressors, steam, and process heating.« less
Additive and Photochemical Manufacturing of Copper
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-01-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733
Additive and Photochemical Manufacturing of Copper
NASA Astrophysics Data System (ADS)
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-12-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.
Device overlay method for high volume manufacturing
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Han, Sangjun; Kim, Youngsik; Kim, Myoungsoo; Heo, Hoyoung; Jeon, Sanghuck; Choi, DongSub; Nabeth, Jeremy; Brinster, Irina; Pierson, Bill; Robinson, John C.
2016-03-01
Advancing technology nodes with smaller process margins require improved photolithography overlay control. Overlay control at develop inspection (DI) based on optical metrology targets is well established in semiconductor manufacturing. Advances in target design and metrology technology have enabled significant improvements in overlay precision and accuracy. One approach to represent in-die on-device as-etched overlay is to measure at final inspection (FI) with a scanning electron microscope (SEM). Disadvantages to this approach include inability to rework, limited layer coverage due to lack of transparency, and higher cost of ownership (CoO). A hybrid approach is investigated in this report whereby infrequent DI/FI bias is characterized and the results are used to compensate the frequent DI overlay results. The bias characterization is done on an infrequent basis, either based on time or triggered from change points. On a per-device and per-layer basis, the optical target overlay at DI is compared with SEM on-device overlay at FI. The bias characterization results are validated and tracked for use in compensating the DI APC controller. Results of the DI/FI bias characterization and sources of variation are presented, as well as the impact on the DI correctables feeding the APC system. Implementation details in a high volume manufacturing (HVM) wafer fab will be reviewed. Finally future directions of the investigation will be discussed.
Three-Dimensionally Printed Micro-electromechanical Switches.
Lee, Yongwoo; Han, Jungmin; Choi, Bongsik; Yoon, Jinsu; Park, Jinhee; Kim, Yeamin; Lee, Jieun; Kim, Dae Hwan; Kim, Dong Myong; Lim, Meehyun; Kang, Min-Ho; Kim, Sungho; Choi, Sung-Jin
2018-05-09
Three-dimensional (3D) printers have attracted considerable attention from both industry and academia and especially in recent years because of their ability to overcome the limitations of two-dimensional (2D) processes and to enable large-scale facile integration techniques. With 3D printing technologies, complex structures can be created using only a computer-aided design file as a reference; consequently, complex shapes can be manufactured in a single step with little dependence on manufacturer technologies. In this work, we provide a first demonstration of the facile and time-saving 3D printing of two-terminal micro-electromechanical (MEM) switches. Two widely used thermoplastic materials were used to form 3D-printed MEM switches; freely suspended and fixed electrodes were printed from conductive polylactic acid, and a water-soluble sacrificial layer for air-gap formation was printed from poly(vinyl alcohol). Our 3D-printed MEM switches exhibit excellent electromechanical properties, with abrupt switching characteristics and an excellent on/off current ratio value exceeding 10 6 . Therefore, we believe that our study makes an innovative contribution with implications for the development of a broader range of 3D printer applications (e.g., the manufacturing of various MEM devices and sensors), and the work highlights a uniquely attractive path toward the realization of 3D-printed electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandwana, Peeyush; Elliott, Amy M.; Siddel, Derek
Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition,more » existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. In conclusion, the role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.« less
Computerized Manufacturing Automation. Employment, Education, and the Workplace. Summary.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
The application of programmable automation (PA) offers new opportunities to enhance and streamline manufacturing processes. Five PA technologies are examined in this report: computer-aided design, robots, numerically controlled machine tools, flexible manufacturing systems, and computer-integrated manufacturing. Each technology is in a relatively…
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.
Helu, Moneer; Hedberg, Thomas
2015-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed
Helu, Moneer; Hedberg, Thomas
2017-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167
Bioprinting: an assessment based on manufacturing readiness levels.
Wu, Changsheng; Wang, Ben; Zhang, Chuck; Wysk, Richard A; Chen, Yi-Wen
2017-05-01
Over the last decade, bioprinting has emerged as a promising technology in the fields of tissue engineering and regenerative medicine. With recent advances in additive manufacturing, bioprinting is poised to provide patient-specific therapies and new approaches for tissue and organ studies, drug discoveries and even food manufacturing. Manufacturing Readiness Level (MRL) is a method that has been applied to assess manufacturing maturity and to identify risks and gaps in technology-manufacturing transitions. Technology Readiness Level (TRL) is used to evaluate the maturity of a technology. This paper reviews recent advances in bioprinting following the MRL scheme and addresses corresponding MRL levels of engineering challenges and gaps associated with the translation of bioprinting from lab-bench experiments to ultimate full-scale manufacturing of tissues and organs. According to our step-by-step TRL and MRL assessment, after years of rigorous investigation by the biotechnology community, bioprinting is on the cusp of entering the translational phase where laboratory research practices can be scaled up into manufacturing products specifically designed for individual patients.
Supportability Technologies for Future Exploration Missions
NASA Technical Reports Server (NTRS)
Watson, Kevin; Thompson, Karen
2007-01-01
Future long-duration human exploration missions will be challenged by resupply limitations and mass and volume constraints. Consequently, it will be essential that the logistics footprint required to support these missions be minimized and that capabilities be provided to make them highly autonomous from a logistics perspective. Strategies to achieve these objectives include broad implementation of commonality and standardization at all hardware levels and across all systems, repair of failed hardware at the lowest possible hardware level, and manufacture of structural and mechanical replacement components as needed. Repair at the lowest hardware levels will require the availability of compact, portable systems for diagnosis of failures in electronic systems and verification of system functionality following repair. Rework systems will be required that enable the removal and replacement of microelectronic components with minimal human intervention to minimize skill requirements and training demand for crews. Materials used in the assembly of electronic systems (e.g. solders, fluxes, conformal coatings) must be compatible with the available repair methods and the spacecraft environment. Manufacturing of replacement parts for structural and mechanical applications will require additive manufacturing systems that can generate near-net-shape parts from the range of engineering alloys employed in the spacecraft structure and in the parts utilized in other surface systems. These additive manufacturing processes will need to be supported by real-time non-destructive evaluation during layer-additive processing for on-the-fly quality control. This will provide capabilities for quality control and may serve as an input for closed-loop process control. Additionally, non-destructive methods should be available for material property determination. These nondestructive evaluation processes should be incorporated with the additive manufacturing process - providing an in-process capability to ensure that material deposited during layer-additive processing meets required material property criteria.
Intelligent Middle-Ware Architecture for Mobile Networks
NASA Astrophysics Data System (ADS)
Rayana, Rayene Ben; Bonnin, Jean-Marie
Recent advances in electronic and automotive industries as well as in wireless telecommunication technologies have drawn a new picture where each vehicle became “fully networked”. Multiple stake-holders (network operators, drivers, car manufacturers, service providers, etc.) will participate in this emerging market, which could grow following various models. To free the market from technical constraints, it is important to return to the basics of the Internet, i.e., providing embarked devices with a fully operational Internet connectivity (IPv6).
NASA Technical Reports Server (NTRS)
1991-01-01
Lake-Tronic's Negative Thermistor Coefficients (NTC) prevent engine nozzles in the Space Shuttle Orbiter from swinging from side to side changing the thrust line. This technology has been adapted to an Electronik Dipstick, used to automatically monitor automotive fluid levels. NTC's are placed at predetermined levels in the dipstick and heated. Contact with fluids dissipates the heat creating a resistance change, which is analyzed by a microprocessor. Installation is simple, and additional applications are under consideration. This product is no longer manufactured.
Organizational Considerations for Advanced Manufacturing Technology
ERIC Educational Resources Information Center
DeRuntz, Bruce D.; Turner, Roger M.
2003-01-01
In the last several decades, the United States has experienced a decline in productivity, while the world has seen a maturation of the global marketplace. Nations have moved manufacturing strategy and process technology issues to the top of management priority lists. The issues surrounding manufacturing technologies and their implementations have…
Manufacturing process applications team (MATeam)
NASA Technical Reports Server (NTRS)
Bangs, E. R.
1980-01-01
Progress in the transfer of aerospace technology to solve key problems in the manufacturing sector of the economy is reported. Potential RTOP programs are summarized along with dissemination activities. The impact of transferred NASA manufacturing technology is discussed. Specific areas covered include aircraft production, robot technology, machining of alloys, and electrical switching systems.
Manufacturing Technology for Apparel Automation. Phase 1, 2 and 3 Activity.
1987-10-15
A189 129 MANUFACTURING TECHNOLOGY FOR APPAREL AUTOMATION PHASE I t/l 2 AND I ACTIVITY(U) NORTH CAROLINA STATE UNIV ATRALEIGH SCHOOL OF TEXTILES E M...34III 1.8 - iai T ON HART St 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MTC FILE coax Report: NCSU/DLA-87/2 CDRL A004 MANUFACTURING TECHNOLOGY FOR APPAREL...I Report: NCSU/DLA-87/2 CDRL A004 MANUFACTURING TECHNOLOGY FOR APPAREL AUTOMATION Phase I, II and III Activity Edwin M. McPherson North Carolina
2015-05-01
management during operations 4 Potential Technology 3: Additive Manufacturing (“ 3D Printing ”) 5 • 3D design/image (e.g. from 3D LS) of final part...1 Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship...DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology
X-ray generation using carbon nanotubes
NASA Astrophysics Data System (ADS)
Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.
2015-01-01
Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more demanding medical and inspection techniques, including computed tomography and tomosynthesis, security inspection, high throughput manufacturing and radiotherapy, has resulted in a considerable level of interest in the development of new fabrication methods. The use of conventional thermionic sources is limited by their slow temporal response and large physical size. In response, field electron emission has emerged as a promising alternative means of deriving a highly controllable electron beam of a well-defined distribution. When coupled to the burgeoning field of nanomaterials, and in particular, carbon nanotubes, such systems present a unique technological opportunity. This review provides a summary of the current state-of-the-art in carbon nanotube-based field emission X-ray sources. We detail the various fabrication techniques and functional advantages associated with their use, including the ability to produce ever smaller electron beam assembles, shaped cathodes, enhanced temporal stability and emergent fast-switching pulsed sources. We conclude with an overview of some of the commercial progress made towards the realisation of an innovative and disruptive technology.
Digital diffractive optics: Have diffractive optics entered mainstream industry yet?
NASA Astrophysics Data System (ADS)
Kress, Bernard; Hejmadi, Vic
2010-05-01
When a new technology is integrated into industry commodity products and consumer electronic devices, and sold worldwide in retail stores, it is usually understood that this technology has then entered the realm of mainstream technology and therefore mainstream industry. Such a leap however does not come cheap, as it has a double edge sword effect: first it becomes democratized and thus massively developed by numerous companies for various applications, but also it becomes a commodity, and thus gets under tremendous pressure to cut down its production and integration costs while not sacrificing to performance. We will show, based on numerous examples extracted from recent industry history, that the field of Diffractive Optics is about to undergo such a major transformation. Such a move has many impacts on all facets of digital diffractive optics technology, from the optical design houses to the micro-optics foundries (for both mastering and volume replication), to the final product integrators or contract manufacturers. The main causes of such a transformation are, as they have been for many other technologies in industry, successive technological bubbles which have carried and lifted up diffractive optics technology within the last decades. These various technological bubbles have been triggered either by real industry needs or by virtual investment hype. Both of these causes will be discussed in the paper. The adjective ""digital"" in "digital diffractive optics" does not refer only, as it is done in digital electronics, to the digital functionality of the element (digital signal processing), but rather to the digital way they are designed (by a digital computer) and fabricated (as wafer level optics using digital masking techniques). However, we can still trace a very strong similarity between the emergence of micro-electronics from analog electronics half a century ago, and the emergence of digital optics from conventional optics today.
Quantum engineering of transistors based on 2D materials heterostructures
NASA Astrophysics Data System (ADS)
Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca
2018-03-01
Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.
Applying the miniaturization technologies for biosensor design.
Derkus, Burak
2016-05-15
Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantum engineering of transistors based on 2D materials heterostructures.
Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca
2018-03-01
Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.
Mobile display technologies: Past developments, present technologies, and future opportunities
NASA Astrophysics Data System (ADS)
Ohshima, Hiroyuki
2014-01-01
It has been thirty years since the first active matrix (AM) flat panel display (FPD) was industrialized for portable televisions (TVs) in 1984. The AM FPD has become a dominant electronic display technology widely used from mobile displays to large TVs. The development of AM FPDs for mobile displays has significantly changed our lives by enabling new applications, such as notebook personal computers (PCs), smartphones and tablet PCs. In the future, the role of mobile displays will become even more important, since mobile displays are the live interface for the world of mobile communications in the era of ubiquitous networks. Various developments are being conducted to improve visual performance, reduce power consumption and add new functionality. At the same time, innovative display concepts and novel manufacturing technologies are being investigated to create new values.
Sun, Lie; Hu, Danian
2017-09-01
The construction of nine high-end technical installations (hereafter Project NGI, for Nine Great Installations or ) in the 1960s and 1970s was an indispensable part of the development of China's defense and heavy industries. The project put more than 1400 machines into operation or trial operation during the Culture Revolution (1966-1976), and they served essential technical functions in sectors such as aviation, aerospace, machinery, metallurgy, and electronics, and directly advancing the development of these fields. It took more than a decade for Project NGI to go from planning to completion-a surprisingly uninterrupted and steady development while China fell into unprecedented turmoil. One important reason for Project NGI's success was the vital leadership of Shen Hong (, 1906-1998), the technical director of the project and a high-ranking official. Supported by state leaders such as Zhou Enlai and Nie Rongzhen, Shen and his colleagues adopted a suitable roadmap for technological development, coordinated the best-performing manufacturing forces in the country, and successfully manufactured the NGI machines. Project NGI is significant for the history of Chinese science, technology, and medicine during the Cultural Revolution not because it was technologically original, but because it represents an extraordinary case, in which the project's technological development seemed to be largely exempted from the interference of the turbulent Cultural Revolution. The project's national defense orientation, its pragmatism, and the contemporary dogma of self-reliance (), in addition to Shen Hong's political maneuvering, all contributed to the creation of a relatively calm and favorable environment around Project NGI. Despite the widespread turmoil in the country, Shen managed to assemble a stable and continuously productive team, which executed experiments, absorbed previously introduced Soviet technologies, stayed informed about advanced European and American technologies, and ultimately accomplished the construction of the NGI machines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... Status; SICK, Inc. (Photo- Electronic Industrial Sensors); Bloomington, MN Pursuant to its authority... to establish a special- purpose subzone at the photo-electronic industrial sensor manufacturing and... manufacturing and distribution of photo-electronic industrial sensors at the SICK, Inc., facility located in...
Emerging technologies in arthroplasty: additive manufacturing.
Banerjee, Samik; Kulesha, Gene; Kester, Mark; Mont, Michael A
2014-06-01
Additive manufacturing is an industrial technology whereby three-dimensional visual computer models are fabricated into physical components by selectively curing, depositing, or consolidating various materials in consecutive layers. Although initially developed for production of simulated models, the technology has undergone vast improvements and is currently increasingly being used for the production of end-use components in various aerospace, automotive, and biomedical specialties. The ability of this technology to be used for the manufacture of solid-mesh-foam monolithic and coated components of complex geometries previously considered unmanufacturable has attracted the attention of implant manufacturers, bioengineers, and orthopedic surgeons. Currently, there is a paucity of reports describing this fabrication method in the orthopedic literature. Therefore, we aimed to briefly describe this technology, some of the applications in other orthopedic subspecialties, its present use in hip and knee arthroplasty, and concerns with the present form of the technology. As there are few reports of clinical trials presently available, the true benefits of this technology can only be realized when studies evaluating the clinical and radiographic outcomes of cementless implants manufactured with additive manufacturing report durable fixation, less stress shielding, and better implant survivorship. Nevertheless, the authors believe that this technology holds great promise and may potentially change the conventional methods of casting, machining, and tooling for implant manufacturing in the future. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Laser profilometer module based on a low-temperature cofired ceramic substrate
NASA Astrophysics Data System (ADS)
Heikkinen, Veli; Heikkinen, Mikko; Keranen, Kimmo; Mitikka, Risto S.; Putila, Veli-Pekka; Tukkiniemi, Kari
2005-09-01
We realized a laser profilometer module using low temperature cofired ceramics technology. The device consists of a vertical-cavity surface-emitting laser as the light source and a complementary metal oxide semiconductor image sensor as the detector. The laser transmitter produces a thin light stripe on the measurable object, and the receiver calculates the distance profile using triangulation. Because the design of optoelectronic modules, such as the laser profilometer, is usually carried out using specialized software, its electronic compatibility is very important. We developed a data transmission network using commercial optical, electrical, and mechanical design software, which enabled us to electronically transfer data between the designers. The module electronics were realized with multilayer ceramics technology that eases component assembly by providing precision alignment features in the substrate. The housing was manufactured from aluminum using electronic data transfer from the mechanical design software to the five-axis milling workstation. Target distance profiles were obtained from 100 points with an accuracy varying from 0.1 mm at a 5-cm distance to 2 cm at 1.5 m. The module has potential for distance measurement in portable devices where small size, light weight, and low power consumption are important.
Review of current progress in nanometrology with the helium ion microscope
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Vladár, András; Archie, Charles; Ming, Bin
2011-02-01
Scanning electron microscopy has been employed as an imaging and measurement tool for more than 50 years and it continues as a primary tool in many research and manufacturing facilities across the world. A new challenger to this work is the helium ion microscope (HIM). The HIM is a new imaging and metrology technology. Essentially, substitution of the electron source with a helium ion source yields a tool visually similar in function to the scanning electron microscope, but very different in the fundamental imaging and measurement process. The imaged and measured signal originates differently than in the scanning electron microscope and that fact and its single atom source diameter may be able to push the obtainable resolution lower, provide greater depth-of-field and ultimately improve the metrology. Successful imaging and metrology with this instrument entails understanding and modeling of new ion beam/specimen interaction physics. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanometrology has yet to be fully exploited. This paper discusses some of the progress made at NIST in collaboration with IBM to understand the science behind this new technology.
Jin, Xiaoning; Weiss, Brian A; Siegel, David; Lee, Jay
2016-01-01
The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality targets and 2) to understand the present level of maintenance technologies and strategies that are being incorporated into these practices. A study is performed to contrast the impact of various industry-specific factors on the effectiveness and profitability of the implementation of prognostics and health management technologies, and maintenance strategies using both surveys and case studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises (SMEs) to large-sized manufacturing enterprises in various industries. The results obtained provide important insights on the different impacts of specific factors on the successful adoption of these technologies between SMEs and large manufacturing enterprises. The varying degrees of success with respect to current maintenance programs highlight the opportunity for larger manufacturers to improve maintenance practices and consider the use of advanced prognostics and health management (PHM) technology. This paper also provides the existing gaps, barriers, future trends, and roadmaps for manufacturing PHM technology and maintenance strategy.
Present Status and Future Growth of Advanced Maintenance Technology and Strategy in US Manufacturing
Jin, Xiaoning; Weiss, Brian A.; Siegel, David; Lee, Jay
2016-01-01
The goals of this paper are to 1) examine the current practices of diagnostics, prognostics, and maintenance employed by United States (U.S.) manufacturers to achieve productivity and quality targets and 2) to understand the present level of maintenance technologies and strategies that are being incorporated into these practices. A study is performed to contrast the impact of various industry-specific factors on the effectiveness and profitability of the implementation of prognostics and health management technologies, and maintenance strategies using both surveys and case studies on a sample of U.S. manufacturing firms ranging from small to mid-sized enterprises (SMEs) to large-sized manufacturing enterprises in various industries. The results obtained provide important insights on the different impacts of specific factors on the successful adoption of these technologies between SMEs and large manufacturing enterprises. The varying degrees of success with respect to current maintenance programs highlight the opportunity for larger manufacturers to improve maintenance practices and consider the use of advanced prognostics and health management (PHM) technology. This paper also provides the existing gaps, barriers, future trends, and roadmaps for manufacturing PHM technology and maintenance strategy. PMID:28058173
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
..., including warehousing and distribution; research and development; technology manufacturing; food processing... warehousing and distribution; research and development; technology manufacturing; food processing and... defense manufacturing, sensor manufacturing, or medical devices; (iv) Food/Agriculture--such as wine, food...
Additive Manufacturing in Production: A Study Case Applying Technical Requirements
NASA Astrophysics Data System (ADS)
Ituarte, Iñigo Flores; Coatanea, Eric; Salmi, Mika; Tuomi, Jukka; Partanen, Jouni
Additive manufacturing (AM) is expanding the manufacturing capabilities. However, quality of AM produced parts is dependent on a number of machine, geometry and process parameters. The variability of these parameters affects the manufacturing drastically and therefore standardized processes and harmonized methodologies need to be developed to characterize the technology for end use applications and enable the technology for manufacturing. This research proposes a composite methodology integrating Taguchi Design of Experiments, multi-objective optimization and statistical process control, to optimize the manufacturing process and fulfil multiple requirements imposed to an arbitrary geometry. The proposed methodology aims to characterize AM technology depending upon manufacturing process variables as well as to perform a comparative assessment of three AM technologies (Selective Laser Sintering, Laser Stereolithography and Polyjet). Results indicate that only one machine, laser-based Stereolithography, was feasible to fulfil simultaneously macro and micro level geometrical requirements but mechanical properties were not at required level. Future research will study a single AM system at the time to characterize AM machine technical capabilities and stimulate pre-normative initiatives of the technology for end use applications.
Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries
NASA Astrophysics Data System (ADS)
Hördemann, C.; Anand, H.; Gillner, A.
2017-08-01
Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.
Electrical and electronic waste: a global environmental problem.
Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya
2007-08-01
The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.
Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard
2010-02-21
Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.
Work with Us | Advanced Manufacturing Research | NREL
advanced manufacturing R&D project through analysis and our world-class facilities. Contact Us Headshot of a man Matthew Ringer Laboratory Program Manager, Advanced Manufacturing Email | 303-275-4469 facilities for your advanced manufacturing R&D projects. License Our Technologies See our technologies
Benchmark Study of Global Clean Energy Manufacturing | Advanced
Manufacturing Research | NREL Benchmark Study of Global Clean Energy Manufacturing Benchmark Study of Global Clean Energy Manufacturing Through a first-of-its-kind benchmark study, the Clean Energy Technology End Product.' The study examined four clean energy technologies: wind turbine components
Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R
2017-01-01
Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.
Radiation damage in MOS integrated circuits, Part 1
NASA Technical Reports Server (NTRS)
Danchenko, V.
1971-01-01
Complementary and p-channel MOS integrated circuits made by four commercial manufacturers were investigated for sensitivity to radiation environment. The circuits were irradiated with 1.5 MeV electrons. The results are given for electrons and for the Co-60 gamma radiation equivalent. The data are presented in terms of shifts in the threshold potentials and changes in transconductances and leakages. Gate biases of -10V, +10V and zero volts were applied to individual MOS units during irradiation. It was found that, in most of circuits of complementary MOS technologies, noticable changes due to radiation appear first as increased leakage in n-channel MOSFETs somewhat before a total integrated dose 10 to the 12th power electrons/sg cm is reached. The inability of p-channel MOSFETs to turn on sets in at about 10 to the 13th power electrons/sq cm. Of the circuits tested, an RCA A-series circuit was the most radiation resistant sample.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... Authority; Foreign-Trade Zone 22; LG Electronics Mobilecomm USA, Inc. (Cell Phone Kitting and Distribution... authority on behalf of LG Electronics Mobilecomm USA, Inc. (LGEMU), within FTZ 22 in Bolingbrook, Illinois... application for manufacturing authority under zone procedures within FTZ 22 on behalf of LG Electronics...
Design And Implementation Of Integrated Vision-Based Robotic Workcells
NASA Astrophysics Data System (ADS)
Chen, Michael J.
1985-01-01
Reports have been sparse on large-scale, intelligent integration of complete robotic systems for automating the microelectronics industry. This paper describes the application of state-of-the-art computer-vision technology for manufacturing of miniaturized electronic components. The concepts of FMS - Flexible Manufacturing Systems, work cells, and work stations and their control hierarchy are illustrated in this paper. Several computer-controlled work cells used in the production of thin-film magnetic heads are described. These cells use vision for in-process control of head-fixture alignment and real-time inspection of production parameters. The vision sensor and other optoelectronic sensors, coupled with transport mechanisms such as steppers, x-y-z tables, and robots, have created complete sensorimotor systems. These systems greatly increase the manufacturing throughput as well as the quality of the final product. This paper uses these automated work cells as examples to exemplify the underlying design philosophy and principles in the fabrication of vision-based robotic systems.
EUV patterning improvement toward high-volume manufacturing
NASA Astrophysics Data System (ADS)
Kuwahara, Yuhei; Matsunaga, Koichi; Kawakami, Shinichiro; Nafus, Kathleen; Foubert, Philippe; Goethals, Anne-Marie
2015-03-01
Extreme ultraviolet lithography (EUVL) technology is a promising candidate for a semiconductor process for 18nm half pitch and beyond. So far, the studies of EUV for manufacturability have been focused on particular aspects. It still requires fine resolution, uniform and smooth patterns, and low defectivity, not only after lithography but also after the etch process. Tokyo Electron Limited and imec are continuously collaborating to improve manufacturing quality of the process of record (POR) on a CLEAN TRACKTM LITHIUS ProTMZ-EUV. This next generation coating/developing system has been upgraded with defectivity reduction enhancements which are applied along with TELTM best known methods. We have evaluated process defectivity post lithography and post etch. Apart from defectivity, FIRMTM rinse material and application compatibility with sub 18nm patterning is improved to prevent line pattern collapse and increase process window on next generation resist materials. This paper reports on the progress of defectivity and patterning performance optimization towards the NXE:3300 POR.
NASA Astrophysics Data System (ADS)
Pakkanen, Jukka; Calignano, Flaviana; Trevisan, Francesco; Lorusso, Massimo; Ambrosio, Elisa Paola; Manfredi, Diego; Fino, Paolo
2016-08-01
Interest in additive manufacturing (AM) has gained considerable impetus over the past decade. One of the driving factors for AM success is the ability to create unique designs with intrinsic characteristics as, e.g., internal channels used for hydraulic components, cooling channels, and heat exchangers. However, a couple of the main problems in internal channels manufactured by AM technologies are the high surface roughness obtained and the distortion of the channel shape. There is still much to understand in these design aspects. In this study, a cylindrical geometry for internal channels to be built with different angles with respect to the building plane in AlSi10Mg and Ti6Al4V alloys by selective laser melting was considered. The internal surfaces of the channels produced in both materials were analyzed by means of a surface roughness tester and by optical and electron microscopy to evaluate the effects of the material and design choices.
Edelman, P
1990-01-01
The semiconductor industry has been an enormous worldwide growth industry. At the heart of computer and other electronic technological advances, the environment in and around these manufacturing facilities has not been scrutinized to fully detail the health effects to the workers and the community from such exposures. Hazard identification in this industry leads to the conclusion that there are many sources of potential exposure to chemicals including arsenic, solvents, photoactive polymers and other materials. As the size of the semiconductor work force expands, the potential for adverse health effects, ranging from transient irritant symptoms to reproductive effects and cancer, must be determined and control measures instituted. Risk assessments need to be effected for areas where these facilities conduct manufacturing. The predominance of women in the manufacturing areas requires evaluating the exposures to reproductive hazards and outcomes. Arsenic exposures must also be evaluated and minimized, especially for maintenance workers; evaluation for lung and skin cancers is also appropriate. PMID:2401268
Space Technology Mission Directorate: Game Changing Development
NASA Technical Reports Server (NTRS)
Gaddis, Stephen W.
2015-01-01
NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.
Manufacturing process applications team (MATeam)
NASA Technical Reports Server (NTRS)
Bangs, E. R.; Meyer, J. D.
1978-01-01
Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.
Handbook of Machine Olfaction: Electronic Nose Technology
NASA Astrophysics Data System (ADS)
Pearce, Tim C.; Schiffman, Susan S.; Nagle, H. Troy; Gardner, Julian W.
2003-02-01
"Electronic noses" are instruments which mimic the sense of smell. Consisting of olfactory sensors and a suitable signal processing unit, they are able to detect and distinguish odors precisely and at low cost. This makes them very useful for a remarkable variety of applications in the food and pharmaceutical industry, in environmental control or clinical diagnostics and more. The scope covers biological and technical fundamentals and up-to-date research. Contributions by renowned international scientists as well as application-oriented news from successful "e-nose" manufacturers give a well-rounded account of the topic, and this coverage from R&D to applications makes this book a must-have read for e-nose researchers, designers and users alike.
First NASA Aviation Safety Program Weather Accident Prevention Project Annual Review
NASA Technical Reports Server (NTRS)
Colantonio, Ron
2000-01-01
The goal of this Annual Review was to present NASA plans and accomplishments that will impact the national aviation safety goal. NASA's WxAP Project focuses on developing the following products: (1) Aviation Weather Information (AWIN) technologies (displays, sensors, pilot decision tools, communication links, etc.); (2) Electronic Pilot Reporting (E-PIREPS) technologies; (3) Enhanced weather products with associated hazard metrics; (4) Forward looking turbulence sensor technologies (radar, lidar, etc.); (5) Turbulence mitigation control system designs; Attendees included personnel from various NASA Centers, FAA, National Weather Service, DoD, airlines, aircraft and pilot associations, industry, aircraft manufacturers and academia. Attendees participated in discussion sessions aimed at collecting aviation user community feedback on NASA plans and R&D activities. This CD is a compilation of most of the presentations presented at this Review.
NASA Technical Reports Server (NTRS)
1994-01-01
Charge Coupled Devices (CCDs) are high technology silicon chips that connect light directly into electronic or digital images, which can be manipulated or enhanced by computers. When Goddard Space Flight Center (GSFC) scientists realized that existing CCD technology could not meet scientific requirements for the Hubble Space Telescope Imagining Spectrograph, GSFC contracted with Scientific Imaging Technologies, Inc. (SITe) to develop an advanced CCD. SITe then applied many of the NASA-driven enhancements to the manufacture of CCDs for digital mammography. The resulting device images breast tissue more clearly and efficiently. The LORAD Stereo Guide Breast Biopsy system incorporates SITe's CCD as part of a digital camera system that is replacing surgical biopsy in many cases. Known as stereotactic needle biopsy, it is performed under local anesthesia with a needle and saves women time, pain, scarring, radiation exposure and money.
40 CFR 98.92 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.92 GHGs to report. (a) You must report emissions of...). The fluorinated GHGs and fluorinated heat transfer fluids that are emitted from electronics... emitted from chemical vapor deposition and other electronics manufacturing processes. (5) Emissions of...
40 CFR 98.92 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.92 GHGs to report. (a) You must report emissions of...). The fluorinated GHGs and fluorinated heat transfer fluids that are emitted from electronics... emitted from chemical vapor deposition and other electronics manufacturing processes. (5) Emissions of...
40 CFR 98.92 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.92 GHGs to report. (a) You must report emissions of...). The fluorinated GHGs and fluorinated heat transfer fluids that are emitted from electronics... emitted from chemical vapor deposition and other electronics manufacturing processes. (5) Emissions of...
Design of control system for optical fiber drawing machine driven by double motor
NASA Astrophysics Data System (ADS)
Yu, Yue Chen; Bo, Yu Ming; Wang, Jun
2018-01-01
Micro channel Plate (MCP) is a kind of large-area array electron multiplier with high two-dimensional spatial resolution, used as high-performance night vision intensifier. The high precision control of the fiber is the key technology of the micro channel plate manufacturing process, and it was achieved by the control of optical fiber drawing machine driven by dual-motor in this paper. First of all, utilizing STM32 chip, the servo motor drive and control circuit was designed to realize the dual motor synchronization. Secondly, neural network PID control algorithm was designed for controlling the fiber diameter fabricated in high precision; Finally, the hexagonal fiber was manufactured by this system and it shows that multifilament diameter accuracy of the fiber is +/- 1.5μm.
NASA Technical Reports Server (NTRS)
1997-01-01
Cogent Software, Inc. was formed in January 1995 by David Atkinson and Irene Woerner, both former employees of the Jet Propulsion Laboratory (JPL). Several other Cogent employees also worked at JPL. Atkinson headed JPL's Information Systems Technology section and Woerner lead the Advanced User Interfaces Group. Cogent's mission is to help companies organize and manage their online content by developing advanced software for the next generation of online directories and information catalogs. The company offers a complete range of Internet solutions, including Internet access, Web site design, local and wide-area networks, and custom software for online commerce applications. Cogent also offers DesignSphere Online, an electronic community for the communications arts industry. Customers range from small offices to manufacturers with thousands of employees, including Chemi-Con, one of the largest manufacturers of capacitors in the world.
Additive Manufacturing of a Microbial Fuel Cell—A detailed study
Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro
2015-01-01
In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m−3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments. PMID:26611142
Additive Manufacturing of a Microbial Fuel Cell—A detailed study
NASA Astrophysics Data System (ADS)
Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro
2015-11-01
In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m-3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.
Panzitta, Michele; Ponti, Mauro; Bruno, Giorgio; Cois, Giancarlo; D'Arpino, Alessandro; Minghetti, Paola; Mendicino, Francesca Romana; Perioli, Luana; Ricci, Maurizio
2017-01-10
Manufacturing is the bridge between research and patient: without product, there is no clinical outcome. Shortage has a variety of causes, in this paper we analyse only causes related to manufacturing technology and we use shortage as a paradigm highliting the relevance of Pharmaceutical Technology. Product and process complexity and capacity issues are the main challenge for the Pharmaceutical Industry Supply chain. Manufacturing Technology should be acknowledged as a R&D step and as a very important matter during University degree in Pharmacy and related disciplines, promoting collaboration between Academia and Industry, measured during HTA step and rewarded in terms of price and reimbursement. The above elements are not yet properly recognised, and manufacturing technology is taken in to consideration only when a shortage is in place. In a previous work, Panzitta et al. proposed to perform a full technology assessment at the Health Technological Assessment stage, evaluating three main technical aspects of a medicine: manufacturing process, physicochemical properties, and formulation characteristics. In this paper, we develop the concept of manufacturing appraisal, providing a technical overview of upcoming challenges, a risk based approach and an economic picture of shortage costs. We develop also an overall quality concept, not limited to GMP factors but broaden to all elements leading to a robust supply and promoting technical innovation. Copyright © 2016 Elsevier B.V. All rights reserved.
Technology modules from micro- and nano-electronics for the life sciences.
Birkholz, M; Mai, A; Wenger, C; Meliani, C; Scholz, R
2016-05-01
The capabilities of modern semiconductor manufacturing offer remarkable possibilities to be applied in life science research as well as for its commercialization. In this review, the technology modules available in micro- and nano-electronics are exemplarily presented for the case of 250 and 130 nm technology nodes. Preparation procedures and the different transistor types as available in complementary metal-oxide-silicon devices (CMOS) and BipolarCMOS (BiCMOS) technologies are introduced as key elements of comprehensive chip architectures. Techniques for circuit design and the elements of completely integrated bioelectronics systems are outlined. The possibility for life scientists to make use of these technology modules for their research and development projects via so-called multi-project wafer services is emphasized. Various examples from diverse fields such as (1) immobilization of biomolecules and cells on semiconductor surfaces, (2) biosensors operating by different principles such as affinity viscosimetry, impedance spectroscopy, and dielectrophoresis, (3) complete systems for human body implants and monitors for bioreactors, and (4) the combination of microelectronics with microfluidics either by chip-in-polymer integration as well as Si-based microfluidics are demonstrated from joint developments with partners from biotechnology and medicine. WIREs Nanomed Nanobiotechnol 2016, 8:355-377. doi: 10.1002/wnan.1367 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun
2018-06-01
Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.
Composite fuselage crown panel manufacturing technology
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.
1992-01-01
Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, materials costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structure. Key technologies, such as large crown panel fabrication, were pursued for low cost. An intricate bond panel design and manufacturing concept were selected based on the efforts of the Design Build Team. The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and use of low cost materials forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing costs by 18 pct. and weight by 45 pct. relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.
Composite fuselage crown panel manufacturing technology
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.
1992-01-01
Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.
The Current State of Sensing, Health Management, and Control for Small-To-Medium-Sized Manufacturers
Helu, Moneer; Weiss, Brian
2017-01-01
The development of digital technologies for manufacturing has been challenged by the difficulty of navigating the breadth of new technologies available to industry. This difficulty is compounded by technologies developed without a good understanding of the capabilities and limitations of the manufacturing environment, especially within small-to-medium enterprises (SMEs). This paper describes industrial case studies conducted to identify the needs, priorities, and constraints of manufacturing SMEs in the areas of performance measurement, condition monitoring, diagnosis, and prognosis. These case studies focused on contract and original equipment manufacturers with less than 500 employees from several industrial sectors. Solution and equipment providers and National Institute of Standards and Technology (NIST) Hollings Manufacturing Extension Partnership (MEP) centers were also included. Each case study involved discussions with key shop-floor personnel as well as site visits with some participants. The case studies highlight SME's strong need for access to appropriate data to better understand and plan manufacturing operations. They also help define industrially-relevant use cases in several areas of manufacturing operations, including scheduling support, maintenance planning, resource budgeting, and workforce augmentation. PMID:28736773
ERIC Educational Resources Information Center
Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde
2005-01-01
Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90…
Spring 2006. Industry Study. Manufacturing Industry
2006-01-01
ANALYSIS OF TRENDS Today the U.S. is the global leader in manufacturing innovation and technology . Continued advancements in both computing power and...than ninety percent of all annual U.S. patents as reported by the Department of Commerce. Through innovation and the application of new technology ...mobilization, innovation and technology , the manufacturing transformation, environmental balance, and international travel impressions
2013-12-01
starches ) are simple. One example is the use of 3DP to fabricate Ti3SiC2 (titanium silicon carbide)- based ceramics (Nan, Yin, Zhang, & Cheng, 2011...These ceramics are highly valued in high-temperature and electronic applications because of characteristics such as high oxidation resistance , low...electrical resistance , and low density; however, it also has low strength and fracture toughness, making it difficult to manufacture. Nan et al. (2011
NASA Astrophysics Data System (ADS)
Simcik, John C.
1989-04-01
Texas State Technical Institute-Waco (TSTI-WACO) was the first school in the United States to offer an Associate of Applied Science degree in Laser Electro-Optics Technology. The program began in September 1969 and has produced 1,827 graduates since inception. These graduates are readily adaptable to any area of the laser electro-optics industry. Areas of study include Optics, Electronics, Vacuum, Physics, Mathematics, and English with emphasis on Electro-Optics. Graduate placement is centered around research and development, life sciences and manufacturing in technical and engineering areas.