Numerical Study on Electroosmotic Flow in Trapezoidal Microchannels
NASA Astrophysics Data System (ADS)
Zuo, C. C.; Ji, F.; Wang, L. F.
The analysis of electroosmotic flow mechanism in trapezoidal microchannels is performed in this work. The coupled Poisson-Boltzmann equation, Laplace equation, and modified Navier-Stokes equation are solved by finite volume method to describe distribution of electroosmotic flow. The detailed numerical results show that the salt concentration and applied electrical potential have great effects on the fundamental characteristics of elelctroosmotic flow. The most important finding is that the corner and wall effects in trapezoidal microchannels are stronger than those in rectangular microchannels.
Ion concentrations and velocity profiles in nanochannel electroosmotic flows
NASA Astrophysics Data System (ADS)
Qiao, R.; Aluru, N. R.
2003-03-01
Ion distributions and velocity profiles for electroosmotic flow in nanochannels of different widths are studied in this paper using molecular dynamics and continuum theory. For the various channel widths studied in this paper, the ion distribution near the channel wall is strongly influenced by the finite size of the ions and the discreteness of the solvent molecules. The classical Poisson-Boltzmann equation fails to predict the ion distribution near the channel wall as it does not account for the molecular aspects of the ion-wall and ion-solvent interactions. A modified Poisson-Boltzmann equation based on electrochemical potential correction is introduced to account for ion-wall and ion-solvent interactions. The electrochemical potential correction term is extracted from the ion distribution in a smaller channel using molecular dynamics. Using the electrochemical potential correction term extracted from molecular dynamics (MD) simulation of electroosmotic flow in a 2.22 nm channel, the modified Poisson-Boltzmann equation predicts the ion distribution in larger channel widths (e.g., 3.49 and 10.00 nm) with good accuracy. Detailed studies on the velocity profile in electro-osmotic flow indicate that the continuum flow theory can be used to predict bulk fluid flow in channels as small as 2.22 nm provided that the viscosity variation near the channel wall is taken into account. We propose a technique to embed the velocity near the channel wall obtained from MD simulation of electroosmotic flow in a narrow channel (e.g., 2.22 nm wide channel) into simulation of electroosmotic flow in larger channels. Simulation results indicate that such an approach can predict the velocity profile in larger channels (e.g., 3.49 and 10.00 nm) very well. Finally, simulation of electroosmotic flow in a 0.95 nm channel indicates that viscosity cannot be described by a local, linear constitutive relationship that the continuum flow theory is built upon and thus the continuum flow theory is not applicable for electroosmotic flow in such small channels.
Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
Marcos; Yang, C; Ooi, K T; Wong, T N; Masliyah, J H
2004-07-15
This article presents an analysis of the frequency- and time-dependent electroosmotic flow in a closed-end rectangular microchannel. An exact solution to the modified Navier-Stokes equation governing the ac electroosmotic flow field is obtained by using the Green's function formulation in combination with a complex variable approach. An analytical expression for the induced backpressure gradient is derived. With the Debye-Hückel approximation, the electrical double-layer potential distribution in the channel is obtained by analytically solving the linearized two-dimensional Poisson-Boltzmann equation. Since the counterparts of the flow rate and the electrical current are shown to be linearly proportional to the applied electric field and the pressure gradient, Onsager's principle of reciprocity is demonstrated for transient and ac electroosmotic flows. The time evolution of the electroosmotic flow and the effect of a frequency-dependent ac electric field on the oscillating electroosmotic flow in a closed-end rectangular microchannel are examined. Specifically, the induced pressure gradient is analyzed under effects of the channel dimension and the frequency of electric field. In addition, based on the Stokes second problem, the solution of the slip velocity approximation is presented for comparison with the results obtained from the analytical scheme developed in this study. Copyright 2004 Elsevier Inc.
Hosoya, Ken; Kubo, Takuya; Takahashi, Katsuo; Ikegami, Tohru; Tanaka, Nobuo
2002-12-06
Uniformly sized packing materials based on synthetic polymer particles for high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) have been prepared from polymerization mixtures containing methacrylic acid (MAA) as a functional monomer and by using a novel surface modification method. This "dispersion method" affords effectively modified separation media. Both the amount of MAA utilized in the preparation and reaction time affect the selectivity of chromatographic separation in both the HPLC and the CEC mode and electroosmotic flow. This detailed study revealed that the dispersion method effectively modified internal surface of macroporous separation media and, based on the amount of MAA introduced, exclusion mechanism for the separation of certain solutes could be observed.
Electro-osmotic infusion for joule heating soil remediation techniques
Carrigan, Charles R.; Nitao, John J.
1999-01-01
Electro-osmotic infusion of ground water or chemically tailored electrolyte is used to enhance, maintain, or recondition electrical conductivity for the joule heating remediation technique. Induced flows can be used to infuse electrolyte with enhanced ionic conductivity into the vicinity of the electrodes, maintain the local saturation of near-electrode regions and resaturate a partially dried out zone with groundwater. Electro-osmotic infusion can also tailor the conductivity throughout the target layer by infusing chemically modified and/or heated electrolyte to improve conductivity contrast of the interior. Periodic polarity reversals will prevent large pH changes at the electrodes. Electro-osmotic infusion can be used to condition the electrical conductivity of the soil, particularly low permeability soil, before and during the heating operation. Electro-osmotic infusion is carried out by locating one or more electrodes adjacent the heating electrodes and applying a dc potential between two or more electrodes. Depending on the polarities of the electrodes, the induced flow will be toward the heating electrodes or away from the heating electrodes. In addition, electrodes carrying a dc potential may be located throughout the target area to tailor the conductivity of the target area.
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi
2007-04-01
We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.
Electroosmotic pumps for microflow analysis
Wang, Xiayan; Wang, Shili; Gendhar, Brina; Cheng, Chang; Byun, Chang Kyu; Li, Guanbin; Zhao, Meiping; Liu, Shaorong
2009-01-01
With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. PMID:20047021
Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows
NASA Astrophysics Data System (ADS)
Horiuchi, Keisuke; Dutta, Prashanta
We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.
Qin, Sasa; Zhou, Chaoran; Zhu, Yaxian; Ren, Zhiyu; Zhang, Lingyi; Fu, Honggang; Zhang, Weibing
2011-09-01
A novel open-tubular capillary electrochromatography (OT-CEC) column with magnetic nanoparticle coating as mixed-mode stationary phase was prepared. The mixed-mode stationary phases were obtained by mixing C18 and amino modified magnetic nanoparticles with different ratios. The mixed modified magnetic nanoparticles as stationary phase were introduced into the capillary by using external magnetic force. The magnetic nanoparticle coating can be easily regenerated by removing the external magnetic field, and applied to other separation modes. The characteristics of electroosmotic flow (EOF) were theoretically investigated through the effect of physicochemical properties of different stationary phases on EOF. The experiment was conducted under different ratios of mixed-mode stationary phases and coating lengths, and it was verified that the theoretical conclusions accorded with the experimental results. It was shown that the EOF can be easily adjusted by changing the ratio of stationary phases or the number of permanent magnets.
Electro-osmotic flow in coated nanocapillaries: a theoretical investigation.
Marini Bettolo Marconi, Umberto; Monteferrante, Michele; Melchionna, Simone
2014-12-14
Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated with charged polymers. The theoretical treatment is based on a three-dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated with a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent to the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determines their dependence on the ionic concentration.
Electro-osmotically driven liquid delivery method and apparatus
Rakestraw, David J.; Anex, Deon S.; Yan, Chao; Dadoo, Rajeev; Zare, Richard N.
1999-01-01
Method and apparatus for controlling precisely the composition and delivery of liquid at sub-.mu.L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-.mu.L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column.
Analytical Chemistry in Microenvironments: Single Nerve Cells.
1992-03-16
length of the capillary (34). Electroosmotic flow offers three key advantages for separation of small biological samples. First, this flow, if not...from microenvironments (ie. single cells). Indeed, volumes as low as 270 femtoliters have been injected using electroosmotic flow (15). Finally... electroosmotic flow provides a flat flow profile, since there is no stationary support between the origin of flow (capillary wall) and the bulk of solution
Yan, Xiu-Ping; Yin, Xue-Bo; Jiang, Dong-Qing; He, Xi-Wen
2003-04-01
A novel method for speciation analysis of mercury was developed by on-line hyphenating capillary electrophoresis (CE) with atomic fluorescence spectrometry (AFS). The four mercury species of inorganic mercury Hg(II), methymercury MeHg(I), ethylmercury EtHg(I), and phenylmercury PhHg(I) were separated as mercury-cysteine complexes by CE in a 50-cm x 100-microm-i.d. fused-silica capillary at 15 kV and using a mixture of 100 mmol L(-1) of boric acid and 12% v/v methanol (pH 9.1) as electrolyte. A novel technique, hydrostatically modified electroosmotic flow (HSMEOF) in which the electroosmotic flow (EOF) was modified by applying hydrostatical pressure opposite to the direction of EOF was used to improve resolution. A volatile species generation technique was used to convert the mercury species into their respective volatile species. A newly developed CE-AFS interface was employed to provide an electrical connection for stable electrophoretic separations and to allow on-line volatile species formation. The generated volatile species were on-line detected with AFS. The precisions (RSD, n = 5) were in the range of 1.9-2.5% for migration time, 1.8-6.3% for peak area response, and 2.3-6.1% for peak height response for the four mercury species. The detection limits ranged from 6.8 to 16.5 microg L(-1) (as Hg). The recoveries of the four mercury species in the water samples were in the range of 86.6-111%. The developed technique was successfully applied to speciation analysis of mercury in a certified reference material (DORM-2, dogfish muscle).
Analytical study of mixed electroosmotic-pressure-driven flow in rectangular micro-channels
NASA Astrophysics Data System (ADS)
Movahed, Saeid; Kamali, Reza; Eghtesad, Mohammad; Khosravifard, Amir
2013-09-01
Operational state of many miniaturized devices deals with flow field in microchannels. Pressure-driven flow (PDF) and electroosmotic flow (EOF) can be recognized as the two most important types of the flow field in such channels. EOF has many advantages in comparison with PDF, such as being vibration free and not requiring any external mechanical pumps or moving parts. However, the disadvantages of this type of flow such as Joule heating, electrophoresis demixing, and not being suitable for mobile devices must be taken into consideration carefully. By using mixed electroosmotic/pressure-driven flow, the role of EOF in producing desired velocity profile will be reduced. In this way, the advantages of EOF can be exploited, and its disadvantages can be prevented. Induced pressure gradient can be utilized in order to control the separation in the system. Furthermore, in many complicated geometries such as T-shape microchannels, turns may induce pressure gradient to the electroosmotic velocity. While analytical formulas are completely essential for analysis and control of any industrial and laboratory microdevices, lack of such formulas in the literature for solving Poisson-Boltzmann equation and predicting electroosmotic velocity field in rectangular domains is evident. In the present study, first a novel method is proposed to solve Poisson-Boltzmann equation (PBE). Subsequently, this solution is utilized to find the electroosmotic and the mixed electroosmotic/pressure-driven velocity profile in a rectangular domain of the microchannels. To demonstrate the accuracy of the presented analytical method in solving PBE and finding electroosmotic velocity, a general nondimensional example is analyzed, and the results are compared with the solution of boundary element method. Additionally, the effects of different nondimensional parameters and also aspect ratio of channels on the electroosmotic part of the flow field will be investigated.
AC Electroosmotic Pumping in Nanofluidic Funnels.
Kneller, Andrew R; Haywood, Daniel G; Jacobson, Stephen C
2016-06-21
We report efficient pumping of fluids through nanofluidic funnels when a symmetric AC waveform is applied. The asymmetric geometry of the nanofluidic funnel induces not only ion current rectification but also electroosmotic flow rectification. In the base-to-tip direction, the funnel exhibits a lower ion conductance and a higher electroosmotic flow velocity, whereas, in the tip-to-base direction, the funnel has a higher ion conductance and a lower electroosmotic flow velocity. Consequently, symmetric AC waveforms easily pump fluid through the nanofunnels over a range of frequencies, e.g., 5 Hz to 5 kHz. In our experiments, the nanofunnels were milled into glass substrates with a focused ion beam (FIB) instrument, and the funnel design had a constant 5° taper with aspect ratios (funnel tip width to funnel depth) of 0.1 to 1.0. We tracked ion current rectification by current-voltage (I-V) response and electroosmotic flow rectification by transport of a zwitterionic fluorescent probe. Rectification of ion current and electroosmotic flow increased with increasing electric field applied to the nanofunnel. Our results support three-dimensional simulations of ion transport and electroosmotic transport through nanofunnels, which suggest the asymmetric electroosmotic transport stems from an induced pressure at the junction of the nanochannel and nanofunnel tip.
Electro-osmotically driven liquid delivery method and apparatus
Rakestraw, D.J.; Anex, D.S.; Yan, C.; Dadoo, R.; Zare, R.N.
1999-08-24
Method and apparatus are disclosed for controlling precisely the composition and delivery of liquid at sub-{micro}L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-{micro}L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column. 4 figs.
Xuan, Xiangchun; Li, Dongqing
2005-09-01
General solutions are developed for direct current (DC) and alternating current (AC) electroosmotic flows in microfluidic channels with arbitrary cross-sectional geometry and arbitrary distribution of wall charge (zeta potential). The applied AC electric field can also be of arbitrary waveform. By proposing a nondimensional time scale varpi defined as the ratio of the diffusion time of momentum across the electric double-layer thickness to the period of the applied electric field, we demonstrate analytically that the Helmholtz-Smoluchowski electroosmotic velocity is an appropriate slip condition for AC electroosmotic flows in typical microfluidic applications. With this slip condition approach, electroosmotic flows in rectangular and asymmetric trapezoidal microchannels with nonuniform wall charge, as examples, are investigated. The unknown constants in the proposed general solutions are numerically determined with a least-squares method through matching the boundary conditions. We find that the wall charge affects significantly the electroosmotic flow while the channel geometry does not. Moreover, the flow feature is characterized by another nondimensional time scale Omega defined as the ratio of the diffusion time of momentum across the channel hydraulic radius to the period of the applied electric field. The onset of phase shift between AC electroosmotic velocity and applied electric field is also examined analytically.
Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model.
Park, H M; Hong, S M; Lee, J S
2007-10-01
A reduced-order model is derived for electroosmotic flow in a microchannel of nonuniform cross section using the Karhunen-Loève Galerkin (KLG) procedure. The resulting reduced-order model is shown to predict electroosmotic flows accurately with minimal consumption of computer time for a wide range of zeta potential zeta and dielectric constant epsilon. Using the reduced-order model, a practical method is devised to estimate zeta from the velocity measurements of the electroosmotic flow in the microchannel. The proposed method is found to estimate zeta with reasonable accuracy even with noisy velocity measurements.
Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels
NASA Astrophysics Data System (ADS)
Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi
2009-04-01
Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel.
Capillary electrophoresis (CE) was used to speciate four environmentally significant, toxic forms of arsenic: arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid. Hydride generation (HG) was used to convert the species into their respective hydrides. The hydride ...
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1976-01-01
The development of a methyl cellulose based coating system for control of electro-osmotic flow at the walls of electrophoresis cells is described. Flight electrophoresis columns were coated with this system, resulting in a flight set of six columns. In flight photography of MA-011 electrophoretic separations verified control of electro-osmotic flow.
Measurements of Induced-Charge Electroosmotic Flow Around a Metallic Rod
NASA Astrophysics Data System (ADS)
Beskok, Ali; Canpolat, Cetin
2012-11-01
A cylindrical gold-coated stainless steel rod was positioned at the center of a straight microchannel connecting two fluid reservoirs on either end. The microchannel was filled with 1 mM KCl containing 0.5 micron diameter carboxylate-modified spherical particles. Induced-charge electro-osmotic (ICEO) flow occurred around the metallic rod under a sinusoidal AC electric field applied using two platinum electrodes. The ICEO flows around the metallic rod were measured using micro particle image velocimetry (micro-PIV) technique as functions of the AC electric field strength and frequency. The present study provides experimental data about ICEO flow in the weakly nonlinear limit of thin double layers, in which, the charging dynamics of the double layer cannot be presented analytically. Flow around the rod is quadrupolar, driving liquid towards the rod along the electric field and forcing it away from the rod in the direction perpendicular to the imposed electric field. The measured ICEO flow velocity is proportional to the square of the electric field strength, and depends on the applied AC frequency.
Electroosmotic Mixing in Nanochannels
NASA Astrophysics Data System (ADS)
Conlisk, A. T.; Chen, Lei
2004-11-01
Electroosmotic flow in nanochannels is characterized by low Reynolds number in which flow mixing is difficult because of the dominance of molecular diffusion. Previous work shows that heterogenerous surface potential could generate a circulation region within the bulk flow near the surface. But all of this work requires that the ionic species be pairs of ions of equal and opposite valence and the distribution of ions is not considered. In the present work the electroosmotic flow in a rectangular channel with non-uniform zeta potential is examined. A model for the two dimensional electroosmotic flow problem is established. The distributions of potential, velocity and mole fractions are calculated numerically. Vortex formation is observed within the bulk flow near the the region of non-uniform zeta potential which suggests mixing can be induced.
Chao, Kan; Chen, Bo; Wu, Jiankang
2010-12-01
The formation of an electric double layer and electroosmosis are important theoretic foundations associated with microfluidic systems. Field-modulated electroosmotic flows in microchannels can be obtained by applying modulating electric fields in a direction perpendicular to a channel wall. This paper presents a systematic numerical analysis of modulated electroosmotic flows in a microchannel with discrete electrodes on the basis of the Poisson equation of electric fields in a liquid-solid coupled domain, the Navier-Stokes equation of liquid flow, and the Nernst-Planck equation of ion transport. These equations are nonlinearly coupled and are simultaneously solved numerically for the electroosmotic flow velocity, electric potential, and ion concentrations in the microchannel. A number of numerical examples of modulated electroosmotic flows in microchannels with discrete electrodes are presented, including single electrodes, symmetric/asymmetric double electrodes, and triple electrodes. Numerical results indicate that chaotic circulation flows, micro-vortices, and effective fluid mixing can be realized in microchannels by applying modulating electric fields with various electrode configurations. The interaction of a modulating field with an applied field along the channel is also discussed.
Microcapillary-Based Flow-Through Immunosensor and Displacement Immunoassay Using the Same.
1997-04-28
an antibody. If desired, an electroosmotic 24 pump may be used to flow fluid through the microcapillary or 25 microcapillaries in the chip...8 for field use. 9 Fig. 1C shows a flow immunosensor chip 100. Buffer flow 10 through microcapillary passage 102 by virtue of an electroosmotic ...Power for an 23 electroosmotic pump or other fluid pump, as well as any other on- 24 chip components, may be provided by a battery incorporated into
Capillary electrophoresis (CE) was used to speciate four environmentally significant, toxic forms of arsenic: arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid. Hydride generation (HG) was used to convert the species into their respective hydrides. The hydride s...
Bio-Fluid Transport Models Through Nano and Micro-Fluidic Components
2005-08-01
nm of the wall in steady electroosmotic flow with good accuracy. The nPIV data were in excellent agreement with the model predictions for monovalent...first experimental probe inside the electric double layer in electroosmotic flow of an aqueous electrolyte solution. 15. NUMBER OF PAGES 225 14...SUBJECT TERMS Micro And Nanofluidics, Electroosmotic Flow, Nano Particle Image Velocimetry 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT
Park, H M; Lee, J S; Kim, T W
2007-11-15
In the analysis of electroosmotic flows, the internal electric potential is usually modeled by the Poisson-Boltzmann equation. The Poisson-Boltzmann equation is derived from the assumption of thermodynamic equilibrium where the ionic distributions are not affected by fluid flows. Although this is a reasonable assumption for steady electroosmotic flows through straight microchannels, there are some important cases where convective transport of ions has nontrivial effects. In these cases, it is necessary to adopt the Nernst-Planck equation instead of the Poisson-Boltzmann equation to model the internal electric field. In the present work, the predictions of the Nernst-Planck equation are compared with those of the Poisson-Boltzmann equation for electroosmotic flows in various microchannels where the convective transport of ions is not negligible.
Measurement and Control of Electroosmotic Flow in Plastic Microchannels
NASA Astrophysics Data System (ADS)
Ross, David; Barker, Susan; Waddell, Emanuel; Johnson, Tim; Locascio, Laurie
2000-11-01
We have measured electroosmotic flow profiles in microchannels fabricated in a variety of commercially available plastics by imprinting using a silicon template and by UV laser ablation. It is possible to achieve nearly ideal plug flow profiles in straight imprinted channels made entirely of one material. In contrast, electroosmotic flow in imprinted channels constructed from two different materials and in channels fabricated using laser ablation show deviations from ideal plug flow resulting from non-uniformity of the surface charge density on the walls of the channels. We have also explored strategies for controlling electroosmotic flow through modification of the surface charge density. The techniques used to alter surface charge include the deposition of polyelectrolyte multilayers on channel surfaces and the use of combinations of imprinting and laser ablation in the fabrication of the channels. We will discuss the effectiveness of these strategies for controlling flow, sample dispersion, and mixing.
Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.
Ferrás, L L; Afonso, A M; Alves, M A; Nóbrega, J M; Pinho, F T
2014-04-15
In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Hayes, J D; Malik, A
2001-03-01
Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.
Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows.
Park, H M; Lee, W M
2008-01-15
Many biofluids such as blood and DNA solutions are viscoelastic and exhibit extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. However, the governing equations for viscoelastic flows are not easily solvable, especially for electroosmotic flows where the streamwise velocity varies rapidly from zero at the wall to a nearly uniform velocity at the outside of the very thin electric double layer. In the present investigation, we have devised a simple method to find the volumetric flow rate of viscoelastic electroosmotic flows through microchannels. It is based on the concept of the Helmholtz-Smoluchowski velocity which is widely adopted in the electroosmotic flows of Newtonian fluids. It is shown that the Helmholtz-Smoluchowski velocity for viscoelastic fluids can be found by solving a simple cubic algebraic equation. The volumetric flow rate obtained using this Helmholtz-Smoluchowski velocity is found to be almost the same as that obtained by solving the governing partial differential equations for various viscoelastic fluids.
Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.
Peng, Ran; Li, Dongqing
2015-02-15
Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.
Magnuson, M L; Creed, J T; Brockhoff, C A
1997-10-01
Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV) by mixing the CE effluent with concentrated HCl. A microporous PTFE tube was used as a gas-liquid separator to eliminate the 40Ar37Cl and 40Ar35Cl interference from 77Se and 75As, respectively. The direction of the electroosmotic flow during CE was reversed with hydrodynamic pressure, which allowed increased freedom of buffer choice. For conventional pressure injection, method detection limits for SeIV and SeVI based on seven replicate injections were 10 and 24 pg, respectively. Recoveries of SeIV and SeVI in drinking water were measured.
Barragán; Ruíz Bauzá C
2000-10-15
Electroosmosis experiments through a cation-exchange membrane have been performed using NaCl solutions in different experimental situations. The influence of an alternating (ac) sinusoidal perturbation, of known angular frequency and small amplitude, superimposed to the usual applied continuous (dc) signal on the electroosmotic flow has been studied. The experimental results show that the presence of the ac perturbation affects the electroosmotic flow value, depending on the frequency of the ac signal and on the solution stirring conditions. In the frequency range studied, two regions have been observed where the electroosmotic flow reaches a maximum value: one at low frequencies ( approximately Hz); and another at frequencies of the order of kHz. These regions could be related to membrane relaxation phenomena. Copyright 2000 Academic Press.
1961-10-01
Observations . . . . . . . .................. 3 Double Layer Theory ................. .... 4 The Electroosmotic Phenomenon in Soils . . . . ... 6 Helmholtz...lL PART III: EFFECTS OF ELECTROOSMOSIS . ............. .. 133 Electroosmotic Dewatering ........ ................ ... 13 Electroosmotic ... electroosmotic flow based on the theories of Helmholtz-Smoluchowski and Schmid are compared. It is apparent that the applicability of the theoretical concepts
High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes
Snyder, Jessica L.; Getpreecharsawas, Jirachai; Fang, David Z.; Gaborski, Thomas R.; Striemer, Christopher C.; Fauchet, Philippe M.; Borkholder, David A.; McGrath, James L.
2013-01-01
We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures. PMID:24167263
Electroosmotic flow analysis of a branched U-turn nanofluidic device.
Parikesit, Gea O F; Markesteijn, Anton P; Kutchoukov, Vladimir G; Piciu, Oana; Bossche, Andre; Westerweel, Jerry; Garini, Yuval; Young, Ian T
2005-10-01
In this paper, we present the analysis of electroosmotic flow in a branched -turn nanofluidic device, which we developed for detection and sorting of single molecules. The device, where the channel depth is only 150 nm, is designed to optically detect fluorescence from a volume as small as 270 attolitres (al) with a common wide-field fluorescent setup. We use distilled water as the liquid, in which we dilute 110 nm fluorescent beads employed as tracer-particles. Quantitative imaging is used to characterize the pathlines and velocity distribution of the electroosmotic flow in the device. Due to the device's complex geometry, the electroosmotic flow cannot be solved analytically. Therefore we use numerical flow simulation to model our device. Our results show that the deviation between measured and simulated data can be explained by the measured Brownian motion of the tracer-particles, which was not incorporated in the simulation.
Electroosmotic flow and mixing in microchannels with the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Tang, G. H.; Li, Zhuo; Wang, J. K.; He, Y. L.; Tao, W. Q.
2006-11-01
Understanding the electroosmotic flow in microchannels is of both fundamental and practical significance for the design and optimization of various microfluidic devices to control fluid motion. In this paper, a lattice Boltzmann equation, which recovers the nonlinear Poisson-Boltzmann equation, is used to solve the electric potential distribution in the electrolytes, and another lattice Boltzmann equation, which recovers the Navier-Stokes equation including the external force term, is used to solve the velocity fields. The method is validated by the electric potential distribution in the electrolytes and the pressure driven pulsating flow. Steady-state and pulsating electroosmotic flows in two-dimensional parallel uniform and nonuniform charged microchannels are studied with this lattice Boltzmann method. The simulation results show that the heterogeneous surface potential distribution and the electroosmotic pulsating flow can induce chaotic advection and thus enhance the mixing in microfluidic systems efficiently.
Alizadeh, A; Zhang, L; Wang, M
2014-10-01
Mixing becomes challenging in microchannels because of the low Reynolds number. This study aims to present a mixing enhancement method for electro-osmotic flows in microchannels using vortices caused by temperature-patterned walls. Since the fluid is non-isothermal, the conventional form of Nernst-Planck equation is modified by adding a new migration term which is dependent on both temperature and internal electric potential gradient. This term results in the so-called thermo-electrochemical migration phenomenon. The coupled Navier-Stokes, Poisson, modified Nernst-Planck, energy and advection-diffusion equations are iteratively solved by multiple lattice Boltzmann methods to obtain the velocity, internal electric potential, ion distribution, temperature and species concentration fields, respectively. To enhance the mixing, three schemes of temperature-patterned walls have been considered with symmetrical or asymmetrical arrangements of blocks with surface charge and temperature. Modeling results show that the asymmetric arrangement scheme is the most efficient scheme and enhances the mixing of species by 39% when the Reynolds number is on the order of 10(-3). Current results may help improve the design of micro-mixers at low Reynolds number. Copyright © 2014 Elsevier Inc. All rights reserved.
Barragán, V. M.; Bauzá, C. Ruíz
2001-08-01
The effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed on the usual dc applied electric voltage difference on the electroosmotic flow through a typical cation-exchange membrane has been studied using different monovalent electrolytes. As a general trend, the presence of the ac perturbation increases the value of the electroosmotic flow with respect to the value in the absence of ac perturbation. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three studied electrolytes, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. This behavior may be related to the different relaxation processes in heterogeneous mediums. Copyright 2001 Academic Press.
Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.
Zhao, Cunlu; Yang, Chun
2013-03-01
EOF of non-Newtonian power-law fluids in a cylindrical microchannel is analyzed theoretically. Specially, exact solutions of electroosmotic velocity corresponding to two special fluid behavior indices (n = 0.5 and 1.0) are found, while approximate solutions are derived for arbitrary values of fluid behavior index. It is found that because of the approximation for the first-order modified Bessel function of the first kind, the approximate solutions introduce largest errors for predicting electroosmotic velocity when the thickness of electric double layer is comparable to channel radius, but can accurately predict the electroosmotic velocity when the thickness of electric double layer is much smaller or larger than the channel radius. Importantly, the analysis reveals that the Helmholtz-Smoluchowski velocity of power-law fluids in cylindrical microchannels becomes dependent on geometric dimensions (radius of channel), standing in stark contrast to the Helmholtz-Smoluchowski velocity over planar surfaces or in parallel-plate microchannels. Such interesting and counterintuitive effects can be attributed to the nonlinear coupling among the electrostatics, channel geometry, and non-Newtonian hydrodynamics. Furthermore, a method for enhancement of EOFs of power-law fluids is proposed under a combined DC and AC electric field. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.
Afonso, A M; Alves, M A; Pinho, F T
2013-04-01
This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmotic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190-193, 2003], in which an electrically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheological behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as the shear-thinning effects are increased. Copyright © 2012 Elsevier Inc. All rights reserved.
AC electroosmosis in microchannels packed with a porous medium
NASA Astrophysics Data System (ADS)
Kang, Yuejun; Yang, Chun; Huang, Xiaoyang
2004-08-01
This paper presents a theoretical study on ac-driven electroosmotic flow in both open-end and closed-end microchannels packed with uniform charged spherical microparticles. The time-periodic oscillating electroosmotic flow in an open-end capillary in response to the application of an alternating (ac) electric field is obtained using the Green function approach. The analysis is based on the Carman-Kozeny theory. The backpressure associated with the counter-flow in a closed-end capillary is obtained by analytically solving the modified Brinkman momentum equation. It is demonstrated that in a microchannel with its two ends connected to reservoirs and subject to ambient pressure, the oscillating Darcy velocity profile depends on both the pore size and the excitation frequency; such effects are coupled through an important aspect ratio of the tubule radius to the Stokes penetration depth. For a fixed pore size, the magnitude of the ac electroosmotic flow decreases with increasing frequency. With increasing pore size, however, the magnitude of the maximum velocity shows two different trends with respect to the excitation frequency: it gets higher in the low frequency domain, and gets lower in the high frequency domain. In a microchannel with closed ends, for a fixed excitation frequency, use of smaller packing particles can generate higher backpressure. For a fixed pore size, the backpressure magnitude shows two different trends changing with the excitation frequency. When the excitation frequency is lower than the system characteristic frequency, the backpressure decreases with increasing excitation frequency. When the excitation frequency is higher than the system characteristic frequency, the backpressure increases with increasing excitation frequency.
NASA Astrophysics Data System (ADS)
Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F.
2017-09-01
The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls.
Portable Chemical Agent Detection System: Differential Reflectometer and Light Scattering Approaches
2005-02-15
possible to conduct elemental analysis on modified capillaries because of the polymer coating. Instead, measurements of electroosmotic flow were used...design There are several essential requirements for a sensitive chemiluminescence cell (Figure 1); good reagent/analyte mixing for maximum photon yield...Cutaway of Chemiluminescence cell the cooled pint housing. In our design, the concentric inlets will increase photon collection due to better mixing of
Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...
Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel
NASA Astrophysics Data System (ADS)
Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich
2015-06-01
In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest.
Hu, Yandong; Werner, Carsten; Li, Dongqing
2004-12-15
Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.
Electroosmotic mixing in microchannels.
Glasgow, Ian; Batton, John; Aubry, Nadine
2004-12-01
Mixing is an essential, yet challenging, process step for many Lab on a Chip (LOC) applications. This paper presents a method of mixing for microfluidic devices that relies upon electroosmotic flow. In physical tests and in computer simulations, we periodically vary the electric field with time to mix two aqueous solutions. Good mixing is shown to occur when the electroosmotic flow at the two inlets pulse out of phase, the Strouhal number is on the order of 1, and the pulse volumes are on the order of the intersection volume.
Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.
Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho
2009-07-01
A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.
[Evaporating Droplet and Imaging Slip Flows
NASA Technical Reports Server (NTRS)
Larson, R. G.
2002-01-01
In this report, we summarize work on Evaporating Droplet and Imaging Slip Flows. The work was primarily performed by post-doc Hue Hu, and partially by grad students Lei Li and Danish Chopra. The work includes studies on droplet evaporation and its effects on temperature and velocity fields in an evaporating droplet, new 3-D microscopic particle image velocimetry and direct visualization on wall slip in a surfactant solution. With the exception of the slip measurements, these projects were those proposed in the grant application. Instead of slip flow, the original grant proposed imaging electro-osmotic flows. However, shortly after the grant was issued, the PI became aware of work on electro-osmotic flows by the group of Saville in Princeton that was similar to that proposed, and we therefore elected to carry out work on imaging slip flows rather than electro-osmotic flows.
Electroosmotically Driven Liquid Flows in Complex Micro-Geometries
NASA Astrophysics Data System (ADS)
Dutta, Prashanta; Warburton, Timothy C.; Beskok, Ali
1999-11-01
Electroosmotically driven flows in micro-channels are analyzed analytically and numerically by using a high-order h/p type spectral element simulation suite, Nektar. The high-resolution characteristic of the spectral element method enables us to resolve the sharp electric double layers with successive p-type mesh refinements. For electric double layers that are much smaller than the channel height, the Helmholtz Smoluchowski velocity is used to develop semi-analytical relations for the velocity and the pressure distributions in micro channels. Analytical relations for wall shear stress and pressure distributions are also obtained. These relations show amplification of the normal and shear stresses on the micro-channel walls. Finally, flow through a step-channel is analyzed to document the interaction of the electroosmotic forces with the adverse pressure gradients. Depending on the direction and the magnitude of the electroosmotic force, enhancement or elimination of the separation bubble is observed. These findings can be used to develop innovative strategies for flow control with no moving components and for promotion of mixing in micro-scale geometries.
Modeling electrokinetics in ionic liquids: General
Wang, Chao; Bao, Jie; Pan, Wenxiao; ...
2017-04-01
Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson–Nernst–Planck equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the modified Poisson-Nernst-Planck equations are coupled with Navier–Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electroosmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on amore » curved ionselective surface. Lastly, we also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.« less
An AC electroosmotic micropump for circular chromatographic applications.
Debesset, S; Hayden, C J; Dalton, C; Eijkel, J C T; Manz, A
2004-08-01
Flow rates of up to 50 microm s(-1) have been successfully achieved in a closed-loop channel using an AC electroosmotic pump. The AC electroosmotic pump is made of an interdigitated array of unequal width electrodes located at the bottom of a channel, with an AC voltage applied between the small and the large electrodes. The flow rate was found to increase linearly with the applied voltage and to decrease linearly with the applied frequency. The pump is expected to be suitable for circular chromatography for the following reasons: the driving forces are distributed over the channel length and the pumping direction is set by the direction of the interdigitated electrodes. Pumping in a closed-loop channel can be achieved by arranging the electrode pattern in a circle. In addition the inherent working principle of AC electroosmotic pumping enables the independent optimisation of the channel height or the flow velocity.
Shear-modulated electroosmotic flow on a patterned charged surface.
Wei, Hsien-Hung
2005-04-15
The effect of imposing shear flow on a charge-modulated electroosmotic flow is theoretically investigated. The flow structures exhibit either saddle points or closed streamlines, depending on the relative strength of an imposed shear to the applied electric field. The formation of closed streamlines could be advantageous for trapping nondiffusive particles at desired locations. Different time periodic alternating flows and their corresponding particle trajectories are also examined to assess strategies for creating efficient mixing.
NASA Astrophysics Data System (ADS)
Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.
2016-08-01
This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.
Numerical analysis of mixing enhancement for micro-electroosmotic flow
NASA Astrophysics Data System (ADS)
Tang, G. H.; He, Y. L.; Tao, W. Q.
2010-05-01
Micro-electroosmotic flow is usually slow with negligible inertial effects and diffusion-based mixing can be problematic. To gain an improved understanding of electroosmotic mixing in microchannels, a numerical study has been carried out for channels patterned with wall blocks, and channels patterned with heterogeneous surfaces. The lattice Boltzmann method has been employed to obtain the external electric field, electric potential distribution in the electrolyte, the flow field, and the species concentration distribution within the same framework. The simulation results show that wall blocks and heterogeneous surfaces can significantly disturb the streamlines by fluid folding and stretching leading to apparently substantial improvements in mixing. However, the results show that the introduction of such features can substantially reduce the mass flow rate and thus effectively prolongs the available mixing time when the flow passes through the channel. This is a non-negligible factor on the effectiveness of the observed improvements in mixing efficiency. Compared with the heterogeneous surface distribution, the wall block cases can achieve more effective enhancement in the same mixing time. In addition, the field synergy theory is extended to analyze the mixing enhancement in electroosmotic flow. The distribution of the local synergy angle in the channel aids to evaluate the effectiveness of enhancement method.
Tripathi, Dharmendra; Yadav, Ashu; Bég, O Anwar
2017-01-01
Analytical solutions are developed for the electro-kinetic flow of a viscoelastic biological liquid in a finite length cylindrical capillary geometry under peristaltic waves. The Jefferys' non-Newtonian constitutive model is employed to characterize rheological properties of the fluid. The unsteady conservation equations for mass and momentum with electro-kinetic and Darcian porous medium drag force terms are reduced to a system of steady linearized conservation equations in an axisymmetric coordinate system. The long wavelength, creeping (low Reynolds number) and Debye-Hückel linearization approximations are utilized. The resulting boundary value problem is shown to be controlled by a number of parameters including the electro-osmotic parameter, Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), and Jefferys' first parameter (ratio of relaxation and retardation time), wave amplitude. The influence of these parameters and also time on axial velocity, pressure difference, maximum volumetric flow rate and streamline distributions (for elucidating trapping phenomena) is visualized graphically and interpreted in detail. Pressure difference magnitudes are enhanced consistently with both increasing electro-osmotic parameter and Helmholtz-Smoluchowski velocity, whereas they are only elevated with increasing Jefferys' first parameter for positive volumetric flow rates. Maximum time averaged flow rate is enhanced with increasing electro-osmotic parameter, Helmholtz-Smoluchowski velocity and Jefferys' first parameter. Axial flow is accelerated in the core (plug) region of the conduit with greater values of electro-osmotic parameter and Helmholtz-Smoluchowski velocity whereas it is significantly decelerated with increasing Jefferys' first parameter. The simulations find applications in electro-osmotic (EO) transport processes in capillary physiology and also bio-inspired EO pump devices in chemical and aerospace engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
Shear-Modulated Electroosmotic Flow on a Patterned Charged Surface
NASA Astrophysics Data System (ADS)
Wei, Hsien-Hung
2004-11-01
The effect of imposing shear flow on a charge-modulated electroosmotic flow is theoretically investigated. The flow pattern can contain saddle points or closed streamlines, depending on the relative strength of an imposed shear to the applied electrical field. The formation of closed streamlines could be advantageous for trapping non-diffusive particles in desired locations. Different time periodic alternating flows and their corresponding particle trajectories are also examined for assessing strategies for creating efficient mixing.
NASA Astrophysics Data System (ADS)
Chen, Lei
2005-11-01
Electroosmotic flow in nanochannels is characterized by a very small Reynolds number so that mixing is difficult. While several researchers have presented results for the case of periodic wall potential, and for a sudden change in potential there has been no systematic study of the effect of the variation of wall potential on the flow structure. We have calculated the flow and mass transport in a two-dimensional nanochannel having discontinuities in wall potential. Multiple nano-vortices are generated within the bulk flow due to the overpotential at the surface. The distributions of potential, velocity and mole fractions are calculated numerically and the structure of the flow within the ``nano-vortices'' resembles that of the classical Lamb vortex. The parameters that affect the circulation are investigated as well. The long electrode limit (the aspect ratio much less than one ) is investigated for small channels (EDLs are overlapped) and wide (thin EDL) channels as well. It is found that the flow is two-dimensional only near the corners of the electrode and is fully-developed elsewhere. The flow can be thus decomposed into one-dimensional electroosmotic flow and Poiseuille flow. For a wide channel, a singular perturbation analysis is performed for the electroosmotic component. The results are compared with recently generated experimental data. *This work is supported by the Air Force Office of Scientific Research through its Multi-University Research Initiative(MURI) program.
Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Qi, Haitao; Yu, Bo; Xiong, Zhen; Xu, Huanying
2017-09-01
This work investigates the unsteady electroosmotic slip flow of viscoelastic fluid through a parallel plate micro-channel under combined influence of electroosmotic and pressure gradient forcings with asymmetric zeta potentials at the walls. The generalized second grade fluid with fractional derivative was used for the constitutive equation. The Navier slip model with different slip coefficients at both walls was also considered. By employing the Debye-Hückel linearization and the Laplace and sin-cos-Fourier transforms, the analytical solutions for the velocity distribution are derived. And the finite difference method for this problem was also given. Finally, the influence of pertinent parameters on the generation of flow is presented graphically.
Characterization of mixing in an electroosmotically stirred continuous micro mixer
NASA Astrophysics Data System (ADS)
Beskok, Ali
2005-11-01
We present theoretical and numerical studies of mixing in a straight micro channel with zeta potential patterned surfaces. A steady pressure driven flow is maintained in the channel in addition to a time dependent electroosmotic flow, generated by a stream-wise AC electric field. The zeta potential patterns are placed critically in the channel to achieve spatially asymmetric time-dependent flow patterns that lead to chaotic stirring. Fixing the geometry, we performed parametric studies of passive particle motion that led to generation of Poincare sections and characterization of chaotic strength by finite time Lyapunov exponents. The parametric studies were performed as a function of the Womersley number (normalized AC frequency) and the ratio of Poiseuille flow and electroosmotic velocities. After determining the non-dimensional parameters that led to high chaotic strength, we performed spectral element simulations of species transport and mixing at high Peclet numbers, and characterized mixing efficiency using the Mixing Index inverse. Mixing lengths proportional to the natural logarithm of the Peclet number are reported. Using the optimum non-dimensional parameters and the typical magnitudes involved in electroosmotic flows, we were able to determine the physical dimensions and operation conditions for a prototype micro-mixer.
2009-08-01
tubular mode driven by electroosmotic flow and the inherent electrophoretic mobility of the analytes under the influence of an applied electric field...could be due to unlabeled beads. Figure 3 (C and D) also shows electropherogram of a neutral electroosmotic flow (EOF) marker dye BODIPY and...internal turbulent mixing . The current microfabricated electromagnets cannot produce sufficient fields to trap the NPs against a large flow forces
Electrokinetic effects on motion of submicron particles in microchannel
NASA Astrophysics Data System (ADS)
Sato, Yohei; Hishida, Koichi
2006-11-01
Two-fluid mixing utilizing electrokinetically driven flow in a micro-channel is investigated by micron-resolution particle image velocimetry and an image processing technique. Submicron particles are transported and mixed with deionized water by electrophoresis. The particle electrophoretic velocity that is proportional to an applied electric field is measured in a closed cell, which is used to calculate the electroosmotic flow velocity. At a constant electric field, addition of pressure-driven flow to electrokinetically driven flow in a T-shaped micro-channel enhances two-fluid mixing because the momentum flux is increased. On the other hand, on application of an alternative sinusoidal electric field, the velocity difference between pressure-driven and electroosmotic flows has a significant effect on increasing the length of interface formed between two fluids. It is concluded from the present experiments that the transport and mixing process in the micro-channel will be enhanced by accurate flow-rate control of both pressure-driven and electroosmotic flows.
Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O.
2017-04-01
A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes' couple stress fluid model is employed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing the couple stress parameter there is a significant increase in the axial pressure gradient whereas the core axial velocity is reduced. An increase in the electro-osmotic parameter both induces flow acceleration in the core region (around the channel centreline) and it also enhances the axial pressure gradient substantially. The study is relevant in the simulation of novel smart bio-inspired space pumps, chromatography and medical micro-scale devices.
Urbanski, John Paul; Levitan, Jeremy A; Burch, Damian N; Thorsen, Todd; Bazant, Martin Z
2007-05-15
Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.
Andreev, Victor P.
2013-01-01
The objective of the paper is to show that electroosmotic flow might play an important role in the intracellular transport of biomolecules. The paper presents two mathematical models describing the role of electroosmosis in the transport of the negatively charged messenger proteins to the negatively charged nucleus and in the recovery of the fluorescence after photobleaching. The parameters of the models were derived from the extensive review of the literature data. Computer simulations were performed within the COMSOL 4.2a software environment. The first model demonstrated that the presence of electroosmosis might intensify the flux of messenger proteins to the nucleus and allow the efficient transport of the negatively charged phosphorylated messenger proteins against the electrostatic repulsion of the negatively charged nucleus. The second model revealed that the presence of the electroosmotic flow made the time of fluorescence recovery dependent on the position of the bleaching spot relative to cellular membrane. The magnitude of the electroosmotic flow effect was shown to be quite substantial, i.e. increasing the flux of the messengers onto the nucleus up to 4-fold relative to pure diffusion and resulting in the up to 3-fold change in the values of fluorescence recovery time, and therefore the apparent diffusion coefficient determined from the fluorescence recovery after photobleaching experiments. Based on the results of the modeling and on the universal nature of the electroosmotic flow, the potential wider implications of electroosmotic flow in the intracellular and extracellular biological processes are discussed. Both models are available for download at ModelDB. PMID:23613967
Andreev, Victor P
2013-01-01
The objective of the paper is to show that electroosmotic flow might play an important role in the intracellular transport of biomolecules. The paper presents two mathematical models describing the role of electroosmosis in the transport of the negatively charged messenger proteins to the negatively charged nucleus and in the recovery of the fluorescence after photobleaching. The parameters of the models were derived from the extensive review of the literature data. Computer simulations were performed within the COMSOL 4.2a software environment. The first model demonstrated that the presence of electroosmosis might intensify the flux of messenger proteins to the nucleus and allow the efficient transport of the negatively charged phosphorylated messenger proteins against the electrostatic repulsion of the negatively charged nucleus. The second model revealed that the presence of the electroosmotic flow made the time of fluorescence recovery dependent on the position of the bleaching spot relative to cellular membrane. The magnitude of the electroosmotic flow effect was shown to be quite substantial, i.e. increasing the flux of the messengers onto the nucleus up to 4-fold relative to pure diffusion and resulting in the up to 3-fold change in the values of fluorescence recovery time, and therefore the apparent diffusion coefficient determined from the fluorescence recovery after photobleaching experiments. Based on the results of the modeling and on the universal nature of the electroosmotic flow, the potential wider implications of electroosmotic flow in the intracellular and extracellular biological processes are discussed. Both models are available for download at ModelDB.
Kawai, Takayuki; Sueyoshi, Kenji; Kitagawa, Fumihiko; Otsuka, Koji
2010-08-01
The applicability of an online preconcentration technique, large-volume sample stacking with an electroosmotic flow pump (LVSEP), to microchip zone electrophoresis (MCZE) for the analysis of oligosaccharides was investigated. Since the sample stacking and separation proceeded continuously without polarity switching in LVSEP, a single "straight" channel microchip could be employed. In the MCZE analysis of oligosaccharides, sample adsorption onto the channel surface should be suppressed, so the straight microchannel was modified with poly(vinyl alcohol) (PVA). So far, the mechanism of LVSEP in the polymer-coated capillary or microchannel has not been reported, and thus, the LVSEP process in the PVA-coated channel was investigated by fluorescence imaging. Although it is well-known that the PVA coating can suppress the electroosmotic flow (EOF), an enhanced EOF with a mobility of 4.4 x 10(-4) cm(2)/(V x s) was observed in a low ionic strength sample solution. It was revealed that such temporarily enhanced EOF in the sample zone worked as the driving force to remove the sample matrix in LVSEP. To evaluate the analytical performance of LVSEP-MCZE, oligosaccharides were analyzed in the PVA-coated straight channel. As a result, both the glucose ladder and oligosaccharides obtained from bovine ribonuclease B were well enriched and separated with up to 2200-2900-fold sensitivity enhancement compared to those in a conventional MCZE analysis. The run-to-run repeatabilities of the migration time and peak height were good with relative standard deviations of 1.1% and 7.2%, respectively, which were better than those of normal MCZE. By applying the LVSEP technique to MCZE, a complicated voltage program for fluidic control could be simplified from four channels for two steps to two channels for one step.
Electroosmotic Flow Reversal Outside Glass Nanopores
2015-01-01
We report observations of a striking reversal in the direction of electroosmotic flow (EOF) outside a conical glass nanopore as a function of salt concentration. At high ionic strengths (>100 mM), we observe EOF in the expected direction as predicted by classical electrokinetic theory, while at low salt concentrations (<1 mM) the direction of the flow is reversed. The critical crossover salt concentration depends on the pore diameter. Finite-element simulations indicate a competition between the EOF generated from the inner and outer walls of the pore, which drives flows in opposite directions. We have developed a simple analytical model which reveals that, as the salt concentration is reduced, the flow rates inside the pore are geometrically constrained, whereas there is no such limit for flows outside the pore. This model captures all of the essential physics of the system and explains the observed data, highlighting the key role the external environment plays in determining the overall electroosmotic behavior. PMID:25490120
Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
Sridharan, Sriram; Zhu, Junjie; Hu, Guoqing; Xuan, Xiangchun
2011-09-01
Insulator-based dielectrophoresis (iDEP) is an emerging technology that has been successfully used to manipulate a variety of particles in microfluidic devices. However, due to the locally amplified electric field around the in-channel insulator, Joule heating often becomes an unavoidable issue that may disturb the electroosmotic flow and affect the particle motion. This work presents the first experimental study of Joule heating effects on electroosmotic flow in a typical iDEP device, e.g., a constriction microchannel, under DC-biased AC voltages. A numerical model is also developed to simulate the observed flow pattern by solving the coupled electric, energy, and fluid equations in a simplified two-dimensional geometry. It is observed that depending on the magnitude of the DC voltage, a pair of counter-rotating fluid circulations can occur at either the downstream end alone or each end of the channel constriction. Moreover, the pair at the downstream end appears larger in size than that at the upstream end due to DC electroosmotic flow. These fluid circulations, which are reasonably simulated by the numerical model, form as a result of the action of the electric field on Joule heating-induced fluid inhomogeneities in the constriction region. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electro-Optical Platform for the Manipulation of Live Cells
2002-10-02
system, other physical forces may play a significant role. In particular, electroosmotic forces that cause fluid movement relative to a surface can...occur due to the mobility of ions in solution. Electroosmotic forces are commonly utilized in capillary electrophoretic separa- tion, where the capillary...fluid motion that acts to entrain particles to be separated.46 Thus, in the chamber presented here, the patterned anode can induce electroosmotic flow
Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions.
Takhistov, Paul; Duginova, Ksenia; Chang, Hsueh-Chia
2003-07-01
Due to electric field leakage across sharp corners, the irrotational character of Ohmic electroosmotic flow is violated. Instead, we demonstrate experimentally and theoretically evidence of electrolyte depletion and vortex separation in electroosmotic flow around a junction between wide and narrow channels. When the penetration length of the electric field exceeds the width of the narrow channel and if the electric field is directed from the narrow to the wide channel, the electromigration of ions diminishes significantly at the junction end of the narrow channel due to this leakage. Concentration depletion then develops at that location to maintain current balance but it also increases the corner zeta potential and the local electroosmotic slip velocity. A back pressure gradient hence appears to maintain flow balance and, at a sufficient magnitude, generates a pair of vortices.
Luo, Win-Jet
2006-03-15
This paper investigates two-dimensional, time-dependent electroosmotic flow driven by an AC electric field via patchwise surface heterogeneities distributed along the micro-channel walls. The time-dependent flow fields through the micro-channel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. The transient behavior characteristics of the generated electroosmotic flow are then discussed in terms of the influence of the patchwise surface heterogeneities, the direction of the applied AC electric field, and the velocity of the bulk flow. It is shown that the presence of oppositely charged surface heterogeneities on the micro-channel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in phase with the applied periodic AC electric field intensity. The location and rotational direction of the induced circulations are determined by the directions of the bulk flow velocity and the applied electric field.
NASA Astrophysics Data System (ADS)
Suriyage, Nihal U.; Ghantasala, Muralidhar K.; Iovenitti, Pio; Harvey, Erol C.
2004-03-01
Electroosmotic pumping in the microchannels fabricated in polycarbonate (PC), polyethyleneterephthalate (PET) and SU-8 polymer substrates was investigated and species transportation was modeled, in an attempt to show the suitability of low cost polymer materials for the development of disposable microfluidic devices. Microchannels and the fluid reservoirs were fabricated using excimer laser ablation and hot embossing techniques. Typical dimensions of the microchannels were 60μm (width) x 50μm (depth) x 45mm (length). Species transportation in the microchannels under electroosmosis was modeled by finite element method (FEM) with the help of NetFlow module of the CoventorWareTM computational fluid dynamics (CFD) package. In particular, electroosmosis and electrophoresis in a crossed microfluidic channel was modeled to calculate the percentage species mass transportation when the concentration shape of the Gaussian input species plug and the location of the injection point are varied. Change in the concentration shape of the initial species plug while it is electroosmotically transported along the crossed fluidic channel was visualized. Results indicated that Excimer laser ablated PC and PET devices have electroosmotic mobility in the range 2 to 5 x10-4 cm2/V.s, zeta potential 30 to 70 mV and flow rates of the order of 1 to 3 nL/s under an electric field of 200 V/cm. With the electroosmotic mobility value of PC the simulation results show that a crossed fluidic channel is electroosmotically pumping about 91% of the species mass injected along one of its straight channels.
On-Chip Transport of Biological Fluids in MEMS Devices
1999-02-01
this model has been extended for multi-dimensional geometries to simulate electroosmotic flow in microdevices. Electrophoresis model in CFD- ACE + will...integrated with CFD- ACE +. 7.0 REFERENCES 1. N. A. Patankar and H. H. Hu, "Numerical Simulation of Electroosmotic Flow," Analytical Chemistry, 70...Electroosmosis has been developed and successfully integrated with CFD- ACE + code. (ii) Extension of the above-mentioned model to simulate
Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates
1992-09-30
particle penetration is facilitated by the electrophoretic force exerted on it and the electroosmotic flow of the fluid into the pores. 1 2 The...skeleton showed that the whole cross--section of the graphite was impregnated. - The existence of an electroosmotic effect was demonstrated by the...Pe) and the Damkohler number (A): Pe ((U" + Us)b -kb where U" - electrophoretic velocity Um - electroosmotic velocity b - pore mean radius D
Membrane water-flow rate in electrolyzer cells with a solid polymer electrolyte (SPE)
NASA Astrophysics Data System (ADS)
Li, Xiaojin; Qu, Shuguo; Yu, Hongmei; Hou, Ming; Shao, Zhigang; Yi, Baolian
Water-flow rate across Nafion membrane in SPE electrolyzer cells was measured and modelled. From the analysis of water transport mechanisms in SPE water electrolysis, the water-flow rate through membrane can be described by the electro-osmotic drag. The calculated electro-osmotic drag coefficients, n d, for the membrane in SPE electrolysis cells at different temperatures were compared with literature and in good agreement with those of Ge et al. and Ise et al. To describe the water-flow rate through membrane more accurately, a linear fit of n d as a function of temperature for the membrane in SPE water electrolysis was proposed in this paper. This paper studied the membrane water-flow rate experimentally and mathematically, which is of importance in the designing and optimization of the process of SPE water electrolysis. This paper also provided a novel method for measuring the electro-osmotic drag coefficient of Nafion membrane in contact with liquid water, acid and methanol solutions, etc.
Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.
Keh, Huan J; Ding, Jau M
2003-07-15
An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.
Electro-osmotic flow of semidilute polyelectrolyte solutions.
Uematsu, Yuki; Araki, Takeaki
2013-09-07
We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign. These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.
Electrokinetic Microactuator Arrays for Control of Vehicles
2002-08-01
programmable logic array (PLA) content in each unit cell....................46 Chapter 4 4.1 Schematic showing electroosmotic flow induced by an...control situations involved in propulsion systems, spanning from con- trol of mixing in advanced gas turbine combustors, to active control of surge and... electroosmotic flow, shown schematically in Fig. 4.1, results when an electric field is applied to a liquid electrolyte in contact with a charged solid
Comprehensive and Critical Literature Review on Insitu Micro-Sensors for Application in Tribology
1994-04-01
Electroosmotic flow provides a pumping method that is convenient for small capillaries. Electrophoretic separation is shown to be useful. On the left hand...analysis systems on glass chips (1 centimeter by 2 centimeters or larger) that utilize electroosmotic pumping to drive fluid flow and electrophoretic...elucidate the interaction mechanism. Additionally, using two types of sensors in a mixed array increases selectivity by providing different information
Stable Rotation of Microparticles using a Combination of Dielectrophoresis and Electroosmosis
NASA Astrophysics Data System (ADS)
Dutta, Prashanta; Rezanoor, Walid
2016-11-01
Electric field induced microparticle rotation has become a powerful technique to evaluate cell membrane dielectric properties and cell morphology. In this study, stable rotations of microparticles are demonstrated in a stationary AC electric field created from a set of coplanar interdigitated microelectrodes. The medium, particle size, and material are carefully chosen so that particle can be controlled by dielectrophoretic force, while a sufficiently high AC electroosmotic flow is produced for continuous particle rotation. Stable rotation up to 218 rpm is observed at 30 Vp-p applied sinusoidal potential in the frequency range of 80 - 1000 Hz. The particle spin rate observed from the experimental study is then validated with a numerical model. The model is formulated around complex charge conservation equation to determine the electric potential distribution in the domain. Stokes equation is employed to solve for AC electroosmotic fluid flow in the domain. Complexity arising from nonlinear potential drop across the electric double layer due to the application of a very large electric potential is also addressed by introducing modified capacitance equation which considers steric effect. This work was supported in part by the U.S. National Science Foundation under Grant No. DMS 1317671.
NASA Astrophysics Data System (ADS)
Mondal, A.; Shit, G. C.
2017-11-01
In this paper, we have examined the motion of magnetic-nanoparticles and the flow characteristics of biofluid in a micro-tube in the presence of externally applied magnetic field and electrokinetic effects. In the drug delivery system, the motion of the magnetic nanoparticles as carriers is important for therapeutic procedure in the treatment of tumor cells, infections and removing blood clots. The unidirectional electro-osmotic flow of biofluid is driven by the combined effects of pulsatile pressure gradient and electrokinetic force. The governing equation for unsteady electromagnetohydrodynamic flow subject to the no-slip boundary condition has been solved numerically by using Crank-Nicolson implicit finite difference scheme. We have analyzed the variation of axial velocity, velocity distribution of magnetic nanoparticles, volumetric flow rate and wall shear stress for various values of the non-dimensional parameters. The study reveals that blood flow velocity, carriers velocity and flow rate are strongly influenced by the electro-osmotic parameter as well as the Hartmann number. The particle mass parameter as well as the particle concentration parameter have efficient capturing effect on magnetic nanoparticles during blood flow through a micro-tube for drug delivery.
Kawai, Takayuki; Koino, Hiroshi; Sueyoshi, Kenji; Kitagawa, Fumihiko; Otsuka, Koji
2012-07-13
To improve the sensitivity in chiral analysis by capillary electrophoresis without loss of optical resolution, application of large-volume sample stacking with an electroosmotic flow pump (LVSEP) was investigated. Effects of the addition of cyclodextrin (CD) into a running solution on the LVSEP preconcentration was theoretically studied, where the preconcentration efficiency and effective separation length would be slightly increased if the effective electrophoretic velocity (v(ep,eff,BGS)) of the analytes was decreased by interacting with CD. In LVSEP-CD-modified capillary zone electrophoresis (CDCZE) and LVSEP-CD electrokinetic chromatography with reduced v(ep,eff,BGS), up to 1000-fold sensitivity increases were achieved with almost no loss of resolution. In LVSEP-CD-modified micellar electrokinetic chromatography of amino acids with increased v(ep,eff,BGS), a 1300-fold sensitivity increase was achieved without much loss of resolution, indicating the versatile applicability of LVSEP to many separation modes. An enantio-excess (EE) assay was also carried out in LVSEP-CDCZE, resulting in successful analyses of up to 99.6% EE. Finally, we analyzed ibuprofen in urine by desalting with a C₁₈ solid-phase extraction column. As a typical result, 250ppb ibuprofen was well concentrated and optically resolved with 84.0-86.6% recovery in LVSEP-CDCZE, indicating the applicability of LVSEP to real samples containing a large amount of unnecessary background salts. Copyright © 2012 Elsevier B.V. All rights reserved.
Amplification of the electroosmotic velocity by induced charges at fluidic interfaces
NASA Astrophysics Data System (ADS)
Steffes, Clarissa; Baier, Tobias; Hardt, Steffen
2010-11-01
The performance of microfluidic devices like electroosmotic pumps is strongly limited by drag forces at the channel walls. In order to replace the standard no-slip condition at the wall with a more favorable slip condition, superhydrophobic surfaces are employed. In the Cassie-Baxter state, air is entrapped in the surface cavities, so that a significant fraction of water-air interfaces at which slip does occur is provided. However, such surfaces do not enhance electroosmotic flow. Since no net charge accumulates at the water-air interfaces, the driving force is reduced, and no flow enhancement is obtained. We consider electrodes incorporated in the superhydrophobic structure to induce charges at these interfaces, thereby increasing the driving force. A theoretical model is set up, yielding an understanding of the influence of the surface morphology on the flow, which serves as a basis for ongoing experimental work. While a considerable enhancement of the electroosmotic velocity is already expected for standard superhydrophobic surfaces, greater amplifications of one order of magnitude may be achieved by substituting the air in the surface cavities by oil, reducing the risk for electric breakdown or transition to the unfavorable Wenzel state.
Barragán, V M; Izquierdo-Gil, M A; Godino, M P; Villaluenga, J P G
2009-10-01
The effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed to the usual dc applied electric voltage difference on the electroosmotic flow through three cation-exchange membranes with different morphology has been studied. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three membranes investigated, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. These characteristic frequency values, which are related to relaxation processes in heterogeneous media, depend on the membrane system and permit to obtain information about the different structures of the membrane system. Thus, the study of the electroosmotic permeability relaxation can be used as a method to study the internal morphology of a cation-exchange membrane in a given electrolyte medium.
Alizadeh, A; Wang, J K; Pooyan, S; Mirbozorgi, S A; Wang, M
2013-10-01
In this paper, the effect of temperature difference between inlet flow and walls on the electro-osmotic flow through a two-dimensional microchannel is investigated. The main objective is to study the effect of temperature variations on the distribution of ions and consequently internal electric potential field, electric body force, and velocity fields in an electro-osmotic flow. We assume constant temperature and zeta potential on walls and use the mean temperature of each cross section to characterize the Boltzmann ion distribution across the channel. Based on these assumptions, the multiphysical transports are still able to be described by the classical Poisson-Boltzmann model. In this work, the Navier-Stokes equation for fluid flow, the Poisson-Boltzmann equation for ion distribution, and the energy equation for heat transfer are solved by a couple lattice Boltzmann method. The modeling results indicate that the temperature difference between walls and the inlet solution may lead to two symmetrical vortices at the entrance region of the microchannel which is appropriate for mixing enhancements. The advantage of this phenomenon for active control of mixing in electro-osmotic flow is the manageability of the vortex scale without extra efforts. For instance, the effective domain of this pattern could broaden by the following modulations: decreasing the external electric potential field, decreasing the electric double layer thickness, or increasing the temperature difference between inlet flow and walls. This work may provide a novel strategy for design or optimization of microsystems. Copyright © 2013 Elsevier Inc. All rights reserved.
Toward microscale flow control using non-uniform electro-osmotic flow
NASA Astrophysics Data System (ADS)
Paratore, Federico; Boyko, Evgeniy; Gat, Amir D.; Kaigala, Govind V.; Bercovici, Moran
2018-02-01
We present a novel method that allows establishing desired flow patterns in a Hele-Shaw cell, solely by controlling the surface chemistry, without the use of physical walls. Using weak electrolytes, we locally pattern the chamber's ceiling and/or floor, thus defining a spatial distribution of surface charge. This translates to a non-uniform electric double layer which when subjected to an external electric field applied along the chamber, gives rise to non-uniform electroosmotic flow (EOF). We present the theory that allows prediction and design of such flows fields, as well as experimental demonstrations opening the door to configurable microfluidic devices.
Electroosmotic pumps and their applications in microfluidic systems
Wang, Xiayan; Cheng, Chang; Wang, Shili; Liu, Shaorong
2009-01-01
Electroosmotic pumping is receiving increasing attention in recent years owing to the rapid development in micro total analytical systems. Compared with other micropumps, electroosmotic pumps (EOPs) offer a number of advantages such as creation of constant pulse-free flows and elimination of moving parts. The flow rates and pumping pressures of EOPs matches well with micro analysis systems. The common materials and fabrication technologies make it readily integrateable with lab-on-a-chip devices. This paper reviews the recent progress on EOP fabrications and applications in order to promote the awareness of EOPs to researchers interested in using micro- and nano-fluidic devices. The pros and cons of EOPs are also discussed, which helps these researchers in designing and constructing their micro platforms. PMID:20126306
Determination of Nitrate Carry-Over on Bytac(registered) Strips Via Capillary Electrophoresis
2012-01-19
Beckman Coulter P/ ACE MDQ capillary electrophoresis instrument. A 60 cm long (10 cm effective length), 75 µm i.d. bare fused-silica capillary was used...the separation. Due to the high concentration of the BGE, electroosmotic flow (EOF) is significantly reduced allowing for the application of a...bromide) are not seen in the electropherogram due to the reversed polarity; electroosmotic flow suppression is sufficient to cause the ammonium and
Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks
2007-04-17
field with the induced charges on each electrode result in AC electroosmotic force and steady fluid flow (nonzero time averaged) with a velocity...direction of the AC electroosmotic force (flow is unidirectional). From the work of Green and co- workers, we can write the particle displacement due to... AC voltage-frequency phase space allows us to probe a wide range of colloidal configurations that resemble “capacitive” and “resistive” networks in
Park, H M; Hong, S M
2006-12-15
In this paper we develop a method for the determination of the zeta potential zeta and the dielectric constant epsilon by exploiting velocity measurements of the electroosmotic flow in microchannels. The inverse problem is solved through the minimization of a performance function utilizing the conjugate gradient method. The present method is found to estimate zeta and epsilon with reasonable accuracy even with noisy velocity measurements.
Takayanagi, Toshio; Motomizu, Shoji
2006-09-01
Cationic polyelectrolyte of chitosan was used for the reversal of electroosmotic flow in capillary zone electrophoresis. The chitosan was dissolved in acetic acid solution, and stable electroosmotic flow was obtained at the chitosan concentrations between 50 and 300 microg/mL. Separation of inorganic anions was carried out using the dynamically coated capillary by capillary zone electrophoresis. Nine kinds of anions were separated and detected with the capillary. The electrophoretic mobility of the analyte anions decreased with increasing concentrations of chitosan in the migrating solution through ion-ion interaction, but the migration order of the analyte anions was not changed in the concentration range of the chitosan examined. The signal shape for the analyte anions was developed by using field-enhanced sample stacking with 10 mM sodium sulfate.
Gwarda, Radosław Ł; Dzido, Tadeusz H
2018-07-13
In our previous papers we have investigated the influence of the mobile phase composition on mechanism of retention, selectivity and efficiency of peptide separation in various high-performance thin-layer chromatography (HPTLC) systems with commercially available silica-based adsorbents. We have also investigated the influence of pH of the mobile phase buffer on migration and separation of peptides in pressurized planar electrochromatography (PPEC). Here we investigate the influence of concentration of ion-pairing additive, and concentration and type of organic modifier of the mobile phase on migration of peptides in PPEC system with octadecyl silica-based adsorbent, and with the same set of the solutes as before. We compare our current results with the results obtained before for similar HPTLC and PPEC systems, and discuss the influence of particular variables on retention, electrophoretic mobility of solutes and electroosmotic flow of the mobile phase. We show, that the final selectivity of peptide separation results from co-influence of all the three factors mentioned. Concentration of organic modifier of the mobile phase, as well as concentration of ion-pairing additive, affect the retention, the electrophoretic mobility, and the electroosmotic flow simultaneously. This makes independent optimization of these factors rather difficult. Anyway PPEC offers much faster separation of peptides with quite different selectivity, in comparison to HPTLC, with similar adsorbents and similar mobile phase composition. However, we also present and discuss the issue of extensive tailing of peptide zones in the PPEC in comparison to similar HPTLC systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Kofler, Markus; Lenninger, Margit; Mayer, Gert; Neuwirt, Hannes; Grimm, Michael; Bechtold, Thomas
2016-01-20
Renal replacement therapy options are limited to hemodialysis and peritoneal dialysis (70% of US patients) or renal transplantation. Diffusion processes are the main physico-chemical principle behind hemodialysis. An alternative way to achieve liquid flow through membranes bases on the electroosmotic flow which is observed as electrokinetic phenomenon in porous membranes which bear surface charges. Agar consists of the non-ionic agarose and the negatively charged agaropectine thus an electroosmotic flux is observed in analytical electrophoresis. In this study the potential electroosmosis on textile reinforced agar membranes as separation method was investigated. Using a five-chamber electrolysis cell and an agar membrane/cellulose fabric composite an intensive electroosmotic flow of 1-2 ml cm(2) h(-1) at 100 mA cell current could be observed. The movement of cations in the negatively charged agar structure led to an intensive electroosmotic flux, which also transported uncharged molecules such as urea, glucose through the membrane. Separation of uncharged low molecular weight molecules is determined by the membrane characteristic. The transport of ions (K(+), PO4(3-), creatinine) and uncharged molecules (urea, glucose) in electroosmotic separation experiments was monitored using a pH 5.5 phosphate electrolyte with the aim to assess the overall transport processes in the electrochemical cell. The results demonstrate the potential of the method for filtration of biological fluids in the absence of external pressure or high shear rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kitagawa, Shinya; Tsuda, Takao
2003-05-02
The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.
Electroosmotic flow in microchannels with nanostructures.
Yasui, Takao; Kaji, Noritada; Mohamadi, Mohamad Reza; Okamoto, Yukihiro; Tokeshi, Manabu; Horiike, Yasuhiro; Baba, Yoshinobu
2011-10-25
Here we report that nanopillar array structures have an intrinsic ability to suppress electroosmotic flow (EOF). Currently using glass chips for electrophoresis requires laborious surface coating to control EOF, which works as a counterflow to the electrophoresis mobility of negatively charged samples such as DNA and sodium dodecyl sulfate (SDS) denatured proteins. Due to the intrinsic ability of the nanopillar array to suppress the EOF, we carried out electrophoresis of SDS-protein complexes in nanopillar chips without adding any reagent to suppress protein adsorption and the EOF. We also show that the EOF profile inside a nanopillar region was deformed to an inverse parabolic flow. We used a combination of EOF measurements and fluorescence observations to compare EOF in microchannel, nanochannel, and nanopillar array chips. Our results of EOF measurements in micro- and nanochannel chips were in complete agreement with the conventional equation of the EOF mobility (μ(EOF-channel) = αC(i)(-0.5), where C(i) is the bulk concentration of the i-ions and α differs in micro- and nanochannels), whereas EOF in the nanopillar chips did not follow this equation. Therefore we developed a new modified form of the conventional EOF equation, μ(EOF-nanopillar) ≈ β[C(i) - (C(i)(2)/N(i))], where N(i) is the number of sites available to i-ions and β differs for each nanopillar chip because of different spacings or patterns, etc. The modified equation of the EOF mobility that we proposed here was in good agreement with our experimental results. In this equation, we showed that the charge density of the nanopillar region, that is, the total number of nanopillars inside the microchannel, affected the suppression of EOF, and the arrangement of nanopillars into a tilted or square array had no effect on it.
Flow structure in continuous flow electrophoresis chambers
NASA Technical Reports Server (NTRS)
Deiber, J. A.; Saville, D. A.
1982-01-01
There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.
Characterization of an induced pressure pumping force for microfluidics
NASA Astrophysics Data System (ADS)
Jiang, Hai; Fan, Na; Peng, Bei; Weng, Xuan
2017-05-01
The electro-osmotic pumping and pressure-driven manipulation of fluids are considered as the most common strategies in microfluidic devices. However, both of them exhibit major disadvantages such as hard integration and high reagent consumption, and they are destructive methods for detection and photo bleaching. In this paper, an electric field-effect flow control approach, combining the electro-osmotic pumping force and the pressure-driven pumping force, was developed to generate the induced pressure-driven flow in a T-shaped microfluidic chip. Electro-osmotic flow between the T-intersection and two reservoirs was demonstrated, and it provided a stable, continuous, and electric field-free flow in the section of the microchannel without the electrodes. The velocity of the induced pressure-driven flow was linearly proportional to the applied voltages. Both numerical and experimental investigations were conducted to prove the concept, and the experimental results showed good agreement with the numerical simulations. In comparison to other induced pressure pumping methods, this approach can induce a high and controllable pressure drop in the electric field-free segment, subsequently causing an induced pressure-driven flow for transporting particles or biological cells. In addition, the generation of bubbles and the blocking of the microchannel are avoided.
Molecular Friction-Induced Electroosmotic Phenomena in Thin Neutral Nanotubes.
Vuković, Lela; Vokac, Elizabeth; Král, Petr
2014-06-19
We reveal by classical molecular dynamics simulations electroosmotic flows in thin neutral carbon (CNT) and boron nitride (BNT) nanotubes filled with ionic solutions of hydrated monovalent atomic ions. We observe that in (12,12) BNTs filled with single ions in an electric field, the net water velocity increases in the order of Na(+) < K(+) < Cl(-), showing that different ions have different power to drag water in thin nanotubes. However, the effect gradually disappears in wider nanotubes. In (12,12) BNTs containing neutral ionic solutions in electric fields, we observe net water velocities going in the direction of Na(+) for (Na(+), Cl(-)) and in the direction of Cl(-) for (K(+), Cl(-)). We hypothesize that the electroosmotic flows are caused by different strengths of friction between ions with different hydration shells and the nanotube walls.
Analysis of microfluidic flow driven by electrokinetic and pressure forces
NASA Astrophysics Data System (ADS)
Chen, Chien-Hsin
2011-12-01
This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.
The Debye-Huckel Approximation in Electroosmotic Flow in Micro- and Nano-channels
NASA Astrophysics Data System (ADS)
Conlisk, A. Terrence
2002-11-01
In this work we consider the electroosmotic flow in a rectangular channel. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride and other buffers for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or slightly greater than the width of the EDL(nanochannel). At small cation, anion concentration differences the Debye-Huckel approximation is appropriate; at larger concentration differences, the Gouy-Chapman picture of the electric double emerges naturally. In the symmetric case for the electroosmotic flow so induced, the velocity field and the potential are similar. We specifically focus in this paper on the limits of the Debye-Huckel approximation for a simplified version of a phosphate buffered saline(PBS) mixture. The fluid is assumed to behave as a continuum and the volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that very large pressure drops are required to drive flows in small channels. However, useful volume flow rates may be obtained at a very low driving voltage.
Batz, Nicholas G; Mellors, J Scott; Alarie, Jean Pierre; Ramsey, J Michael
2014-04-01
We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.
Electroosmotic flow hysteresis for dissimilar ionic solutions
Lim, An Eng; Lam, Yee Cheong
2015-01-01
Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139
Combined electroosmotically and pressure driven flow in soft nanofluidics.
Matin, Meisam Habibi; Ohshima, Hiroyuki
2015-12-15
The present study is devoted to the analysis of mixed electroosmotic and pressure driven flows through a soft charged nanochannel considering boundary slip and constant charge density on the walls of the slit channel. The sources of the fluid flow are the pressure gradient along the channel axis and the electrokinetic effects that trigger an electroosmotic flow under the influence of a uniformly applied electric field. The polyelectrolyte layer (PEL) is denoted as a fixed charge layer (FCL) and the electrolyte ions can be present both inside and outside the PEL i.e., the PEL-electrolyte interface acts as a semi-penetrable membrane. The Poisson-Boltzmann equation is solved assuming the Debye-Hückel linearization for the low electric potential to provide us with analytical closed form solutions for the conservation equations. The conservation equations are solved to obtain the electric potential and velocity distributions in terms of governing dimensionless parameters. The results for the dimensionless electric potential, the dimensionless velocity and Poiseuille number are presented graphically and discussed in detail. Copyright © 2015 Elsevier Inc. All rights reserved.
Electroosmosis modulated biomechanical transport through asymmetric microfluidics channel
NASA Astrophysics Data System (ADS)
Jhorar, R.; Tripathi, D.; Bhatti, M. M.; Ellahi, R.
2018-05-01
This article addresses the electrokinetically modulated biomechanical transport through a two-dimensional asymmetric microchannel induced by peristaltic waves. Electrokinetic transport with peristaltic phenomena grabbed a significant attention due to its novel applications in engineering. Electrical fields also provide an excellent mode for regulating flows. The electrohydrodynamics problem is modified by means of Debye-Hückel linearization. Firstly, the governing flow problem is described by continuity and momentum equations in the presence of electrokinetic forces in Cartesian coordinates, then long wavelength and low/zero Reynolds ("neglecting the inertial forces") approximations are applied to modify the governing flow problem. The resulting differential equations are solved analytically in order to obtain exact solutions for velocity profile whereas the numerical integration is carried out to analyze the pumping characteristics. The physical behaviour of sundry parameters is discussed for velocity profile, pressure rise and volume flow rate. In particular, the behaviour of electro-osmotic parameter, phase difference, and Helmholtz-Smoluchowski velocity is examined and discussed. The trapping mechanism is also visualized by drawing streamlines against the governing parameters. The present study offers various interesting results that warrant further study on electrokinetic transport with peristalsis.
Uba, Franklin I.; Pullagurla, Swathi R.; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoonkyoung; Shin, Heungjoo; Soper, Steven A.
2014-01-01
Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels. PMID:25369728
Uba, Franklin I; Pullagurla, Swathi R; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoon-Kyoung; Shin, Heungjoo; Soper, Steven A
2015-01-07
Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels.
From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes
Wu, Xiaojian
2017-01-01
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed. PMID:29240676
From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes.
Experton, Juliette; Wu, Xiaojian; Martin, Charles R
2017-12-14
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed.
Electro-osmotic flow of a model electrolyte
NASA Astrophysics Data System (ADS)
Zhu, Wei; Singer, Sherwin J.; Zheng, Zhi; Conlisk, A. T.
2005-04-01
Electro-osmotic flow is studied by nonequilibrium molecular dynamics simulations in a model system chosen to elucidate various factors affecting the velocity profile and facilitate comparison with existing continuum theories. The model system consists of spherical ions and solvent, with stationary, uniformly charged walls that make a channel with a height of 20 particle diameters. We find that hydrodynamic theory adequately describes simple pressure-driven (Poiseuille) flow in this model. However, Poisson-Boltzmann theory fails to describe the ion distribution in important situations, and therefore continuum fluid dynamics based on the Poisson-Boltzmann ion distribution disagrees with simulation results in those situations. The failure of Poisson-Boltzmann theory is traced to the exclusion of ions near the channel walls resulting from reduced solvation of the ions in that region. When a corrected ion distribution is used as input for hydrodynamic theory, agreement with numerical simulations is restored. An analytic theory is presented that demonstrates that repulsion of the ions from the channel walls increases the flow rate, and attraction to the walls has the opposite effect. A recent numerical study of electro-osmotic flow is reanalyzed in the light of our findings, and the results conform well to our conclusions for the model system.
Mechanistic studies of the transdermal iontophoretic delivery of 5-OH-DPAT in vitro.
Ackaert, Oliver W; Van Smeden, Jeroen; De Graan, Jeroen; Dijkstra, Durk; Danhof, Meindert; Bouwstra, Joke A
2010-01-01
A characterization and optimization of the in vitro transdermal iontophoretic transport of 5-hydroxy-2-(N,N,-di-n-propylamino)tetralin (5-OH-DPAT) is presented. The utility of acetaminophen as a marker of electroosmotic flow was studied as well. The following parameters of iontophoretic transport of 5-OH-DPAT were examined: drug donor concentration, electroosmotic contribution, influence of co-ions, current density, and composition of the acceptor phase. The steady-state flux (Flux(ss)) of acetaminophen was linearly correlated with the donor concentration and co-iontophoresis of acetaminophen did not influence the iontophoretic flux of 5-OH-DPAT, indicating that acetaminophen is an excellent marker of electroosmotic flow. Lowering the Na(+) concentration from 78 to 10 mM in the donor phase, resulted in a 2.5-fold enhancement of the Flux(ss). The Flux(ss) showed a nonlinear relation with the drug donor concentration and an excellent linear correlation with the current density. Reducing the pH of the acceptor phase from 7.4 to 6.2 resulted in a dramatic decrease of the Flux(ss) of 5-OH-DPAT, explained by a reduced electroosmotic flow and an increased counter-ion flow. Optimization of the conditions resulted in a maximum Flux(ss) of 5-OH-DPAT of 1.0 micromol x cm(-2) h(-1) demonstrating the potential of the iontophoretic delivery of this dopamine agonist for the symptomatic treatment of Parkinson's disease.
Electroosmotic pump unit and assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shaorong
An electroosmotic pump unit includes at least a first pump element, at least a second pump element, and an electrode. Each pump element includes a tube, an electrically grounded fluid inlet, a fluid outlet electrically coupled to the electrode, and a porous monolith immobilized in the tube and having open pores having net surface charges. When the electrode applies a voltage across the monoliths, a fluid supplied to the first pump element flows through the pump elements in a direction from a fluid inlet of the first pump element toward a fluid outlet of the second pump element. A pluralitymore » of electroosmotic pump units may be connected in series in a pump assembly. The electroosmotic pump unit, or pump assembly, may be connected to an apparatus such as a HPLC.« less
Park, H M; Lee, W M
2008-07-01
Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.
A precise pointing nanopipette for single-cell imaging via electroosmotic injection.
Lv, Jian; Qian, Ruo-Can; Hu, Yong-Xu; Liu, Shao-Chuang; Cao, Yue; Zheng, Yong-Jie; Long, Yi-Tao
2016-11-24
The precise transportation of fluorescent probes to the designated location in living cells is still a challenge. Here, we present a new addition to nanopipettes as a powerful tool to deliver fluorescent molecules to a given place in a single cell by electroosmotic flow, indicating favorable potential for further application in single-cell imaging.
NASA Astrophysics Data System (ADS)
Yee, Andrew; Cevheri, Necmettin; Yoda, Minami
2015-11-01
Recently, we have shown that suspended radii a = 245 nm particles flowing through a microchannel driven by the combination of a dc electric field and pressure gradient (where the resulting electroosmotic and shear flows are in opposite directions) are attracted to the wall at low electric field magnitude | E | , then assemble into concentrated bands that only exist within a few μm of the wall above a threshold value of | E | , | Ecr | . The ~ 6 μ m wide bands are aligned with the flow direction and are roughly periodic along the cross-stream direction. This talk focuses on quantitative characterization of these bands, for example how | Ecr | , the time required for bands to form after applying the electric field To, and the number of bands depend upon parameters such as particle volume fraction φ, shear rate γ˙ , | E | , and a. The dynamics of the particles within the bands are visualized by imaging a mixture of particles with different fluorescent labels. The visualizations show that the particles are in a liquid state within these bands, and suggest that the particles nearest the wall move in the direction of the electroosmotic flow, while those farther from the wall move in the direction of the shear flow. Supported by NSF.
Controlling Two-dimensional Tethered Vesicle Motion Using an Electric Field
Yoshina-Ishii, Chiaki; Boxer, Steven G.
2008-01-01
We recently introduced methods to tether phospholipid vesicles or proteoliposomes onto a fluid supported lipid bilayer using DNA hybridization. These intact tethered vesicles diffuse in two dimensions parallel to the supporting membrane surface. In this paper, we report the dynamic response of individual tethered vesicles to an electric field applied parallel to the bilayer surface. Vesicles respond to the field by moving in the direction of electro-osmotic flow, and this can be used to reversibly concentrate tethered vesicles against a barrier. By adding increasing amounts of negatively charged phosphatidylserine to the supporting bilayer to increase electro-osmosis, the electrophoretic mobility of the tethered vesicles can be increased. The electro-osmotic contribution can be modeled well by a sphere connected to a cylindrical anchor in a viscous membrane with charged head groups. The electrophoretic force on the negatively charged tethered vesicles opposes the electro-osmotic force. By increasing the amount of negative charge on the tethered vesicle, drift in the direction of electro-osmotic flow can be slowed; at high negative charge on the tethered vesicle, motion can be forced in the direction of electrophoresis. The balance between these forces can be visualized on a patterned supporting bilayer containing negatively charged lipids which themselves reorganize in an externally applied electric field to create a gradient of charge within a corralled region. The charge gradient at the surface creates a gradient of electro-osmotic flow, and vesicles carrying similar amounts of negative charge can be focused to a region perpendicular to the applied field where electrophoresis is balanced by electro-osmosis, away from the corral boundary. Electric fields are effective tools to direct tethered vesicles, concentrate them and to measure the tethered vesicle’s electrostatic properties. PMID:16489833
Ordered transport and identification of particles
Shera, E.B.
1993-05-11
A method and apparatus are provided for application of electrical field gradients to induce particle velocities to enable particle sequence and identification information to be obtained. Particle sequence is maintained by providing electroosmotic flow for an electrolytic solution in a particle transport tube. The transport tube and electrolytic solution are selected to provide an electroosmotic radius of >100 so that a plug flow profile is obtained for the electrolytic solution in the transport tube. Thus, particles are maintained in the same order in which they are introduced in the transport tube. When the particles also have known electrophoretic velocities, the field gradients introduce an electrophoretic velocity component onto the electroosmotic velocity. The time that the particles pass selected locations along the transport tube may then be detected and the electrophoretic velocity component calculated for particle identification. One particular application is the ordered transport and identification of labeled nucleotides sequentially cleaved from a strand of DNA.
Effect of Multivalent Ions on Electroosmotic Flow in Micro- and Nano-channels
NASA Astrophysics Data System (ADS)
Zheng, Zhi; Conlisk, A. Terrence
2002-11-01
In this work, the effect of multivalent ions on electroosmotic flow is investigated. Applications in biomedical engineering are numerous, including design of drug delivery systems, rapid molecular analysis and lab-on-a-chip. We specifically consider incorporating Ca^2+ and HPO4^2- and other monovalent ions, such as K^+ and H2PO4^-, into an aqueous NaCl solution. All previous work has been for the case where the mixture contains a pair of ionic species of equal valence. Electrochemical equilibrium considerations are used in determining the boundary conditions. The results can be applied to rectangular channels for which the height is on the nanometer scale up to the micrometer scale. The classical electroosmotic velocity profile is obtained at larger channel heights for fixed electrolyte concentration where an analytic solution for the velocity, potential and mole fractions may be obtained. The theory is valid for an arbitrary number of ionic species.
Ordered transport and identification of particles
Shera, E. Brooks
1993-01-01
A method and apparatus are provided for application of electrical field gradients to induce particle velocities to enable particle sequence and identification information to be obtained. Particle sequence is maintained by providing electroosmotic flow for an electrolytic solution in a particle transport tube. The transport tube and electrolytic solution are selected to provide an electroosmotic radius of >100 so that a plug flow profile is obtained for the electrolytic solution in the transport tube. Thus, particles are maintained in the same order in which they are introduced in the transport tube. When the particles also have known electrophoretic velocities, the field gradients introduce an electrophoretic velocity component onto the electroosmotic velocity. The time that the particles pass selected locations along the transport tube may then be detected and the electrophoretic velocity component calculated for particle identification. One particular application is the ordered transport and identification of labeled nucleotides sequentially cleaved from a strand of DNA.
Gorbacheva, E V; Ganchenko, G S; Demekhin, E A
2018-03-27
The stability of the electroosmotic flow of electrolyte-dielectric viscous liquids under the influence of the DC and AC electric fields along with the external pressure gradient is studied theoretically. Liquids are bounded by two infinite parallel plates. The lower wall bordering the electrolyte is assumed to be a charged surface, and the upper wall is electrically isolated. The charge at the lower boundary is assumed to be immobile, while the surface charge at the free surface is assumed to be mobile. In this paper, we study the micro- and nanosized liquid layers. The mathematical model is described by a nonlinear system of the Nernst-Planck-Poisson-Stokes partial differential equations with the appropriate boundary conditions on the solid surface, the electrolyte/dielectric interface, and on the upper wall. The pressure gradient is highly important for the stability of the flow. For the DC case, the external pressure could either stabilize and destabilize the flow depending on the relative directions of the electroosmotic flow and the pressure-driven flow. For the AC case, the dependence on the value of the external pressure is not monotonous for different wave numbers of perturbations, but, as a rule, the external pressure destabilizes the flow. As the frequency of the electric field increases, the one-dimensional solution of the problem becomes stable.
Direction dependence of displacement time for two-fluid electroosmotic flow.
Lim, Chun Yee; Lam, Yee Cheong
2012-03-01
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.
Direction dependence of displacement time for two-fluid electroosmotic flow
Lim, Chun Yee; Lam, Yee Cheong
2012-01-01
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083
NASA Astrophysics Data System (ADS)
Gao, Xiaobo; Li, Yu Xiao
2018-04-01
AC electro-osmotic (ACEO) micropumps presently involve the planar or nonplanar electrode pair array in the rectangular microchannel. However, this paper presented a theoretical model of an ultra-fast 3D ring ACEO micropump with arrays of asymmetric ring electrode pairs in the cylindrical microchannel. The theory is on the basis of the interaction between the nonuniform electric field and ions of an electric double layer (EDL) on the surface of ring electrodes. Therefore, we first established the equivalent hollow cylinder capacitance of EDL for ring ACEO micropumps. Then, the 3D Poisson-Boltzmann model by solving the electric field and fluidic flow field with the charge conservation and the slip velocity boundary conditions was numerically calculated. For a dilute strong electrolyte solution, the conductivity as a function of the electrolyte concentration can be obtained by the modified Kohlrausch's dilution empirical equation with the molar conductivity. The results revealed that the flow rate of ring ACEO was higher than the planar ACEO, which agreed well with the experiment. The dependences of the time-averaged pumping velocity on the frequency and concentration have similar bell profiles with a maximal value. Moreover, the optimal velocity with proper geometric parameters was obtained at a given frequency, voltage, concentration, and radius. The high-speed ring ACEO micropump will be significant for the experimental studies to further improve the flow rate and be hopeful for applications of microfluidic mixing, particle manipulation, and so on.
Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Chakraborty, Suman
2015-06-01
In the present work, we attempt to analyze the electroosmotic flow of a viscoelastic fluid, following quasi-linear constitutive behavior, over charge modulated surfaces in narrow confinements. We obtain analytical solutions for the flow field for thin electrical double layer (EDL) limit through asymptotic analysis for small Deborah numbers. We show that a combination of matched and regular asymptotic expansion is needed for the thin EDL limit. We subsequently determine the modified Smoluchowski slip velocity for viscoelastic fluids and show that the quasi-linear nature of the constitutive behavior adds to the periodicity of the flow. We also obtain the net throughput in the channel and demonstrate its relative decrement as compared to that of a Newtonian fluid. Our results may have potential implications towards augmenting microfluidic mixing by exploiting electrokinetic transport of viscoelastic fluids over charge modulated surfaces.
Tian, Fuzhi; Li, Baoming; Kwok, Daniel Y
2005-02-01
Electroosmotic flow (EOF) is a phenomenon associated with the movement of an aqueous solution induced by the application of an electric field in microchannels. The characteristics of EOF depend on the nature of the surface potential, i.e., whether it is uniform or nonuniform. In this paper, a lattice Boltzmann model (LBM) combined with the Poisson-Boltzmann equation is used to simulate flow field in a rectangular microchannel with nonuniform (step change) surface potentials. The simulation results indicate that local circulations can occur near a heterogeneous region with nonuniform surface potentials, in agreement with those by other authors. Largest circulations, which imply a highest mixing efficiency due to convection and short-range diffusion, were found when the average surface potential is zero, regardless of whether the distribution of the heterogeneous patches is symmetric or asymmetric. In this work, we have illustrated that there is a trade-off between the mixing and liquid transport in EOF microfluidics. One should not simply focus on mixing and neglect liquid transport, as performed in the literature. Excellent mixing could lead to a poor transport of electroosmotic flow in microchannels.
Evaluation of ODS-AQ stationary phase for use in capillary electrochromatography.
Djordjevic, N M; Fitzpatrick, F; Houdiere, F
2001-04-01
The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.
Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc.
Park, Sung-Woo; Lee, Jae-Young; Yang, Jung-Seok; Kim, Kyoung-Jo; Baek, Kitae
2009-09-30
The feasibility of electrokinetic technology on the remediation of mixed-waste-contaminated railroad soil, contaminated by lubricant oil and zinc, was investigated. To enhance the removal efficiency, catholyte purging with 0.1M HNO(3) and a supply of non-ionic surfactant, secondary alcohol ethoxylate, was applied to the anode to remove Zn and to solubilize the lubricant oil. The catholyte purging maintained the soil pH as acidic and enhanced desorption of zinc from the soil, where the zeta potential of the acidic soil became positive. Thereafter, the direction of electro-osmotic flow was changed from the cathode to anode and the flow rate was reduced. The lesser in magnitude reverse electro-osmotic flow inhibited the migration of zinc and the lubricant oil was removed by the electro-osmotic flow. The removal of zinc and lubricant oil was enhanced with an increase in voltage gradient; however, a higher voltage gradient resulted in higher energy expenditure. After electrokinetic operation over 17 days, the removal efficiency of zinc was 22.1-24.3%, and that of lubricant oil was 45.1-55.0%. Although the removal of lubricant oil was quite high, the residual concentration did not meet Korean regulation levels.
Datta, Subhra; Ghosal, Sandip; Patankar, Neelesh A
2006-02-01
Electroosmotic flow in a straight micro-channel of rectangular cross-section is computed numerically for several situations where the wall zeta-potential is not constant but has a specified spatial variation. The results of the computation are compared with an earlier published asymptotic theory based on the lubrication approximation: the assumption that any axial variations take place on a long length scale compared to a characteristic channel width. The computational results are found to be in excellent agreement with the theory even when the scale of axial variations is comparable to the channel width. In the opposite limit when the wavelength of fluctuations is much shorter than the channel width, the lubrication theory fails to describe the solution either qualitatively or quantitatively. In this short wave limit the solution is well described by Ajdari's theory for electroosmotic flow between infinite parallel plates (Ajdari, A., Phys. Rev. E 1996, 53, 4996-5005.) The infinitely thin electric double layer limit is assumed in the theory as well as in the simulation.
NASA Astrophysics Data System (ADS)
Bhadauria, Ravi; Aluru, N. R.
2017-05-01
We propose an isothermal, one-dimensional, electroosmotic flow model for slit-shaped nanochannels. Nanoscale confinement effects are embedded into the transport model by incorporating the spatially varying solvent and ion concentration profiles that correspond to the electrochemical potential of mean force. The local viscosity is dependent on the solvent local density and is modeled using the local average density method. Excess contributions to the local viscosity are included using the Onsager-Fuoss expression that is dependent on the local ionic strength. A Dirichlet-type boundary condition is provided in the form of the slip velocity that is dependent on the macroscopic interfacial friction. This solvent-surface specific interfacial friction is estimated using a dynamical generalized Langevin equation based framework. The electroosmotic flow of Na+ and Cl- as single counterions and NaCl salt solvated in Extended Simple Point Charge (SPC/E) water confined between graphene and silicon slit-shaped nanochannels are considered as examples. The proposed model yields a good quantitative agreement with the solvent velocity profiles obtained from the non-equilibrium molecular dynamics simulations.
Hydrodynamic bifurcation in electro-osmotically driven periodic flows
NASA Astrophysics Data System (ADS)
Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.
2018-06-01
In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.
Wu, Wen-I; Selvaganapathy, P. Ravi; Ching, Chan Y.
2011-01-01
A new method is demonstrated to transport particles, cells, and other microorganisms using rectified ac electro-osmotic flows in open microchannels. The rectified flow is obtained by synchronous zeta potential modulation with the driving potential in the microchannel. Experiments were conducted to transport both neutral, charged particles, and microorganisms of various sizes. A maximum speed of 50 μm∕s was obtained for 8 μm polystyrene beads, without any electrolysis, using a symmetrical square waveform driving electric field of 5 V∕mm at 10 Hz and a 360 V gate potential with its polarity synchronized with the driving potential (phase lag=0°). PMID:21522497
Design principle for improved three-dimensional ac electro-osmotic pumps
NASA Astrophysics Data System (ADS)
Burch, Damian; Bazant, Martin Z.
2008-05-01
Three-dimensional (3D) ac electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a “fluid conveyor belt” by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions—rather than the geometry—and predict that flow rates can be further doubled by fabricating 3D features with nonpolarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities that drive the flow.
Design principle for improved three-dimensional ac electro-osmotic pumps.
Burch, Damian; Bazant, Martin Z
2008-05-01
Three-dimensional (3D) ac electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a "fluid conveyor belt" by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions-rather than the geometry-and predict that flow rates can be further doubled by fabricating 3D features with nonpolarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities that drive the flow.
In-situ measurement of electroosmotic drag coefficient in Nafion membrane for the PEMFC.
Peng, Zhe; Morin, Arnaud; Huguet, Patrice; Schott, Pascal; Pauchet, Joël
2011-11-10
A new method based on hydrogen pump has been developed to measure the electroosmotic drag coefficient in representative PEMFC operating conditions. It allows eliminating the back-flow of water which leads to some errors in the calculation of this coefficient with previously reported electrochemical methods. Measurements have been performed on 50 μm thick Nafion membranes both extruded and recast. Contrary to what has been described in most of previous published works, the electroosmotic drag coefficient decreases as the membrane water content increases. The same trend is observed for temperatures between 25 and 80 °C. For the same membrane water content, the electroosmotic drag coefficient increases with temperature. In the same condition, there is no difference in drag coefficient for extruded Nafion N112 and recast Nafion NRE212. These results are discussed on the basis of the two commonly accepted proton transport mechanisms, namely, Grotthus and vehicular.
Theoretical prediction of fast 3D AC electro-osmotic pumps.
Bazant, Martin Z; Ben, Yuxing
2006-11-01
AC electro-osmotic (ACEO) pumps in microfluidics currently involve planar electrode arrays, but recent work on the underlying phenomenon of induced-charge electro-osmosis (ICEO) suggests that three-dimensional (3D) geometries may be exploited to achieve faster flows. In this paper, we present some new design principles for periodic 3D ACEO pumps, such as the "fluid conveyor belt" of ICEO flow over a stepped electrode array. Numerical simulations of these designs (using the standard low-voltage model) predict flow rates almost twenty times faster than existing planar ACEO pumps, for the same applied voltage and minimum feature size. These pumps may enable new portable or implantable lab-on-a-chip devices, since rather fast (mm s(-1)), tuneable flows should be attainable with battery voltages (<10 V).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Gregory W.; Lopez, Marcos M.; Ramiah Rajasekaran, Pradeep
2015-07-09
We have recently demonstrated a new electrokinetic phenomenon—electroosmotic flow rectification in membranes with asymmetrically shaped pores. Flow rectification means that at constant driving force the flow rate in one direction through the membrane is faster than the flow rate in the opposite direction. EOF rectification could be of practical use in microfluidic devices incorporating porous membranes, but additional research is required. We explore here the effects of two key experimental variables—current density used to drive flow through the membrane and membrane pore density—on EOF rectification. We have found that the extent of EOF rectification, as quantified by the rectification ratio,more » increases with increasing current density. In contrast, the rectification ratio decreases with increasing membrane pore density. We propose explanations for these results based on simple EOF and membrane-transport theories.« less
Membrane Pump for Synthetic Muscle Actuation
2009-09-28
FIG. 3 is a schematic representation of an embodiment of a muscle equipped to use electroosmotic flow in accordance with the present invention...water through the membrane to the cathode. This movement of water across the membrane during the application of current is called electroosmotic ...current and a 120 V AC source, again with an appropriate electronics package to control voltage and current. Preferably, the power source 316 can be
Fagan, Jeffrey A; Sides, Paul J; Prieve, Dennis C
2004-06-08
Electroosmotic flow in the vicinity of a colloidal particle suspended over an electrode accounts for observed changes in the average height of the particle when the electrode passes alternating current at 100 Hz. The main findings are (1) electroosmotic flow provides sufficient force to move the particle and (2) a phase shift between the purely electrical force on the particle and the particle's motion provides evidence of an E2 force acting on the particle. The electroosmotic force in this case arises from the boundary condition applied when faradaic reactions occur on the electrode. The presence of a potential-dependent electrode reaction moves the likely distribution of electrical current at the electrode surface toward uniform current density around the particle. In the presence of a particle the uniform current density is associated with a nonuniform potential; thus, the electric field around the particle has a nonzero radial component along the electrode surface, which interacts with unbalanced charge in the diffuse double layer on the electrode to create a flow pattern and impose an electroosmotic-flow-based force on the particle. Numerical solutions are presented for these additional height-dependent forces on the particle as a function of the current distribution on the electrode and for the time-dependent probability density of a charged colloidal particle near a planar electrode with a nonuniform electrical potential boundary condition. The electrical potential distribution on the electrode, combined with a phase difference between the electric field in solution and the electrode potential, can account for the experimentally observed motion of particles in ac electric fields in the frequency range from approximately 10 to 200 Hz.
Induced-charge electroosmotic trapping of particles.
Ren, Yukun; Liu, Weiyu; Jia, Yankai; Tao, Ye; Shao, Jinyou; Ding, Yucheng; Jiang, Hongyuan
2015-05-21
Position-controllable trapping of particles on the surface of a bipolar metal strip by induced-charge electroosmotic (ICEO) flow is presented herein. We demonstrate a nonlinear ICEO slip profile on the electrode surface accounting for stable particle trapping behaviors above the double-layer relaxation frequency, while no trapping occurs in the DC limit as a result of a strong upward fluidic drag induced by a linear ICEO slip profile. By extending an AC-flow field effect transistor from the DC limit to the AC field, we reveal that fixed-potential ICEO exceeding RC charging frequency can adjust the particle trapping position flexibly by generating controllable symmetry breaking in a vortex flow pattern. Our results open up new opportunities to manipulate microscopic objects in modern microfluidic systems by using ICEO.
Luo, Long; Holden, Deric A; White, Henry S
2014-03-25
A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (<2 mV) that depends on the nanopore geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.
Maximizing fluid delivered by bubble-free electroosmotic pump with optimum pulse voltage waveform.
Tawfik, Mena E; Diez, Francisco J
2017-03-01
In generating high electroosmotic (EO) flows for use in microfluidic pumps, a limiting factor is faradaic reactions that are more pronounced at high electric fields. These reactions lead to bubble generation at the electrodes and pump efficiency reduction. The onset of gas generation for high current density EO pumping depends on many parameters including applied voltage, working fluid, and pulse duration. The onset of gas generation can be delayed and optimized for maximum volume pumped in the minimum time possible. This has been achieved through the use of a novel numerical model that predicts the onset of gas generation during EO pumping using an optimized pulse voltage waveform. This method allows applying current densities higher than previously reported. Optimal pulse voltage waveforms are calculated based on the previous theories for different current densities and electrolyte molarity. The electroosmotic pump performance is investigated by experimentally measuring the fluid volume displaced and flow rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of coating rectangular microscopic electrophoresis chamber with methylcellulose
NASA Technical Reports Server (NTRS)
Plank, L. D.
1985-01-01
One of the biggest problems in obtaining high accuracy in microscopic electrophoresis is the parabolic flow of liquid in the chamber due to electroosmotic backflow during application of the electric field. In chambers with glass walls the source of polarization leading to electroosmosis is the negative charge of the silicare and other ions that form the wall structure. It was found by Hjerten, who used a rotating 3.0 mm capillary tube for free zone electrophoresis, that precisely neutralizing this charge was extremely difficult, but if a neutral polymer matrix (formaldehyde fixed methylcellulose) was formed over the glass (quartz) wall the double layer was displaced and the viscosity at the shear plane increased so that electroosmotic flow could be eliminated. Experiments were designed to determine the reliability with which methylcellulose coating of the Zeiss Cytopherometer chamber reduced electroosmotic backflow and the effect of coating on the accuracy of cell electrophoretic mobility (EPN) determinations. Fixed rat erythrocytes (RBC) were used as test particles.
A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.
Zhang, Wenjing; He, Muyi; Yuan, Tao; Xu, Wei
2017-12-01
The measurement of electroosmotic flow (EOF) is important in a capillary electrophoresis (CE) experiment in terms of performance optimization and stability improvement. Although several methods exist, there are demanding needs to accurately characterize ultra-low electroosmotic flow rates (EOF rates), such as in coated capillaries used in protein separations. In this work, a new method, called the two-step method, was developed to accurately and rapidly measure EOF rates in a capillary, especially for measuring the ultra-low EOF rates in coated capillaries. In this two-step method, the EOF rates were calculated by measuring the migration time difference of a neutral marker in two consecutive experiments, in which a pressure driven was introduced to accelerate the migration and the DC voltage was reversed to switch the EOF direction. Uncoated capillaries were first characterized by both this two-step method and a conventional method to confirm the validity of this new method. Then this new method was applied in the study of coated capillaries. Results show that this new method is not only fast in speed, but also better in accuracy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Secondary electroosmotic flow in microchannels with nonuniform and asymmetric Zeta potential
NASA Astrophysics Data System (ADS)
Zhang, Jinbai; He, Guowei; Liu, Feng
2004-11-01
Microfluidics has a broad range of applications in biotechnology, such as sample injection, drug delivering, solution mixing, and separations. All of these techniques require handling fluids in the low Reynolds number (Re) regime. Electroosmotic flow (EOF) or electroosmocitcs is the bulk movement of liquid relative to a stationary surface due to an externally applied electronic field. It is an alternative to pressure-driven flows with convenient implementation The driving force for EOF is dependent on the zeta potential. Previous reseraches focus on the nonuniform Zeta potential. In the present work, we consider nonuniform and asymmetric Zeta potential. The effects of asymmetric Zeta potential on the EOF are investigated analytically and simulated numerically. It is demonstrated that the nonuniform and asymmetric Zeta potential can generate more flow patterns for microfluidic control compared to symmetric Zeta potential.
Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates
1990-08-30
hydrodynamic drag force exerted on the particle due to the electroosmotic flow of the solvent inside the pore, the electrophoretic force exerted on the...8217 - electrophoretic velocity UN - electroosmotic velocity b - pore mean radius D - diffusion coefficient k - local deposition rate Large Peclet numbers and small...experimentally as the charge is acquired spontaneously on mixing the particles with the solvent and it may be reversed upon addition ot ionic compounds. The
Song, Hongjun; Cai, Ziliang; Noh, Hongseok Moses; Bennett, Dawn J
2010-03-21
In this paper we present a numerical and experimental investigation of a chaotic mixer in a microchannel via low frequency switching transverse electroosmotic flow. By applying a low frequency, square-wave electric field to a pair of parallel electrodes placed at the bottom of the channel, a complex 3D spatial and time-dependence flow was generated to stretch and fold the fluid. This significantly enhanced the mixing effect. The mixing mechanism was first investigated by numerical and experimental analysis. The effects of operational parameters such as flow rate, frequency, and amplitude of the applied voltage have also been investigated. It is found that the best mixing performance is achieved when the frequency is around 1 Hz, and the required mixing length is about 1.5 mm for the case of applied electric potential 5 V peak-to-peak and flow rate 75 microL h(-1). The mixing performance was significantly enhanced when the applied electric potential increased or the flow rate of fluids decreased.
Instability in extensional microflow of aqueous gel
NASA Astrophysics Data System (ADS)
Bryce, Robert; Freeman, Mark
2007-03-01
Microfluidic devices are typically characterized by laminar flows, often leading to diffusion limited mixing. Recently it has been demonstrated that the addition of polymer to fluids can lead to elastic instabilities and, under some conditions, turbulence at arbitrarily low Reynolds numbers in mechanically driven flows [1]. We investigated electroosmotic driven extensional flow of an aqueous polymer gel. Microchannels with 100 micron width and 20 micron depth with the characteristic ``D'' chemical etch cross section were formed in glass. A Y-channel geometry with two input channels and a single output created extensional flow at the channel intersection. Instabilities where observed in the extensional region by fluorescently tagging one input stream. Instabilities were characterized by 1/f spectra in laser induced fluorescent brightness profiles. Due to the simple geometry of extensional flow and the importance of electroosmotic flows for integrated applications and in scaling, this is of interest for device applications. [1] A. Groisman and V. Steinberg, Nature 405, 53-55, 2000.
Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials
NASA Astrophysics Data System (ADS)
Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.
2017-06-01
In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.
Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
Chang, Suk Tai; Beaumont, Erin; Petsev, Dimiter N; Velev, Orlin D
2008-01-01
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.
Electrokinetic instability micromixing.
Oddy, M H; Santiago, J G; Mikkelsen, J C
2001-12-15
We have developed an electrokinetic process to rapidly stir micro- and nanoliter volume solutions for microfluidic bioanalytical applications. We rapidly stir microflow streams by initiating a flow instability, which we have observed in sinusoidally oscillating, electroosmotic channel flows. As the effect occurs within an oscillating electroosmotic flow, we refer to it here as an electrokinetic instability (EKI). The rapid stretching and folding of material lines associated with this instability can be used to stir fluid streams with Reynolds numbers of order unity, based on channel depth and rms electroosmotic velocity. This paper presents a preliminary description of the EKI and the design and fabrication of two micromixing devices capable of rapidly stirring two fluid streams using this flow phenomenon. A high-resolution CCD camera is used to record the stirring and diffusion of fluorescein from an initially unmixed configuration. Integration of fluorescence intensity over measurement volumes (voxels) provides a measure of the degree to which two streams are mixed to within the length scales of the voxels. Ensemble-averaged probability density functions and power spectra of the instantaneous spatial intensity profiles are used to quantify the mixing processes. Two-dimensional spectral bandwidths of the mixing images are initially anisotropic for the unmixed configuration, broaden as the stirring associated with the EKI rapidly stretches and folds material lines (adding high spatial frequencies to the concentration field), and then narrow to a relatively isotropic spectrum at the well-mixed conditions.
Ghosal, Sandip
2004-01-01
Electroosmotic flow (EOF) usually accompanies electrophoretic migration of charged species in capillary electrophoresis unless special precautions are taken to suppress it. The presence of the EOF provides certain advantages in separations. It is an alternative to mechanical pumps, which are inefficient and difficult to build at small scales, for transporting reagents and analytes on microfluidic chips. The downside is that any imperfection that distorts the EOF profile reduces the separation efficiency. In this paper, the basic facts about EOF are reviewed from the perspective of fluid mechanics and its effect on separations in free solution capillary zone electrophoresis is discussed in the light of recent advances.
Bath, B D; White, H S; Scott, E R
2000-02-01
Electrically facilitated molecular transport in an ion-exchange membrane (Nafion, 1100 equiv wt) has been studied using a scanning electrochemical microscope. The transport rates of ferrocenylmethyltrimethylammonium (a cation), acetaminophen (a neutral molecule), and ascorbate (an anion) through approximately 120-micron-thick membranes were measured as a function of the iontophoretic current passed across the membrane (-1.0 to +1.0 A/cm2). Transport rates were analyzed by employing the Nernst-Planck equation, modified to account for electric field-driven convective transport. Excellent agreement between experimental and theoretical values of the molecular flux was obtained using a single fitting parameter for each molecule (electroosmotic drag coefficient). The electroosmotic velocity of the neutral molecule, acetaminophen, was shown to be a factor of approximately 500 larger than that of the cation ferrocenylmethyltrimethylammonium, a consequence of the electrostatic interaction of the cation with the negatively charged pore walls of the ion-exchange membrane. Electroosmotic transport of ascorbate occurred at a negligible rate due to repulsion of the anion by the cation-selective membrane. These results suggest that electroosmotic velocities of solute molecules are determined by specific chemical interactions of the permeant and membrane and may be very different from the average solution velocity. The efficiency of electroosmotic transport was also shown to be a function of the membrane thickness, in addition to membrane/solute interactions.
Zhou, Marilyn X; Foley, Joe P
2006-03-15
To optimize separations in capillary electrophoresis, it is important to control the electroosmotic mobility of the running buffer and the factors that affect it. Through the application of a site-dissociation-site-binding model, we demonstrated that the electroosmotic mobility could be controlled qualitatively and quantitatively by the parameters related to the physical and chemical properties of the running buffer: pH, cation valence, ionic strength, viscosity, activity, and dissociation constant. Our study illustrated that the logarithm of the number of apparent silanol sites on a fused-silica surface has a linear relationship with the pH of a buffer solution. The extension of the chemical kinetics approach allowed us to obtain the thickness of the electrical double layer when multivalent inorganic cations are present with monovalent cations in a buffer solution, and we found that the thickness of the electrical double layer does not depend on the charge of anions. The general equation to predict the electroosmotic mobility suggested here also indicates the increase of electroosmotic mobility with temperature. The general equation was experimentally verified by three buffer scenarios: (i) buffers containing only monovalent cations; (ii) buffers containing multivalent inorganic cations; and (iii) buffers containing cations and neutral additives. The general equation can explain the experimental observations of (i) a maximum electroosmotic mobility for the first scenario as the pH was varied at constant ionic strength and (ii) the inversion and maximum value of the electroosmotic mobility for the second scenario when the concentration of divalent cations was varied at constant pH. A good agreement between theory and experiment was obtained for each scenario.
A novel microfluidic valve controlledby induced charge electro-osmotic flow
NASA Astrophysics Data System (ADS)
Wang, Chengfa; Song, Yongxin; Pan, Xinxiang; Li, Dongqing
2016-07-01
In this paper, a novel microfluidic valve by utilizing induced charge electro-osmotic flow (ICEOF) is proposed and analyzed. The key part of the microfluidic valve is a Y-shaped microchannel. A small metal plate is placed at each corner of the junction of the Y-shaped microchannel. When a DC electrical field is applied through the channels, electro-osmotic flows occur in the channels, and two vortices will be formed near each of the metal plates due to the ICEOF. The two vortices behave like virtual ‘blocking columns’ to restrain and direct the flow in the Y-channel. In this paper, effects of the length of the metal plates, the applied voltages, the width of the microchannel, the zeta potential of the non-metal microchannel wall, and the orientation of the branch channels on the flow switching between two outlet channels are numerically investigated. The results show that the flow switching between the two outlet channels can be flexibly achieved by adjusting the applied DC voltages. The critical switching voltage (CSV), under which one outlet channel is closed, decreases with the increase in the metal plate length and the orientation angle of the outlet channels. The CSV, however, increases with the increase in the inlet voltage, the width of the microchannel, and the absolute value of the zeta potential of the non-metal microchannel wall. Compared with other types of micro-valves, the proposed micro-valve is simple in structure without any moving parts. Only a DC power source is needed for its actuation, thus it can operate automatically by controlling the applied voltages.
Complex-Shaped Microcomponents by the Reactive Conversion of Biology Templates
2003-12-15
luminescent Eu-doped BaTiO3) and as structures for microfluidic mixing devices (e.g., based on electroosmotic flow). Optimization of the MgO conversion...ends of the iron tube. The tube was then crimped in the middle (to avoid physical mixing of the reactants) and the ends were welded shut. Upon heating...luminescent coatings (i.e., Eu-doped BaTiO 3 coatings on MgO), and ii) 3-D micro-structures for incorporation in electro-osmotic mixing devices (i.e., to
Open-access and multi-directional electroosmotic flow chip for positioning heterotypic cells.
Terao, Kyohei; Kitazawa, Yuko; Yokokawa, Ryuji; Okonogi, Atsuhito; Kotera, Hidetoshi
2011-04-21
We propose a novel method of cell positioning using electroosmotic flow (EOF) to analyze cell-cell interactions. The EOF chip has an open-to-air configuration, is equipped with four electrodes to induce multi-directional EOF, and allows access of tools for liquid handling and of physical probes for cell measurements. Evaluation of the flow within this chip indicated that it controlled hydrodynamic transport of cells, in terms of both speed and direction. We also evaluated cell viability after EOF application and determined appropriate conditions for cell positioning. Two cells were successively positioned in pocket-like microstructures, one in each micropocket, by controlling the EOF direction. As an experimental demonstration, we observed contact interactions between two individual cells through gap junction channels. The EOF chip should provide ways to elucidate various cell-cell interactions between heterotypic cells.
Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis
2015-03-03
While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.
AC electroosmotic micromixer for chemical processing in a microchannel.
Sasaki, Naoki; Kitamori, Takehiko; Kim, Haeng-Boo
2006-04-01
A rapid micromixer of fluids in a microchannel is presented. The mixer uses AC electroosmotic flow, which is induced by applying an AC voltage to a pair of coplanar meandering electrodes configured in parallel to the channel. To demonstrate performance of the mixer, dilution experiments were conducted using a dye solution in a channel of 120 microm width. Rapid mixing was observed for flow velocity up to 12 mm s(-1). The mixing time was 0.18 s, which was 20-fold faster than that of diffusional mixing without an additional mixing mechanism. Compared with the performance of reported micromixers, the present mixer worked with a shorter mixing length, particularly at low Peclet numbers (Pe < 2 x 10(3)).
Traveling wave electroosmosis: the influence of electrode array geometry.
Hrdlička, Jiří; Patel, Niketan S; Snita, Dalimil
2014-07-01
We used a mathematical model describing traveling-wave electroosmotic micropumps to explain their rather poor ability to work against pressure loads. The mathematical model is based upon the Poisson-Nernst-Planck-Navier-Stokes approach, that is, a direct numerical simulation, which allows a detail study of the energy transformations and the charging dynamics of the electric double layers. Using Matlab and COMSOL Multiphysics, we performed a set of extensive parametric studies to determine the dependence of generated electroosmotic flow on the geometric arrangement of the pump. The results suggest that the performance of AC electroosmotic pumps should improve with miniaturization. The AC electroosmosis is likely to be suitable only at submicrometer scale, as the pump's ability to work against pressure load diminishes rapidly when increasing the channel diameter. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics.
Hua, Yujuan; Jemere, Abebaw B; Dragoljic, Jelena; Harrison, D Jed
2013-07-07
Both 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ~8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics.
An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.
Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R
2016-04-26
Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps.
Van Theemsche, Achim; Deconinck, Johan; Van den Bossche, Bart; Bortels, Leslie
2002-10-01
A new more general numerical model for the simulation of electrokinetic flow in rectangular microchannels is presented. The model is based on the dilute solution model and the Navier-Stokes equations and has been implemented in a finite-element-based C++ code. The model includes the ion distribution in the Helmholtz double layer and considers only one single electrical' potential field variable throughout the domain. On a charged surface(s) the surface charge density, which is proportional to the local electrical field, is imposed. The zeta potential results, then, from this boundary condition and depends on concentrations, temperature, ion valence, molecular diffusion coefficients, and geometric conditions. Validation cases show that the model predicts accurately known analytical results, also for geometries having dimensions comparable to the Debye length. As a final study, the electro-osmotic flow in a controlled cross channel is investigated.
An analysis of induced pressure fields in electroosmotic flows through microchannels.
Zhang, Yonghao; Gu, Xiao-Jun; Barber, Robert W; Emerson, David R
2004-07-15
Induced pressure gradients are found to cause band-broadening effects which are important to the performance of microfluidic devices, such as capillary electrophoresis and capillary chromatography. An improved understanding of the underlying mechanisms causing an induced pressure gradient in electroosmotic flows is presented. The analysis shows that the induced pressure distribution is the key to understanding the experimentally observed phenomena of leakage flows. A novel way of determining the static pressures at the inlet and outlet of microchannels is also presented that takes account of the pressure losses due to flow contraction and expansion. These commonly neglected pressure losses at the channel entrance and outlet are shown to be important in accurately describing the flow. The important parameters that define the effect of induced pressure on the flows are discussed, which may facilitate the design of improved microfluidic devices. The present model clearly identifies the mechanism behind the experimentally observed leakage flows, which is further confirmed by numerical simulations. Not only can the leakage flow occur from the electric-field-free side channel to the main channel, but also the fluid in the main channel can be attracted into the side channel by the induced pressure gradient. Copyright 2004 Elsevier Inc.
Microfluidic T-form mixer utilizing switching electroosmotic flow.
Lin, Che-Hsin; Fu, Lung-Ming; Chien, Yu-Sheng
2004-09-15
This paper presents a microfluidic T-form mixer utilizing alternatively switching electroosmotic flow. The microfluidic device is fabricated on low-cost glass slides using a simple and reliable fabrication process. A switching DC field is used to generate an electroosmotic force which simultaneously drives and mixes the fluid samples. The proposed design eliminates the requirements for moving parts within the microfluidic device and delicate external control systems. Two operation modes, namely, a conventional switching mode and a novel pinched switching mode, are presented. Computer simulation is employed to predict the mixing performance attainable in both operation modes. The simulation results are then compared to those obtained experimentally. It is shown that a mixing performance as high as 97% can be achieved within a mixing distance of 1 mm downstream from the T-junction when a 60 V/cm driving voltage and a 2-Hz switching frequency are applied in the pinched switching operation mode. This study demonstrates how the driving voltage and switching frequency can be optimized to yield an enhanced mixing performance. The novel methods presented in this study provide a simple solution to mixing problems in the micro-total-analysis-systems field.
Application of ionic liquids in liquid chromatography and electrodriven separation.
Huang, Yi; Yao, Shun; Song, Hang
2013-08-01
Ionic liquids (ILs) are salts in the liquid state at ambient temperature, which are nonvolatile, nonflammable with high thermal stability and dissolve easily for a wide range of inorganic and organic materials. As a kind of potential green solvent, they show high efficiency and selectivity in the field of separation research, especially in instrumental analysis. Thus far, ILs have been successfully applied by many related researchers in high-performance liquid chromatography and capillary electrophoresis as chromatographic stationary phases, mobile phase additives or electroosmotic flow modifiers. This paper provides a detailed review of these applications in the study of natural products, foods, drugs and other fine chemicals. Furthermore, the prospects of ILs in liquid chromatographic and electrodriven techniques are discussed.
Effect of electrode positions on the mixing characteristics of an electroosmotic micromixer.
Seo, H S; Kim, Y J
2014-08-01
In this study, an electrokinetic microchannel with a ring-type mixing chamber is introduced for fast mixing. The modeled micromixer that is used for the study of the electroosmotic effect takes two fluids from different inlets and combines them in a ring-type mixing chamber and, then, they are mixed by the electric fields at the electrodes. In order to compare the mixing performance in the modeled micromixer, we numerically investigated the flow characteristics with different positions of the electrodes in the mixing chamber using the commercial code, COMSOL. In addition, we discussed the concentration distributions of the dissolved substances in the flow fields and compared the mixing efficiency in the modeled micromixer with different electrode positions and operating conditions, such as the frequencies and electric potentials at the electrodes.
Quirino, J P; Terabe, S
2000-01-01
A simple and effective way to improve detection sensitivity of positively chargeable analytes in capillary zone electrophoresis more than 100-fold is described. Cationic species were made to migrate toward the cathode even under reversed electroosmotic flow caused by a cationic surfactant by using a low pH run buffer. For the first time, with such a configuration, large volume sample stacking of cationic analytes is achieved without a polarity-switching step and loss of efficiency. Samples are prepared in water or aqueous acetonitrile. Aromatic amines and a variety of drugs were concentrated using background solutions containing phosphoric acid and cetyltrimethylammonium bromide. Qualitative and quantitative aspects are also investigated.
Electro-osmotic fluxes in multi-well electro-remediation processes.
López-Vizcaíno, Rubén; Sáez, Cristina; Mena, Esperanza; Villaseñor, Jose; Cañizares, Pablo; Rodrigo, Manuel A
2011-01-01
In recent years, electrokinetic techniques on a laboratory scale have been studied but few applications have been assessed at full-scale. In this work, a mock-up plant with two rows of three electrodes positioned in semipermeable electrolyte wells has been used to study the electro-osmotic flux distribution. Water accumulated in the cathodic wells when an electric voltage gradient was applied between the two electrode-well rows. Likewise, slight differences in the water flux were observed depending on the position and number of electrodes used and on the voltage gradient applied. Results show that the electro-osmotic flow did not increase proportionally with the number of electrodes used. During the start-up of the study, there was an abrupt change in the current density, pH and conductivity of the soil portions closest to electrodic wells due to electrokinetic processes. These differences can be explained in terms of the complex current distributions from anode and cathode rows.
NASA Astrophysics Data System (ADS)
Kamali, Reza; Soloklou, Mohsen Nasiri; Hadidi, Hooman
2018-05-01
In this study, coupled Lattice Boltzmann method is applied to solve the dynamic model for an electroosmotic flow and investigate the effects of roughness in a 2-D flat microchannel. In the present model, the Poisson equation is solved for the electrical potential, the Nernst- Planck equation is solved for the ion concentration. In the analysis of electroosmotic flows, when the electric double layers fully overlap or the convective effects are not negligible, the Nernst-Planck equation must be used to find the ionic distribution throughout the microchannel. The effects of surface roughness height, roughness interval spacing and roughness surface potential on flow conditions are investigated for two different configurations of the roughness, when the EDL layers fully overlap through the microchannel. The results show that in both arrangements of roughness in homogeneously charged rough channels, the flow rate decreases by increasing the roughness height. A discrepancy in the mass flow rate is observed when the roughness height is about 0.15 of the channel width, which its average is higher for the asymmetric configuration and this difference grows by increasing the roughness height. In the symmetric roughness arrangement, the mass flow rate increases until the roughness interval space is almost 1.5 times the roughness width and it decreases for higher values of the roughness interval space. For the heterogeneously charged rough channel, when the roughness surface potential ψr is less than channel surface potential ψs , the net charge density increases by getting far from the roughness surface, while in the opposite situation, when ψs is more than ψr , the net charge density decreases from roughness surface to the microchannel middle center. Increasing the roughness surface potential induces stronger electric driving force on the fluid which results in larger velocities in the flow.
NASA Astrophysics Data System (ADS)
Zhao, Wei; Yang, Fang; Qiao, Rui; Wang, Guiren; Rui Qiao Collaboration
2015-11-01
Understanding the instantaneous response of flows to applied AC electric fields may help understand some unsolved issues in induced-charge electrokinetics and enhance performance of microfluidic devices. Since currently available velocimeters have difficulty in measuring velocity fluctuations with frequency higher than 1 kHz, most experimental studies so far focus only on the average velocity measurement in AC electrokinetic flows. Here, we present measurements of AC electroosmotic flow (AC-EOF) response time in microchannels by a novel velocimeter with submicrometer spatial resolution and microsecond temporal resolution, i.e. laser-induced fluorescence photobleaching anemometer (LIFPA). Several parameters affecting the AC-EOF response time to the applied electric signal were investigated, i.e. channel length, transverse position and solution conductivity. The experimental results show that the EOF response time under a pulsed electric field decreases with the reduction of the microchannel length, distance between the detection position to the wall and the conductivity of the solution. This work could provide a new powerful tool to measure AC electrokinetics and enhance our understanding of AC electrokinetic flows.
Electro-osmotic flow in a rotating rectangular microchannel
Ng, Chiu-On; Qi, Cheng
2015-01-01
An analytical model is presented for low-Rossby-number electro-osmotic flow in a rectangular channel rotating about an axis perpendicular to its own. The flow is driven under the combined action of Coriolis, pressure, viscous and electric forces. Analytical solutions in the form of eigenfunction expansions are developed for the problem, which is controlled by the rotation parameter (or the inverse Ekman number), the Debye parameter, the aspect ratio of the channel and the distribution of zeta potentials on the channel walls. Under the conditions of fast rotation and a thin electric double layer (EDL), an Ekman–EDL develops on the horizontal walls. This is essentially an Ekman layer subjected to electrokinetic effects. The flow structure of this boundary layer as a function of the Ekman layer thickness normalized by the Debye length is investigated in detail in this study. It is also shown that the channel rotation may have qualitatively different effects on the flow rate, depending on the channel width and the zeta potential distributions. Axial and secondary flows are examined in detail to reveal how the development of a geostrophic core may lead to a rise or fall of the mean flow. PMID:26345088
NASA Astrophysics Data System (ADS)
Chang, Chih-Chang; Yang, Ruey-Jen
2006-08-01
This paper presents a numerical simulation investigation into electroosmotic flow mixing in three-dimensional microchannels with patterned non-uniform surface zeta potentials. Three types of micromixers are investigated, namely a straight diagonal strip mixer (i.e. the non-uniform surface zeta potential is applied along straight, diagonal strips on the lower wall of the mixing channel), a staggered asymmetric herringbone strip mixer and a straight diagonal/symmetric herringbone strip mixer. A particle tracing algorithm is used to visualize and evaluate the mixing performance of the various mixers. The particle trajectories and Poincaré maps of the various mixers are calculated from the three-dimensional flow fields. The surface charge patterns on the lower walls of the microchannels induce electroosmotic chaotic advection in the low Reynolds number flow regime, and hence enhance the passive mixing effect in the microfluidic devices. A quantitative measure of the mixing performance based on Shannon entropy is employed to quantify the mixing of two miscible fluids. The results show that the mixing efficiency increases as the magnitude of the heterogeneous zeta potential ratio (|ζR|) is increased, but decreases as the aspect ratio (H/W) is increased. The mixing efficiency of the straight diagonal strip mixer with a length ratio of l/W = 0.5 is slightly higher than that obtained from the same mixer with l/W = 1.0. Finally, the staggered asymmetric herringbone strip mixer with θ = 45°, ζR = -1, l/W = 0.5 and H/W = 0.2 provides the optimal mixing performance of all the mixers presented in this study.
2013-01-01
We demonstrate here a method that perfuses a small region of an organotypic hippocampal culture with a solution containing an enzyme substrate, a neuropeptide. Perfusate containing hydrolysis products is continually collected and subsequently analyzed for the products of the enzymatic degradation of the peptide substrate. The driving force for perfusion is an electric field. The fused silica capillaries used as “push” and “pull” or “source” and “collection” capillaries have a ζ-potential that is negative and greater in magnitude than the tissue’s ζ-potential. Thus, depending on the magnitudes of particular dimensions, the electroosmotic flow in the capillaries augments the fluid velocity in the tissue. The flow rate is not directly measured; however, we determine it using a finite-element approach. We have determined the collection efficiency of the system using an all d-amino acid internal standard. The flow rates are low, in the nL/min range, and adjustable by controlling the current or voltage in the system. The collection efficiency of the d-amino acid peptide internal standard is variable, increasing with increased current and thus electroosmotic flow rate. The collection efficiency can be rationalized in the context of a Peclet number. Electroosmotic push–pull perfusion of the neuropeptide galanin (gal1–29) through the extracellular space of an organotypic hippocampal culture results in its hydrolysis by ectopeptidase reactions occurring in the extracellular space. The products of hydrolysis were identified by MALDI-MS. Experiments at two levels of current (8–12 μA and 19–40 μA) show that the probability of seeing hydrolysis products (apparently from aminopeptidases) is greater in the Cornu Ammonis area 3 (CA3) than in the Cornu Ammonis area 1 (CA1) in the higher current experiments. In the lower current experiments, shorter peptide products of aminopeptidases (gal13–29 to gal20–19) are seen with greater frequency in CA3 than in CA1 but there is no statistically significant difference for longer peptides (gal3–29 to gal12–29). PMID:23614879
Investigating the mechanism of aggregation of colloidal particles during electrophoretic deposition
NASA Astrophysics Data System (ADS)
Guelcher, Scott Arthur
Charged particles deposited near an electrode aggregate to form ordered clusters in the presence of both dc and ac applied electric fields. The aggregation process could have important applications in areas such as coatings technology and ceramics processing. This thesis has sought to identify the phenomena driving the aggregation process. According to the electroosmotic flow developed by Solomentsev et al. (1997), aggregation in dc electric fields is caused by convection in the electroosmotic flow about deposited particles, and it is therefore an electrokinetic phenomenon which scales linearly with the electric field and the zeta-potential of the particles. Trajectories of pairs of particles aggregating to form doublets have been shown to scale linearly with the electric field and the zeta-potential of the particles, as predicted by the electroosmotic flow model. Furthermore, quantitative agreement has been demonstrated between the experimental and calculated trajectories for surface-to-surface separation distances between the particles ranging from one to two radii. The trajectories were calculated from the electroosmotic flow model with no fitting parameters; the only inputs to the model were the mobility of the deposited particles, the zeta- potential of the particles, and the applied electric field, all of which were measured independently. Clustering of colloidal particles deposited near an electrode in ac fields has also been observed, but a suitable model for the aggregation process has not been proposed and quantitative data in the literature are scarce. Trajectories of pairs of particles aggregating to form doublets in an ac field have been shown to scale with the root-mean-square (rms) electric field raised to the power 1.4 over the range of electric fields 10-35 V/cm (100-Hz sine and square waves). The aggregation is also frequency dependent; the doublets aggregate fastest at 30 Hz (square wave) and slowest at 500 Hz (square wave), while the interaction is repulsive at 1 kHz (square wave). The advantage of ac fields is that the process can operated at frequencies sufficiently high to avoid the negative effects of electrochemical reactions.
AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves.
Brask, Anders; Snakenborg, Detlef; Kutter, Jörg P; Bruus, Henrik
2006-02-01
We present the design, test and theoretical analysis of a novel micropump. The purpose is to make a pump with large flow rate (approximately 10 microL min-1) and high pressure capacity (approximately 1 bar) powered by a low voltage DeltaV<30 V. The pump is operated in AC mode with an electroosmotic actuator in connection with a full wave rectifying valve system. Individual valves are based on a flexible membrane with a slit. Bubble-free palladium electrodes are implemented in order to increase the range of applications and reduce maintenance.
Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung
2012-01-01
This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples. PMID:22736957
Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung
2012-01-01
This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples.
Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.
2003-01-01
We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.
Free-Flow Open-Chamber Electrophoresis
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Sammons, David W.
1994-01-01
Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.
DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
Ng, Wee Yang; Goh, Shireen; Lam, Yee Cheong; Yang, Chun; Rodríguez, Isabel
2009-03-21
This paper presents a novel approach of mixing two laminar flowing streams in microchannels. The mixer consists of a pair of electrodes disposed along a fluidic channel. By energizing the electrodes with a DC-biased (2.5 V) AC voltage (20 Vpp), an electrokinetic flow is induced with a flow profile perpendicular to that of the incoming laminar streams of liquids to be mixed. As a result, the flow lines of the incoming streams and the induced flow are forced to crossover and very efficient stirring and mixing at short mixing length can be achieved. The mixer can be operated from the AC-electroosmotic (ACEO) (sigma=1 mS/m, f=100 kHz) to the AC-electrothermal (ACET) (sigma=500 mS/m, f=500 kHz) flow regimes. The mixing efficiency in the ACEO regime was 92%, with a mixing length of 600 microm (Q=2 microL/min), an estimated mixing time of 69 ms and an induced ACEO flow velocity of approximately 725 microm/s. The mixing efficiency in the ACET regime was 65% for a mixing length of approximately 1200 microm. The mixer is efficient and suitable for mixing reagents in a fluid media from low to high conductivity as required in diverse microfluidic applications.
Effect of Divalent Electrolytes on Electroosmotic Flow
NASA Astrophysics Data System (ADS)
Li, Haifeng; Gnanaprakasam, Pradeep
2005-11-01
Electroosmotic flow (EOF) is of importance in micro- and nanofluidic applications. Recent numerical results [Zheng et al. (2003) Electrophoresis 24, 3006] suggest that the addition of even trace amounts of divalent counterions can greatly affect the velocity and electric potential distribution for EOF of a nominally monovalent electrolyte solution, nearly halving the flow rate in 20 nm channels. Scaled experiments were therefore carried out for steady and fully-developed EOF of buffered aqueous mono- and divalent electrolyte mixtures through fused silica microchannels. Nano-particle image velocimetry (nPIV), based upon evanescent-wave illumination of colloidal tracers, was used to obtain velocity data within about 300 nm of the wall. In all cases, the thickness of the electric double layer, defined as the distance from the wall where the velocity and electric potential recover to 99% of their freestream values, is of O(10 nm), or much less than the channel dimension of O(10 μm). The nPIV results are compared with predictions from an asymptotic perturbation analysis.
High-ionic-strength electroosmotic flows in uncharged hydrophobic nanochannels.
Kim, Daejoong; Darve, Eric
2009-02-01
We report molecular dynamics simulation results of high-ionic-strength electroosmotic flows inside uncharged nanochannels. The possibility of this unusual electrokinetic phenomenon has been discussed by Dukhin et al. [A. Dukhin, S. Dukhin, P. Goetz, Langmuir 21 (2005) 9990]. Our computed velocity profiles clearly indicate the presence of a net flow with a maximum velocity around 2 m/s. We found the apparent zeta potential to be -29.7+/-6.8 mV, using the Helmholtz-Smoluchowski relation and the measured mean velocity. This value is comparable to experimentally measured values in Dukhin et al. and references therein. We also investigate the orientations of water molecules in response to an electric field by computing polarization density. Water molecules in the bulk region are oriented along the direction of the external electric field, while their near-wall orientation shows oscillations. The computation of three-dimensional density distributions of sodium and chloride ions around each individual water molecule show that chloride ions tend to concentrate near a water molecule, whereas sodium ions are diffusely distributed.
Ac electroosmotic flows above coplanar electrodes
NASA Astrophysics Data System (ADS)
Kweon Suh, Yong
2009-03-01
Interactive numerical method has been proposed to calculate the ac electroosmotic flows above a pair of coplanar electrodes. The thin electrical triple layer (ETL) has been modeled by an asymptotic theory developed by the authors. The model corresponds to a simple dynamic equation for the surface charge density representing the integrated charge over the inner layer. Interactive calculation of the dynamic equation and the Laplace equation for several periods of ac frequency then yielded steady-state distribution of potential and the potential drop across the Stern and inner layers. The Smoluchowski's slip velocity was then determined from those two set of data and used as the boundary condition for the calculation of the Stokes' flow above the electrodes. We have shown that our solutions compared well with the experimental data reported in the literature. We investigated the effect of various parameters on the slip velocity distribution, such as the ac frequency, the electrode length, the effective Stern-layer thickness and the adsorption coefficients.
Study of Oscillating Electroosmotic Flows with High Temporal and Spatial Resolution.
Zhao, Wei; Liu, Xin; Yang, Fang; Wang, Kaige; Bai, Jintao; Qiao, Rui; Wang, Guiren
2018-02-06
Near-wall velocity of oscillating electroosmotic flow (OEOF) driven by an AC electric field has been investigated using a laser-induced fluorescence photobleaching anemometer (LIFPA). For the first time, an up to 3 kHz velocity response of OEOF has been successfully measured experimentally, even though the oscillating velocity is as low as 600 nm/s. It is found that the oscillating velocity decays with the forcing frequency f f as f f -0.66 . In the investigated range of electric field intensity (E A ), below 1 kHz, the linear relation between oscillating velocity and E A is also observed. Because the oscillating velocity at high frequency is very small, the contribution of noise to velocity measurement is significant, and it is discussed in this manuscript. The investigation reveals the instantaneous response of OEOF to the temporal change of electric fields, which exists in almost all AC electrokinetic flows. Furthermore, the experimental observations are important for designing OEOF-based micro/nanofluidics systems.
Deformations of a pre-stretched elastic membrane driven by non-uniform electroosmotic flow
NASA Astrophysics Data System (ADS)
Bercovici, Moran; Boyko, Evgeniy; Gat, Amir
2016-11-01
We study viscous-elastic dynamics of fluid confined between a rigid plate and a pre-stretched elastic membrane subjected to non-uniform electroosmotic flow, and focus on the case of a finite-size membrane clamped at its boundaries. Considering small deformations of a strongly pre-stretched membrane, and applying the lubrication approximation for the flow, we derive a linearized leading-order non-homogenous 4th order diffusion equation governing the deformation and pressure fields. We derive a time-dependent Green's function for a rectangular domain, and use it to obtain several basic solutions for the cases of constant and time varying electric fields. In addition, defining an asymptotic expansion where the small parameter is the ratio of the induced to prescribed tension, we obtain a set of four one-way coupled equations providing a first order correction for the deformation field. Funded by the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme, Grant agreement No. 678734 (MetamorphChip).
Stability of parallel electroosmotic flow subject to an axial modulated electric field
NASA Astrophysics Data System (ADS)
Suresh, Vinod; Homsy, George
2001-11-01
The stability of parallel electroosmotic flow in a micro-channel subjected to an AC electric field is studied. A spatially uniform time harmonic electric field is applied along the length of a two-dimensional micro-channel containing a dilute electrolytic solution, resulting in a time periodic parallel flow. The top and bottom walls of the channel are maintained at constant potential. The base state ion concentrations and double layer potential are determined using the Poisson-Boltzmann equation in the Debye-Hückel approximation. Experiments by other workers (Santiago et. al., unpublished) have shown that such a system can exhibit instabilities that take the form of mixing motion occurring in the bulk flow outside the double layer. It is shown that such instabilities can potentially result from the coupling of disturbances in the ion concentrations or electric potential to the base state velocity or ion concentrations, respectively. The stability boundary of the system is determined using Floquet theory and its dependence on the modulation frequency and amplitude of the axial electric field is studied.
Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping
NASA Astrophysics Data System (ADS)
Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Wu, Yupan; Wang, Chunhui; Ding, Haitao; Jiang, Hongyuan; Ding, Yucheng
2016-09-01
Traveling-wave electroosmotic (TWEO) pumping arises from the action of an imposed traveling-wave (TW) electric field on its own induced charge in the diffuse double layer, which is formed on top of an electrode array immersed in electrolyte solutions. Such a traveling field can be merely realized in practice by a discrete electrode array upon which the corresponding voltages of correct phase are imposed. By employing the theory of linear and weakly nonlinear double-layer charging dynamics, a physical model incorporating both the nonlinear surface capacitance of diffuse layer and Faradaic current injection is developed herein in order to quantify the changes in TWEO pumping performance from a single-mode TW to discrete electrode configuration. Benefiting from the linear analysis, we investigate the influence of using discrete electrode array to create the TW signal on the resulting fluid motion, and several approaches are suggested to improve the pumping performance. In the nonlinear regime, our full numerical analysis considering the intervening isolation spacing indicates that a practical four-phase discrete electrode configuration of equal electrode and gap width exhibits stronger nonlinearity than expected from the idealized pump applied with a single-mode TW in terms of voltage-dependence of the ideal pumping frequency and peak flow rate, though it has a much lower pumping performance. For model validation, pumping of electrolytes by TWEO is achieved over a confocal spiral four-phase electrode array covered by an insulating microchannel; measurement of flow velocity indicates the modified nonlinear theory considering moderate Faradaic conductance is indeed a more accurate physical description of TWEO. These results offer useful guidelines for designing high-performance TWEO microfluidic pumps with discrete electrode array.
NASA Astrophysics Data System (ADS)
Socias, Alvaro; Oyarzun, Diego; Guzman, Amador
2014-11-01
The electroosmotic flow (EOF) pattern characteristics in cross-shaped microchannels flow are important features when either suppressing or enhancing flow features for injection and separation or mixing of multiple species are the wanted objectives. There are situations in EOF in cross-shaped microchannels where the fluid flows toward unexpected and unwanted directions under a given external electric field that depends of both the applied electric field and lengths of the different channels. This article describes the effect of the electric field ratio, defined as the ratio between longitudinal nominal electric field ELong = (VE-VW) /(LW + LE) and the nominal electric field E a = (VS-VE) /(VS + VE) , where E, S and W define the east, south and west directions of the cross-shaped microchannel; V is the externally applied voltage and L is the length, on the EOF characteristics in a cross-shaped microchannel. We use the lattice-Boltzmann method (LBM) for solving the discretized Boltzmann Transport Equation (BTE) describing the coupled processes of hydrodynamics and electrodynamic. Our numerical simulations allow us to determine the EOF pattern for a wide range of the electric field ratio and Ea such that inverted flow features are captured and described, which are very important to determine for flow separation or mixing.
Yaroshchuk, A; Licón, E E; Zholkovskiy, E K; Bondarenko, M P; Heldal, T
2017-07-01
To have non-zero net flow in AC electroosmotic pumps, the electroosmosis (EO) has to be non-linear and asymmetric. This can be achieved due to ionic concentration polarization. This is known to occur close to micro-/nano-interfaces provided that the sizes of the nanopores are not too large compared to the Debye screening length. However, operation of the corresponding EO pumps can be quite sensitive to the solution concentration and, thus, unstable in practical applications. Concentration polarization of ion-exchange membranes is much more robust. However, the hydraulic permeability of the membrane is very low, which makes EO flows through them extremely small. This communication shows theoretically how this problem can be resolved via making scarce microscopic perforations in an ion-exchange membrane and putting it in series with an EO-active nano-porous medium. The problem of coupled flow, concentration and electrostatic-potential distributions is solved numerically by using finite-element methods. This analysis reveals that even quite scarce perforations of micron-scale diameters are sufficient to observe practically-interesting EO flows in the system. If the average distance between the perforations is smaller than the thickness of the EO-active layer, there is an effective homogenization of the electrolyte concentration and hydrostatic pressure in the lateral direction at some distance from the interface. The simulations show this distance to be somewhat lower than the half-distance between the perforations. On the other hand, when the surface fraction of perforations is sufficiently small (below a fraction of a percent) this "homogeneous" concentration is considerably reduced (or increased, depending on the current direction), which makes the EO strongly non-linear and asymmetric. This analysis provides initial guidance for the design of high-productivity and inexpensive AC electroosmotic pumps.
Song, Hongjun; Wang, Yi; Pant, Kapil
2013-01-01
This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.
Song, Hongjun; Wang, Yi; Pant, Kapil
2012-01-01
This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584
Electokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.
2000-01-01
A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.
Electroosmotic Flow Driven by DC and AC Electric Fields in Curved Microchannels
NASA Astrophysics Data System (ADS)
Chen, Jia-Kun; Luo, Win-Jet; Yang, Ruey-Jen
2006-10-01
The purpose of this study is to investigate electroosmotic flows driven by externally applied DC and AC electric fields in curved microchannels. For the DC electric driving field, the velocity distribution and secondary flow patterns are investigated in microchannels with various curvature ratios. We use the Dean number to describe the curvature effect of the flow field in DC electric field. The result implies that the effect of curvatures and the strength of the secondary flows become get stronger when the curvature ratio of C/A (where C is the radius of curvature of the microchannel and A is the half-height of rectangular curved tube.) is smaller. For the AC electric field, the velocity distribution and secondary flow patterns are investigated for driving frequencies in the range of 2.0 kHz (\\mathit{Wo}=0.71) to 11 kHz (\\mathit{Wo}=1.66). The numerical results reveal that the velocity at the center of the microchannel becomes lower at higher frequencies of the AC electric field and the strength of the secondary flow decreases. When the applied frequency exceeds 3.0 kHz (\\mathit{Wo}=0.87), vortices are no longer observed at the corners of the microchannel. Therefore, it can be concluded that the secondary flow induced at higher AC electric field frequencies has virtually no effect on the axial flow field in the microchannel.
Ge, Zhengwei; Wang, Wei; Yang, Chun
2011-04-07
It is challenging to continuously concentrate sample solutes in microfluidic channels. We present an improved electrokinetic technique for enhancing microfluidic temperature gradient focusing (TGF) of sample solutes using combined AC and DC field induced Joule heating effects. The introduction of an AC electric field component services dual functions: one is to produce Joule heat for generating temperature gradient; the other is to suppress electroosmotic flow. Consequently the required DC voltages for achieving sample concentration by Joule heating induced TGF are reduced, thereby leading to smaller electroosmotic flow (EOF) and thus backpressure effects. As a demonstration, the proposed technique can lead to concentration enhancement of sample solutes of more than 2500-fold, which is much higher than the existing literature reported microfluidic concentration enhancement by utilizing the Joule heating induced TGF technique.
Non-scaling behavior of electroosmotic flow in voltage-gated nanopores
Lian, Cheng; Gallegos, Alejandro; Liu, Honglai; ...
2016-11-17
Ionic transport through nanopores is of fundamental importance for the design and development of nanofiltration membranes and novel electrochemical devices including supercapacitors, fuel cells and batteries. Recent experiments have shown an unusual variation of electrical conductance with the pore size and the electrolyte parameters that defies conventional scaling relations. Here ionic transport through voltage-gated nanopores was studied by using the classical density functional theory for ion distributions in combination with the Navier–Stokes equation for the electroosmotic flow. We also identified a significant influence of the gating potential on the scaling behavior of the conductance with changes in the pore sizemore » and the salt concentration. Finally, for ion transport in narrow pores with a high gating voltage, the conductivity shows an oscillatory dependence on the pore size owing to the strong overlap of electric double layers.« less
Controlling flows in microchannels with patterned surface charge and topography.
Stroock, Abraham D; Whitesides, George M
2003-08-01
This Account reviews two procedures for controlling the flow of fluids in microchannels. The first procedure involves patterning the density of charge on the inner surfaces of a channel. These patterns generate recirculating electroosmotic flows in the presence of a steady electric field. The second procedure involves patterning topography on an inner surface of a channel. These patterns generate recirculation in the cross-section of steady, pressure-driven flows. This Account summarizes applications of these flow to mixing and to controlling dispersion (band broadening).
A novel microfluidic flow focusing method
Jiang, Hai; Weng, Xuan; Li, Dongqing
2014-01-01
A new microfluidic method that allows hydrodynamic focusing in a microchannel with two sheath flows is demonstrated. The microchannel network consists of a T-shaped main channel and two T-shaped branch channels. The flows of the sample stream and the sheath streams in the microchannel are generated by electroosmotic flow-induced pressure gradients. In comparison with other flow focusing methods, this novel method does not expose the sample to electrical field, and does not need any external pumps, tubing, and valves. PMID:25538810
Study of oscillating electroosmotic flows with high temporal and spatial resolution
NASA Astrophysics Data System (ADS)
Wang, Guiren; Liu, Xin; Yang, Fang; Wang, Kaige; Bai, Jintao; Qiao, Rui; Zhao, Wei
2017-11-01
In AC electrokinetic (EK) flow where solid-fluid interface exists, oscillating electroosmotic flow (OEOF) is an inevitable flow phenomenon. However, few experimental investigations have been reported on instantaneous velocity of OEOF driven by AC electric field. Here, we studied the near-wall velocity of OEOF by Laser-induced Fluorescence Photobleaching Anemometer (LIFPA). For the first time, an up to 3 kHz velocity response of OEOF had been successfully measured experimentally, even though the oscillating velocity was as low as 600 nm/s. It was found that the oscillating velocity decays with forcing frequency ff, as ff- 0.66 . This had never been predicted by any known theoretical investigations. In the investigated range of electric field intensity (EA) , when ff is below 1 kHz, the linear relation between oscillating velocity and EA was observed. Besides, we also found the bulk flow velocity can significantly affect the oscillating velocity of OEOF. This was also newly observed and implied the bulk flow can affect the formation process of electric double layer. This investigation could be crucial for understanding all OEOF-related phenomena and designing OEOF-based micro/nanofluidics systems. The work was supported by NSF (CAREER CBET-0954977, MRI CBET-1040227, CBET-1336004) and NSFC (11672229).
NASA Astrophysics Data System (ADS)
Sarma, Rajkumar; Deka, Nabajit; Sarma, Kuldeep; Mondal, Pranab Kumar
2018-06-01
We present a mathematical model to study the electroosmotic flow of a viscoelastic fluid in a parallel plate microchannel with a high zeta potential, taking hydrodynamic slippage at the walls into account in the underlying analysis. We use the simplified Phan-Thien-Tanner (s-PTT) constitutive relationships to describe the rheological behavior of the viscoelastic fluid, while Navier's slip law is employed to model the interfacial hydrodynamic slip. Here, we derive analytical solutions for the potential distribution, flow velocity, and volumetric flow rate based on the complete Poisson-Boltzmann equation (without considering the frequently used Debye-Hückel linear approximation). For the underlying electrokinetic transport, this investigation primarily reveals the influence of fluid rheology, wall zeta potential as modulated by the interfacial electrochemistry and interfacial slip on the velocity distribution, volumetric flow rate, and fluid stress, as well as the apparent viscosity. We show that combined with the viscoelasticity of the fluid, a higher wall zeta potential and slip coefficient lead to a phenomenal enhancement in the volumetric flow rate. We believe that this analysis, besides providing a deep theoretical insight to interpret the transport process, will also serve as a fundamental design tool for microfluidic devices/systems under electrokinetic influence.
NASA Astrophysics Data System (ADS)
Tessier, Frederic
Microfluidic and nanofluidic technology is revolutionizing experimental practices in analytical chemistry, molecular biology and medicine. Indeed, the development of systems of small dimensions for the processing of fluids heralds the miniaturization of traditional, cumbersome laboratory equipment onto robust, portable and efficient microchip devices (similar to the electronic microchips found in computers). Moreover, the conjunction of scale between the smallest man-made device and the largest macromolecules evolved by Nature is fertile ground for the blooming of our knowledge about the key processes of life. In fact, the conjunction is threefold, because modern computational resources also allow us to contemplate a rather explicit modelling of physical systems between the nanoscale and the microscale. In the five articles comprising this thesis, we present the results of computer simulations that address specific questions concerning the operation of two different model systems relevant to the development of small-scale fluidic devices for the manipulation and analysis of biomolecules. First, we use a Bond-Fluctuation Monte Carlo approach to study the electrophoretic drift of macromolecules across an entropic trap array built for the length separation of long, double-stranded DNA molecules. We show that the motion of the molecules is consistent with a simple balance between electric and entropic forces, in terms of a single characteristic parameter. We also extract detailed information on polymer deformation during migration, predict the separation of topoisomers, and investigate innovative ratchet driving regimes. Secondly, we present theoretical derivations, numerical calculations and Molecular Dynamics simulation results for an electrolyte confined in a capillary of nanoscopic dimensions. In particular, we study the effectiveness of neutral grafted polymer chains in reducing the magnitude of electroosmotic flow (fluid flow induced by an external electric field). Our results constitute the first independent, quantitative verification of theoretical scaling predictions for the coupling between grafted macromolecules and electroosmotic flow. Such simulations will contribute to the rationalization of the existing empirical knowledge about flow control with polymer coatings.
Electrokinetic transport phenomena: Mobility measurement and electrokinetic instability
NASA Astrophysics Data System (ADS)
Oddy, Michael Huson
Miniaturization and integration of traditional bioassay procedures into microfabricated on-chip assay systems, commonly referred to as "Micro Total Analysis" (muTAS) systems, may have a significant impact on the fields of genomics, proteomics, and clinical analysis. These bioanalytical microsystems leverage electroosmosis and electrophoresis for sample transport, mixing, manipulation, and separation. This dissertation addresses the following three topics relevant to such systems: a new diagnostic for measuring the electrophoretic mobility of sub-micron, fluorescently-labeled particles and the electroosmotic mobility of a microchannel; a novel method and device for rapidly stirring micro- and nanoliter volume solutions for microfluidic bioanalytical applications; and a multiple-species electrokinetic instability model. Accurate measurement of the electrophoretic particle mobility and the electroosmotic mobility of microchannel surfaces is crucial to understanding the stability of colloidal suspensions, obtaining particle tracking-based velocimetry measurements of electroosmotic flow fields, and the quantification of electrokinetic bioanalytical device performance. A method for determining these mobilities from alternating and direct current electrokinetic particle tracking measurements is presented. The ability to rapidly mix fluids at low Reynolds numbers is important to the functionality of many bioanalytical, microfluidic devices. We present an electrokinetic process for rapidly stirring microflow streams by initiating an electrokinetic flow instability. The design, fabrication and performance analysis of two micromixing devices capable of rapidly stirring two low Reynolds number fluid streams are presented. Electroosmotic and electrophoretic transport in the presence of conductivity mismatches between reagent streams and the background electrolytes, can lead to an unstable flow field generating significant sample dispersion. In the multiple-species electrokinetic instability model, we consider a high aspect ratio microchannel geometry, a conductivity gradient orthogonal to the applied electric field, and a four-species chemistry model. A linear stability analysis of the depth-averaged governing equations shows unstable eigenmodes for conductivity ratios as close to unity as 1.01. Experiments and full nonlinear simulations of the governing equations were conducted for a conductivity ratio of 1.05. Images of the disturbance dye field from the nonlinear simulations show good qualitative and quantitative agreement with experiment. Species electromigration is shown to a have significant influence on the development of the conductivity field and instability dynamics in multi-ion configurations.
Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces
NASA Astrophysics Data System (ADS)
Bautista, Oscar; Sanchez, Salvador; Mendez, Federico
2015-11-01
In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.
Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon
2008-01-01
Modeling and simulation for heat and mass transport in micro channel are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this study, we used a single-phase, fully three dimensional simulation model for PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. The results show that hydrogen and oxygen were solely supplied to the membrane by diffusion mechanism rather than convection transport, and the higher pressure drop at cathode side is thought to be caused by higher flow rate of oxygen at cathode. And it is found that the amount of water in cathode channel was determined by water formation due to electrochemical reaction plus electro-osmotic mass flux directing toward the cathode side. And it is very important to model the back diffusion and electro-osmotic mass flux accurately since the two flux was closely correlated each other and greatly influenced for determination of ionic conductivity of the membrane which directly affects the performance of fuel cell. PMID:27879774
Results of computer calculations for a simulated distribution of kidney cells
NASA Technical Reports Server (NTRS)
Micale, F. J.
1985-01-01
The results of computer calculations for a simulated distribution of kidney cells are given. The calculations were made for different values of electroosmotic flow, U sub o, and the ratio of sample diameter to channel diameter, R.
Challenges in realizing a self-contained hydraulically-driven contractile fiber actuator.
Smela, Elisabeth
2017-07-01
The field of soft robots would benefit from electrically controlled contractile actuators in the form of fibers that achieve a strain of 20% in less than a second while exerting high force. This work explores possible designs for achieving this goal using self-contained electroosmotic fluid pumping within a tube-shaped structure. The most promising configuration is a combination of a bellows and a McKibben-type muscle, since pumping fluid from the former to the latter results in contraction of both portions. Realizing such a device entails challenges in fabrication and electrokinetic fluid pumping in closed systems. Further studies of electroosmotic flow in salt-free organic solvents are needed.
Porous glass electroosmotic pumps: design and experiments.
Yao, Shuhuai; Hertzog, David E; Zeng, Shulin; Mikkelsen, James C; Santiago, Juan G
2003-12-01
An analytical model for electroosmotic flow rate, total pump current, and thermodynamic efficiency reported in a previous paper has been applied as a design guideline to fabricate porous-structure EO pumps. We have fabricated sintered-glass EO pumps that provide maximum flow rates and pressure capacities of 33 ml/min and 1.3 atm, respectively, at applied potential 100 V. These pumps are designed to be integrated with two-phase microchannel heat exchangers with load capacities of order 100 W and greater. Experiments were conducted with pumps of various geometries and using a relevant, practical range of working electrolyte ionic concentration. Characterization of the pumping performance are discussed in the terms of porosity, tortuosity, pore size, and the dependence of zeta potential on bulk ion density of the working solution. The effects of pressure and flow rate on pump current and thermodynamic efficiency are analyzed and compared to the model prediction. In particular, we explore the important tradeoff between increasing flow rate capacity and obtaining adequate thermodynamic efficiency. This research aims to demonstrate the performance of EOF pump systems and to investigate optimal and practical pump designs. We also present a gas recombination device that makes possible the implementation of this pumping technology into a closed-flow loop where electrolytic gases are converted into water and reclaimed by the system.
Conditions for similitude and the effect of finite Debye length in electroosmotic flows.
Oh, Jung Min; Kang, Kwan Hyoung
2007-06-15
Under certain conditions, the velocity field is similar to the electric field for electroosmotic flow (EOF) inside a channel. There was a disagreement between investigators on the necessity of the infinitesimal-Reynolds-number condition for the similarity when the Helmholtz-Smoluchowski relation is applied throughout the boundaries. What is puzzling is a recent numerical result that showed, contrary to the conventional belief, an evident Reynolds number dependence of the EOF. We show here that the notion that the infinitesimal-Reynolds-number condition is required originates from the misunderstanding that the EOF is the Stokes flow. We point out that the EOF becomes the potential flow when the Helmholtz-Smoluchowski relation is applied at the boundaries. We carry out a numerical simulation to investigate the effect of finiteness of the Debye length and the vorticity layer inherently existing at the channel wall. We show that the Reynolds number dependence of the previous numerical simulation resulted from the finiteness of the Debye length and subsequent convective transport of vorticity toward the bulk flow. We discuss in detail how the convection of vorticity occurs and what factors are involved in the transport process, after carrying out the simulation for different Reynolds numbers, Debye lengths, corner radii, and geometries.
Matos, Marvi A; White, Lee R; Tilton, Robert D
2008-02-15
Many biosensors, including those based on sensing agents immobilized inside hydrogels, suffer from slow response dynamics due to mass transfer limitations. Here we present an internal pumping strategy to promote convective mixing inside crosslinked polymer gels. This is envisioned as a potential tool to enhance biosensor response dynamics. The method is based on electroosmotic flows driven by non-uniform, oscillating electric fields applied across a polyacrylamide gel that has been doped with charged colloidal silica inclusions. Evidence for enhanced mixing was obtained from florescence recovery after photobleaching (FRAP) measurements with fluorescein tracer dyes dissolved in the gel. Mixing rates in silica-laden gels under the action of the applied electric fields were more than an order of magnitude faster than either diffusion or electrophoretically driven mixing in gels that did not contain silica. The mixing enhancement was due in comparable parts to the electroosmotic pumping and to the increase in gel swelling caused by the presence of the silica inclusions. The latter had the effect of increasing tracer mobility in the silica-laden gels.
Dynamically formed admicelle layer to control the amplitude of cathodic electroosmotic flow.
Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I
2012-09-21
In this manuscript, a method to precisely adjust the amplitude of a cathodic electroosmotic flow is described. The method uses a capillary pre-coated with a cationic polymer (polybrene), in presence of an anionic surfactant such as sodium dodecyl sulfate. At low concentration of surfactant, molecules will self-assemble to form an immobilized hemimicelle layer with the anionic "head" in contact with the cationic coating and the hydrophobic tail reaching into the background electrolyte. At higher concentration, surfactant molecules in solution will then interact, via hydrophobic interactions, to form an admicelle layer. It has been demonstrated that the admicelle layer can be constructed with either pure anionic surfactant (SDS), or a mixture of anionic and neutral surfactants. Admicelle coatings can be used to control the electroosmotic flow (EOF). While at low surfactant concentration the amplitude of the EOF depends on the concentration of the surfactants concentration, when this concentration reaches the critical admicelle concentration the EOF becomes near constant. The amplitude of the EOF can also be adjusted via the relative proportion of neutral and ionic surfactant in solution. Using this approach, the EOF was varied from 0.450 to 3.848 × 10(-8)m(2)V(-1)s(-1) with a precision below 0.050 × 10(-8)m(2)V(-1)s(-1) (standard deviation measured with three replicates). The coating has been tested using a mix of triazines (atrazine, simazine and terbuthylazine) and a beer sample. With the beer sample an average relative standard deviation of 1.5% for the migration time and of 2.2% for the corrected peak area was obtained. Copyright © 2012 Elsevier B.V. All rights reserved.
Microfluidic on-chip fluorescence-activated interface control system
Haiwang, Li; Nguyen, N. T.; Wong, T. N.; Ng, S. L.
2010-01-01
A microfluidic dynamic fluorescence-activated interface control system was developed for lab-on-a-chip applications. The system consists of a straight rectangular microchannel, a fluorescence excitation source, a detection sensor, a signal conversion circuit, and a high-voltage feedback system. Aqueous NaCl as conducting fluid and aqueous glycerol as nonconducting fluid were introduced to flow side by side into the straight rectangular microchannel. Fluorescent dye was added to the aqueous NaCl to work as a signal representing the interface position. Automatic control of the liquid interface was achieved by controlling the electroosmotic effect that exists only in the conducting fluid using a high-voltage feedback system. A LABVIEW program was developed to control the output of high-voltage power supply according the actual interface position, and then the interface position is modified as the output of high-voltage power supply. At last, the interface can be moved to the desired position automatically using this feedback system. The results show that the system presented in this paper can control an arbitrary interface location in real time. The effects of viscosity ratio, flow rates, and polarity of electric field were discussed. This technique can be extended to switch the sample flow and droplets automatically. PMID:21173886
Scott, Matthew; Kaler, Karan V. I. S.; Paul, Reginald
2001-06-15
Strong frequency-dependent fluid flow has been observed near the surface of microelectrode arrays. Modeling this phenomenon has proven to be difficult, with existing theories unable to account for the qualitative trend observed in the frequency spectra of this flow. Using recent electrode polarization results, a more comprehensive model of the double layer on the electrode surface is used to obtain good theoretical agreement with experimental data. Copyright 2001 Academic Press.
Erol, Özge Ö; Erdoğan, Behice Y; Onar, Atiye N
2017-03-01
Simultaneous determination of nitrate and nitrite in gunshot residue has been conducted by capillary electrophoresis using an acidic run buffer (pH 3.5). In previously developed capillary electrophoretic methods, alkaline pH separation buffers were used where nitrite and nitrate possess similar electrophoretic mobility. In this study, the electroosmotic flow has been reversed by using low pH running buffer without any additives. As a result of reversing the electroosmotic flow, very fast analysis has been actualized, well-defined and separated ion peaks emerge in less than 4 min. Besides, the limit of detection was improved by employing large volume sample stacking. Limit of detection values were 6.7 and 4.3 μM for nitrate and nitrite, respectively. In traditional procedure, mechanical agitation is employed for extraction, while in this work the extraction efficiency of ultrasound mixing for 30 min was found sufficient. The proposed method was successfully applied to authentic gunshot residue samples. © 2016 American Academy of Forensic Sciences.
The Optimization Design of An AC-Electroosmotic Micro mixer
NASA Astrophysics Data System (ADS)
Wang, Yangyang; Suh, Yongkweon; Kang, Sangmo
2007-11-01
We propose the optimization design of an AC-electroosmotic micro-mixer, which is composed of a channel and a series of pairs of electrodes attached on the bottom wall in zigzag patterns. The AC electric field is applied to the electrodes so that a fluid flow takes place around the electrodes across the channel, thus contributing to the mixing of the fluid within the channel. We have performed numerical simulations by using a commercial code (CFX 10) to optimize the shape and pattern of the electrodes via the concept of mixing index. It is found that the best combination of two kinds of electrodes, which leads to good mixing performance, is not simply harmonic one. When the length ratio of the two kinds of electrodes closes to 2:1, we can get the best mixing effect. Furthermore, we will visualize the flow pattern and measure the velocity field with a PTV technique to validate the numerical simulations. In addition, the mixing pattern will be visualized via the experiment.
Chiou, Chi-Han; Pan, Jia-Cheng; Chien, Liang-Ju; Lin, Yu-Ying; Lin, Jr-Lung
2013-01-01
This study demonstrated the feasibility of utilizing electrokinesis in an electrodeless dielectrophoresis chip to separate and concentrate microparticles such as biosamples. Numerical simulations and experimental observations were facilitated to investigate the phenomena of electrokinetics, i.e., electroosmosis, dielectrophoresis, and electrothermosis. Moreover, the proposed operating mode can be used to simultaneously convey microparticles through a microfluidic device by using electroosmotic flow, eliminating the need for an additional micropump. These results not only revealed that the directions of fluids could be controlled with a forward/backward electroosmotic flow but also categorized the optimum separating parameters for various microparticle sizes (0.5, 1.0 and 2.0 μm). Separation of microparticles can be achieved by tuning driving frequencies at a specific electric potential (90 Vpp·cm−1). Certainly, the device can be designed as a single automated device that carries out multiple functions such as transportation, separation, and detection for the realization of the envisioned Lab-on-a-Chip idea. PMID:23447009
Wu, Juanfang; Xu, Kerui; Landers, James P.; Weber, Stephen G.
2013-01-01
We demonstrate an all-electric sampling/derivatization/separation/detection system for the quantitation of thiols in tissue cultures. Extracellular fluid collected from rat organotypic hippocampal slice cultures (OHSCs) by electroosmotic flow through an11 cm (length) × 50 μm (ID) sampling capillary is introduced to a simple microfluidic chip for derivatization, continuous flow-gated injection, separation and detection.With the help of a fluorogenic, thiol-specific reagent, ThioGlo-1, we have successfully separated and detected the extracellular levels of free reduced cysteamine, homocysteineand cysteinefrom OHSCs within 25 s in a 23 mm separation channel with a confocal laser induced fluorescence (LIF) detector. Attention to the conductivities of the fluids being transported is required for successful flow-gated injections.When the sample conductivity is much higher than the run buffer conductivities, the electroosmotic velocities are such that there is less fluid coming by electroosmosis into the cross from the sample/reagent channel than is leaving by electroosmosis into the separation and waste channels. The resulting decrease in the internal fluid pressure in the injection cross pulls flow from the gated channel. This process may completely shut down the gated injection. Using a glycylglycine buffer with physiological osmolarity but only 62% of physiological conductivity and augmenting the conductivity of the run buffers solved this problem. Quantitation is by standard additions. Concentrations of cysteamine, homocysteine and cysteine in the extracellular space of OHSCs are10.6±1.0 nM (n=70), 0.18±0.01 μM (n=53) and 11.1±1.2 μM (n=70), respectively. This is the first in situquantitative estimation of endogenous cysteamine in brain. Extracellular levels of homocysteine and cysteine are comparable with other reported values. PMID:23330713
Non-scaling behavior of electroosmotic flow in voltage-gated nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Cheng; Gallegos, Alejandro; Liu, Honglai
2017-01-01
Ionic size effects and electrostatic correlations result in the non-monotonic dependence of the electrical conductivity on the pore size. For ion transport at a high gating voltage, the conductivity oscillates with the pore size due to a significant overlap of the electric double layers.
Compensating for Electro-Osmosis in Electrophoresis
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.
1987-01-01
Simple mechanical adjustment eliminates transverse velocity component. New apparatus for moving-wall electrophoresis increases degree of collimation of chemical species in sample stream. Electrophoresis chamber set at slight angle in horizontal plane to adjust angle between solution flow and wall motion. Component of velocity created cancels electro-osmotic effect.
Models of electroosmotic flow in micro- and nanochannels
NASA Astrophysics Data System (ADS)
Zheng, Z.; Conlisk, A. T.; Sadr, R.; Yoda, M.
2003-11-01
Understanding electrooosmotic flow (EOF) is essential for developing efficient drug delivery and rapid biomolecular analysis devices given the extremely high pressure gradients required to drive flows through channels smaller than about 10 μ m. We consider fully-developed and steady EOF in one- and two-dimensional micro- and nanochannel geometries. The fluid, which is assumed to behave as a continuum, is a mixture of a neutral solvent such as water and a salt where the ionic species are entirely dissociated. The model can be used to analyze EOF where the opposite channel walls are oppositely charged and EOF with arbitrary electric double layer thickness. Unlike most previous models which assume a wall ζ -potential a priori, the model calculates the boundary conditions for the (wall) mole fractions using the equilibrium electrochemical potential in the upstream reservoir. We can therefore predict the wall ζ -potential, and calculate EOF with spatially and temporally varying wall ζ -potentials. The model results for electroosmotic mobility and volumetric flow rate are compared with those from three independent experimental datasets, and found to be in good agreement with all three sets of experimental data for channel sizes ranging from O(10 nm) to O(10 μ m). The limits of the continuum theory for EOF are discussed.
An analysis of steady/unsteady electroosmotic flows through charged cylindrical nano-channels
NASA Astrophysics Data System (ADS)
Nayak, A. K.
2013-11-01
The steady/unsteady electroosmotic flow in an infinitely extended cylindrical channel with diameters ranging from 10 to 100 nm has been investigated. A mixture of (NaCl + H2O) is considered for the numerical calculation of the mass, potential, velocity, and mixing efficiency. Results are obtained for the channel diameters are small, equal, or greater than the electric double layer (EDL) both for steady and unsteady cases. In the present discussion, a symmetrical distribution of mole fractions is considered at the wall interface. Hence, the velocity and potential are symmetrical in nature toward the centerline of the channel, and also identical in nature at maximum and minimum time levels (i.e., at π/2 and 3 π/2 for a periodic function) in the transient case. In case of steady flows, the velocity and potential satisfy the chemical equilibrium condition at the centerline. It is observed that the electric double layer reaches a local equilibrium in the presence of electroosmosis when the channel length is long compared to the characteristic hydraulic diameter and the flow is essentially one-dimensional, which depends only on channel diameter. Comparisons of NP (Nernst Plank) model with PB (Poisson-Boltzmann) model are achieved out for different published results at larger channel diameters.
Wang, Jingyu; Wei, Ming-Tzo; Cohen, Joel A; Ou-Yang, H Daniel
2013-07-01
AC electroosmotic (ACEO) flow above the gap between coplanar electrodes is mapped by the measurement of Stokes forces on an optically trapped polystyrene colloidal particle. E²-dependent forces on the probe particle are selected by amplitude modulation (AM) of the ACEO electric field (E) and lock-in detection at twice the AM frequency. E²-dependent DEP of the probe is eliminated by driving the ACEO at the probe's DEP crossover frequency. The location-independent DEP crossover frequency is determined, in a separate experiment, as the limiting frequency of zero horizontal force as the probe is moved toward the midpoint between the electrodes. The ACEO velocity field, uncoupled from probe DEP effects, was mapped in the region 1-9 μm above a 28 μm gap between the electrodes. By use of variously sized probes, each at its DEP crossover frequency, the frequency dependence of the ACEO flow was determined at a point 3 μm above the electrode gap and 4 μm from an electrode tip. At this location the ACEO flow was maximal at ∼117 kHz for a low salt solution. This optical trapping method, by eliminating DEP forces on the probe, provides unambiguous mapping of the ACEO velocity field. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrokinetic flows through a parallel-plate channel with slipping stripes on walls
NASA Astrophysics Data System (ADS)
Chu, Henry C. W.; Ng, Chiu-On
2011-11-01
Electrohydrodynamic flows through a periodically-micropatterned plane channel are considered. One unit of wall pattern consists of a slipping and non-slipping stripe, each with a distinct zeta potential. The problems are solved semi-analytically by eigenfunction expansion and point collocation. In the regime of linear response, the Onsager relation for the fluid and current fluxes are deduced as linear functions of the hydrodynamic and electric forcings. The phenomenological coefficients are explicitly expressed as functions of the channel height, the Debye parameter, the slipping area fraction of the wall, the intrinsic slip length, and the zeta potentials. We generalize the theoretical limits made in previous studies on electrokinetic flow over an inhomogeneously slipping surface. One should be cautious when applying these limits. First, when a surface is not 100% uniformly slipping but has a small fraction of area being covered by no-slip slots, the electroosmotic enhancement can be appreciably reduced. Second, when the electric double layer is only moderately thin, slipping-uncharged regions on a surface will have finite inhibition effect on the electroosmotic flow. Financial support by the RGC of the HKSAR, China: Project Nos. HKU715609E, HKU715510E; and the HKU under the Seed Funding Programme for Basic Research: Project Code 200911159024.
Surface-Micromachined Microfluidic Devices
Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.
2004-09-28
Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators. Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.
NASA Technical Reports Server (NTRS)
Williams, George O., Jr.
1996-01-01
This study is a continuation of the summer of 1994 NASA/ASEE Summer Faculty Fellowship Program. This effort is a portion of the ongoing work by the Biophysics Branch of the Marshall Space Flight Center. The work has focused recently on the separation of macromolecules using capillary electrophoresis (CE). Two primary goals were established for the effort this summer. First, we wanted to use capillary electrophoresis to study the electrohydrodynamics of a sample stream. Secondly, there was a need to develop a methodology for using CE for separation of DNA molecules of various sizes. In order to achieve these goals we needed to establish a procedure for detection of a sample plug under the influence of an electric field Detection of the sample with the microscope and image analysis system would be helpful in studying the electrohydrodynamics of this stream under load. Videotaping this process under the influence of an electric field in real time would also be useful. Imaging and photography of the sample/background electrolyte interface would be vital to this study. Finally, detection and imaging of electroosmotic flow and pressure driven flow must be accomplished.
Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel.
Li, Fengqin; Jian, Yongjun; Chang, Long; Zhao, Guangpu; Yang, Liangui
2016-11-01
In this work, we investigate the time periodic electroosmotic flow (EOF) of an electrolyte solution through a slit polyelectrolyte-grafted (PE-grafted) nanochannel under applied alternating current (AC) electrical field. The PE-grafted nanochannel is represented by a rigid surface covered by a polyelectrolyte layer (PEL) in a brush-like configuration. Under Debye-Hückel approximation, we obtain analytical solutions of electrical potential in decoupled regime of PE-grafted nanochannel, where the thickness of PEL is independent of the electrostatic effects triggered by polyelectrolyte charges. Based upon the electrical potential obtained above, we calculate EOF velocities with uniform and non-uniform drag coefficients for PE-grafted nanochannel and compare their results. The effects of pertinent dimensionless parameters on EOF velocity amplitude are discussed in detail. Moreover, the amplitude of EOF velocity in a PE-grafted nanochannel is compared with that in a rigid one. It is shown that larger EOF velocity and volume flow rate are found for a PE-grafted nanochannel. In addition, AC EOF velocity is further investigated. The oscillation of velocity reduces and is restricted within the region near the PEL-electrolyte interface for higher oscillating Reynolds number Re. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lai, Anison K. R.; Chang, Chien-Cheng; Wang, Chang-Yi
2018-04-01
This paper presents a continued study to our previous work on electroosmotic (EO) flow in a channel with vertical baffle plates by further investigating EO flow through an array of baffle plates arranged in parallel to the channel walls. The flow may be driven either in the direction along or in the direction transverse to the plates, thus distinguishing the longitudinal EO pumping (LEOP) and the transverse EO pumping (TEOP). In both types of EO pumping, it is more interesting to examine the cases when the baffle plates develop a higher zeta potential (denoted by α) than that on the channel walls (β). This semi-analytical study enables us to compare between LEOP and TEOP in the pumping efficiency under similar conditions. The TEOP case is more difficult to solve due to the higher order governing partial differential equations caused by the induced non-uniform pressure gradient distribution. In particular, we examine how the EO pumping rates deviate from those predicted by the Helmholtz-Smoluchowski velocity and illustrate the general trend of optimizing the EO pumping rates with respect to the physical and geometric parameters involved.
Saucedo-Espinosa, Mario A.; Lapizco-Encinas, Blanca H.
2016-01-01
Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices. PMID:27375813
Quantification of electrical field-induced flow reversal in a microchannel.
Pirat, C; Naso, A; van der Wouden, E J; Gardeniers, J G E; Lohse, D; van den Berg, A
2008-06-01
We characterize the electroosmotic flow in a microchannel with field effect flow control. High resolution measurements of the flow velocity, performed by micro particle image velocimetry, evidence the flow reversal induced by a local modification of the surface charge due to the presence of the gate. The shape of the microchannel cross-section is accurately extracted from these measurements. Experimental velocity profiles show a quantitative agreement with numerical results accounting for this exact shape. Analytical predictions assuming a rectangular cross-section are found to give a reasonable estimate of the velocity far enough from the walls.
Microscale electrokinetic transport and stability
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hua
Electrokinetics is a leading mechanism for transport and separation of biochemical samples in microdevices due to its favorable scaling at small scales. However, electrokinetic systems can become highly unstable, and this instability adversely affects key processes such as sample stacking and electrophoretic separation. This dissertation deals with two major topics: a novel planar micropump exploiting the favorable scaling of electroosmosis at the microscale, and a fundamental study of electrokinetic flow instabilities induced by electrical conductivity gradients. Electroosmotic micropumps use field-induced ion drag to drive liquids and achieve high pressures in a compact design with no moving parts. An analytical model applicable to planar, etched-structure micropumps was developed to guide the geometrical design and working fluid selection. Standard microlithography and wet etching techniques were used to fabricate a pump 1 mm long along the flow direction and 0.9 mum by 38 mm in cross section. The pump produced a maximum pressure of 0.33 atm and a maximum flow rate of 15 mul/min at 1 kV applied potential with deionized water as working fluid. The pump performance agreed well with the theoretical model. Electrokinetic flow instabilities occur under high electric field in the presence of electrical conductivity gradients. In a microfluidic T-junction 11 mum by 155 mum in cross section, aqueous electrolytes of 10:1 conductivity ratio were electrokinetically driven into a common mixing channel. Convectively unstable waves were observed at 0.5 kV/cm, and upstream propagating waves at 1.5 kV/cm. A physical model for this instability has been developed. A linear stability analysis of the governing equations in the thin-layer limit predicts both qualitative trends and quantitative features that agree well with experimental data. Briggs-Bers criteria were applied to select physically unstable modes and determine the nature of instability. Conductivity gradients and bulk charge accumulation are a crucial factor in the instability. The role of electroosmotic flow is mainly as a convecting medium. The instability is governed by two key controlling parameters: the ratio of dynamic to dissipative forces which determines the onset of instability, and the ratio of electroviscous to electroosmotic velocities which governs the convective versus absolute nature of instability.
TCE TRANSPORT AND DEGRADATION IN SOIL USING ELECTROOSMOSIS
Laboratory experiments were used to characterize the transport and chemical transformation of TCE in undisturbed soil cores. Electroosmotic fluid flow was vertically downwards from anode to cathode. A voltage of 1.4 V/cm was applied to the soil for 4 weeks. More than 95% of the T...
Evaluation of the electroosmotic medium pump system for preparative disk gel electrophoresis.
Hayakawa, M; Hosogi, Y; Takiguchi, H; Saito, S; Shiroza, T; Shibata, Y; Hiratsuka, K; Kiyama-Kishikawa, M; Abiko, Y
2001-01-15
This paper describes an improved electroosmotic elution system for preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) based on the epochal idea of H. V. Tan et al. (Nucleic Acids Res. 1988, 16, 1921-1930). In this elution system, a semipermeable membrane, mounted under the gel terminal end, works as the elution pump as well as the partition of the elution chamber. We refer to this system as the "electroosmotic medium pump system." Operation of the constructed apparatus (3.6 cm i.d. disk gel column) and resolution of the protein bands were examined by separation of the model protein mixture (bovine serum albumin (BSA), ovalbumin, bovine carbonic anhydrase, soybean trypsin inhibitor) and purification of the membrane protein, dipeptidyl peptidase IV (DPP IV). The Spectra/Por 7 dialysis membrane provided a better flow profile for the elution buffer. The four model proteins of the protein mixture were able to be completely separated from each other and recovered without dilution. The maximum protein concentration of eluate achieved was 93 mg/ml, when applying a single component, BSA fraction V, as a sample. Furthermore, the multifunctional ectoenzyme, DPP IV, was purified in a single step. Copyright 2001 Academic Press.
2015-01-01
Here, we construct an open-channel on-chip electroosmotic pump capable of generating pressures up to ∼170 bar and flow rates up to ∼500 nL/min, adequate for high performance liquid chromatographic (HPLC) separations. A great feature of this pump is that a number of its basic pump units can be connected in series to enhance its pumping power; the output pressure is directly proportional to the number of pump units connected. This additive nature is excellent and useful, and no other pumps can work in this fashion. We demonstrate the feasibility of using this pump to perform nanoflow HPLC separations; tryptic digests of bovine serum albumin (BSA), transferrin factor (TF), and human immunoglobulins (IgG) are utilized as exemplary samples. We also compare the performance of our electroosmotic (EO)-driven HPLC with Agilent 1200 HPLC; comparable efficiencies, resolutions, and peak capacities are obtained. Since the pump is based on electroosmosis, it has no moving parts. The common material and process also allow this pump to be integrated with other microfabricated functional components. Development of this high-pressure on-chip pump will have a profound impact on the advancement of lab-on-a-chip devices. PMID:24495233
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; Micale, F. J.
1979-01-01
Long-time rinsings of the Z6040-methlycellulose coating used successfully on the ASTP MA=011 experiment indicate the permanency of this coating is inadequate for continuous flowing systems. Two approaches are described for developing coatings which are stable under continuous fluid movement and which exhibit finite and predictable electroosmotic mobility values while being effective on different types of surfaces, such as glass, plastics, and ceramic alumina, such as is currently used as the electrophoresis channel in the GE-SPAR-CPE apparatus. The surface charge modification of polystyrene latex, especially by protein absorption, to be used as model materials for ground-based electrophoresis experiments, and the preliminary work directed towards the seeded polymerization of large-particle-size monodisperse latexes in a microgravity environment are discussed.
Application of the electroosmotic effect for thrust generation
NASA Astrophysics Data System (ADS)
Hansen, Thomas Edward
The present work focuses on demonstrating the capabilities of electroosmotic pumps, (EOP) to generate thrust. An underwater glider was successfully propelled by electroosmosis for the first time published - at 0.85 inches per second. Asymmetric AC voltage pulsing proved to produce higher flow rates then equivalent DC pumps for the same average voltage. Ultra-short pulsing proved 100 nanosecond rise times in EOP are possible, which surpassed published predictions by three orders of magnitude. Theories behind efficiency losses of high power EOP were investigated. Direct measurement of effective voltage at the face of a membrane is the most accurate way to determine voltage drop across the electrolyte of an EOP. Forced convection lowered efficiency of the EOP for low voltages by preventing capacitance charging, but proved to prolong pump life during high power application.
Naftalin, R J; Tripathi, S
1985-01-01
Water flows generated by osmotic and hydrostatic pressure and electrical currents were measured in sheets of isolated rabbit ileum at 20 degrees C. Flows across the mucosal and serosal surfaces were monitored continuously by simultaneous measurement of tissue volume change (with an optical lever) and net water flows across one surface of the tissue (with a capacitance transducer). Osmotic gradients were imposed across the mucosal and serosal surfaces of the tissue separately, using probe molecules of various sizes from ethanediol (68 Da) to dextrans (161 000 Da). Flows across each surface were elicited with very short delay. The magnitudes of the flows were proportional to the osmotic gradient and related to the size of the probe molecule. Osmotic flow across the mucosal surface was associated with streaming potentials which were due to electro-osmotic water flow. The mucosal surface is a heteroporous barrier with narrow (0.7 nm radius, Lp (hydraulic conductivity) = (7.6 +/- 1.6) X 10(-9) cm s-1 cmH2O-1) cation-selective channels in parallel with wide neutral pores (ca. 6.5 nm radius, Lp = (2.3 +/- 0.2) X 10(-7) cm s-1 cmH2O-1) which admit large pressure-driven backflows from the submucosa to the lumen. There is additional evidence for a further set of narrow electroneutral pores less than 0.4 nm radius with Lp less than 7 X 10(-9) cm s-1 cmH2O-1. The serosal surface has neutral pores of uniform radius (ca. 6.5 nm), Lp = (7.6 +/- 1.6) X 10(-8) cm s-1 cmH2O-1. Hypertonic serosal solutions (100 mM-sucrose) cause osmotic transfer of fluid from isotonic mucosal solutions into the submucosa, expand it, and elevate the tissue pressure to 19.6 +/- 3.2 cmH2O (n = 4). Conversely, hypertonic mucosal solutions (100 mM-sucrose) draw fluid out of the submucosa in the presence of isotonic serosal solutions, collapse the submucosa, and lower the tissue pressure to -87.7 +/- 4.6 cmH2O (n = 5). Water flows coupled to cation movement could be generated across the mucosal surface in both directions by brief direct current pulses. The short latency of onset and cessation of flow (less than 2 s), absence of polarization potentials, and high electro-osmotic coefficients (range 50-520 mol water F-1), together with the presence of streaming potentials during osmotically generated water flows indicate electro-osmotic water flow through hydrated channels in the tight junctions and/or lateral intercellular spaces.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3989717
NASA Astrophysics Data System (ADS)
Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Wu, Qisheng
2018-05-01
Since its first proposition at the end of the last century (Schasfoort et al 1999 Science 286 942-5), field-effect flow control at micrometer dimensions has attracted tremendous attention from the microfluidic community. Most previous research on this subject has mainly focused on enhancing the electroosmotic pump flow rate by introducing an additional in-phase counterionic charge across the diffusing screening cloud with external gate electrodes of static DC voltages. However, there is a flaw, namely that AC fields, which suppress undesirable electrochemical reactions, result in zero time-averaged flow. Starting from this point, we present herein a brand new approach to traveling-wave field-effect electroosmosis control from a theoretical point of view, in the context of a smart manipulation tool for the stratified liquid content of miniaturization systems. In the configuration of a traveling-wave flow field-effect transistor (TW-FFET), the field-induced out-of-phase Debye screening charge within the thin double layer originates from the forward propagation of a traveling potential wave along a discrete arrangement of external gating electrode arrays, which interacts actively with the horizontal standing-wave electric field imposed across the source-drain terminal. Since the voltage waves and induced free charge are all sinusoidal functions of the observation time, the net ICEO flow component can survive in a broad frequency range. Due to the action of the background AC electric field on the inhomogeneous counterionic charge induced at the solution/sidewall interface, asymmetric ICEO vortex patterns appear above the traveling-wave gate arrays, giving rise to simultaneous induced-charge electroosmotic pumping and mixing of fluidic samples. A mathematical model is then developed to numerically investigate the feasibility of TW-FFETs in electrokinetic microflow manipulation. A prototyping paradigm of fully electrokinetics-driven microfabricated fluidic networks in a cross shape is theoretically erected, with four sets of gating traveling-fields in perpendicular orientations, from which the resulting liquid mixture is obtainable at any one of the three outlet ports. Supported by mathematical analysis, our physical demonstration of the TW-FFET shows it has great potential to advance fully automated electroconvective sample treatment in modern micro total analytical systems.
NASA Astrophysics Data System (ADS)
García-Sánchez, P.; Ramos, A.; Green, Nicolas G.; Morgan, H.
2008-12-01
Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.
Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
Foley, Joe P; Blackney, Donna M; Ennis, Erin J
2017-11-10
The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum peak capacity per unit time is a simple function of the upper bound, but its direct application is limited to samples with analytes whose electrophoretic mobilities can be varied independently of electroosmotic flow. For samples containing both co- and counter-electroosmotic ions whose electrophoretic mobilities cannot be easily manipulated, comparable levels of peak capacity and peak capacity per unit time for all ions can be obtained by adjusting the EOF to devote the same amount of time to the separation of each class of ions; this corresponds to μ r,Z =-0.5. Copyright © 2017 Elsevier B.V. All rights reserved.
Otevrel, Marek; Klepárník, Karel
2002-10-01
The partial differential equation describing unsteady velocity profile of electroosmotic flow (EOF) in a cylindrical capillary filled with a nonconstant viscosity electrolyte was derived. Analytical solution, based on the general Navier-Stokes equation, was found for constant viscosity electrolytes using the separation of variables (Fourier method). For the case of a nonconstant viscosity electrolyte, the steady-state velocity profile was calculated assuming that the viscosity decreases exponentially in the direction from the wall to the capillary center. Since the respective equations with nonconstant viscosity term are not solvable in general, the method of continuous binding conditions was used to solve this problem. In this method, an arbitrary viscosity profile can be modeled. The theoretical conclusions show that the relaxation times at which an EOF approaches the steady state are too short to have an impact on a separation process in any real systems. A viscous layer at the wall affects EOF significantly, if it is thicker than the Debye length of the electric double layer. The presented description of the EOF dynamics is applicable to any microfluidic systems.
NASA Astrophysics Data System (ADS)
Niu, Ran; Khodorov, Stanislav; Weber, Julian; Reinmüller, Alexander; Palberg, Thomas
2017-11-01
Micro-fluidic pumps as well as artificial micro-swimmers are conveniently realized exploiting phoretic solvent flows based on local gradients of temperature, electrolyte concentration or pH. We here present a facile micro-photometric method for monitoring pH gradients and demonstrate its performance and scope on different experimental situations including an electro-osmotic pump and modular micro-swimmers assembled from ion exchange resin beads and polystyrene colloids. In combination with the present microscope and DSLR camera our method offers a 2 μm spatial resolution at video frame rate over a field of view of 3920 × 2602 μm2. Under optimal conditions we achieve a pH-resolution of 0.05 with about equal contributions from statistical and systematical uncertainties. Our quantitative micro-photometric characterization of pH gradients which develop in time and reach out several mm is anticipated to provide valuable input for reliable modeling and simulations of a large variety of complex flow situations involving pH-gradients including artificial micro-swimmers, microfluidic pumping or even electro-convection.
Nastic Actuation: Electroosmotic Pumping for Shape-Changing Materials
2012-02-23
ELECTROOSMOTIC PUMPING FOR SHAPE-CHANGING MATERIALS Sb. GRANT NUMBER FA9550-09-1-0125 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER... Electroosmotic Pumping for Shape-Changing Materials Shapiro, Smela, Fourkas Introduction and Background We had developed a new type of...polymer actuator based on electroosmotic pumping of fluid from one place to another within an elastomeric material. Theoretical calculations showed that
Xu, Liang; Cui, Pengfei; Wang, Dongmei; Tang, Cheng; Dong, Linyi; Zhang, Can; Duan, Hongquan; Yang, Victor C
2014-01-03
In this study, poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) were prepared and chemically immobilized for the first time onto a capillary inner wall for open tubular capillary electrochromatography (OTCEC). The immobilization of PGMA NPs onto the capillary was attained by a ring-opening reaction between the NPs and an amino-silylated fused capillary inner surface. Scanning electron micrographs clearly demonstrated that the NPs were bound to the capillary inner surface in a dense monolayer. The PGMA NP-coated column was then functionalized by lysine (Lys). After fuctionalization, the capillary can afford strong anodic electroosmotic flow, especially in acidic running buffers. Separations of three amino acids (including tryptophan, tyrosine and phenylalanine) were performed in NP-modified, monolayer Lys-functionalized and bare uncoated capillaries. Results indicated that the NP-coated column can provide more retention and higher resolution for analytes due to the hydrophobic interaction between analytes and the NP-coating. Run-to-run and column-to-column reproducibilities in the separation of the amino acids using the NP-modified column were also demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.
Gagnon, Zachary; Chang, Hsueh-Chia
2005-10-01
Tailor-designed alternating current electroosmotic (AC-EO) stagnation flows are used to convect bioparticles globally from a bulk solution to localized dielectrophoretic (DEP) traps that are aligned at the flow stagnation points. The multiscale trap, with a typical trapping time of seconds for a dilute 70 microL volume of 10(3) particles per cc sample, is several orders of magnitude faster than conventional DEP traps and earlier AC-EO traps with parallel, castellated, or finger electrodes. A novel serpentine wire capable of sustaining a high voltage, up to 2500 V(RMS), without causing excessive heat dissipation or Faradaic reaction in strong electrolytes is fabricated to produce the strong AC-EO flow with two separated stagnation lines, one aligned with the field minimum and one with the field maximum. The continuous wire design allows a large applied voltage without inducing Faradaic electrode reactions. Particles are trapped within seconds at one of the traps depending on whether they suffer negative or positive DEP. The particles can also be rapidly released from their respective traps by varying the frequency of the applied AC field below particle-distinct cross-over frequencies. Zwitterion addition to the buffer allows further geometric and frequency alignments of the AC-EO and DEP motions. The same device hence allows fast trapping, detection, sorting, and characterization on a sample with realistic conductivity, volume, and bacteria count.
A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.
Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric
2012-03-07
We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.
Microfluidic point-of-care blood panel based on a novel technique: Reversible electroosmotic flow
Mohammadi, Mahdi; Madadi, Hojjat; Casals-Terré, Jasmina
2015-01-01
A wide range of diseases and conditions are monitored or diagnosed from blood plasma, but the ability to analyze a whole blood sample with the requirements for a point-of-care device, such as robustness, user-friendliness, and simple handling, remains unmet. Microfluidics technology offers the possibility not only to work fresh thumb-pricked whole blood but also to maximize the amount of the obtained plasma from the initial sample and therefore the possibility to implement multiple tests in a single cartridge. The microfluidic design presented in this paper is a combination of cross-flow filtration with a reversible electroosmotic flow that prevents clogging at the filter entrance and maximizes the amount of separated plasma. The main advantage of this design is its efficiency, since from a small amount of sample (a single droplet ∼10 μl) almost 10% of this (approx 1 μl) is extracted and collected with high purity (more than 99%) in a reasonable time (5–8 min). To validate the quality and quantity of the separated plasma and to show its potential as a clinical tool, the microfluidic chip has been combined with lateral flow immunochromatography technology to perform a qualitative detection of the thyroid-stimulating hormone and a blood panel for measuring cardiac Troponin and Creatine Kinase MB. The results from the microfluidic system are comparable to previous commercial lateral flow assays that required more sample for implementing fewer tests. PMID:26396660
Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong
2014-09-24
We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sadeghi, Arman
2018-03-01
Modeling of fluid flow in polyelectrolyte layer (PEL)-grafted microchannels is challenging due to their two-layer nature. Hence, the pertinent studies are limited only to circular and slit geometries for which matching the solutions for inside and outside the PEL is simple. In this paper, a simple variational-based approach is presented for the modeling of fully developed electroosmotic flow in PEL-grafted microchannels by which the whole fluidic area is considered as a single porous medium of variable properties. The model is capable of being applied to microchannels of a complex cross-sectional area. As an application of the method, it is applied to a rectangular microchannel of uniform PEL properties. It is shown that modeling a rectangular channel as a slit may lead to considerable overestimation of the mean velocity especially when both the PEL and electric double layer (EDL) are thick. It is also demonstrated that the mean velocity is an increasing function of the fixed charge density and PEL thickness and a decreasing function of the EDL thickness and PEL friction coefficient. The influence of the PEL thickness on the mean velocity, however, vanishes when both the PEL thickness and friction coefficient are sufficiently high.
ac electroosmotic pumping induced by noncontact external electrodes.
Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia
2007-09-21
Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1x1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mmsec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 mulsec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps.
Polymer Coatings Reduce Electro-osmosis
NASA Technical Reports Server (NTRS)
Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.
1989-01-01
Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.
Surfactant-induced electroosmotic flow in microfluidic capillaries.
Azadi, Glareh; Tripathi, Anubhav
2012-07-01
Control of EOF in microfluidic devices is essential in applications such as protein/DNA sizing and high-throughput drug screening. With the growing popularity of poly(methyl methacrylate) (PMMA) as the substrate for polymeric-based microfludics, it is important to understand the effect of surfactants on EOF in these devices. In this article, we present an extensive investigation exploring changes in EOF rate induced by SDS, polyoxyethylene lauryl ether (Brij35) and CTAB in PMMA microfluidic capillaries. In a standard protein buffer (Tris-Glycine), PMMA capillaries exhibited a cathodic EOF with measured mobility of 1.54 ± 0.1 (× 10⁻⁴ cm²/V.s). In the presence of surfactant below a critical concentration, EOF was independent of surfactant concentration. At high concentrations of surfactants, the electroosmotic mobility was found to linearly increase/decrease as the logarithm of concentration before reaching a constant value. With SDS, the EOF increased by 257% (compared to buffer), while it was decreased by 238% with CTAB. In the case of Brij35, the electroosmotic mobility was reduced by 70%. In a binary surfactant system of SDS/CTAB and SDS/Brij35, addition of oppositely charged CTAB reduced the SDS-induced EOF more effectively compared to nonionic Brij35. We propose possible mechanisms that explain the observed changes in EOF and zeta potential values. Use of neutral polymer coatings in combination with SDS resulted in 50% reduction in the electroosmotic mobility with 0.1% hydroxypropyl methyl cellulose (HPMC), while including 2% poly (N,N-dimethylacrylamide) (PDMA) had no effect. These results will potentially contribute to the development of PMMA-based microfluidic devices. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Ostrach, S.
1978-01-01
The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties.
AC Electric-Field-Induced Fluid Flow in Microelectrodes.
Ramos; Morgan; Green; Castellanos
1999-09-15
During the AC electrokinetic manipulation of particles in suspension on microelectrode structures, strong frequency-dependent fluid flow is observed. The fluid movement is predominant at frequencies below the reciprocal charge relaxation time, with a reproducible pattern occurring close to and across the electrode surface. This paper reports measurements of the fluid velocity as a function of frequency and position across the electrode. Evidence is presented indicating that the flow occurs due to electroosmotic stress arising from the interaction of the electric field and the electrical double layer on the electrodes. The electrode polarization plays a significant role in controlling the frequency dependence of the flow. Copyright 1999 Academic Press.
[Determination of inorganic ions in explosive residues by capillary zone electrophoresis].
Feng, Junhe; Guo, Baoyuan; Lin, Jin-Ming; Xu, Jianzhong; Zhou, Hong; Sun, Yuyou; Liu, Yao; Quan, Yangke; Lu, Xiaoming
2008-11-01
Five anions (chlorate, perchlorate, nitrate, nitrite, and sulfate) and two cations (ammonium and potassium) in explosive residues have been separated and determined by capillary zone electrophoresis (CZE) with indirect ultraviolet detection. The electrolyte buffer for the cation separation was 10 mmol/L pyridine (pH 4.5) -3 mmol/L 18-crown-6-ether. Ammonium and potassium ions were baseline separated in less than 2.6 min with the detection limits of 0.10 mg/L and 0.25 mg/L (S/N = 3), respectively. The electrolyte buffer for the anion separation consisted of 40 mmol/L boric acid-1.8 mmol/L potassium dichromate-2 mmol/L sodium tetraborate (pH 8.6), and tetramethyl ammonium hydroxide (TMAOH) was used as electroosmotic flow modifier. All five anions were well separated in less than 4.6 min with the detection limit range of 0.10 - 1.85 mg/L (S/N = 3). The method was successfully used in real sample investigations to confirm the type of explosives.
Rapid and efficient mixing in a slip-driven three-dimensional flow in a rectangular channel
NASA Astrophysics Data System (ADS)
Pacheco, J. Rafael; Ping Chen, Kang; Hayes, Mark A.
2006-08-01
A method for generating mixing in an electroosmotic flow of an electrolytic solution in a three-dimensional channel is proposed. When the width-to-height aspect ratio of the channel cross-section is large, mixing of a blob of a solute in a slip-driven three-dimensional flow in a rectangular channel can be used to model and assess the effectiveness of this method. It is demonstrated through numerical simulations that under certain operating conditions, rapid and efficient mixing can be achieved. Future investigation will include the solution of the exact equations and experimentation.
Conductivity detection for monitoring mixing reactions in microfluidic devices.
Liu, Y; Wipf, D O; Henry, C S
2001-08-01
A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.
Electro-osmotic mobility of non-Newtonian fluids
Zhao, Cunlu; Yang, Chun
2011-01-01
Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy–Chapman solution to the Poisson–Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases. PMID:21503161
Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
Islam, Nazmul; Reyna, Jairo
2012-04-01
This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrophoresis experiment for space
NASA Technical Reports Server (NTRS)
Vanderhoff, J. W.; Micale, F. J.
1976-01-01
The Apollo 16 electrophoresis experiment was analyzed, demonstrating that the separation of the two different-size monodisperse latexes did indeed take place, but that the separation was obscured by the pronounced electroosmotic flow of the liquid medium. The results of this experiment, however, were dramatic since it is impossible to carry out a similar separation on earth. It can be stated unequivocally from this experiment that any electrophoretic separation will be enhanced under microgravity conditions. The only question is the degree of this enhancement, which can be expected to vary from one experimental technique to another. The low-electroosmotic-mobility coating (Z6040-MC) developed under this program was found to be suitable for a free-fluid electrophoretic separation such as the experiment designed for the ASTP flight. The problem with this coating, however, is that its permanency is limited because of the slow desorption of the methylcellulose from the coated surface.
Thermoplastic microchannel fabrication using carbon dioxide laser ablation.
Wang, Shau-Chun; Lee, Chia-Yu; Chen, Hsiao-Ping
2006-04-14
We report the procedures of machining microchannels on Vivak co-polyester thermoplastic substrates using a simple industrial CO(2) laser marker. To avoid overheating the substrates, we develop low-power marking techniques in nearly anaerobic environment. These procedures are able to machine microchannels at various aspect ratios. Either straight or serpent channel can be easily marked. Like the wire-embossed channel walls, the ablated channel surfaces become charged after alkaline hydrolysis treatment. Stable electroosmotic flow in the charged conduit is observed to be of the same order of magnitude as that in fused silica capillary. Typical dynamic coating protocols to alter the conduit surface properties are transferable to the ablated channels. The effects of buffer acidity on electroosmotic mobility in both bare and coated channels are similar to those in fused silica capillaries. Using video microscopy we also demonstrate that this device is useful in distinguishing the electrophoretic mobility of bare and latex particles from that of functionalized ones.
NASA Astrophysics Data System (ADS)
Shit, G. C.; Mondal, A.; Sinha, A.; Kundu, P. K.
2016-11-01
A mathematical model has been developed for studying the electro-osmotic flow and heat transfer of bio-fluids in a micro-channel in the presence of Joule heating effects. The flow of bio-fluid is governed by the non-Newtonian power-law fluid model. The effects of thermal radiation and velocity slip condition have been examined in the case of hydrophobic channel. The Poisson-Boltzmann equation governing the electrical double layer field and a body force generated by the applied electric potential field are taken into consideration. The results presented here pertain to the case where the height of the channel is much greater than the thickness of electrical double layer comprising the Stern and diffuse layers. The expressions for flow characteristics such as velocity, temperature, shear stress and Nusselt number have been derived analytically under the purview of the present model. The results estimated on the basis of the data available in the existing scientific literatures are presented graphically. The effects of thermal radiation have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding the heat transfer in micro-channel in the presence of electric potential. The dimensionless Joule heating parameter has a reducing impact on Nusselt number for both pseudo-plastic and dilatant fluids, nevertheless its impact on Nusselt number is more pronounced for dilatant fluid. Furthermore, the effect of viscous dissipation has a significant role in controlling heat transfer and should not be neglected.
Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.
Luo, W-J
2004-10-15
This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.
Thermal characteristics of time-periodic electroosmotic flow in a circular microchannel
NASA Astrophysics Data System (ADS)
Moghadam, Ali Jabari
2015-10-01
A theoretical analysis is performed to explore the thermal characteristics of electroosmotic flow in a circular microchannel under an alternating electric field. An analytical approach is presented to solve energy equation, and then, the exact solution of temperature profiles is obtained by using the Green's function method. This study reveals that the temperature field repeats itself for each half-period. Frequency has a strong influence on the thermal behavior of the flow field. For small values of the dimensionless frequency (small channel size, large kinematic viscosity, or small frequency), the advection mechanism is dominant in the whole domain and the resultant heating (Joule heating and wall heat flux) can be transferred by the complete flow field in the axial direction; while, the middle portion of the flow field at high dimensionless frequencies does not have sufficient time to transfer heat by advection, and the bulk fluid temperature, especially in heating, may consequently become greater than the wall temperature. In a particular instance of cooling mode, a constant surface temperature case is temporarily occurred in which the axial temperature gradient will be zero. For relatively high frequencies, the unsteady bulk fluid temperature in some radial positions at some moments may be equal to the wall temperature; hence instantaneous cylindrical surfaces with zero radial heat flux may occur over a period of time. Depending on the value and sign of the thermal scale ratio, the quasi-steady-state Nusselt number (time-averaged at one period) approaches a specific value as the electrokinetic radius becomes infinity.
Xu, Hongjuan; Guy, Yifat; Hamsher, Amy; Shi, Guoyue; Sandberg, Mats; Weber, Stephen G.
2010-01-01
We hypothesize that peptide-containing solutions pulled through tissue should reveal the presence and activity of peptidases in the tissue. Using the natural ζ-potential in the organotypic hippocampal slice culture (OHSC), physiological fluids can be pulled through the tissue with an electric field. The hydrolysis of the peptides present in the fluid drawn through the tissue can be determined using capillary HPLC with electrochemical detection of the biuret complexes of the peptides following a postcolumn reaction. We have characterized this new sampling method by measuring the flow rate, examining the use of internal standards, and examining cell death caused by sampling. The sampling flow rate ranges from 60 to 150 nL/min with a 150 μm (ID) sampling capillary with an electric field (at the tip of the capillary) from 30 to 60 V/cm. Cell death can be negligible with controlled sampling conditions. Using this sampling approach, we have electroosmotically pulled Leu-enkephalin through OHSCs to identify ectopeptidase activity in the CA3 region. These studies show that a bestatin-sensitive aminopeptidase may be critical for the hydrolysis of exogenous Leu-enkephalin, a neuropeptide present in the CA3 region of OHSCs. PMID:20669992
A miniature, nongassing electroosmotic pump operating at 0.5 V.
Shin, Woonsup; Lee, Jong Myung; Nagarale, Rajaram Krishna; Shin, Samuel Jaeho; Heller, Adam
2011-03-02
Electroosmotic pumps are arguably the simplest of all pumps, consisting merely of two flow-through electrodes separated by a porous membrane. Most use platinum electrodes and operate at high voltages, electrolyzing water. Because evolved gas bubbles adhere and block parts of the electrodes and the membrane, steady pumping rates are difficult to sustain. Here we show that when the platinum electrodes are replaced by consumed Ag/Ag(2)O electrodes, the pumps operate well below 1.23 V, the thermodynamic threshold for electrolysis of water at 25 °C, where neither H(2) nor O(2) is produced. The pumping of water is efficient: 13 000 water molecules are pumped per reacted electron and 4.8 mL of water are pumped per joule at a flow rate of 0.13 mL min(-1) V(-1) cm(-2), and a flow rate per unit of power is 290 mL min(-1) W(-1). The water is driven by protons produced in the anode reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-), traveling through the porous membrane, consumed by hydroxide ions generated in the cathode reaction Ag(2)O(s) + 2 H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). A pump of 2 mm thickness and 0.3 cm(2) cross-sectional area produces flow of 5-30 μL min(-1) when operating at 0.2-0.8 V and 0.04-0.2 mA. Its flow rate can be either voltage or current controlled. The flow rate suffices for the delivery of drugs, such as a meal-associated boli of insulin.
Modeling Electrokinetic Flows by the Smoothed Profile Method
Luo, Xian; Beskok, Ali; Karniadakis, George Em
2010-01-01
We propose an efficient modeling method for electrokinetic flows based on the Smoothed Profile Method (SPM) [1–4] and spectral element discretizations. The new method allows for arbitrary differences in the electrical conductivities between the charged surfaces and the the surrounding electrolyte solution. The electrokinetic forces are included into the flow equations so that the Poisson-Boltzmann and electric charge continuity equations are cast into forms suitable for SPM. The method is validated by benchmark problems of electroosmotic flow in straight channels and electrophoresis of charged cylinders. We also present simulation results of electrophoresis of charged microtubules, and show that the simulated electrophoretic mobility and anisotropy agree with the experimental values. PMID:20352076
ac electroosmotic pumping induced by noncontact external electrodes
Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia
2007-01-01
Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1×1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mm∕sec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 μl∕sec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps. PMID:19693362
Microfluidic Injector Models Based on Artificial Neural Networks
2005-06-15
medicine, and chemistry [1], [2]. They generally perform chemical analysis involving sample preparation, mixing , reaction, injection, separation analysis...algorithms have been validated against many ex- periments found in the literature demonstrating microfluidic mixing , joule heating, injection, and...385 [7] K. Seiler, Z. H. Fan, K. Fluri, and D. J. Harrison, “ Electroosmotic pump- ing and valveless control of fluid flow within a manifold of
Electrokinetic remediation prefield test methods
NASA Technical Reports Server (NTRS)
Hodko, Dalibor (Inventor)
2000-01-01
Methods for determining the parameters critical in designing an electrokinetic soil remediation process including electrode well spacing, operating current/voltage, electroosmotic flow rate, electrode well wall design, and amount of buffering or neutralizing solution needed in the electrode wells at operating conditions are disclosed These methods are preferably performed prior to initiating a full scale electrokinetic remediation process in order to obtain efficient remediation of the contaminants.
Kubo, K; Hattori, A
2001-10-01
The use of polyamines as electroosmotic modifiers has been shown to be effective in enhancing resolution of protein glycoforms in capillary zone electrophoresis (CZE) using a bare capillary tube. In this study, effectiveness was evaluated by using a polyacrylamide-coated capillary tube instead of a bare capillary tube. Electropherograms obtained in the presence of polyamines were inferior to those obtained in their absence with respect to resolution. Electrophoretic mobility of the proteins decreased and their peaks were broadened by polyamines bound to them. This unfavorable effect was dependent on both the species of polyamines and the pH values of the electrolyte buffer. The reduction of resolution caused by polyamines was in the following order: spermidine (SPD) approximately spermidine-tri-hydrochloride (SPD-HCI) > putrescine (PUT) > hexamethonium chloride (HMC). The observed effect can be ascribed to the formation of complexes between the proteins and the polyamines. In addition, for the bare capillary tube the complexes showed interaction with the inner surface, resulting in local suppression of electroosmosis and poor resolution. The high resolution obtained in the coated capillary tube was reduced in the presence of the polyamines. Thus, the use of the polyamines has a negative effect on the analysis of protein microheterogeneity as a result of protein-polyamine interaction.
Ray, Bahni; Reddy, Puchalapalli Dinesh Sankar; Bandyopadhyay, Dipankar; Joo, Sang W; Sharma, Ashutosh; Qian, Shizhi; Biswas, Gautam
2011-11-01
We consider the stability of a thin liquid film with a free charged surface resting on a solid charged substrate by performing a general Orr-Sommerfeld (O-S) analysis complemented by a long-wave (LW) analysis. An externally applied field generates an electroosmotic flow (EOF) near the solid substrate and an electrophoretic flow (EPF) at the free surface. The EPF retards the EOF when both the surfaces have the same sign of the potential and can even lead to the flow reversal in a part of the film. In conjunction with the hydrodynamic stress, the Maxwell stress is also considered in the problem formulation. The electrokinetic potential at the liquid-air and solid-liquid interfaces is modelled by the Poisson-Boltzmann equation with the Debye-Hückel approximation. The O-S analysis shows a finite-wavenumber shear mode of instability when the inertial forces are strong and an LW interfacial mode of instability in the regime where the viscous force dominates. Interestingly, both the modes are found to form beyond a critical flow rate. The shear (interfacial) mode is found to be dominant when the film is thick (thin), the electric field applied is strong (weak), and the zeta-potentials on the liquid-air and solid-liquid interfaces are high (small). The LW analysis predicts the presence of the interfacial mode, but fails to capture the shear mode. The change in the propagation direction of the interfacial mode with the zeta-potential is predicted by both O-S and LW analyses. The parametric range in which the LW analysis is valid is thus demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A handy liquid metal based electroosmotic flow pump.
Gao, Meng; Gui, Lin
2014-06-07
A room temperature liquid metal based electroosmotic flow (EOF) pump has been proposed in this work. This low-cost EOF pump is convenient for both fabrication and integration. It utilizes polydimethylsiloxane (PDMS) microchannels filled with the liquid-metal as non-contact pump electrodes. The electrode channels are fabricated symmetrically to both sides of the pumping channel, having no contact with the pumping channel. To test the pumping performance of the EOF pump, the mean flow velocities of the fluid (DI water) in the EOF pumps were experimentally measured by tracing the fluorescent microparticles in the flow. To provide guidance for designing a low voltage EOF pump, parametric studies on dimensions of the electrode and pumping channels were performed in this work. According to the experimental results, the pumping speed can reach 5.93 μm s(-1) at a driving voltage of only 1.6 V, when the gap between the electrode and the pumping channel is 20 μm. Injecting a room temperature liquid metal into microchannels can provide a simple, rapid, low-cost but accurately self-aligned way to fabricate microelectrodes for EOF pumps, which is a promising method to achieve the miniaturization and integration of the EOF pump in microfluidic systems. The non-contact liquid electrodes have no influence on the fluid in the pumping channel when pumping, reducing Joule heat generation and preventing gas bubble formation at the surface of electrodes. The pump has great potential to drive a wide range of fluids, such as drug reagents, cell suspensions and biological macromolecule solutions.
Desiderio, C; Aturki, Z; Fanali, S
2001-02-01
Chiral separation of basic compounds was achieved by using 75 or 100 microm ID fused-silica capillaries packed with a vanoomycin-modified diol silica stationary phase. The capillary was firstly packed for about 12 cm with a slurry mixture composed of diolsilica (3:1) then with the vancomycin modified diol-silica (3:1) (23 cm), and finally with diol-silica (3:1) for about 2 cm. Frits were prepared by a heating wire at the two ends of the capillary; the detector window was prepared at 8.5 cm from the end of the capillary where vancomycin was not present. The influence of the mobile phase composition (pH and concentration, organic modifier type and concentration) on the velocity of the electroosmotic flow, chiral resolution and enantioselectivity was studied. Good enantiomeric resolution was achieved for atenolol, oxprenolol, propranolol, and venlafaxine using a mobile phase composition of 100 mM ammonium acetate solution (pH 6)/water/acetonitrile (5:5:90 v/v/v) while for terbutaline a mixture of 5:15:80 v/v/v provided the best separations. The use of methanol instead of acetonitrile caused a general increase of enantiomer resolution of the studied compounds together with a reduction of efficiency and detector response. However, the combination of acetonitrile and methanol in the mobile phase (as, e.g., 10% methanol and 80% acetonitrile) allowed to improve the enantiomer resolution with satisfactory detector response.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2001-01-01
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2003-06-03
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Development and Experimental Verification of Surface Effects in a Fluidic Model
2006-01-01
FROM A HE PLASMA INSIDE A POLYSTYRENE MICROCHANNEL. 43 FIGURE 30: THE EMISSION SPECTRA FROM A MIXED HEXAFLUOROETHYLENE/HE PLASMA INSIDE THE...MICROCHANNEL 47 FIGURE 35: THE ADSORPTION OF GLUCOSE OXIDASE TO DIFFERENT POLYMER SURFACES WAS SHOWN TO HAVE A SIGNIFICANT EFFECT ON ELECTROOSMOTIC FLOW...approach involves neglecting non-ideal (convective-diffusive) effects 5 by assuming well- mixed protein in contact with an idealized surface. Coupled
Quirino, J P; Terabe, S
1999-07-30
On-line sample concentration of fast moving inorganic anions by large volume sample stacking (LVSS) and field enhanced sample injection (FESI) with a water plug under acidic conditions is presented. Detection sensitivity enhancements were around 100 and 1000-fold for LVSS and FESI, respectively. However, reproducibility and linearity of response in the LVSS approach is superior compared to the FESI approach.
Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel.
Chen, Jia-Kun; Weng, Chi-Neng; Yang, Ruey-Jen
2009-05-07
This study performs an experimental investigation into the micromixer capabilities of three different protocols of AC electroosmotic flow (AC EOF), namely capacitive charging (CC), Faradaic charging (FC) and asymmetric polarization (AP). The results reveal that the vortices generated by the FC protocol (the frequency is around 50-350 Hz) are stronger than those induced by the CC protocol (the frequency is higher than 350 Hz), and therefore provide an improved mixing effect. However, in the FC protocol, the frequency of the external AC voltage must be carefully controlled to avoid damaging electrodes as a result of Faradaic reactions. The experimental results indicate that the AP polarization effect (the applied voltage and frequency are V(1) = 1 V(pp) and V(2) = 20 V(pp)/5 kHz) induces more powerful vortices than either the CC protocol or the FC protocol, and therefore yields a better mixing performance. Two AP-based micromixers are fabricated with symmetric and asymmetric electrode configurations, respectively. The mixing indices achieved by the two devices after an elapsed time of 60 seconds are found to be 56.49 % and 71.77 %, respectively. This result shows that of the two devices, an asymmetric electrode configuration represents a more suitable choice for micromixer in microfluidic devices.
Optoelectrofluidic enhanced immunoreaction based on optically-induced dynamic AC electroosmosis.
Han, Dongsik; Park, Je-Kyun
2016-04-07
We report a novel optoelectrofluidic immunoreaction system based on electroosmotic flow for enhancing antibody-analyte binding efficiency on a surface-based sensing system. Two conventional indium tin oxide glass slides are assembled to provide a reaction chamber for a tiny volume of sample droplet (∼5 μL), in which the top layer is employed as an antibody-immobilized substrate and the bottom layer acts as a photoconductive layer of an optoelectrofluidic device. Under the application of an AC voltage, an illuminated light pattern on the photoconductive layer causes strong counter-rotating vortices to transport analytes from the bulk solution to the vicinity of the assay spot on the glass substrate. This configuration overcomes the slow immunoreaction problem of a diffusion-based sensing system, resulting in the enhancement of binding efficiency via an optoelectrofluidic method. Furthermore, we investigate the effect of optically-induced dynamic AC electroosmotic flow on optoelectrofluidic enhancement for surface-based immunoreaction with a mathematical simulation study and real experiments using immunoglobulin G (IgG) and anti-IgG. As a result, dynamic light patterns provided better immunoreaction efficiency than static light patterns due to effective mass transport of the target analyte, resulting in an achievement of 2.18-fold enhancement under a growing circular light pattern compared to the passive mode.
Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel
NASA Astrophysics Data System (ADS)
Sadeghi, Morteza; Saidi, Mohammad Hassan; Sadeghi, Arman
2017-06-01
Infinite series solutions are obtained for electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties of long pH-regulated rectangular nanochannels of low surface potential utilizing the double finite Fourier transform method. Closed form expressions are also obtained for channels of large height to width ratio for which the depthwise variations vanish. Neglecting the Stern layer impact, the effects of EDL (Electric Double Layer) overlap, multiple ionic species, and association/dissociation reactions on the surface are all taken into account. Moreover, finite-element-based numerical simulations are conducted to account for the end effects as well as to validate the analytical solutions. We show that, with the exception of the migratory ionic conductivity, all the physicochemical parameters are strong functions of the channel aspect ratio. Accordingly, a slit geometry is not a good representative of a rectangular channel when the width is comparable to the height. It is also observed that the distribution of the electrical potential is not uniform over the surface of a charge-regulated channel. In addition, unlike ordinary channels for which an increase in the background salt concentration is always accompanied by higher flow rates, quite the opposite may be true for a pH-regulated duct at higher salt concentrations.
Lattice Boltzmann Simulation of Electroosmotic Micromixing by Heterogeneous Surface Charge
NASA Astrophysics Data System (ADS)
Tang, G. H.; Wang, F. F.; Tao, W. Q.
Microelectroosmotic flow is usually restricted to low Reynolds number regime, and mixing in these microfluidic systems becomes problematic due to the negligible inertial effects. To gain an improved understanding of mixing enhancement in microchannels patterned with heterogeneous surface charge, the lattice Boltzmann method has been employed to obtain the electric potential distribution in the electrolyte, the flow field, and the species concentration distribution, respectively. The simulation results show that heterogeneous surfaces can significantly disturb the streamlines leading to apparently substantial improvements in mixing. However, the introduction of such a feature can reduce the mass flow rate in the channel. The reduction in flow rate effectively prolongs the available mixing time when the flow passes through the channel and the observed mixing enhancement by heterogeneous surfaces partly results from longer mixing time.
Solvent-programmed microchip open-channel electrochromatography.
Kutter, J P; Jacobson, S C; Matsubara, N; Ramsey, J M
1998-08-01
Open-channel electrochromatography in combination with solvent programming is demonstrated using a microchip device. Channel walls were coated with octadecylsilanes at ambient temperatures, yielding stationary phases for chromatographic separations of neutral dyes. The electroosmotic flow after coating was sufficient to ensure transport of all species and on-chip mixing of isocratic and gradient elution conditions with acetonitrile-buffer mixtures. Chips having different channel depths between 10.2 and 2.9 μm were evaluated for performance, and van Deemter plots were established. Channel depths of about 5 μm were found to be a good compromise between efficiency and ease of operation. Isocratic and gradient elution conditions were easily established and manipulated by computer-controlled application of voltages to the terminals of the microchip. Linear gradients with different slopes, start times, duration times, and start percentages of organic modifier proved to be powerful tools to tune selectivity and analysis time for the separation of a test mixture. Even very steep gradients still produced excellent efficiencies. Together with fast reconditioning times, complete runs could be finished in under 60 s.
Use of low volatility mobile phases in electroosmotic thin-layer chromatography.
Berezkin, V G; Balushkin, A O; Tyaglov, B V; Litvin, E F
2005-08-19
A variant of electroosmotic thin-layer chromatography is suggested with the use of low volatility compounds as mobile phases aimed at drastically decreasing the evaporation of the mobile phase and improving the reproducibility of the method. The linear movement velocity of zones of separated compounds is experimentally shown to increase 2-12-fold in electroosmotic chromatography (compared to similar values in traditional TLC). The separation efficiency is also considerably increased.
Microfluidic converging/diverging channels optimised for homogeneous extensional deformation.
Zografos, K; Pimenta, F; Alves, M A; Oliveira, M S N
2016-07-01
In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field.
Microfluidic converging/diverging channels optimised for homogeneous extensional deformation
Zografos, K.; Oliveira, M. S. N.
2016-01-01
In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523
Biochemical analysis with microfluidic systems.
Bilitewski, Ursula; Genrich, Meike; Kadow, Sabine; Mersal, Gaber
2003-10-01
Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.
Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel
NASA Astrophysics Data System (ADS)
Eng Lim, An; Lim, Chun Yee; Cheong Lam, Yee; Taboryski, Rafael; Rui Wang, Shu
2017-06-01
Electroosmotic flow (EOF) is an electric-field-induced fluid flow that has numerous micro-/nanofluidic applications, ranging from pumping to chemical and biomedical analyses. Nanoscale networks/structures are often integrated in microchannels for a broad range of applications, such as electrophoretic separation of biomolecules, high reaction efficiency catalytic microreactors, and enhancement of heat transfer and sensing. Their introduction has been known to reduce EOF. Hitherto, a proper study on the effect of nanostructures orientation on EOF in a microfluidic channel is yet to be carried out. In this investigation, we present a novel fabrication method for nanostructure designs that possess maximum orientation difference, i.e. parallel versus perpendicular indented nanolines, to examine the effect of nanostructures orientation on EOF. It consists of four phases: fabrication of silicon master, creation of mold insert via electroplating, injection molding with cyclic olefin copolymer, and thermal bonding and integration of practical inlet/outlet ports. The effect of nanostructures orientation on EOF was studied experimentally by current monitoring method. The experimental results show that nanolines which are perpendicular to the microchannel reduce the EOF velocity significantly (approximately 20%). This flow velocity reduction is due to the distortion of local electric field by the perpendicular nanolines at the nanostructured surface as demonstrated by finite element simulation. In contrast, nanolines which are parallel to the microchannel have no effect on EOF, as it can be deduced that the parallel nanolines do not distort the local electric field. The outcomes of this investigation contribute to the precise control of EOF in lab-on-chip devices, and fundamental understanding of EOF in devices which utilize nanostructured surfaces for chemical and biological analyses.
NASA Astrophysics Data System (ADS)
Misra, J. C.; Mallick, B.; Sinha, A.; Roy Chowdhury, A.
2018-05-01
In the case of steady flow of a fluid under the combined influence of external electric and magnetic fields, the fluid moves forward by forming an axial momentum boundary layer. With this end in view a study has been performed here to investigate the problem of entropy generation during electroosmotically modulated flow of a third-order electrically conducting fluid flowing on a microchannel bounded by silicon-made parallel plates under the influence of a magnetic field, by paying due consideration to the steric effect. The associated mechanism of heat transfer has also been duly taken care of, by considering Cattaneo-Christov heat flux. A suitable finite difference scheme has been developed for the numerical procedure. A detailed study of the velocity and temperature distributions has been made by considering their variations with respect to different physical parameters involved in the problem. The results of numerical computation have been displayed graphically. The computational work has been carried out by considering blood as the working fluid, with the motivation of exploring some interesting phenomena in the context of hemodynamical flow in micro-vessels. Among other variables, parametric variations of the important physical variables, viz. i) skin friction and ii) Nusselt number have been investigated. The study confirms that the random motion of the fluid particles can be controlled by a suitable adjustment of the intensity of an externally applied magnetic field in the transverse direction. It is further revealed that the Nusselt number diminishes, as the Prandtl number gradually increases; however, a steady increase in the Nusselt number occurs with increase in thermal relaxation. Entropy generation is also found to be enhanced with increase in Joule heating. The results of the present study have also been validated in a proper manner.
Zhou, Chunyan; Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu
2017-04-01
Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono-6-deoxy-6-(3-methylimidazolium)-β-cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β-cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β-cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β-cyclodextrin ionic liquid. The satisfied result demonstrated that the β-cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A compact model for electroosmotic flows in microfluidic devices
NASA Astrophysics Data System (ADS)
Qiao, R.; Aluru, N. R.
2002-09-01
A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.
Field-effect Flow Control in Polymer Microchannel Networks
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.
2003-01-01
A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Chakraborty, Suman
2016-06-01
In this study, we attempt to bring out a generalized formulation for electro-osmotic flows over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. To this end, we start with modified electro-chemical potential of the individual species and subsequently use it to derive modified Nernst-Planck equation accounting for the ionic fluxes generated because of the presence of non-electrostatic potential. We establish what we refer to as the Poisson-Helmholtz-Nernst-Planck equations, coupled with the Navier-Stokes equations, to describe the complete transport process. Our analysis shows that the presence of non-electrostatic interactions between the ions results in an excess body force on the fluid, and modifies the osmotic pressure as well, which has hitherto remained unexplored. We further apply our analysis to a simple geometry, in an effort to work out the Smoluchowski slip velocity for thin electrical double layer limits. To this end, we employ singular perturbation and develop a general framework for the asymptotic analysis. Our calculations reveal that the final expression for slip velocity remains the same as that without accounting for non-electrostatic interactions. However, the presence of non-electrostatic interactions along with ion specificity can significantly change the quantitative behavior of Smoluchowski slip velocity. We subsequently demonstrate that the presence of non-electrostatic interactions may significantly alter the effective interfacial potential, also termed as the "Zeta potential." Our analysis can potentially act as a guide towards the prediction and possibly quantitative determination of the implications associated with the existence of non-electrostatic potential, in an electrokinetic transport process.
Direct numerical simulations of three-dimensional electrokinetic flows
NASA Astrophysics Data System (ADS)
Chiam, Keng-Hwee
2006-11-01
We discuss direct numerical simulations of three-dimensional electrokinetic flows in microfluidic devices. In particular, we focus on the study of the electrokinetic instability that develops when two solutions with different electrical conductivities are coupled to an external electric field. We characterize this ``mixing'' instability as a function of the parameters of the model, namely the Reynolds number of the flow, the electric Peclet number of the electrolyte solution, and the ratio of the electroosmotic to the electroviscous time scales. Finally, we describe how this model breaks down when the length scale of the device approaches the nanoscale, where the width of the electric Debye layer is comparable to the width of the channel, and discuss solutions to overcome this.
Effects of Polymer Length and Salt Concentration on the Transport of ssDNA in Nanofluidic Channels.
Qian, Weixin; Doi, Kentaro; Kawano, Satoyuki
2017-03-14
Electrokinetic phenomena in micro/nanofluidic channels have attracted considerable attention because precise control of molecular transport in liquids is required to optically and electrically capture the behavior of single molecules. However, the detailed mechanisms of polymer transport influenced by electroosmotic flows and electric fields in micro/nanofluidic channels have not yet been elucidated. In this study, a Langevin dynamics simulation was used to investigate the electrokinetic transport of single-stranded DNA (ssDNA) in a cylindrical nanochannel, employing a coarse-grained bead-spring model that quantitatively reproduced the radius of gyration, diffusion coefficient, and electrophoretic mobility of the polymer. Using this practical scale model, transport regimes of ssDNA with respect to the ζ-potential of the channel wall, the ion concentration, and the polymer length were successfully characterized. It was found that the relationship between the radius of gyration of ssDNA and the channel radius is critical to the formation of deformation regimes in a narrow channel. We conclude that a combination of electroosmotic flow velocity gradients and electric fields due to electrically polarized channel surfaces affects the alignment of molecular conformations, such that the ssDNA is stretched/compressed at negative/positive ζ-potentials in comparatively low-concentration solutions. Furthermore, this work suggests the possibility of controlling the center-of-mass position by tuning the salt concentration. These results should be applicable to the design of molecular manipulation techniques based on liquid flows in micro/nanofluidic devices. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Surface-micromachined microfluidic devices
Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.
2003-01-01
Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.
Reducing Electroosmotic Flow Enables DNA Separations in Ultrathin Channels.
1998-08-01
Chemical structure of DNA bases 2 Figure 1-2: Schematic diagram of DNA base pairing 5 Figure 1-3: Schematic diagram of the capillary and the...hydrogen atoms near one of the Figure 1-1: A. Chemical structure of the DNA backbone. B. Chemical structure of DNA bases . The DNA backbone consists...of pentose sugar (deoxyribose) held together by phosphodiester bonds. The DNA bases that are derivatives of purine are adenine (A) and guanine (G
Large-Scale Integration of Solid-State Microfluidic Valves With No Moving Parts
2005-01-01
compact and diffuse layer is called outer Helmholtz plane ( OHP ). Potential drop across the diffusion layer is called the zeta potential, ζ. As the...Gouy-Chapman model. This is shown in Fig. 3. The plane at x2 is called the outer Helmholtz plane ( OHP ). Then the total double layer capacitance Cd...Enhanced Electro-Osmotic Pumping With Liquid Bridge and Field Effect Flow Rectification, ” Presented in IEEE MEMS 2004 Conference, Maastricht, The
Hencken, Kenneth R.; Sartor, George B.
2004-08-03
An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.
Design of a Single-Cell Positioning Controller Using Electroosmotic Flow and Image Processing
Ay, Chyung; Young, Chao-Wang; Chen, Jhong-Yin
2013-01-01
The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface software. This software was designed by the Laboratory Virtual Instrument Engineering Workbench, a graphical language for finding cell positions and viewing the driving trace, and the fuzzy logic method for controlling the voltage or time of an electric field. After experiments on real human leukemic cells (U-937), the success of the cell positioning rate achieved by controlling the voltage factor reaches 100% within 5 s. A greater precision is obtained when controlling the time factor, whereby the success rate reaches 100% within 28 s. Advantages in both high speed and high precision are attained if these two voltage and time control methods are combined. The control speed with the combined method is about 5.18 times greater than that achieved by the time method, and the control precision with the combined method is more than five times greater than that achieved by the voltage method. PMID:23698272
Hayakawa, Mitsuo; Hosogi, Yumiko; Takiguchi, Hisashi; Shiroza, Teruaki; Shibata, Yasuko; Hiratsuka, Koichi; Kiyama-Kishikawa, Michiko; Hamajima, Susumu; Abiko, Yoshimitsu
2003-02-01
A simple and practical 6.8-cm-diameter (36.30-cm(2) cross-sectional-area) preparative disk gel electrophoresis device, based on the design of M. Hayakawa et al. (Anal. Biochem. 288 (2001) 168), in which the elution buffer is driven by an electroosmotic buffer flow through the membrane into the elution chamber from the anode chamber was constructed. We have found that the dialysis membranes employed provide suitable flow rates for the elution buffer, similar to those of an earlier 3.6-cm-diameter device, resulting in the prevention of excess eluate dilution. The efficiency of this device was demonstrated by the fractionation of a bovine serum albumin (BSA) Cohn V fraction into monomer, dimer, and oligomer components using nondenaturing polyacrylamide gel electrophoresis (native-PAGE). The maximum protein concentration of the eluate achieved was 133 mg/ml of BSA monomer, which required a dilution of the eluate for subsequent analytical PAGE performance. As a practical example, the two-dimensional fractionation of soluble dipeptidyl peptidase IV (sDPP IV) from 50 ml fetal bovine serum (3.20 g protein) per gel is presented. The sDPP IV enzyme protein was recovered in a relatively short time, utilizing a 6.5% T native-PAGE and subsequential sodium dodecyl sulfate-PAGE system. This device enhances the possibility of continuous electrophoretic fractionation of complex protein mixtures on a preparative scale. Copyright 2003 Elsevier Science (USA)
Numerical Simulation and Quantitative Uncertainty Assessment of Microchannel Flow
NASA Astrophysics Data System (ADS)
Debusschere, Bert; Najm, Habib; Knio, Omar; Matta, Alain; Ghanem, Roger; Le Maitre, Olivier
2002-11-01
This study investigates the effect of uncertainty in physical model parameters on computed electrokinetic flow of proteins in a microchannel with a potassium phosphate buffer. The coupled momentum, species transport, and electrostatic field equations give a detailed representation of electroosmotic and pressure-driven flow, including sample dispersion mechanisms. The chemistry model accounts for pH-dependent protein labeling reactions as well as detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. To quantify uncertainty, the governing equations are reformulated using a pseudo-spectral stochastic methodology, which uses polynomial chaos expansions to describe uncertain/stochastic model parameters, boundary conditions, and flow quantities. Integration of the resulting equations for the spectral mode strengths gives the evolution of all stochastic modes for all variables. Results show the spatiotemporal evolution of uncertainties in predicted quantities and highlight the dominant parameters contributing to these uncertainties during various flow phases. This work is supported by DARPA.
Heterogeneous surface charge enhanced micromixing for electrokinetic flows.
Biddiss, Elaine; Erickson, David; Li, Dongqing
2004-06-01
Enhancing the species mixing in microfluidic applications is key to reducing analysis time and increasing device portability. The mixing in electroosmotic flow is usually diffusion-dominated. Recent numerical studies have indicated that the introduction of electrically charged surface heterogeneities may augment mixing efficiencies by creating localized regions of flow circulation. In this study, we experimentally visualized the effects of surface charge patterning and developed an optimized electrokinetic micromixer applicable to the low Reynolds number regime. Using the optimized micromixer, mixing efficiencies were improved between 22 and 68% for the applied potentials ranging from 70 to 555 V/cm when compared with the negatively charged homogeneous case. For producing a 95% mixture, this equates to a potential decrease in the required mixing channel length of up to 88% for flows with Péclet numbers between 190 and 1500.
2011-03-21
produced were also labeled with FITC using a modification of a previously described technique [22]. PEI- coated microsphere (30 mg/mL) were mixed with...surface after 4 h of mixing (Fig. 5A), while PEI-coated microspheres were well- dispersed and immobilized onto the HAp surface (Fig. 5B). 3.3. Properties of...Erickson, L. Ren, D. Li, Zeta-potential measurement using the smoluchowski equation and the slope of the current-time relationship in electroosmotic flow
Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.
Hoettges, Kai F; McDonnell, Martin B; Hughes, Michael P
2014-02-01
Achieving real-time detection of environmental pathogens such as viruses and bacterial spores requires detectors with both rapid action and a suitable detection threshold. However, most biosensors have detection limits of an order of magnitude or more above the potential infection threshold, limiting their usefulness. This can be improved through the use of automated sample preparation techniques such as preconcentration. In this paper, we describe the use of AC electroosmosis to concentrate nanoparticles from a continuous flow. Electrodes at an optimized angle across a flow cell, and energized by a 1 kHz signal, were used to push nanoparticles to one side of a flow cell, and to extract the resulting stream with a high particle concentration from that side of the flow cell. A simple model of the behavior of particles in the flow cell has been developed, which shows good agreement with experimental results. The method indicates potential for higher concentration factors through cascading devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a microfluidic device for simultaneous mixing and pumping
NASA Astrophysics Data System (ADS)
Kim, Byoung Jae; Yoon, Sang Youl; Lee, Kyung Heon; Sung, Hyung Jin
2009-01-01
We conducted experimental and numerical studies aimed at developing a microfluidic device capable of simultaneous mixing while pumping. The proposed multifunctional device makes use of alternating current electroosmotic flow and adopts an array of planar asymmetric microelectrodes with a diagonal or herringbone shape. The pumping performance was assessed in terms of the fluid velocity at the center of the microchannel, obtained by micro PIV. To assess the mixing, flow visualizations were carried out over the electrodes to verify the lateral flows. The mixing degree was quantified in terms of a mixing efficiency obtained by three-dimensional numerical simulations. The results showed that simultaneous mixing and pumping was achieved in the channels with diagonal or herringbone electrode configurations. A herringbone electrode configuration showed better pumping compared with a reference, as well as enhanced mixing.
Convective Electrokinetic Instability With Conductivity Gradients
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hua; Lin, Hao; Lele, Sanjiva; Santiago, Juan
2003-11-01
Electrokinetic flow instability has been experimentally identified and quantified in a glass T-junction microchannel system with a cross section of 11 um x 155 um. In this system, buffers of different conductivities were electrokinetically driven into a common mixing channel by a DC electric field. A convective instability was observed with a threshold electric field of 0.45 kV/cm for a 10:1 conductivity ratio. A physical model has been developed which consists of a modified Ohmic model formulation for electrolyte solutions and the Navier-Stokes equations with an electric body force term. The model and experiments show that bulk charge accumulation in regions of conductivity gradients is the key mechanism of such instabilities. A linear stability analysis was performed in a convective framework, and Briggs-Bers criteria were applied to determine the nature of instability. The analysis shows the instability is governed by two key parameters: the ratio of molecular diffusion to electroviscous time scale which governs the onset of instability, and the ratio of electroviscous to electroosmotic velocity which governs whether the instability is convective or absolute. The model predicted critical electric field, growth rate, wavelength, and phase speed which were comparable to experimental data.
Tavares, Anthony J; Noor, M Omair; Vannoy, Charles H; Algar, W Russ; Krull, Ulrich J
2012-01-03
The glass surface of a glass-polydimethylsiloxane (PDMS) microfluidic channel was modified to develop a solid-phase assay for quantitative determination of nucleic acids. Electroosmotic flow (EOF) within channels was used to deliver and immobilize semiconductor quantum dots (QDs), and electrophoresis was used to decorate the QDs with oligonucleotide probe sequences. These processes took only minutes to complete. The QDs served as energy donors in fluorescence resonance energy transfer (FRET) for transduction of nucleic acid hybridization. Electrokinetic injection of fluorescent dye (Cy3) labeled oligonucleotide target into a microfluidic channel and subsequent hybridization (within minutes) provided the proximity for FRET, with emission from Cy3 being the analytical signal. The quantification of target concentration was achieved by measurement of the spatial length of coverage by target along a channel. Detection of femtomole quantities of target was possible with a dynamic range spanning an order of magnitude. The assay provided excellent resistance to nonspecific interactions of DNA. Further selectivity of the assay was achieved using 20% formamide, which allowed discrimination between a fully complementary target and a 3 base pair mismatch target at a contrast ratio of 4:1. © 2011 American Chemical Society
Jiang, Ting-Fu; Lv, Zhi-Hua; Wang, Yuan-Hong; Yue, Mei-E
2006-06-01
A new, simple and rapid capillary electrophoresis (CE) method, using hexadimethrine bromide (HDB) as electroosmotic flow (EOF) modifier, was developed for the identification and quantitative determination of four plant hormones, including gibberellin A3 (GA3), indole-3-acetic acid (IAA), alpha-naphthaleneacetic acid (NAA) and 4-chlorophenoxyacetic acid (4-CA). The optimum separation was achieved with 20 mM borate buffer at pH 10.00 containing 0.005% (w/v) of HDB. The applied voltage was -25 kV and the capillary temperature was kept constant at 25 degrees C. Salicylic acid was used as internal standard for quantification. The calibration dependencies exhibited good linearity within the ratios of the concentrations of standard samples and internal standard and the ratios of the peak areas of samples and internal standard. The correlation coefficients were from 0.9952 to 0.9997. The relative standard deviations of migration times and peak areas were < 1.93 and 6.84%, respectively. The effects of buffer pH, the concentration of HDB and the voltage on the resolution were studied systematically. By this method, the contents of plant hormone in biofertilizer were successfully determined within 7 min, with satisfactory repeatability and recovery.
Guo, Jinxiu; Chen, Yu; Zhao, Lizhi; Sun, Ping; Li, Hongli; Zhou, Lei; Wang, Xiayan; Pu, Qiaosheng
2016-12-16
Plastic microchips have been broadly used as disposable microfluidic devices, but the poorly defined surface properties limit their application. Herein, we proved that an anionic polymer could be used as the background electrolyte (BGE) to provide a strong and stable cathodic electroosmotic flow (EOF) and modulate the electrophoretic behavior for efficient separation in relative thicker microchannels (∼75μm id). A cathodic EOF of ∼3.3×10 -4 cm 2 V -1 s -1 was maintained using sodium polystyrene sulfonate (PSSNa) with a molecular weight of 5×10 5 as the BGE, which ensured fluorescein isothiocyanate labeled biogenic amines (BAs) appeared ahead of other components in the electropherograms obtained with microchips of cyclic olefin copolymer. Four selected BAs appeared within 50s and theoretical plate numbers of 8.0×10 5 /m were achieved. The role of PSSNa was evaluated with streaming potential, dynamic light scattering, contact angle and atomic force microscopy. Its functionalities as surface modifier, viscosity regulator and pseudostationary phase were also confirmed. The proposed electrophoretic method was applied in the fast determination of BAs in fish meat samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Yan-Li; Liu, Zhao-Sheng; Wang, He-Fang; Yan, Chao; Gao, Ru-Yu
2005-02-01
The racemic naproxen was selectively recognized by capillary electrochromatography (CEC) on an (S)-naproxen-imprinted monolith, which was prepared by an in situ thermal-initiated polymerization. The recognition selectivity of a selected monolith strictly relied on the CEC conditions involved. The factors that influence the imprinting selectivity as well as the electroosmotic flow (EOF), including the applied voltage, organic solvent, salt concentration and pH value of the buffer, column temperature, and surfactant modifiers were systematically studied. Once the column was prepared, the experiment results showed that the successful chiral recognition was dependent on CEC variables. For example: the recognition could be observed in acetonitrile and ethanol electrolytes, while methanol and dimethyl sulfoxide (DMSO) electrolytes had no chiral recognition ability. The buffer with pH values of 2.6 or 3.0 at a higher salt concentration had chiral recognition ability. Column temperatures of 25-35 degrees C were optimal. Three surfactants, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and polyoxyethylene sorbitan monolaurate (Tween 20), can improve the recognition. Baseline resolution was obtained under optimized conditions and the column efficiency of the later eluent (S)-naproxen was 90 000 plates/m.
Wang, Shau-Chun; Chen, Hsiao-Ping; Lai, Yi-Wen; Chau, Lai-Kwan; Chuang, Yu-Chun; Chen, Yi-Jie
2007-01-01
A novel microstirring strategy is applied to accelerate the digestion rate of the substrate Nα-benzoyl-L-arginine-4-nitroanilide (L-BAPA) catalyzed by sol-gel encapsulated trypsin. We use an ac nonlinear electrokinetic vortex flow to stir the solution in a microfluidic reaction chamber to reduce the diffusion length between the immobilized enzyme and substrate in the solution. High-intensity nonlinear electroosmotic microvortices, with angular speeds in excess of 1 cm∕s, are generated around a small (∼1.2 mm) conductive ion exchange granule when ac electric fields (133 V∕cm) are applied across a miniature chamber smaller than 10 μl. Coupling between these microvortices and the on-and-off electrophoretic motion of the granule in low frequency (0.1 Hz) ac fields produces chaotic stream lines to stir substrate molecules sufficiently. We demonstrate that, within a 5-min digestion period, the catalytic reaction rate of immobilized trypsin increases almost 30-fold with adequate reproducibility (15%) due to sufficient stirring action through the introduction of the nonlinear electrokinetic vortices. In contrast, low-frequency ac electroosmotic flow without the granule, provides limited stirring action and increases the reaction rate approximately ninefold with barely acceptable reproducibility (30%). Dye molecules are used to characterize the increases in solute diffusivity in the reaction reservoir in which sol-gel particles are placed, with and without the presence of granule, and compared with the static case. The solute diffusivity enhancement data show respective increases of ∼30 and ∼8 times, with and without the presence of granule. These numbers are consistent with the ratios of the enhanced reaction rate. PMID:19693360
Wang, Shau-Chun; Chen, Hsiao-Ping; Lai, Yi-Wen; Chau, Lai-Kwan; Chuang, Yu-Chun; Chen, Yi-Jie
2007-09-04
A novel microstirring strategy is applied to accelerate the digestion rate of the substrate N(alpha)-benzoyl-L-arginine-4-nitroanilide (L-BAPA) catalyzed by sol-gel encapsulated trypsin. We use an ac nonlinear electrokinetic vortex flow to stir the solution in a microfluidic reaction chamber to reduce the diffusion length between the immobilized enzyme and substrate in the solution. High-intensity nonlinear electroosmotic microvortices, with angular speeds in excess of 1 cms, are generated around a small ( approximately 1.2 mm) conductive ion exchange granule when ac electric fields (133 Vcm) are applied across a miniature chamber smaller than 10 mul. Coupling between these microvortices and the on-and-off electrophoretic motion of the granule in low frequency (0.1 Hz) ac fields produces chaotic stream lines to stir substrate molecules sufficiently. We demonstrate that, within a 5-min digestion period, the catalytic reaction rate of immobilized trypsin increases almost 30-fold with adequate reproducibility (15%) due to sufficient stirring action through the introduction of the nonlinear electrokinetic vortices. In contrast, low-frequency ac electroosmotic flow without the granule, provides limited stirring action and increases the reaction rate approximately ninefold with barely acceptable reproducibility (30%). Dye molecules are used to characterize the increases in solute diffusivity in the reaction reservoir in which sol-gel particles are placed, with and without the presence of granule, and compared with the static case. The solute diffusivity enhancement data show respective increases of approximately 30 and approximately 8 times, with and without the presence of granule. These numbers are consistent with the ratios of the enhanced reaction rate.
Yeh, Li-Hsien; Fang, Kuo-Ying; Hsu, Jyh-Ping; Tseng, Shiojenn
2011-12-01
The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Bingyu; Lei, Xiaoyun; Deng, Lijun; Li, Minsheng; Yao, Sicong; Wu, Xiaoping
2018-06-06
An ionic liquid hybrid monolithic capillary column was prepared within 7 min via photoinitiated free-radical polymerization of an ionic liquid monomer (1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide); VBIMNTF 2 ) and a methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) acting as a cross-linker. The effects of composition of prepolymerization solution and initiation time on the porous structure and electroosmotic flow (EOF) of monolithic column were investigated. The hybrid monolith was characterized by scanning electron microscopy and FTIR. Owing to the introduction of a rigid nanosized POSS silica core and ionic liquids with multiple interaction sites, the monolithic column has a well-defined 3D skeleton morphology, good mechanical stability, and a stable anodic electroosmotic flow. The hybrid monolithic stationary phase was applied to the capillary electrochromatographic separation of various alkylbenzenes, phenols, anilines and polycyclic aromatic hydrocarbons (PAHs). The column efficiency is highest (98,000 plates/m) in case of alkylbenzenes. Mixed-mode retention mechanisms including hydrophobic interactions, π-π stacking, electrostatic interaction and electrophoretic mobility can be observed. This indicates the potential of this material in terms of efficient separation of analytes of different structural type. Graphical Abstract Preparation of a mixed-mode ionic liquid hybrid monolithic column via photoinitiated polymerization of methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) and 1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide (VBIMNTF 2 ) ionic liquid for use in capillary electrochromatography.
Suss, Matthew E.; Mani, Ali; Zangle, Thomas A.; Santiago, Juan G.
2010-01-01
Current methods of optimizing electroosmotic (EO) pump performance include reducing pore diameter and reducing ionic strength of the pumped electrolyte. However, these approaches each increase the fraction of total ionic current carried by diffuse electric double layer (EDL) counterions. When this fraction becomes significant, concentration polarization (CP) effects become important, and traditional EO pump models are no longer valid. We here report on the first simultaneous concentration field measurements, pH visualizations, flow rate, and voltage measurements on such systems. Together, these measurements elucidate key parameters affecting EO pump performance in the CP dominated regime. Concentration field visualizations show propagating CP enrichment and depletion fronts sourced by our pump substrate and traveling at order mm/min velocities through millimeter-scale channels connected serially to our pump. The observed propagation in millimeter-scale channels is not explained by current propagating CP models. Additionally, visualizations show that CP fronts are sourced by and propagate from the electrodes of our system, and then interact with the EO pump-generated CP zones. With pH visualizations, we directly detect that electrolyte properties vary sharply across the anode enrichment front interface. Our observations lead us to hypothesize possible mechanisms for the propagation of both pump- and electrode-sourced CP zones. Lastly, our experiments show the dynamics associated with the interaction of electrode and membrane CP fronts, and we describe the effect of these phenomena on EO pump flow rates and applied voltages under galvanostatic conditions. PMID:21516230
Jacobson, Stephen C.; Ramsey, J. Michael
2010-06-01
A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either electric current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to electrokinetically inducing fluid flow to confine a selected material in a region of a microchannel that is not influenced by an electric field. Other structures for inducing fluid flow in accordance with this invention include nanochannel bridging membranes and alternating current fluid pumping devices. Applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
Analysis of Electrically Induced Swirling Flow of Isotonic Saline in a Mixing Microchannel
NASA Astrophysics Data System (ADS)
Hirahara, Shuzo; Tsuruta, Tomoyuki; Matsumoto, Yoshinori; Minamitani, Haruyuki
We have designed a prototype microfluidic device to mix suspended particles with isotonic saline by use of electrically induced swirling flow in the microchannel. However, the principles underlying microfluidic rotation induced by AC electrodes are not well understood, and the characteristics of the rotation velocity are unpredictable. Furthermore, these properties have not been studied using a highly conductive liquid like isotonic saline, which is an important fluid in the medical and biological fields. The lack of such studies causes uncertainty in the design required for high-performance microfluidic devices. We have examined the electrical rotational properties of the microfluid at an isotonic concentration of saline using computer simulation, and here we show that buoyant flow, which has previously been largely ignored, has a significant effect in channels of 100-μm depth or deeper, and that AC electroosmotic flow is not induced at isotonic saline concentrations.
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yue, Cheng-Feng
2004-12-01
This paper investigates two-dimensional, time-dependent electroosmotic flows driven by an AC electric field via patchwise surface heterogeneities distributed along the microchannel walls. The time-dependent flow fields through the microchannel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. It is shown that the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in accordance with the applied periodic AC electric field intensity. The circulations provide an effective means of enhancing species mixing in the microchannel. A suitable design of the patchwise heterogeneous surface pattern permits the mixing channel length and the retention time required to attain a homogeneous solution to be reduced significantly.
Recommendations and calculations concerning physical characteristics of the EEVT apparatus
NASA Technical Reports Server (NTRS)
1985-01-01
Several issues arose during the course of preparing for the flight of EEVT on STS-3. Documents concerning the issues are presented in the following order: (1) the possibility of mixing latex spheres with kidney cells as standard electrokinetic markers; (2) tube breakage and the potential for the development of leaks and bubbles; (3) effects of the shape of the sample gate on the electric field and the outward migration of cells; (4) suggestions for reducing electroosmosis by decreasing the diameter of the sample; and (5) predictions of the effects of modified sample dimensions on electroosmotic band spreading.
NASA Astrophysics Data System (ADS)
Venugopal Reddy, Kattamreddy; Makinde, Oluwole Daniel; Gnaneswara Reddy, Machireddy
2018-05-01
In this paper, we investigate the combined effects of wall slip, viscous dissipation, and Joule heating on MHD electro-osmotic peristaltic motion of Casson fluid with heat transfer through a rotating asymmetric micro-channel. Using long wavelength and small Reynolds number assumptions, the governing equations of momentum and energy balance are obtained and tackled analytically. The effects of various embedding parameters on the stream function, velocity, temperature, skin friction, Nusselt number and trapping phenomenon are displayed graphically and discussed. It is found that Casson fluid velocity, temperature, and heat transfer rate are enhanced with a boost in electro-osmotic force.
Electro-osmotic transport in wet processing of textiles
Cooper, John F.
1998-01-01
Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.
Electro-osmotic transport in wet processing of textiles
Cooper, J.F.
1998-09-22
Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1--5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric. 5 figs.
Induced charge electroosmosis micropumps using arrays of Janus micropillars.
Paustian, Joel S; Pascall, Andrew J; Wilson, Neil M; Squires, Todd M
2014-09-07
We report on a microfluidic AC-driven electrokinetic pump that uses Induced Charge Electro-Osmosis (ICEO) to generate on-chip pressures. ICEO flows occur when a bulk electric field polarizes a metal object to induce double layer formation, then drives electroosmotic flow. A microfabricated array of metal-dielectric Janus micropillars breaks the symmetry of ICEO flow, so that an AC electric field applied across the array drives ICEO flow along the length of the pump. When pumping against an external load, a pressure gradient forms along the pump length. The design was analyzed theoretically with the reciprocal theorem. The analysis reveals a maximum pressure and flow rate that depend on the ICEO slip velocity and micropillar geometry. We then fabricate and test the pump, validating our design concept by demonstrating non-local pressure driven flow using local ICEO slip flows. We varied the voltage, frequency, and electrolyte composition, measuring pump pressures of 15-150 Pa. We use the pump to drive flows through a high-resistance microfluidic channel. We conclude by discussing optimization routes suggested by our theoretical analysis to enhance the pump pressure.
Ikuta, N; Yamada, Y; Hirokawa, T
2000-01-01
For capillary zone electrophoresis, a new method of transformation from migration time to effective mobility was proposed, in which the mobility increase due to Joule heating and the relaxation effect of the potential gradient were eliminated successfully. The precision of the mobility evaluated by the proposed transformation was discussed in relation to the analysis of rare earth ions. By using the transformation, almost the same pherograms could be obtained even from the pherograms obtained originally at different applied voltages.
Shaw, Kirsty J; Joyce, Domino A; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J
2009-12-07
A novel DNA loading methodology is presented for performing DNA extraction on a microfluidic system. DNA in a chaotropic salt solution was manually loaded onto a silica monolith orthogonal to the subsequent flow of wash and elution solutions. DNA was successfully extracted from buccal swabs using electro-osmotic pumping (EOP) coupled with in situ reagents contained within a 1.5% agarose gel matrix. The extracted DNA was of sufficient quantity and purity for polymerase chain reaction (PCR) amplification.
Liu, Shaorong; Gao, Lin; Pu, Qiaosheng; Lu, Joann J; Wang, Xingjia
2006-02-01
We have recently developed a new process to create cross-linked polyacrylamide (CPA) coatings on capillary walls to suppress protein-wall interactions. Here, we demonstrate CPA-coated capillaries for high-efficiency (>2 x 10(6) plates per meter) protein separations by capillary zone electrophoresis (CZE). Because CPA virtually eliminates electroosmotic flow, positive and negative proteins cannot be analyzed in a single run. A "one-sample-two-separation" approach is developed to achieve a comprehensive protein analysis. High throughput is achieved through a multiplexed CZE system.
Remote Powering and Steering of Self-Propelling Microdevices by Modulated Electric Field
NASA Astrophysics Data System (ADS)
Sharma, Rachita; Velev, Orlin
2011-03-01
We have demonstrated a new class of self-propelling particles based on semiconductor diodes powered by an external uniform alternating electric field. The millimeter-sized diodes floating in water rectify the applied voltage. The resulting particle-localized electroosmotic flux propels them in the direction of the cathode or the anode depending on their surface charge. These particles suggest solutions to problems facing self-propelling microdevices, and have potential for a range of additional functions. The next step in this direction is the steering of these devices. We will present a novel technique that allows on-demand steering of these self-propelling diodes. We control remotely their direction of motion by modifying the duty cycle of the applied AC field. The diodes change their direction of motion when a DC component (wave asymmetry) is introduced into the AC signal. The DC component leads to redistribution of the counterions near the diode surface. The electric field resulting from this counterion redistribution exerts a torque on the dipole across the diode, causing its rotation. Thus, the reversal of the direction of the electroosmotic flux caused by field asymmetry leads to reversal of the direction of diode motion. This new principle of steering of self-propelling diodes can find applications in MEMs and micro-robotics.
An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.
Dutta, Debashis
2015-07-24
The present work analyzes the electrodynamic dispersion of sample streams in a free-flow zone electrophoresis (FFZE) chamber resulting due to partial or complete blockage of electroosmotic flow (EOF) across the channel width by the sidewalls of the conduit. This blockage of EOF has been assumed to generate a pressure-driven backflow in the transverse direction for maintaining flow balance in the system. A parallel-plate based FFZE device with the analyte stream located far away from the channel side regions has been considered to simplify the current analysis. Applying a method-of-moments formulation, an analytic expression was derived for the variance of the sample zone at steady state as a function of its position in the separation chamber under these conditions. It has been shown that the increase in stream broadening due to the electrodynamic dispersion phenomenon is additive to the contributions from molecular diffusion and sample injection, and simply modifies the coefficient for the hydrodynamic dispersion term for a fixed lateral migration distance of the sample stream. Moreover, this dispersion mechanism can dominate the overall spatial variance of analyte zones when a significant fraction of the EOF is blocked by the channel sidewalls. The analysis also shows that analyte streams do not undergo any hydrodynamic broadening due to unwanted pressure-driven cross-flows in an FFZE chamber in the absence of a transverse electric field. The noted results have been validated using Monte Carlo simulations which further demonstrate that while the sample concentration profile at the channel outlet approaches a Gaussian distribution only in FFZE chambers substantially longer than the product of the axial pressure-driven velocity and the characteristic diffusion time in the system, the spatial variance of the exiting analyte stream is well described by the Taylor-Aris dispersion limit even in analysis ducts much shorter than this length scale. Copyright © 2015 Elsevier B.V. All rights reserved.
Oddy, M H; Santiago, J G
2004-01-01
We have developed a method for measuring the electrophoretic mobility of submicrometer, fluorescently labeled particles and the electroosmotic mobility of a microchannel. We derive explicit expressions for the unknown electrophoretic and the electroosmotic mobilities as a function of particle displacements resulting from alternating current (AC) and direct current (DC) applied electric fields. Images of particle displacements are captured using an epifluorescent microscope and a CCD camera. A custom image-processing code was developed to determine image streak lengths associated with AC measurements, and a custom particle tracking velocimetry (PTV) code was devised to determine DC particle displacements. Statistical analysis was applied to relate mobility estimates to measured particle displacement distributions.
Salminen, S; Ekman, A; Rastas, J
2000-01-01
Forces that are able to transport Na+ and K+ into two compartments were investigated. A modified Nernst-Planck equation for coupled flows of electric current, water, and ions was integrated. The result shows that if alkali ions in the ion channel of the cell membrane are separated by their electric-current-induced inward flows against an electro-osmotic outward flow of water, the logarithms of the stationary cell/medium distributions of these ions should be proportional to the inverse of their diffusion mobilities. The relationship was tested in human erythrocytes. From inward and outward movements of tracer alkali ions, calculations were made to obtain their stationary distributions at infinite time. The cell/medium distributions determined in this way at 38 degrees C are Li+ = 0.59, 22Na+ = 0.044, 42K+ = 10.0, 86Rb+ = 11.9, and 137Cs+ = 3.07. The entry rates of ions into the cell at 0 degrees C are understood to represent their diffusion mobilities in the pump channel. The entry rates are Li+ = 1.44, 2Na+ = 1, 42K+ = 2.22, 86Rb+ = 2.39, and 137Cs+ = 1.72 relative to that of 22Na+. There is an expected negative correlation between the logarithms of the stationary cell/ medium distributions at 38 degrees C and the inverse of the entry rates into the cell at 0 degrees C for the five ions. It is suggested that the proposed physical forces cause the separation of alkali ions in the channel of Na,K-ATPase.
Study of microvascular non-Newtonian blood flow modulated by electroosmosis.
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh
2018-05-01
An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.
Electroosmotic flow in a microcavity with nonuniform surface charges.
Halpern, David; Wei, Hsien-Hung
2007-08-28
In this work, we theoretically explore the characteristics of electroosmostic flow (EOF) in a microcavity with nonuniform surface charges. It is well known that a uniformly charged EOF does not give rise to flow separation because of its irrotational nature, as opposed to the classical problem of viscous flow past a cavity. However, if the cavity walls bear nonuniform surface charges, then the similitude between electric and flow fields breaks down, leading to the generation of vorticity in the cavity. Because this vorticity must necessarily diffuse into the exterior region that possesses a zero vorticity set by a uniform EOF, a new flow structure emerges. Assuming Stokes flow, we employ a boundary element method to explore how a nonuniform charge distribution along the cavity surface affects the flow structure. The results show that the stream can be susceptible to flow separation and exhibits a variety of flow structures, depending on the distributions of zeta potentials and the aspect ratio of the cavity. The interactions between patterned EOF vortices and Moffatt eddies are further demonstrated for deep cavities. This work not only has implications for electrokinetic flow induced by surface imperfections but also provides optimal strategies for achieving effective mixing in microgrooves.
Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia
2013-01-01
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis. PMID:24404011
Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia
2013-01-01
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.
Modulation of Electroosmotic Flow through Skin: Effect of Poly(Amidoamine) Dendrimers
Kim, Hye Ji; Oh, Seaung Youl
2018-01-01
The objective of this work is to evaluate the effect of polyamidoamine (PAMAM) dendrimers on electroosmotic flow (EOF) through skin. The effect of size and concentration of dendrimer was studied, using generation 1, 4 and 7 dendrimer (G1, G4 and G7, respectively). As a marker molecule for the direction and magnitude of EOF, a neutral molecule, acetoaminophen (AAP) was used. The visualization of dendrimer permeation into the current conducting pore (CCP) of skin was made using G4–fluorescein isothiocyanate (FITC) conjugate and confocal microscopy. Without dendrimer, anodal flux of AAP was much higher than cathodal or passive flux. When G1 dendrimer was added, anodal flux decreased, presumably due to the decrease in EOF by the association of G1 dendrimer with net negative charge in CCP. As the generation increased, larger decrease in anodal flux was observed, and the direction of EOF was reversed. Small amount of methanol used for the preparation of dendrimer solution also contributed to the decrease in anodal flux of AAP. Cross-sectional view perpendicular to the skin surface by confocal laser scanning microscope (CLSM) study showed that G4 dendrimer-FITC conjugate (G4-FITC) can penetrate into the viable epidermis and dermis under anodal current. The permeation route seemed to be localized on hair follicle region. These results suggest that PAMAM dendrimers can permeate into CCP and change the magnitude and direction of EOF. Overall, we obtained a better understanding on the mechanistic insights into the electroosmosis phenomena and its role on flux during iontophoresis. PMID:29310428
Kim, Jung-Hwan; Kim, Jong Yun; Kim, Soo-Sam
2009-09-01
The Electrokinetic-Fenton (EK-Fenton) process is a powerful technology to remediate organic-contaminated soil. The behavior of salts and acids introduced for the pH control has significant influence on the H(2)O(2) stabilization and destruction of organic contaminants. In this study, the effects of the type and concentration of acids, which were introduced at the anode, were investigated for the treatment of clayey soil contaminated with phenanthrene. In experiments with H(2)SO(4) as the anode solution, H(2)O(2) concentration in the anode reservoir decreased due to reaction between reduced species of sulfate and H(2)O(2), as time elapsed. By contrast, HCl as an electrolyte in the anode reservoir did not decrease the H(2)O(2) concentration in the anode reservoir. The reaction between the reduced species of sulfate and H(2)O(2) hindered the stabilization of H(2)O(2) in the soil and anode reservoir. In experiments with HCl for pH control, Cl(.), and Cl(2)(. -), which could be generated with mineral catalyzed Fenton-like reaction, did not significantly hinder H(2)O(2) stabilization. H(2)O(2) transportation with electro-osmotic flow and mineral catalyzed Fenton-like reaction on the soil surface resulted in the simultaneous transport and degradation of phenanthrene, which are dependent of the advancement rate of the acid front and electro-osmotic flow toward the cathode according to HCl and H(2)SO(4) concentrations in the anode purging solution.
Electrokinetic transport in unsteady flow through peristaltic microchannel
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra; Mulchandani, Janak; Jhalani, Shubham
2016-04-01
We analyze the electrokinetic transport of aqueous electrolyte fluids with Newtonian model in presence of peristalsis through microchannel. Debye-Hückel linearization is employed to simplify the problem. Low Reynolds number and large wavelength approximations are taken into account subjected to microfluidics applications. Electrical double layer (EDL) is considered very thin and electroosmotic slip velocity (i.e. Helmholtz-Smoluchowski velocity) at the wall is subjected to study the effect of applied electrical field. The solutions for axial velocity and pressure difference along the channel length are obtained analytically and the effects of adding and opposing the flow by applied electric field have been discussed. It is revealed that the axial velocity and pressure gradient enhances with adding electric field and an opposite behavior is found in the flow direction on opposing the electric field. These results may also help towards designing organ-on-a-chip like devices for better drug design.
Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives.
Baigl, Damien
2012-10-07
Using light to control liquid motion is a new paradigm for the actuation of microfluidic systems. We review here the different principles and strategies to induce or control liquid motion using light, which includes the use of radiation pressure, optical tweezers, light-induced wettability gradients, the thermocapillary effect, photosensitive surfactants, the chromocapillary effect, optoelectrowetting, photocontrolled electroosmotic flows and optical dielectrophoresis. We analyze the performance of these approaches to control using light many kinds of microfluidic operations involving discrete pL- to μL-sized droplets (generation, driving, mixing, reaction, sorting) or fluid flows in microchannels (valve operation, injection, pumping, flow rate control). We show that a complete toolbox is now available to control microfluidic systems by light. We finally discuss the perspectives of digital optofluidics as well as microfluidics based on all optical fluidic chips and optically reconfigurable devices.
The influence of aqueous phase properties (pH, ionic strength and divalent metal ion concentration) on clay particle zeta potential and packed-bed electro-osmotic permeability was quantified. Although pH strongly altered the zeta potential of a Georgia kaolinite, it did not signi...
2006-11-01
The situation was deemed ideal for ElectroOsmotic Pulse (EOP) technology. A Return-on-Investment (ROI) study concluded that EOP is also the most...various steps in the EOP system installation: Figure 15 shows the chipping operation for installing a ¾-inch wide mixed metal-oxide coated titanium
Amatore, Christian; Oleinick, Alexander; Klymenko, Oleksiy V; Svir, Irina
2005-08-12
Herein, we propose a method for reconstructing any plausible macroscopic hydrodynamic flow profile occurring locally within a rectangular microfluidic channel. The method is based on experimental currents measured at single or double microband electrodes embedded in one channel wall. A perfectly adequate quasiconformal mapping of spatial coordinates introduced in our previous work [Electrochem. Commun. 2004, 6, 1123] and an exponentially expanding time grid, initially proposed [J. Electroanal. Chem. 2003, 557, 75] in conjunction with the solution of the corresponding variational problem approached by the Ritz method are used for the numerical reconstruction of flow profiles. Herein, the concept of the method is presented and developed theoretically and its validity is tested on the basis of the use of pseudoexperimental currents emulated by simulation of the diffusion-convection problem in a channel flow cell, to which a random Gaussian current noise is added. The flow profiles reconstructed by our method compare successfully with those introduced a priori into the simulations, even when these include significant distortions compared with either classical Poiseuille or electro-osmotic flows.
Rouhi Youssefi, Mehrnaz; Diez, Francisco Javier
2016-03-01
The influence of a high electric field applied on both fluid flow and particle velocities is quantified at large Peclet numbers. The experiments involved simultaneous particle image velocimetry and flow rate measurements. These are conducted in polydimethylsiloxane channels with spherical nonconducting polystyrene particles and DI water as the background flow. The high electric field tests produced up to three orders of magnitude higher electrokinetic velocities than any previous reports. The maximum electroosmotic velocity and electrophoretic velocity measured were 3.55 and 2.3 m/s. Electrophoretic velocities are measured over the range of 100 V/cm < E < 250 000 V/cm. The results are separated according to the different nonlinear theoretical models, including low and high Peclet numbers, and weak and strong concentration polarization. They show good agreement with the models. Such fast velocities could be used for flow separation, mixing, transport, control, and manipulation of suspended particles as well as microthrust generation among other applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leinweber, Felix C; Tallarek, Ulrich
2005-11-24
We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.
Compact Fuel-Cell System Would Consume Neat Methanol
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas
2007-01-01
In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.
2000-12-06
Fluorescent Milligram (10ŗ) Milliliter (10ŗ) vm ^g Microgram (10") 1*1 Microliter (10" 6) MMA Master Mix A MMB Master Mix B NSCLC Non-Small-Cell...little effect on heat dissipation, the mixing helped to smooth out the convection gradients (see Weinberger 1993). The use of smaller i.d...clogging may occur (Heller 1998a). The gels must be covalently bound to the capillary wall to avoid extrusion from the capillary by electroosmotic flow
Chen, Hsiao-Ping; Yeh, Chun-Yi; Hung, Pei-Chin; Wang, Shau-Chun
2014-02-01
In this study, induced electroosmotic vortex flows were generated using an AC electric field by one pair of external electrodes to rapidly mix luminescence reagents in a 30 μL micromixer and enhance the reproducibility of chemiluminescence (CL) assays. A solution containing the catalyst reagent ferricyanide ions (4 μL) was pipetted into a reservoir containing luminol to produce CL in the presence of hydrogen peroxide. When the added ferricyanide aliquot contacted the reservoir solution, the CL began flashing, but rapidly diminished as the ferricyanide was consumed. In such a short illumination period, the solutes could not mix homogeneously. Therefore, the reproducibility of CL intensities collected using a CCD and multiple aliquot additions was determined to be inadequate. By contrast, when the solutes were efficiently mixed after adding a ferricyanide aliquot to a micromixer, the intensity reproducibility was significantly improved. When the CL temporal profile was analyzed using a PMT, a consistent improvement in reproducibility was observed between the CL intensity and estimated CL reaction rate. Replicating the proposed device would create a multiple well plate that contains a micromixer in each reservoir; this system is compatible with conventional CL instrumentation and requires no CL enhancer to slow a reaction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Wei -Liang
1999-02-12
Addition of a novel anionic surfactant, namely lauryl polyoxyethylene sulfate, to an aqueous-acetonitrile electrolyte makes it possible to separate nonionic organic compounds by capillary electrophoresis. Separation is based on differences in the association between analytes and the surfactant. Highly hydrophobic compounds such as polyaromatic hydrocarbons are well separated by this new surfactant. Migration times of analytes can be readily changed over an unusually large range by varying the additive concentration and the proportion of acetonitrile in the electrolyte. Several examples are given, including the separation of four methylbenz[a]anthracene isomers and the separation of normal and deuterated acetophenone. The effect ofmore » adding this new surfactant to the acidic electrolyte was also investigated. Incorporation of cetyltrimethylammonium bromide in the electrolyte is shown to dynamically coat the capillary and reverse electroosmotic flow. Chiral recognition mechanism is studied using novel synthetic surfactants as chiral selectors, which are made from amino acids reacting with alkyl chloroformates. A satisfactory separation of both inorganic and organic anions is obtained using electrolyte solutions as high as 5 M sodium chloride using direct photometric detection. The effect of various salts on electrophoretic and electroosmotic mobility is further discussed. Several examples are given under high-salt conditions.« less
He, Chiyang; Zhu, Zaifang; Gu, Congying; Lu, Joann; Liu, Shaorong
2012-03-02
Numerous micropumps have been developed, but few of them can produce adequate flow rate and pressure for high-performance liquid chromatography (HPLC) applications. We have recently developed an innovative hybrid electroosmotic pump (EOP) to solve this problem. The basic unit of a hybrid pump consists of a +EOP (the pumping element is positively charged) and a -EOP (the pumping element is negatively charged). The outlet of the +EOP is then joined with the inlet of the -EOP, forming a basic pump unit, while the anode of a positive high voltage (HV) power supply is placed at the joint. The inlet and outlet of this pump unit are electrically grounded. With this configuration, we can stack many of such pump units in series to boost the pumping power. In this work, we describe in details how an open-capillary hybrid EOP is constructed and characterize this pump systematically. We also show that a hybrid EOP with ten serially stacked pump units can deliver a maximum pressure of 21.5 MPa (∼3100 psi). We further demonstrate the feasibility of using this hybrid EOP to drive eluents for HPLC separations of proteins and peptides. Copyright © 2012 Elsevier B.V. All rights reserved.
Kitagawa, Fumihiko; Nakagawara, Syo; Nukatsuka, Isoshi; Hori, Yusuke; Sueyoshi, Kenji; Otsuka, Koji
2015-01-01
A simple and rapid vacuum-drying modification method was applied to several neutral and charged polymers to obtain coating layers for controlling electroosmotic flow (EOF) and suppressing sample adsorption on poly(dimethyl siloxane) (PDMS)-glass hybrid microchips. In the vacuum-dried poly(vinylpyrrolidone) coating, the electroosmotic mobility (μeo) was suppressed from +2.1 to +0.88 × 10(-4) cm(2)/V·s, and the relative standard deviation (RSD) of μeo was improved from 10.2 to 2.5% relative to the bare microchannel. Among several neutral polymers, poly(vinylalcohol) (PVA) and poly(dimethylacrylamide) coatings gave more suppressed and repeatable EOF with RSDs of less than 2.3%. The vacuum-drying method was also applicable to polyanions and polycations to provide accelerated and inversed EOF, respectively, with acceptable RSDs of less than 4.9%. In the microchip electrophoresis (MCE) analysis of bovine serum albumin (BSA) in the vacuum-dried and thermally-treated PVA coating channel, an almost symmetric peak of BSA was obtained, while in the native microchannel a significantly skewed peak was observed. The results demonstrated that the vacuum-dried polymer coatings were effective to control the EOF, and reduced the surface adsorption of proteins in MCE.
He, Chiyang; Zhu, Zaifang; Gu, Congying; ...
2012-01-09
Numerous micropumps have been developed, but few of them can produce adequate flow rate and pressure for high-performance liquid chromatography (HPLC) applications. We have recently developed an innovative hybrid electroosmotic pump (EOP) to solve this problem. The basic unit of a hybrid pump consists of a +EOP (the pumping element is positively charged) and a -EOP (the pumping element is negatively charged). The outlet of the +EOP is then joined with the inlet of the -EOP, forming a basic pump unit, while the anode of a positive high voltage (HV) power supply is placed at the joint. The inlet andmore » outlet of this pump unit are electrically grounded. With this configuration, we can stack many of such pump units in series to boost the pumping power. In this work, we describe in details how an open-capillary hybrid EOP is constructed and characterize this pump systematically. We also show that a hybrid EOP with ten serially stacked pump units can deliver a maximum pressure of 21.5 MPa (~3100 psi). Here, we further demonstrate the feasibility of using this hybrid EOP to drive eluents for HPLC separations of proteins and peptides.« less
Johnson, Timothy J; Locascio, Laurie E
2002-08-01
Recently, a series of slanted wells on the floor of a microfluidic channel were experimentally shown to successfully induce off-axis transport and mixing of two confluent streams when operating under electroosmotic (EO) flow. This paper will further explore, through numerical simulations, the parameters that affect off-axis transport under EO flow with an emphasis on optimizing the mixing rate of (a). two confluent streams in steady-state or (b). the transient scenario of two confluent plugs of material, which simulates mixing after an injection. For the steady-state scenario, the degree of mixing was determined to increase by changing any of the following parameters: (1). increasing the well depth, (2). decreasing the well angle relative to the axis of the channel, and (3). increasing the EO mobility of the well walls relative to the mobility of the main channel. Also, it will be shown that folding of the fluid can occur when the well angle is sufficiently reduced and/or when the EO mobility of the wells is increased relative to the channel. The optimum configuration for the transient problem of mixing two confluent plugs includes shallow wells to minimize the well residence time, and an increased EO mobility of the well walls relative to the main channel as well as small well angles to maximize off-axis transport. The final design reported here for the transient study reduces the standard deviation of the concentration across the channel by 72% while only increasing the axial dispersion of the injected plug by 8.6 % when compared to a plug injected into a channel with no wells present. These results indicate that a series of slanted wells on the wall of a microchannel provides a means for controlling and achieving a high degree of off-axis transport and mixing in a passive manner for micro total analysis system (microTAS) devices that are driven by electroosmosis.
NASA Astrophysics Data System (ADS)
Srouji, Abdul-Kader
Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a resistance of unknown origin, was shown to directly or indirectly scale with Pt loading. A lack of understanding of the mechanism responsible for such resistance is noted, and several possible theories have been proposed. This lack of fundamental understanding of the origins of this resistance adds complexity to computational models which are designed to capture performance behavior with ultra-low loading electrodes. By employing the OME flow field as a tool to study this phenomena, the origins of the transport resistance appearing at ultra-low Platinum (Pt) loading is proposed to be an increase in oxygen dilution resistance through water film.
Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
Lan, Wen-Jie; Edwards, Martin A; Luo, Long; Perera, Rukshan T; Wu, Xiaojian; Martin, Charles R; White, Henry S
2016-11-15
Ion current rectification (ICR) refers to the asymmetric potential-dependent rate of the passage of solution ions through a nanopore, giving rise to electrical current-voltage characteristics that mimic those of a solid-state electrical diode. Since the discovery of ICR in quartz nanopipettes two decades ago, synthetic nanopores and nanochannels of various geometries, fabricated in membranes and on wafers, have been extensively investigated to understand fundamental aspects of ion transport in highly confined geometries. It is now generally accepted that ICR requires an asymmetric electrical double layer within the nanopore, producing an accumulation or depletion of charge-carrying ions at opposite voltage polarities. Our research groups have recently explored how the voltage-dependent ion distributions and ICR within nanopores can induce novel nanoscale flow phenomena that have applications in understanding ionics in porous materials used in energy storage devices, chemical sensing, and low-cost electrical pumping of fluids. In this Account, we review our most recent investigations on this topic, based on experiments using conical nanopores (10-300 nm tip opening) fabricated in thin glass, mica, and polymer membranes. Measurable fluid flow in nanopores can be induced either using external pressure forces, electrically via electroosmotic forces, or by a combination of these two forces. We demonstrate that pressure-driven flow can greatly alter the electrical properties of nanopores and, vice versa, that the nonlinear electrical properties of conical nanopores can impart novel and useful flow phenomena. Electroosmotic flow (EOF), which depends on the magnitude of the ion fluxes within the double layer of the nanopore, is strongly coupled to the accumulation/depletion of ions. Thus, the same underlying cause of ICR also leads to EOF rectification, i.e., unequal flows occurring for the same voltage but opposite polarities. EOF rectification can be used to electrically pump fluids with very precise control across membranes containing conical pores via the application of a symmetric sinusoidal voltage. The combination of pressure and asymmetric EOF can also provide a means to generate new nanopore electrical behaviors, including negative differential resistance (NDR), in which the current through a conical pore decreases with increasing driving force (applied voltage), similar to solid-state tunnel diodes. NDR results from a positive feedback mechanism between the ion distributions and EOF, yielding a true bistability in both fluid flow and electrical current at a critical applied voltage. Nanopore-based NDR is extremely sensitive to the surface charge near the nanopore opening, suggesting possible applications in chemical sensing.
NASA Astrophysics Data System (ADS)
Krishnaveni, T.; Renganathan, T.; Picardo, J. R.; Pushpavanam, S.
2017-09-01
We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.
Krishnaveni, T; Renganathan, T; Picardo, J R; Pushpavanam, S
2017-09-01
We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.
Wu, Yi; Zhang, Xiaohui; Wei, Juan; Xue, Yunyun; Bahatibieke, Marjan; Wang, Yan; Yan, Chao
2009-09-01
Capillary electrochromatography (CEC), in which electroosmotic flow (EOF) created from the electrical double layer is made to act as a pump to drive the mobile phase in a capillary column packed with micro-particulates or coated with stationary phase. Both neutral and charged species can be resolved by CEC. It has been demonstrated that the efficiency of a separation obtained by electroosmotic propulsion is superior to that obtained by pressure-driven flow (as is the case in HPLC). CEC combines the best features of CE and versatile selectivity and large sample capacity of HPLC, promising high efficiency, high resolution, high selectivity and high peak capacity. However, in practice, when CEC is used without pressure, often used on a commercial CE instrument, there are problems and difficulties associated with bubbles formation and column dry-out. These difficulties can be overcome by a pressurized CEC (pCEC) system, in which a supplementary pressure is applied to the column in addition to the EOF. In such a system, a pressure can be applied to the capillary column to suppress bubbles formation. Quantitative sample introduction in pCEC can be easily achieved through a rotary-type injector. Most importantly, it is amenable for a solvent gradient mode, similar to that in HPLC, by programming the composition of mobile phase. The article brings a comprehensive survey of recent development of CEC and pCEC, including the development of instrumentation, capillary columns and stationary phase as well as CEC and pCEC applications in life science, biotechnology, pharmaceutical analysis, food safety and environmental security. Prospects for CEC and pCEC development and application are also discussed.
Kawai, Takayuki; Watanabe, Masato; Sueyoshi, Kenji; Kitagawa, Fumihiko; Otsuka, Koji
2012-04-06
To obtain high sensitivity in capillary electrophoresis of oligosaccharide without reducing the high resolution with an easy experimental procedure, large-volume sample stacking with an electroosmotic flow pump (LVSEP) was investigated. As a fundamental study, effect of the conductivity of a sample solution in LVSEP was examined. It was revealed that LVSEP was successfully carried out even in using a sample solution with the ionic strength of 150 μM and the conductivity ratio of 20, indicating a good applicability of LVSEP to the analysis of real samples containing salts. When glucose oligomer was analyzed as a model sample in LVSEP-capillary zone electrophoresis (CZE), all peaks were well resolved with decreasing only 5% of the peak-to-peak distance, which suggested 95% of the whole capillary could be used for the effective separation. In the analysis of maltoheptaose, a good calibration line with correlation coefficient of 0.9995 was obtained. The limit of detection was estimated as 2 pM, which was 500-fold lower than that in the conventional CZE. N-linked glycans released from three glycoproteins, bovine ribonuclease B, bovine fetuin, and human α(1)-acid glycoprotein were also analyzed by LVSEP-CZE. By the sample purification with a gel filtration column, further sample dilution to reduce the sample conductivity for LVSEP was not needed. All glycan samples were well concentrated and separated with up to a 770-fold sensitivity increase. The run-to-run repeatabilities of the migration time, peak height, and peak area were good with relative standard deviations of 0.1-1.3%, 1.2-1.7%, and 2.8-4.9%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deng, Mingge; Li, Zhen; Borodin, Oleg; Karniadakis, George Em
2016-10-01
We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro- and nano-scales.
Shih, Ya-Chu; Liao, Ching-Ru; Chung, I-Che; Chang, Yu-Sun; Chang, Po-Ling
2014-10-17
RNA integrity is important in RNA studies because poor RNA quality may impact downstream methodologies. This study proposes a rapid and cost-effective method for the determination of RNA integrity based on CE-LIF in the presence of electroosmotic flow. The proposed method uses poly(ethylene) oxide (Mavg=4,000,000 Da) as a sieving matrix for total RNA separation. Ethidium bromide (μg mL(-1)) was dissolved in a polymer solution as an interchelating dye for on-column fluorescent labeling. The 28S rRNA, 18S rRNA, 5.8S rRNA, 5S rRNA and tRNA from the total human RNA extracted from the cells were fully separated using the proposed method. The lowest detectable concentration of total RNA achieved was 100 pg μL(-1) with a 6 min sample injection followed by on-column concentration. In addition, the temperature-induced degradation of total RNA was observed by CE-LIF. The electropherograms revealed more fragmentation of 28S and 18S rRNAs by temperature-induced hydrolysis compared with the 5.8S rRNA, 5S rRNA and tRNA. Therefore, the results indicated that RNA degradation should be considered for long-term, high-temperature incubations in RNA-related experiments involving RNA hybridization. The proposed method is furthermore, applied to the determination of 5S rRNA overexpressed in ovarian cancer cells as compared to the cervical cancer cells. Overall, CE-LIF is highly promising for rapid screening of ovarian cancers without tedious pre-amplification steps. Copyright © 2014 Elsevier B.V. All rights reserved.
Successive measurements of streaming potential and electroosmotic pressure with the same core-holder
NASA Astrophysics Data System (ADS)
Yin, Chenggang; Hu, Hengshan; Yu, Chunhao; Wang, Jun
2018-05-01
Successive measurements of the streaming potential and electroosmotic pressure of each core sample are important for understanding the mechanisms of electrokinetic effects. In previous studies, one plug of the core-holder needs to be replaced in these two experiments, which causes the change of the fluid parameters and the boundary conditions in the core. We design a new core-holder to permit successive experiments without plug replacement, which ensures the consistency of the measurement environment. A two-direction harmonic pressure-driving source is accordingly designed. Using this new equipment, electrokinetic experiments conducted ten core samples at 0.4 mol/L NaCl solution. The results show good agreement between the electrokinetically deduced permeability and premeasured gas permeability. For high salinity saturated samples, the permeability can be inverted from electroosmotic effect instead of the streaming potential.
2009-02-01
technology minimizes harmful effects to concrete and rebar and prevents over drying, pore blocking and electrode polarization. Principles of EOP...LABORATORY TESTING OF ELECTRO-OSMOTIC PULSE TECHNOLOGY TO REDUCE AND MAINTAIN LOW MOISTURE CONTENT IN CONCRETE Orange S. Marshall, Vincent F...Laboratory 2009 Army Corrosion Summit Clearwater Beach, FL 6 January 2009 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting
Electrophoresis of concentrically and eccentrically positioned cylindrical particles in a long tube.
Liu, Hui; Bau, Haim H; Hu, Howard H
2004-03-30
We study analytically and numerically the electrophoretic motion of cylindrical particles translating slowly in long tubes filled with an electrolyte solution and subjected to axial electric fields. Both thin and thick double layers are considered. Of particular interest is the case when the particle's and tube's radii are of the same order of magnitude. The model accounts for the flow induced by the particle's motion (the particle acts as a leaky piston) and the electroosmotic flow in the tube. The electrophoretic velocity of the particle and the forces and torques acting on it are determined as functions of the particle's radius, length, and position, the particle's and tube's zeta potentials, the tube's length, and the externally imposed pressures. When the particle is positioned off center, it rotates and its trajectory traces an oscillatory path.
Wu, Chien-Hsien; Yang, Ruey-Jen
2006-06-01
Electroosmotic flow in microchannels is restricted to low Reynolds number regimes. Since the inertia forces are extremely weak in such regimes, turbulent conditions do not readily develop, and hence species mixing occurs primarily as a result of diffusion. Consequently, achieving a thorough species mixing generally relies upon the use of extended mixing channels. This paper aims to improve the mixing performance of conventional side channel type micromixers by specifying the optimal driving voltages to be applied to each channel. In the proposed approach, the driving voltages are identified by constructing a simple theoretical scheme based on a 'flow-rate-ratio' model and Kirchhoff's law. The numerical and experimental results confirm that the optimal voltage control approach provides a better mixing performance than the use of a single driving voltage gradient.
Preparation and characterization of methacrylate hydrogels for zeta potential control
NASA Technical Reports Server (NTRS)
Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.
1976-01-01
A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.
Shepodd, Timothy J.
2002-01-01
Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J.; Whinnery, Jr., Leroy; Even, Jr., William R.
2005-01-25
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J [Livermore, CA; Whinnery, Jr., Leroy; Even, Jr., William R.
2009-02-10
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Control of electroosmosis in coated quartz capillaries
NASA Technical Reports Server (NTRS)
Herren, Blair J.; Van Alstine, James; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton
1987-01-01
The effectiveness of various coatings for controlling the electroosmotic fluid flow that hinders electrophoretic processes is studied using analytical particle microelectrophoresis. The mobilities of 2-micron diameter glass and polystyrene latex spheres (exhibiting both negative and zero effective surface charge) were measured in 2-mm diameter quartz capillaries filled with NaCl solutions within the 3.5-7.8 pH range. It is found that capillary inner surface coatings using 5000 molecular weight (or higher) poly(ethylene glycol): significantly reduced electroosmosis within the selected pH range, were stable for long time periods, and appeared to be more effective than dextran, methylcellulose, or silane coatings.
Dual-opposite injection capillary electrophoresis: Principles and misconceptions.
Blackney, Donna M; Foley, Joe P
2017-03-01
Dual-opposite injection capillary electrophoresis (DOI-CE) is a separation technique that utilizes both ends of the capillary for sample introduction. The electroosmotic flow (EOF) is suppressed to allow all ions to reach the detector quickly. Depending on the individual electrophoretic mobilities of the analytes of interest and the effective length that each analyte travels to the detection window, the elution order of analytes in a DOI-CE separation can vary widely. This review discusses the principles, applications, and limitations of dual-opposite injection capillary electrophoresis. Common misconceptions regarding DOI-CE are clarified. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mao, Zhenkun; Chen, Zilin
2017-01-13
A novel monolithic column with ionic liquid and styrene-modified bifunctional group was prepared for capillary electrochromatography (CEC) by in situ copolymerization in a ternary porogenic solvent. Ionic liquid (1-allyl-methylimidazolium chloride, AlMeIm + Cl - ) and styrene served as the bifunctional monomer, while ethylene dimethacrylate (EDMA) was used as the cross-linker. The monomer of AlMeIm + Cl - was introduced as anion-exchange group, while styrene as hydrophobic and aromatic group; the similar conjugated structure in AlMeIm + Cl - and styrene was beneficial for offeing obvious synergistic effect. The bifunctional stationary phase possessed powerful selectivity for the separation of neutral compounds, acidic analytes and phenols. The highest column efficiency was 2.70×10 5 platesm -1 (theoretical plates, N) for toluene. A relatively strong electroosmotic flow (EOF) was obtained in a wide range of pH values from 2.0 to 12.0, which could successfully achieve the rapid separation of the analytes within 10min. The proposed monolithic column was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The results indicated that the resultant monolithic column had good permeability and excellent mechanical stability. Good reproducibility was obtained with relative standard deviations (RSDs) of the retention time in the range of 0.24-0.47% and 0.81-2.17% for run-to-run (n=5) and day-to-day (n=5), while 1.09-2.70% and 0.98-1.70% for column-to-column (n=3) and batch-to-batch (n=3), respectively. The combination of AlMeIm + Cl - and styrene was a promising option in the fabrication of the organic polymer monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.
Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis.
Park, Stella Y; Russo, Christopher J; Branton, Daniel; Stone, Howard A
2006-05-15
Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (kappa(-1)) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction.
Eddies in a Bottleneck: An Arbitrary Debye Length Theory for Capillary Electroosmosis
Park, Stella Y.; Russo, Christopher J.; Branton, Daniel; Stone, Howard A.
2011-01-01
Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (κ−1) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction. PMID:16376361
Fluid Flow and Mass Transfer in Micro/Nano-Channels
NASA Astrophysics Data System (ADS)
Conlisk, A. T.; McFerran, Jennifer; Hansford, Derek; Zheng, Zhi
2001-11-01
In this work the fluid flow and mass transfer due to the presence of an electric field in a rectangular channel is examined. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or somewhat greater than the width of the EDL(nanochannel). For the electroosmotic flow so induced, the velocity field and the potential are similar. The fluid is assumed to behave as a continuum and the Boltzmann distribution for the mole fractions of the ions emerges from the classical dilute mass transfer equation in the limiting case where the EDL thickness is much less than the channel height. Depending on the relative magnitude of the mole fractions at the walls of the channel, both forward and reversed flow may occur. The volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that power requirements for small channels are much greater for pressure driven flow. Supported by DARPA
Analysis of Electrokinetic Mixing Using AC Electric Field and Patchwise Surface Heterogeneities
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yarn, Kao-Feng; Hsu, Shou-Ping
2007-04-01
In this paper, the authors investigate the use of an applied AC electric field and microchannel surface heterogeneities to carry out the microfluidic mixing of two-dimensional, time-dependent electroosmotic flows. The time-dependent flow fields within the microchannel are simulated using the backwards-Euler time-stepping numerical method. The mixing efficiencies obtained in microchannels with two different patchwise surface heterogeneity patterns are investigated. In general, the results show that the application of an AC electric field significantly reduces the required mixing length compared with the use of a DC electric field. Furthermore, the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulation regions within the bulk flow. These circulation regions grow and decay periodically in accordance with the periodic variation of the AC electric field intensity and provide an effective means of enhancing species mixing in the microchannel. Consequently, the use of an AC electric field together with patchwise surface heterogeneities permits a significant reduction in both the mixing channel length and the retention time required to attain a homogeneous solution.
Simultaneous mixing and pumping using asymmetric microelectrodes
NASA Astrophysics Data System (ADS)
Kim, Byoung Jae; Yoon, Sang Youl; Sung, Hyung Jin; Smith, Charles G.
2007-10-01
This study proposes ideas for simultaneous mixing and pumping using asymmetric microelectrode arrays. The driving force of the mixing and pumping was based on electroosmotic flows induced by alternating current (ac) electric fields on asymmetric microelectrodes. The key idea was to bend/incline the microelectrodes like diagonal/herringbone shapes. Four patterns of the asymmetric electrode arrays were considered depending on the shape of electrode arrays. For the diagonal shape, repeated and staggered patterns of the electrode arrays were studied. For the herringbone shape, diverging and converging patterns were examined. These microelectrode patterns forced fluid flows in the lateral direction leading to mixing and in the channel direction leading to pumping. Three-dimensional numerical simulations were carried out using the linear theories of ac electro-osmosis. The performances of the mixing and pumping were assessed in terms of the mixing efficiency and the pumping flow rate. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls.
NASA Astrophysics Data System (ADS)
Karam, Pascal; Pennathur, Sumita
2016-11-01
Characterization of the electrophoretic mobility and zeta potential of micro and nanoparticles is important for assessing properties such as stability, charge and size. In electrophoretic techniques for such characterization, the bulk fluid motion due to the interaction between the fluid and the charged surface must be accounted for. Unlike current industrial systems which rely on DLS and oscillating potentials to mitigate electroosmotic flow (EOF), we propose a simple alternative electrophoretic method for optically determining electrophoretic mobility using a DC electric fields. Specifically, we create a system where an adverse pressure gradient counters EOF, and design the geometry of the channel so that the flow profile of the pressure driven flow matches that of the EOF in large regions of the channel (ie. where we observe particle flow). Our specific COMSOL-optimized geometry is two large cross sectional areas adjacent to a central, high aspect ratio channel. We show that this effectively removes EOF from a large region of the channel and allows for the accurate optical characterization of electrophoretic particle mobility, no matter the wall charge or particle size.
Nikcevic, Irena; Lee, Se Hwan; Piruska, Aigars; Ahn, Chong H.; Ridgway, Thomas H.; Limbach, Patrick A.; Wehmeyer, K. R.; Heineman, William R.; Seliskar, Carl J.
2009-01-01
Injection molded poly(methylmethacrylate) (IM-PMMA), chips were evaluated as potential candidates for capillary electrophoresis disposable chip applications. Mass production and usage of plastic microchips depends on chip-to-chip reproducibility and on analysis accuracy. Several important properties of IM-PMMA chips were considered: fabrication quality evaluated by environmental scanning electron microscope imaging, surface quality measurements, selected thermal/electrical properties as indicated by measurement of the current versus applied voltage (I–V) characteristic, and the influence of channel surface treatments. Electroosmotic flow was also evaluated for untreated and O2 reactive ion etching (RIE) treated surface microchips. The performance characteristics of single lane plastic microchip capillary electrophoresis (MCE) separations were evaluated using a mixture of two dyes - fluorescein (FL) and fluorescein isothiocyanate (FITC). To overcome non-wettability of the native IM-PMMA surface, a modifier, polyethylene oxide was added to the buffer as a dynamic coating. Chip performance reproducibility was studied for chips with and without surface modification via the process of RIE with O2 and by varying the hole position for the reservoir in the cover plate or on the pattern side of the chip. Additionally, the importance of reconditioning steps to achieve optimal performance reproducibility was also examined. It was found that more reproducible quantitative results were obtained when normalized values of migration time, peak area and peak height of FL and FITC were used instead of actual measured parameters PMID:17477932
La, Sookie; Kim, Jiyung; Kim, Jung-Han; Goto, Junichi; Kim, Kyoung-Rae
2003-08-01
Simultaneous enantioseparations of nine profens for their accurate chiral discrimination were achieved by capillary electrophoresis (CE) in the normal polarity (NP) mode with a single cyclodextrin (CD) system and in the reversed polarity (RP) mode with a dual CD system. The single CD system in the NP mode employed heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD) added at 75 mM-100 mM 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.0) as the optimum run buffer. The dual CD system operated in the RP mode used 30 mM TMbetaCD and 1.0% anionic carboxymethyl-beta-cyclodextrin dissolved in pH 3.0, 100 mM phosphoric acid-triethanolamine buffer containing 0.01% hexadimethrine bromide added to reverse the electroosmotic flow. Fairly good enantiomeric resolutions and the opposite enantiomer migration orders were achieved in the two modes. Relative migration times to internal standard under respective optimum conditions were characteristic of each enantiomer with good precision (< 2% relative standard deviation, RSD), thereby enabling to crosscheck the chemical identification of profens and also their accurate chiralities. The method linearity in the two modes was found to be adequate (r > or = 0.9991) for the chiral assay of the profens investigated. Simultaneous enantiomeric purity test of ibuprofen, ketoprofen and flurbiprofen in a mixture was feasible in a single analysis by the present method.
Bazant, Martin Z; Kilic, Mustafa Sabri; Storey, Brian D; Ajdari, Armand
2009-11-30
The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.
Johnson, Timothy J; Ross, David; Locascio, Laurie E
2002-01-01
A preformed T-microchannel imprinted in polycarbonate was postmodified with a pulsed UV excimer laser (KrF, 248 nm) to create a series of slanted wells at the junction. The presence of the wells leads to a high degree of lateral transport within the channel and rapid mixing of two confluent streams undergoing electroosmotic flow. Several mixer designs were fabricated and investigated. All designs were relatively successful at low flow rates (0.06 cm/s, > or = 75% mixing), but had varying degrees of success at high flow rates (0.81 cm/s, 45-80% mixing). For example, one design operating at high flow rates was able to split an incoming fluorescent stream into two streams of varying concentrations depending on the number of slanted wells present. The final mixer design was able to overcome stream splitting at high flow rates, and it was shown that the two incoming streams were 80% mixed within 443 microm of the T-junction for a flow rate of 0.81 cm/s. Without the presence of the mixer and at the same high flow rate, a channel length of 2.3 cm would be required to achieve the same extent of mixing when relying upon molecular diffusion entirely, while 6.9 cm would be required for 99% mixing.
NASA Astrophysics Data System (ADS)
Chang, C.-C.; Yang, R.-J.
2004-04-01
Electroosmotic flow in microchannels is restricted to low Reynolds number regimes characterized by extremely weak inertia forces and laminar flow. Consequently, the mixing of different species occurs primarily through diffusion, and hence cannot readily be achieved within a short mixing channel. The current study presents a numerical investigation of electrokinetically driven flow mixing in microchannels with various numbers of incorporated patterned rectangular blocks. Furthermore, a novel approach is introduced which patterns heterogeneous surfaces on the upper faces of these rectangular blocks in order to enhance species mixing. The simulation results confirm that the introduction of rectangular blocks within the mixing channel slightly enhances species mixing by constricting the bulk flow, hence creating a stronger diffusion effect. However, it is noted that a large number of blocks and hence a long mixing channel are required if a complete mixing of the species is to be obtained. The results also indicate that patterning heterogeneous upper surfaces on the rectangular blocks is an effective means of enhancing the species mixing. It is shown that increasing the magnitude of the heterogeneous surface zeta potential enables a reduction in the mixing channel length and an improved degree of mixing efficiency.
Seo, Hyeon-Seok; Han, Bongtae; Kim, Youn-Jea
2012-06-01
A new type of electrokinetic micromixer with a ring-type channel is introduced for fast mixing. The proposed mixer takes two fluids from different inlets and combines them in a ring-type mixing chamber. The fluids enter two different inlets (inner radius: 25 microm and outer radius: 50 microm), respectively. The total channel length is 500 microm, and four microelectrodes are positioned on the outer wall of the mixing chamber. The electric potentials on the four microelectrodes are sinusoidal with time, having various maximum values of voltage, zeta potential and frequency. Also, in order to compare the mixing performance with different obstacle configurations, we performed a numerical analysis using a commercial code, COMSOL. The concentration of the dissolved substances in the working fluid and the flow and electric fields in the channel were investigated and the results were graphically depicted for various flow and electric conditions.
Enhancement of Electrokinetically-Driven Flow Mixing in Microchannel with Added Side Channels
NASA Astrophysics Data System (ADS)
Yang, Ruey-Jen; Wu, Chien-Hsien; Tseng, Tzu-I; Huang, Sung-Bin; Lee, Gwo-Bin
2005-10-01
Electroosmotic flow (EOF) in microchannels is restricted to low Reynolds number regimes. Since the inertial forces are extremely weak in such regimes, turbulent conditions do not readily develop. Therefore, species mixing occurs primarily via diffusion, with the result that extended mixing channels are generally required. The present study considers a T-shaped microchannel configuration with a mixing channel of width W=280 μm. Computational fluid dynamics simulations and experiments were performed to investigate the influence on the mixing efficiency of various geometrical parameters, including the side-channel width, the side-channel separation, and the number of side-channel pairs. The influence of different applied voltages is also considered. The numerical results reveal that the mixing efficiency can be enhanced to yield a fourfold improvement by incorporating two pairs of side channels into the mixing channel. It was also found that the mixing performance depends significantly upon the magnitudes of the applied voltages.
Electroosmotic velocity in an array of parallel soft cylinders in a salt-free medium.
Ohshima, Hiroyuki
2004-11-15
A theory of electroosmosis in an array of parallel soft cylinders (i.e. polyelectrolyte-coated cylinders) in a salt-free medium is presented. It is shown that there is a certain critical value of the particle charge and that if the particle charge is greater than the critical value, then the electroosmotic velocity becomes constant independent of the particle charge due to the counterion condensation effects, as in the case of other electrokinetic phenomena in salt-free media.
Environmental Integrity of Coating/Metal Interface.
1988-01-01
34. Report No. 1 FROM 02/01/87 TO 01/31/88 1988, JANUARY 32 * ’B SUPOLEMEN’ARY NOTATiON - 7 COSAT CODES 18 SUBJECT TERMS ,Co’r ’nXe on reverse ’,"ecessa’, ac ...AgCI accelerate disbonding by the formation of a weak fluid boundary layer at the coating/metal interface just ahead of electroosmotically produced...pockets of electroosmotically formed electrolyte or swollen regions of the heterogeneous polymer. A time series of micrographs allowed a virtually
Protein Separation by Electrophoretic-Electroosmotic Focusing on Supported Lipid Bilayers
Liu, Chunming; Monson, Christopher F.; Yang, Tinglu; Pace, Hudson; Cremer, Paul S.
2011-01-01
An electrophoretic-electroosmotic focusing (EEF) method was developed and used to separate membrane-bound proteins and charged lipids based on their charge-to-size ratio from an initially homogeneous mixture. EEF uses opposing electrophoretic and electroosmotic forces to focus and separate proteins and lipids into narrow bands on supported lipid bilayers (SLBs). Membrane-associated species were focused into specific positions within the SLB in a highly repeatable fashion. The steady-state focusing positions of the proteins could be predicted and controlled by tuning experimental conditions, such as buffer pH, ionic strength, electric field and temperature. Careful tuning of the variables should enable one to separate mixtures of membrane proteins with only subtle differences. The EEF technique was found to be an effective way to separate protein mixtures with low initial concentrations, and it overcame diffusive peak broadening to allow four bands to be separated simultaneously within a 380 μm wide isolated supported membrane patch. PMID:21958061
Aligned Immobilization of Proteins Using AC Electric Fields.
Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph
2016-03-01
Protein molecules are aligned and immobilized from solution by AC electric fields. In a single-step experiment, the enhanced green fluorescent proteins are immobilized on the surface as well as at the edges of planar nanoelectrodes. Alignment is found to follow the molecules' geometrical shape with their longitudinal axes parallel to the electric field. Simultaneous dielectrophoretic attraction and AC electroosmotic flow are identified as the dominant forces causing protein movement and alignment. Molecular orientation is determined by fluorescence microscopy based on polarized excitation of the proteins' chromophores. The chromophores' orientation with respect to the whole molecule supports X-ray crystal data. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Producing fluid flow using 3D carbon electrodes
NASA Astrophysics Data System (ADS)
Rouabah, H. A.; Park, B. Y.; Zaouk, R. B.; Madou, M. J.; Green, Nicolas G.
2008-12-01
Moving and manipulating bio-particles and fluids on the microscale is central to many lab-on-a-chip applications. Techniques for pumping fluids which use electric fields have shown promise using both DC and AC voltages. AC techniques, however, require the use of integrated metal electrodes which have a low resistance but can suffer from unwanted chemical reactions even at low potentials. In this paper we introduce the use of carbon MEMS technology (C-MEMS), a fabrication method which produces 3D conductive polymeric structures. Results are presented of the fabrication of an innovative design of 3D AC-electroosmotic micropump and preliminary experimental measurements which demonstrate the potential of both the technology and the design.
NASA Technical Reports Server (NTRS)
Todd, P. W.; Hjerten, S.
1985-01-01
Experiments were designed to replicate, as closely as possible in 1-G, the conditions of the STS-3 red blood cell (RBC) experiments. Free zone electrophoresis was the method of choice, since it minimizes the role of gravity in cell migration. The physical conditions of the STS-3 experiments were used, and human and rabbit RBC's fixed by the same method were the test particles. The effects of cell concentration, electroosmotic mobility, and sample composition were tested in order to seek explanations for the STS-3 results and to provide data on cell concentration effects for future zero-G separation on the continuous-flow zero-G electrophoretics separator.
Simulation of electrokinetic flow in microfluidic channels
NASA Astrophysics Data System (ADS)
Sabur, Romena; Matin, M.
2005-08-01
Electrokinetic phenomena become an increasingly efficient fluid transport mechanism in micro- and nano-fluidic fields. These phenomena have also been applied successfully in microfluidic devices to achieve particle separation, pre-concentration and mixing. Electrokinetic is the flow produced by the action of an electric field on a fluid with a net charge, where the charged ions of fluid are able to drag the whole solution through the channels in the microfluidic device from one analyzing point to the other. We will present the simulation results of electrokinetic transports of fluid in various typical micro-channel geometries such as T-channel, Y-channel, cross channel and straight channel. In practice, high-speed micro-PIV technique is used to measure transient fluidic phenomena in a microfluidic channel. Particle Image Velocimetry (PIV) systems provide two- or three-dimensional velocity maps in flows using whole field techniques based on imaging the light scattered by small particles in the flow illuminated by a laser light sheet. The system generally consists of an epifluorescent microscope, CW laser and a high-speed CMOS of CCD camera. The flow of a liquid, (water for example), containing fluorescent particle is then analyzed in a counter microchannel by the highly accurate PIV method. One can then compare the simulated and experimental microfluidic flow due to electroosmotic effect.
Shin, Woonsup; Zhu, Enhua; Nagarale, Rajaram Krishna; Kim, Chang Hwan; Lee, Jong Myung; Shin, Samuel Jaeho; Heller, Adam
2011-06-15
When a current or a voltage is applied across the ceramic membrane of the nongassing Ag/Ag(2)O-SiO(2)-Ag/Ag(2)O pump, protons produced in the anodic reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-) are driven to the cathode, where they are consumed by the reaction Ag(2)O(s) + H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). The flow of water is induced by momentum transfer from the electric field-driven proton-sheet at the surface of the ceramic membrane. About 10(4) water molecules flowed per reacted electron. Because dissolved ions decrease the field at the membrane surface, the flow decreases upon increasing the ionic strength. For this reason Ag(+) ions introduced through the anodic reaction and by dissolution of Ag(2)O decrease the flow. Their accumulation is reduced by applying Nafion-films to the electrodes. The 20 μL min(-1) flow rate of 6 mm i.d. pumps with Nafion coated electrodes operate daily for 5 min at 1 V for 1 month, for 70 h when the pump is pulsed for 30 s every 30 min, and for 2 h when operating continuously.
He, Chiyang; Lu, Joann J.; Jia, Zhijian; Wang, Wei; Wang, Xiayan; Dasgupta, Purnendu K.; Liu, Shaorong
2011-01-01
A micropump provides flow and pressure for a lab-on-chip device, just as a battery supplies current and voltage for an electronic system. Numerous micropumps have been developed, but none is as versatile as a battery. One cannot easily insert a micropump into a nonterminal position of a fluidic line without affecting the rest of the fluidic system, one cannot simply connect several micropumps in series to enhance the pressure output, etc. In this work we develop a flow battery (or pressure power supply) to address this issue. A flow battery consists of a +EOP (in which the liquid flows in the same direction as the field gradient) and a −EOP (in which the liquid flows opposite to the electric field gradient), and the outlet of the +EOP is directly connected to the inlet of the −EOP. An external high voltage is applied to this outlet-inlet joint via a short gel-filled capillary that allows ions but not bulk liquid flow, while the +EOP’s inlet and the −EOP’s outlet (the flow battery’s inlet and outlet) are grounded. This flow battery can be deployed anywhere in a fluidic network without electrically affecting the rest of the system. Several flow batteries can be connected in series to enhance the pressure output to drive HPLC separations. In a fluidic system powered by flow batteries, a hydraulic Ohm’s law can be applied to analyze system pressures and flow rates. PMID:21375230
Measurement of Zeta-Potential at Microchannel Wall by a Nanoscale Laser Induced Fluorescence Imaging
NASA Astrophysics Data System (ADS)
Kazoe, Yutaka; Sato, Yohei
A nanoscale laser induced fluorescence imaging was proposed by using fluorescent dye and the evanescent wave with total internal reflection of a laser beam. The present study focused on the two-dimensional measurement of zeta-potential at the microchannel wall, which is an electrostatic potential at the wall surface and a dominant parameter of electroosmotic flow. The evanescent wave, which decays exponentially from the wall, was used as an excitation light of the fluorescent dye. The fluorescent intensity detected by a CCD camera is closely related to the zeta-potential. Two kinds of fluorescent dye solution at different ionic concentrations were injected into a T-shaped microchannel, and formed a mixing flow field in the junction area. The two-dimensional distribution of zeta-potential at the microchannel wall in the pressure-driven flow field was measured. The obtained zeta-potential distribution has a transverse gradient toward the mixing flow field and was changed by the difference in the averaged velocity of pressure-driven flow. To understand the ion motion in the mixing flow field, the three-dimensional flow structure was analyzed by the velocity measurement using micron-resolution particle image velocimetry and the numerical simulation. It is concluded that the two-dimensional distribution of zeta-potential at the microchannel wall was dependent on the ion motion in the flow field, which was governed by the convection and molecular diffusion.
Chemical Modification of the Olfactory Receptor Epithelium of Vertebrate Species
1990-06-28
Pre-column Derivatization Procedure: 1.0 mL of the Jeffamine solution was mixed with 1.0 mL of NaCN, 5.0 mL of phosphate buffer pH 9.5 followed by 1.0...running buffer. All the unprotonated components elute at the same time because their rate of elution is controlled only by the rate of electroosmotic ...elecarosomotic mobility under our experimental conditions. Using an average elution time of 22.2 min the measured electroosmotic mobility is 1.3 x 10-4 cm2
Microfluidic concentration of bacteria by on-chip electrophoresis
Puchberger-Enengl, Dietmar; Podszun, Susann; Heinz, Helene; Hermann, Carsten; Vulto, Paul; Urban, Gerald A.
2011-01-01
In this contribution, we present a system for efficient preconcentration of pathogens without affecting their viability. Development of miniaturized molecular diagnostic kits requires concentration of the sample, molecule extraction, amplification, and detection. In consequence of low analyte concentrations in real-world samples, preconcentration is a critical step within this workflow. Bacteria and viruses exhibit a negative surface charge and thus can be electrophoretically captured from a continuous flow. The concept of phaseguides was applied to define gel membranes, which enable effective and reversible collection of the target species. E. coli of the strains XL1-blue and K12 were used to evaluate the performance of the device. By suppression of the electroosmotic flow both strains were captured with efficiencies of up to 99%. At a continuous flow of 15 μl/min concentration factors of 50.17 ± 2.23 and 47.36 ± 1.72 were achieved in less than 27 min for XL1-blue and K12, respectively. These results indicate that free flow electrophoresis enables efficient concentration of bacteria and the presented device can contribute to rapid analyses of swab-derived samples. PMID:22207893
NASA Astrophysics Data System (ADS)
Debusschere, Bert J.; Najm, Habib N.; Matta, Alain; Knio, Omar M.; Ghanem, Roger G.; Le Maître, Olivier P.
2003-08-01
This paper presents a model for two-dimensional electrochemical microchannel flow including the propagation of uncertainty from model parameters to the simulation results. For a detailed representation of electroosmotic and pressure-driven microchannel flow, the model considers the coupled momentum, species transport, and electrostatic field equations, including variable zeta potential. The chemistry model accounts for pH-dependent protein labeling reactions as well as detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. Uncertainty from the model parameters and boundary conditions is propagated to the model predictions using a pseudo-spectral stochastic formulation with polynomial chaos (PC) representations for parameters and field quantities. Using a Galerkin approach, the governing equations are reformulated into equations for the coefficients in the PC expansion. The implementation of the physical model with the stochastic uncertainty propagation is applied to protein-labeling in a homogeneous buffer, as well as in two-dimensional electrochemical microchannel flow. The results for the two-dimensional channel show strong distortion of sample profiles due to ion movement and consequent buffer disturbances. The uncertainty in these results is dominated by the uncertainty in the applied voltage across the channel.
Electroosmotic flow of biorheological micropolar fluids through microfluidic channels
NASA Astrophysics Data System (ADS)
Chaube, Mithilesh Kumar; Yadav, Ashu; Tripathi, Dharmendra; Bég, O. Anwar
2018-05-01
An analytical analysis is presented in this work to assess the influence of micropolar nature of fluids in fully developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate microchannel. The walls of the channel are assumed as sinusoidal wavy to analyze the peristaltic flow nature. We consider that the wavelength of the wall motion is much larger as compared to the channel width to validate the lubrication theory. To simplify the Poisson Boltzmann equation, we also use the Debye-Hückel linearization. We consider governing equation for micropolar fluid in absence of body force and couple effects however external electric field is employed. The solutions for axial velocity, spin velocity, flow rate, pressure rise, and stream functions subjected to given physical boundary conditions are computed. The effects of pertinent parameters like Debye length and Helmholtz-Smoluchowski velocity which characterize the EDL phenomenon and external electric field, coupling number and micropolar parameter which characterize the micropolar fluid behavior, on peristaltic pumping are discussed through the illustrations. The results show that peristaltic pumping may alter by applying external electric fields. This model can be used to design and engineer the peristalsis-lab-on-chip and micro peristaltic syringe pumps for biomedical applications.
NASA Astrophysics Data System (ADS)
Bolet, A. J. S.; Linga, G.; Mathiesen, J.
2017-12-01
Surface charge is an important control parameter for wall-bounded flow of electrolyte solution. The electroviscous effect has been studied theoretically in model geometries such as infinite capillaries. However, in more complex geometries a quantification of the electroviscous effect is a non-trival task due to strong non-linarites of the underlying equations. In general, one has to rely on numerical methods. Here we present numerical studies of the full three-dimensional steady state Stokes-Poisson-Nernst-Planck problem in order to model electrolyte transport in artificial porous samples. The simulations are performed using the finite element method. From the simulation, we quantity how the electroviscous effect changes the general flow permeability in complex three-dimensional porous media. The porous media we consider are mostly generated artificially by connecting randomly dispersed cylindrical pores. Furthermore, we present results of electric driven two-phase immiscible flow in two dimensions. The simulations are performed by augmenting the above equations with a phase field model to handle and track the interaction between the two fluids (using parameters corresponding to oil-water interfaces, where oil non-polar). In particular, we consider the electro-osmotic effect on imbibition due to charged walls and electrolyte-solution.
Coupled Electro-Hydrodynamic Effects of Electro-Osmosis from Pore Scale to Darcy Scale
NASA Astrophysics Data System (ADS)
Schotting, R.; Joekar-Niasar, V.; Leijnse, A.
2011-12-01
Electro-osmosis is "movement of a fluid under the effect of an electric field in a porous medium". This phenomenon has many applications in civil engineering (slope stabilization, dewatering), environmental engineering (soil remediation, sludge dewatering), chemical engineering (micro- or nano- mixers), medical engineering (drug delivery), etc. The key factor in electro-osmosis is the competition between the electrochemical and hydrodynamic forces as well as the coupling between the solid surface and the electrolyte properties. The objective of this research is to understand the influence of pore-scale heterogeneities of surface properties on the Darcy-scale behavior. We develop novel analytical solutions for the flow and transport of electrolyte including electro-hydrodynamic forces in a single micro-channel. We propose the complete analytical solution for monovalent electrolyte at full range overlapping double layers, and nonlinear electric field, including the Donan effect in transport of ions. These pore-scale formulations are numerically upscaled to obtain the Darcy-scale behavior. Our results show the contribution of electro-osmotic, chemical-osmotic and hydrodynamic components of the flow equation on pressure field evolution and multi-directional flow field at Darcy scale.
NASA Astrophysics Data System (ADS)
Duy, Vinh Nguyen; Lee, Jungkoo; Kim, Kyungcheol; Ahn, Jiwoong; Park, Seongho; Kim, Taeeun; Kim, Hyung-Man
2015-10-01
The under-rib convection-driven flow-field design for the uniform distribution of reacting gas and the generation of produced water generates broad scientific interest, especially among those who study the performance of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we simulate the effects of an under-rib convection-driven serpentine flow-field with sub-channel and by-pass (SFFSB) and a conventional advanced serpentine flow-field (CASFF) on single cell performance, and we compare the simulation results with experimental measurements. In the under-rib convection-driven flow-field configuration with SFFSB, the pressure drop is decreased because of the greater cross-sectional area for gas flow, and the decreased pressure drop results in the reduction of the parasitic loss. The anode liquid water mass fraction increases with increasing channel height because of increased back diffusion, while the cathode liquid water mass fraction does not depend upon the sub-channels but is ascribed mainly to the electro-osmotic drag. Simulation results verify that the maximum current and the power densities of the SFFSB are increased by 18.85% and 23.74%, respectively, due to the promotion of under-rib convection. The findings in this work may enable the optimization of the design of under-rib convection-driven flow-fields for efficient PEMFCs.
Prakash, J; Ramesh, K; Tripathi, D; Kumar, R
2018-07-01
A numerical simulation is presented to study the heat and flow characteristics of blood flow altered by electroosmosis through the tapered micro-vessels. Blood is assumed as non-Newtonian (micropolar) nanofluids. The flow regime is considered as asymmetric diverging (tapered) microchannel for more realistic micro-vessels which is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The Rosseland approximation is employed to model the radiation heat transfer and temperatures of the walls are presumed constants. The mathematical formulation of the present problem is simplified under the long-wavelength, low-Reynolds number and Debye-Hückel linearization approximations. The influence of various dominant physical parameters are discussed for axial velocity, microrotation distribution, thermal temperature distribution and nanoparticle volume fraction field. However, our foremost emphasis is to determine the effects of thermal radiation and coupling number on the axial velocity and microrotation distribution beneath electroosmotic environment. This analysis places a significant observation on the thermal radiation and coupling number which plays an influential role in hearten fluid velocity. This study is encouraged by exploring the nanofluid-dynamics in peristaltic transport as symbolized by heat transport in biological flows and also in novel pharmacodynamics pumps and gastro-intestinal motility enhancement. Copyright © 2018 Elsevier Inc. All rights reserved.
Rheotaxis of Bimetallic Micromotors Driven by Chemical-Acoustic Hybrid Power.
Ren, Liqiang; Zhou, Dekai; Mao, Zhangming; Xu, Pengtao; Huang, Tony Jun; Mallouk, Thomas E
2017-10-24
Rheotaxis is a common phenomenon in nature that refers to the directed movement of micro-organisms as a result of shear flow. The ability to mimic natural rheotaxis using synthetic micro/nanomotors adds functionality to enable their applications in biomedicine and chemistry. Here, we present a hybrid strategy that can achieve both positive and negative rheotaxis of synthetic bimetallic micromotors by employing a combination of chemical fuel and acoustic force. An acoustofluidic device is developed for the integration of the two propulsion mechanisms. Using acoustic force alone, bimetallic microrods are propelled along the bottom surface in the center of a fluid channel. The leading end of the microrod is always the less dense end, as established in earlier experiments. With chemical fuel (H 2 O 2 ) alone, the microrods orient themselves with their anode end against the flow when shear flow is present. Numerical simulations confirm that this orientation results from tilting of the microrods relative to the bottom surface of the channel, which is caused by catalytically driven electro-osmotic flow. By combining this catalytic orientation effect with more powerful, density-dependent acoustic propulsion, both positive and negative rheotaxis can be achieved. The ability to respond to flow stimuli and collectively propel synthetic microswimmers in a directed manner indicates an important step toward practical applications.
The Transport of Salt and Water across Isolated Rat Ileum
Clarkson, T. W.
1967-01-01
The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854
Attiya, S; Jemere, A B; Tang, T; Fitzpatrick, G; Seiler, K; Chiem, N; Harrison, D J
2001-01-01
An interface design is presented that facilitates automated sample introduction into an electrokinetic microchip, without perturbing the liquids within the microfluidic device. The design utilizes an interface flow channel with a volume flow resistance that is 0.54-4.1 x 10(6) times lower than the volume flow resistance of the electrokinetic fluid manifold used for mixing, reaction, separation, and analysis. A channel, 300 microm deep, 1 mm wide and 15-20 mm long, was etched in glass substrates to create the sample introduction channel (SIC) for a manifold of electrokinetic flow channels in the range of 10-13 microm depth and 36-275 microm width. Volume flow rates of up to 1 mL/min were pumped through the SIC without perturbing the solutions within the electrokinetic channel manifold. Calculations support this observation, suggesting a leakage flow to electroosmotic flow ratio of 0.1:1% in the electrokinetic channels, arising from 66-700 microL/min pressure-driven flow rates in the SIC. Peak heights for capillary electrophoresis separations in the electrokinetic flow manifold showed no dependence on whether the SIC pump was on or off. On-chip mixing, reaction and separation of anti-ovalbumin and ovalbumin could be performed with good quantitative results, independent of the SIC pump operation. Reproducibility of injection performance, estimated from peak height variations, ranged from 1.5-4%, depending upon the device design and the sample composition.
A new electrowetting lab-on-a-chip platform based on programmable and virtual wall-less channels
NASA Astrophysics Data System (ADS)
Banerjee, Ananda; Kreit, Eric; Dhindsa, Manjeet; Heikenfeld, Jason; Papautsky, Ian
2011-02-01
Microscale liquid handling based on electrowetting has been previously demonstrated by several groups. Such liquid manipulation however is limited to control of individual droplets, aptly termed digital microfluidics. The inability to form continuous channels thus prevents conventional microfluidic sample manipulation and analysis approaches, such as electroosmosis and electrophoresis. In this paper, we discuss our recent progress on the development of electrowettingbased virtual channels. These channels can be created and reconfigured on-demand and preserve their shape without external stimulus. We also discuss recent progress towards demonstrating electroosmotic flows in such microchannels for fluid transport. This would permit a variety of basic functionalities in this new platform including sample transport and mixing between various functional areas of the chip.
Zhang, Yanhao; Tian, Xiangyu; Guo, Yaxiao; Li, Haibin; Yu, Ajuan; Deng, Zhifen; Sun, Barry Baoguo; Zhang, Shusheng
2014-04-16
In this work, a new open-tubular capillary electrochromatography (OT-CEC) method with the nanolatex-coated column was proposed for the determination of nitrites and nitrates in foodstuffs. The method was simple and repeatable as a result of avoiding the introduction of an electroosmotic flow reverse additive (such as cetyltrimethylammonium chloride) in electrophoretic buffer. The limits of quantitation were 0.89 and 1.05 mg kg⁻¹ for nitrate and nitrite, respectively, whereas the overall recoveries ranged from 94 to 103%. The developed OT-CEC method was successfully applied for 12 samples, and the residue profiles of nitrites and nitrates in hams and sausages were obtained and evaluated.
Sample injector for high pressure liquid chromatography
Paul, Phillip H.; Arnold, Don W.; Neyer, David W.
2001-01-01
Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.
Electric field-decoupled electroosmotic pump for microfluidic devices.
Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J
2003-09-26
An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.
Geng, Xuhui; Shi, Meng; Ning, Haijing; Feng, Chunbo; Guan, Yafeng
2018-05-15
A compact and low-cost laser induced fluorescence (LIF) detector based on confocal structure for capillary flow systems was developed and applied for analysis of Her2 protein on single Hela cells. A low-power and low-cost 450 nm laser diode (LD) instead of a high quality laser was used as excitation light source. A compact optical design together with shortened optical path length improved the optical efficiency and detection sensitivity. A superior silicon based photodetector assembly was used for fluorescence detection instead of a photomultiplier (PMT). The limit of detection (LOD) for fluorescein sodium was 3 × 10 -12 M or 165 fluorescein molecules in detection volume measured on a homemade capillary electroosmotic driven (EOD)-LIF system, which was similar to commercial LIFs. Compared to commercial LIFs, the whole volume of our LIF was reduced to 1/2-1/3, and the cost was less than 1/3 of them. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of zeta potential on the performance of a ring-type electroosmotic mixer.
Kim, T A; Koo, K H; Kim, Y J
2009-12-01
In order to achieve faster mixing, a new type of electrokinetic mixer with a T-type channel is introduced. The proposed mixer takes two fluids from different inlets and combines them into a single channel. The fluids then enter a mixing chamber with different inner and outer radii. Four microelectrodes are positioned on the outer wall of the mixing chamber. The electric potentials on the four microelectrodes are sinusoidal with respect to time and have various maximum voltages, zeta potentials and frequency values. The working fluid is water and each inlet has a different initial concentration values. The incompressible Navier-Stokes equation is solved in the channel, with a slip boundary condition on the inner and outer walls of the mixing chamber. The convection-diffusion equation is used to describe the concentration of the dissolved substances in the fluid. The pressure, concentration and flow fields in the channel are calculated and the results are graphically depicted for various flow and electric conditions.
A picoliter-volume mixer for microfluidic analytical systems.
He, B; Burke, B J; Zhang, X; Zhang, R; Regnier, F E
2001-05-01
Mixing confluent liquid streams is an important, but difficult operation in microfluidic systems. This paper reports the construction and characterization of a 100-pL mixer for liquids transported by electroosmotic flow. Mixing was achieved in a microfabricated device with multiple intersecting channels of varying lengths and a bimodal width distribution. All channels running parallel to the direction of flow were 5 microm in width whereas larger 27-microm-width channels ran back and forth through the parallel channel network at a 45 degrees angle. The channel network composing the mixer was approximately 10 microm deep. It was observed that little mixing of the confluent solvent streams occurred in the 100-microm-wide, 300-microm-long mixer inlet channel where mixing would be achieved almost exclusively by diffusion. In contrast, after passage through the channel network in the approximately 200-microm-length static mixer bed, mixing was complete as determined by confocal microscopy and CCD detection. Theoretical simulations were also performed in an attempt to describe the extent of mixing in microfabricated systems.
Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.
Laskowski, René; Bart, Hans-Jörg
2015-09-01
An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robust ion current oscillations under a steady electric field: An ion channel analog.
Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia
2016-08-01
We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1/f power spectrum.
Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution.
Chang, Chien C; Kuo, Chih-Yu; Wang, Chang-Yi
2011-11-01
The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson-Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strength of the wall zeta potential relative to the thermal potential. In the small λ limits (λ<1), we recover the linearized PB equation - the Debye-Hückel approximation. The solutions obtained by using only three terms in the perturbation series are shown to be accurate with errors <1% for λ up to 2. The accurate solution to the PB equation is then used to solve the electrokinetic fluid transport equation for two types of unsteady flow: transient flow driven by a suddenly applied voltage and oscillatory flow driven by a time-harmonic voltage. The solution for the transient flow has important implications on EOF as an effective means for transporting electrolytes in microchannels with various electrokinetic widths. On the other hand, the solution for the oscillatory flow is shown to have important physical implications on EOF in mixing electrolytes in terms of the amplitude and phase of the resulting time-harmonic EOF rate, which depends on the applied frequency and the electrokinetic width of the microchannel as well as on the parameter λ. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng
2016-01-01
By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure. PMID:27190570
Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng
2016-05-01
By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlassiouk, Ivan V
2013-01-01
In this article, we report detection of deformable, hydrogel particles by the resistive-pulse technique using single pores in a polymer film. The hydrogels pass through the pores by electroosmosis and cause formation of a characteristic shape of resistive pulses indicating the particles underwent dehydration and deformation. These effects were explained via a non-homogeneous pressure distribution along the pore axis modeled by the coupled Poisson-Nernst-Planck and Navier Stokes equations. The local pressure drops are induced by the electroosmotic fluid flow. Our experiments also revealed the importance of concentration polarization in the detection of hydrogels. Due to the negative charges as wellmore » as branched, low density structure of the hydrogel particles, concentration of ions in the particles is significantly higher than in the bulk. As a result, when electric field is applied across the membrane, a depletion zone can be created in the vicinity of the particle observed as a transient drop of the current. Our experiments using pores with openings between 200 and 1600 nm indicated the concentration polarization dominated the hydrogels detection for pores wider than 450 nm. The results are of importance for all studies that involve transport of molecules, particles and cells through pores with charged walls. The developed inhomogeneous pressure distribution can potentially influence the shape of the transported species. The concentration polarization changes the interpretation of the resistive pulses; the observed current change does not necessarily reflect only the particle size but also the size of the depletion zone that is formed in the particle vicinity.« less
Obara, H.; Sapkota, A.; Takei, M.
2016-01-01
An optical transparent 3-D Integrated Microchannel-Electrode System (3-DIMES) has been developed to understand the particles' movement with electrokinetics in the microchannel. In this system, 40 multilayered electrodes are embedded at the 2 opposite sides along the 5 square cross-sections of the microchannel by using Micro Electro-Mechanical Systems technology in order to achieve the optical transparency at the other 2 opposite sides. The concept of the 3-DIMES is that the particles are driven by electrokinetic forces which are dielectrophoretic force, thermal buoyancy, electrothermal force, and electroosmotic force in a three-dimensional scope by selecting the excitation multilayered electrodes. As a first step to understand the particles' movement driven by electrokinetic forces in high conductive fluid (phosphate buffer saline (PBS)) with the 3-DIMES, the velocities of particles' movement with one pair of the electrodes are measured three dimensionally by Particle Image Velocimetry technique in PBS; meanwhile, low conductive fluid (deionized water) is used as a reference. Then, the particles' movement driven by the electrokinetic forces is discussed theoretically to estimate dominant forces exerting on the particles. Finally, from the theoretical estimation, the particles' movement mainly results from the dominant forces which are thermal buoyancy and electrothermal force, while the velocity vortex formed at the 2 edges of the electrodes is because of the electroosmotic force. The conclusions suggest that the 3-DIMES with PBS as high conductive fluid helps to understand the three-dimensional advantageous flow structures for cell manipulation in biomedical applications. PMID:27042247
Lewpiriyawong, Nuttawut; Xu, Guolin; Yang, Chun
2018-03-01
This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Castellote, Marta; Llorente, I.; Andrade, Carmen; Turrillas, X.; Alonso, Cruz; Campo, Javier
2006-11-01
Realkalisation is an electrochemical technique for repairing concrete structures damaged by rebar corrosion due to carbonation. The treatment aims at restoring alkalinity of the concrete by application of a continuous current between the rebar, acting as a cathode, and an external auxiliary electrode placed in a carbonate solution and connected to a positive pole of a power supply. Here we report the application of neutron diffraction in the in situ monitoring of a realkalisation treatment, analysing at the same time the development of the electro-osmotic flux and the microstructural variations in the surroundings of the rebar.
Electro-convective versus electroosmotic instability in concentration polarization.
Rubinstein, Isaak; Zaltzman, Boris
2007-10-31
Electro-convection is reviewed as a mechanism of mixing in the diffusion layer of a strong electrolyte adjacent to a charge-selective solid, such as an ion exchange (electrodialysis) membrane or an electrode. Two types of electro-convection in strong electrolytes may be distinguished: bulk electro-convection, due to the action of the electric field upon the residual space charge of a quasi-electro-neutral bulk solution, and convection induced by electroosmotic slip, due to electric forces acting in the thin electric double layer of either quasi-equilibrium or non-equilibrium type near the solid/liquid interface. According to recent studies, the latter appears to be the likely source of mixing in the diffusion layer, leading to 'over-limiting' conductance in electrodialysis. Electro-convection near a planar uniform charge selective solid/liquid interface sets on as a result of hydrodynamic instability of one-dimensional steady state electric conduction through such an interface. We compare the results of linear stability analysis obtained for instabilities of this kind appearing in the full electro-convective and limiting non-equilibrium electroosmotic formulations. The short- and long-wave aspects of these instabilities are discussed along with the wave number selection principles.
Benneker, Anne M.; Wood, Jeffery A.; Tsai, Peichun A.; Lammertink, Rob G. H.
2016-01-01
Electrokinetic effects adjacent to charge-selective interfaces (CSI) have been experimentally investigated in microfluidic platforms in order to gain understanding on underlying phenomena of ion transport at elevated applied voltages. We experimentally investigate the influence of geometry and multiple array densities of the CSI on concentration and flow profiles in a microfluidic set-up using nanochannels as the CSI. Particle tracking obtained under chronoamperometric measurements show the development of vortices in the microchannel adjacent to the nanochannels. We found that the direction of the electric field and the potential drop inside the microchannel has a large influence on the ion transport through the interface, for example by inducing immediate wall electroosmotic flow. In microfluidic devices, the electric field may not be directed normal to the interface, which can result in an inefficient use of the CSI. Multiple vortices are observed adjacent to the CSI, growing in size and velocity as a function of time and dependent on their location in the microfluidic device. Local velocities inside the vortices are measured to be more than 1.5 mm/s. Vortex speed, as well as flow speed in the channel, are dependent on the geometry of the CSI and the distance from the electrode. PMID:27853257
An electrochemical pumping system for on-chip gradient generation.
Xie, Jun; Miao, Yunan; Shih, Jason; He, Qing; Liu, Jun; Tai, Yu-Chong; Lee, Terry D
2004-07-01
Within the context of microfluidic systems, it has been difficult to devise pumping systems that can deliver adequate flow rates at high pressure for applications such as HPLC. An on-chip electrochemical pumping system based on electrolysis that offers certain advantages over designs that utilize electroosmotic driven flow has been fabricated and tested. The pump was fabricated on both silicon and glass substrates using photolithography. The electrolysis electrodes were formed from either platinum or gold, and SU8, an epoxy-based photoresist, was used to form the pump chambers. A glass cover plate and a poly(dimethylsiloxane) (PDMS) gasket were used to seal the chambers. Filling of the chambers was accomplished by using a syringe to inject liquid via filling ports, which were later sealed using a glass cover plate. The current supplied to the electrodes controlled the rate of gas formation and, thus, the resulting fluid flow rate. At low backpressures, flow rates >1 microL/min have been demonstrated using <1 mW of power. Pumping at backpressures as high as 200 psi have been demonstrated, with 20 nL/min having been observed using <4 mW. By integrating two electrochemical pumps with a polymer electrospray nozzle, we have confirmed the successful generation of a solvent gradient via a mass spectrometer.
NASA Astrophysics Data System (ADS)
Cao, Qianqian; Tian, Xiu; You, Hao
2018-04-01
We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.
Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong
2016-08-19
In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.
van der Wouden, E J; Hermes, D C; Gardeniers, J G E; van den Berg, A
2006-10-01
Electroosmotic flow (EOF) in a microchannel can be controlled by electronic control of the surface charge using an electrode embedded in the wall of the channel. By setting a voltage to the electrode, the zeta-potential at the wall can be changed locally. Thus, the electrode acts as a "gate" for liquid flow, in analogy with a gate in a field-effect transistor. In this paper we will show three aspects of a Field Effect Flow Control (FEFC) structure. We demonstrate the induction of directional flow by the synchronized switching of the gate potential with the channel axial potential. The advantage of this procedure is that potential gas formation by electrolysis at the electrodes that provide the axial electric field is suppressed at sufficiently large switching frequencies, while the direction and magnitude of the EOF can be maintained. Furthermore we will give an analysis of the time constants involved in the charging of the insulator, and thus the switching of the zeta potential, in order to predict the maximum operating frequency. For this purpose an equivalent electrical circuit is presented and analyzed. It is shown that in order to accurately describe the charging dynamics and pH dependency the traditionally used three capacitor model should be expanded with an element describing the buffer capacitance of the silica wall surface.
Observations of the initial stages of colloidal band formation
NASA Astrophysics Data System (ADS)
Li, Yanrong; Tagawa, Yoshiyuki; Yee, Andrew; Yoda, Minami
2017-11-01
A number of studies have shown that particles suspended in a conducting fluid near a wall are subject to wall-normal repulsive ``lift'' forces, even in the absence of interparticle interactions, in a flowing suspension. Evanescent-wave visualizations have shown that colloidal particles in a dilute (volume fractions <0.4%) suspension are instead attracted to the wall when the suspension is driven through 30 μm deep channels by a pressure gradient and an electric field when the resulting combined Poiseuille and electroosmotic (EO) flow are in opposite direction, i.e., ``counterflow,'' although the particles and channel walls both have negative zeta-potentials. Above a minimum ``threshold'' electric field magnitude |Emin | , the particles assemble into dense ``bands'' with cross-sectional dimensions of a few μm and length comparable to that of the channel (i.e., a few cm). The results suggest that the threshold field |Emin | is large enough so that there is a region of ``reverse'' flow, along the direction of the EO flow, near the wall. Visualization of a large segment of the channel (>300 hydraulic diameters) at frame rates as great as 1 kHz is used to determine banding maps for a variety of dilute colloidal suspensions and to investigate the initial stages of band formation over a wide range of flow conditions. Supported by US Army Research Office.
Anomalous mobility of highly charged particles in pores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Yinghua; Yang, Crystal; Hinkle, Preston
2015-07-16
Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. As a result, the experiments alsomore » indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore.« less
Stopped-flow enzyme assays on a chip using a microfabricated mixer.
Burke, Brian J; Regnier, Fred E
2003-04-15
This paper describes a microfabricated enzyme assay system including a micromixer that can be used to perform stopped-flow reactions. Samples and reagents were transported into the system by electroosmotic flow (EOF). Streams of reagents were merged and passed through the 100-pL micromixer in < 1 s. The objective of the work was to perform kinetically based enzyme assays in the stopped-flow mode using a system of roughly 6 nL volume. Beta-galactosidase (beta-Gal) was chosen as a model enzyme for these studies and was used to convert the substrate fluorescein mono-beta-D-galactopyranoside (FMG) into fluorescein. Results obtained with microfabricated systems using the micromixer compared well to those obtained with an external T mixing device. In contrast, assays performed in a microfabricated device by merging two streams and allowing mixing to occur by lateral diffusion did not compare well. Using the microfabricated mixer, Km and kcat values of 75 +/- 13 microM and 44 +/- 3 s(-1) were determined. These values compare well to those obtained with the conventional stopped-flow apparatus for which Km was determined to be 60 +/- 6 microM and kcat was 47 +/- 4 s(-1). Enzyme inhibition assays with phenylethyl-beta-D-thiogalactoside (PETG) were also comparable. It was concluded that kinetically based, stopped-flow enzyme assays can be performed in 60 s or less with a miniaturized system of roughly 6 nL liquid volume when mixing is assisted with the described device.
Generating electrospray from microchip devices using electroosmotic pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, R.S.; Ramsey, J.M.
1997-03-15
A method of generating electrospray from solutions emerging from small channels etched on planer substrates in described. The fluids are delivered using electroosmotically induced pressures and are sprayed electrostatically from the terminus of a channel by applying an electrical potential of sufficient amplitude to generate the electrospray between the microchip and a conductor spaced from the channel terminus. No major modification of the microchip is required other than to expose a channel opening. The principles that regulate the fluid delivery are described and demonstrated. A spectrum for a test compound, tetrabutylammonium iodide, that was continuously electrophoresed was obtained by couplingmore » the microchip to an ion trap mass spectrometer. 35 refs., 6 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.
2009-01-01
Water uptake and electro-osmosis are investigated to improve the understanding and aid the modeling of water transport in proton-exchange membrane fuel cells (PEMFCs) below 0 C. Measurements of water sorption isotherms show a significant reduction in the water capacity of polymer electrolytes below 0 C. This reduced water content is attributed to the lower vapor pressure of ice compared to supercooled liquid water. At -25 C, 1100 equivalent weight Nafion in equilibrium with vapor over ice has 8 moles of water per sulfonic acid group. Measurements of the electro-osmotic drag coefficient for Nafion and both random and multiblock copolymer sulfonatedmore » poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. The electro-osmotic drag coefficient of BPSH chemistries is found to be {approx}0.4, and that of Nafion is {approx}1. No significant temperature effect on the drag coefficient is found. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton conduction mechanisms. Simulations of the ohmically limited current below 0 C show that a reduced water uptake below 0 C results in a significant decrease in PEMFC performance.« less
Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis.
Gregersen, Misha Marie; Andersen, Mathias Baekbo; Soni, Gaurav; Meinhart, Carl; Bruus, Henrik
2009-06-01
For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an electrode of zero height and more than 100% for electrode heights comparable to the Debye length.
Numerical simulation of a non-equilibrium electrokinetic micro/nano fluidic mixer
NASA Astrophysics Data System (ADS)
Hadidi, H.; Kamali, R.
2016-03-01
In this study we numerically simulate a novel micromixer that utilizes vortex generation from the non-equilibrium electrokinetics near the micro/nanochannels interface. After mixing in combined pressure-driven and electroosmotic flows was compared with mixing in a pure pressure-driven flow, the superior mixing performance of the former was evident: for a specific case study, 90% mixing of two fluid streams for a short mixing length was achieved. The results of our numerical study were very similar to those of previously reported experiments. In this paper we explain the phenomenon occurring adjacent to the nano-junctions by plotting the electrical field components, the velocity contours and the concentration distribution in the micromixer. The vortices at the micro/nanochannel interface were obviously indicators of non-equilibrium behaviour in these regions. At the end, the mixing performance was evaluated by the investigation of different applied voltages, Reynolds numbers and surface charge densities using the mixing index parameter, and the results showed that more efficient mixing occurred when the applied voltage and surface charge density magnitude were increased and the Reynolds number was decreased.
Countercurrent distribution of biological cells
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1979-01-01
A neutral polymer phase system consisting of 7.5 percent dextran 40/4.5 percent PEG 6, 0.11 M Na phosphate, 5 percent fetal bovine serum (FBS), pH 7.5, was developed which has a high phase droplet electrophoretic mobility and retains cell viability over many hours. In this and related systems, the drop mobility was a linear function of drop size, at least in the range 4-30 micron diameter. Applications of and electric field of 4.5 v/cm to a system containing 10 percent v/v bottom phase cleared the system more than two orders of magnitude faster than in the absence of the field. At higher bottom phase concentrations a secondary phenomenon intervened in the field driven separations which resulted in an increase in turbidity after clearing had commenced. The increase was associated with a dilution of the phase system in the chamber. The effect depended on the presence of the electric field. It may be due to electroosmotic flow of buffer through the Amicon membranes into the sample chamber and flow of phase system out into the rinse stream. Strategies to eliminate this problem are proposed.
Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E
2012-09-15
Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.
Electrolyte transport in neutral polymer gels embedded with charged inclusions
NASA Astrophysics Data System (ADS)
Hill, Reghan
2005-11-01
Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.
A Technique for Estimating the Surface Conductivity of Single Molecules
NASA Astrophysics Data System (ADS)
Bau, Haim; Arsenault, Mark; Zhao, Hui; Purohit, Prashant; Goldman, Yale
2007-11-01
When an AC electric field at 2MHz was applied across a small gap between two metal electrodes elevated above a surface, rhodamine-phalloidin-labeled actin filaments were attracted to the gap and became suspended between the two electrodes. The variance of each filament's horizontal, lateral displacement was measured as a function of electric field intensity and position along the filament. The variance significantly decreased as the electric field intensity increased. Hypothesizing that the electric field induces electroosmotic flow around the filament that, in turn, induces drag on the filament, which appears as effective tension, we estimated the tension using a linear, Brownian dynamic model. Based on the tension, we estimated the filament's surface conductivity. Our experimental method provides a novel means for trapping and manipulating biological filaments and for probing the surface conductance and mechanical properties of single polymers.
Bjørnsdottir, I; Kepp, D R; Tjørnelund, J; Hansen, S H
1998-03-01
A capillary electrophoresis method for determination of the enantiomers of ibuprofen and its major phase I metabolites: 2'-hydroxyibuprofen and 2'-carboxyibuprofen in urine samples have been developed. Cyclodextrins and linear dextrins have been investigated as chiral selectors. Simultaneous chiral separation of the enantiomers of ibuprofen, 2'-hydroxyibuprofen and 2'-carboxyibuprofen was obtained using a mixture of dextrin 10 and heptakis (2,3,6-tri-O-methyl)-beta-cyclodextrin in a 2-[N-morpholino]ethanesulphonic acid buffer, pH 5.26. The electroosmotic flow was reversed using hexadimethrine bromide as a buffer additive. The method can be used for the determination of the free enantiomers of ibuprofen, 2'-hydroxyibuprofen and 2'-carboxyibuprofen as well as for the indirect determination of their glucuronic acid conjugates in urine samples.
Modeling electrokinetics in ionic liquids: General
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Bao, Jie; Pan, Wenxiao
2017-04-07
Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow onmore » a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.« less
An accessible micro-capillary electrophoresis device using surface-tension-driven flow
Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.
2010-01-01
We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom). Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. PMID:19425002
Rapid Microfluidic Mixers Utilizing Dispersion Effect and Interactively Time-Pulsed Injection
NASA Astrophysics Data System (ADS)
Leong, Jik-Chang; Tsai, Chien-Hsiung; Chang, Chin-Lung; Lin, Chiu-Feng; Fu, Lung-Ming
2007-08-01
In this paper, we present a novel active microfluidic mixer utilizing a dispersion effect in an expansion chamber and applying interactively time-pulsed driving voltages to the respective inlet fluid flows to induce electroosmotic flow velocity variations for developing a rapid mixing effect in a microchannel. Without using any additional equipment to induce flow perturbations, only a single high-voltage power source is required for simultaneously driving and mixing sample fluids, which results in a simple and low-cost system for mixing. The effects of the applied main electrical field, interactive frequency, and expansion ratio on the mixing performance are thoroughly examined experimentally and numerically. The mixing ratio can be as high as 95% within a mixing length of 3000 μm downstream from the secondary T-form when a driving electric field strength of 250 V/cm, a periodic switching frequency of 5 Hz, and the expansion ratio M=1:10 are applied. In addition, the optimization of the driving electric field, switching frequency, expansion ratio, expansion entry length, and expansion chamber length for achieving a maximum mixing ratio is also discussed in this study. The novel method proposed in this study can be used for solving the mixing problem in the field of micro-total-analysis systems in a simple manner.
Demekhin, Evgeny A; Ganchenko, Georgy S; Gorbacheva, Ekaterina V; Amiroudine, Sakir
2018-04-16
The stability of the electroosmotic flow of the two-phase system electrolyte-dielectric with a free interface in the microchannel under an external electric field is examined theoretically. The mathematical model includes the Nernst-Plank equations for the ion concentrations. The linear stability of the 1D nonstationary solution with respect to the small, periodic perturbations along the channel, is studied. Two types of instability have been highlighted. The first is known as the long-wave instability and is connected with the distortion of the free charge on the interface. In the long-wave area, the results are in good agreement with the ones obtained theoretically and experimentally in the literature. The second type of instability is a short-wave and mostly connected with the disturbance of the electrolyte conductivity. The short-wave type of instability has not been found previously in the literature and constitutes the basis and the strength of the present work. It is revealed that with the increase of the external electric field frequency, the 1D flow is stabilized. The dependence of the flow on the other parameters of the system is qualitatively the same as for the constant electric field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bahrami, Hafez; Faghri, Amir
2012-11-01
A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m
The fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.
1990-01-01
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.
Asymmetric nanopore membranes: Single molecule detection and unique transport properties
NASA Astrophysics Data System (ADS)
Bishop, Gregory William
Biological systems rely on the transport properties of transmembrane channels. Such pores can display selective transport by allowing the passage of certain ions or molecules while rejecting others. Recent advances in nanoscale fabrication have allowed the production of synthetic analogs of such channels. Synthetic nanopores (pores with a limiting dimension of 1--100 nm) can be produced in a variety of materials by several different methods. In the Martin group, we have been exploring the track-etch method to produce asymmetric nanopores in thin films of polymeric or crystalline materials. Asymmetric nanopores are of particular interest due to their ability to serve as ion-current rectifiers. This means that when a membrane that contains such a pore or collection of pores is used to separate identical portions of electrolyte solution, the magnitude of the ionic current will depend not only on the magnitude of the applied potential (as expected) but also the polarity. Ion-current rectification is characterized by an asymmetric current--potential response. Here, the interesting transport properties of asymmetric nanopores (ion-current rectification and the related phenomenon of electroosmotic flow rectification) are explored. The effects of pore shape and pore density on these phenomena are investigated. Membranes that contain a single nanopore can serve as platforms for the single-molecule sensing technique known as resistive pulse sensing. The resistive-pulse sensing method is based on the Coulter principle. Thus, the selectivity of the technique is based largely upon size, making the analysis of mixtures by this method difficult in many cases. Here, the surface of a single nanopore membrane is modified with a molecular recognition agent in an attempt to obtain a more selective resistive-pulse sensor for a specific analyte.
Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J
2013-07-25
A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1. Copyright © 2013 Elsevier B.V. All rights reserved.
Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon
2017-01-01
This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf 2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bauer, J; Hymer, W C; Morrison, D R; Kobayashi, H; Seaman, G V; Weber, G
1999-01-01
Programs for free flow electrophoresis in microgravity over the past 25 years are reviewed. Several studies accomplished during 20 spaceflight missions have demonstrated that sample throughput is significantly higher in microgravity than on the ground. Some studies have shown that resolution is also increased. However, many cell separation trials have fallen victim to difficulties associated with experimenting in the microgravity environment such as microbial contamination, air bubbles in electrophoresis chambers, and inadequate facilities for maintaining cells before and after separation. Recent studies suggest that the charge density of cells at their surface may also be modified in microgravity. If this result is confirmed, a further cellular mechanism of "sensing" the low gravity environment will have been found. Several free fluid electrophoresis devices are now available. Most have been tried at least once in microgravity. Newer units not yet tested in spaceflight have been designed to accommodate problems associated with space processing. The USCEPS device and the Japanese FFEU device are specifically designed for sterile operations, whereas the Octopus device is designed to reduce electroosmotic and electrohydrodynamic effects, which become dominant and detrimental in microgravity. Some of these devices will also separate proteins by zone electrophoresis, isotachophoresis, or isoelectric focusing in a single unit. Separation experiments with standard test particles are useful and necessary for testing and optimizing new space hardware. A cohesive free fluid electrophoresis program in the future will obviously require (1) flight opportunities and funding, (2) identification of suitable cellular and macromolecular candidate samples, and (3) provision of a proper interface of electrophoresis processing equipment with biotechnological facilities--equipment like bioreactors and protein crystal growth chambers. The authors feel that such capabilities will lead to the production of commercially useful quantities of target products and to an accumulation of new knowledge relating to the complexities of electrostatic phenomena at the cell surface.
Lin, Chun-Chi; Liu, Chuen-Ying
2004-10-01
With 3-trimethoxysilylpropyl chloride as the spacer, a proline-coated capillary column was prepared for the capillary electrochromatographic (CEC) separation of amino acids by in-column derivatization. Nine standard mixtures, including aspartic acid, glutamic acid, valine, phenylalanine, alanine, isoleucine, leucine, tyrosine, and tryptophan, were injected. o-Phthalaldehyde (OPA), OPA/2-mercaptoethanol (2-ME) and OPA/N-acetylcysteine (NAC) in borate buffer were tested as the derivatizing agent. Among them, OPA (50 mM) in borate buffer (pH 9.5, 50 mM) gave the best performance. The formation of isoindole could be detected by UV detection. The sandwich-type injection was carried out in hydrostatic mode (10 cm) with the program R(10 s)S(10 s) R(10 s)W(10 min) with R, S, and W being the reagent, sample, and waiting times. Mesityl oxide, benzyl alcohol, and acetone showed some interaction with the column. A current monitoring method was used instead of the determination of the electroosmotic flow (EOF). The direction of EOF was from anode to cathode even under acidic condition lower than the pI value (6.31) of the bonded group due to some unreacted silanol groups. Some parameters including pH, nature, and concentration of the mobile phase and the effect of organic modifier with regard to the CEC separation were investigated. With the proline-coated column (75 (50) cm x 75 microm ID) the best separation was performed in phosphate buffer (pH 4.00, 100 mM) with an applied voltage of -15 kV. The established method was also compared with those precolumn derivatized prior to the separation with proline-coated column as well as with in-capillary derivatization and separation with a bare fused-silica column. Copyright 2004 WILEY-VCH Verlag GmbH & Co.
Ge, Liya; Yong, Jean Wan Hong; Tan, Swee Ngin; Hua, Lin; Ong, Eng Shi
2008-05-01
In this paper, we present the results of simultaneous screening of eight gibberellins (GAs) in coconut (Cocos nucifera L.) water by MEKC directly coupled to ESI-MS detection. During the development of MEKC-MS, partial filling (PF) was used to prevent the micelles from reaching the mass spectrometer as this is detrimental to the MS signal, and a cationic surfactant, cetyltrimethylammonium hydroxide, was added to the electrolyte to reverse the EOF. On the basis of the resolution of the neighboring peaks, different parameters (i.e., the pH and concentration of buffer, surfactant concentrations, length of the injected micellar plug, organic modifier, and applied separation voltage) were optimized to achieve a satisfactory PF-MEKC separation of eight GA standards. Under optimum conditions, a baseline separation of GA standards, including GA1, GA3, GA5, GA6, GA7, GA9, GA12, and GA13, was accomplished within 25 min. Satisfactory results were obtained in terms of precision (RSD of migration time below 0.9%), sensitivity (LODs in the range of 0.8-1.9 microM) and linearity (R2 between 0.981 and 0.997). MS/MS with multiple reaction monitoring (MRM) detection was carried out to obtain sufficient selectivity. PF-MEKC-MS/MS allowed the direct identification and confirmation of the GAs presented in coconut water (CW) sample after SPE, while, the quantitative analysis of GAs was performed by PF-MEKC-MS approach. GA1 and GA3 were successfully detected and quantified in CW. It is anticipated that the current PF-MEKC-MS method can be applicable to analyze GAs in a wide range of biological samples.
Separation of organic cations using novel background electrolytes by capillary electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, S.; Fritz, J.
2008-02-12
A background electrolyte for capillary electrophoresis containing tris(-hydroxymethyl) aminomethane (THAM) and ethanesulfonic acid (ESA) gives excellent efficiency for separation of drug cations with actual theoretical plate numbers as high as 300,000. However, the analyte cations often elute too quickly and consequently offer only a narrow window for separation. The best way to correct this is to induce a reverse electroosmotic flow (EOF) that will spread out the peaks by slowing their migration rates, but this has always been difficult to accomplish in a controlled manner. A new method for producing a variable EOF is described in which a low variablemore » concentration of tributylammonium- or triethylammonium ESA is added to the BGE. The additive equilibrates with the capillary wall to give it a positive charge and thereby produce a controlled opposing EOF. Excellent separations of complex drug mixtures were obtained by this method.« less
Gotoh, Keiko
2017-01-01
The detergency of products, mainly textiles, was evaluated using various experimental systems and discussed from the viewpoint of interfacial phenomena. The detergency phenomena observed for geometrically simple model systems were explained in terms of the total potential energy of interaction between the soil and the substrate, which was calculated as the sum of the electrical double layer, Lifshitzvan der Waals, and acid-base interactions using electrokinetic potentials and surface free energy components. Cleaning experiments using artificially soiled fabrics were performed using electro-osmotic flow and ultrasound as mechanical actions for soil removal, and the results were compared with those obtained with mechanical actions commonly used in textile washing. Simultaneous hydrophilization of the substrate and soil by an atmospheric pressure plasma jet remarkably improved the detergency in aqueous solutions. The application of the atmospheric pressure plasma jet to anti-fouling textiles was also proposed.
Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis.
Zhou, Hao; White, Lee R; Tilton, Robert D
2005-05-01
Colloidal particles and biological cells are patterned and separated laterally adjacent to a micropatterned electrode array by applying AC electric fields that are principally oriented normally to the electrode array. This is demonstrated for yeast cells, red blood cells, and colloidal polystyrene particles of different sizes and zeta-potentials. The separation mechanism is observed experimentally to depend on the applied field frequency and voltage. At high frequencies, particles position themselves in a manner that is consistent with dielectrophoresis, while at low frequencies, the positioning is explained in terms of a strong coupling between gravity, the vertical component of the dielectrophoretic force, and the Stokes drag on particles induced by AC electroosmotic flow. Compared to high frequency dielectrophoretic separations, the low frequency separations are faster and require lower applied voltages. Furthermore, the AC electroosmosis coupling with dielectrophoresis may enable cell separations that are not feasible based on dielectrophoresis alone.
Drop Migration and Demixing of Biphasic Aqueous Systems in an Applied Electric Field
NASA Astrophysics Data System (ADS)
Todd, Paul; Raghavarao, Karumanchi S. M. S.
1999-11-01
Applying an electric field to a demixing emulsion of poly(ethylene glycol)(PEG) and dextran (or maltodextrin) in phosphate-buffered aqueous solution shortens the demixing time up to 6 fold. Phosphate ions partition into the dextran-rich phase imparting a small electrical potential between the phases. PEG-rich drops migrate cathodally, and their electrophoretic mobility is directly proportional to their radius and increases with increased ionization of phosphate. An electric field, either parallel or antiparallel to the gravity vector, can enhance demixing. A theory consistent with these observations states that drops move due to external and internal electroosmotic flow (tractor treading). Enhanced demixing in an electric field whose polarity opposes buoyancy is thought to be caused by initial increased drop growth during retardation by the electric field so that the drop becomes more buoyant. However, at infinite internal drop viscosity the theory does not extrapolate to the result for solid colloid particles.
Zhang, Hongyi; Ge, Lijuan; Chen, Hui; Jing, Cong; Shi, Zhihong
2009-07-01
The principle of the normalization of migration time and its application on the traditional Chinese medicine (TCM) analysis by capillary electrophoresis (CE) are presented. It is the core of the normalization of migration time that the fluctuation of apparent migration velocity for each component at different runs is attributed to the difference of electroosmotic flow velocity. To transform migration time (t) to normalized migration time, one peak or two peaks in the original electropherogram are selected as internal peak. The normalization of migration time is therefore classified into two types based on the number of selected internal peaks, one-peak and two-peak approaches. The migration times processed by one-peak normalization and by two-peak normalization are conducted by the following equations, respectively: (t'(i))(j) = 1/ [1/(t(i))(j) - [1/(t(istd))(j) - 1/(t(istd))1
Electrokinetic Aggregation of Colloidal Particles on Electrodes
NASA Astrophysics Data System (ADS)
Anderson, John L.; Solomentsev, Yuri E.; Guelcher, Scott A.
1999-11-01
Colloidal particles deposited on an electrode have been observed to attract each other and form clusters in the presence of an applied electric field. This aggregation is important to the formation of dense monolayer films during electrophoretic depositon processes. Under dc fields two particles attract each other over a length scale comparable to the particle size, and the velocity of approach between two particles is proportional to the applied electric field and the particles' zeta potential. We have developed a theory for particle aggregation based on electroosmotic flow about each deposited particle. Experimental results for the relative motion of two particles are in good quantitative agreement with the theory. Our recent experiments with ac fields also show attraction between particles that is roughly proportional to the rms electric field but inversely proportional to the frequency. We discuss here a model based on electrokinetic processes that can account for some of the observations in ac fields.
In Situ Observations of Electric-Field Induced Nanoparticle Aggregation
NASA Astrophysics Data System (ADS)
Woehl, T. J.; Browning, N. D.; Ristenpart, W. D.
2010-11-01
Nanoparticles have been widely observed to aggregate laterally on electrodes in response to applied electric fields. The mechanism driving this behavior, however, is unclear. Several groups have interpreted the aggregation in terms of electrohydrodynamic or electroosmotic fluid motion, but little corroborating evidence has been presented. Notably, work to date has relied on post situ observations using electron microscopy. Here we present a fluorescence microscopy technique to track the dynamics of nanoparticle aggregation in situ. Fluorescent 20-nm polystyrene nanoparticles are observed to form optically visible aggregates in response to an applied AC field. Although single particle resolution is lost, the existence of aggregates on the electrode surface is marked by growing clusters of increasingly bright intensity. We present a systematic investigation of the effects of applied potential and frequency on the aggregation rate, and we interpret the behavior in terms of a mechanism based on electrically induced convective flow.
Melvin, Elizabeth M; Moore, Brandon R; Gilchrist, Kristin H; Grego, Sonia; Velev, Orlin D
2011-09-01
The recent development of microfluidic "lab on a chip" devices requiring sample sizes <100 μL has given rise to the need to concentrate dilute samples and trap analytes, especially for surface-based detection techniques. We demonstrate a particle collection device capable of concentrating micron-sized particles in a predetermined area by combining AC electroosmosis (ACEO) and dielectrophoresis (DEP). The planar asymmetric electrode pattern uses ACEO pumping to induce equal, quadrilateral flow directed towards a stagnant region in the center of the device. A number of system parameters affecting particle collection efficiency were investigated including electrode and gap width, chamber height, applied potential and frequency, and number of repeating electrode pairs and electrode geometry. The robustness of the on-chip collection design was evaluated against varying electrolyte concentrations, particle types, and particle sizes. These devices are amenable to integration with a variety of detection techniques such as optical evanescent waveguide sensing.
Simulations of induced-charge electro-osmosis in microfluidic devices
NASA Astrophysics Data System (ADS)
Ben, Yuxing
2005-03-01
Theories of nonlinear electrokinetic phenomena generally assume a uniform, neutral bulk electroylte in contact with a polarizable thin double layer near a metal or dielectric surface, which acts as a "capacitor skin". Induced-charge electro-osmosis (ICEO) is the general effect of nonlinear electro-osmotic slip, when an applied electric field acts on its own induced (diffuse) double-layer charge. In most theoretical and experimental work, ICEO has been studied in very simple geometries, such as colloidal spheres and planar, periodic micro-electrode arrays. Here we use finite-element simulations to predict how more complicated geometries of polarizable surfaces and/or electrodes yield flow profiles with subtle dependence on the amplitude and frequency of the applied voltage. We also consider how the simple model equations break down, due to surface conduction, bulk diffusion, and concentration polarization, for large applied voltages (as in most experiments).
TOPICAL REVIEW: A review of micropumps
NASA Astrophysics Data System (ADS)
Laser, D. J.; Santiago, J. G.
2004-06-01
We survey progress over the past 25 years in the development of microscale devices for pumping fluids. We attempt to provide both a reference for micropump researchers and a resource for those outside the field who wish to identify the best micropump for a particular application. Reciprocating displacement micropumps have been the subject of extensive research in both academia and the private sector and have been produced with a wide range of actuators, valve configurations and materials. Aperiodic displacement micropumps based on mechanisms such as localized phase change have been shown to be suitable for specialized applications. Electroosmotic micropumps exhibit favorable scaling and are promising for a variety of applications requiring high flow rates and pressures. Dynamic micropumps based on electrohydrodynamic and magnetohydrodynamic effects have also been developed. Much progress has been made, but with micropumps suitable for important applications still not available, this remains a fertile area for future research.
Pedersen-Bjergaard, S; Rasmussen, K E; Sannes, E
1998-01-01
While the hallucinogenic mushrooms Psilocybe semilanceata have previously been analyzed for the indole alkaloids psilocybin and baeocystin by capillary zone electrophoresis (CZE) at pH 11.5, the present work focused on the development of an alternative and complementary capillary electrophoretic method for their identification. Owing to their structural similarity and zwitterionic nature, the compounds were difficult to resolve based on different interactions with cationic or anionic micelles. However, while the attempts with micellar electrokinetic chromatography (MEKC) were unsuccessful, rapid derivatization with propyl chloroformate and reanalysis by CZE at pH 11.5 was effective to support identification of the two indole alkaloids. Psilocin was difficult to analyze by CZE at pH 11.5 owing to comigration with the electroosmotic flow. For this compound, the pH of the running buffer was reduced to 7.2 to effectively enhance the electrophoretic mobility.
Protein separation using an electrically tunable membrane
NASA Astrophysics Data System (ADS)
Jou, Ining; Melnikov, Dmitriy; Gracheva, Maria
Separation of small proteins by charge with a solid-state porous membrane requires control over the protein's movement. Semiconductor membrane has this ability due to the electrically tunable electric potential profile inside the nanopore. In this work we investigate the possibility to separate the solution of two similar sized proteins by charge. As an example, we consider two small globular proteins abundant in humans: insulin (negatively charged) and ubiquitin (neutral). We find that the localized electric field inside the pore either attracts or repels the charged protein to or from the pore wall which affects the delay time before a successful translocation of the protein through the nanopore. However, the motion of the uncharged ubiquitin is unaffected. The difference in the delay time (and hence the separation) can be further increased by the application of the electrolyte bias which induces an electroosmotic flow in the pore. NSF DMR and CBET Grant No. 1352218.
Šebestová, Andrea; Petr, Jan
2017-12-01
The combination of capillaries with different internal diameters was used to accelerate the separation of enantiomers in capillary electrophoresis. Separation of R,S-1,1'-binaphthalene-2,2'-diyl hydrogen phosphate using isopropyl derivative of cyclofructan 6 was studied as a model system. The best separation conditions included 500 mM sodium borate pH 9.5 with 60 mM concentration of the chiral selector. Separation lasted approx. 1.5 min using the combination of 50 and 100 μm id capillaries of 9.7 cm and 22.9 cm, respectively. It allowed approx. 12-fold acceleration in comparison to the traditional long-end separation mainly due to the higher electroosmotic flow generated in the connected capillaries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example
Bhamidimarri, Satya Prathyusha; Prajapati, Jigneshkumar Dahyabhai; van den Berg, Bert; Winterhalter, Mathias; Kleinekathöfer, Ulrich
2016-01-01
To quantify the flow of small uncharged molecules into and across nanopores, one often uses ion currents. The respective ion-current fluctuations caused by the presence of the analyte make it possible to draw some conclusions about the direction and magnitude of the analyte flow. However, often this flow appears to be asymmetric with respect to the applied voltage. As a possible reason for this asymmetry, we identified the electroosmotic flow (EOF), which is the water transport associated with ions driven by the external transmembrane voltage. As an example, we quantify the contribution of the EOF through a nanopore by investigating the permeation of α-cyclodextrin through CymA, a cyclodextrin-specific channel from Klebsiella oxytoca. To understand the results from electrophysiology on a molecular level, all-atom molecular dynamics simulations are used to detail the effect of the EOF on substrate entry to and exit from a CymA channel in which the N-terminus has been deleted. The combined experimental and computational results strongly suggest that one needs to account for the significant contribution of the EOF when analyzing the penetration of cyclodextrins through the CymA pore. This example study at the same time points to the more general finding that the EOF needs to be considered in translocation studies of neutral molecules and, at least in many cases, should be able to help in discriminating between translocation and binding events. PMID:26840725
Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example.
Bhamidimarri, Satya Prathyusha; Prajapati, Jigneshkumar Dahyabhai; van den Berg, Bert; Winterhalter, Mathias; Kleinekathöfer, Ulrich
2016-02-02
To quantify the flow of small uncharged molecules into and across nanopores, one often uses ion currents. The respective ion-current fluctuations caused by the presence of the analyte make it possible to draw some conclusions about the direction and magnitude of the analyte flow. However, often this flow appears to be asymmetric with respect to the applied voltage. As a possible reason for this asymmetry, we identified the electroosmotic flow (EOF), which is the water transport associated with ions driven by the external transmembrane voltage. As an example, we quantify the contribution of the EOF through a nanopore by investigating the permeation of α-cyclodextrin through CymA, a cyclodextrin-specific channel from Klebsiella oxytoca. To understand the results from electrophysiology on a molecular level, all-atom molecular dynamics simulations are used to detail the effect of the EOF on substrate entry to and exit from a CymA channel in which the N-terminus has been deleted. The combined experimental and computational results strongly suggest that one needs to account for the significant contribution of the EOF when analyzing the penetration of cyclodextrins through the CymA pore. This example study at the same time points to the more general finding that the EOF needs to be considered in translocation studies of neutral molecules and, at least in many cases, should be able to help in discriminating between translocation and binding events. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Wang, Shau-Chun; Chen, Hsiao-Ping; Lee, Chia-Yu; Yeo, Leslie Y
2005-04-15
In capillary electrophoresis, effective optical signal quality improvement is obtained when high frequency (>100 Hz) external pulse fields modulate analyte velocities with synchronous lock-in detection. However, the pulse frequency is constrained under a critical value corresponding to the time required for the bulk viscous flow, which arises due to viscous momentum diffusion from the electro-osmotic slip in the Debye layer, to reach steady-state. By solving the momentum diffusion equation for transient bulk flow in the micro-channel, we show that this set-in time to steady-state and hence, the upper limit for the pulse frequency is dependent on the characteristic diffusion length scale and therefore the channel geometry; for cylindrical capillaries, the set-in time is approximately one half of that for rectangular slot channels. From our estimation of the set-in time and hence the upper frequency modulation limit, we propose that the half width of planar channels does not exceed 100 microm and that the radii of cylindrical channels be limited to 140 microm such that there is a finite working bandwidth range above 100 Hz and below the upper limit in order for flicker noise to be effectively suppressed.
NASA Technical Reports Server (NTRS)
Todd, P. W.
1985-01-01
The objectives of the red blood cell experiments were to provide a visual check on the electrophoretic process and especially electroosmotic flow in space as well as to provide test separations of non-degradable standard particles for comparison with the separations of the three viable cell types studied on the Apollo-Soyuz Test Project. Determination of the maximum concentrations of cells that can be separated in column electrophore was a significant goal. Two of the eight columns were available for red cell experiments, so two concentrations of human and rabbit RBC mixtures were used. The objectives of another experiment were to evaluate the reproducibility of microgravity electrophoretic separation of living kidney cells, to separate cells with highly viability despite two freeze-thaw cycles, and to optimize the physical conditions of cell separation. Owing to the uncertain heterogeneity of the starting material, the experimental design does not assess resolution in microgravity, but improved separability was sought in comparison to density-gradient electrophoresis or continuous-flow electrophoresis. Efforts were made to increase cell yield and cell viability and to assess reproducibility directly.
Balme, Sébastien; Picaud, Fabien; Manghi, Manoel; Palmeri, John; Bechelany, Mikhael; Cabello-Aguilar, Simon; Abou-Chaaya, Adib; Miele, Philippe; Balanzat, Emmanuel; Janot, Jean Marc
2015-01-01
Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 μm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10−2 C m−2 needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed. PMID:26036687
Electricity in foams: from one soapy interface to the macroscopic material
NASA Astrophysics Data System (ADS)
Biance, Anne-Laure
2017-11-01
Liquid foams (a dispersion of gas bubbles in a soapy solution) destabilize with time due to coarsening, coalescence and gravity driven drainage. We propose here to inhibit (or trigger) the foam destabilization by applying an electric field to the material. This effect is investigated at the different scales of the system: one soapy interface, one liquid film, the macroscopic foam. The generation of an electroosmotic flow near a soapy liquid/gas interface raises many issues. How does the flow affect surfactant repartition? Is there a Marangoni stress at the interface? At the scale of one soap film, how the electric field affects the film stability and deformation? In a macroscopic foam, one can wonder whether the electric field can indeed reverse gravity driven drainage and increase foam lifetime? These different issues are considered by developing new experimental techniques allowing us to probe surfactant repartition at liquid interfaces, soap film thicknesses and liquid foam properties when an electric field is applied. The results will be presented together with a comprehensive picture of the mechanisms arising at each scale of the material, to conclude with the potential use of electricity in liquid foams to control destabilization. Collaborators: Baptiste Blanc, Oriane Bonhomme, Laurent Joly, Christophe Ybert.
Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran
2014-12-15
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.
Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.
Duan, Lian; Cao, Zhen; Yobas, Levent
2017-09-19
Continuous-flow electrophoresis of macromolecules is demonstrated using an integrated capillary-well sieve arranged into a two-dimensional anisotropic array on silicon. The periodic array features thousands of entropic barriers, each resulting from an abrupt interface between a 2 μm deep well (channel) and a 70 nm capillary. These entropic barriers owing to two-dimensional confinement within the capillaries are vastly steep in relation to those arising from slits featuring one-dimensional confinement. Thus, the sieving mechanisms can sustain relatively large electric field strengths over a relatively small array area. The sieve rapidly sorts anionic macromolecules, including DNA chains and proteins in native or denatured states, into distinct trajectories according to size or charge under electric field vectors orthogonally applied. The baseline separation is achieved in less than 1 min within a horizontal migration length of ∼1.5 mm. The capillaries are self-enclosed conduits in cylindrical profile featuring a uniform diameter and realized through an approach that avoids advanced patterning techniques. The approach exploits a thermal reflow of a layer of doped glass for shape transformation into cylindrical capillaries and for controllably shrinking the capillary diameter. Lastly, atomic layer deposition of alumina is introduced for the first time to fine-tune the capillary diameter as well as to neutralize the surface charge, thereby suppressing undesired electroosmotic flows.
Design of Interactively Time-Pulsed Microfluidic Mixers in Microchips using Numerical Simulation
NASA Astrophysics Data System (ADS)
Fu, Lung-Ming; Tsai, Chien-Hsiung
2007-01-01
In this paper, we propose a novel technique in which driving voltages are applied interactively to the respective inlet fluid flows of three configurations of a microfluidic device, namely T-shaped, double-T-shaped, and double-cross-shaped configurations, to induce electroosmotic flow (EOF) velocity variations in such a way as to develop a rapid mixing effect in the microchannel. In these configurations a microfluidic mixer apply only one electrokinetic driving force, which drives the sample fluids and simultaneously produces a periodic switching frequency. It requires no other external driving force to induce perturbations to the flow field. The effects of the main applied electric field, the interactive frequency, and the pullback electric field on the mixing performance are thoroughly examined numerically. The optimal interactive frequency range for a given set of micromixer parameters is identified for each type of control mode. The numerical results confirm that micromixers operating at an optimal interactive frequency are capable of delivering a significantly enhanced mixing performance. Furthermore, it is shown that the optimal interactive frequency depends upon the magnitude of the main applied electric field. The interactively pulsed mixers developed in this study have a strong potential for use in lab-on-a-chip systems. They involve a simpler fabrication process than either passive or active on-chip mixers and require less human intervention in operation than their bulky external counterparts.
A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications.
Salari, A; Navi, M; Dalton, C
2015-01-01
The AC electrothermal technique is very promising for biofluid micropumping, due to its ability to pump high conductivity fluids. However, compared to electroosmotic micropumps, a lack of high fluid flow is a disadvantage. In this paper, a novel AC multiple array electrothermal (MAET) micropump, utilizing multiple microelectrode arrays placed on the side-walls of the fluidic channel of the micropump, is introduced. Asymmetric coplanar microelectrodes are placed on all sides of the microfluidic channel, and are actuated in different phases: one, two opposing, two adjacent, three, or all sides at the same time. Micropumps with different combinations of side electrodes and cross sections are numerically investigated in this paper. The effect of the governing parameters with respect to thermal, fluidic, and electrical properties are studied and discussed. To verify the simulations, the AC MAET concept was then fabricated and experimentally tested. The resulted fluid flow achieved by the experiments showed good agreement with the corresponding simulations. The number of side electrode arrays and the actuation patterns were also found to greatly influence the micropump performance. This study shows that the new multiple array electrothermal micropump design can be used in a wide range of applications such as drug delivery and lab-on-a-chip, where high flow rate and high precision micropumping devices for high conductivity fluids are needed.
Optimal MEMS device for mobility and zeta potential measurements using DC electrophoresis.
Karam, Pascal R; Dukhin, Andrei; Pennathur, Sumita
2017-05-01
We have developed a novel microchannel geometry that allows us to perform simple DC electrophoresis to measure the electrophoretic mobility and zeta potential of analytes and particles. In standard capillary geometries, mobility measurements using DC fields are difficult to perform. Specifically, measurements in open capillaries require knowledge of the hard to measure and often dynamic wall surface potential. Although measurements in closed capillaries eliminate this requirement, the measurements must be performed at infinitesimally small regions of zero flow where the pressure driven-flow completely cancels the electroosmotic flow (Komagata Planes). Furthermore, applied DC fields lead to electrode polarization, further questioning the reliability and accuracy of the measurement. In contrast, our geometry expands and moves the Komagata planes to where velocity gradients are at a minimum, and thus knowledge of the precise location of a Komagata plane is not necessary. Additionally, our microfluidic device prevents electrode polarization because of fluid recirculation around the electrodes. We fabricated our device using standard MEMS fabrication techniques and performed electrophoretic mobility measurements on 500 nm fluorescently tagged polystyrene particles at various buffer concentrations. Results are comparable to two different commercial dynamic light scattering based particle sizing instruments. We conclude with guidelines to further develop this robust electrophoretic tool that allows for facile and efficient particle characterization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resolving Overlimiting Current Mechanisms in Microchannel-Nanochannel Interface Devices
NASA Astrophysics Data System (ADS)
Yossifon, Gilad; Leibowitz, Neta; Liel, Uri; Schiffbauer, Jarrod; Park, Sinwook
2015-11-01
We present results demonstrating the space charge-mediated transition between classical, diffusion-limited current and surface-conduction dominant over-limiting currents in a shallow micro-nanochannel device. The extended space charge layer develops at the depleted micro-nanochannel entrance at high current and is correlated with a distinctive maximum in the dc resistance. Experimental results for a shallow surface-conduction dominated system are compared with theoretical models, allowing estimates of the effective surface charge at high voltage to be obtained. Further, we extend the study to microchannels of moderate to large depths where the role of various electro-convection mechanisms becomes dominant. In particular, electro-osmotic of the second kind and electro-osmotic instability (EOI) which competes each other at geometrically heterogeneous (e.g. undulated nanoslot interface, array of nanoslots) nanoslot devices. Also, these effects are also shown to be strongly modulated by the non-ideal permselectivity of the nanochannel.
Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification
NASA Astrophysics Data System (ADS)
Lee, Chia-Yen; Lee, Gwo-Bin; Lin, Jr-Lung; Huang, Fu-Chun; Liao, Chia-Sheng
2005-06-01
The present paper reports a fully automated microfluidic system for the DNA amplification process by integrating an electroosmotic pump, an active micromixer and an on-chip temperature control system. In this DNA amplification process, the cell lysis is initially performed in a micro cell lysis reactor. Extracted DNA samples, primers and reagents are then driven electroosmotically into a mixing region where they are mixed by the active micromixer. The homogeneous mixture is then thermally cycled in a micro-PCR (polymerase chain reaction) chamber to perform DNA amplification. Experimental results show that the proposed device can successfully automate the sample pretreatment operation for DNA amplification, thereby delivering significant time and effort savings. The new microfluidic system, which facilitates cell lysis, sample driving/mixing and DNA amplification, could provide a significant contribution to ongoing efforts to miniaturize bio-analysis systems by utilizing a simple fabrication process and cheap materials.
Kenndler, Ernst
2014-03-28
This two-part review critically gives an overview on the theoretical and practical advances in non-aqueous capillary electrophoresis (NACE) achieved over the recent five years. Part I starts out by reviewing the aspects relevant to electromigration in organic solvents and evaluates potential advantages of the latter in comparison to aqueous solvent systems. The crucial role of solubility for the species involved in CE - analytes and back ground electrolyte constituents - is discussed both for ionic and neutral compounds. The impact of organic solvents on the electrophoretic and electroosmotic mobility and on the ionization (pKa values) of weak acids and bases is highlighted. Special emphasis is placed on methanol, acetonitrile and mixtures of these solvents, being the most frequent employed media for NACE applications. In addition, also solvents less commonly used in NACE will be covered, including other alcohols, amides (formamide, N-methylformamide, N,N-dimethylformamide, N,N-dimethylacetamide), propylene carbonate, dimethylsulphoxide, and nitromethane. The discussions address the consequences of dramatic pKa shifts frequently seen for weak acids and bases, and the important contributions of medium-specific electroosmotic flow (EOF) to electromigration in nonaqueous media. Important for NACE, the role of the water content on pKa and mobility is analyzed. Finally, association phenomena rather specific to nonaqueous solvents (ion pairing, homo- and heteroconjugation) will be addressed, along with their potential advantages for the development of NACE separation protocols. It is pointed out that this review is not intended as a listing of all papers that have been published on NACE in the period mentioned above. It rather deals with general aspects of migration and selectivity in organic solvent systems, and discusses - critically - examples from the literature with particular interest to the topic. An analog discussion about the role of the solvent on efficiency will be presented in Part II. Copyright © 2014 Elsevier B.V. All rights reserved.
Ghosh, Uddipta; Chakraborty, Suman
2012-04-01
In the present study, we focus on alterations in flow physics as a consequence of interactions between patterned-wettability gradients on microfluidic substrates with modulated surface charge distributions, giving rise to an intricate electrohydrodynamic coupling over small scales. We demonstrate that by exploiting such intricate coupling, it may be possible to pattern vortices occurring in the fluidic confinement by exploiting an interplay between the Navier slip and electro-osmotic transport. Our studies do reveal that the resultant flow structure originating out of the spatially periodic variations in the surface charge and surface wettability may depend critically on several independently tunable controlling parameters, such as the amplitudes and frequencies of the respective patterning functions, the phase shift between the two, an asymmetry factor, and the channel height to Debye length ratio. We show that judicious choices with regard to the combinations of these parameters may result in significant augmentations in the corresponding mixing efficiency without any appreciable compromise in the net microfluidic throughput. Furthermore, our studies reveal an optimum patterning frequency, which results in the most efficient microfluidic mixing within the constraints of achieving a desired volumetric flow rate. Our results also demonstrate that the net flow rate is maximized when the surface wettability variation functions and surface charge-density functions are in phase, whereas mixing is best facilitated when they are in opposite phase. In practice, therefore, one may select an intermediate value of the phase angle depending on the extent of compromise necessary between flow rate and mixing characteristics, yielding far-ranging scientific and technological advances toward an improved design of miniaturized fluidic devices of practical relevance.
Dutta, Debashis
2017-01-01
Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system. PMID:28081900
NASA Astrophysics Data System (ADS)
Hinds, Bruce
2013-03-01
Carbon nanotubes have three key attributes that make them of great interest for novel membrane applications: 1) atomically flat graphite surface allows for ideal fluid slip boundary conditions and extremely fast flow rates 2) the cutting process to open CNTs inherently places functional chemistry at CNT core entrance for chemical selectivity and 3) CNT are electrically conductive allowing for electrochemical reactions and application of electric fields gradients at CNT tips. Pressure driven flux of a variety of solvents (H2O, hexane, decane ethanol, methanol) are 4-5 orders of magnitude higher than conventional Newtonian flow [Nature 2005, 438, 44] due to atomically flat graphite planes inducing nearly ideal slip conditions. However this is eliminated with selective chemical functionalization [ACS Nano 2011 5(5) 3867-3877] needed to give chemical selectivity. These unique properties allow us to explore the hypothesis of producing ``Gatekeeper'' membranes that mimic natural protein channels to actively pump through rapid nm-scale channels. With anionic tip functionality strong electroosmotic flow is induced by unimpeded cation flow with similar 10,000 fold enhancements [Nature Nano 2012 7(2) 133-39]. With enhanced power efficiency, carbon nanotube membranes were employed as the active element of a switchable transdermal drug delivery device that can facilitate more effective treatments of drug abuse and addiction. Recently methods to deposit Pt monolayers on CNT surface have been developed making for highly efficient catalytic platforms. Discussed are other applications of CNT protein channel mimetics, for large area robust engineering platforms, including water purification, flow battery energy storage, and biochemical/biomass separations. DOE EPSCoR (DE-FG02-07ER46375) and DARPA, W911NF-09-1-0267
NASA Astrophysics Data System (ADS)
Lee, Chia-Yen; Lee, Gwo-Bin; Fu, Lung-Ming; Lee, Kuo-Hoong; Yang, Ruey-Jen
2004-10-01
This paper presents a new electrokinetically driven active micro-mixer which uses localized capacitance effects to induce zeta potential variations along the surface of silica-based microchannels. The mixer is fabricated by etching bulk flow and shielding electrode channels into glass substrates and then depositing Au/Cr thin films within the latter to form capacitor electrodes, which establish localized zeta potential variations near the electrical double layer (EDL) region of the electroosmotic flow (EOF) within the microchannels. The potential variations induce flow velocity changes within a homogeneous fluid and a rapid mixing effect if an alternating electric field is provided. The current experimental data confirm that the fluid velocity can be actively controlled by using the capacitance effect of the buried shielding electrodes to vary the zeta potential along the channel walls. While compared with commonly used planar electrodes across the microchannels, the buried shielding electrodes prevent current leakage caused by bad bonding and allow direct optical observation during operation. It also shows that the buried shielding electrodes can significantly induce the field effect, resulting in higher variations of zeta potential. Computational fluid dynamic simulations are also used to study the fluid characteristics of the developed active mixers. The numerical and experimental results demonstrate that the developed microfluidic device permits a high degree of control over the fluid flow and an efficient mixing effect. Moreover, the developed device could be used as a pumping device as well. The development of the active electrokinetically driven micro-mixer could be crucial for micro-total-analysis-systems.
Electroosmotic flow mixing in zigzag microchannels.
Chen, Jia-Kun; Yang, Ruey-Jen
2007-03-01
In this study we performed numerical and experimental investigations into the mixing of EOFs in zigzag microchannels with two different corner geometries, namely sharp corners and flat corners. In the zigzag microchannel with sharp corners, the flow travels more rapidly near the inner wall of the corner than near the outer wall as a result of the higher electric potential drop. The resulting velocity gradient induces a racetrack effect, which enhances diffusion within the fluid and hence improves the mixing performance. The simulation results reveal that the mixing index is approximately 88.83%. However, the sharp-corner geometry causes residual liquid or bubbles to become trapped in the channel at the point where the flow is almost stationary, when the channel is in the process of cleaning. Accordingly, a zigzag microchannel with flat-corner geometry is developed. The flat-corner geometry forms a convergent-divergent type nozzle which not only enhances the mixing performance in the channel, but also prevents the accumulation of residual liquid or bubbles. Scaling analysis reveals that this corner geometry leads to an effective increase in the mixing length. The experimental results reveal that the mixing index is increased to 94.30% in the flat-corner zigzag channel. Hence, the results demonstrate that the mixing index of the flat-corner zigzag channel is better than that of the conventional sharp-corner microchannel. Finally, the results of Taguchi analysis indicate that the attainable mixing index is determined primarily by the number of corners in the microchannel and by the flow passing height at each corner.
On-Chip Pressure Generation for Driving Liquid Phase Separations in Nanochannels.
Xia, Ling; Choi, Chiwoong; Kothekar, Shrinivas C; Dutta, Debashis
2016-01-05
In this Article, we describe the generation of pressure gradients on-chip for driving liquid phase separations in submicrometer deep channels. The reported pressure-generation capability was realized by applying an electrical voltage across the interface of two glass channel segments with different depths. A mismatch in the electroosmotic flow rate at this junction led to the generation of pressure-driven flow in our device, a fraction of which was then directed to an analysis channel to carry out the desired separation. Experiments showed the reported strategy to be particularly conducive for miniaturization of pressure-driven separations yielding flow velocities in the separation channel that were nearly unaffected upon scaling down the depth of the entire fluidic network. Moreover, the small dead volume in our system allowed for high dynamic control over this pressure gradient, which otherwise was challenging to accomplish during the sample injection process using external pumps. Pressure-driven velocities up to 3.1 mm/s were realized in separation ducts as shallow as 300 nm using our current design for a maximum applied voltage of 3 kV. The functionality of this integrated device was demonstrated by implementing a pressure-driven ion chromatographic analysis that relied on analyte interaction with the nanochannel surface charges to yield a nonuniform solute concentration across the channel depth. Upon coupling such analyte distribution to the parabolic pressure-driven flow profile in the separation duct, a mixture of amino acids could be resolved. The reported assay yielded a higher separation resolution compared to its electrically driven counterpart in which sample migration was realized using electroosmosis/electrophoresis.
Long Chain DNA Separation in a Sparse Nanopost Array
NASA Astrophysics Data System (ADS)
Ou, Jia; Joswiak, Mark; Dorfman, Kevin
2010-11-01
Long chain DNA separation is a challenge for gel lectrophoresis. Our previous DNA separation experiments and simulations demonstrated that a sparse micro post array can separate large DNA. However, the smaller DNA are not well resolved. We hypothesized that smaller posts will increase the collision frequency of the smaller DNA and thus the resolution. We successfully fabricated a hexagonal array of 350 nm diameter posts with a 3 μm spacing using an oxygen plasma etching method. Under an electric field of 10 V/cm, the mobilities of different species ranging from 10-48.5 kilobasepair (kbp) were normalized by the mobility of λ DNA (48.5 kbp), which was included in all experiments as a standard to correct for day-to-day variations in electroosmotic flow. The resolution of these DNA is markedly improved when compared with a 1 μm diameter micropost array. We demonstrate the robustness of the device by using the calibration curve to identify the peaks in a separation of the λ DNA-Mono Cut mix.
Melvin, Elizabeth M.; Moore, Brandon R.; Gilchrist, Kristin H.; Grego, Sonia; Velev, Orlin D.
2011-01-01
The recent development of microfluidic “lab on a chip” devices requiring sample sizes <100 μL has given rise to the need to concentrate dilute samples and trap analytes, especially for surface-based detection techniques. We demonstrate a particle collection device capable of concentrating micron-sized particles in a predetermined area by combining AC electroosmosis (ACEO) and dielectrophoresis (DEP). The planar asymmetric electrode pattern uses ACEO pumping to induce equal, quadrilateral flow directed towards a stagnant region in the center of the device. A number of system parameters affecting particle collection efficiency were investigated including electrode and gap width, chamber height, applied potential and frequency, and number of repeating electrode pairs and electrode geometry. The robustness of the on-chip collection design was evaluated against varying electrolyte concentrations, particle types, and particle sizes. These devices are amenable to integration with a variety of detection techniques such as optical evanescent waveguide sensing. PMID:22662040
He, Yuhui; Tsutsui, Makusu; Scheicher, Ralph H.; Fan, Chun; Taniguchi, Masateru; Kawai, Tomoji
2013-01-01
Experiments using nanopores demonstrated that a salt gradient enhances the capture rate of DNA and reduces its translocation speed. These two effects can help to enable electrical DNA sequencing with nanopores. Here, we provide a quantitative theoretical evaluation that shows the positive net charges, which accumulate around the pore entrance due to the salt gradient, are responsible for the two observed effects: they reinforce the electric capture field, resulting in promoted molecule capture rate; and they induce cationic electroosmotic flow through the nanopore, thus significantly retarding the motion of the anionic DNA through the nanopore. Our multiphysical simulation results show that, during the polymer trapping stage, the former effect plays the major role, thus resulting in promoted DNA capture rate, while during the nanopore-penetrating stage the latter effect dominates and consequently reduces the DNA translocation speed significantly. Quantitative agreement with experimental results has been reached by further taking nanopore wall surface charges into account. PMID:23931325
Self-assembly of metal nanowires induced by alternating current electric fields
NASA Astrophysics Data System (ADS)
García-Sánchez, Pablo; Arcenegui, Juan J.; Morgan, Hywel; Ramos, Antonio
2015-01-01
We describe the reversible assembly of an aqueous suspension of metal nanowires into two different 2-dimensional stable configurations. The assembly is induced by an AC electric field of magnitude around 10 kV/m. It is known that single metal nanowires orientate parallel to the electric field for all values of applied frequency, according to two different mechanisms depending on the frequency. These different mechanisms also govern the mutual interaction between nanowires, which leads to directed-assembly into distinctive structures, the shape of which depends on the frequency of the applied field. We show that for frequencies higher than the typical frequency for charging the electrical double layer at the metal-electrolyte interface, dipole-dipole interaction leads to the formation of chains of nanowires. For lower frequencies, the nanowires form wavy bands perpendicular to the electric field direction. This behavior appears to be driven by the electroosmotic flow induced on the metal surface of the nanowires. Remarkably, no similar structures have been reported in previous studies of nanowires.
Fully packed capillary electrochromatographic microchip with self-assembly colloidal silica beads.
Park, Jongman; Lee, Dami; Kim, Won; Horiike, Shigeyoshi; Nishimoto, Takahiro; Lee, Se Hwan; Ahn, Chong H
2007-04-15
A fully packed capillary electrochromatographic (CEC) microchip showing improved solution and chip handling was developed. Microchannels for the CEC microchip were patterned on a cyclic olefin copolymer substrate by injection molding and packed fully with 0.8-microm monodisperse colloidal silica beads utilizing a self-assembly packing technique. The silica packed chip substrate was covered and thermally press-bonded. After fabrication, the chip was filled with buffer solution by self-priming capillary action. The self-assembly packing at each channel served as a built-in nanofilter allowing quick loading of samples and running buffer solution without filtration. Because of a large surface area-to-volume ratio of the silica packing, reproducible control of electroosmotic flow was possible without leveling of the solutions in the reservoirs resulting 1.3% rsd in migration rate. The capillary electrophoretic separation characteristics of the chip were studied using fluorescein isothiocyanate (FITC)-derivatized amino acids as probe molecules. A mixture of FITC and four FITC-derivatized amino acids was successfully separated with 2-mm separation channel length.
Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna
2002-02-01
The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.
NASA Astrophysics Data System (ADS)
Mukherjee, Siddhartha; Goswami, Prakash; Dhar, Jayabrata; Dasgupta, Sunando; Chakraborty, Suman
2017-07-01
We report a study on the ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Here, we derive an analytical solution for the potential distribution in a parallel plate microchannel, where the effects of finite sized ionic species are taken into account by invoking the free energy formalism. Following this, a purely electroosmotic flow of a simplified Phan-Thien-Tanner (sPTT) fluid is considered. For the sPTT model, linear, quadratic, and exponential kernels are chosen for the stress coefficient function describing its viscoelastic nature across various ranges of Deborah number. The theoretical framework presented in our analysis has been successfully compared with experimental results available in the literature. We believe that the implications of the considered effects on the net volumetric throughput will not only provide a deeper theoretical insight to interpret the electrokinetic data in the presence of ionic species but also serve as a fundamental design tool for novel electrokinetically driven lab-on-a-chip biofluidic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, John; McCreight, Dan J.
This project was undertaken to develop and demonstrate on a pilot scale the use of electro-osmotic transport to increase the efficiency of textiles wet processing operations. In particular, we sought to develop a means of rinsing textiles to remove material entrapped between the individual fibers that constitute a yarn. Material trapped within the yarn is slow to exchange with rinse water flowing primarily in the open weave are abetween the yarns. The application of an external field (strength, 5-50 kV /m) requires only a few volts for most fabric thicknesses. This field is sufficient to promote a rapid exchange ofmore » material to enhance rinsing and reduce the water required for rinsing from about 20 kg/kg-fabric to 3-6 kg/kg-fabric. We successfully developed technical and economic models of application of the process to the rinsing of many materials of industrial importance, including dyes, tints, chemicals, detergents and dye electrolytes. We demonstrated the process on a pilot plant scale using a translator designed in cooperation with Milliken and Company (Spartanburg, SC).« less
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio
1986-01-01
Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.
Tian, Yun; Zhong, Cheng; Fu, Enqin; Zeng, Zhaorui
2009-02-06
A novel enantioselective polymethacrylate-based monolithic column for capillary electrochromatography was prepared by ring-opening reaction of epoxy groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith with a novel beta-cyclodextrin derivative bearing 4-dimethylamino-1,8-naphthalimide functionalities. Conditions for the ring-opening reaction with respect to different reaction parameters were thoroughly optimized to obtain high electroosmotic flow, separation efficiency and enantioselectivity for the analytes. The nonaqueous mobile phase composition regarding acetonitrile-methanol ratio and the concentration of electrolyte were examined to manipulate the hydrophobic inclusion and anion-exchange interaction between the analytes and chiral stationary phase. It was observed that in addition to beta-cyclodextrin cavity, the electrostatic interaction exhibited pronounced influence on the enantioseparation of acidic analytes. Acidic enantiomers (ibuprofen and naproxen) could be separated with separation factor (alpha) values up to 1.08 and a maximum separation efficiency of 86000 plates/m could be achieved.
Electroosmosis in a Finite Cylindrical Pore: Simple Models of End Effects
2015-01-01
A theoretical model of electroosmosis through a circular pore of radius a that traverses a membrane of thickness h is investigated. Both the cylindrical surface of the pore and the outer surfaces of the membrane are charged. When h ≫ a, end effects are negligible, and the results of full numerical computations of electroosmosis in an infinite pore agree with theory. When h = 0, end effects dominate, and computations again agree with analysis. For intermediate values of h/a, an approximate analysis that combines these two limiting cases captures the main features of computational results when the Debye length κ–1 is small compared with the pore radius a. However, the approximate analysis fails when κ–1 ≫ a, when the charge cloud due to the charged cylindrical walls of the pore spills out of the ends of the pore, and the electroosmotic flow is reduced. When this spilling out is included in the analysis, agreement with computation is restored. PMID:25020257
Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.
Chung, Pei-Shan; Fan, Yu-Jui; Sheen, Horn-Jiunn; Tian, Wei-Cheng
2015-01-07
An electrokinetic trapping (EKT)-based nanofluidic preconcentration device with the capability of label-free monitoring trapped biomolecules through real-time dual-loop electric current measurement was demonstrated. Universal current-voltage (I-V) curves of EKT-based preconcentration devices, consisting of two microchannels connected by ion-selective channels, are presented for functional validation and optimal operation; universal onset current curves indicating the appearance of the EKT mechanism serve as a confirmation of the concentrating action. The EKT mechanism and the dissimilarity in the current curves related to the volume flow rate (Q), diffusion coefficient (D), and diffusion layer (DL) thickness were explained by a control volume model with a five-stage preconcentration process. Different behaviors of the trapped molecular plug were categorized based on four modes associated with different degrees of electroosmotic instability (EOI). A label-free approach to preconcentrating (bio)molecules and monitoring the multibehavior molecular plug was demonstrated through real-time electric current monitoring, rather than through the use of microscope images.
Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery
NASA Astrophysics Data System (ADS)
grosse Austing, Jan; Nunes Kirchner, Carolina; Komsiyska, Lidiya; Wittstock, Gunther
2016-02-01
In this paper the losses in coulombic efficiency are investigated for a vanadium/air redox flow battery (VARFB) comprising a two-layered positive electrode. Ultraviolet/visible (UV/Vis) spectroscopy is used to monitor the concentrations cV2+ and cV3+ during operation. The most likely cause for the largest part of the coulombic losses is the permeation of oxygen from the positive to the negative electrode followed by an oxidation of V2+ to V3+. The total vanadium crossover is followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis of the positive electrolyte after one VARFB cycle. During one cycle 6% of the vanadium species initially present in the negative electrolyte are transferred to the positive electrolyte, which can account at most for 20% of the coulombic losses. The diffusion coefficients of V2+ and V3+ through Nafion® 117 are determined as DV2+ ,N 117 = 9.05 ·10-6 cm2 min-1 and DV3+ ,N 117 = 4.35 ·10-6 cm2 min-1 and are used to calculate vanadium crossover due to diffusion which allows differentiation between vanadium crossover due to diffusion and migration/electroosmotic convection. In order to optimize coulombic efficiency of VARFB, membranes need to be designed with reduced oxygen permeation and vanadium crossover.
Parallelism in integrated fluidic circuits
NASA Astrophysics Data System (ADS)
Bousse, Luc J.; Kopf-Sill, Anne R.; Parce, J. W.
1998-04-01
Many research groups around the world are working on integrated microfluidics. The goal of these projects is to automate and integrate the handling of liquid samples and reagents for measurement and assay procedures in chemistry and biology. Ultimately, it is hoped that this will lead to a revolution in chemical and biological procedures similar to that caused in electronics by the invention of the integrated circuit. The optimal size scale of channels for liquid flow is determined by basic constraints to be somewhere between 10 and 100 micrometers . In larger channels, mixing by diffusion takes too long; in smaller channels, the number of molecules present is so low it makes detection difficult. At Caliper, we are making fluidic systems in glass chips with channels in this size range, based on electroosmotic flow, and fluorescence detection. One application of this technology is rapid assays for drug screening, such as enzyme assays and binding assays. A further challenge in this area is to perform multiple functions on a chip in parallel, without a large increase in the number of inputs and outputs. A first step in this direction is a fluidic serial-to-parallel converter. Fluidic circuits will be shown with the ability to distribute an incoming serial sample stream to multiple parallel channels.
La Ferrara, Vera; Rametta, Gabriella; De Maria, Antonella
2015-07-01
Interconnected network of nanostructured polyaniline (PANI) is giving strong potential for enhancing device performances than bulk PANI counterparts. For nanostructured device processing, the main challenge is to get prototypes on large area by requiring precision, low cost and high rate assembly. Among processes meeting these requests, the alternate current electric fields are often used for nanostructure assembling. For the first time, we show the assembly of nanostructured PANI onto large electrode gaps (30-60 μm width) by applying alternate current electric fields, at low frequencies, to PANI particles dispersed in acetonitrile (ACN). An important advantage is the short assembly time, limited to 5-10 s, although electrode gaps are microsized. That encouraging result is due to a combination of forces, such as dielectrophoresis (DEP), induced-charge electrokinetic (ICEK) flow and alternate current electroosmotic (ACEO) flow, which speed up the assembly process when low frequencies and large electrode gaps are used. The main achievement of the present study is the development of ammonia sensors created by direct assembling of nanostructured PANI onto electrodes. Sensors exhibit high sensitivity to low gas concentrations as well as excellent reversibility at room temperature, even after storage in air. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The CE-Way of Thinking: "All Is Relative!".
Schmitt-Kopplin, Philippe; Fekete, Agnes
2016-01-01
Over the last two decades the development of capillary electrophoresis instruments lead to systems with programmable sampler, separation column, separation buffer, and detection devices comparable visually in many aspects to the setup of classical chromatography.Two processes make capillary electrophoresis essentially different from chromatography and are the basis of the CE-way of thinking, namely, the injection type and the liquid flow within the capillary. (1) When the injection is made hydrodynamically (such as in most of the found applications in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. (2) The buffer velocity is not pressure driven as in liquid chromatography but electrokinetically governed by the quality of the capillary surface (separation buffer dependant surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is an apparent nonreproducible migration time of the analytes, even though the own velocity of the ions is the same.The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired timescale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size-see chapter on semiempirical modelization).