Science.gov

Sample records for electropolished niti shape

  1. Microstructure, nickel suppression and mechanical characteristics of electropolished and photoelectrocatalytically oxidized biomedical nickel titanium shape memory alloy.

    PubMed

    Chu, C L; Guo, C; Sheng, X B; Dong, Y S; Lin, P H; Yeung, K W K; Chu, Paul K

    2009-07-01

    A new surface modification protocol encompassing an electropolishing pretreatment (EP) and subsequent photoelectrocatalytic oxidation (PEO) has been developed to improve the surface properties of biomedical nickel titanium (NiTi) shape memory alloy (SMA). Electropolishing is a good way to improve the resistance to localized breakdown of NiTi SMA whereas PEO offers the synergistic effects of advanced oxidation and electrochemical oxidation. Our results indicate that PEO leads to the formation of a sturdy titania film on the EP NiTi substrate. There is an Ni-free zone near the top surface and a graded interface between the titania layer and NiTi substrate, which bodes well for both biocompatibility and mechanical stability. In addition, Ni ion release from the NiTi substrate is suppressed, as confirmed by the 10-week immersion test. The modulus and hardness of the modified NiTi surface increase with larger indentation depths, finally reaching plateau values of about 69 and 3.1GPa, respectively, which are slightly higher than those of the NiTi substrate but much lower than those of a dense amorphous titania film. In comparison, after undergoing only EP, the mechanical properties of NiTi exhibit an inverse change with depth. The deformation mechanism is proposed and discussed. Our results indicate that surface modification by dual EP and PEO can notably suppress Ni ion release and improve the biocompatibility of NiTi SMA while the surface mechanical properties are not compromised, making the treated materials suitable for hard tissue replacements.

  2. Shape memory effect of laser welded NiTi plates

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Fernandes, F. M. Braz; Schell, N.; Miranda, R. M.

    2015-07-01

    Laser welding is a suitable joining technique for shape memory alloys (SMAs). This paper reports the existence of shape memory effect (SME) on laser welded NiTi joints, subjected to bending tests, and correlates this effect with the microstructural analysis performed with X-ray diffraction (XRD). All welded samples were able to recover their initial shape after bending to 180°, which is a remarkable result for industrial applications of NiTi involving laser welding.

  3. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    NASA Astrophysics Data System (ADS)

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  4. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    SciTech Connect

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I–V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson–Superfish and Solidworks respectively. Finally, with the optimal cathode shape, BEP shows a much faster polishing rate of ~2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  5. Nondestructive Evaluation of Ni-Ti Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Meir, S.; Gordon, S.; Karsh, M.; Wiezman, A.; Ayers, R.; Olson, D. L.

    2011-06-01

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  6. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  7. Corrosion resistance tests on NiTi shape memory alloy.

    PubMed

    Rondelli, G

    1996-10-01

    The corrosion performances of NiTi shape memory alloys (SMA) in human body simulating fluids were evaluated in comparison with other implant materials. As for the passivity current in potentiostatic conditions, taken as an index of ion release, the values are about three times higher for NiTi than for Ti6Al4V and austenitic stainless steels. Regarding the localized corrosion, while plain potentiodynamic scans indicated for NiTi alloy good resistance to pitting attack similar to Ti6Al4V, tests in which the passive film is abruptly damaged (i.e. potentiostatic scratch test and modified ASTM F746) pointed out that the characteristics of the passive film formed on NiTi alloy (whose strength can be related to the alloy's biocompatibility) are not as good as those on Ti6Al4V but are comparable or inferior to those on austenitic stainless steels.

  8. Plasma Arc Melting (PAM) and Corrosion Resistance of Pure NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Tuissi, A.; Rondelli, G.; Bassani, P.

    2015-03-01

    Plasma arc melting (PAM) as a suitable non-contaminating melting route for manufacturing high-quality NiTi alloy was successfully examined. The corrosion resistance of PAM Nitinol was evaluated by both potentiodynamic and potentiostatic tests and compared with lower purity NiTi produced by vacuum induction melting (VIM). For the electro-polished surfaces, excellent corrosion resistance of NiTi comparable with the Ti alloys was found with no pitting up to 800 mV versus saturated calomel electrode in simulated body fluid at 37 °C. Potentiostatic results of PAM Nitinol indicate slightly better corrosion resistance than the lower quality VIM alloy.

  9. Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping.

    PubMed

    Krishna, B Vamsi; Bose, Susmita; Bandyopadhyay, Amit

    2009-05-01

    Porous NiTi alloy samples were fabricated with 12-36% porosity from equiatomic NiTi alloy powder using laser engineered net shaping (LENS). The effects of processing parameters on density and properties of laser-processed NiTi alloy samples were investigated. It was found that the density increased rapidly with increasing the specific energy input up to 50 J/mm(3). Further increase in the energy input had small effect on density. High cooling rates associated with LENS processing resulted in higher amount of cubic B2 phase, and increased the reverse transformation temperatures of porous NiTi samples due to thermally induced stresses and defects. Transformation temperatures were found to be independent of pore volume, though higher pore volume in the samples decreased the maximum recoverable strain from 6% to 4%. Porous NiTi alloy samples with 12-36% porosity exhibited low Young's modulus between 2 and 18 GPa as well as high compressive strength and recoverable strain. Because of high open pore volume between 36% and 62% of total volume fraction porosity, these porous NiTi alloy samples can potentially accelerate the healing process and improve biological fixation when implanted in vivo. Thus porous NiTi is a promising biomaterial for hard tissue replacements.

  10. Boriding of Binary Ni-Ti Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Ucar, Nazim; Dogan, Sule; Karakas, Mustafa Serdar; Calik, Adnan

    2016-11-01

    Boriding of binary Ni-Ti shape memory alloys was carried out in a solid medium at 1273 K for 2, 4, 6, and 8 h using the powder pack method with proprietary Ekabor-Ni powders. Characterization of the boride layer formed on the surface of alloys was done by optical microscopy and scanning electron microscopy. The presence of boride, silicide, and borosilicide phases in the boride layers was confirmed by X-ray diffraction analysis. The thickness and microhardness of the boride layers increased with increasing boriding time. Hardness profiles showed a rapid decrease in hardness moving from the boride layer to the main structure. The high hardness of the boride layer was attributed mainly to the formation of TiB2. A parabolic relationship was observed between layer thickness and boriding time, and the growth rate constant for the boriding treatment was calculated as 0.62×10-8 cm2 s-1.

  11. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy.

    PubMed

    Ion, Raluca; Luculescu, Catalin; Cimpean, Anisoara; Marx, Philippe; Gordin, Doina-Margareta; Gloriant, Thierry

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating.

  12. Shape-memory NiTi with two-dimensional networks of micro-channels.

    PubMed

    Neurohr, Anselm J; Dunand, David C

    2011-04-01

    A process was developed for fabricating arrays of micro-channels in shape-memory NiTi for bone implant applications, with a tailorable internal architecture expected to improve biomechanical compatibility and osseointegration. Ni-51.4 at.% Ti with 24-34 vol.% porosity was fabricated by electrochemical dissolution of parallel layers of steel wire meshes embedded within a NiTi matrix during hot pressing of NiTi powders. The resulting NiTi structures exhibit parallel layers of orthogonally interconnected micro-channels with 350-400 μm diameters that exactly replicate the steel meshes. When low-carbon steel wires are used, iron diffuses into the surrounding NiTi during the densification step, creating a Fe-enriched zone near the wires. For high-carbon steel wires, TiC forms at the steel/NiTi interface and inhibits iron diffusion but also depletes some titanium from the adjacent NiTi. In both cases, the NiTi regions near the micro-channels exhibit altered phase transformation characteristics. These NiTi structures with replicated networks of micro-channels have excellent potential as bone implants and scaffolds given: (i) the versatility in channel size, shape, fraction and spatial arrangement; (ii) their low stiffness (15-26 GPa), close to 12-17 GPa for cortical bone; (iii) their high compressive strength (420-600 MPa at 8-9% strain); and (iv) their excellent compressive strain recovery (91-94% of an applied strain of 6%) by a combination of elasticity, superelasticity and the shape-memory effect.

  13. Characterization of Polylactide Layer Deposited on Ni-Ti Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Goryczka, Tomasz; Szaraniec, Barbara

    2014-07-01

    Polylactide (PLA) thin layer was deposited on the surface of the as-quenched NiTi shape memory alloy. First, NiTi alloy was quenched from the 850°C, then its surface was covered with PLA. Deposited PLA is in an amorphous state, whereas the as-quenched NiTi alloy stays in the B2 structure. PLA deposition caused smoothing of the surface and changed its hydrophilic character to hydrophobic one. In general, procedure of PLA deposition does not influence the course of the reversible martensitic transformation. After deformation of NiTi sample covered with PLA up to 4%, its surface does not reveal any cracks and still remains continuous.

  14. Surface corrosion enhancement of passive films on NiTi shape memory alloy in different solutions.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-06-01

    The corrosion behaviors of NiTi shape memory alloy in NaCl solution, H2SO4 solution and borate buffer solution were investigated. It was found that TiO2 in passive film improved the corrosion resistance of NiTi shape memory. However, low corrosion resistance of passive film was observed in low pH value acidic solution due to TiO2 dissolution. Moreover, the corrosion resistance of NiTi shape memory alloy decreased with the increasing of passivated potential in the three solutions. The donor density in passive film increased with the increasing of passivated potential. Different solutions affect the semiconductor characteristics of the passive film. The reducing in the corrosion resistance was attributed to the more donor concentrations in passive film and thinner thickness of the passive film.

  15. High Strain Rate Compression of Martensitic NiTi Shape Memory Alloy at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Young, Marcus L.; Nie, Xu

    2017-02-01

    The compressive response of martensitic NiTi shape memory alloy (SMA) rods has been investigated using a modified Kolsky compression bar at various strain rates (400, 800, and 1200 s-1) and temperatures [room temperature and 373 K (100 °C)], i.e., in the martensitic state and in the austenitic state. SEM, DSC, and XRD were performed on NiTi SMA rod samples after high strain rate compression in order to reveal the influence of strain rate and temperature on the microstructural evolution, phase transformation, and crystal structure. It is found that at room temperature, the critical stress increases slightly as strain rate increases, whereas the strain-hardening rate decreases. However, the critical stress under high strain rate compression at 373 K (100 °C) increase first and then decrease due to competing strain hardening and thermal softening effects. After high rate compression, the microstructure of both martensitic and austenitic NiTi SMAs changes as a function of increasing strain rate, while the phase transformation after deformation is independent of the strain rate at room temperature and 373 K (100 °C). The preferred crystal plane of the martensitic NiTi SMA changes from ( 1bar{1}1 )M before compression to (111)M after compression, while the preferred plane remains the same for austenitic NiTi SMA before and after compression. Additionally, dynamic recovery and recrystallization are also observed to occur after deformation of the austenitic NiTi SMA at 373 K (100 °C). The findings presented here extend the basic understanding of the deformation behavior of NiTi SMAs and its relation to microstructure, phase transformation, and crystal structure, especially at high strain rates.

  16. Experimental Investigation on the Mechanical Instability of Superelastic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-09-01

    In this paper, primary attention is paid to the mechanical instability of superelastic NiTi shape memory alloy (SMA) during localized forward transformation at different temperatures. By inhibiting the localized phase transformation, we can obtain the up-down-up mechanical response of NiTi SMA, which is closely related to the intrinsic material softening during localized martensitic transformation. Furthermore, the material parameters of the up-down-up stress-strain curve are extracted, in such a way that this database can be utilized for simulation and validation of the theoretical analysis. It is found that during forward transformation, the upper yield stress, lower yield stress, Maxwell stress, and nucleation stress of NiTi SMA exhibit linear dependence on temperature. The relation between nucleation stress and temperature can be explained by the famous Clausius-Clapeyron equation, while the relation between upper/lower yield stress and temperature lacks theoretical study, which needs further investigation.

  17. Multi-stage martensitic transformation in Ni-rich NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiebin; Verlinden, Bert; Kustov, Sergey

    Precipitation hardening is an effective way to improve the functional stability of NiTi shape memory alloys. The precipitates, mainly Ni4Ti3, could be introduced by aging treatment in Ni-rich NiTi alloys. However, the presence of Ni4Ti3 precipitates could disturb the transformation behavior, resulting in the multi-stage martensitic transformation (MMT). With the presence of MMT, it is difficult to control the transformation behavior, and thus limits the applicability of NiTi alloys. In this work, previous efforts on explaining the observed MMT are summarized. The difficulties in developing a unified explanation are discussed, and a possible way to avoid the MMT is proposed.

  18. Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy.

    PubMed

    Zhao, Tingting; Li, Yan; Liu, Yong; Zhao, Xinqing

    2012-09-01

    NiTi shape memory alloy was modified by Hf ion implantation to improve its wear resistance and surface integrity against deformation. The Auger electron spectroscopy and x-ray photoelectron spectroscopy results indicated that the oxide thickness of NiTi alloy was increased by the formation of TiO₂/HfO₂ nanofilm on the surface. The nano-hardness measured by nano-indentation was decreased even at the depth larger than the maximum reach of the implanted Hf ion. The lower coefficient of friction with much longer fretting time indicated the remarkable improvement of wear resistance of Hf implanted NiTi, especially for the sample with a moderate incident dose. The formation of TiO₂/HfO₂ nanofilm with larger thickness and decrease of the nano-hardness played important roles in the improvement of wear resistance. Moreover, Hf implanted NiTi exhibited larger pseudoelastic recovery strain and retained better surface integrity even after being strained to 10% as demonstrated by in situ scanning electron microscope observation.

  19. Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold.

    PubMed

    Wu, Shuilin; Liu, Xiangmei; Wu, Guosong; Yeung, Kelvin W K; Zheng, Dong; Chung, C Y; Xu, Z S; Chu, Paul K

    2013-09-01

    The abraded debris might cause osteocytic osteolysis on the interface between implants and bone tissues, thus inducing the subsequent mobilization of implants gradually and finally resulting in the failure of bone implants, which imposes restrictions on the applications of porous NiTi shape memory alloys (SMAs) scaffolds for bone tissue engineering. In this work, the effects of the annealing temperature, applied load, and porosity on the tribological behavior and wear resistance of three-dimensional porous NiTi SMA are investigated systematically. The porous structure and phase transformation during the exothermic process affect the tribological properties and wear mechanism significantly. In general, a larger porosity leads to better tribological resistance but sometimes, SMAs with small porosity possess better wear resistance than ones with higher porosity during the initial sliding stage. It can be ascribed to the better superelasticity of the former at the test temperature. The porous NiTi phase during the exothermic reaction also plays an important role in the wear resistance. Generally, porous NiTi has smaller friction coefficients under high loads due to stress-induced superelasticity. The wear mechanism is discussed based on plastic deformation and microcrack propagation.

  20. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  1. Polymer (PTFE) and shape memory alloy (NiTi) intercalated nano-biocomposites

    NASA Astrophysics Data System (ADS)

    Anjum, S. S.; Rao, J.; Nicholls, J. R.

    2012-09-01

    Engineering on a nano-scale has been undertaken to mimic a biomaterial by forming an intercalated nano-composite structure by PVD sputtering of a polymer with a nickel-titanium (NiTi) shape memory alloy (SMA). A PTFE polymer has been selected due to its elastic properties, low interactions with water, optimum surface energies, stability and chemical resistance. NiTi SMAs allow the coatings to be energy absorbent and thus suitable in load bearing situations. The coatings are aimed to constantly withstand variable adverse biological environments whilst maintaining their characteristics. The nano-intercalated structures have been characterised for their wettability, friction coefficients, chemical composition, and morphology. Intercalation of a polymer with energy-absorbing alloys uncovers a set of material systems that will offer characteristics such as self-healing of hierarchal tissue in the body. The reformation of PTFE following sputter deposition was confirmed by FTIR spectra. According to SEM analysis PTFE shows a promising surface interaction with NiTi, forming stable coatings. Surface interactions are evident by the hydrophobic behaviour of films as the composite's water contact angle is around 86° which lies in-between that of PTFE and NiTi. The nano composite films are lubricious and have a measured CoF below 0.2 which does not vary with layer thickness.

  2. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  3. Functionally grading the shape memory response in NiTi films: Laser irradiation

    SciTech Connect

    Birnbaum, A. J.; Satoh, G.; Yao, Y. L.

    2009-08-15

    A new process and mechanism are presented for controlling the shape memory response spatially within monolithic NiTi thin film structures. This technique is shown to effectively control the martensitic phase transformation temperature and exhibits control over aspects of the mechanical and shape memory responses as well. Specifically, the martensitic phase transformation temperature decreases with incident laser energy density. Concomitant modifications are observed in both the mechanical and shape memory responses in laser processed films. Analysis and characterization are performed via temperature controlled optical microscopy, x-ray diffraction, atomic force microscopy, and nanoindentation.

  4. Shape-memory properties in Ni-Ti sputter-deposited film

    NASA Technical Reports Server (NTRS)

    Busch, J. D.; Johnson, A. D.; Lee, C. H.; Stevenson, D. A.

    1990-01-01

    A Ni-Ti alloy, generically called nitinol, was prepared from sputtering targets of two different compositions on glass substrates using a dc magnetron source. The as-deposited films were amorphous in structure and did not exhibit a shape memory. The amorphous films were crystallized with a suitable annealing process, and the transformation properties were measured using differential scanning calorimetry. The annealed films demonstrated a strong shape-memory effect. Stress/strain measurements and physical manipulation were used to evaluate the shape recovery. These tests demonstrated sustained tensile stresses of up to 480 MPa in the high-temperature phase, and a characteristic plastic deformation in the low-temperature phase.

  5. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    DTIC Science & Technology

    2015-11-01

    Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA) by Merric D Srour, Cory R Knick, and Christopher J Morris Sensors and...applications7 so a natural focus was to achieve large recovery stresses in films as thin as possible. By varying the sputtering parameters of NiTi...alloys. Sensors and Actuators A. 2002;99:55–58. 2. Ohta A, Bhansali S, Kishimoto I, Umeda A. Novel fabrication techique of TiNi shape memory alloy

  6. Biaxial Fatigue Behavior of Niti Shape Memory Alloy

    DTIC Science & Technology

    2005-03-01

    M06 Abstract Nitinol is a shape memory alloy (SMA) capable of martensite-to-austenite phase transformations enabling shape-memory behavior. Shape...memory properties make Nitinol a strong candidate material for use in aircraft applications such as actuators. Structural integrity and reliability...torsion fatigue behavior of Nitinol at room temperature. Monotonic tests in tension and torsion were conducted to typify uni-directional stress-strain

  7. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications.

    PubMed

    Es-Souni, Mohammed; Es-Souni, Martha; Fischer-Brandies, Helge

    2005-02-01

    The present paper reviews aspects related to the biocompatibility of NiTi shape memory alloys used for medical applications. These smart metallic materials, which are characterised by outstanding mechanical properties, have been gaining increasing importance over the last two decades in many minimal invasive surgery and diagnostic applications, as well as for other uses, such as in orthodontic appliances. Due to the presence of high amounts of Ni, the cytotoxicity of such alloys is under scrutiny. In this review paper we analyse work published on the biocompatibility of NiTi alloys, considering aspects related to: (1) corrosion properties and the different methods used to test them, as well as specimen surface states; (2) biocompatibility tests in vitro and in vivo; (3) the release of Ni ions. It is shown that NiTi shape memory alloys are generally characterised by good corrosion properties, in most cases superior to those of conventional stainless steel or Co-Cr-Mo-based biomedical materials. The majority of biocompatibility studies suggest that these alloys have low cytotoxicity (both in vitro and in vivo) as well as low genotoxicity. The release of Ni ions depends on the surface state and the surface chemistry. Smooth surfaces with well-controlled structures and chemistries of the outermost protective TiO2 layer lead to negligible release of Ni ions, with concentrations below the normal human daily intake.

  8. Investigation on microstructure and martensitic transformation of neodymium-added NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Maashaa, Dovchinvanchig; Dorj, Ulzii-Orshikh; Lee, Malrey; Lee, Min Hi; Zhao, Chunwang; Dashjav, Munguntsetseg; Woo, Seon-Mi

    2016-10-01

    The effect of rare earth element neodymium (Nd) addition on the microstructure and martensitic transformation behavior of Ni50Ti50-xNdx (x = 0, 0.1, 0.3, 0.5 and 0.7 at.%) shape memory alloy was investigated by scanning electronic microscope, X-ray diffraction and differential scanning calorimetry. The results show that the microstructure of Ni-Ti-Nd ternary alloy consists of NiNd phase, NiTi2 and the NiTi matrix. A one-step martensitic transformation is observed in the alloys. The martensitic transformation temperature Ms increases sharply increasing 0.1-0.7 at.% Nd content is added.

  9. Complex transformation field created by geometrical gradient design of NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Bakhtiari, Reza; Shariat, Bashir S.; Motazedian, Fakhrodin; Wu, Zhigang; Zhang, Junsong; Yang, Hong; Liu, Yinong

    Owing to geometrical non-uniformity, geometrically graded shape memory alloy (SMA) structures by design have the ability to exhibit different and novel thermal and mechanical behaviors compared to geometrically uniform conventional SMAs. This paper reports a study of the pseudoelastic behavior of geometrically graded NiTi plates. This geometrical gradient creates partial stress gradient over stress-induced martensitic transformation, providing enlarged stress controlling interval for shape memory actuation. Finite element modeling framework has been established to predict the deformation behavior of such structures in tensile loading cycles, which was validated by experiments. The modeling results show that the transformation mostly propagates along the gradient direction as the loading level increases.

  10. [Study of blood compatibility on TiO2 coated biomedical Ni-Ti shape memory alloy].

    PubMed

    Gao, Shuchun; Zhai, Yuchun; Hu, Jinling

    2011-10-01

    We coated a thin TiO2 film on the surface of Ni-Ti shape memory alloy by activated sputter method in the present work. The blood platelet adherence and antithrombogenicity of the TiO2-coated Ni-Ti alloy were evaluated. The results showed that the platelets on the TiO2-coated Ni-Ti alloy were fewer than those on 316L stainless steel, and no agglomeration or distortion for the platelets on the coated alloy was found, which means less probability of blood coagulation for the alloy. The coagulation time on the coated Ni-Ti shape memory alloy was longer than that on the 316L. Compared with that on the 316L stainless steel, the TiO2 coated Ni-Ti shape memory alloy showed better blood compatibility, indicating that the Ni-Ti alloy with TiO2 coating is a kind of ideal biomedical materials with high clinical value.

  11. Characterization of NiTi Shape Memory Damping Elements designed for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Clipa, Victor; Gheorghita, Viorel; Gümpel, Paul

    2014-07-01

    Actuator elements made of NiTi shape memory material are more and more known in industry because of their unique properties. Due to the martensitic phase change, they can revert to their original shape by heating when subjected to an appropriate treatment. This thermal shape memory effect (SME) can show a significant shape change combined with a considerable force. Therefore such elements can be used to solve many technical tasks in the field of actuating elements and mechatronics and will play an increasing role in the next years, especially within the automotive technology, energy management, power, and mechanical engineering as well as medical technology. Beside this thermal SME, these materials also show a mechanical SME, characterized by a superelastic plateau with reversible elongations in the range of 8%. This behavior is based on the building of stress-induced martensite of loaded austenite material at constant temperature and facilitates a lot of applications especially in the medical field. Both SMEs are attended by energy dissipation during the martensitic phase change. This paper describes the first results obtained on different actuator and superelastic NiTi wires concerning their use as damping elements in automotive safety systems. In a first step, the damping behavior of small NiTi wires up to 0.5 mm diameter was examined at testing speeds varying between 0.1 and 50 mm/s upon an adapted tensile testing machine. In order to realize higher testing speeds, a drop impact testing machine was designed, which allows testing speeds up to 4000 mm/s. After introducing this new type of testing machine, the first results of vertical-shock tests of superelastic and electrically activated actuator wires are presented. The characterization of these high dynamic phase change parameters represents the basis for new applications for shape memory damping elements, especially in automotive safety systems.

  12. Dissimilar laser welding of NiTi shape memory alloy and copper

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Panton, B.; Oliveira, J. P.; Han, A.; Zhou, Y. N.

    2015-12-01

    This work is the first investigation of joining NiTi and copper. The successful Nd:YAG laser welding of NiTi to copper achieved in this work enables new methods of connecting shape memory alloys to electro-mechanical systems. Joints made with an optimum peak power of 2.2 kW accommodated pseudoelastic deformation of NiTi, proving their use with high strength actuators. Fracture occurred through the cross section of these defect-free joints. A lower peak power of 1.8 kW created weak joints with limited weld penetration of the copper sheet. This lack of bonding resulted in fracture occurring across the small disconnected joint areas. Joints made with a higher peak power of 2.6 kW had significant cracking in the fusion zone. Two regions of distinct Cu composition were found in the fusion zone, and cracking occurred at the interface between these regions because of their different physical properties. Failure initiated at this cracking and propagated through the fusion zone that had been embrittled by mixing with over 20 at.% Cu.

  13. Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition.

    PubMed

    Amini, Abbas; Cheng, Chun

    2013-01-01

    Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips.

  14. Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states

    DOE PAGES

    Zarkevich, N. A.; Johnson, D. D.

    2014-12-24

    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, butmore » unstable B2. Furthermore, these high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.« less

  15. Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states

    SciTech Connect

    Zarkevich, N. A.; Johnson, D. D.

    2014-12-24

    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, but unstable B2. Furthermore, these high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.

  16. Shape-memory transformations of NiTi: minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states.

    PubMed

    Zarkevich, N A; Johnson, D D

    2014-12-31

    NiTi is the most used shape-memory alloy; nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudged elastic band method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between a body-centered orthorhombic (bco) ground state and a newly identified stable austenite ("glassy" B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R phase), and between martensite variants (bco orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, but unstable B2. These high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.

  17. Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation.

    PubMed

    Chu, C L; Hu, T; Wu, S L; Dong, Y S; Yin, L H; Pu, Y P; Lin, P H; Chung, C Y; Yeung, K W K; Chu, Paul K

    2007-09-01

    Fenton's oxidation is traditionally used to remove inorganic and organic pollutants from water in waster water treatment. It is an advanced oxidation process in which H2O2 is catalytically decomposed by ferrous irons into hydroxyl radicals (*OH) which have a higher oxidation potential (2.8V) than H2O2. In the work reported here, we for the first time use Fenton's oxidation to modify the surface of biomedical NiTi shape memory alloy (SMA). The influences of Fenton's oxidation on the surface microstructure, blood compatibility, leaching of harmful Ni ions and corrosion resistance in simulated body fluids is assessed using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, electrochemical tests, hemolysis analysis and the blood platelet adhesion test. The mechanical stability of the surface titania film produced by Fenton's oxidation as well as their effects on the shape memory behavior of the SMA are studied by bending tests. Our results show that Fenton's oxidation produces a novel nanostructured titania gel film with a graded structure on the NiTi substrate without an intermediate Ni-rich layer that is typical of high-temperature oxidation. Moreover, there is a clear Ni-free zone near the top surface of the titania film. The surface structural changes introduced by Fenton's oxidation improve the electrochemical corrosion resistance and mitigate Ni release. The latter effects are comparable to those observed after oxygen plasma immersion ion implantation reported previously and better than those of high-temperature oxidation. Aging in boiling water improves the crystallinity of the titania film and further reduces Ni leaching. Blood platelet adhesion is remarkably reduced after Fenton's oxidation, suggesting that the treated SMA has improved thrombo resistance. Enhancement of blood compatibility is believed to stem from the improved hemolysis resistance, the surface wettability and the

  18. Spray Forming of NiTi and NiTiPd Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-01-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  19. Characterisation of melt spun Ni-Ti shape memory Ribbons' microstructure

    NASA Astrophysics Data System (ADS)

    Mehrabi, Kambiz; Brunčko, Mihael; Kneissl, Albert C.; Čolič, Miodrag; Stamenković, Dragoslav; Ferčec, Janko; Anžel, Ivan; Rudolf, Rebeka

    2012-06-01

    NiTi alloys are the most technologically important medical Shape Memory Alloys in a wide range of applications used in Orthopaedics, Neurology, Cardiology and interventional Radiology as guide-wires, self-expandable stents, stent grafts, inferior vena cava filters and clinical instruments. This paper discusses the use of rapid solidification by the melt spinning method for the preparation of thin NiTi ribbons for medical uses. Generally, the application of rapid solidification via melt-spinning can change the microstructure drastically, which improves ductility and shape memory characteristics and leads to samples with small dimensions. As the increase in the wheel speed led to a reduced ribbon thickness, the cooling rate increased and, therefore, the martensitic substructure became finer. Furthermore, no transition from the crystalline phase to the amorphous phase was obtained by increasing the cooling rate, even at a wheel speed of 30 m/s. Specimens for our metallographic investigation were cut from the longitudinal cross sections of melt-spun ribbons. Conventional TEM studies were carried out with an acceleration voltage of 120 kV. Additionally, the chemical composition of the samples was examined with a TEM equipped with an EDX analyser. The crystallographic structure was determined using Bragg-Brentano x-ray diffraction with Cu-Kα radiation at room temperature.

  20. Effect of EDTA solution on corrosion fatigue of Ni-Ti files with different shapes.

    PubMed

    Hasegawa, Yuki; Goto, Shin-ichi; Ogura, Hideo

    2014-01-01

    This study aimed to evaluate the effect of EDTA solutions (3% and 10% EDTA•2Na) on corrosion fatigue of three Ni-Ti files with different shapes, in comparison with other solutions (6% NaClO, 3% H2O2, 0.9% NaCl and distilled water). Ni-Ti files were subjected to rotational bending in a bent glass tube (30° and 60° angles) filled with the solutions, and the number of rotations to failure was counted. At 30° bent angle, files in the two EDTA solutions showed significantly lower resistance than those in distilled water, but no significant difference was found between the two EDTA solutions. Fatigue resistance of two tested files in the two EDTA solutions was not significantly different from those in the other three solutions, whereas one file in EDTA solutions showed significantly lower resistance than that in 3% H2O2. At 60° bent angle, early failure within 1-2.5 min was observed for all tested files, and no significant difference was found among the six solutions. At both angles, significant differences in fatigue resistance were observed among the three tested files, which could be related to the difference in the cross-sectional shapes of the files.

  1. Laser and Surface Processes of NiTi Shape Memory Elements for Micro-actuation

    NASA Astrophysics Data System (ADS)

    Nespoli, Adelaide; Biffi, Carlo Alberto; Previtali, Barbara; Villa, Elena; Tuissi, Ausonio

    2014-04-01

    In the current microtechnology for actuation field, shape memory alloys (SMA) are considered one of the best candidates for the production of mini/micro devices thanks to their high power-to-weight ratio as function of the actuator weight and hence for their capability of generating high mechanical performance in very limited spaces. In the microscale the most suitable conformation of a SMA actuator is given by a planar wavy formed arrangement, i.e., the snake-like shape, which allows high strokes, considerable forces, and devices with very low sizes. This uncommon and complex geometry becomes more difficult to be realized when the actuator dimensions are scaled down to micrometric values. In this work, micro-snake-like actuators are laser machined using a nanosecond pulsed fiber laser, starting from a 120- μm-thick NiTi sheet. Chemical and electrochemical surface polishes are also investigated for the removal of the thermal damages of the laser process. Calorimetric and thermo-mechanical tests are accomplished to assess the NiTi microdevice performance after each step of the working process. It is shown that laser machining has to be followed by some post-processes in order to obtain a micro-actuator with good thermo-mechanical properties.

  2. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita; Rogers, Richard B.; Noebe, Ronald D.

    2011-01-01

    Ni-49Ti and Ni-30Pt-50Ti (at.%) shape memory alloys were oxidized isothermally in air over the temperature range of 500 to 900 C. The microstructure, composition, and phase content of the scales were studied by SEM, EDS, XRD, and metallography. Extensive plan view SEM/EDS identified various features of intact or spalled scale surfaces. The outer surface of the scale was a relatively pure TiO2 rutile structure, typified by a distinct highly striated and faceted crystal morphology. Crystal size increased significantly with temperature. Spalled regions exhibited some porosity and less distinct features. More detailed information was obtained by correlation of SEM/EDS studies of 700 C/100 hr cross-sections with XRD analyses of serial or taper-polishing of plan surfaces. Overall, multiple layers exhibited graded mixtures of NiO, TiO2, NiTiO3, Ni(Ti) or Pt(Ni,Ti) metal dispersoids, Ni3Ti or Pt3Ti depletion zones, and substrate, in that order. The NiTi alloy contained a 3 at.% Fe impurity that appeared in embedded localized Fe-Ti-rich oxides, while the NiPtTi alloy contained a 2 v/o dispersion of TiC that appeared in lower layers. The oxidation kinetics of both alloys (in a previous report) indicated parabolic growth and an activation energy (250 kJ/mole) near those reported in other Ti and NiTi studies. This is generally consistent with TiO2 existing as the primary scale constituent, as described here.

  3. Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy.

    PubMed

    Xu, J L; Zhong, Z C; Yu, D Z; Liu, F; Luo, J M

    2012-12-01

    In this paper, the effects of micro-arc oxidation (MAO) surface modification (alumina coatings) on the phase transformation behavior, shape memory characteristics, in vitro haemocopatibility and cytocompatibility of the biomedical NiTi alloy were investigated respectively by differential scanning calorimetry, bending test, hemolysis ratio test, dynamic blood clotting test, platelet adhesion test and cytotoxicity testing by human osteoblasts (Hobs). The results showed that there were no obvious changes of the phase transformation temperatures and shape memory characteristics of the NiTi alloy after the MAO surface modification and the coating could withstand the thermal shock and volume change caused by martensite-austenite phase transformation. Compared to the uncoated NiTi alloys, the MAO surface modification could effectively improve the haemocopatibility of the coated NiTi alloys by the reduced hemolysis ratio, the prolonged dynamic clotting time and the decreased number of platelet adhesion; and the rough and porous alumina coatings could obviously promote the adherence, spread and proliferation of the Hobs with the significant increase of proliferation number of Hobs adhered on the surface of the coated NiTi alloys (P < 0.05).

  4. A novel active fire protection approach for structural steel members using NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Sadiq, H.; Wong, M. B.; Al-Mahaidi, R.; Zhao, X. L.

    2013-02-01

    A novel active fire protection approach, based on integrating a shape memory alloy, NiTi, with a steel structure, was proposed to satisfy the fire resistance requirements in structural design. To demonstrate the principles of this approach, a simple structure in the form of a simply supported steel beam was used. The internal action of the beam due to a transverse applied load was reduced by utilizing the shape memory effect in the NiTi alloy at rising temperatures. As a result, the net internal action from the load design was kept below the deteriorated load capacity of the beam during the fire scenario for period of time that was longer than that of the original beam without the NiTi alloy. By integrating the NiTi alloy into the beam system, the structure remained stable even though the steel temperature exceeded the critical temperature which may have caused the original beam structure to collapse. Prior to testing the composite NiTi-steel beam under simulated fire conditions, the NiTi alloy specimens were characterized at high temperatures. At 300 °C, the stiffness of the specimens increased by three times and its strength by four times over that at room temperature. The results obtained from the high-temperature characterization highlighted the great potential of the alloy being used in fire engineering applications.

  5. Two-way Shape Memory Effect of NiTi under Compressive Loading Cycles

    NASA Astrophysics Data System (ADS)

    Yoo, Young Ik; Lee, Jung Ju

    In this study, the two-way shape memory effect (TWSME) of a Ni-54.5 at.% Ti alloy was investigated experimentally to develop a NiTi linear actuator. The two-way shape memory effect was induced through a compressive shape memory cycle composed of four steps: (1) loading to maximum deformation; (2) unloading; (3) heating; (4) and cooling. Six types of specimens (one solid cylindrical and five tubular) were used to obtain the twoway shape memory strain and two-way recovery stress and to evaluate the actuating capacity. The two-way actuating strain showed a convergent tendency after several training cycles for the same maximum deformation. A maximum value of the two-way strain was obtained for 7% of maximum deformation, independently of the geometry of the tubular specimens. The two-way strains obtained by the shape memory cycles and two-way recovery stress linearly increase as a function of the maximum deformation and the two-way strain, respectively, and the geometry of specimen affects the two-way recovery stress. Although the results show that sufficient recovery stress can be generated by either the two-way shape memory process or by the one-way shape memory process, the two-way shape memory process can be applied more conveniently to actuating applications.

  6. Microscale Repeatability of the Shape-Memory Effect in Fine NiTi Wires

    NASA Astrophysics Data System (ADS)

    Gong, Joyce Yue; Daly, Samantha H.

    2016-12-01

    An experimental investigation into microscale transformation characteristics of polycrystalline NiTi wires of 500 µm diameter during shape memory cycling is discussed, with emphasis on the characterization of a pronounced heterogeneity in the strain distribution evident during detwinning of the martensite phase upon application of load and its persistence throughout the actuation cycle. Using scanning electron microscopy-digital image correlation, full-field strain maps at the microscale were obtained during shape memory cycling. It was found that the strains induced by detwinning were quite heterogeneous at the microscale, and could display a large degree of similarity with thermo-mechanical cycling that tended to increase as cycling progressed. Residual strain concentrated at locations where strain accumulation from detwinning and plasticity were significant, indicating that martensitic detwinning and the associated plasticity that occurs with it is spatially correlated to the subsequent accumulation of residual strain at the microscale.

  7. Mechanical and Microstructural Characterization of Porous NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Scalzo, O.; Turenne, S.; Gauthier, M.; Brailovski, V.

    2009-09-01

    This article presents the mechanical behavior of porous NiTi in the context of biomedical applications related to bone prostheses. To produce the porous metallic material, a novel technique consisting of mixing prealloyed NiTi powder with a polymer powder and a foaming agent has been used. This method permits control of the size of pores and the porosity level. For the present study, pores similar to those found in bones (400 to 500 μm) were obtained with a total porosity of the specimens varying from 50 to 70 pct. The compression mechanical testing carried out on small cylindrical specimens revealed shape memory deformation recovery up to 6.4 pct, while the superelastic behavior resulted in a reversible deformation up to 7.7 pct. By varying the amount of porosity, it was possible to obtain Young’s moduli in the range of 2.6 to 4.6 GPa, which is similar to the modulus of cancellous (spongy) human bone.

  8. Fabrication and static characterization of carbon-fiber-reinforced polymers with embedded NiTi shape memory wire actuators

    NASA Astrophysics Data System (ADS)

    de Araújo, C. J.; Rodrigues, L. F. A.; Coutinho Neto, J. F.; Reis, R. P. B.

    2008-12-01

    In this work, unidirectional carbon-fiber-reinforced polymers (CFRP) with embedded NiTi shape memory alloy (SMA) wire actuators were manufactured using a universal testing machine equipped with a thermally controlled chamber. Beam specimens containing cold-worked, annealed and trained NiTi SMA wires distributed along their neutral plane were fabricated. Several tests in a three-point bending mode at different constant temperatures were performed. To verify thermal buckling effects, electrical activation of the specimens was realized in a cantilevered beam mode and the influence of the SMA wire actuators on the tip deflection of the composite is demonstrated.

  9. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface.

  10. Experimental observations on mechanical response of three-phase NiTi shape memory alloy under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-10-01

    In this paper, the mechanical behavior of three-phase NiTi shape memory alloy (SMA) is examined in a wide temperature range using in situ digital image correlation. By varying the temperature and the cooling/heating history, we get the specimens with initial austenite (A), initial R-phase (R), initial martensite (M), initial mixture of A and R, initial mixture of R and M and initial mixture of A and M. It is observed in the experiments that NiTi SMA exhibits localized A → M transformation and R → M transformation while homogenous R-reorientation and martensitic reorientation. Moreover, the influence of the initial mixed states, i.e. mixture of A and M, mixture of R and M and mixture of A and R, on the mechanical response of NiTi SMA is discussed. Interestingly, we find that the specimens with initial mixture of R and M demonstrate homogenous deformation manner and the emergence of R in M facilitates the transformation of NiTi SMA greatly. The three-phase phase diagram is also established. The thermal dependences of the critical transformation stresses associated with various transformation processes are calculated for further theoretical investigation and simulation.

  11. Texture and Strain Measurements from Bending of NiTi Shape Memory Alloy Wires

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Zhang, Baozhuo; Young, Marcus L.

    2016-09-01

    Shape memory alloys (SMAs) are a new generation of materials that exhibit unique nonlinear deformations due to a phase transformation which allows the material to return to its original shape after removal of stress or a change in temperature. These unique properties are the result of a martensitic/austenitic phase transformation through the application of temperature changes or applied stress. Many technological applications of austenitic SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this paper, commercial pseudoelastic NiTi SMA wires (50.7 at.% Ni) were placed under different bending strains and examined using scanning electron microscopy and high-energy synchrotron radiation X-ray diffraction (SR-XRD). By observing the microstructure, phase transformation temperatures, surface texture and diffraction patterns along the wire, it is shown that the wire exhibits a strong anisotropic behavior whether on the tensile or compressive side of the bending axis and that the initiation of micro-cracks in the wires is localized on the compression side, but that crack propagation will still happen if the wire is reloaded in the opposite direction. In addition, lattice strains are examined for both the austenite and martensite phases.

  12. Laser welding of NiTi shape memory alloy wires and tubes for multi-functional design applications

    NASA Astrophysics Data System (ADS)

    Zeng, Zhi; Yang, Mao; Oliveira, João Pedro; Song, Di; Peng, Bei

    2016-08-01

    Welding and joining of NiTi shape memory alloys is essential for their integration into an increasing variety of applications. Almost all manufacturers and a significant number of researchers focus their investigation on welding NiTi, which can present both pseudoelasticity (PE) and shape memory effect. Integration of these materials would provide increased flexibility in terms of smart design, in particular for multi-functional systems. The current work investigates the mechanical, physical and phase transformation properties of similar (base materials (BMs) with the same composition) and dissimilar (BMs with different compositions) NiTi welded shape memory wires. The similar and dissimilar welded joints were successfully achieved by laser welding, which can reach up to 88.4% and 67.5% of the wire BM ductility. The joint break force of the similar and dissimilar joints were of 77.2% and 71.4% of the wire BM, respectively. Moreover, laser welding was found to effectively preserve the PE on the similar welded structures. The residual plastic strain variation of the dissimilar welded specimens at different temperatures during the cycling test may be helpful for design of multi-functional or flexible monolithic structures.

  13. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    NASA Astrophysics Data System (ADS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-04-01

    NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  14. Challenges During Microstructural Analysis and Mechanical Testing of Small-Scale Pseudoelastic NiTi Structures

    NASA Astrophysics Data System (ADS)

    Hahn, S.; Wagner, M. F.-X.

    2016-06-01

    Most investigations on NiTi-based shape memory alloys involve large-scale bulk material; knowledge about the martensitic transformation in small-scale NiTi structures is still limited. In this paper, we study the microstructures of thin NiTi layers and their mechanical properties, and we discuss typical challenges that arise when experiments are performed on small samples. A physical vapor deposition (PVD) process was used to deposit thin NiTi wires with a cross section of 15 × 15 μm2 and dogbone-shaped samples 5 × 500 μm2. Microstructural properties were characterized by X-ray diffraction, electron backscatter diffraction, and scanning electron microscopy. Moreover, tensile tests were performed using optical strain measurements in order to observe martensite band formation during cyclic loading. The surfaces of the crystalline wires reflect the columnar growth of NiTi during deposition. The wires exhibit pseudoelastic material behavior during tensile testing. Fracture typically occurs along the columns because the column growth direction is perpendicular to the straining direction. Electropolishing removes these local stress raisers and hence increases fracture strains. Our results demonstrate that the pseudoelastic properties of the PVD-processed materials agree well with those of conventional NiTi, and that they provide new opportunities to study the fundamentals of martensitic transformation in small-scale model systems.

  15. Damping characteristics of R-phase NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wu, Kuang-Hsi; Dalip, S. K.; Liu, Y. Q.; Pu, Zhongjie J.

    1995-05-01

    This paper focuses on the study of damping behavior associated with the R-phase in NiTi shape memory alloy. The variation of the tan((delta) ) and Young's modulus as a function of temperature, ramp rate, frequency, and applied amplitude are systematically studied using a dynamic mechanical analyzer (DMA). It was found that the tan((delta) ) versus the temperature curve exhibits four peaks during the thermal cycle, two peaks each in the heating and in the cooling process. These peaks correspond to the martensite to R-phase, R-phase to austenite, austenite to R-phase, and R-phase to martensite transformations. The value of the tan((delta) ) at each peak is in proportion to the ramp rate and in reverse proportion to frequency. The vibration amplitude tends to have a minor effect on the tan((delta) ). The variation of these peaks with ramp rate, frequency, and amplitude are discussed based on the Delorme and De Jonghe damping model. In addition, the experimental results show that an isotropic softening occurs in the Young's modulus during martensite to R-phase, R-phase to austenite, austenite to R-phase, and R-phase to martensite transformations.

  16. Surface characterizations of laser modified biomedical grade NiTi shape memory alloys.

    PubMed

    Pequegnat, A; Michael, A; Wang, J; Lian, K; Zhou, Y; Khan, M I

    2015-05-01

    Laser processing of shape memory alloys (SMAs) promises to enable the multifunctional capabilities needed for medical device applications. Prior to clinical implementation, the surface characterisation of laser processed SMA is essential in order to understand any adverse biological interaction that may occur. The current study systematically investigated two Ni-49.8 at.% Ti SMA laser processed surface finishes, including as-processed and polished, while comparing them to a chemically etched parent material. Spectrographic characterisation of the surface included; X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), and Raman spectroscopy. Corrosion performance and Ni ion release were also assessed using potentiodynamic cyclic polarization testing and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. Results showed that surface defects, including increased roughness, crystallinity and presence of volatile oxide species, overshadowed any possible performance improvements from an increased Ti/Ni ratio or inclusion dissolution imparted by laser processing. However, post-laser process mechanical polishing was shown to remove these defects and restore the performance, making it comparable to chemically etched NiTi material.

  17. Treatment of Clavicular Nonunions with Shape Memory Ni-Ti Alloy Swan-Like Bone Connector

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Wei; Xu, Shuo-Gui; Wang, Pan-Feng; Zhang, Chun-Cai

    2011-07-01

    Disability caused by nonunited fracture of the clavicle is a rare condition that is expressed by local pain. This condition is usually treated by reduction of the fracture and stable fixation with augmentation by autogenous bone graft. This is a retrospective study to assess outcome of the treatment of clavicular nonunion with a novel shape memory Ni-Ti alloy swan-like bone connector (SMC). August, 2003 to December, 2006, 5 consecutive patients with clavicular nonunion were treated using SMC in our hospital. The SMC device was cooled with ice before implantation and then warmed to 40-50 °C after implantation, to produce balanced axial and compression forces that would stabilize the fracture. We have used cancellous bone grafting in all our cases to obtain solid healing. Average follow-up was 37 months (range 25-58). In all patients, satisfactory osseous union was achieved. There was no complication from the hardware. The average Constant score which is for evaluating function of injured shoulder after operation was 86 points (average Constant score for the unaffected shoulder was 95). All patients were very satisfied with the treatment and outcome. The SMC provides a new effective method for fracture fixation and treatment of bone nonunion for clavicle.

  18. Design of automatic rotor blades folding system using NiTi shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Ali, M. I. F.; Abdullah, E. J.

    2016-10-01

    This present paper will study the requirements for development of a new Automatic Rotor Blades Folding (ARBF) system that could possibly solve the availability, compatibility and complexity issue of upgrading a manual to a fully automatic rotor blades folding system of a helicopter. As a subject matter, the Royal Malaysian Navy Super Lynx Mk 100 was chosen as the baseline model. The aim of the study was to propose a design of SMART ARBF's Shape Memory Alloy (SMA) actuator and proof of operating concept using a developed scale down prototype model. The performance target for the full folding sequence is less than ten minutes. Further analysis on design requirements was carried out, which consisted of three main phases. Phase 1 was studying the SMA behavior on the Nickel Titanium (NiTi) SMA wire and spring (extension type). Technical values like activation requirement, contraction length, and stroke- power and stroke-temperature relationship were gathered. Phase 2 was the development of the prototype where the proposed design of stepped-retractable SMA actuator was introduced. A complete model of the SMART ARBF system that consisted of a base, a main rotor hub, four main rotor blades, four SMA actuators and also electrical wiring connections was fabricated and assembled. Phase 3 was test and analysis whereby a PINENG-PN968s-10000mAh Power Bank's 5 volts, which was reduced to 2.5 volts using LM2596 Step-Down Converter, powered and activated the NiTi spring inside each actuator. The bias spring (compression type), which functions to protract and push the blades to spread position, will compress together with the retraction of actuators and pull the blades to the folding position. Once the power was removed and SMA spring deactivated, the bias spring stiffness will extend the SMA spring and casing and push the blades back to spread position. The timing for the whole revolution was recorded. Based on the experimental analysis, the recorded timing for folding sequence is

  19. Processing and Characterization of NiTi Shape Memory Alloy Particle Reinforced Sn-In Solders

    DTIC Science & Technology

    2006-12-01

    behavior of different phases of NiTi at constant temperature............................ 16 Figure 8. DSC curves of NiTi wire . Note that upon...cooling the wire transforms to R-phase prior to the martensitic transformation. Upon heating, the As and Af temperatures are similar, as the monoclinic...Copper Rod Interface .......................................... 40 Figure 19. Typical Micro-structure of the monolithic solder

  20. New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility.

    PubMed

    Michiardi, A; Aparicio, C; Planell, J A; Gil, F J

    2006-05-01

    Various oxidation treatments were applied to nearly equiatomic NiTi alloys so as to form a Ni-free protective oxide on the surface. Sample surfaces were analyzed by X-ray Photoelectron Spectroscopy, and NiTi transformation temperatures were determined by differential scanning calorimetry (DSC) before and after the surface treatment. An ion release experiment was carried out up to one month of immersion in SBF for both oxidized and untreated surfaces. The results show that oxidation treatment in a low-oxygen pressure atmosphere leads to a high surface Ti/Ni ratio, a very low Ni surface concentration and a thick oxide layer. This oxidation treatment does not significantly affect the shape memory properties of the alloy. Moreover, the oxide formed significantly decreases Ni release into exterior medium comparing with untreated surfaces. As a consequence, this new oxidation treatment could be of great interest for biomedical applications, as it could minimize sensitization and allergies and improve biocompatibility and corrosion resistance of NiTi shape memory alloys.

  1. A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2017-01-01

    A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite Mt and detwinned martensite Md , as well as the phase transitions occurring between each pair of phases (A→ M t , Mt→ A , A→ M d , Md→ A , and Mt→ M d) are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, Mt , and Md) and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.

  2. Surface structure and corrosion resistance of short-time heat-treated NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Vojtěch, D.; Voděrová, M.; Fojt, J.; Novák, P.; Kubásek, T.

    2010-12-01

    NiTi alloys are attractive materials that are used for medicine, however, Ni-release may cause allergic reactions in an organism. The Ni-release rate is strongly affected by the surface state of the NiTi alloy that is mainly determined by its processing route. In this study, a NiTi shape memory alloy (50.9 at.% Ni) was heat-treated by several regimes simulating the shape setting procedure, the last step in the manufacture of implants. Heating temperatures were between 500 and 550 °C and durations from 5 to 10 min. Heat treatments were performed in air at normal and low pressure and in a salt bath. The purpose of the treatments was to obtain and compare different surface states of the Ni-Ti alloy. The surface state and chemistry of heat-treated samples were investigated by electron microscopy, X-ray photoelectron spectroscopy and Raman spectrometry. The amount of nickel released into a model physiological solution of pH 2 and into concentrated HCl was taken as a measure of the corrosion rate. It was found that the heat treatments produced surface TiO 2 layers measuring 15-50 nm in thickness that were depleted in nickel. The sample covered by the 15-nm thick oxide that was treated at 500 °C/5 min in a low pressure air showed the best corrosion performance in terms of Ni-release. As the oxide thickness increased, due to either temperature or oxygen activity change, Ni-release into the physiological solution accelerated. This finding is discussed in relation to the internal structure of the oxide layers.

  3. Design and thermo-mechanical analysis of a new NiTi shape memory alloy fixing clip.

    PubMed

    Nespoli, Adelaide; Dallolio, Villiam; Stortiero, Francesco; Besseghini, Stefano; Passaretti, Francesca; Villa, Elena

    2014-04-01

    In this work, a new NiTi shape memory alloy (SMA) bone fixator is proposed. Thanks to the shape memory effect, this device does not need any external tool for the fixation, as the anchorage is obtained only by the self-accommodation of the clip during the parent transformation. Calorimetry and thermo-mechanical tests were used to evaluate the phase transformation temperatures and to estimate the forces generated both during the fixing surgical procedure and after the surgical operation. An application on animal anatomical sample was also performed; an appropriate mechanical tightness as well as a good handiness has been found.

  4. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening

    NASA Astrophysics Data System (ADS)

    Liao, Yiliang; Ye, Chang; Lin, Dong; Suslov, Sergey; Cheng, Gary J.

    2012-08-01

    In this study, laser shock peening (LSP) was utilized to generate localized deformation induced martensite (DIM) in NiTi shape memory alloy. The DIM was investigated by x-ray diffraction and transmission electron microscopy. The effects of temperature and laser intensity on DIM transformation were investigated. It has been found that higher laser intensity and lower processing temperature leads to higher volume fraction of DIM. This is attributed to the increase of the chemical driving force and the increase in the density of potential martensite variant for martensite nucleation at low temperatures. The localized shape memory effect in micrometer scale after low temperature LSP has been evaluated.

  5. Fiber laser micromachining of thin NiTi tubes for shape memory vascular stents

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Dong Bo; Tong, Yi Fei; Zhu, Yu Fu

    2016-07-01

    Nickel titanium (NiTi) alloy has widely been used in the vascular stent manufacturing due to its excellent properties. Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is commonly used for the preparation of metal vascular stents. Recently, fiber lasers have been used for stent profiling for better cutting quality. To investigate the cutting-kerf characters of NiTi vascular stents fabricated by fiber laser cutting, laser cutting experiments with thin NiTi tubes were conducted in this study, while NiTi sheets were used in other fiber laser cutting studies. Different with striation topography, new topographies such as layer topography and topography mixed with layers and striations were observed, and the underlying reason for new topographies was also discussed. Comparative research on different topographies was conducted through analyzing the surface roughness, kerf width, heat-affected zone (HAZ) and dross formation. Laser cutting process parameters have a comprehensive influence on the cutting quality; in this study, the process parameters' influences on the cutting quality were studied from the view of power density along the cutting direction. The present research provides a guideline for improving the cutting quality of NiTi vascular stents.

  6. Machining and Phase Transformation Response of Room-Temperature Austenitic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kaynak, Yusuf

    2014-09-01

    This experimental work reports the results of a study addressing tool wear, surface topography, and x-ray diffraction analysis for the finish cutting process of room-temperature austenitic NiTi alloy. Turning operation of NiTi alloy was conducted under dry, minimum quantity lubrication (MQL) and cryogenic cooling conditions at various cutting speeds. Findings revealed that cryogenic machining substantially reduced tool wear and improved surface topography and quality of the finished parts in comparison with the other two approaches. Phase transformation on the surface of work material was not observed after dry and MQL machining, but B19' martensite phase was found on the surface of cryogenically machined samples.

  7. Constitutive model for the dynamic response of a NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohong; Zeng, Xiangguo; Chen, Huayan

    2016-07-01

    In this paper, based on irreversible thermodynamic theory, the Helmholtz free energy function, was selected to deduce both the master equations and evolution equations of the constitutive model of a NiTi alloy under high strain. The Helmholtz free energy function contains the parameters of the reflecting phase transition and plastic property. The constitutive model for a NiTi alloy was implemented using a semi-implicit stress integration algorithm. Four successive stages can be differentiated and simulated: parent phase elasticity, martensitic phase transition, martensitic elasticity, and dislocation yield. The simulation results are in good agreement with the experimental results.

  8. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    PubMed

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  9. METHOD OF ELECTROPOLISHING URANIUM

    DOEpatents

    Walker, D.E.; Noland, R.A.

    1959-07-14

    A method of electropolishing the surface of uranium articles is presented. The process of this invention is carried out by immersing the uranium anticle into an electrolyte which contains from 35 to 65% by volume sulfuric acid, 1 to 20% by volume glycerine and 25 to 50% by volume of water. The article is made the anode in the cell and polished by electrolyzing at a voltage of from 10 to 15 volts. Discontinuing the electrolysis by intermittently withdrawing the anode from the electrolyte and removing any polarized film formed therein results in an especially bright surface.

  10. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension-unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension-unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain.

  11. Modeling of hydrogen effect on the superelastic behavior of Ni-Ti shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Lachiguer, Amani; Bouby, Céline; Gamaoun, Fehmi; Bouraoui, Tarak; Ben Zineb, Tarak

    2016-11-01

    Superelastic NiTi wires are widely used in orthodontic treatments, but sometimes fracture can be observed after few months of use in buccal cavity and attributed to the degradation of NiTi mechanical properties due to hydrogen absorption. In this paper, a modeling approach is proposed in order to describe the effect of hydrogen diffusion on the transformation properties of NiTi SMAs. In order to experimentally predict such effects, cathodic hydrogen charging was performed at a current density of 10 A/{m}2 for 6h, 24h, 48h and 72h in 0.9% NaCl aqueous solution at room temperature. Tensile tests were carried out shortly after hydrogen charging. The obtained stress-strain curves showed an increase of yield transformation stresses for forward and reverse martensitic transformations and a decrease of maximum transformation strain. Using Fick’s second law, the transformation temperatures variation can be expressed as a function of the mean concentration of absorbed hydrogen and then taked into account in the SMA constitutive model developed by Chemisky et al (2011). The numerical results are compared to the experimental ones to calibrate the proposed method. Simulations showed that hydrogen diffusion induces a shifting of transfomation temperatures, a decreasing of maximum transformation strain and an increasing of yield transfomation stresses.

  12. An experimental study of the two-way shape memory effect in a NiTi tubular actuator

    NASA Astrophysics Data System (ADS)

    Yoo, Young Ik; Lee, Jung Ju; Lee, Chang Ho; Lim, Jae Hyuk

    2010-12-01

    In this paper, the two-way shape memory effect (TWSME) in a Ti-54.5 Ni(wt%) alloy was investigated experimentally to develop a NiTi linear actuator. The two-way shape memory effect was induced through a compressive shape memory cycle comprising four steps: (1) loading to maximum deformation; (2) unloading (3) heating and (4) cooling. Six types of specimen (one solid cylindrical and five tubular) were used to obtain the two-way shape memory strain and two-way recovery stress and to evaluate the actuating capacity. The two-way actuating strain showed a saturated tendency after several training cycles for the same maximum deformation. A maximum value of the two-way strain was obtained for 7% of maximum deformation, independently of the geometry of the tubular specimens. The two-way strains obtained by the shape memory cycles and two-way recovery stress linearly increase as a function of the maximum deformation and the two-way strain, respectively, and the geometry of specimen affects the two-way recovery stress. Although the results show that sufficient recovery stress can be generated by either the two-way shape memory process or by the one-way shape memory process, the two-way shape memory process can be applied more conveniently to actuating applications.

  13. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa

    PubMed Central

    Pataky, Garrett J.; Ertekin, Elif; Sehitoglu, Huseyin

    2015-01-01

    Infrared thermogrpahy was utilized to record the temperature change during tensile loading cycles of two shape memory alloy single crystals with pseudoelastic behavior. During unloading, a giant temperature drop was measured in the gage section due to the elastocaloric effect. This data article provides a video of a [001] oriented Ni2FeGa single crystal, including the corresponding stress–strain curve, shows the temperature drop over one cycle. The second video of a [148] oriented NiTi single crystal depicts the repeatability of the elastocaloric effect by showing two consecutive cycles. The videos are supplied in this paper. For further analysis and enhanced discussion of large temperature change in shape memory alloys, see Pataky et al. [1] PMID:26380838

  14. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa.

    PubMed

    Pataky, Garrett J; Ertekin, Elif; Sehitoglu, Huseyin

    2015-12-01

    Infrared thermogrpahy was utilized to record the temperature change during tensile loading cycles of two shape memory alloy single crystals with pseudoelastic behavior. During unloading, a giant temperature drop was measured in the gage section due to the elastocaloric effect. This data article provides a video of a [001] oriented Ni2FeGa single crystal, including the corresponding stress-strain curve, shows the temperature drop over one cycle. The second video of a [148] oriented NiTi single crystal depicts the repeatability of the elastocaloric effect by showing two consecutive cycles. The videos are supplied in this paper. For further analysis and enhanced discussion of large temperature change in shape memory alloys, see Pataky et al. [1].

  15. Stress transfer during different deformation stages in a nano-precipitate-strenthened Ni-Ti shape memory alloy

    DOE PAGES

    Dong, Y. H.; Cong, D. Y.; Nie, Z. H.; ...

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni4Ti3 precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drasticallymore » increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ~520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. Lastly, it is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.« less

  16. Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi.

    SciTech Connect

    Daymond, M. R.; Young, M. L.; Almer, J. D.; Dunand, D. C.; Queen's Univ.; Northwestern Univ.

    2007-06-01

    In situ synchrotron X-ray diffraction measurements are used to create two-dimensional maps of elastic strain and texture, averaged over a compact-tension specimen thickness, near a crack tip in a martensitic NiTi alloy. After fatigue crack propagation, the material ahead of the crack and in its wake exhibits a strong texture, which is eliminated by subsequent shape-memory heat treatment, indicating that this texture is due to detwinning, the main deformation mechanism of NiTi. Upon subsequent application of a static tensile stresses, the highly textured zone reappears and grows around the crack tip as the applied stress is increased. At the highest applied stress intensity of 35MPam1/2, large tensile strains are measured ahead of the crack tip and considerable elastic anisotropy is observed. This detwinning zone is similar to the plastic zone produced by dislocation slip present around cracks in other metals. The texture in this zone is not significantly altered after mechanical unloading, despite the development of substantial triaxial compressive residual strains in this zone.

  17. Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy

    SciTech Connect

    Dong, Y. H.; Cong, D. Y. He, Z. B.; Li, L. F.; Wang, Y. D.; Nie, Z. H.; Wang, Z. L.; Ren, Y.

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni{sub 4}Ti{sub 3} precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ∼520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. It is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.

  18. Stress transfer during different deformation stages in a nano-precipitate-strenthened Ni-Ti shape memory alloy

    SciTech Connect

    Dong, Y. H.; Cong, D. Y.; Nie, Z. H.; He, Z. B.; Wang, Z. L.; Ren, Yang; Wang, Y. D.; Li, L. F.

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni4Ti3 precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ~520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. Lastly, it is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.

  19. PIIID-formed (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti coatings on NiTi shape memory alloy for medical applications.

    PubMed

    Sun, Tao; Wang, Lang-Ping; Wang, Min; Tong, Ho-Wang; Lu, William W

    2012-08-01

    (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti composite coatings were fabricated on NiTi shape memory alloy via plasma immersion ion implantation and deposition (PIIID). Surface morphology of samples was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cross-sectional morphology indicated that the PIIID-formed coatings were dense and uniform. X-ray diffraction (XRD) was used to characterize the phase composition of samples. X-ray photoelectron spectroscopy (XPS) results showed that the surface of coated NiTi SMA samples was Ni-free. Nanoindentation measurements and pin-on-disc tests were carried out to evaluate mechanical properties and wear resistance of coated NiTi SMA, respectively. For the in vitro biological assessment of the composite coatings in terms of cell morphology and cell viability, osteoblast-like SaOS-2 cells and breast cancer MCF-7 cells were cultured on NiTi SMA samples, respectively. SaOS-2 cells attached and spread better on coated NiTi SMA. Viability of MCF-7 cells showed that the PIIID-formed composite coatings were noncytotoxic and coated samples were more biocompatible than uncoated samples.

  20. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys: geometry and body location dependency.

    PubMed

    Toker, S M; Canadinc, D; Maier, H J; Birer, O

    2014-03-01

    A systematic set of ex-situ experiments were carried out on Nickel-Titanium (NiTi) shape memory alloy (SMA) in order to identify the dependence of its biocompatibility on sample geometry and body location. NiTi samples with three different geometries were immersed into three different fluids simulating different body parts. The changes observed in alloy surface and chemical content of fluids upon immersion experiments designed for four different time periods were analyzed in terms of ion release, oxide layer formation, and chemical composition of the surface layer. The results indicate that both sample geometry and immersion fluid significantly affect the alloy biocompatibility, as evidenced by the passive oxide layer formation on the alloy surface and ion release from the samples. Upon a 30 day immersion period, all three types of NiTi samples exhibited lower ion release than the critical value for clinic applications. However; a significant amount of ion release was detected in the case of gastric fluid, warranting a thorough investigation prior to utility of NiTi in gastrointestinal treatments involving long-time contact with tissue. Furthermore, certain geometries appear to be safer than the others for each fluid, providing a new set of guidelines to follow while designing implants making use of NiTi SMAs to be employed in treatments targeting specific body parts.

  1. Influence of test procedures on the thermomechanical properties of a 55NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Padula, Santo A., II; Gaydosh, Darrell J.; Noebe, Ronald D.; Bigelow, Glen S.; Garg, Anita; Lagoudas, Dimitris; Karaman, Ibrahim; Atli, Kadri C.

    2008-03-01

    Over the past few decades, binary NiTi shape memory alloys have received attention due to their unique mechanical characteristics, leading to their potential use in low-temperature, solid-state actuator applications. However, prior to using these materials for such applications, the physical response of these systems to mechanical and thermal stimuli must be thoroughly understood and modeled to aid designers in developing SMA-enabled systems. Even though shape memory alloys have been around for almost five decades, very little effort has been made to standardize testing procedures. Although some standards for measuring the transformation temperatures of SMA's are available, no real standards exist for determining the various mechanical and thermomechanical properties that govern the usefulness of these unique materials. Consequently, this study involved testing a 55NiTi alloy using a variety of different test methodologies. All samples tested were taken from the same heat and batch to remove the influence of sample pedigree on the observed results. When the material was tested under constant-stress, thermal-cycle conditions, variations in the characteristic material responses were observed, depending on test methodology. The transformation strain and irreversible strain were impacted more than the transformation temperatures, which only showed an affect with regard to applied external stress. In some cases, test methodology altered the transformation strain by 0.005-0.01mm/mm, which translates into a difference in work output capability of approximately 2 J/cm 3 (290 in•lbf/in 3). These results indicate the need for the development of testing standards so that meaningful data can be generated and successfully incorporated into viable models and hardware. The use of consistent testing procedures is also important when comparing results from one research organization to another. To this end, differences in the observed responses will be presented, contrasted and

  2. Influence of Test Procedures on the Thermomechanical Properties of a 55NiTi Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Padula, Santo A., II; Gaydosh, Darrell J.; Noebe, Ronald D.; Bigelow, Glen S.; Garg, Anita; Lagoudas, Dimitris; Karaman, Ibrahim; Atli, Kadri C.

    2008-01-01

    Over the past few decades, binary NiTi shape memory alloys have received attention due to their unique mechanical characteristics, leading to their potential use in low-temperature, solid-state actuator applications. However, prior to using these materials for such applications, the physical response of these systems to mechanical and thermal stimuli must be thoroughly understood and modeled to aid designers in developing SMA-enabled systems. Even though shape memory alloys have been around for almost five decades, very little effort has been made to standardize testing procedures. Although some standards for measuring the transformation temperatures of SMA s are available, no real standards exist for determining the various mechanical and thermomechanical properties that govern the usefulness of these unique materials. Consequently, this study involved testing a 55NiTi alloy using a variety of different test methodologies. All samples tested were taken from the same heat and batch to remove the influence of sample pedigree on the observed results. When the material was tested under constant-stress, thermal-cycle conditions, variations in the characteristic material responses were observed, depending on test methodology. The transformation strain and irreversible strain were impacted more than the transformation temperatures, which only showed an affect with regard to applied external stress. In some cases, test methodology altered the transformation strain by 0.005-0.01mm/mm, which translates into a difference in work output capability of approximately 2 J/cu cm (290 in!lbf/cu in). These results indicate the need for the development of testing standards so that meaningful data can be generated and successfully incorporated into viable models and hardware. The use of consistent testing procedures is also important when comparing results from one research organization to another. To this end, differences in the observed responses will be presented, contrasted and

  3. Strain rate response of a Ni-Ti shape memory alloy after hydrogen charging

    NASA Astrophysics Data System (ADS)

    Gamaoun, Fehmi; Hassine, Tarak; Bouraoui, Tarak

    2014-01-01

    In this work, we investigate the susceptibility of Ni-Ti superelastic wires to the strain rates during tensile testing after hydrogen charging. Cathodic hydrogen charging is performed at a current density of 10 A/m² during 2-12 h in 0.9% NaCl solution and aged for 24 h at room temperature. Specimens underwent one cycle of loading-unloading reaching a stress value of 700 MPa. During loading, strain rates from 10-6 to 5 × 10-2 s-1 have been achieved. After 8 h of hydrogen charging, an embrittlement has been detected in the tensile strain rate range of 10-6 to 10-4 s-1. In contrast, no embrittlement has been detected for strain rates of 10-3 s-1 and higher. However, after 12 h of hydrogen charging and 24 h of annealing at room temperature, the embrittlement occurs in the beginning of the austenite-martensite transformation for all the studied strain rate values. These results show that for a range of critical amounts of diffused hydrogen, the embrittlement of the Ni-Ti superelastic alloy strongly depends on the strain rate during the tensile test. Moreover, it has been shown that this embrittlement occurs for low values of strain rates rather than the higher ones. This behaviour is attributed to the interaction between the diffused hydrogen and growth of the martensitic domain.

  4. Microstructure, Phase Transformations, and Properties of Hot-Extruded Ni-Rich NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Lekston, Z.; Zubko, M.; Prusik, K.; Stróż, D.

    2014-07-01

    Processing of NiTi shape memory alloys strongly influences their microstructure, phase transformations, mechanical, and shape memory properties. Hot forging, hot swaging, or hot rolling are efficient techniques for obtaining the desired shape, but during multiple operations the material must be heated and worked in the temperature range from 700 to 900 °C. During these processes, intense oxidation takes place. In order to reduce it, the hot-pack working is applied. The hot extrusion is more effective for reduction of ingot, billet, and rod diameters than hot forging, hot swaging, or hot rolling. Also, during hot extrusion the material surface undergoes considerably less oxidation. In the present work, results of the characterization by differential scanning calorimetry, low-temperature x-ray powder diffraction, and three-point bending and free recovery ASTM F2082-06 tests of the samples after hot direct extrusion and heat treatment are presented. The obtained alloy after hot direct extrusion exhibits desired shape memory effect. The phase transformations during cooling and heating cycle occur with the presence of the R phase. The range of the characteristic temperatures for the obtained material gives possibility for further medical applications. After annealing at 400 and 500 °C, the characteristic temperatures shift to higher values.

  5. Initial oxidation of pure and K doped NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Tollefsen, H.; Raaen, S.

    2009-06-01

    Initial oxidation of pure and K doped nitinol has been studied by photoelectron spectroscopy. The composition of the TiOx layer that forms on the surface is found to depend on the temperature during oxidation. The oxidation at high temperatures results in enhanced formation of lower oxides, whereas TiO2 predominates for oxidation at lower temperatures, e.g., 70 °C. Submonolayer coverage of K on NiTi enhances the formation of TiO2 on the expense of lower oxides, which is of consequence for formation of a protective oxide layer and biocompatibility. Oxidation in the martensitic phase was found to be independent of temperature for temperatures between -40 and 10 °C, whereas in the austenitic phase the oxide growth is thermally activated.

  6. Shape memory and transformation behavior of high strength 60NiTi in compression

    NASA Astrophysics Data System (ADS)

    Kaya, I.

    2016-12-01

    This study investigates the transformation behavior of highly Ni-rich 60NiTi alloys after aging at 600 °C for 3 h. After 600 °C-3h aging, R-phase disappeared and alloy transformed in one step. The latent heats of austenite to martensite and martensite to austenite transformations were 13 Jg-1 and 16.4 Jg-1, respectively, for 600 °C-3h aged alloy. The elastic strain energy of 0.75 Jg-1 was obtained in aged alloy. The maximum recoverable transformation strain of 1.7% is obtained under 500 MPa in compression. The superelastic behavior was observed accompanied with a recoverable strain of 1.4%, even high stress level of 1000 MPa is applied.

  7. Influence of NiTi alloy on the root canal shaping capabilities of the ProTaper Universal and ProTaper Gold rotary instrument systems

    PubMed Central

    DUQUE, Jussaro Alves; VIVAN, Rodrigo Ricci; CAVENAGO, Bruno Cavalini; AMOROSO-SILVA, Pablo Andrés; BERNARDES, Ricardo Affonso; de VASCONCELOS, Bruno Carvalho; DUARTE, Marco Antonio Hungaro

    2017-01-01

    Abstract Objective This study aimed to evaluate the influence of the NiTi wire in Conventional NiTi (ProTaper Universal PTU) and Controlled Memory NiTi (ProTaper Gold PTG) instrument systems on the quality of root canal preparation. Material and Methods Twelve mandibular molars with separate mesial canals were scanned using a high-definition microcomputed tomography system. The PTU and PTG instruments were used to shape twelve mesial canals each. The canals were scanned after preparation with F2 and F3 instruments of the PTU and PTG systems. The analyzed parameters included the remaining dentin thickness at the apical and cervical levels, root canal volume and untouched canal walls. Data was analyzed for statistical significance by the Friedman and Dunn’s tests. For the comparison of data between groups, the Mann-Whitney test was used. Results In the pre-operative analysis, there were no statistically significant differences between the groups in terms of the area and volume of root canals (P>.05). There was also no statistically significant difference between the systems with respect to root canal volume after use of the F2 and F3 instruments. There was no statistical difference in the dentin thickness at the first apical level between, before and after instrumentation for both systems. At the 3 cervical levels, the PTG maintained centralization of the preparation on the transition between the F2 and F3 instruments, which did not occur with the PTU. Conclusion The Conventional NiTi (PTU) and Controlled Memory NiTi (PTG) instruments displayed comparable capabilities for shaping the straight mesial root canals of mandibular molars, although the PTG was better than the PTU at maintaining the centralization of the shape in the cervical portion. PMID:28198973

  8. Treatment of Nonunion of Scaphoid Waist with Ni-Ti Shape-Memory Alloy Connector and Iliac Bone Graft

    NASA Astrophysics Data System (ADS)

    Cao, Lie-Hu; Xu, Shuo-Gui; Wu, Ya-Le; Zhang, Chun-Cai

    2011-07-01

    After fracture, the unique anatomy and blood supply of the scaphoid itself predisposes to nonunion. Scaphoid nonunion presents a formidable challenge to surgeons because of the difficulties for fixation, and the high failure rate after treatment. The Ni-Ti shape-memory alloy can provide compressive stress at the nonunion site, which is the key point for bone healing. Hence, we designed a shape-memory bone connector named arched shape-memory connector (ASC). We conducted a retrospective study looking at the union rate and complications and correlating the outcome of treatment with this device. The study reviewed a cohort of six consecutive patients presenting with scaphoid waist nonunion, who were treated with ASC and iliac cancellous bone grafting at our center from August 2002 to December 2007. The patients with nonunion achieved a 100% union rate. All the patients who achieved union had good pain relief and improved function. Our study demonstrates that scaphoid waist nonunions can be successfully treated by ASC and iliac bone grafting.

  9. Surface XPS characterization of NiTi shape memory alloy after advanced oxidation processes in UV/H 2O 2 photocatalytic system

    NASA Astrophysics Data System (ADS)

    Wang, R. M.; Chu, C. L.; Hu, T.; Dong, Y. S.; Guo, C.; Sheng, X. B.; Lin, P. H.; Chung, C. Y.; Chu, P. K.

    2007-08-01

    Surface structure of NiTi shape memory alloy (SMA) was modified by advanced oxidation processes (AOP) in an ultraviolet (UV)/H 2O 2 photocatalytic system, and then systematically characterized with x-ray photoelectron spectroscopy (XPS). It is found that the AOP in UV/H 2O 2 photocatalytic system leads to formation of titanium oxides film on NiTi substrate. Depth profiles of O, Ni and Ti show such a film possesses a graded interface structure to NiTi substrate and there is no intermediate Ni-rich layer like that produced in conventional high temperature oxidation. Except TiO 2 phase, some titanium suboxides (TiO, Ti 2O 3) may also exist in the titanium oxides film. Oxygen mainly presents in metal oxides and some chemisorbed water and OH - are found in titanium oxides film. Ni nearly reaches zero on the upper surface and relatively depleted in the whole titanium oxides film. The work indicates the AOP in UV/H 2O 2 photocatalytic system is a promising way to favor the widespread application of biomedical NiTi SMA by improving its biocompatibility.

  10. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy.

    PubMed

    Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E

    2014-12-01

    The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.

  11. Fundamental Development on Utilizing the R-phase Transformation in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiebin; Kustov, Sergey; Verlinden, Bert; Van Humbeeck, Jan

    2015-06-01

    In near equiatomic NiTi alloys, the reversible thermoelastic transformation between B2-structured austenite phase and the R-phase is attracting increasing interest for practical applications. However, the following two issues limit the widespread utilization of the R-phase transformation: (1) there is no effective approach to control the R-phase transformation temperatures; (2) it is not easy to largely separate the temperature domain of the R-phase and the B19' martensite phase transformation, especially in the presence of an external force. This article reviews concisely the work of the present authors on solving the above two problems. The effect of grain size on the aging microstructure and related transformation behavior is first discussed. Inspired by these findings, an approach to solve the above two problems has been developed by introducing nanoscaled Ni4Ti3 precipitates in the samples with micron-sized grains. The performance of alloys associated with the R-phase transformation, which shows controllable transformation temperatures, is summarized.

  12. On the Transformation Behavior of NiTi Shape-Memory Alloy Produced by SLM

    NASA Astrophysics Data System (ADS)

    Speirs, Mathew; Wang, X.; Van Baelen, S.; Ahadi, A.; Dadbakhsh, S.; Kruth, J.-P.; Van Humbeeck, J.

    2016-12-01

    Selective laser melting has been applied as a production technique of nickel titanium (NiTi) parts. In this study, the scanning parameters and atmosphere control used during production were varied to assess the effects on the final component transformation criteria. Two production runs were completed: one in a high ( 1800 ppm O2) and one in a low-oxygen ( 220 ppm O2) environment. Further solution treatment was applied to analyze precipitation effects. It was found that the transformation temperature varies greatly even at identical energy densities highlighting the need for further in-depth investigations. In this respect, it was observed that oxidation was the dominating factor, increased with higher laser power adapted to higher scanning velocity. Once the atmospheric oxygen content was lowered from 1800 to about 220 ppm, a much smaller variation of transformation temperatures was obtained. In addition to oxidation, other contributing factors, such as nickel depletion (via evaporation during processing) as well as thermal stresses and textures, are further discussed and/or postulated. These results demonstrated the importance of processing and material conditions such as O2 content, powder composition, and laser scanning parameters. These parameters should be precisely controlled to reach desired transformation criteria for functional components made by SLM.

  13. Experimental Study of the Biaxial Cyclic Behavior of Thin-Wall Tubes of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Wang, X. M.; Zhou, Q. T.; Liu, H.; Deng, C. H.; Yue, Z. F.

    2012-11-01

    Combined torsion-tension cycling experiments were performed on thin-wall tubes (with thickness/radius ratio of 1:20, similar to that found for stents) of nearly equiatomic NiTi shape memory alloys (SMAs). Experiments were controlled by axial displacement and torsional angle with step loading involving torsional loading to a maximum strain, followed by tensile loading, and reverse-order unloading. The superelasticity of the material is confirmed by pure torsion and tension experiments at the test temperature. The evolution of equivalent stress-strain curves as well as the separated tensile and torsional stress-strain curves during cycling is analyzed. Results show that the equivalent stress increases greatly with a small amount of applied axial strain, and the equivalent stress-strain curves have negative slopes in the phase transformation region. The shear stress drops when the torsional strain is maintained at its maximum value and the tensile strain is increased. The shear stress increases with decreasing tensile strain, but it cannot recover to the original value after the complete unloading of the tensile strain. Attention is also paid to dissipated energy density and characteristic stress evolutions during cycling.

  14. Stress-Induced Martensite in Front of Crack Tips in NiTi Shape Memory Alloys: Modeling Versus Experiments

    NASA Astrophysics Data System (ADS)

    Maletta, C.; Young, M. L.

    2011-07-01

    NiTi-based shape memory alloys (SMAs) exhibit an unusual stress distribution at the crack tip as compared to common engineering materials, due to a stress-induced martensitic transformation resulting from highly localized stresses. Understanding the fracture mechanics of NiTi-based SMAs is critical to many of their applications. Here, we develop an analytical model, which predicts the boundaries of the transformation region in the crack tip vicinity of NiTi-based SMAs. The proposed model is based on a recent analytical approach which uses modified linear elastic fracture mechanics concepts to predict the crack tip stress distribution and transformation region in SMAs but, unfortunately, it applies only to the plane stress condition. To overcome this limitation, the proposed model accounts for stress triaxiality, which plays an important role in restricting crack tip plastic deformations in common ductile metals as well as the stress-induced martensite in NiTi SMAs. The effects of triaxial stress at the crack tip are taken into account by including a new parameter, the transformation constraint factor, which is based on the plastic constraint factor of elasto-plastic materials. The predictions of the model are compared with synchrotron x-ray micro-diffraction observations and satisfactory agreement is observed between the two results. Finally, the evolution of crack tip transformation boundaries during fracture tests of miniature compact tension specimens is predicted and the effects of applied load and crack length are discussed.

  15. Constitutive modeling of tension-torsion coupling and tension-compression asymmetry in NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Mehrabi, Reza; Kadkhodaei, Mahmoud; Elahinia, Mohammad

    2014-07-01

    A three-dimensional phenomenological model based on microplane theory is extended to capture the coupling effects between tension and torsion in complex multiaxial loadings. Inelastic strain in a microplane approach is a component of transformation strain and anisotropic strain. Since the anisotropy effect is induced during martensitic transformation, anisotropic strain is defined as a function of transformation strain. Out-of-plane strain is induced in simple tension and pure torsion in free-end conditions. Anisotropy tensor is experimentally extracted and is used in the proposed model to predict the behavior in multiaxial loading. The ability of this extended microplane model to predict the tension-torsion coupling effects as well as the induced transformation anisotropic behavior of NiTi shape memory alloys is demonstrated. In addition, the microplane model is modified to capture the asymmetric behavior in tension and compression during uniaxial and multiaxial loadings. To this end, numerical correlations between the results of the modified microplane model are compared with experimental results to demonstrate the validity of the extended model.

  16. The Effect of Active Phase of the Work Material on Machining Performance of a NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kaynak, Yusuf; Karaca, Haluk E.; Noebe, Ronald D.; Jawahir, I. S.

    2015-06-01

    Poor machinability with conventional machining processes is a major shortcoming that limits the manufacture of NiTi components. To better understand the effects of phase state on the machining performance of NiTi alloys, cutting temperature, tool-wear behavior, cutting force components, tool-chip contact length, chip thickness, and machined surface quality data were generated from a NiTi alloy using precooled cryogenic, dry, minimum quantity lubrication (MQL), and preheated machining conditions. Findings reveal that machining NiTi in the martensite phase, which was achieved through precooled cryogenic machining, profoundly improved the machining performance by reducing cutting force components, notch wear, and surface roughness. Machining in the austenite state, achieved through preheating, did not provide any benefit over dry and MQL machining, and these processes were, in general, inferior to cryogenic machining in terms of machining performance, particularly at higher cutting speeds.

  17. (Ti, O)/Ti and (Ti, O, N)/Ti composite coatings fabricated via PIIID for the medical application of NiTi shape memory alloy.

    PubMed

    Sun, Tao; Wang, Lang-Ping; Wang, Min

    2011-02-01

    In this investigation, the plasma immersion ion implantation and deposition (PIIID) technique was used to fabricate (Ti, O)/Ti or (Ti, O, N)/Ti coatings on a NiTi shape memory alloy (SMA, 50.8 at.% Ni) to improve its corrosion, wear resistance, and bioactivity. After coating fabrication, the structure and properties of composite coatings were studied, and the coated and uncoated NiTi SMA samples were compared with each other. Scanning electron microscopic (SEM) examination of coating surfaces and cross-sections showed that (Ti, O)/Ti and (Ti, O, N)/Ti composite coatings were dense and uniform, having thickness values of 1.16 ± 0.08 μm and 0.95 ± 0.06 μm, respectively. X-ray diffraction (XRD) results revealed that there were no diffraction peaks corresponding to TiO(2) or TiN for (Ti, O)/Ti and (Ti, O, N)/Ti composite coatings, suggesting that after the PIIID treatment, TiO(2) and TiN were amorphous or nanosized in the coatings. Energy dispersive X-ray (EDX) analysis indicated that the interface between the coating and NiTi SMA substrate was gradual rather than sharp. In addition, EDX elemental mapping of coating cross-sections showed that Ni was depleted from the surface. Differential scanning calorimetry (DSC) curves revealed that the shape memory ability of NiTi SMA was not degraded by the PIIID treatment. The width of wear tracks on (Ti, O, N)/Ti coated NiTi SMA samples was reduced 6.5-fold, in comparison with that on uncoated samples. The corrosion potential (E(corr) ) was improved from -466.20 ± 37.82 mV for uncoated samples to 125.50 ± 21.49 mV and -185.40 ± 37.05 mV for (Ti, O)/Ti coated and (Ti, O, N)/Ti coated samples, respectively. Both types of coatings facilitated bone-like apatite formation on the surface of NiTi SMA in simulated body fluid (SBF), indicating their in vitro bioactivity.

  18. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  19. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    SciTech Connect

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-20

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  20. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    NASA Astrophysics Data System (ADS)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-01

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper. A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  1. Twinning-Induced Elasticity in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Birk, Thorsten; Biswas, Somjeet; Frenzel, Jan; Eggeler, Gunther

    2016-06-01

    Pseudoelasticity (PE) in shape memory alloys relies on the formation of stress-induced martensite during loading and on the reverse transformation during unloading. PE yields reversible strains of up to 8 % and is applied in applications such as medical implants, flexible eye glass frames, damping elements, and others. Unfortunately, PE shows a strong temperature dependence and thus can only be exploited within a relatively narrow temperature window. The present work focuses on a related process, which we refer to as twinning-induced elasticity (TIE). It involves the growth and shrinkage of martensite variants which are stabilized by dislocations, which are introduced by appropriate cold work. TIE yields reversible strains of the order of 3 %. The TIE effect does not suffer from the strong temperature dependence of PE. The weak temperature dependence of mechanical TIE properties makes TIE attractive for applications where temperature fluctuations are large. In the present work, we study the TIE effect focusing on Ni50Ti50 shape memory alloy wires. The degree of plastic pre-deformation of the initial material represents a key parameter of the ingot metallurgy processing route. It governs the exploitable recoverable strain, the apparent Young's modulus, and the widths of the mechanical hysteresis. Dynamic mechanical analysis is used to study the effects of pre-deformation on elementary microstructural processes which govern TIE.

  2. Fretting behavior of NiTi shape memory alloy against long bone in the imitated human physiological solution

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Xu, Y. T.; Xia, T. D.; Da, G. Z.

    2007-07-01

    The environment of orthopaedic implants sometimes induces vibrations at the contact of the modular prostheses components. In this paper the fretting behavior of NiTi SMAs against human bones in the imitated human physiological solution was studied at various displacement amplitudes and Ph value. Surface micrograph after fretting was observed by MEF3 microscope. Appearance of fretting scar was measured by 2206 roughness tester. The result shows that the friction coefficient between the bone and NiTi SMAs pairs declined due to the lubrication effect of Hank's solution, and which increased when Ph value of fluid was not 7.2 due to the corrosion. So the friction coefficient at acid and alkali Hank's solution is higher than those at the neutral solution and ambient air condition. Generally speaking, the friction coefficient between the bone and NiTi SMAs tend to be stable with the increasing amplitude at all test conditions. It is because that the surface was oxidized to restrain the forming of wear debris and the further development of fretting scars. Although the length and width of the wear scars in simulation body fluid are smaller than that at ambient air condition, the surface of NiTi SMAs damaged is characterized by deep scratches with debris particles within the contact area. Fretting regime of NiTi/bones pairs exhibits the mixed regime at ambient air condition and the slip regime in the Hank's solution.

  3. Development and Verification of Sputtered Thin-Film Nickel-Titanium (NiTi) Shape Memory Alloy (SMA)

    DTIC Science & Technology

    2015-08-01

    the films were sputtered onto a sacrificial 2 photoresist layer, released in acetone , and then rinsed with deionized water (DI) and dried...prepared by sputtering onto photoresist and lifting off the NiTi in acetone . Fig. 2 shows a DSC scan for the equiatomic Ni50Ti50. Of the compositions

  4. X-ray Diffraction Investigations of Shape Memory NiTi Wire

    NASA Astrophysics Data System (ADS)

    Honarvar, Mohammad; Konh, Bardia; Podder, Tarun K.; Dicker, Adam P.; Yu, Yan; Hutapea, Parsaoran

    2015-08-01

    Outstanding properties of nitinol, known as shape memory and superelasticity, make them suitable alternatives in several biomedical, aerospace, and civil applications. For instance, nitinol wires have been used as the actuator components in many innovative medical devices aiming to make surgical tasks less invasive and more efficient. In most of these applications, it is desired to have a consistent strain response of nitinol wires; therefore, it is necessary to investigate the internal phase transformations from microstructural point of view. In this study, the effect of influencing factors such as biased stress during thermal cycle, the maximum temperature wires experienced during heating part of thermal cycle, and also wire diameters on the amount of unrecovered strain occurred between the first and the second thermal cycles has been investigated. The generation of different phase compositions in the same thermomechanical condition for different wire diameters has been discussed using x-ray diffraction (XRD) method. The location and intensity of characteristic peaks were studied prior and after the loading cycles. It was observed that nitinol wires of diameters less than 0.19 mm exhibit unrecovered strain while heated to the range of 70-80 °C in a thermal cycle, whereas no unrecovered strain was found in wires with larger diameter. The observation was supported by the XRD patterns where the formation of R-phase instead of martensite was shown in wire diameters of less than 0.19 mm after cooling back to room temperature.

  5. Calcium Phosphate Growth at Electropolished Titanium Surfaces

    PubMed Central

    Ajami, Elnaz; Aguey-Zinsou, Kondo-Francois

    2012-01-01

    This work investigated the ability of electropolished Ti surface to induce Hydroxyapatite (HA) nucleation and growth in vitro via a biomimetic method in Simulated Body Fluid (SBF). The HA induction ability of Ti surface upon electropolishing was compared to that of Ti substrates modified with common chemical methods including alkali, acidic and hydrogen peroxide treatments. Our results revealed the excellent ability of electropolished Ti surfaces in inducing the formation of bone-like HA at the Ti/SBF interface. The chemical composition, crystallinity and thickness of the HA coating obtained on the electropolished Ti surface was found to be comparable to that achieved on the surface of alkali treated Ti substrate, one of the most effective and popular chemical treatments. The surface characteristics of electropolished Ti contributing to HA growth were discussed thoroughly. PMID:24955535

  6. Nickel release behavior and surface characteristics of porous NiTi shape memory alloy modified by different chemical processes.

    PubMed

    Wu, Shuilin; Liu, Xiangmei; Chan, Y L; Chu, Paul K; Chung, C Y; Chu, Chenglin; Yeung, Kelvin W K; Lu, W W; Cheung, Kenneth M C; Luk, K D K

    2009-05-01

    As a non-line-of-sight surface modification technique, chemical treatment is an effective method to treat porous NiTi with complex surface morphologies and large exposed areas due to its liquidity and low temperature. In the work described here, three different chemical processes are used to treat porous NiTi alloys. Our results show that H(2)O(2) treatment, NaOH treatment, and H(2)O(2) pre-treatment plus subsequent NaOH treatment can mitigate leaching of nickel from the alloy. The porous NiTi samples modified by the two latter processes favor deposition of a layer composed of Ca and P due to the formation of bioactive Na(2)TiO(3) on the surface. Among the three processes, H(2)O(2) pre-treatment plus subsequent NaOH modification is the most effective in suppressing nickel release. Small area X-ray photoelectron spectroscopy reveals that the surfaces treated by different chemical processes have different structures and compositions. The sample modified by the H(2)O(2) treatment is composed of rough TiO(2) on the outer surface and an oxide transition layer underneath whereas the sample treated by NaOH comprises a surface layer of titanium oxide and Na(2)TiO(3) together with a transition layer. The sample processed by the H(2)O(2) and NaOH treatment has a pure Na(2)TiO(3) layer on the surface and a transition layer underneath. These results help to elucidate the different nickel release behavior and bioactivity of porous NiTi alloys processed by different methods.

  7. Shape Memory Response of Polycrystalline NiTi12.5Hf Alloy: Transformation at Small Scales

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Patriarca, L.; Li, G.; Sehitoglu, H.; Soejima, Y.; Ito, T.; Nishida, M.

    2015-09-01

    The transformation behavior of NiTiHf alloys is intriguing. In NiTiHf alloys, the experimental transformation strains have been reported to be considerably lower than theoretical transformation strains. In this study, the transformation strain is established with very careful strain measurements at small scales in isobaric and isothermal experiments. Because of the heterogeneity of strain distributions, the results depend on the sub-region considered. The measured local transformation strain can be as high as 6.0 % in compression which is in very good agreement with theoretical calculations for NiTi12.5Hf. The comprehension of NiTi12.5Hf alloy was furthered upon extensive microstructural characterization including high-resolution electron microscopy, establishing the volume fractions of precipitates and twin type. The volume fraction of precipitates is similar to that of Ni-rich binary NiTi alloys. Meanwhile, the twinning modes in the martensite are compound and Type I twins which were used in the theoretical calculations of transformation strains. This material also generates a high work output and represents a foundation for understanding higher Hf compositions.

  8. A Review of the Various Surface Treatments of NiTi Instruments.

    PubMed

    Mohammadi, Zahed; Soltani, Mohammad Karim; Shalavi, Sousan; Asgary, Saeed

    2014-01-01

    Since the introduction of engine-driven nickel-titanium (NiTi) instruments, attempts have been made to minimize or eliminate their inherent defects, increase their surface hardness/flexibility and also improve their resistance to cyclic fatigue and cutting efficiency. The various strategies of enhancing instrument surface include ion implantation, thermal nitridation, cryogenic treatment and electropolishing. The purpose of this paper was to review the metallurgy and crystal characteristics of NiTi alloy and to present a general over review of the published articles on surface treatment of NiTi endodontic instruments.

  9. A Review of the Various Surface Treatments of NiTi Instruments

    PubMed Central

    Mohammadi, Zahed; Soltani, Mohammad Karim; Shalavi, Sousan; Asgary, Saeed

    2014-01-01

    Since the introduction of engine-driven nickel-titanium (NiTi) instruments, attempts have been made to minimize or eliminate their inherent defects, increase their surface hardness/flexibility and also improve their resistance to cyclic fatigue and cutting efficiency. The various strategies of enhancing instrument surface include ion implantation, thermal nitridation, cryogenic treatment and electropolishing. The purpose of this paper was to review the metallurgy and crystal characteristics of NiTi alloy and to present a general over review of the published articles on surface treatment of NiTi endodontic instruments. PMID:25386201

  10. Anomalous transport and thermal properties of NiTi and with Cu and Fe-doped shape memory alloys near the martensitic transition

    NASA Astrophysics Data System (ADS)

    Ingale, B. D.; Wei, W. C.; Chang, P. C.; Kuo, Y. K.; Wu, S. K.

    2011-12-01

    The temperature dependent electrical and thermal properties including electrical resistivity (ρ), specific heat (CP), Seebeck coefficient (S) and thermal conductivity (κ) have been studied for the polycrystalline NiTi, Ti50Ni40Cu10 and Ti50Ni48.5Fe1.5 shape memory alloys from 10-400 K. It was found that the electrical resistivity and Seebeck coefficient exhibit a typical metallic behavior throughout the temperature range investigated. A significant thermal hysteresis between warming and cooling was observed in all the three alloys which is a manifestation of the first-order nature of martensitic transitions. Our results indicate the presence of two stage martnesite transformations, i.e. B2 → B19 → B19' for Ti50Ni40Cu10 while B2 → R → B19' for NiTi and Ti50Ni48.5Fe1.5 alloys. An analysis on the measured thermal conductivity reveals that the anomalous feature in κ at the B19 ↔ B19' transformation for Ti50Ni40Cu10 is essentially attributed to the electronic contribution, while an enormously large peak in warming run observed at the B19 → B2 transformation is due to the change in lattice thermal conductivity.

  11. Effect of the M(s) transformation temperature on the wear behaviour of NiTi shape memory alloys for articular prosthesis.

    PubMed

    Peña, J; Solano, E; Mendoza, A; Casals, J; Planell, J A; Gil, F J

    2005-01-01

    The main objective of this work has been the characterisation and correlation of the wear behaviour of the NiTi shape memory alloys in their different phases. The weight losses for the different alloys in function of the present phase, and of the M(s) transformation temperature are studied. Adhesive wear tests, Pin-on-Disk, according to the ASTM-G99 standard have been carried out. The thermoelastic martensitic transformations that cause the super-elastic effect, the reorientation and coalescence of martensitic plates and the damping effect promotes a high ability to accommodate large deformations without generating permanent damages that causes the wear. The resulting plastic deformation may be accumulated during wear process without generating fracture. The results show that the wear resistance is mainly dependent of the M(s) transformation temperature for both alloys. For the NiTi alloys also the Ni atomic percentage and the hardness of the alloys are important parameters in the wear behavior.

  12. Observation on the transformation domains of super-elastic NiTi shape memory alloy and their evolutions during cyclic loading

    NASA Astrophysics Data System (ADS)

    Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao

    2016-04-01

    The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.

  13. THE EFFECT OF REPEATED COMPRESSIVE DYNAMIC LOADING ON THE STRESS-INDUCED MARTENSITIC TRANSFORMATION IN NiTi SHAPE MEMORY ALLOYS

    SciTech Connect

    D. MILLER; W. THISSELL; ET AL

    2000-08-01

    It has been shown that quasi-static, cyclic, isothermal mechanical loading influences the mechanical response of the stress-induced martensitic transformation in fully annealed NiTi Shape Memory Alloys (SMAs). As the cycle number increases, hardening of the stress-strain response during the martensitic phase transformation is seen along with a decrease in the threshold stress for initiation of stress-induced martensite. Also, the amount of plastic strain and detwinned martensitic strain decreases as the cycle number increases. However, NiTi SMAs have not been experimentally explored under high compressive strain rates. This research explores the cyclic near-adiabatic stress-induced martensitic loading using a Split Hopkinskin Pressure Bar (SHPB). The results of the dynamic loading tests are presented with emphasis on the loading rate, stress-strain response, specimen temperature and post-test microstructural evaluation. The results from the high strain rate tests show similarities with the quasi-static results in the hardening of the stress-strain response and shifting of the threshold stress for initiation of stress-induced martensite.

  14. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires.

    PubMed

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Frotscher, Matthias; Eggeler, Gunther

    2013-03-01

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and∕or in situ measurements. The versatility of the combined electrochemical∕mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  15. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  16. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    SciTech Connect

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Eggeler, Gunther; Frotscher, Matthias

    2013-03-15

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  17. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  18. Thermomechanical model for evaluation of the superelastic response of NiTi shape memory alloys under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Soul, H.; Yawny, A.

    2013-03-01

    The development of a 1D thermomechanical model for simulating the response of uniaxial superelastic NiTi elements is described. The formulation of the model includes consideration of the dependence of the critical stresses for forward and reverse transformation on the temperature, the occurrence of strain rate effects due to self-heating/cooling associated with the latent heat of the stress induced martensitic transformation, the localized character of the stress induced transformation in superelastic NiTi wires and ribbons, the possibility of nucleation events during both the forward and reverse transformations and the occurrence of non-recoverable residual strains. Numerical simulations allowed rationalization of different features commonly observed in experiments and their dependence on strain rate and environment conditions. Comparisons of numerical results with experimental cycles obtained in the present work and also with data published in the literature indicate the potentiality of the developed model as a design tool for simulating the response of superelastic materials subjected to realistic service conditions.

  19. Deployment shock attenuation of a solar array tape hinge by means of the Martensite detwinning of NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Ho; Jeong, Ju-Won; Kim, Young-Jin; Lee, Jung-Ju

    2016-03-01

    This paper presents a new tape hinge for attenuating the deployment shock of a satellite solar array. This hinge uses the Martensite detwinning of Shape Memory Alloy (SMA). To attenuate the deployment shock, a NiTi SMA strip is assembled between two curved steel strips. The attenuation performance of the hinge is analyzed using a SMA detwinning constitutive equation. A prototype of the hinge is manufactured and its characteristics are measured in a bending test and in a deployment test. Finally, the deployment performance of the prototype hinge is investigated on a satellite model. It is shown that the new SMA damped tape hinge can effectively minimize the deployment shock and dynamic perturbation while also maintaining suitable deployment performance.

  20. Investigations on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Shiva, S.; Palani, I. A.; Mishra, S. K.; Paul, C. P.; Kukreja, L. M.

    2015-06-01

    Among the various shaped memory alloys (SMA), nitinol (Ni-Ti alloy) finds applications in automotive, aerospace, biomedical and robotics. The conventional route of fabrication of SMA has several limitations, like formation of stable secondary phases, fabrication of simple geometries, etc. This paper reports a novel method of fabricating SMA using a laser based additive manufacturing technique. Three different compositions of Ni and Ti powders (Ni-45% Ti-55%; Ni-50% Ti-50%; Ni-55% Ti45%) were pre-mixed using ball-milling and laser based additive manufacturing system was employed to fabricate circular rings. The material properties of fabricated rings were evaluated using Scanning Electron Microscopy (SEM), Differential scanning calorimeter (DSC), X-ray diffraction (XRD) system and micro-hardness test. All the characterized results showed that SMA could be manufactured using the laser based additive manufacturing process. The properties of laser additive manufactured SMA (Ni-50% Ti-50%) were found to be close to that of conventionally processed SMA.

  1. In Situ Neutron Diffraction Study of NiTi-21Pt High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Gaydosh, D. J.; Noebe, R. D.; Qiu, S.; Vaidyanathan, R.

    2016-12-01

    In situ neutron diffraction was used to investigate the microstructural features of stoichiometric and Ti-rich NiTiPt high-temperature shape memory alloys with target compositions of Ni29Ti50Pt21 and Ni28.5Ti50.5Pt21 (in atomic percent), respectively. The alloys' isothermal and thermomechanical properties (i.e., moduli, thermal expansion, transformation strains, and dimensional stability) were correlated to the lattice strains, volume-averaged elastic moduli, and textures as determined by neutron diffraction. In addition, the unique aspects of this technique when applied to martensitic transformations in shape memory alloys are highlighted throughout the paper.

  2. Electrochemical and corrosion behaviors of sputtered TiNi shape memory films

    NASA Astrophysics Data System (ADS)

    Li, K.; Huang, X.; Zhao, Z. S.; Li, Y.; Fu, Y. Q.

    2016-03-01

    Electrochemical and corrosion behaviors of TiNi-based shape memory thin films were explored using electrochemical impedance spectroscopy (EIS) and polarization methods in phosphate buffered saline solutions at 37 °C. Compared with those of electro-polished and passivated bulk NiTi shape memory alloys, the break-down potentials of the sputter-deposited amorphous TiNi films were much higher. After crystallization, the break-down potentials of the TiNi films were comparable with that of the bulk NiTi shape memory alloy. Additionally, variation of composition of the TiNi films showed little influence on their corrosion behavior. The EIS data were fitted using a parallel resistance-capacitance circuit associated with passive oxide layer on the tested samples. The thickness of the oxide layer for the TiNi thin films was found much thinner than that of bulk NiTi shape memory alloy. During electrochemical testing, the oxide thickness of the bulk alloy reached its maximum at a voltage of 0.6-0.8 V, whereas those of TiNi films were increased continuously up to a voltage of 1.2 V.

  3. Surface Treatments of Nb by Buffered Electropolishing

    SciTech Connect

    Wu, Andy T.; Rimmer, Robert A.; Ciovati, Gianluigi; Manus, Robert L.; Reece, Charles E.; Williams, J. S.; Eozénou, F.; Jin, S.; Wang, E.

    2009-11-01

    Buffered electropolishing (BEP) is a Nb surface treatment technique developed at Jefferson Lab1. Experimental results obtained from flat Nb samples show2-4 that BEP can produce a surface finish much smoother than that produced by the conventional electropolishing (EP), while Nb removal rate can be as high as 4.67 μm/min. This new technique has been applied to the treatments of Nb SRF single cell cavity employing a vertical polishing system5 constructed at JLab as well as a horizontal polishing system at CEA Saclay. Preliminary results show that the accelerating gradient can reach 32 MV/m for a large grain cavity and 26.7 MV/m for a regular grain cavity. In this presentation, the latest progresses from the international collaboration between Peking University, CEA Saclay, and JLab on BEP will be summarized.

  4. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  5. Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi

    DOE PAGES

    Benafan, O.; Padula, S. A.; Noebe, R. D.; ...

    2012-11-01

    Deformation of a B19' martensitic, polycrystallineNi49.9Ti50.1 (at. %) shape memoryalloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situneutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50)M and (010)M variants, (201¯)B19' deformation twinning, and dislocationmore » activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni₄₉.₉Ti₅₀.₁.« less

  6. NiTi Alloy Negator Springs for Long-Stroke Constant-Force Shape Memory Actuators: Modeling, Simulation and Testing

    NASA Astrophysics Data System (ADS)

    Spaggiari, Andrea; Dragoni, Eugenio; Tuissi, Ausonio

    2014-07-01

    This work aims at the experimental characterization and modeling validation of shape memory alloy (SMA) Negator springs. According to the classic engineering books on springs, a Negator spring is a spiral spring made of strip of metal wound on the flat with an inherent curvature such that, in repose, each coil wraps tightly on its inner neighbor. The main feature of a Negator springs is the nearly constant force displacement behavior in the unwinding of the strip. Moreover the stroke is very long, theoretically infinite, as it depends only on the length of the initial strip. A Negator spring made in SMA is built and experimentally tested to demonstrate the feasibility of this actuator. The shape memory Negator spring behavior can be modeled with an analytical procedure, which is in good agreement with the experimental test and can be used for design purposes. In both cases, the material is modeled as elastic in austenitic range, while an exponential continuum law is used to describe the martensitic behavior. The experimental results confirms the applicability of this kind of geometry to the shape memory alloy actuators, and the analytical model is confirmed to be a powerful design tool to dimension and predict the spring behavior both in martensitic and austenitic range.

  7. Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy

    NASA Astrophysics Data System (ADS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Bigelow, G.; Gaydosh, D.

    2015-12-01

    The work output capacity of the two-way shape memory effect (TWSME) in a Ni50.3Ti29.7Hf20 (at%) high-temperature shape memory alloy (HTSMA) was investigated and compared to that of binary Ni49.9Ti50.1 (at%). TWSME was induced through a training procedure of 100 thermomechanical cycles under different tensile stresses. It was observed that TWSME in as-extruded and trained Ni50.3Ti29.7Hf20 could produce 0.7% strain against a compressive stress of 100 MPa, corresponding to a maximum work output of 0.08 J g-1, compared to a maximum value of 0.06 J g-1 for binary NiTi. A peak aging heat treatment of 3 h at 550 °C, which previously has been shown to result in near-perfect functional stability in Ni50.3Ti29.7Hf20 during isobaric thermal cycling, did not improve the TWSME and actually resulted in a decrease in the magnitude and stability of the TWSME and its work output capacity. Nevertheless, the magnitude of TWSM behavior of Ni50.3Ti29.7Hf20, in the absence of an aging heat treatment, renders it an attractive candidate for high-temperature TWSM actuation.

  8. Macroscopic and Microstructural Aspects of the Transformation Behavior in a Polycrystalline NiTi Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane; Noebe, Ronald D.; Padula, Santo A., II; Lerch, Bradley A.; Bigelow, Glen S.; Gaydosh, Darrell J.; Garg, Anita; An, Ke; Vaidyanathan, Raj

    2013-01-01

    The mechanical and microstructural behavior of a polycrystalline Ni(49.9)Ti(50.1) (at.%) shape memory alloy was investigated as a function of temperature around the transformation regime. The bulk macroscopic responses, measured using ex situ tensile deformation and impulse excitation tests, were compared to the microstructural evolution captured using in situ neutron diffraction. The onset stress for inelastic deformation and dynamic Young's modulus were found to decrease with temperature, in the martensite regime, reaching a significant minimum at approximately 80 C followed by an increase in both properties, attributed to the martensite to austenite transformation. The initial decrease in material compliance during heating affected the ease with which martensite reorientation and detwinning could occur, ultimately impacting the stress for inelastic deformation prior to the start of the reverse transformation.

  9. Study of the Behavior of a Bell-Shaped Colonic Self-Expandable NiTi Stent under Peristaltic Movements

    PubMed Central

    Puértolas, José A.; López, Enrique

    2013-01-01

    Managing bowel obstruction produced by colon cancer requires an emergency intervention to patients usually in poor conditions, and it requires creating an intestinal stoma in most cases. Regardless of that the tumor may be resectable, a two-stage surgery is mandatory. To avoid these disadvantages, endoscopic placement of self-expanding stents has been introduced more than 10 years ago, as an alternative to relieve colonic obstruction. It can be used as a bridge to elective single-stage surgery avoiding a stoma or as a definitive palliative solution in patients with irresectable tumor or poor estimated survival. Stents must be capable of exerting an adequate radial pressure on the stenosed wall, keeping in mind that stent must not move or be crushed, guaranteeing an adequate lumen when affected by peristaltic waves. A finite element simulation of bell-shaped nitinol stent functionality has been done. Catheter introduction, releasing at position, and the effect of peristaltic wave were simulated. To check the reliability of the simulation, a clinical experimentation with porcine specimens was carried out. The stent presented a good deployment and flexibility. Stent behavior was excellent, expanding from the very narrow lumen corresponding to the maximum peristaltic pressure to the complete recovery of operative lumen when the pressure disappears. PMID:23841067

  10. Effects of Loading and Constraining Conditions on the Thermomechanical Fatigue Life of NiTi Shape Memory Wires

    NASA Astrophysics Data System (ADS)

    Scirè Mammano, G.; Dragoni, E.

    2014-07-01

    The availability of engineering strength data on shape memory alloys (SMAs) under cyclic thermal activation (thermomechanical fatigue) is central to the rational design of smart actuators based on these materials. Test results on SMAs under thermomechanical fatigue are scarce in the technical literature, and even the few data that are available are mainly limited to constant-stress loading. Since the SMA elements used within actuators are normally biased by elastic springs or by antagonist SMA elements, their stress states are far from being constant in operation. The mismatch between actual working conditions and laboratory settings leads to suboptimal designs and undermines the prediction of the actuator lifetime. This paper aims at bridging the gap between experiment and reality by completing an experimental campaign involving four fatigue test conditions, which cover most of the typical situations occurring in practice: constant stress, constant-strain, constant stress with limited maximum strain, and linear stress-strain variation with limited maximum strain. The results from the first three test settings, recovered from the previously published works, are critically reviewed and compared with the outcome of the newly performed tests under the fourth arrangement (linear stress-strain variation). General design recommendations emerging from the experimental data are put forward for engineering use.

  11. Comparative evaluation of shaping ability of different rotary NiTi instruments in curved canals using CBCT

    PubMed Central

    Arora, Anshul; Taneja, Sonali; Kumar, Mohit

    2014-01-01

    Aim: The aim of this study was to compare the canal transportation, canal centering ability, and time taken for preparation of curved root canals after instrumentation with ProFile GT Series X (GTX) files, Revo-S files, twisted files, and Mtwo files by using cone-beam computed tomography (CBCT). Materials and Methods: Forty mesiobuccal canals of mandibular molars with an angle of curvature ranging from 20 to 40 were divided according to the instrument used in canal preparation into four groups of 10 samples each: GTX (group I), Revo-S (group II), twisted file (group III), and Mtwo (group IV). The teeth were instrumented according to manufacturer's guidelines, with all groups being prepared to size 30, 0.06 taper master apical file. Canals were scanned using an i-CAT CBCT scanner (Imaging Science International, Hatfield, PA, USA) before and after preparation to evaluate the transportation and centering ratio at 3 mm, 5 mm, 7 mm, 9 mm, and 11 mm from the apex. The data collected were evaluated using one-way analysis of variance (ANOVA) with Tukey's honestly significant difference (HSD) test. Results: Twisted file system showed significantly least canal transportation and highest canal centering ability values as compared to GTX, Revo-S, and Mtwo file systems. Overall, GTX, Revo-S, and Mtwo showed comparable results with respect to canal transportation and centering ability. Conclusion: The innovative method of manufacturing the TF system resulted in superior shaping ability in curved canals, with the instruments remaining more centered and producing less canal transportation than GTX, Revo-S, and Mtwo file systems. PMID:24554858

  12. Utility of magneto-electropolished ternary nitinol alloys for blood contacting applications.

    PubMed

    Pulletikurthi, Chandan; Munroe, Norman; Stewart, Danique; Haider, Waseem; Amruthaluri, Sushma; Rokicki, Ryszard; Dugrot, Manuel; Ramaswamy, Sharan

    2015-10-01

    The thrombogenicity of a biomaterial is mainly dependent on its surface characteristics, which dictates its interactions with blood. Surface properties such as composition, roughness wettability, surface free energy, and morphology will affect an implant material's hemocompatibility. Additionally, in the realm of metallic biomaterials, the specific composition of the alloy and its surface treatment are important factors that will affect the surface properties. The utility of magneto-electropolished (MEP) ternary Nitinol alloys, NiTiTa, and NiTiCr as blood contacting materials was investigated. The hemcompatibility of these alloys were compared to mechanically polished (MP) metallic biomaterial counterparts. In vitro thrombogenicity tests revealed significantly less platelet adherence on ternary MEP Nitinol, especially MEP NiTi10Ta as compared to the MP metals (p < 0.05). The enhanced anti-platelet-adhesive property of MEP NiTi10Ta was in part, attributed to the Ta2 O5 component of the alloy. Furthermore, the formation of a dense and mixed hydrophobic oxide layer during MEP is believed to have inhibited the adhesion of negatively charged platelets. In conclusion, MEP ternary Nitinol alloys can potentially be utilized for blood-contacting devices where, complications resulting from thrombogenicity can be minimized.

  13. Electropolishing on small samples at Fermilab

    SciTech Connect

    Boffo, C.; Bauer, P.; Teid, T.; Geng, R.; /Cornell U., Phys. Dept.

    2005-07-01

    The electropolishing process (EP) is considered an essential step in the processing of high gradient SRF cavities. Studies on EP of small samples has been started at Fermilab as part of the SRF materials R&D program. A simple bench top setup was developed to understand the basic variables affecting the EP. In addition a setup for vertical EP of half cells, based on the Cornell design, was used and another one for dumbbells was designed and tested. Results and findings are reported.

  14. Electropolishing qualification program for PWR steam generator divider plates

    SciTech Connect

    Spalaris, C.N. )

    1990-09-01

    A program was conducted to establish electropolishing parameters for Inconel 600 plate and Inco 182 weld metal. Test parameters were chosen so as to define margins in the principal process variables, as a prerequisite for applying electropolishing to reactor components. The test program and evaluation of the results obtained are included in this report. 12 refs., 35 figs., 5 tabs.

  15. Thermo-Mechanical Response of Monolithic and NiTi Shape Memory Alloy Fiber Reinforced Sn-3.8Ag-0.7Cu Solder

    DTIC Science & Technology

    2005-09-01

    still exist from this high thermal mismatch deformation , resulting in large solder-joint stresses and strains and causing fatigue failure. The...life, but have not shown the needed improvements in thermo-mechanical fatigue life under strain - controlled conditions, which is a primary deformation ...A NiTi fiber will deform until it consists only of the correspondence variant (crystallographic orientation) that produces maximum strain . However

  16. Corrosion of NiTi Wires with Cracked Oxide Layer

    NASA Astrophysics Data System (ADS)

    Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr

    2014-07-01

    Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.

  17. The effects of plasma electrolytically oxidized NiTi on in vitro endothelialization.

    PubMed

    Huan, Z; Yu, H; Li, H; Ruiter, M S; Chang, J; Apachitei, I; Duszczyk, J; de Vries, C J M; Fratila-Apachitei, L E

    2016-05-01

    The role of biomaterials surface in controlling the interfacial biological events leading to implant integration is of key importance. In this study, the effects of NiTi surfaces treated by plasma electrolytic oxidation (PEO) on human umbilical vein endothelial cells (HUVECs) have been investigated. The changes in NiTi surface morphology and chemistry were assessed by SEM, XPS and cross-section TEM/EDX analyzes whereas the effects of the resultant surfaces on in vitro endothelialization and cell junction proteins have been evaluated by life/dead staining, SEM, cells counting, qPCR and immunofluorescence. The findings indicated that the PEO-treated NiTi, with a microporous morphology and oxide dominated surface chemistry, supports viability and proliferation of HUVECs. Numerous thin filopodia probing the microporous surface assisted cells attachment. In addition, claudin-5 and occludin have been upregulated and expression of vascular endothelial-cadherin was not suppressed on PEO-treated NiTi relative to the reference electropolished surfaces. The results of this study suggest that novel NiTi surfaces may be developed using the PEO process, which can be of benefit to atherosclerosis treatment.

  18. Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy.

    PubMed

    Chan, C W; Hussain, I; Waugh, D G; Lawrence, J; Man, H C

    2014-09-01

    The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by hemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology.

  19. A mechanistic study of copper electropolishing in phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Mansson, Andrew

    The microelectronics industry is using copper as the interconnect material for microchips. A study of copper electropolishing is important for the process development of a new, low downforce approach, which is being developed to replace chemical mechanical polishing (CMP) of the copper overburden. A promising technology is a combination of electropolishing with conventional CMP. Electropolishing of copper in phosphoric acid has been studied for, more than 70 years. Previous work has shown that the polishing rate, as measured by current density is directly related to the viscosity of the electrolyte. Also, the limiting species is water. In this study, a multidimensional design of experiments was performed to develop an in-depth model of copper electropolishing. Phosphoric acid was mixed with alcohols of different molecular weight and related viscosity to investigate how the solvents' properties affected polishing. The alcohols used were methanol, ethanol, isopropanol, butanol, ethylene glycol, and glycerol. The limiting current densities and electrochemical behavior of each solution was measured by potentiodynamic and potentiostatic experiments. Also, the kinematic viscosity and density were measured to determine the dynamic viscosity to investigate the relationship of current density and viscosity. Water, methanol, ethanol, and isopropanol solutions were also examined at 20°C to 60°C. Next, the relative percentage of dissociated phosphoric acid was measured by Raman spectroscopy for each polishing solution. Raman spectroscopy was also used to measure the relative dissociation of phosphoric acid inside the polishing film. Additionally, wafers were electropolished and electrochemical mechanically polished to investigate the effects of the different solvents, fluid flow, current, and potential. The results of these experiments have shown that the molecular mass and the ability of the solvent to dissociate phosphoric acid are the primary electrolyte properties that

  20. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part 2; Effect of Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This paper is the first report on the effect prior low temperature creep on the thermal cycling behavior of NiTi. The isothermal low temperature creep behavior of near-stoichiometric NiTi between 300 and 473 K was discussed in Part I. The effect of temperature cycling on its creep behavior is reported in the present paper (Part II). Temperature cycling tests were conducted between either 300 or 373 K and 473 K under a constant applied stress of either 250 or 350 MPa with hold times lasting at each temperature varying between 300 and 700 h. Each specimen was pre-crept either at 300 or at 473 K for several months under an identical applied stress as that used in the subsequent thermal cycling tests. Irrespective of the initial pre-crept microstructures, the specimens exhibited a considerable increase in strain with each thermal cycle so that the total strain continued to build-up to 15 to 20 percent after only 5 cycles. Creep strains were immeasurably small during the hold periods. It is demonstrated that the strains in the austenite and martensite are linearly correlated. Interestingly, the differential irrecoverable strain, in the material measured in either phase decreases with increasing number of cycles, similar to the well-known Manson-Coffin relation in low cycle fatigue. Both phases are shown to undergo strain hardening due to the development of residual stresses. Plots of true creep rate against absolute temperature showed distinct peaks and valleys during the cool-down and heat-up portions of the thermal cycles, respectively. Transformation temperatures determined from the creep data revealed that the austenitic start and finish temperatures were more sensitive to the pre-crept martensitic phase than to the pre-crept austenitic phase. The results are discussed in terms of a phenomenological model, where it is suggested that thermal cycling between the austenitic and martensitic phase temperatures or vice versa results in the deformation of the austenite and

  1. Porous NiTi surfaces for biomedical applications

    NASA Astrophysics Data System (ADS)

    Huan, Z.; Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J.

    2012-04-01

    In this study, the NiTi shape memory alloy was surface modified by plasma electrolytic oxidation (PEO) in Na3PO4 with the aim to produce porous NiTi surfaces for biomedical applications. The oxidation was performed potentiostatically and the characteristics of the resultant surfaces were compared with those obtained in NaAlO2/NaPO2H2 under similar conditions. Surfaces with sub-micron sized pores could be produced in Na3PO4 electrolyte at 300 V. The process was accompanied by intense gas evolution and enhanced thermal effects relative to the NaAlO2/NaPO2H2 electrolyte. The EDS analyses revealed the presence of O, Ti, P, Ni, and a Ni/Ti atomic ratio of 0.4 suggesting preferential oxidation of titanium during the process and depletion of Ni from the surface. No crystalline oxide phases were detected by X-ray diffraction (XRD). By comparison, the layers formed in NaAlO2/NaPO2H2 consisted of crystalline Al2O3 and the Ni/Ti atomic ratio was 0.74. Following oxidation, the wettability and surface free energy of NiTi increased significantly. The findings of this study indicate that the PEO process shows potential for expanding the biofunctionality of NiTi.

  2. Porous NiTi for bone implants: A review

    PubMed Central

    Bansiddhi, A.; Sargeant, T.D.; Stupp, S.I.; Dunand, D.C.

    2011-01-01

    NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) In vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants. PMID:18348912

  3. NiTi superelasticity via atomistic simulations

    NASA Astrophysics Data System (ADS)

    Chowdhury, Piyas; Ren, Guowu; Sehitoglu, Huseyin

    2015-12-01

    The NiTi shape memory alloys (SMAs) are promising candidates for the next-generation multifunctional materials. These materials are superelastic i.e. they can fully recover their original shape even after fairly large inelastic deformations once the mechanical forces are removed. The superelasticity reportedly stems from atomic scale crystal transformations. However, very few computer simulations have emerged, elucidating the transformation mechanisms at the discrete lattice level, which underlie the extraordinary strain recoverability. Here, we conduct breakthrough molecular dynamics modelling on the superelastic behaviour of the NiTi single crystals, and unravel the atomistic genesis thereof. The deformation recovery is clearly traced to the reversible transformation between austenite and martensite crystals through simulations. We examine the mechanistic origin of the tension-compression asymmetries and the effects of pressure/temperature/strain rate variation isolatedly. Hence, this work essentially brings a new dimension to probing the NiTi performance based on the mesoscale physics under more complicated thermo-mechanical loading scenarios.

  4. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    NASA Astrophysics Data System (ADS)

    Crawford, Anthony C.

    2017-03-01

    A deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  5. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    DOE PAGES

    Crawford, Anthony C.

    2017-01-04

    In this study, a deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  6. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.

    PubMed

    Xu, J L; Bao, L Z; Liu, A H; Jin, X J; Tong, Y X; Luo, J M; Zhong, Z C; Zheng, Y F

    2015-01-01

    Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant.

  7. The phase state of NiTi implant material affects osteoclastic attachment.

    PubMed

    Muhonen, V; Heikkinen, R; Danilov, A; Jämsä, T; Ilvesaro, J; Tuukkanen, J

    2005-12-01

    In the present work, the responses of mature osteoclasts cultured on austenite and martensite phases of NiTi shape memory implant material were studied. We used the sensitivity of osteoclasts to the underlying substrate and actin ring formation as an indicator of the adequacy of the implant surface. The results showed osteoclasts with actin ring on both NiTi phases. However, significantly more osteoclasts were present on the austenitic NiTi than on the martensitic NiTi. We also analyzed the surface free energy of the samples but found no significant difference between austenite and martensite phases. The results revealed that osteoclasts tolerated well the austenite phase of NiTi. The chemically identical martensitic NiTi was not as well tolerated by osteoclasts (e.g., indicated by diminished actin ring formation). This leads to the conclusion that certain physical properties specific to the martensitic NiTi have an adverse effect to the surviving of osteoclasts on this NiTi phase. These results confirm that mature, authentic osteoclasts can act as cell probes in experiments concerning aspects of biocompatibility of bone implant materials.

  8. 60NiTi Alloy for Tribological and Biomedical Surface Engineering Applications

    NASA Astrophysics Data System (ADS)

    Ingole, Sudeep

    2013-06-01

    60NiTi is an alloy with 60 wt% of nickel (Ni) and 40 wt% of titanium (Ti). This alloy was developed in the 1950s at the Naval Ordnance Laboratory (NOL) along with 55NiTi (55 wt% of Ni and 45 wt% of Ti). Both of these alloys exhibit the shape memory effect to different extents. The unique properties of 60NiTi, which are suitable for surface engineering (tribological) applications, are enumerated here. With appropriate heat treatment, this alloy can achieve high hardness (between Rc 55 and Rc 63). It has very good corrosion resistance and is resilient. Machinable before its final heat treatment, this alloy can be ground to fine surface finish and to tight dimensions. At one time, due to the popularity and wider applications of 55NiTi, the study of 60NiTi suffered. Recently, 60NiTi alloy gained some technological advantages due to advanced materials synthesis processes and progress in surface engineering. A feasibility study of 60NiTi bearings for space application has shown promise for its further development and suitability for other tribological applications. This report focuses on an overview of the properties and potential tribological and biomedical applications of 60NiTi.

  9. The Effects of Ni-Ti Hand Files, Ni-Ti Engine Files, and K-Flex Files on Root Canal Morphology

    DTIC Science & Technology

    1992-09-30

    of pulp tissue, debris, and irritants is necessary for healing and the proper shaping of the canal is an important factor in achieving a dense. leak...2) and Mizrahi (3) have ř shown that no instrumentation technique is totally effective in removing pulp tissue. debris, and canal irregularities...the first ni-ti root canal files that were machined from orthodontic wire. The ni-ti files were found to have two to three times more elastic

  10. Design and fabrication of a novel XYθz monolithic micro-positioning stage driven by NiTi shape-memory-alloy actuators

    NASA Astrophysics Data System (ADS)

    AbuZaiter, Alaa; Faris Hikmat, Omer; Nafea, Marwan; Ali, Mohamed Sultan Mohamed

    2016-10-01

    This paper reports a new shape-memory-alloy (SMA) micro-positioning stage. The device has been monolithically micro-machined with a single fabrication step. The design comprises a moving stage that is manipulated by six SMA planar springs actuators to generate movements with three degrees of freedom. The overall design is square in shape and has dimensions of 12 mm × 12 mm × 0.25 mm. Localized thermomechanical training for shape setting of SMA planar springs was performed using electrical current induced heating at restrained condition to individually train each of the six actuators to memorize a predetermined shape. For actuation, each SMA actuator is individually driven using Joule heating induced by an electrical current. The current flow is controlled by an external pulse-width modulation signal. The thermal response and heat distribution were simulated and experimentally verified using infrared imaging. The micro-positioning results indicated maximum stage movements of 1.2 and 1.6 mm along the x- and y-directions, respectively. Rotational movements were also demonstrated with a total range of 20°. The developed micro-positioning device has been successfully used to move a small object for microscopic scanning applications.

  11. Improved Performance of JLab 7-Cell Cavities by Electropolishing

    SciTech Connect

    Charles Reece, Rongli Geng, Anthony Crawford

    2009-05-01

    The great majority of experience in niobium SRF cavity processing at Jefferson Lab is with BCP etching. This has been used on CEBAF cavities and others totalling over 600 in number. With improved process quality control, field emission is now largely controlled and other factors limit performance. All of the prototype cavities developed for the 12 GeV upgrade, although meeting minimum requirements, have demonstrated a Q-drop in the 17?23 MV/m range that is not remedied by 120 C bake. Most of these cavities received >250 micron removal by BCP etch. Two of these cavities have been electropolished using the protocol under development within ILC R&D activities. The first such cavity was transformed from Q = 3×109 at 17 MV/m to quench from 1×1010 at 35 MV/m. The details of this and subsequent electropolished JLab 7-cell cavities will be reported.

  12. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    DOEpatents

    Mayer, Steven T.; Contolini, Robert J.; Bernhardt, Anthony F.

    1992-01-01

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed.

  13. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    DOEpatents

    Mayer, S.T.; Contolini, R.J.; Bernhardt, A.F.

    1992-03-17

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed. 6 figs.

  14. Ni-Ti SMA-reinforced Al composites

    NASA Astrophysics Data System (ADS)

    Porter, G. A.; Liaw, P. K.; Tiegs, T. N.; Wu, K. H.

    2000-10-01

    A shape-memory alloy, nickel-titanium, has been distributed throughout an aluminum matrix, using powder-metallurgy processing, in the hope of using the shape-memory effect to achieve strengthening and improve the fatigue resistance, as compared to the aluminum matrix. The shape-memory effect was activated by cold rolling the samples at -30°C. Upon reheating to the austenite phase, the Ni-Ti was expected to return to its original shape while embedded in the aluminum matrix. It is thought that this action created residual, internal stresses around each particle, which strengthened the material. The yield and ultimate strengths, and the fatigue lives of the Ni-Ti reinforced aluminum composites, have been improved considerably, as compared to the unreinforced material. The cross-sectional microstructures of the composites, as well as the modes of crack growth, have been examined with a scanning electron microscope (SEM) to identify fatigue and fracture mechanisms.

  15. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness.

    PubMed

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or antiinflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural antithrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (< 60 microm) compared with coarse grain NiTi compacts (< 100 microm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features.

  16. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness

    PubMed Central

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or anti-inflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural anti-thrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (<60 μm) compared with coarse grain NiTi compacts (<100 μm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features. PMID:18488418

  17. A Source Manual for Information on NITINOL and NiTi

    DTIC Science & Technology

    1978-02-13

    NSWC/WOL TR 78-26/ A SOURCE MANUAL FOR INFORMATION ON <z NITINOL AND NiTi BY DAVID GOLDSTEIN RESEARCH AND TECHNOLOGY DEPARTMENT 13 FEBRUARY 1978 C...Conthinua owevess, side it necessary and identity by bWeck ammmber) NITINOL Nickel-Titanium Alloys NiTi Shape Memory Effect Heat Engines W0. A WRACT...Conshnue an reverse Wde Ifftoeseat and Identify by Weoek nmmer) This manual is a current listing of most of the published literature on NITINOL and NiTi

  18. Analysis of the influence of electrolyte on surface finish in electropolished stainless steel

    NASA Astrophysics Data System (ADS)

    Hernando, M.; Núñez, P. J.; García, E.; Trujillo, R.

    2012-04-01

    Electropolishing is a surface finishing process of metals and alloys that enhances brilliant surface finishes with low surface roughness values. The most widely used electrolytes for the electropolishing of stainless steel are varying concentrations of phosphoric and sulphuric acid, and occasionally additives such as chromic acid. The objective of this study was to assess the performance of three commonly used industrial electrolytes in terms of the surface finish of electropolished stainless steel AISI 316L. Each electrolyte had varying sulphuric-phosphoric acid combinations with or without chromic acid. The following electropolishing conditions were assessed: current density, bath temperature, electropolishing time, and initial surface texture. The results revealed that adding chromic acid to the electrolyte did not significantly enhance surface finish, and electropolishing ranges were quite similar for all three electrolytes.

  19. Comparative study on microstructure and martensitic transformation of aged Ni-rich NiTi and NiTiCo shape memory alloys

    NASA Astrophysics Data System (ADS)

    El-Bagoury, Nader

    2016-05-01

    In this article the influence of aging heat treatment conditions of 250, 350, 450 and 550 °C for 3 h on the microstructure, martensitic transformation temperatures and mechanical properties of Ni51Ti49Co0 and Ni47 Ti49Co4 shape memory alloys was investigated. This comparative study was carried out using X-ray diffraction analysis, scanning electron microscope, energy dispersive spectrometer, differential scanning calorimeter and Vickers hardness tester. The results show that the microstructure of both aged alloys contains martensite phase and Ti2Ni in addition to some other precipitates. The martensitic transformation temperature was increased steadily by increasing the ageing temperature and lowering the value of valence electron number (ev/a) and concentration. Moreover, the hardness measurements were gradually increased at first by increasing the aging temperature from 250 to 350 °C. Further elevating in aging temperature to 450 and 550 °C decreases the hardness value.

  20. Three-dimensional deformation response of a NiTi shape memory helical-coil actuator during thermomechanical cycling: experimentally validated numerical model

    NASA Astrophysics Data System (ADS)

    Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.

    2016-09-01

    Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental

  1. Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, S. M.; Karaca, H. E.; Tobe, H.; Pons, J.; Santamarta, R.; Chumlyakov, Y. I.; Noebe, R. D.

    2016-09-01

    Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at.%)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. When the precipitates were small (˜5-15 nm), they were readily absorbed by martensite plates, which resulted in maximum recoverable strain of 2% in Ni50.7Ti29.3Hf20. With increasing Ni content, the size (>100 nm) and volume fraction of precipitates increased and the growth of martensite plates was constrained between the precipitates when the Ni concentration was greater than 50.7 at.%. Near perfect dimensional stability with negligible irrecoverable strain was observed at stress levels as high as 2 GPa in the Ni52Ti28Hf20 alloy, though the recoverable strain was rather small. In general, strong local stress fields were created at precipitate/matrix interphases, which lead to high stored elastic energy during the martensitic transformation.

  2. Simultaneous probing of phase transformations in Ni-Ti thin film shape memory alloy by synchrotron radiation-based X-ray diffraction and electrical resistivity

    SciTech Connect

    Braz Fernandes, F.M.; Silva, R.J.C.

    2013-02-15

    Nickel–Titanium (Ni–Ti) thin film shape memory alloys (SMAs) have been widely projected as novel materials which can be utilized in microdevices. Characterization of their physical properties and its correlation with phase transformations has been a challenging issue. In the present study, X-ray beam diffraction has been utilized to obtain the structural information at different temperatures while cooling. Simultaneously, electrical resistivity (ER) was measured in the phase transformation temperature range. The variation of ER and integral area of the individual diffraction peaks of the different phases as a function of temperature have been compared. A mismatch between the conventional interpretation of ER variation and the results of the XRD data has been clearly identified. - Highlights: ► Phase transformation characterization of Ni–Ti thin film SMA has been carried out. ► Simultaneous monitoring of the XRD and ER with temperature is performed. ► The variation of ER and integral area of the diffraction peaks have been compared. ► A shift of the transformation temperatures obtained by two techniques is discussed.

  3. Simulations of Self-Expanding Braided Stent Using Macroscopic Model of NiTi Shape Memory Alloys Covering R-Phase

    NASA Astrophysics Data System (ADS)

    Frost, M.; Sedlák, P.; Kruisová, A.; Landa, M.

    2014-07-01

    Self-expanding stents or stentgrafts made from Nitinol superelastic alloy are widely used for a less invasive treatment of disease-induced localized flow constriction in the cardiovascular system. The therapy is based on insertion of a stent into a blood vessel to maintain the inner diameter of the vessel; it provides highly effective results at minimal cost and with reduced hospital stays. However, since stent is an external mechanical healing tool implemented into human body for quite a long time, information on the mechanical performance of it is of fundamental importance with respect to patient's safety and comfort. Advantageously, computational structural analysis can provide valuable information on the response of the product in an environment where in vivo experimentation is extremely expensive or impossible. With this motivation, a numerical model of a particular braided self-expanding stent was developed. As a reasonable approximation substantially reducing computational demands, the stent was considered to be composed of a set of helical springs with specific constrains reflecting geometry of the structure. An advanced constitutive model for NiTi-based shape memory alloys including R-phase transition was employed in analysis. Comparison to measurements shows a very good match between the numerical solution and experimental results. Relation between diameter of the stent and uniform radial pressure on its surface is estimated. Information about internal phase and stress state of the material during compression loading provided by the model is used to estimate fatigue properties of the stent during cyclic loading.

  4. Microstructural Characterization of Diffusion Bonds Assisted by Ni/Ti Nanolayers

    NASA Astrophysics Data System (ADS)

    Simões, Sónia; Viana, Filomena; Sofia Ramos, A.; Teresa Vieira, M.; Vieira, Manuel F.

    2016-08-01

    The microstructure of similar and dissimilar diffusion bonds of metallic materials using reactive Ni/Ti interlayers was studied in this investigation. The base material surfaces were modified by sputter deposition of alternated Ni and Ti nanolayers. These nanolayers increase the diffusivity at the interface, enhancing the bonding process. Bonding experiments were performed at 800 °C under a pressure of 10 MPa with a bonding time of 60 min. The reaction zone was characterized by high-resolution scanning and transmission electron microscopies. Microstructural characterization reveals that similar (NiTi to NiTi and TiAl to TiAl) and dissimilar (NiTi to Ti6Al4V and TiAl to stainless steel) joints can be obtained successfully with Ni/Ti reactive nanolayers. The interfaces are thin (<10 µm) and their microstructure (thickness and number of zones, size and shape of the grains) depends on the elements diffusing from the base materials. For all joints, the interface is mainly composed of equiaxed grains of NiTi and NiTi2.

  5. A Study of Thermo-mechanically Processed High Stiffness NiTiCo Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Manjeri, R. M.; Norwich, D.; Sczerzenie, F.; Huang, X.; Long, M.; Ehrlinspiel, M.

    2016-03-01

    This work investigates a vacuum induction melted-vacuum arc re-melted (VIM-VAR) and thermo-mechanically processed ternary NiTiCo shape memory alloy. The NiTiCo ingot was hot processed to 6.35-mm-diameter coiled wire. The coiled wire was subsequently cold drawn to a final wire diameter of 0.53 mm, with interpass anneals. The wires were shape set at 450 °C for 3.5 min. After electropolishing, the wires were subjected to microstructural, thermal, and mechanical characterization studies. Microstructural analysis was performed by transmission electron microscope (TEM), thermal analyses by differential scanning calorimeter (DSC), and bend-free recovery and mechanical testing by uniaxial tensile testing. TEM did not reveal Ni-rich precipitates—either at the grain boundary or in the grain interior. Energy dispersive x-ray spectroscopy showed a uniform distribution of Ni, Ti, and Co in the sample. The DSC results on the shape set wire showed a single-step transformation between the austenite and the R-phase, in the forward and reverse directions. Cyclic tensile tests of the shape set wire, processed under optimum conditions, showed minimum residual strain and a stable upper plateau stress. Further, the fatigue behavior of NiTi and NiTiCo alloys was studied by rotating beam testing. The results showed that the fatigue properties of NiTiCo, under zero mean strain, are equivalent to that of binary NiTi in the high-cycle and medium-cycle regimes, taking into account the higher stiffness of NiTiCo. The above analyses helped in establishing the processing-structure-property correlation in a VIM-VAR-melted NiTiCo shape memory alloy.

  6. Tensile deformation of NiTi wires.

    PubMed

    Gall, Ken; Tyber, Jeff; Brice, Valerie; Frick, Carl P; Maier, Hans J; Morgan, Neil

    2005-12-15

    We examine the structure and properties of cold drawn Ti-50.1 at % Ni and Ti-50.9 at % Ni shape memory alloy wires. Wires with both compositions possess a strong <111> fiber texture in the wire drawing direction, a grain size on the order of micrometers, and a high dislocation density. The more Ni rich wires contain fine second phase precipitates, while the wires with lower Ni content are relatively free of precipitates. The wire stress-strain response depends strongly on composition through operant deformation mechanisms, and cannot be explained based solely on measured differences in the transformation temperatures. We provide fundamental connections between the material structure, deformation mechanisms, and resulting stress-strain responses. The results help clarify some inconsistencies and common misconceptions in the literature. Ramifications on materials selection and design for emerging biomedical applications of NiTi shape memory alloys are discussed.

  7. Treatment of spent electropolishing solution for removal of cobalt-60

    SciTech Connect

    Taylor, P.A.; Youngblood, E.L.; Macon, R.J.

    1996-02-01

    The Irradiated Materials Examination and Testing (IMET) Facility at Oak Ridge National Laboratory electropolishes various types of irradiated metal specimens prior to examination of metallurgical and mechanical properties. The standard electropolishing solution used at IMET for most specimens consists of a 7:1 methanol/sulfuric acid mixture, with smaller amounts of a 3:1 methanol/nitric acid solution and a 10:6:1 methanol/2-butoxyethanol/perchloric acid solution also being used. Cobalt-60 is the primary source of gamma radiation in the spent solutions, with lesser amounts from manganese-54 and iron-59. A treatment method is needed to remove most of the Co-60 from these solutions to allow the waste solutions to be contact-handled for disposal. A wide range of adsorbents was tested for removing cobalt from the electropolishing solutions. No adsorbent was found that would treat full strength solution, but a complexing ion exchange resin (Chelex 100, BioRad Labs, or Amberlite IRC-718, Rohm and Haas Co.) will remove cobalt and other heavy metals from partially neutralized (pH=3) solution. A 5 wt% sodium hydroxide solution is used for pH adjustment, since more concentrated caustic caused sodium sulfate precipitates to form. Lab-scale column tests have shown that about 10 bed volumes of methanol/sulfuric acid solution, 30 bed volumes of methanol/nitric acid solution or 15 bed volumes of methanol/2-butoxyethanol/perchloric acid solution can be treated prior to initial Co-60 breakthrough.

  8. Research and development for electropolishing of Nb for ILC accelerator cavities

    SciTech Connect

    Kelley, Michael J.

    2009-09-21

    The objectives of this project are to 1, Expand the scientific and technological understanding of the effect of post-treatment (electropolish, buffered chemical polish, low-temperature baking) on the surface of niobium; 2, Relate the knowledge to the performance of niobium superconducting radiofrequency accelerator cavities; and, 3, Thereby design and demonstrate an electropolish process that can be applied to complete cavities.

  9. Performance of NiTi endodontic instrument under different temperatures.

    PubMed

    Jamleh, Ahmed; Yahata, Yoshio; Ebihara, Arata; Atmeh, Amre R; Bakhsh, Turki; Suda, Hideaki

    2016-09-01

    The purpose of this study was to test nickel titanium (NiTi) instrument performance under different surrounding temperatures. Twenty-four superelastic NiTi instruments with a conical shape comprising a 0.30-mm-diameter tip and 0.06 taper were equally divided into 3 groups according to the temperature employed. Using a specially designed cyclic fatigue testing apparatus, each instrument was deflected to give a curvature 10 mm in radius and a 30° angle. This position was kept as the instrument was immersed in a continuous flow of water under a temperature of 10, 37, or 50 °C for 20 s to calculate the deflecting load (DL). In the same position, the instrument was then allowed to rotate at 300 rpm to fracture, and the working time was converted to the number of cycles to fracture (NCF). The statistical significance was set at p = 0.05. The mean DL (in N) and NCF (in cycles) of the groups at 10, 37, and 50 °C were 10.16 ± 1.36 and 135.50 ± 31.48, 13.50 ± 0.92 and 89.20 ± 16.44, and 14.70 ± 1.21 and 65.50 ± 15.90, respectively. The group at 10 °C had significantly the lowest DL that favorably resulted in the highest NCF. Within the limitations of this study, the surrounding temperature influences the cyclic fatigue resistance and DL of the superelastic NiTi instruments. Lower temperatures are found to favorably decrease the DL and extend the lifetime of the superelastic NiTi instrument. Further NiTi instrument failure studies should be performed under simulated body temperature.

  10. Study of the structure and interface of NiTi SMA/FC composite films prepared by the sol-gel method

    SciTech Connect

    Liu, Q.S. Liu, Y.F.; Ma, X.; Han, X.

    2008-02-15

    Ferroelectric ceramic (FC) films were prepared on a NiTi shape memory alloy (NiTi SMA) substrate by the sol-gel method. The effect of the heat treatment temperature on the crystallization of both the NiTi SMA and ferroelectric ceramic is discussed. The heterostructure of the interface was characterized by scanning electron microscopy and X-ray diffraction. The results indicate that aging reactions in the NiTi SMA substrate were restricted by the presence of the ceramic film. Also, the transitional TiO{sub 2} layer produced in-situ by the oxidation of the surface of the NiTi SMA substrate improves the adhesion between the ceramic film and NiTi SMA.

  11. Method for Fabricating Miniaturized NiTi Self-Expandable Thin Film Devices with Increased Radiopacity

    NASA Astrophysics Data System (ADS)

    Bechtold, Christoph; Lima de Miranda, Rodrigo; Chluba, Christoph; Zamponi, Christiane; Quandt, Eckhard

    2016-12-01

    Nitinol is the material of choice for many medical applications, in particular for minimally invasive implants due to its superelasticity and biocompatibility. However, NiTi has limited radiopacity which complicates positioning in the body. A common strategy to increase the radiopacity of NiTi devices is the addition of radiopaque markers by micro-riveting or micro-welding. The recent trend of miniaturizing medical devices, however, reduces their radiopacity further, and makes the addition of radiopaque markers to these miniaturized devices difficult. NiTi thin film technology has great potential to overcome such limitations and to fabricate new generations of miniaturized, self-expandable NiTi medical devices with additional functionalities, such as structured multilayer devices with increased radiopacity. For this purpose, we have produced superelastic thin film NiTi samples covered locally with Tantalum structures of different thickness and different shape. These multilayer devices were characterized regarding their mechanical and corrosion properties as well as their X-ray visibility. The superelastic behavior of the underlying NiTi layer is impeded by the Ta layer, and shows therefore a dependence on the Tantalum patterning geometry and thickness. No delamination was observed after mechanical and corrosion tests. The multilayers reveal excellent corrosion resistance, as well as a significant increase in radiopacity.

  12. Vibration characteristics of Ni-Ti pseudo-elastic wire inter-weaved fabric composites

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Wang, Rui; Yang, Qiuhong; Dong, Li

    2009-07-01

    This paper presents a study on the vibration characteristics of Ni-Ti wire inter-weaved glass fabric/epoxy composites. The Ni-Ti pseudo-elastic wires were used as warp yarns and embedded in the fabric preforms with various weaving methods. Dynamic Mechanical Analyzer (DMA) and vibration test technique were used to reveal the dynamical behaviors of specimens in different frequencies of vibration. The storage modulus E', the loss tanδ, the natural frequency f and damping ratio η were examined. The energy dissipation behaviors of the Ni-Ti pseudo-elastic wire, the geometry of textile fabric was also studied. The effect of weaving method on the vibration behavior in Shape Memory Alloy (SMA) based textile composites was considered. The results showed that: (I) the energy dissipation capacity of the wire could be significantly improved by increasing the tensile strain and speed, but slightly affected by loading frequency; (II) the woven of few Ni-Ti warps caused the increase of the storage modulus and the change of the loss tanδ. In the buckling vibration, the damping effects of Ni-Ti pseudo-elastic wires vary with the woven structures. The compact woven structure with proper Ni-Ti warp architectures would receive a small amplitude and good damping.

  13. Highly smooth Nb surfaces fabricated by buffered electropolishing

    SciTech Connect

    Andy T. Wu; John Mammossor; H. Phillips; Jean Delayen; Charles Reece; Amy Wilkerson; David Smith; Robert Ike

    2005-05-01

    It is demonstrated that highly smooth Nb surfaces can be obtained through Buffered ElectroPolishing (BEP) employing an electrolyte consisting of lactic, sulfuric, and hydrofluoric acids. Parameters that control the polishing process are optimized to achieve the smoothest surface finish with the help of surface observations using a scanning electron microscope and a Metallographic Optical Microscope (MOM). The polishing rate of BEP is determined to be 0.646 {micro}m/min that is much higher than 0.381 {micro}m/min achieved by the conventional ElectroPolishing (EP) process widely used in the Superconducting Radio Frequency (SRF) community. A high precision and large scan area 3-D profilometer is used to view morphology of the treated Nb surfaces. Statistical data, such as, rms, total indicator runout, and arithmetic mean deviation of the Nb surfaces are extracted from the profilometer images. It is found that Nb surfaces treated by BEP are an order of magnitude smoother than those treated by the optimized EP process. The chemical composition of the Nb surfaces after BEP is analyzed by static and dynamic Secondary Ion Mass Spectrometer (SIMS) systems. Cracking patterns of the Nb surfaces under different primary ion sources of Ga{sup +}, Au{sup +}, and Ar{sup +} are reported. The depth profile of the surface niobium oxides is studied through continuously monitoring niobium and its relevant oxides' peaks as a function of time. Dynamic SIMS results imply that the surface oxide structure of Nb may be more complicated than what usually believed and can be inhomogeneous. Preliminary results of BEP on Nb SRF single cell cavities and half-cells are reported. It is shown that smooth and bright surfaces can be obtained in 30 minutes when the electric field inside a SRF cavity is uniform during a BEP process. This study reveals that BEP is a highly promising technique for surface treatment on Nb SRF cavities to be used in particle accelerators.

  14. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium.

    PubMed

    Sowa, Maciej; Greń, Katarzyna; Kukharenko, Andrey I; Korotin, Danila M; Michalska, Joanna; Szyk-Warszyńska, Lilianna; Mosiałek, Michał; Zak, Jerzy; Pamuła, Elżbieta; Kurmaev, Ernst Z; Cholakh, Seif O; Simka, Wojciech

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1moldm(-3) phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species.

  15. Removal of long-lived 222Rn daughters by electropolishing thin layers of stainless steel

    NASA Astrophysics Data System (ADS)

    Schnee, R. W.; Bowles, M. A.; Bunker, R.; McCabe, K.; White, J.; Cushman, P.; Pepin, M.; Guiseppe, V. E.

    2013-08-01

    Long-lived alpha and beta emitters in the 222Rn decay chain on detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay. Removal of tens of microns of material via electropolishing has been shown to be effective at removing radon daughters implanted into material surfaces. Some applications, however, require the removal of uniform and significantly smaller thicknesses. Here, we demonstrate that electropolishing < 1 μm from stainless-steel plates reduces the contamination efficiently, by a factor > 100. Examination of electropolished wires with a scanning electron microscope confirms that the thickness removed is reproducible and reasonably uniform. Together, these tests demonstrate the effectiveness of removal of radon daughters for a proposed low-radiation, multi-wire proportional chamber (the BetaCage), without compromising the screener's energy resolution. More generally, electropolishing thin layers of stainless steel may effectively remove radon daughters without compromising precision-machined parts.

  16. Tailoring Selective Laser Melting Process Parameters for NiTi Implants

    NASA Astrophysics Data System (ADS)

    Bormann, Therese; Schumacher, Ralf; Müller, Bert; Mertmann, Matthias; de Wild, Michael

    2012-12-01

    Complex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined micro-architecture and advanced performance.

  17. Effects of Solution and Aging Treatments on Corrosion Resistance of As-cast 60NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Qin, Qiuhui; Wen, Yuhua; Wang, Gaixia; Zhang, Lanhui

    2016-12-01

    60NiTi alloy has become a competitive candidate for bearing applications due to its shape memory effect, superelasticity, high strength, hardness, excellent abrasion resistance and corrosion resistance, etc. However, the relationship between its corrosion resistance and heat treatment is not clearly understood. Therefore, we used OM, XRD, SEM and EDS to study the evolution of microstructure in as-cast, solution-treated and aged 60NiTi alloy. Besides, the potentiodynamic polarization and salt spray test were used to compare corrosion resistance of 60NiTi alloy and 316 stainless steel and to study the effect of microstructures on corrosion resistance of 60NiTi alloy. The results show that the corrosion resistance of as-cast 60NiTi alloy is comparable to that of 316 stainless steel, but the corrosion resistance of solution-treated and aged 60NiTi alloys is much superior. The significantly reduced Ni3Ti phase after the solution and aging treatments is responsible for the remarkable improvement in the corrosion resistance of as-cast 60NiTi alloy.

  18. Numerical Study on the Influence of Material Characteristics on Ni-Ti Endodontic Instrument Performance

    NASA Astrophysics Data System (ADS)

    Petrini, Lorenza; Necchi, Silvia; Taschieri, Silvio; Migliavacca, Francesco

    2009-08-01

    Ni-Ti rotary endodontic instruments ( files) are used in dentistry during the endodontic treatment to shape the root canal of the tooth while removing the pulp when infected. Up to now, the studies for evaluating their performances and drawbacks were mainly limited to experimental tests on product flexural and torsional resistance. This work exploits computational analyses for investigating the effects of materials with different mechanical properties on the behavior of rotary endodontic instruments. The aim is to understand the appropriate material choice to reduce the criticality of the treatment in particular clinical conditions. In particular, the interaction between an accurately modeled rotating file and differently shaped root canals during the clinical procedure was studied performing finite element analyses. Strains induced by the treatment on a file made of a “standard” Ni-Ti alloy (characterized by average properties of the pseudoelastic behavior), a “long” Ni-Ti alloy (characterized by wide transformation region), a “super” Ni-Ti alloy (characterized by an extended Hookian behavior without transformation region), and stainless steel were compared. The results accurately show the advantages of the use of Ni-Ti alloy with respect to stainless steel and the better performance of the “long” alloy in all the tested case.

  19. Structure characterization and wear performance of NiTi thermal sprayed coatings

    NASA Astrophysics Data System (ADS)

    Cinca, N.; Isalgué, A.; Fernández, J.; Guilemany, J. M.

    2010-08-01

    NiTi shape memory alloy (SMA) has been studied for many years for its shape memory and pseudoelastic properties, as well as its biocompatibility, which make it suitable for many biomedical applications. However, SMA NiTi is also interesting for relevant wear resistance near the transition temperature which, along with its high oxidation and corrosion resistance, suggests its use as a coating to increase the lifetime of some components. Also, whereas bulk material properties have been characterized in respect of the nominal composition, manufacturing methods and thermo-mechanical treatments, NiTi overlays have been investigated much less. Most existent works in this field specifically deal with magnetron sputtering technology for thin films and its use in micro-devices (micro-electro-mechanical systems, MEMS), just some works refer to vacuum plasma spraying (VPS) for thicker coatings. The present paper explores and compares the microstructure and wear-related properties of coatings obtained from atomized NiTi powders, by VPS as well as by atmospheric plasma spraying (APS) and high velocity oxygen fuel (HVOF) techniques. In the present case, the wear behaviour of the NiTi deposits has been studied by rubber-wheel equipment and ball-on-disk tests. The results obtained at room temperature show that the APS-quenched coatings exhibit a preferential dry sliding wear mechanism, while the VPS and HVOF coatings show an abrasive mechanism.

  20. Investigation of differential surface removal due to electropolishing at JLab

    SciTech Connect

    Marhauser, Frank; Folkie, James; Reece, Charles

    2015-09-01

    Surface chemistry carried out for Superconducting Radio Frequency (SRF) cavities such as Buffered Chemical Polishing (BCP) and Electropolishing (EP) aims to uniformly remove the internal surface of a cavity along the entire structure and within each cell from equator to iris in order to obtain an equally etched surface. A uniform removal, however, is not readily achievable due to the complex fluid flow and varying temperatures of the acid mixture, which can lead to differential etching. This needs to be considered when envisaging a certain surface damage removal throughout the interior. The process-specific differential etching influences the target frequency set at the manufacturing stage as well as the field flatness and length of the as-built cavity. We report on analyses of JLab's present EP system using experimental data for six nine-cell cavities that have been processed recently in the frame of the LCLS-II high-Q development plan. In conjunction with numerical simulations, the differential etching and the impact on field flatness is assessed.

  1. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  2. Micromachining NiTi tubes for use in medical devices by using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hung, Chia-Hung; Chang, Fuh-Yu; Chang, Tien-Li; Chang, Yu-Ting; Huang, Kai-Wen; Liang, Po-Chin

    2015-03-01

    Recent growth in medical device technology has been substantially driven by developments in laser micromachining, which is a powerful fabrication technique in which nickel-titanium (Nitinol, NiTi) alloy materials that exhibit superelastic and shape memory properties are formed (e.g., self-expanding stents). In this study a NiTi tube curve surface process is proposed, involving a femtosecond laser process and a galvano-mirror scanner. The diameter of the NiTi tube was 5.116 mm, its thickness was 0.234 mm, and its length was 100 mm. The results indicated that during the machine process the ablation mechanism of the NiTi tubes was changed by altering the machining path. The path alteration enhanced the laser ablation rate from 12.3 to 26.7 μm/J. Thus the path alteration contributed to a wide kerf line, enabling the assisted air to efficiently remove the debris deposited at the bottom of the kerf during the laser ablation process. The results indicated that the NiTi tube curve process enhanced the laser ablation rate by two times and reduced the amount of energy accumulated within the materials by 50% or more. By altering the machining path using the scanning system, this process can decrease the production of heat affected zones (the accumulation of thermal energy) in medical device applications.

  3. Free-standing NiTi alloy nanowires fabricated by nanoskiving.

    PubMed

    Hou, Huilong; Hamilton, Reginald F

    2015-08-28

    We report on free-standing NiTi alloy nanowires (120 nm × 75 nm) fabricated using a technique referred to as "nanoskiving", which complements conventional thin film sputter deposition with ultramicrotomy for thin sectioning. To date, the technique has been limited to pure metals without exploring metallic alloys. Leveraging the technique for the fabrication of shape memory alloy (SMA) nanostructures meets two critical requirements: compositional control (via film deposition) and controlled dimensions (via film deposition and programmable sectioning). Microstructure and composition analysis confirm continuity of the produced nanowires and Ni and Ti elemental uniformity. Free-standing NiTi nanowires are robust and remain intact throughout physical manipulation. The fabrication of NiTi alloy nanowires by nanoskiving will advance fundamental characterization of small scale SMA behavior.

  4. Radiation Hardening of Ni-Ti Alloy Under Implantation of Inert Gases Heavy Ions

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V.; Larionov, A.; Satpaev, D.; Gyngazova, M.

    2016-02-01

    The consistent patterns of changes in nano- and micro-hardness of Ni-Ti alloy with the shape memory effect after implantation of 40Ar8+ and 84Kr15+ ions depending on phase composition and implantation parameters have been experimentally studied. It has been shown that softening by 4 and 14% near the surface of the two-phase Ni-Ti alloy after implantation of 40Ar8+ and 84Kr15+ ions is connected with the differences in the nanostructure. Hardening of the near-surface layer of this alloy maximum by 118% at h = ∼3 pm and single-phase alloy in the entire region of the 40Ar8+ and 84Kr15+ ions range and in the out-range (h > Rp) area have been detected. The role of the current intensity of the ions beam in the change of nanohardness for the two-phase Ni-Ti alloy has been established.

  5. A fitting empirical potential for NiTi alloy and its application

    NASA Astrophysics Data System (ADS)

    Ren, Guowu; Tang, Tiegang; Sehitoglu, Huseyin

    Due to its superelastic behavior, NiTi shape memory alloy receives considerable attentions over a wide range of industrial and commercial applications. Limited to its complex structural transformation and multiple variants, semiempirical potentials for performing large-scale molecular dynamics simulations to investigate the atomistic mechanical process, are very few. In this work, we construct a new interatomic potential for the NiTi alloy by fitting to experimental or ab initio data. The fitting potential correctly predicts the lattice parameter, structural stability, equation of state for cubic B2(austenite) and monoclinic B19'(martensite) phases. In particular the elastic properties(three elastic constants for B2 and thirteen ones for B19') are in satisfactory agreement with the experiments or ab initio calculations. Furthermore, we apply this potential to conduct the molecular dynamics simulations of the mechanical behavior for NiTi alloy and the results capture its reversible transformation.

  6. Stable atomic structure of NiTi austenite

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2014-08-01

    Nitinol (NiTi), the most widely used shape-memory alloy, exhibits an austenite phase that has yet to be identified. The usually assumed austenitic structure is cubic B2, which has imaginary phonon modes, hence it is unstable. We suggest a stable austenitic structure that "on average" has B2 symmetry (observed by x-ray and neutron diffraction), but it exhibits finite atomic displacements from the ideal B2 sites. The proposed structure has a phonon spectrum that agrees with that from neutron scattering, has diffraction spectra in agreement with x-ray diffraction, and has an energy relative to the ground state that agrees with calorimetry data.

  7. Modeling, Simulation, Additive Manufacturing, and Experimental Evaluation of Solid and Porous NiTi

    NASA Astrophysics Data System (ADS)

    Taheri Andani, Mohsen

    In recent years, shape memory alloys (SMAs) have entered a wide range of engineering applications in fields such as aerospace and medical applications. Nickel-titanium (NiTi) is the most commonly used SMAs due to its excellent functional characteristics (shape memory effect and superelasticity behavior). These properties are based on a solid-solid phase transformation between martensite and austenite. Beside these two characteristics, low stiffness, biocompatibility and corrosion properties of NiTi make it an attractive candidate for biomedical applications (e.g., bone plates, bone screws, and vascular stents). It is well know that manufacturing and processing of NiTi is very challenging. The functional properties of NiTi are significantly affected by the impurity level and due to the high titanium content, NiTi are highly reactive. Therefore, high temperature processed parts through methods such as melting and casting which result in increased impurity levels have inadequate structural and functional properties. Furthermore, high ductility and elasticity of NiTi, adhesion, work hardening and spring back effects make machining quite challenging. These unfavorable effects for machining cause significant tool wear along with decreasing the quality of work piece. Recently, additive manufacturing (AM) has gained significant attention for manufacturing NiTi. Since AM can create a part directly from CAD data, it is predicted that AM can overcome most of the manufacturing difficulties. This technique provides the possibility of fabricating highly complex parts, which cannot be processed by any other methods. Curved holes, designed porosity, and lattice like structures are some examples of mentioned complex parts. This work investigates manufacturing superelastic NiTi by selective laser melting (SLM) technique (using PXM by Phenix/3D Systems). An extended experimental study is conducted on the effect of subsequent heat treatments with different aging conditions on phase

  8. Cleaning Effectiveness of Three NiTi Rotary Instruments: A Focus on Biomaterial Properties.

    PubMed

    Poggio, Claudio; Dagna, Alberto; Chiesa, Marco; Beltrami, Riccardo; Bianchi, Stefano

    2015-02-16

    Nickel-titanium (NiTi) instruments are commonly used for shaping the root canal system in endodontic practice. They are more flexible and have better cutting efficiency than conventional stainless steel files. The superelasticity of NiTi rotary files allows the clinicians to produce the desirable tapered root canal form with a reduced tendency to canal transportation and instrument fracture. HyFlex CM instruments are new NiTi rotary instruments with shape memory produced by an innovative methodology (patent pending) that uses a complex heating and cooling treatment that controls the material's memory. The aim of the present study was to compare the cleaning efficacy of two conventional (Mtwo, Revo-S) Ni-Ti rotary instruments with HyFlex CM. 30 single-rooted freshly extracted teeth were divided into three groups. Root canals were shaped with three NiTi instruments (Mtwo, Revo-S and HyFlex CM) using 5.25% NaOCl and 17% EDTA solutions. Specimens were fractured longitudinally and prepared for SEM analysis at standard magnification of 1000×. The presence/absence of debris smear layer and the presence/absence of smear layer at coronal, middle, and apical third of each canal were evaluated using a 5-step scale for scores. Numeric data were analyzed using Kruskall-Wallis and Mann-Whitney U statistical tests and significance was predetermined at P < 0.05. This study revealed significant differences among the various groups. Despite some minor differences, all instruments removed smear layer and debris produced during instrumentation. HyFlex CM seem to be not so effective in promoting cleanliness of root canal walls and in removing smear layer from dentine if compared to Mtwo and Revo-S.

  9. Removal of long-lived {sup 222}Rn daughters by electropolishing thin layers of stainless steel

    SciTech Connect

    Schnee, R. W.; Bowles, M. A.; Bunker, R.; McCabe, K.; White, J.; Cushman, P.; Pepin, M.; Guiseppe, V. E.

    2013-08-08

    Long-lived alpha and beta emitters in the {sup 222}Rn decay chain on detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay. Removal of tens of microns of material via electropolishing has been shown to be effective at removing radon daughters implanted into material surfaces. Some applications, however, require the removal of uniform and significantly smaller thicknesses. Here, we demonstrate that electropolishing < 1 μm from stainless-steel plates reduces the contamination efficiently, by a factor > 100. Examination of electropolished wires with a scanning electron microscope confirms that the thickness removed is reproducible and reasonably uniform. Together, these tests demonstrate the effectiveness of removal of radon daughters for a proposed low-radiation, multi-wire proportional chamber (the BetaCage), without compromising the screener’s energy resolution. More generally, electropolishing thin layers of stainless steel may effectively remove radon daughters without compromising precision-machined parts.

  10. Transmission Kikuchi diffraction and transmission electron forescatter imaging of electropolished and FIB manufactured TEM specimens

    SciTech Connect

    Zieliński, W. Płociński, T.; Kurzydłowski, K.J.

    2015-06-15

    We present a study of the efficiency of the utility of scanning electron microscope (SEM)-based transmission methods for characterizing grain structure in thinned bulk metals. Foils of type 316 stainless steel were prepared by two methods commonly used for transmission electron microscopy — double-jet electropolishing and focused ion beam milling. A customized holder allowed positioning of the foils in a configuration appropriate for both transmission electron forward scatter diffraction, and for transmission imaging by the use of a forescatter detector with two diodes. We found that both crystallographic orientation maps and dark-field transmitted images could be obtained for specimens prepared by either method. However, for both methods, preparation-induced artifacts may affect the quality or accuracy of transmission SEM data, especially those acquired by the use of transmission Kikuchi diffraction. Generally, the quality of orientation data was better for specimens prepared by electropolishing, due to the absence of ion-induced damage. - Highlights: • The transmission imaging and diffraction techniques are emerging in scanning electron microscopy (SEM) as promising new field of materials characterization. • The manuscript titled: “Transmission Kikuchi Diffraction and Transmission Electron Forescatter Imaging of Electropolished and FIB Manufactured TEM Specimens” documents how different specimen thinning procedures can effect efficiency of transmission Kikuchi diffraction and transmission electron forescatter imaging. • The abilities to make precision crystallographic orientation maps and dark-field images in transmission was studied on electropolished versus focus ion beam manufactured TEM specimens. • Depending on the need, electropolished and focused ion beam technique may produce suitable specimens for transmission imaging and diffraction in SEM.

  11. Precipitation and surface adsorption of metal complexes during electropolishing. Theory and characterization with X-ray nanotomography and surface tension isotherms.

    PubMed

    Nave, Maryana I; Chen-Wiegart, Yu-chen Karen; Wang, Jun; Kornev, Konstantin G

    2015-09-21

    Electropolishing of metals often leads to supersaturation conditions resulting in precipitation of complex compounds. The solubility diagrams and Gibbs adsorption isotherms of the electropolishing products are thus very important to understand the thermodynamic mechanism of precipitation of reaction products. Electropolishing of tungsten wires in aqueous solutions of potassium hydroxide is used as an example illustrating the different thermodynamic scenarios of electropolishing. Electropolishing products are able to form highly viscous films immiscible with the surrounding electrolyte or porous shells adhered to the wire surface. Using X-ray nanotomography, we discovered a gel-like phase formed at the tungsten surface during electropolishing. The results of these studies suggest that the electropolishing products can form a rich library of compounds. The surface tension of the electrolyte depends on the metal oxide ions and alkali-metal complexes.

  12. Microstructure and corrosion behavior of laser processed NiTi alloy.

    PubMed

    Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K

    2015-12-01

    Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy.

  13. Coatings on NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Kei, C. C.; Yu, Y. S.; Racek, J.; Vokoun, D.; Šittner, P.

    2014-07-01

    Atomic layer deposition is introduced as a method suitable for preparation of Al2O3 layers on the surface of NiTi medical devices such as stents because of the excellent thickness control and conformal protective coating on complex structures. The corrosion properties of NiTi plates with Al2O3 coatings of various thicknesses in an environment similar to that occurring in the human body were studied using open circuit potential, potentiostatic electrochemical impedance spectroscopy, and cyclic polarization tests. It shows that the layer thickness plays a key role in the inhibition of corrosion. The thinner layers are more diffuse and make it easier for anodic reaction of passive NiTi with protective TiO2 underneath of Al2O3, while the thicker layers have the barrier effect with local pores initiating pitting corrosion. The results of our electrochemical experiments consistently show that corrosion properties of thick Al2O3 coatings on NiTi plate are inferior compared to the thin layers.

  14. The Effect of Thermal Annealing on Structural-phase Changes in the Ni-Ti Alloy Implanted with Krypton Ions

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V. P.; Kislitsin, S. B.; Ghyngazov, S. A.

    2016-06-01

    The influence of thermal annealing within the temperature range 100-300°C on the structural-phase state of a Ni-Ti alloy with shape memory effect (SME) implanted with 84Kr ions at the energies E = 280 keV and 1.75 MeV/nucl and the fluences within 5·1012-1·1020 ion/m2 is investigated. For the samples modified by 84Kr ions at E = 1.75 MeV/nucl up to the fluences 1·1020 and 5·1012 ion/m2, the formation of a martensitic NiTi phase with the B19 ' structure, responsible for the SME, is revealed at the annealing temperatures 100 and 300°C, respectively, in the near-surface region corresponding to the outrange area. This is accompanied by the formation of nanosized NiTi particles in the R-phase. As the implantation fluence increases, the probability of their formation decreases. It is shown that annealing of the implanted structures can increase the strength of the Ni-Ti alloy. The degree of hardening is determined by the value of annealing temperature, and an increase in strength is primarily due to ordering of the radiation-induced defect structures (phases). A correlation between the onset temperature of a forward martensitic transition and the structural-phase state of the thermally annealed Ni-Ti alloy is established.

  15. Achieving Small Structures in Thin NiTi Sheets for Medical Applications with Water Jet and Micro Machining: A Comparison

    NASA Astrophysics Data System (ADS)

    Frotscher, M.; Kahleyss, F.; Simon, T.; Biermann, D.; Eggeler, G.

    2011-07-01

    NiTi shape memory alloys (SMA) are used for a variety of applications including medical implants and tools as well as actuators, making use of their unique properties. However, due to the hardness and strength, in combination with the high elasticity of the material, the machining of components can be challenging. The most common machining techniques used today are laser cutting and electrical discharge machining (EDM). In this study, we report on the machining of small structures into binary NiTi sheets, applying alternative processing methods being well-established for other metallic materials. Our results indicate that water jet machining and micro milling can be used to machine delicate structures, even in very thin NiTi sheets. Further work is required to optimize the cut quality and the machining speed in order to increase the cost-effectiveness and to make both methods more competitive.

  16. Energetics of Single Substitutional Impurities in NiTi

    NASA Technical Reports Server (NTRS)

    Good, Brian S.; Noebe, Ronald

    2003-01-01

    Shape-memory alloys are of considerable current interest, with applications ranging from stents to Mars rover components. In this work, we present results on the energetics of single substitutional impurities in B2 NiTi. Specifically, energies of Pd, Pt, Zr and Hf impurities at both Ni and Ti sites are computed. All energies are computed using the CASTEP ab initio code, and, for comparison, using the quantum approximate energy method of Bozzolo, Ferrante and Smith. Atomistic relaxation in the vicinity of the impurities is investigated via quantum approximate Monte Carlo simulation, and in cases where the relaxation is found to be important, the resulting relaxations are applied to the ab initio calculations. We compare our results with available experimental work.

  17. Fundamental Study of Micro-Defects in Electropolished EB-Welded and Hydroformed SRF Accelerating Structures

    SciTech Connect

    Sumption, Mike

    2014-08-29

    In the area of niobium elecropolishing fundamentals, we focused on understanding the influence of the surface topology, and geometry (with effects from gravity included. The formation of a viscous film is essential for the electropolishing process to take place. The exact nature and composition of the film formed on niobium is still unknown because of its solubility in the electrolyte. Extensive pitting may take place at surface where a stable film cannot form. This has to be taken into consideration while determining the speed with which the SRF cavities are rotated while EP. Hydrodynamic aspects must be taken into consideration while optimizing the polishing parameters. There is improvement in surface finish with polishing time. There is a huge change in surface quality when the EP time is increased from 2 hours to 4 hours but not much change takes place when the time is further increased to 6 hours. So keeping the economic points in view, about 100 um defect layer removal may be sufficient to get the desired performance. In the area of Electropolishing of untreated and treated niobium with Weld Joints we studied untreated and treated Nb, especially for the heat affected areas next to welded bumps, electropolished for different durations. The electropolishing of the untreated Nb caused the formation of pits on the surface at about 15 min but they disappeared when the electropolishing duration was more than 15 min. Electropolishing for 120 min smoothened the surface of untreated Nb by levelling the surface, but the severe formation of pits on the whole surface was found after 240 min. The treatment of Nb significantly changed the Nb surface morphology which was covered by grains of different size that looked light or dark in the optical microscope. The treated Nb was susceptible to pitting during the entire electropolishing starting from 15 min and the dark grains had more susceptibility to pitting than the light grains. In addition, electropolishing for 240 min

  18. Recent developments in electropolishing and tumbling R&D at Fermilab

    SciTech Connect

    Cooper, C.; Brandt, J.; Cooley, L.; Ge, M.; Harms, E.; Khabiboulline, T.; Ozelis, J.; Boffo, C.; /Babcock Noell, Wuerzburg

    2009-10-01

    Fermi National Accelerator Lab (Fermilab) is continuing to improve its infrastructure for research and development on the processing of superconducting radio frequency cavities. A single cell 3.9 GHz electropolishing tool built at Fermilab and operated at an industrial partner was recently commissioned. The EP tool was used to produce a single cell 3.9 GHz cavity that reached an accelerating gradient of 30 MV/m with a quality factor of 5 x 10{sup 9}. A single cell 1.3 GHz cavity was also electropolished at the same industrial vendor using the vendor's vertical full-immersion technique. On their first and only attempt the vendor produced a single cell 1.3 GHz cavity that reached 30 MV/m with a quality factor of 1 x 10{sup 10}. These results will be detailed along with preliminary tumbling results.

  19. Impact of forming, welding, and electropolishing on pitting and the surface finish of SRF cavity niobium

    SciTech Connect

    Cooley, L.D.; Burk, D.; Cooper, C.; Dhanaraj, N.; Foley, M.; Ford, D.; Gould, K.; Hicks, D.; Novitski, R.; Romanenko, A.; Schuessler, R.; /Fermilab

    2010-07-01

    A broad range of coupon electropolishing experiments are described to ascertain the mechanism(s) by which large defects are formed near superconducting radiofrequency (SRF) cavity welds. Cold-worked vs. annealed metal, the presence of a weld, and several variations of electropolishing (EP) parameters were considered. Pitting is strongly promoted by cold work and agitation of the EP solution. Welding also promotes pitting, but less so compared with the other factors above. Temperature increase during EP did not strongly affect glossiness or pitting, but the reduced viscosity made the electrolyte more susceptible to agitation. The experiments suggest that several factors that are rather benign alone are combined by the cavity forming, welding, and processing sequence to promote the formation of defects such as pits. Process changes to mitigate these risks are discussed.

  20. Influence of electropolishing current densities on sulfur generation at niobium surface

    NASA Astrophysics Data System (ADS)

    Tyagi, P. V.; Nishiwaki, M.; Noguchi, T.; Sawabe, M.; Saeki, T.; Hayano, H.; Kato, S.

    2013-11-01

    We report the effect of different current densities on sulfur generation at Nb surface in the electropolishing (EP) with aged electrolyte. In this regard, we conducted a series of electropolishing (EP) experiments in aged EP electrolyte with high (≈50 mA/cm2) and low (≈30 mA/cm2) current densities on Nb surfaces. The experiments were carried out both for laboratory coupons and a real Nb single cell cavity with six witness samples located at three typical positions (equator, iris and beam pipe). Sample's surfaces were investigated by XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy). The surface analysis showed that the EP with a high current density produced a huge amount of sulfate/sulfite particles at Nb surface whereas the EP with a low current density was very helpful to mitigate sulfate/sulfite at Nb surface in both the experiments.

  1. Combined effects of different heat treatments and Cu element on transformation behavior of NiTi orthodontic wires.

    PubMed

    Seyyed Aghamiri, S M; Ahmadabadi, M Nili; Raygan, Sh

    2011-04-01

    The shape memory nickel-titanium alloy has been applied in many fields due to its unique thermal and mechanical performance. One of the successful applications of NiTi wires is in orthodontics because of its good characteristics such as low stiffness, high spring back, high stored energy, biocompatibility, superelasticity and shape memory effect. The mechanical properties of wires are paid special attention which results in achieving continuous optimal forces and eventually causing rapid tooth movement without any damage. The behavior of the alloy can be controlled by chemical composition and thermo-mechanical treatment during the manufacturing process. In this study two kinds of commercial superelastic NiTi archwires of 0.41 mm diameter were investigated: Copper NiTi and Highland Metal. The chemical analysis of both wires was estimated by energy dispersive spectroscopy (EDS). It was showed that Copper NiTi wire contained copper and chromium. The two types of wires were exposed to different heat treatment conditions at 400 and 500 °C for 10 and 60 min to compare the behavior of the wires at aged and as-received conditions. Phase transformation temperatures clarified by differential scanning calorimetry (DSC) showed B2 <--> R <--> B19 transformation in Highland Metal wire and B2 <--> B19(') transformation in Copper NiTi wire. Three point bending (TPB) tests in the certain designed fixture were performed at 37 °C to evaluate the mechanical behavior of the wires. The experimental results revealed the superelastic behavior of the Highland Metal wire after 60 min ageing at 400 and 500 °C and the plastic deformation of the Copper NiTi wire after annealing due to the effect of copper in the alloy composition.

  2. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    SciTech Connect

    BastaniNejad, Mahzad Elmustafa, Abdelmageed A.; Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew; Das, Lopa; Kelley, Michael; Williams, Phillip

    2015-07-15

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (∼nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolished by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The authors speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.

  3. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    SciTech Connect

    BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.; Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew; Das, Lopa; Kelley, Michael; Williams, Phillip

    2015-07-01

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (~nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolished by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.

  4. Removal of Long-Lived Radon Daughters by Electropolishing Thin Layers of Stainless Steel

    NASA Astrophysics Data System (ADS)

    White, James; Schnee, Richard; Bunker, Raymond; Bowles, Michael; Cushman, Priscilla; Epland, Matthew; Pepin, Mark; Guiseppe, Vince

    2012-10-01

    Long-lived alpha and beta emitters in the Radon decay chain on detector surfaces may be limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay. To screen detector surfaces for this radioactive contamination, a low-radiation, multi-wire proportional chamber (the BetaCage) is under construction. Removal of Pb-210 implanted on its 25-micron stainless steel wires without causing significant variation in the diameter of the wires is critical to the BetaCage's ultimate sensitivity. An apparatus to perform electropolishing trials to remove roughly a micron of material has been assembled. These trials have shown promising results. Stainless steel square samples implanted with Pb-210 have shown counts with a reduction factor greater than 10 after electropolishing according to gamma assay. Furthermore, alpha counting has produced similar results, with a reduction factor greater than 100. Lastly, the diameters of wires after electropolishing have remained sufficiently uniform, with reduction in thickness consistent with expectations.

  5. Thin NiTi Films Deposited on Graphene Substrates

    NASA Astrophysics Data System (ADS)

    Hahn, S.; Schulze, A.; Böhme, M.; Hahn, T.; Wagner, M. F.-X.

    2017-03-01

    We present experimental results on the deposition of Nickel Titanium (NiTi) films on graphene substrates using a PVD magnetron sputter process. Characterization of the 2-4 micron thick NiTi films by electron microscopy, electron backscatter diffraction, and transmission electron microscopy shows that grain size and orientation of the thin NiTi films strongly depend on the type of combination of graphene and copper layers below. Our experimental findings are supported by density functional theory calculations: a theoretical estimation of the binding energies of different NiTi-graphene interfaces is in line with the experimentally determined microstructural features of the functional NiTi top layer.

  6. Thin NiTi Films Deposited on Graphene Substrates

    NASA Astrophysics Data System (ADS)

    Hahn, S.; Schulze, A.; Böhme, M.; Hahn, T.; Wagner, M. F.-X.

    2016-12-01

    We present experimental results on the deposition of Nickel Titanium (NiTi) films on graphene substrates using a PVD magnetron sputter process. Characterization of the 2-4 micron thick NiTi films by electron microscopy, electron backscatter diffraction, and transmission electron microscopy shows that grain size and orientation of the thin NiTi films strongly depend on the type of combination of graphene and copper layers below. Our experimental findings are supported by density functional theory calculations: a theoretical estimation of the binding energies of different NiTi-graphene interfaces is in line with the experimentally determined microstructural features of the functional NiTi top layer.

  7. An original architectured NiTi silicone rubber structure for biomedical applications.

    PubMed

    Rey, T; Le Cam, J-B; Chagnon, G; Favier, D; Rebouah, M; Razan, F; Robin, E; Didier, P; Heller, L; Faure, S; Janouchova, K

    2014-12-01

    This paper deals with composite structures for biomedical applications. For this purpose, an architectured tubular structure composed of Nickel Titanium (NiTi) Shape Memory Alloy (SMA) and silicone rubber was fabricated. One of the main interests of such structures is to ensure a good adhesion between its two constitutive materials. A previous study of the authors (Rey et al., 2014) has shown that the adhesion between NiTi and silicone rubber can be improved by an adhesion promoter or plasma treatment. However, adhesion promoters are often not biocompatible. Hence, plasma treatment is favored to be used in the present study. Three different gases were tested; air, argon and oxygen. The effects of these treatments on the maximum force required to pull-out a NiTi wire from the silicone rubber matrix were investigated by means of pull-out tests carried out with a self-developed device. Among the three gases, a higher maximum force was obtained for argon gas in the plasma treatment. A tube shaped architectured NiTi/silicone rubber structure was then produced using this treatment. The composite was tested by means of a bulge test. Results open a new way of investigations for architectured NiTi-silicone structures for biomechanical applications.

  8. Biocompatilibity-related surface characteristics of oxidized NiTi.

    PubMed

    Danilov, Anatoli; Tuukkanen, Tuomas; Tuukkanen, Juha; Jämsä, Timo

    2007-09-15

    In the present study, we examined the effect of NiTi oxidation on material surface characteristics related to biocompatibility. Correspondence between electron work function (EWF) and adhesive force predicted by electron theory of adsorption as well as the effect of surface mechanical stress on the adhesive force were studied on the nonoxidized and oxidized at 350, 450, and 600 degrees C NiTi alloy for medical application. The adhesive force generated by the material surface towards the drops of alpha-minimal essential medium (alpha-MEM) was used as a characteristic of NiTi adsorption properties. The study showed that variations in EWF and mechanical stress caused by surface treatment were accompanied by variations in adhesive force. NiTi oxidation at all temperatures used gave rise to decrease in adhesive force and surface stress values in comparison to the nonoxidized state. In contrary, the EWF value revealed increase under the same condition. Variations in surface oxide layer thickness and its phase composition were also followed. The important role of oxide crystallite size in EWF values within the range of crystallite dimensions typical for NiTi surface oxide as an instrument for the fine regulation of NiTi adsorption properties was demonstrated. The comparative oxidation of pure titanium and NiTi showed that the effect of Ni on the EWF value of NiTi surface oxide is negligible.

  9. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    DOE PAGES

    BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.; Forman, Eric; ...

    2015-07-01

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (~nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolishedmore » by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.« less

  10. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  11. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  12. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires

    NASA Astrophysics Data System (ADS)

    Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.

    2016-12-01

    Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.

  13. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-04-06

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen.

  14. Use of electropolishing for enhanced metallic specimen preparation for electron backscatter diffraction analysis

    SciTech Connect

    Wynick, G.L.; Boehlert, C.J. . E-mail: boehlert@egr.msu.edu

    2005-09-15

    The effects of mechanical polishing with Al{sub 2}O{sub 3} and colloidal SiO{sub 2} followed by electropolishing were studied for preparation of metal alloy specimens for Electron Backscatter Diffraction (EBSD). The alloys studied were Inconel 718, a commonly used nickel-based superalloy, and a Ti-Al-Nb alloy (nominally Ti-22Al-28Nb(at.%)). Atomic Force Microscopy was used to measure the surface topography to attempt to correlate nano-scale surface roughness with EBSD pattern quality. The results suggest that mechanically polishing with Al{sub 2}O{sub 3} followed by electropolishing for a short time can produce EBSD pattern confidence indices and image quality values that are equal to or better than those produced by mechanically polishing with colloidal SiO{sub 2} alone. The data suggests that surface roughness on the scale considered here has much less effect on EBSD pattern quality than had been previously believed. The data suggests that removing the surface damage is more critical than reduction of topography for EBSD.

  15. Electro and Magneto-Electropolished Surface Micro-Patterning on Binary and Ternary Nitinol

    PubMed Central

    Munroe, Norman; McGoron, Anthony

    2012-01-01

    In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS), Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 × 800 nm) to (115 × 115μm), and (800 × 800 nm) to (40 × 40 μm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 × 115 μm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns. PMID:22754200

  16. Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin-Manson approach

    NASA Astrophysics Data System (ADS)

    Maletta, C.; Sgambitterra, E.; Furgiuele, F.; Casati, R.; Tuissi, A.

    2012-11-01

    Strain controlled fatigue tests of a pseudoelastic nickel-titanium (NiTi) shape memory alloy (SMA) have been carried out in this investigation. In particular, flat dog-bone shaped specimens, obtained from commercial NiTi sheets, have been analyzed, under pull-pull loading conditions, in two subsequent steps: (i) material stabilization and (ii) fatigue life estimation. The first step was carried out to obtain a stable pseudoelastic response of the SMA, i.e. with no residual deformations upon unloading, and it can be regarded as a preliminary processing condition of the alloy. Results on functional fatigue, i.e. in terms of stabilized pseudoelastic response, and on structural fatigue, in terms of cycles to failure, are reported and discussed. Furthermore, a modified Coffin-Manson approach for fatigue life estimation of SMAs is proposed, which takes into account the strain mechanisms involved during repeated stress-induced martensitic transformations.

  17. Aluminum-matrix composites with embedded Ni-Ti wires by ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Hahnlen, Ryan; Dapino, Marcelo J.; Short, Matt; Graff, Karl

    2009-03-01

    [Smart Vehicle Workshop] This paper presents the development of active aluminum-matrix composites manufactured by Ultrasonic Additive Manufacturing (UAM), an emerging rapid prototyping process based on ultrasonic metal welding. Composites created through UAM experience process temperatures as low as 20°C, in contrast to current metal-matrix fabrication processes which require fusion of materials and hence reach temperatures of 500°C and above. UAM thus creates unprecedented opportunities to develop adaptive structures with seamlessly embedded smart materials and electronic components without degrading the properties that make embedding these materials and components attractive. This research focuses on three aspects of developing UAM Ni-Ti/Al composites which have not been accomplished before: (i) Characterization of the mechanical properties of the composite matrix; (ii) Investigation of Ni-Ti/Al composites as tunable stiffness materials and as strain sensors based on the shape memory effect; and (iii) Development of constitutive models for UAM Ni-Ti/Al composites. The mechanical characterization shows an increase in tensile strength of aluminum UAM builds over the parent material (Al 3003-H18), likely due to grain refinement caused by the UAM process. We demonstrate the ability to embed Ni-Ti wires up to 203 μm in diameter in an aluminum matrix, compared with only 100 μm in previous studies. The resulting Ni-Ti/Al UAM composites have cross sectional area ratios of up to 13.4% Ni-Ti. These composites exhibit a change in stiffness of 6% and a resistivity change of -3% when the Ni- Ti wires undergo martensite to austenite transformation. The Ni-Ti area ratios and associated strength of the shape memory effect are expected to increase as the UAM process becomes better understood and is perfected. The Brinson constitutive model for shape memory transformations is used to describe the stiffness and the strain sensing of Ni-Ti/Al composites in response to

  18. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting.

    PubMed

    Taheri Andani, Mohsen; Saedi, Soheil; Turabi, Ali Sadi; Karamooz, M R; Haberland, Christoph; Karaca, Haluk Ersin; Elahinia, Mohammad

    2017-04-01

    Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression. The stiffness and residual plastic strain of porous NiTi were found to depend highly on the pore shape and the level of porosity. Since porous NiTi structures have lower elastic modulus and density than dense NiTi with still good shape memory properties, they are promising materials for lightweight structures, energy absorbers, and biomedical implants.

  19. The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2013-01-01

    Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.

  20. Atomistic Modeling of Pd Site Preference in NiTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    An analysis of the site subsitution behavior of Pd in NiTi was performed using the BFS method for alloys. Through a combination of Monte Carlo simulations and detailed atom-by-atom energetic analyses of various computational cells, representing compositions of NiTi with up to 10 at% Pd, a detailed understanding of site occupancy of Pd in NiTi was revealed. Pd subsituted at the expense of Ni in a NiTi alloy will prefer the Ni-sites. Pd subsituted at the expense of Ti shows a very weak preference for Ti-sites that diminishes as the amount of Pd in the alloy increases and as the temperature increases.

  1. Nonequiatomic NiTi Alloy Produced by Self Propagating High Temperature Synthesis

    NASA Astrophysics Data System (ADS)

    Bassani, P.; Bassani, E.; Tuissi, A.; Giuliani, P.; Zanotti, C.

    2014-07-01

    Shape memory alloy NiTi in porous form is of high interest as implantable material, as low apparent elastic modulus, comparable to that of bone, can be achieved. This condition, combined with proper pore size, allows good osteointegration. Porous NiTi can be produced by self propagating high temperature synthesis (SHS), starting from mixed powders of pure Ni and Ti. Process parameters, among which powder compaction degree and preheating temperature, strongly influence the reaction temperature and the resulting product: at low reaction temperatures, high quantity of secondary phases are formed, which are generally considered detrimental for biocompatibility. On the contrary, at higher reaction temperatures, the powders melt and crystallize in ingots. The porous structure is lost and huge pores are formed. Mechanical activation of powders through ball milling and addition of TiH x are investigated as means to reduce reaction temperature and overheating, in order to preserve high porosity and limit secondary phases content. Both processes affect SHS reaction, and require adjustment of parameters such as heating rate. Changes in porous shape and size were observed especially for TiH x additions: the latter could be a promising route to obtain shaped porous products of improved quality.

  2. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    SciTech Connect

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  3. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    DOE PAGES

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; ...

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granulesmore » with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less

  4. In situ X-ray nanotomography of metal surfaces during electropolishing

    PubMed Central

    Nave, Maryana I.; Allen, Jason P.; Karen Chen-Wiegart, Yu-chen; Wang, Jun; Kalidindi, Surya R.; Kornev, Konstantin G.

    2015-01-01

    A low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. It is shown that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte. It is discovered that the kinetics of shell growth at the triple line, where meniscus meets the wire, is very different from that of the bulk of electrolyte. Many metals follow similar electrochemical transformations hence the discovered morphological transformations of metal surfaces are expected to play significant role in many natural and technological applications. PMID:26469184

  5. In situ X-ray nanotomography of metal surfaces during electropolishing

    SciTech Connect

    Nave, Maryana I.; Allen, Jason P.; Karen Chen-Wiegart, Yu-chen; Wang, Jun; Kalidindi, Surya R.; Kornev, Konstantin G.

    2015-10-15

    A low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. We show that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte. We discovered that the kinetics of shell growth at the triple line, where meniscus meets the wire, is very different from that of the bulk of electrolyte. Many metals follow similar electrochemical transformations hence the discovered morphological transformations of metal surfaces are expected to play significant role in many natural and technological applications.

  6. In situ X-ray nanotomography of metal surfaces during electropolishing

    DOE PAGES

    Nave, Maryana I.; Allen, Jason P.; Karen Chen-Wiegart, Yu-chen; ...

    2015-10-15

    A low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. We show that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte. We discovered that the kinetics of shell growth at the triple line,more » where meniscus meets the wire, is very different from that of the bulk of electrolyte. Many metals follow similar electrochemical transformations hence the discovered morphological transformations of metal surfaces are expected to play significant role in many natural and technological applications.« less

  7. Annealing to Mitigate Pitting in Electropolished Niobium Coupons and SRF Cavities

    SciTech Connect

    Cooley, L.D.; Hahn, E.; Hicks, D.; Romanenko, A.; Schuessler, R.; Thompson, C.; /Fermilab

    2011-06-08

    Ongoing studies at Fermilab investigate whether dislocations and other factors instigate pitting during cavity electropolishing (EP), despite careful processing controls and the inherent leveling mechanism of EP itself. Here, cold-worked niobium coupons, which exhibited increased tendencies for pitting in our past study, were annealed in a high vacuum furnace and subsequently processed by EP. Laser confocal scanning microscopy and special defect counting algorithms were used to assess the population of pits formed. Hardness measurements indicated that annealing for 2 hours at 800 C produced recovery, whereas annealing for 12 hours at 600 C did not, as is consistent with known changes for cavities annealed in a similar way. The 800 C anneal was effective in some cases but not others, and we discuss reasons why tendencies for pitting remain. We discuss implications for cavities and continued work to understand pitting.

  8. In situ X-ray nanotomography of metal surfaces during electropolishing

    NASA Astrophysics Data System (ADS)

    Nave, Maryana I.; Allen, Jason P.; Karen Chen-Wiegart, Yu-Chen; Wang, Jun; Kalidindi, Surya R.; Kornev, Konstantin G.

    2015-10-01

    A low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. It is shown that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte. It is discovered that the kinetics of shell growth at the triple line, where meniscus meets the wire, is very different from that of the bulk of electrolyte. Many metals follow similar electrochemical transformations hence the discovered morphological transformations of metal surfaces are expected to play significant role in many natural and technological applications.

  9. SURFACE CHARACTERIZATION OF NIOBIUM SAMPLES ELECTRO-POLISHED TOGETHER WITH REAL CAVITIES

    SciTech Connect

    Zhao, Xin; Geng, Rongli; Funahashi, Y.; Hayano, H.; Kato, S.; Nishiwaki, M.; Saeki, T.; Sawabe, M.; Ueno, K.; Watanabe, K.; Tyagi, P. V.

    2009-11-01

    We report the results of surface characterizations of niobium samples electropolished together with single cell cavities. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive x-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulphur (S) were found covering the samples non-uniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulphur.

  10. Stress serration and arch-shaped Lüders stress plateau behaviour of Ti-50.8 at% Ni wire prepared by selective electrical resistance over-aging

    NASA Astrophysics Data System (ADS)

    Meng, Qinglin; Wu, Zhigang; Bakhtiari, Reza; Zhang, Junsong; Yang, Hong; Liu, Yinong

    2016-11-01

    Joule heating of NiTi shape memory alloy wires is a commonly applied technique for heat treatment and shape setting in many applications. Another innovative use of this method is to produce functionally graded NiTi. In this study, NiTi wires with spatially varied shape memory characteristics along the length were created by electrical resistance over-aging of a Ni-rich superelastic NiTi alloy. The stress-strain behaviour of such wires exhibited some new and unique characteristics during the stress-induced martensitic transformation, including two discrete stress plateaus, stress serration during transition between the two stress plateaus and an arch-shaped stress plateau in the over-aged section. These unique features have direct implications to design using NiTi alloys and the underlying mechanisms are explained in this study.

  11. Effect of Particle Size of Titanium and Nickel on the Synthesis of NiTi by TE-SHS

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Veselý, Tomáš; Marek, Ivo; Dvořák, Petr; Vojtěch, Vladimír; Salvetr, Pavel; Karlík, Miroslav; Haušild, Petr; Kopeček, Jaromír

    2016-04-01

    In this work, the influence of the particle size of nickel and titanium on the synthesis of NiTi shape memory alloy by self-propagating high-temperature synthesis (SHS) was investigated. It was found that coarse titanium and nickel powders undergo only a limited SHS reaction. On the other hand, too fine powders support the low-temperature diffusional formation of NiTi intermetallics at 773 K to 1073 K (500 °C to 800 °C) which could then suppress the SHS reaction. The optimum powder fraction of both nickel and titanium to achieve the most intensive SHS reaction is 25 to 45 µm. The influence of the particle size of both nickel and titanium on the reaction mechanism is discussed in terms of the microstructure evolution, phase, and chemical composition changes and thermal effects determined by differential thermal analysis.

  12. Surface amorphization of NiTi alloy induced by Ultrasonic Nanocrystal Surface Modification for improved mechanical properties.

    PubMed

    Ye, Chang; Zhou, Xianfeng; Telang, Abhishek; Gao, Hongyu; Ren, Zhencheng; Qin, Haifeng; Suslov, Sergey; Gill, Amrinder S; Mannava, S R; Qian, Dong; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Vasudevan, Vijay K

    2016-01-01

    We report herein the effects of Ultrasonic Nano-crystal Surface Modification (UNSM), a severe surface plastic deformation process, on the microstructure, mechanical (hardness, wear), wettability and biocompatibility properties of NiTi shape memory alloy. Complete surface amorphization of NiTi was achieved by this process, which was confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The wear resistance of the samples after UNSM processing was significantly improved compared with the non-processed samples due to increased surface hardness of the alloy by this process. In addition, cell culture study demonstrated that the biocompatibility of the samples after UNSM processing has not been compromised compared to the non-processed sample. The combination of high wear resistance and good biocompatibility makes UNSM an appealing process for treating alloy-based biomedical devices.

  13. Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers

    PubMed Central

    Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan

    2009-01-01

    Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225

  14. Basic Electropolishing Process Research and Development in Support of Improved Reliable Performance SRF Cavities for the Future Accelerator

    SciTech Connect

    H. Tian, C.E. Reece,M.J. Kelley

    2009-05-01

    Future accelerators require unprecedented cavity performance, which is strongly influenced by interior surface nanosmoothness. Electropolishing is the technique of choice to be developed for high-field superconducting radiofrequency cavities. Electrochemical impedance spectroscopy (EIS) and related techniques point to the electropolishing mechanism of Nb in a sulfuric and hydrofluoric acid electrolyte of controlled by a compact surface salt film under F- diffusion-limited mass transport control. These and other findings are currently guiding a systematic characterization to form the basis for cavity process optimization, such as flowrate, electrolyte composition and temperature. This integrated analysis is expected to provide optimum EP parameter sets for a controlled, reproducible and uniform surface leveling for Nb SRF cavities.

  15. Understanding the Shape-Memory Alloys Used in Orthodontics

    PubMed Central

    Fernandes, Daniel J.; Peres, Rafael V.; Mendes, Alvaro M.; Elias, Carlos N.

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA. PMID:21991455

  16. Understanding the shape-memory alloys used in orthodontics.

    PubMed

    Fernandes, Daniel J; Peres, Rafael V; Mendes, Alvaro M; Elias, Carlos N

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA.

  17. Linking simulations and experiments for the multiscale tracking of thermally induced martensitic phase transformation in NiTi SMA

    NASA Astrophysics Data System (ADS)

    Gur, Sourav; Frantziskonis, George N.

    2016-10-01

    Martensitic phase transformation in NiTi shape memory alloys (SMA) occurs over a hierarchy of spatial scales, as evidenced from observed multiscale patterns of the martensitic phase fraction, which depend on the material microstructure and on the size of the SMA specimen. This paper presents a methodology for the multiscale tracking of the thermally induced martensitic phase transformation process in NiTi SMA. Fine scale stochastic phase field simulations are coupled to macroscale experimental measurements through the compound wavelet matrix method (CWM). A novel process for obtaining CWM fine scale wavelet coefficients is used that enhances the effectiveness of the method in transferring uncertainties from fine to coarse scales, and also ensures the preservation of spatial correlations in the phase fraction pattern. Size effects, well-documented in the literature, play an important role in designing the multiscale tracking methodology. Molecular dynamics (MD) simulations are employed to verify the phase field simulations in terms of different statistical measures and to demonstrate size effects at the nanometer scale. The effects of thermally induced martensite phase fraction uncertainties on the constitutive response of NiTi SMA is demonstrated.

  18. Removal of tarnishing and roughness of copper surface by electropolishing treatment

    NASA Astrophysics Data System (ADS)

    Awad, A. M.; Ghany, N. A. Abdel; Dahy, T. M.

    2010-04-01

    Tarnishing and roughness of copper surface can be removed by electropolishing treatment (EP) imparting a bright and smooth surface at suitable conditions, e.g. current density, time, temperature, and viscosity. It was carried out by using an electrolytic cell containing phosphoric acid 55% as the electrolytic solution. Both copper working electrode and lead counter electrode, and reference electrode (SCE) were connected to a Potentiostat/Galvanostat to allow an electric current to pass through the solution. Some additives such as soluble starch, ethylene glycol, and methanol were added to reduce defects formed on the copper surface during EP process. The results showed that the highest gloss value was obtained by applying electric potential 1.5 V at the passive region of polarization curve. The surface was investigated after EP treatment, where SEM and EDX showed lower roughness in case of addition of both soluble starch and ethylene glycol more than methanol. Moreover, AFM analysis showed the lowest roughness in case of soluble starch more than other additives.

  19. Surface analyses of electropolished niobium samples for superconducting radio frequency cavity

    SciTech Connect

    Tyagi, P. V.; Nishiwaki, M.; Saeki, T.; Sawabe, M.; Hayano, H.; Noguchi, T.; Kato, S.

    2010-07-15

    The performance of superconducting radio frequency niobium cavities is sometimes limited by contaminations present on the cavity surface. In the recent years extensive research has been done to enhance the cavity performance by applying improved surface treatments such as mechanical grinding, electropolishing (EP), chemical polishing, tumbling, etc., followed by various rinsing methods such as ultrasonic pure water rinse, alcoholic rinse, high pressure water rinse, hydrogen per oxide rinse, etc. Although good cavity performance has been obtained lately by various post-EP cleaning methods, the detailed nature about the surface contaminants is still not fully characterized. Further efforts in this area are desired. Prior x-ray photoelectron spectroscopy (XPS) analyses of EPed niobium samples treated with fresh EP acid, demonstrated that the surfaces were covered mainly with the niobium oxide (Nb{sub 2}O{sub 5}) along with carbon, in addition a small quantity of sulfur and fluorine were also found in secondary ion mass spectroscopy (SIMS) analysis. In this article, the authors present the analyses of surface contaminations for a series of EPed niobium samples located at various positions of a single cell niobium cavity followed by ultrapure water rinsing as well as our endeavor to understand the aging effect of EP acid solution in terms of contaminations presence at the inner surface of the cavity with the help of surface analytical tools such as XPS, SIMS, and scanning electron microscope at KEK.

  20. Studies on the Electro-Polishing process with Nb sample plates at KEK

    SciTech Connect

    Saeki, Takayuki; Funahashi, Y.; Hayano, Hitoshi; Kato, Seigo; Nishiwaki, Michiru; Sawabe, Motoaki; Ueno, Kenji; Watanabe, K.; Clemens, William A.; Geng, Rongli; Manus, Robert L.; Tyagi, Puneet

    2009-11-01

    In this article, two subjects would be described. the first subject is on the production of stains on the surface of Nb sample plates in Electro-polishing (EP) process and the second subject is on the development of defects/pits in the EP process on the surface of a Nb sample plate. Recently, some 9-cell cavities were treated with new EP acid at KEK and the performance of these cavities were limited by heavy field emissions. On the inside surface of these cavities, brown stains were observed. We made an effort to reproduce the brown stains on Nb sample plates with an EP setup in laboratory with varying the concentration of Nibium in the EP acid. We found that the brown stains would appear only when processed with new EP acid. In the second subject, we made artificial pits on the surface of a Nb-sample plate and observed the development of the pits after each step of 30um-EP process where 120um was removed in total by the EP process. This article describes these series EP-tests with Nb sample plates at KEK.

  1. Influence of Electropolishing and Magnetoelectropolishing on Corrosion and Biocompatibility of Titanium Implants

    NASA Astrophysics Data System (ADS)

    Rahman, Zia ur; Pompa, Luis; Haider, Waseem

    2014-11-01

    Titanium alloys are playing a vital role in the field of biomaterials due to their excellent corrosion resistance and biocompatibility. These alloys enhance the quality and longevity of human life by replacing or treating various parts of the body. However, as these materials are in constant contact with the aggressive body fluids, corrosion of these alloys leads to metal ions release. These ions leach to the adjacent tissues and result in adverse biological reactions and mechanical failure of implant. Surface modifications are used to improve corrosion resistance and biological activity without changing their bulk properties. In this investigation, electropolishing and magnetoelectropolishing were carried out on commercially pure titanium, Ti6Al4V, and Ti6Al4V-ELI. These surface modifications are known to effect surface charge, chemistry, morphology; wettability, corrosion resistance, and biocompatibility of these materials. In vitro cyclic potentiodynamic polarization tests were conducted in phosphate buffer saline in compliance with ASTM standard F-2129-12. The surface morphology, roughness, and wettability of these alloys were studied using scanning electron microscope, atomic force microscope, and contact angle meter, respectively. Moreover, biocompatibility of titanium alloys was assessed by growing MC3T3 pre-osteoblast cells on them.

  2. Ab initio simulations of phase stability and martensitic transitions in NiTi

    NASA Astrophysics Data System (ADS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-12-01

    For NiTi-based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. We show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing phase transformation temperatures is discussed.

  3. The effect of heating rate on the surface chemistry of NiTi.

    PubMed

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate.

  4. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    Atomistic modeling of the site substitution behavior of Pd in NiTi (J. Alloys and Comp. (2004), in press) has been extended to examine the behavior of several other alloying additions, namely, Fe, Pt, Au, Al, Cu, Zr and Hf in this important shape memory alloy. It was found that all elements, to a varying degree, displayed absolute preference for available sites in the deficient sublattice. How- ever, the energetics of the different substitutional schemes, coupled with large scale simulations indicate that the general trend in all cases is for the ternary addition to want to form stronger ordered structures with Ti.

  5. Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Kurt; Tušek, Jaka; Sanna, Simone; Eriksen, Dan; Mishin, Oleg V.; Bahl, Christian R. H.; Pryds, Nini

    2016-06-01

    Elastocaloric cooling has emerged as a promising alternative to vapor compression in recent years. Although the technology has the potential to be more efficient than current technologies, there are many technical challenges that must be overcome to realize devices with high performance and acceptable durability. We study the effects of surface finish and training techniques on dog bone shaped polycrystalline samples of NiTi. The fatigue life of several samples with four different surface finishes was measured and it was shown that a smooth surface, especially at the edges, greatly improved fatigue life. The effects of training both on the structure of the materials and the thermal response to an applied strain was studied. The load profile for the first few cycles was shown to change the thermal response to strain, the structure of the material at failure while the final structure of the material was weakly influenced by the surface finish.

  6. Fabrication of a helical coil shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Odonnell, R. E.

    1992-02-01

    A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the 'memory' of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.

  7. Fabrication of a helical coil shape memory alloy actuator

    SciTech Connect

    O'Donnell, R.E.

    1992-02-01

    A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the memory'' of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.

  8. Fabrication of a helical coil shape memory alloy actuator

    SciTech Connect

    O`Donnell, R.E.

    1992-02-01

    A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the ``memory`` of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.

  9. Preparation and Annealing-Induced Structural Transition of Self-Organized Nanostripes on the Electropolished Aluminium Surface

    NASA Astrophysics Data System (ADS)

    Guo, Deng-Zhu; Hou, Shi-Min; Shen, Zi-Yong; Zhao, Xing-Yu; Liu, Wei-Min; Xue, Zeng-Quan

    2002-03-01

    Self-organized nanostripe patterns with a wavelength of 100 nm and an amplitude of 4-5 nm were formed on the surface of high-purity aluminium by electropolishing. The thermal stability of the nanostripe patterns was investigated experimentally by using a needle-sensor atomic force microscope in an ultra-high vacuum after annealing the sample in a high vacuum. We found that the originally highly ordered nanostripe structures transformed into many domains separated by various boundaries, and different nanostripe patterns formed, the belt-like boundaries especially formed ``cross'' patterns on the surface. We also found that the vacuum annealing had the tendency to efface the nanostripe structures.

  10. Mechanical Behavior of a NiTi Endodontic File During Insertion in an Anatomic Root Canal Using Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Legrand, V.; Moyne, S.; Pino, L.; Arbab Chirani, S.; Calloch, S.; Chevalier, V.; Arbab Chirani, R.

    2015-12-01

    Superelastic NiTi shape memory alloys (SMA) have biomedical applications including rotary endodontic files. These alloys are used thanks to their flexibility, which is due to solid-solid martensitic transformation. Unfortunately, the intracanal file separation can occur during canal preparation. To avoid this problem and to have a good idea of the mechanical behavior of these instruments, finite elements simulations taking into account the real shape of root canals are proposed in this study. This is possible by using a well-adapted model describing all the particularities of SMA and representative limit conditions. The behavior model has been validated in previous studies under complex loadings. It is implemented in ABAQUS® finite elements software. The anatomic shapes of root canals are extracted by microtomography using a real tooth. They are applied as limit conditions in realized simulations to be as near as possible to clinical conditions. The mechanical behavior of an endodontic file is then simulated during insertion in a root canal without and with rotation. This permits to obtain different information like the loading applied to the instrument during its use, the stress, and the phase transformation fields through the file. This is useful not only for clinical use but also for new NiTi endodontic instruments design.

  11. Grain size effect on mechanical performance of nanostructured superelastic NiTi alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2017-03-01

    The mechanical performance of superelastic NiTi with various grain sizes (GSs) in nanocrystalline regime (GS  <  30 nm) are investigated. With the help of digital image correlation, both global and local mechanical responses of NiTi during quasi-static test and fatigue cycling are recorded. If GS is below 14 nm, NiTi deforms homogenously; if GS is above 14 nm, NiTi deforms in a heterogeneous manner. The mechanical response, the fatigue life, the dissipation energy and the resistance to the dissipation energy degradation of nanostructured NiTi are addressed and analyzed. The results indicate that the mechanical performance of NiTi can be designed and optimized by controlling GS in a moderate regime.

  12. Buffered Electropolishing – A New Way for Achieving Extremely Smooth Surface Finish on Nb SRF Cavities to be Used in Particle Accelerators

    SciTech Connect

    Hui Tian, Charles Reece, Michael Kelley

    2009-05-01

    Future accelerators require unprecedented cavity performance, which is strongly influenced by interior surface nano-smoothness. Electropolishing (EP) is the technique of choice to be developed for high-field superconducting radio frequency (SRF) cavities. Electrochemical impedance spectroscopy (EIS) and related techniques point to the electropolishing mechanism of Nb in a sulphuric and hydrofluoric acid electrolyte controlled by a compact surface salt film under F- diffusion-limited mass transport control. These and other findings are guiding a systematic characterization to form the basis for cavities process optimization.

  13. Porous shape memory alloy scaffolds for biomedical applications: a review

    NASA Astrophysics Data System (ADS)

    Wen, C. E.; Xiong, J. Y.; Li, Y. C.; Hodgson, P. D.

    2010-05-01

    The interest in using porous shape memory alloy (SMA) scaffolds as implant materials has been growing in recent years due to the combination of their unique mechanical and functional properties, i.e. shape memory effect and superelasticity, low elastic modulus combined with new bone tissue ingrowth ability and vascularization. These attractive properties are of great benefit to the healing process for implant applications. This paper reviews current state-of-the art on the processing, porous characteristics and mechanical properties of porous SMAs for biomedical applications, with special focus on the most widely used SMA nickel-titanium (NiTi), including (i) microstructural features, mechanical and functional properties of NiTi SMAs; (ii) main processing methods for the fabrication of porous NiTi SMAs and their mechanical properties and (iii) new-generation Ni-free, biocompatible porous SMA scaffolds.

  14. Sulfuric acid-methanol electrolytes as an alternative to sulfuric-hydrofluoric acid mixtures for electropolishing of niobium

    SciTech Connect

    Zhao, Xin; Corcoran, Sean G.; Kelley, Michael J.

    2011-06-01

    Attainment of the greatest possible interior surface smoothness is critical to meeting the performance demands placed upon niobium superconducting radiofrequency (SRF) accelerator cavities by next generation projects. Electropolishing with HF-H{sub 2}SO{sub 4} electrolytes yields cavities that meet SRF performance goals, but a less-hazardous, more environmentally-friendly process is desirable. Reported studies of EP on chemically-similar tantalum describe the use of sulfuric acid-methanol electrolytes as an HF-free alternative. Reported here are the results of experiments on niobium samples with this electrolyte. Voltammetry experiments indicate a current plateau whose voltage range expands with increasing acid concentration and decreasing temperature. Impedance spectroscopy indicates that a compact salt film is responsible for the current plateau. Equivalent findings in electropolishing chemically-similar tantalum with this electrolyte were interpreted due to as mass transfer limitation by diffusion of Ta ions away from the anode surface. We infer that a similar mechanism is at work here. Conditions were found that yield leveling and brightening comparable to that obtained with HF-H{sub 2}SO{sub 4} mixtures.

  15. Effects of magnetic field on the shape memory behavior of single and polycrystalline magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Turabi, Ali Sadi

    Shape memory alloys and polymers have been extensively researched recently because of their unique ability to recover large deformations. Shape memory polymers (SMPs) are able to recover large deformations compared to shape memory alloys (SMAs), although SMAs have higher strength and are able to generate more stress during recovery. This project focuses on procedure for fabrication and Finite Element Modeling (FEM) of a shape memory composite actuator. First, SMP was characterized to reveal its mechanical properties. Specifically, glass transition temperature, the effects of temperature and strain rate on compressive response and recovery properties of shape memory polymer were studied. Then, shape memory properties of a NiTi wire, including transformation temperatures and stress generation, were investigated. SMC actuator was fabricated by using epoxy based SMP and NiTi SMA wire. Experimental tests confirmed the reversible behavior of fabricated shape memory composites. (Abstract shortened by ProQuest.).

  16. Effect of Post Weld Heat Treatment on Mechanical and Corrosion Behaviors of NiTi and Stainless Steel Laser-Welded Wires

    NASA Astrophysics Data System (ADS)

    Mirshekari, G. R.; Saatchi, A.; Kermanpur, A.; Sadrnezhaad, S. K.

    2016-06-01

    Effects of post weld heat treatment (PWHT) on mechanical properties and corrosion behavior of NiTi shape memory wire, laser welded to the 304 stainless steel wire were investigated. The results showed that PWHT at 200 °C increased corrosion resistance and tensile strength of the joint up to ~1.8 times that of the as-weld joint, with no heat treatment. On the contrary, precipitation of neoteric intermetallic compounds like Fe2Ti, Cr2Ti, FeNi, Ni3Ti, and Ti2Ni in the welded region deteriorated these properties, when PWHT was conducted at 400 °C. Due to the vital effects of the PWHT performed after the laser welding, careful control of the PWHT temperature was found to be a prerequisite for achievement of desirable properties in the dissimilar NiTi-304 stainless steel laser-welded wires.

  17. An experimental and modeling investigation of the external strain, internal stress and fiber phase transformation behavior of a NiTi actuated aluminum metal matrix composite

    SciTech Connect

    Armstrong, W.D.; Lorentzen, T.; Broendsted, P.; Larsen, P.H.

    1998-06-12

    The present work reports macroscopic thermal mechanical and in-situ neutron diffraction measurements from 22.9 vol. %, 50.7 at. % Ni-Ti fiber actuated 6082-T6 aluminum matrix composite and 6082-T6 homogeneous aluminum control materials subjected to a room temperature 4% tensile elongation, a subsequent room temperature to 120 C unconstrained heating process, and a final 120 C tensile process. During the unconstrained room temperature to 120 C heating process, the composite exhibited a pronounced, non linear thermal contraction, while the homogeneous control exhibited the expected linear thermal expansion. The composite thermal contraction was clearly the result of a powerful shape memory response in the actuating NiTi fibers. The paper further presents a one-dimensional thermal strain, internal stress and fiber phase transformation composite model. Model parameters were identified from tests on extracted single fibers, calculations using these parameters quantitatively agree with experimental thermal mechanical and neutron diffraction measurements.

  18. Influence of Addition of Nb on Phase Transformation, Microstructure and Mechanical Properties of Equiatomic NiTi SMA

    NASA Astrophysics Data System (ADS)

    Jiang, Shuyong; Liang, Yulong; Zhang, Yanqiu; Zhao, Yanan; Zhao, Chengzhi

    2016-10-01

    Three novel NiTiNb shape memory alloys, which possess a nominal chemical composition of Ni50- x/2-Ti50- x/2-Nb x (at.%) where x stands for 2, 4 and 6, respectively, were designed in order to investigate the influence of the addition of Nb on phase transformation, microstructure and mechanical properties of equiatomic NiTi shape memory alloy. All the three NiTiNb shape memory alloys contain B2 austenite phase, B19' martensite phase and β-Nb precipitate phase. Martensite type II twin can be observed in the case of Ni49Ti49Nb2 alloy. In the case of Ni48Ti48Nb4 alloy, there exists a boundary between Ti2Ni precipitate phase and β-Nb precipitate phase. As for Ni47Ti47Nb6 alloy, it can be observed that there exists an orientation relationship of [01bar{1}]_{{β{{ - Nb}}}} //[01bar{1}]_{{B2}} between β-Nb precipitate phase and B2 austenite matrix. The increase in Nb content contributes to enhancing the yield stress of NiTiNb shape memory alloy, but it leads to the decrease in compression fracture stress. The addition of Nb to equiatomic NiTi shape memory alloy does not have a significant influence on the transformation hysteresis of the alloy, which is attributed to the fact that NiTiNb shape memory alloy is not subjected to plastic deformation and hence β-Nb precipitate phase is unable to relax the elastic strain in the martensite interface.

  19. In Vivo Force Decay of Niti Closed Coil Springs

    PubMed Central

    Cox, Crystal; Nguyen, Tung; Koroluk, Lorne; Ko, Ching-Chang

    2014-01-01

    Introduction Nickel-titanium (NiTi) closed coil springs are purported to deliver constant forces over extended ranges of activation and working times. In vivo studies supporting this claim are limited. The objective of this study is to evaluate changes in force decay properties of NiTi closed coil springs after clinical use. Methods Pseudoelastic force-deflection curves for 30 NiTi coil springs (used intra-orally) and 15 matched laboratory control springs (simulated intra-oral conditions - artificial saliva, 37°C) were tested pre- and post-retrieval via Dynamic Mechanical Analysis (DMA) and the Instron machine, respectively, to evaluate amount of force loss and hysteresis change following 4, 8, or 12 weeks of working time (n=10 per group). Effect of the oral environment and clinical use on force properties were evaluated by comparing in vivo and in vitro data. Results The springs studied showed a statistically significant decrease in force (~12%) following 4 weeks of clinical use (p<0.01), with a further significant decrease (~7%) from 4–8 weeks (p=0.03) and force levels appearing to remain steady thereafter. Clinical space closure at an average rate of 0.91mm per month was still observed despite this decrease in force. In vivo and in vitro force loss data were not statistically different. Conclusions NiTi closed coil springs do not deliver constant forces when used intra-orally, but they still allow for space closure rates of ~1mm/month. PMID:24703289

  20. The confining effectiveness of NiTiNb and NiTi SMA wire jackets for concrete

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Chung, Young-Soo; Choi, Jun-Hyeok; Kim, Hong-Taek; Lee, Hacksoo

    2010-03-01

    The purpose of this study is to assess the confining effectiveness of shape memory alloy (SMA) wire jackets for concrete. The performance of SMA wire jackets was compared to that of steel jackets. A prestrained martensitic SMA wire was wrapped around a concrete cylinder and then heated by a heating jacket. In the process, a confining stress around the cylinder was developed in the SMA wire due to the shape memory effect; this jacketing method can increase the strength and ductility of the cylinder under an axial compressive load. In this study, NiTi and NiTiNb SMA wires of 1.0 mm in diameter were used for the confinement. Recovery tests were conducted on the wires to assess their recovery and residual stress. The confinement by SMA wire jackets increased the strength slightly and greatly increased the ductility compared to the strength and ductility of plain concrete cylinders. The NiTiNb SMA wire jacket showed better performance than that of the NiTi SMA wire jacket. The confining effectiveness of the SMA wire jackets of this study was estimated to be similar to that of the steel jackets. This study showed the potential of the SMA wire jacketing method to retrofit reinforced concrete columns and protect them from seismic risks.

  1. Large scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles

    NASA Astrophysics Data System (ADS)

    Saleeb, A. F.; Dhakal, B.; Hosseini, M. S.; Padula, S. A., II

    2013-09-01

    As typically utilized in applications, a shape memory alloy (SMA) actuator operates under a large number of thermomechanical cycles, hence the importance of accounting for the cyclic behavior characteristics in modeling and numerical simulation of these actuators. To this end, the present work is focused on the characterization of the cyclic, evolutionary behavior of binary 55NiTi using a newly developed, multi-axial, material-modeling framework and its finite element analysis (FEA) implementation for use in the simulations of SMA actuators. In particular, two different geometric configurations of four- and two-coil helical springs subjected to axial end-forces are investigated under the effect of a large number of thermal cycles leading to the saturated deformation state of the coils. In addition, two different boundary conditions were examined, corresponding to: (a) the loading end cross section assumed to be free-to-twist, and (b) the loading end cross section assumed to be restrained against twist rotation. The study has led to the following five important conclusions: (i) the states of stresses and strains in the coils exhibited marked spatial non-homogeneities, both along the length as well as the cross section of the wires; (ii) the cyclic deformation response of the coils exhibits a similar evolutionary character to that of the 55NiTi material when tested under simple isobaric tensile stress conditions; (iii) the end boundary conditions affect the evolution of the deformation response; (iv) the magnitudes of the evolving nonlinear deformation states (i.e., axial displacements on the martensite and austenite sides, as well as the actuation displacement) were found to be proportional to the number of coils in an essentially linear manner, and (v) the change in coil diameter, while maintaining the pitch height, wire diameter and the number of coils fixed, has a significant effect on the response of the helical spring, both with regard to the resulting stress

  2. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    NASA Astrophysics Data System (ADS)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  3. NITI Needs Assessment Study. A Study of the Postsecondary Educational Needs of Merged Area I.

    ERIC Educational Resources Information Center

    Ratcliff, James L.

    The study described in this report was conducted to determine whether the present mix of vocational-technical and adult educational programs and services at Northeast Iowa Technical Institute (NITI) was optimal in meeting the needs of the constituents and clients of the college. Particular attention was given to the question of whether NITI would…

  4. Physical Simulation of the Random Failure of Implanted Braided NiTi Stents

    NASA Astrophysics Data System (ADS)

    Hirmanová, Klára; Pilch, Jan; Racek, Jan; Heller, Luděk; Šittner, Petr; Recman, Lukáš; Petrenec, Martin; Sedlák, Petr

    2014-07-01

    A problem of random clinical failures of the braided esophageal NiTi stents has been addressed by performing physical simulation experiments on helical NiTi springs loaded in cyclic tension in air, water, and simulated biological fluid. Strains and stresses involved in spring deformation were analyzed through simulation by FEM implemented SMA model. It was found that the fatigue life of NiTi springs is significantly lower in fluids than in the air pointing toward the corrosion fatigue mechanism. There is, however, a fatigue limit roughly corresponding to the onset of martensitic transformation in the wire, which is not common for corrosion fatigue. It is proposed that surface TiO2 oxide cracking plays major role in that. Once the oxide layer on the NiTi wire surface fractures, typically during the first mechanical cycle, cracks in the oxide layer periodically open and close during subsequent mechanical cycling. This leads to the localization of mechanical and corrosion attacks under the oxide cracked regions. Microcracks within the surface oxide layer crossing over into the NiTi matrix were indeed revealed by scanning electron microscopy of FIB sections of fatigued wires. A corrosion assisted mechanism for fatigue crack nucleation at the interface between the surface oxide and NiTi matrix is proposed based on the available evidence. The approach opens a space for a better assessment of the corrosion fatigue performance of superelastic NiTi and ultimately for estimation of the lifetime of implanted braided NiTi stents.

  5. Effect of Electropolishing and Low-Temperature Baking on the Superconducting Properties of Large-Grain Niobium

    SciTech Connect

    A. S. Dhavale, G. Ciovati, G. R. Myneni

    2011-03-01

    Measurements of superconducting properties such as bulk and surface critical fields and thermal conductivity have been carried out in the temperature range from 2 K to 8 K on large-grain samples of different purity and on a high-purity fine-grain sample, for comparison. The samples were treated by electropolishing and low temperature baking (120° C, 48 h). While the residual resistivity ratio changed by a factor of ~3 among the samples, no significant variation was found in their superconducting properties. The onset field for flux penetration at 2 K, Hffp, measured within a ~30 µm depth from the surface, was ~160 mT, close to the bulk value. The baking effect was mainly to increase the field range up to which a coherent superconducting phase persists on the surface, above the upper critical field.

  6. Improved endothelialization of NiTi alloy by VEGF functionalized nanocoating.

    PubMed

    Shen, Weixing; Cai, Kaiyong; Yang, Zaixiang; Yan, Ying; Yang, Weihu; Liu, Peng

    2012-06-01

    To improve surface endothelialization of NiTi alloy substrate, a nano-structured coating functionalized with vascular endothelial growth factor (VEGF) was fabricated via polydopamine (PDOP) as intermediate layer. The successful preparation of VEGF conjugated nanocoating was demonstrated by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), respectively. Inductively coupled plasma mass spectrometry (ICP-MS) test showed that the formed nanocoating significantly reduced the release of Ni ion from NiTi alloy in simulated body fluid. The biological behaviors of endothelial cells adhered to modified NiTi alloy substrates, including cell proliferation, cell spreading and production of nitric oxide and prostacyclin were investigated in vitro. The results suggest that surface functionalization of NiTi alloy substrate with VEGF is beneficial for cell growth. The approach presented here affords an alternative for surface modification of NiTi implants applied as heart and vascular implant devices.

  7. Effect of load deflection on corrosion behavior of NiTi wire.

    PubMed

    Liu, I H; Lee, T M; Chang, C Y; Liu, C K

    2007-06-01

    For dental orthodontic applications, NiTi wires are used under bending conditions in the oral environment for a long period. The purpose of this study was to investigate the effect of bending stress on the corrosion of NiTi wires using potentiodynamic and potentiostatic tests in artificial saliva. The results indicated that bending stress induces a higher corrosion rate of NiTi wires in passive regions. It is suggested that the passive oxide film of specimens would be damaged under bending conditions. Auger electron spectroscopic analysis showed a lower thickness of passive films on stressed NiTi wires compared with unstressed specimens in the passive region. By scanning electron microscopy, localized corrosion was observed on stressed Sentalloy specimens after a potentiodynamic test at pH 2. In conclusion, this study indicated that bending stress changed the corrosion properties and surface characteristics of NiTi wires in a simulated intra-oral environment.

  8. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds.

    PubMed

    Liu, Xiangmei; Wu, Shuilin; Yeung, Kelvin W K; Chan, Y L; Hu, Tao; Xu, Zushun; Liu, Xuanyong; Chung, Jonathan C Y; Cheung, Kenneth M C; Chu, Paul K

    2011-01-01

    The superelastic nature of bones requires matching biomechanical properties from the ideal artificial biomedical implants in order to provide smooth load transfer and foster the growth of new bone tissues. In this work, we determine the biomechanical characteristics of porous NiTi implants and investigate bone ingrowth under actual load-bearing conditions in vivo. In this systematic and comparative study, porous NiTi, porous Ti, dense NiTi, and dense Ti are implanted into 5 mm diameter holes in the distal part of the femur/tibia of rabbits for 15 weeks. The bone ingrowth and interfacial bonding strength are evaluated by histological analysis and push-out test. The porous NiTi materials bond very well to newly formed bone tissues and the highest average strength of 357 N and best ductility are achieved from the porous NiTi materials. The bonding curve obtained from the NiTi scaffold shows similar superelasticity as natural bones with a deflection of 0.30-0.85 mm thus shielding new bone tissues from large load stress. This is believed to be the reason why new bone tissues can penetrate deeply into the porous NiTi scaffold compared to the one made of porous Ti. Histological analysis reveals that new bone tissues adhere and grow well on the external surfaces as well as exposed areas on the inner pores of the NiTi scaffold. The in vitro study indicates that the surface chemical composition and topography of the porous structure leads to good cytocompatibility. Consequently, osteoblasts proliferate smoothly on the entire implant including the flat surface, embossed region, exposed area of the pores, and interconnected channels. In conjunction with the good cytocompatibility, the superelastic biomechanical properties of the porous NiTi scaffold bodes well for fast formation and ingrowth of new bones, and porous NiTi scaffolds are thus suitable for clinical applications under load-bearing conditions.

  9. The implantation of a Nickel-Titanium shape memory alloy ameliorates vertebral body compression fractures: a cadaveric study

    PubMed Central

    Chen, Bo; Zheng, Yue-Huang; Zheng, Tao; Sun, Chang-Hui; Lu, Jiong; Cao, Peng; Zhou, Jian-Hua

    2015-01-01

    Objective: To evaluate the effect of a Nickel-Titanium (Ni-Ti) shape memory alloy in the treatment of vertebral body compression fractures. Methods: The experimental thoracic-lumbar fracture units were made with adult human fresh-frozen vertebral specimens. A total of 30 fresh-frozen vertebral units were randomly assigned to 3 experimental groups: control group, percutaneous kyphoplasty group (PKP group), and percutaneous Ni-Ti shape memory alloys implant group (Ni-Ti implant group). Vertebral height and ultimate compression load of the vertebral body before and after procedures were measured to determine the restoration of vertebral heights and compressive strength, respectively. Results: The Ni-Ti implant group achieved a vertebrae endplate reduction effect comparable to the PKP group. The vertebral height of the PKP group was restored from 2.01±0.21 cm to 2.27±0.18 cm after procedure, whereas that of the Ni-Ti implant group was restored from 2.00±0.18 cm to 2.31±0.17 cm. The ultimate loads of the vertebrae body of the PKP and the Ni-Ti implant groups were 2880.75±126.17 N and 2888.00±144.69 N, respectively, both of which were statistically significantly higher than that of the control group (2017.17±163.71 N). There was no significant difference in ultimate compression load of vertebrae body between the Ni-Ti implant and PKP groups. Conclusions: The implantation of Ni-Ti shape memory alloys of vertebral body induced effective endplate reduction, restored vertebral height, and provided immediate biomechanical spinal stability. PMID:26629241

  10. Evaluation of the biocompatibility of NiTi dental wires: a comparison of laboratory experiments and clinical conditions.

    PubMed

    Toker, S M; Canadinc, D

    2014-07-01

    Effects of intraoral environment on the surface degradation of nickel-titanium (NiTi) shape memory alloy orthodontic wires was simulated through ex situ static immersion experiments in artificial saliva. The tested wires were compared to companion wires retrieved from patients in terms of chemical changes and formation of new structures on the surface. Results of the ex situ experiments revealed that the acidic erosion effective at the earlier stages of immersion led to the formation of new structures as the immersion period approached 30 days. Moreover, comparison of these results with the analysis of wires utilized in clinical treatment evidenced that ex situ experiments are reliable in terms predicting C-rich structure formation on the wire surfaces. However, the formation of C pileups at the contact sites of arch wires and brackets could not be simulated with the aid of static immersion experiments, warranting the simulation of the intraoral environment in terms of both chemical and physical conditions, including mechanical loading, when evaluating the biocompatibility of NiTi orthodontic arch wires.

  11. Static and Cyclic Load-Deflection Characteristics of NiTi Orthodontic Archwires Using Modified Bending Tests

    NASA Astrophysics Data System (ADS)

    Nili Ahmadabadi, Mahmoud; Shahhoseini, Tahereh; Habibi-Parsa, Mohamad; Haj-Fathalian, Maryam; Hoseinzadeh-Nik, Tahereh; Ghadirian, Hananeh

    2009-08-01

    Near-equiatomic nickel-titanium (nitinol) has the ability to return to a former shape when subjected to an appropriate thermomechanical procedure. One of the most successful applications of nitinol is orthodontic archwire. One of the suitable characteristics of these wires is superelasticity, a phenomenon that allows better-tolerated loading conditions during clinical therapy. Superelastic nitinol wires deliver clinically desired light continuous force enabling effective tooth movement with minimal damage for periodontal tissues. In this research, a special three-point bending fixture was invented and designed to determine the superelastic property in simulated clinical conditions, where the wire samples were held in the fixture similar to an oral cavity. In this experimental study, the load-deflection characteristics of superelastic NiTi commercial wires were studied through three-point bending test. The superelastic behavior was investigated by focusing on bending time, temperature, and number of cycles which affects the energy dissipating capacity. Experimental results show that the NiTi archwires are well suited for cyclic load-unload dental applications. Results show reduction in superelastic property for used archwires after long-time static bending.

  12. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys.

    PubMed

    McMahon, Rebecca E; Ma, Ji; Verkhoturov, Stanislav V; Munoz-Pinto, Dany; Karaman, Ibrahim; Rubitschek, Felix; Maier, Hans J; Hahn, Mariah S

    2012-07-01

    Nickel-titanium (NiTi) shape memory alloys (SMAs) are commonly used in a range of biomedical applications. However, concerns exist regarding their use in certain biomedical scenarios due to the known toxicity of Ni and conflicting reports of NiTi corrosion resistance, particularly under dynamic loading. Titanium-niobium (TiNb) SMAs have recently been proposed as an alternative to NiTi SMAs due to the biocompatibility of both constituents, the ability of both Ti and Nb to form protective surface oxides, and their superior workability. However, several properties critical to the use of TiNb SMAs in biomedical applications have not been systematically explored in comparison with NiTi SMAs. These properties include cytocompatibility, corrosion resistance, and alterations in alloy surface composition in response to prolonged exposure to physiological solutions. Therefore, the goal of the present work was to comparatively investigate these aspects of NiTi (49.2 at.% Ti) and TiNb (26 at.% Nb) SMAs. The results from the current studies indicate that TiNb SMAs are less cytotoxic than NiTi SMAs, at least under static culture conditions. This increased TiNb cytocompatibility was correlated with reduced ion release as well as with increased corrosion resistance according to potentio-dynamic tests. Measurements of the surface composition of samples exposed to cell culture medium further supported the reduced ion release observed from TiNb relative to NiTi SMAs. Alloy composition depth profiles also suggested the formation of calcium phosphate deposits within the surface oxide layers of medium-exposed NiTi but not of TiNb. Collectively, the present results indicate that TiNb SMAs may be promising alternatives to NiTi for certain biomedical applications.

  13. Temperature- and deflection- dependences of orthodontic force with Ni-Ti wires.

    PubMed

    Yanaru, Kotaro; Yamaguchi, Kazunori; Kakigawa, Hiroshi; Kozono, Yoshio

    2003-06-01

    Orthodontic forces of Ni-Ti wires examined under the retrained condition on the dental arch model were evaluated with the changes in temperature and deflection. The tested specimens were a commercially available superelastic (W1) wire and two shape memory wires with their nominal A(f) points were 35 degrees C (W2) and 40 degrees C (W3), respectively. They showed typical superelastic hysteresis loops under the restraint condition at 40 degrees C. The force levels were significantly larger than those generally obtained by simple three-bending test. The recovery forces in the plateau region at 1.0 mm deflection were much larger than desired in the clinical guidelines around oral temperatures. In the shape memory wire W3, the recovery force rapidly decreased to zero by a small reduction of the deflection from its maximum. However, the wire again exerted the force with the remaining permanent deflection by temperature rising. It was small compared to the guidelines of desirable orthodontic force and seemed to be useful especially for the hypersensitive patients.

  14. Launch Load Resistant Spacecraft Mechanism Bearings Made From NiTi Superelastic Intermetallic Materials

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis (Chip) E., III

    2014-01-01

    Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50mm bore ball-bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (3.1GPa) between that of 440C (2.4GPa) and REX20 (3.8GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5kg mass reaction wheel, was modeled with respect to launch load capability when supported on 440C, 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings.

  15. Electropolishing of stainless steels in a choline chloride based ionic liquid: an electrochemical study with surface characterisation using SEM and atomic force microscopy.

    PubMed

    Abbott, Andrew P; Capper, Glen; McKenzie, Katy J; Glidle, Andrew; Ryder, Karl S

    2006-09-28

    We have studied the anodic dissolution (electropolishing) of various stainless steel alloys in an ionic liquid comprising a 2 : 1 stoichiometric mix of ethylene glycol (EG) and choline chloride. We have used a combination of electrochemical and spectroscopic methods together with in situ liquid probe microscopy. We discuss the role and influence of the surface oxide passivation layer, characterized here by X-ray photoelectron spectroscopy (XPS) and linear sweep voltammetry, on the polishing process. We address the question of dealloying during the polish in order to contribute to our understanding of the viability of the ionic liquid as a replacement industrial electropolishing medium; the current commercial process uses a corrosive mixture of phosphoric and sulfuric acids. Also, we present data from ex situ and in situ liquid AFM studies giving both a qualitative and quantitative insight into the nature and scale of morphological changes at the steel surface during the polishing process.

  16. Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth.

    PubMed

    Tsai, Lei-Wei; Tai, Nyan-Hwa

    2014-07-09

    Flexible transparent graphene-based field-effect transistors (Gr-FETs) were fabricated using large-area single-layer graphene synthesized through low-pressure chemical vapor deposition on a pretreated copper (Cu) foil, followed by transfer of the graphene from the Cu foil to a poly(ethylene terephthalate) (PET) substrate. The electropolishing method was adopted to smooth the surface of the Cu foil, which is a crucial factor because it affects the defect density of graphene films on the PET substrate after transfer and the electronic transport property of the graphene-based devices. The influence of the electropolishing process on the graphene properties was examined using a Raman spectroscope, a scanning electron microscope, and an optical microscope. When the electropolishing process was adopted to improve the graphene quality, the carrier mobility of the flexible transparent Gr-FETs was enhanced from 90 to 340 cm(2)/(V s). Furthermore, variation of the carrier mobility was lower than 10% when the bending radius of the flexible device was decreased from 6.0 to 1.0 cm.

  17. Final Technical Report: Nanostructured Shape Memory ALloys

    SciTech Connect

    Wendy Crone; Walter Drugan; Arthur Ellis; John Perepezko

    2005-07-28

    With this grant we explored the properties that result from combining the effects of nanostructuring and shape memory using both experimental and theoretical approaches. We developed new methods to make nanostructured NiTi by melt-spinning and cold rolling fabrication strategies, which elicited significantly different behavior. A template synthesis method was also used to created nanoparticles. In order to characterize the particles we created, we developed a new magnetically-assisted particle manipulation technique to manipulate and position nanoscale samples for testing. Beyond characterization, this technique has broader implications for assembly of nanoscale devices and we demonstrated promising applications for optical switching through magnetically-controlled scattering and polarization capabilities. Nanoparticles of nickel-titanium (NiTi) shape memory alloy were also produced using thin film deposition technology and nanosphere lithography. Our work revealed the first direct evidence that the thermally-induced martensitic transformation of these films allows for partial indent recovery on the nanoscale. In addition to thoroughly characterizing and modeling the nanoindentation behavior in NiTi thin films, we demonstrated the feasibility of using nanoindentation on an SMA film for write-read-erase schemes for data storage.

  18. Influence of TiN coating on the biocompatibility of medical NiTi alloy.

    PubMed

    Jin, Shi; Zhang, Yang; Wang, Qiang; Zhang, Dan; Zhang, Song

    2013-01-01

    The biocompatibility of TiN coated nickel-titanium shape memory alloy (NiTi-SMA) was evaluated to compare with that of the uncoated NiTi-SMA. Based on the orthodontic clinical application, the surface properties and biocompatibility were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), wettability test, mechanical test and in vitro tests including MTT, cell apoptosis and cell adhesion tests. It was observed that the bonding between the substrate and TiN coating is excellent. The roughness and wettability increased as for the TiN coating compared with the uncoated NiTi-SMA. MTT test showed no significant difference between the coated and uncoated NiTi-SMA, however the percentage of early cell apoptosis was significantly higher as for the uncoated NiTi alloy. SEM results showed that TiN coating could enhance the cell attachment, spreading and proliferation on NiTi-SMA. The results indicated that TiN coating bonded with the substrate well and could lead to a better biocompatibility.

  19. Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi

    NASA Technical Reports Server (NTRS)

    Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.

    2011-01-01

    A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.

  20. Fatigue of NiTi SMA-pulley system using Taguchi and ANOVA

    NASA Astrophysics Data System (ADS)

    Mohd Jani, Jaronie; Leary, Martin; Subic, Aleksandar

    2016-05-01

    Shape memory alloy (SMA) actuators can be integrated with a pulley system to provide mechanical advantage and to reduce packaging space; however, there appears to be no formal investigation of the effect of a pulley system on SMA structural or functional fatigue. In this work, cyclic testing was conducted on nickel-titanium (NiTi) SMA actuators on a pulley system and a control experiment (without pulley). Both structural and functional fatigues were monitored until fracture, or a maximum of 1E5 cycles were achieved for each experimental condition. The Taguchi method and analysis of the variance (ANOVA) were used to optimise the SMA-pulley system configurations. In general, one-way ANOVA at the 95% confidence level showed no significant difference between the structural or functional fatigue of SMA-pulley actuators and SMA actuators without pulley. Within the sample of SMA-pulley actuators, the effect of activation duration had the greatest significance for both structural and functional fatigue, and the pulley configuration (angle of wrap and sheave diameter) had a greater statistical significance than load magnitude for functional fatigue. This work identified that structural and functional fatigue performance of SMA-pulley systems is optimised by maximising sheave diameter and using an intermediate wrap-angle, with minimal load and activation duration. However, these parameters may not be compatible with commercial imperatives. A test was completed for a commercially optimal SMA-pulley configuration. This novel observation will be applicable to many areas of SMA-pulley system applications development.

  1. Crystallization study of amorphous sputtered NiTi bi-layer thin film

    SciTech Connect

    Mohri, Maryam; Nili-Ahmadabadi, Mahmoud; Chakravadhanula, Venkata Sai Kiran

    2015-05-15

    The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure of the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.

  2. Finite element modeling and fabrication of an SMA-SMP shape memory composite actuator

    NASA Astrophysics Data System (ADS)

    Souri, Mohammad

    Shape memory alloys and polymers have been extensively researched recently because of their unique ability to recover large deformations. Shape memory polymers (SMPs) are able to recover large deformations compared to shape memory alloys (SMAs), although SMAs have higher strength and are able to generate more stress during recovery. This project focuses on procedure for fabrication and Finite Element Modeling (FEM) of a shape memory composite actuator. First, SMP was characterized to reveal its mechanical properties. Specifically, glass transition temperature, the effects of temperature and strain rate on compressive response and recovery properties of shape memory polymer were studied. Then, shape memory properties of a NiTi wire, including transformation temperatures and stress generation, were investigated. SMC actuator was fabricated by using epoxy based SMP and NiTi SMA wire. Experimental tests confirmed the reversible behavior of fabricated shape memory composites. (Abstract shortened by ProQuest.).

  3. Pulsed laser deposition of hydroxyapatite film on laser gas nitriding NiTi substrate

    NASA Astrophysics Data System (ADS)

    Yang, S.; Xing, W.; Man, H. C.

    2009-09-01

    A hydroxyapatite (HA) film was deposited on laser gas nitriding (LGN) NiTi alloy substrate using pulsed laser deposition technique. TiN dendrite prepared by LGN provided a higher number of nucleation sites for HA film deposition, which resulted in that a lot number of HA particles were deposited on TiN dendrites. Moreover, the rough LGN surface could make the interface adhesive strength between HA film and substrate increase as compared with that on bare NiTi substrate.

  4. Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva.

    PubMed

    Huang, Her-Hsiung

    2003-09-15

    The purpose of this study was to investigate the corrosion resistance of stressed NiTi and stainless steel orthodontic wires using cyclic potentiodynamic and potentiostatic tests in acid artificial saliva at 37 degrees C. An atomic force microscope was used to measure the 3-D surface topography of as-received wires. Scanning electron microscope observations were carried out before and after the cyclic potentiodynamic tests. The surface chemical analysis was characterized using X-ray photoelectron spectroscopy and Auger electron spectroscopy after the potentiostatic tests. The cyclic potentiodynamic test results showed that the pH had a significant influence on the corrosion parameters of the stressed NiTi and stainless steel wires (p < 0.05). The pitting potential, protection potential, and passive range of stressed NiTi and stainless steel wires decreased on decreasing pH, whereas the passive current density increased on decreasing pH. The load had no significant influence on the above corrosion parameters (p > 0.05). For all pH and load conditions, stainless steel wire showed higher pitting potential and wider passive range than NiTi wire (p < 0.001), whereas NiTi wire had lower passive current density than stainless steel wire (p < 0.001). The corrosion resistance of the stressed NiTi and stainless steel wires was related to the surface characterizations, including surface defect and passive film.

  5. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant.

    PubMed

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M Imran; Hussain, Muhammad Asif

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3h at 1325K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi2, Ni3Ti, and Ni4Ti3. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6vol.% HA reinforced composite showed Ni3Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants.

  6. Behavior of NiTi in the presence of oral bacteria: corrosion by Streptococcus mutans.

    PubMed

    Bahije, Loubna; Benyahia, Hicham; El Hamzaoui, Sakina; Ebn Touhami, Mohamed; Bengueddour, Rachid; Rerhrhaye, Wiam; Abdallaoui, Faïza; Zaoui, Fatima

    2011-03-01

    The aim of this study was to investigate the electrochemical behavior of nickel titanium (NiTi) orthodontic wires in a solution containing Streptococcus mutans oral bacteria. In this article, we explain our choice of bacterial species before describing the culture process in artificial saliva and the precautions needed to prevent contamination by other bacteria. The electrochemical behavior of the alloy (NiTi) was analyzed electrochemically in Ringer sterile artificial saliva and in artificial saliva enriched with a sterile broth and modified by addition of bacteria. The electrochemical procedures chosen for this study were: free corrosion potential, potentiodynamic curves and impedance spectroscopy. In this way, we were able to show that the free corrosion potential of the NiTi in the Ringer solution increases with time and then stabilizes, thus passivating the alloy. We also demonstrated that colonization of the metal surface by bacteria triggered a drop in the free corrosion potential. The electrochemical impedance findings revealed no significant difference in NiTi behavior between the two media. Finally, we observed a slight difference between the two corrosion currents in favor of the bacteria-enriched solution, in which the NiTi underwent greater corrosion. These findings demonstrate the impact of acidogenic bacteria on corrosion behavior of the NiTi wires investigated. However, further research is required, notably incorporating longer immersion times in the two media.

  7. The effect of electrical treatment on cyclic fatigue of NiTi instruments.

    PubMed

    Saghiri, Mohammad Ali; Asatourian, Armen; Garcia-Godoy, Franklin; Gutmann, James L; Lotfi, Mehrdad; Sheibani, Nader

    2014-01-01

    Dentists desire to use NiTi rotary instruments, which do not break inside the root canals of teeth, since the pieces from broken files are difficult to remove. The NiTi rotary instrument breakage is because of cyclic and torsional fatigue. Here the low-voltage (12 V) and high voltage (24 V) electrical treatments were used to enhance the cyclic fatigue of NiTi rotary instruments and increase their durability. In excremental groups, following electrical treatment samples of the NiTi instruments were rotated inside artificial root canals until they broke. Our results showed that electrical treatment with 12-V DC was effective in restoring NiTi instrument's resistance to cyclic fatigue. The scanning electron microscopy images and fractograph of samples exposed to 12-V electrical treatment showed a more regular texture over the surface with less dimpling on fractured site. These patterns can improve the super elasticity of tested devices during rotational movement, and delay the NiTi instruments separation in root canal preparations.

  8. Predicting in vivo failure of pseudoelastic NiTi devices under low cycle, high amplitude fatigue.

    PubMed

    Young, Jeremy M; Van Vliet, Krystyn J

    2005-01-15

    Due to the large reversible strains achievable through the stress-induced austenite-martensite phase transformation in NiTi alloys, NiTi has replaced stainless steel in the majority of large-strain biomedical applications such as root canal enlargement. However, the pseudoelasticity of NiTi is currently overshadowed by the short fatigue life of NiTi wires used in this low cycle (200-2000 rpm), high amplitude (epsilon(a) > 2.5%) application, resulting in in vivo fracture or premature retirement of otherwise reusable NiTi-based wire devices. In this study, the failure of pseudoelastic 55.8 wt % Ni-Ti wire is investigated experimentally, as a function of experimental parameters that include the clinically relevant regime. The effects of radius of curvature, angle of curvature, wire diameter, strain amplitude, cyclic frequency, volume under strain, and specific heat of the surrounding environmental fluid are considered systematically. These data indicate that the lifetime or cycles to failure N(f) of a rotating NiTi wire can be predicted via a modified Coffin-Manson relation that is a strong function of both strain amplitude and volume under strain, and a weaker function of frequency and fluid specific heat. The resulting quantitative relation can be used to predict useful device lifetime under clinically relevant conditions and thereby reduce incidences of in vivo failure.

  9. Characterization of PEG-Like Macromolecular Coatings on Plasma Modified NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Gao, Jiacheng; Chang, Peng; Wang, Jianhua

    2008-04-01

    A poly (ethylene glycol) (PEG-like) coating was developed to improve the biocompatibility of Nickel-Titanium (NiTi) alloy implants. The PEG-like macromolecular coatings were deposited on NiTi substrates at a room temperature of 298 K through a ECR (electron-cyclotron resonance) cold-plasma enhanced chemical vapor deposition method using tetraglyme (CH3-O-(CH2-CH2-O)4-CH3) as a precursor. A power supply with a frequency of 2.45 GHz was applied to ignite the plasma with Ar(argon) used as the carrier gas. Based on the atomic force microscopy (AFM) studies, a thin smooth coating on NiTi substrates with highly amorphous functional groups on the modified NiTi surfaces were mainly the same accumulated stoichiometric ratio of C and O with PEG. The vitro studies showed that platelet-rich plasma (PRP) adsorption on the modified NiTi alloy surface was significantly reduced. This study indicated that plasma surface modification changes the surface components of NiTi alloy and subsequently improves its biocompatibility.

  10. Canal Shaping with One Shape File and Twisted Files: A Comparative Study

    PubMed Central

    Kumar, Vedati Santosh; Aravind, Kumbakonam; Kumar, Harish TVS; Vishal M, Bharath; Vizaikumar, Vasudha Nelluri; Das, Rupali; Vamsilatha, K

    2014-01-01

    Aim: The aim of this study was to compare the shaping ability of two different rotary Nickel –Titanium (Ni-Ti) files, One shape file and Twisted files in a simulated artificial canals. Materials and Methods: A total of 40 endodontic training blocks were used in this study and divided in two groups consisting of 20 each ( n = 20) and the shaping ability was accessed based on the left over ink stain in the artificial canal. Results: Image proplus analysis software and stereomicroscope were used for analysing the shaping ability of the files and statistical analysis was done by SPSS software. Twisted files showed better shaping ability compared to one shape file both experimentally and statistically. Conclusion: It can be concluded that twisted files shaped the canals better then one shape file. PMID:25654059

  11. Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasma-implanted porous nickel titanium shape memory alloy.

    PubMed

    Wu, S L; Chu, Paul K; Liu, X M; Chung, C Y; Ho, J P Y; Chu, C L; Tjong, S C; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K

    2006-10-01

    Good surface properties and biocompatibility are crucial to porous NiTi shape memory alloys (SMA) used in medical implants, as possible nickel release from porous NiTi may cause deleterious effects in the human body. In this work, oxygen plasma immersion ion implantation (O-PIII) was used to reduce the amount of nickel leached from porous NiTi alloys with a porosity of 42% prepared by capsule-free hot isostatic pressing. The mechanical properties, surface properties, and biocompatibility were studied by compression tests, X-ray photoelectron spectroscopy (XPS), and cell culturing. The O-PIII porous NiTi SMAs have good mechanical properties and excellent superelasticity, and the amount of nickel leached from the O-PIII porous NiTi is much less than that from the untreated samples. XPS results indicate that a nickel-depleted surface layer predominantly composed of TiO(2) is produced by O-PIII and acts as a barrier against out-diffusion of nickel. The cell culturing tests reveal that both the O-PIII and untreated porous NiTi alloys have good biocompatibility.

  12. Radiological image-guided placement of covered Niti-S stent for palliation of dysphagia in patients with cervical esophageal cancer.

    PubMed

    Fujita, Takeshi; Tanabe, Masahiro; Shimizu, Kensaku; Iida, Etsushi; Matsunaga, Naofumi

    2013-06-01

    The aim of this study was to evaluate the clinical effectiveness of covered Niti-S stent placement under multidetector CT and fluoroscopy guidance for the palliation of dysphagia in patients with cervical esophageal cancer. Under radiological imaging guidance using axial and sagittal CT scans, and fluoroscopy, Niti-S esophageal stents were placed in ten consecutive patients with complete obstruction caused by cervical esophageal cancer (9 men and 1 woman; age range = 54-79 years; mean age = 68.1 years) between February 2010 and December 2011. The procedure time and technical success rate were evaluated. Swallowing improvement was assessed by the following items: ability to eat and/or swallow (graded as follows: 3 = ability to eat normal diet, 2 = ability to eat semisolids, 1 = ability to swallow liquids, 0 = complete obstruction). Procedural and post-procedural complications were also evaluated. Survival (mean ± SD) was examined. The mean (±SD) procedure time was 40 ± 19 min (range = 21-69 min). Stent placement was technically successful in all patients; inadequate stent deployment did not occur in any case. Ability to eat and/or swallow was improved and scored 2.4 (score 3 in 5 cases, score 2 in 4 cases, score 1 in 1 case, and score 0 in no case) after stent placement. No major or post-procedural complications were encountered. The mean survival time was 131 ± 77 days (range = 31-259 days). Niti-S stents appeared to be a safe and effective device for the palliation of dysphagia caused by advanced cervical esophageal cancer. Multidetector CT and fluoroscopy image guidance helped the operators accurately place the stents in the cervical esophagus.

  13. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys.

    PubMed

    Jian, Yu-Tao; Yang, Yue; Tian, Tian; Stanford, Clark; Zhang, Xin-Ping; Zhao, Ke

    2015-01-01

    Five types of porous Nickel-Titanium (NiTi) alloy samples of different porosities and pore sizes were fabricated. According to compressive and fracture strengths, three groups of porous NiTi alloy samples underwent further cytocompatibility experiments. Porous NiTi alloys exhibited a lower Young's modulus (2.0 GPa ~ 0.8 GPa). Both compressive strength (108.8 MPa ~ 56.2 MPa) and fracture strength (64.6 MPa ~ 41.6 MPa) decreased gradually with increasing mean pore size (MPS). Cells grew and spread well on all porous NiTi alloy samples. Cells attached more strongly on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cell adhesion on porous NiTi alloys was correlated negatively to MPS (277.2 μm ~ 566.5 μm; p < 0.05). More cells proliferated on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cellular ALP activity on all porous NiTi alloy samples was higher than on control group and blank group (p < 0.05). The porous NiTi alloys with optimized pore size could be a potential orthopedic material.

  14. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Poon, Ray W. Y.; Ho, Joan P. Y.; Liu, Xuanyong; Chung, C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2005-08-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C2H2 PIII is composed of mainly TiCx with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti4+, Ti3+ and Ti2+.

  15. Launch Load Resistant Spacecraft Mechanism Bearings Made From NiTi Superelastic Intermetallic Materials

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III

    2014-01-01

    Compared to conventional bearing materials (tool steel and ceramics), emerging Superelastic Intermetallic Materials (SIMs), such as 60NiTi, have significantly lower elastic modulus and enhanced strain capability. They are also immune to atmospheric corrosion (rusting). This offers the potential for increased resilience and superior ability to withstand static indentation load without damage. In this paper, the static load capacity of hardened 60NiTi 50-mm-bore ball bearing races are measured to correlate existing flat-plate indentation load capacity data to an actual bearing geometry through the Hertz stress relations. The results confirmed the validity of using the Hertz stress relations to model 60NiTi contacts; 60NiTi exhibits a static stress capability (approximately 3.1 GPa) between that of 440C (2.4 GPa) and REX20 (3.8 GPa) tool steel. When the reduced modulus and extended strain capability are taken into account, 60NiTi is shown to withstand higher loads than other bearing materials. To quantify this effect, a notional space mechanism, a 5-kg mass reaction wheel, was modeled with respect to launch load capability when supported on standard (catalogue geometry) design 440C; 60NiTi and REX20 tool steel bearings. For this application, the use of REX20 bearings increased the static load capability of the mechanism by a factor of three while the use of 60NiTi bearings resulted in an order of magnitude improvement compared to the baseline 440C stainless steel bearings

  16. Shape memory in nanostructured metallic alloys

    NASA Astrophysics Data System (ADS)

    Guda Vishnu, Karthik

    Materials with nanoscale dimensions show mechanical and structural properties different to those at the macro scale and engineering their nanostructure opens up potential avenues for designing materials tailored for a specific application. This work is focused on shape memory materials, an important class of active materials with wide variety of applications in medical, aerospace and automobile industries, due to their two important properties of super-elasticity and shape memory. These unique properties originate from a solid-solid transformation called martensite transformation and the main objectives of this research are to i) study the atomic mechanisms of the martensite transformation, ii) study the effect of nano-structure on shape memory behavior and iii) computationally explore avenues through which their performance is optimized. A combination of density functional theory (DFT) and molecular dynamics (MD) simulations is used to achieve this. This approach gives an atomic level description and the effects of size, surfaces and interfaces are explicitly described. Detailed analysis of the atomic mechanisms of the martensite transformation in NiTi using DFT revealed a new phase transformation (B19'-B19'') that sheds light on why the theoretically predicted ground state (BCO) is not observed experimentally and that the experimentally observed martensite phase (B19') can be stabilized by internal stresses. This finding is very important as the theoretically predicted ground state does not allow for shape memory in nanoscale NiTi samples. The size effects caused by the presence of free surfaces and the role of nanostructure in martensite transformation have been investigated in thin NiTi slabs. Surface energies of B2 phase (austenite), B19 (orthorhombic), B19' (martensite) and the body centered orthorhombic phase (BCO) are calculated using DFT. (110)B2 surfaces with in-plane atomic displacements stabilize the austenite phase with respect to B19' and BCO, thus

  17. Electrophoretic deposition of double-layer HA/Al composite coating on NiTi.

    PubMed

    Karimi, Esmaeil; Khalil-Allafi, Jafar; Khalili, Vida

    2016-01-01

    In order to improve the bioactivity of NiTi alloys, which are being known as the suitable materials for biomedical applications, numerous NiTi disks were electrophoretically coated by hetero-coagulated hydroxyapatite/aluminum composite coatings in three main voltages from suspensions with different Al concentrations. In this paper, the amount of Ni ions release and bioactivity of prepared samples as well as bonding strength of the coating to substrate were investigated. The surface characterization of the coating by XRD, EDX, SEM, and FTIR showed that HA particles bonded by Al particles. It caused the formation of a free crack coating on NiTi disks. Moreover, the bonding strength of HA/Al coatings to NiTi substrate were improved by two times as compared to that of the pure HA coatings. Immersing of coated samples in SBF for 1 week showed that apatite formation ability was improved on HA/Al composite coating and Ni ions release from the surface of composite coating decreased. These results induce the appropriate bioactivity and biocompatibility of the deposited HA/Al composite coatings on NiTi disks.

  18. Effect of temperature on the orthodontic clinical applications of niti closed-coil springs

    PubMed Central

    Espinar-Escalona, Eduardo; Llamas-Carreras, José M.; Barrera-Mora, José M.; Abalos-Lasbrucci, Camilo

    2013-01-01

    NiTi spring coils were used to obtain large deformation under a constant force. The device consists on a NiTi coil spring, superelastic at body temperature, in order to have a stress plateau during the austenitic retransformation during the unloading. The temperature variations induced changes in the spring force. Objectives: The aim of this study is to investigate the effect of the temperature variations in the spring forces and corrosion behaviour simulating the ingestion hot/cold drinks and food. Study Design: The springs were subjected to a tensile force using universal testing machine MTS-Adamel (100 N load cell). All tests were performed in artificial saliva maintained at different temperatures. The corrosion tests were performed according to the ISO-standard 10993-15:2000. Results: The increase in temperature of 18oC induced an increase in the spring force of 30%. However, when the temperature returns to 37oC the distraction force recovers near the initial level. After cooling down the spring to 15oC, the force decreased by 46%. This investigation show as the temperature increase, the corrosion potential shifts towards negative values and the corrosion density is rising. Conclusions: The changes of the temperatures do not modify the superelastic behaviour of the NiTi closed-coil springs. The corrosion potential of NiTi in artificial saliva is decreasing by the rise of the temperatures. Key words:Superelasticity, NiTi, springs, orthodontic, coils, recovery, temperature. PMID:23722142

  19. Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential

    NASA Astrophysics Data System (ADS)

    Racek, Jan; Stora, Marc; Šittner, Petr; Heller, Luděk; Kopeček, Jaromir; Petrenec, Martin

    2015-06-01

    Fatigue of superelastic NiTi wires was investigated by cyclic tension in simulated biofluid. The state of the surface of the fatigued NiTi wire was monitored by following the evolution of the electrochemical open circuit potential (OCP) together with macroscopic stresses and strains. The ceramic TiO2 oxide layer on the NiTi wire surface cannot withstand the large transformation strain and fractures in the first cycle. Based on the analysis of the results of in situ OCP experiments and SEM observation of cracks, it is claimed that the cycled wire surface develops mechanochemical reactions at the NiTi/liquid interface leading to cumulative generation of hydrogen, uptake of the hydrogen by the NiTi matrix, local loss of the matrix strength, crack transfer into the NiTi matrix, accelerated crack growth, and ultimately to the brittle fracture of the wire. Fatigue degradation is thus claimed to originate from the mechanochemical processes occurring at the excessively deforming surface not from the accumulation of defects due to energy dissipative bulk deformation processes. Ironically, combination of the two exciting properties of NiTi—superelasticity due to martensitic transformation and biocompatibility due to the protective TiO2 surface oxide layer—leads to excessive fatigue damage during cyclic mechanical loading in biofluids.

  20. NITI Needs Assessment Study. A Study of the Postsecondary Educational Needs of Merged Area I. Executive Summary.

    ERIC Educational Resources Information Center

    Ratcliff, James L.

    The purpose of the Northeast Iowa Technical Institute (NITI) Needs Assessment Study was to examine the constituents and clients of NITI to determine whether the present mix of vocational-technical and adult education programs and services was optimal to meet the needs of the residents of Merged Area I. Particular attention was given to the…

  1. A Comparative Study on the Mechanical Behavior of Porous Titanium and NiTi Produced by a Space Holder Technique

    NASA Astrophysics Data System (ADS)

    Hosseini, S. A.; Yazdani-Rad, R.; Kazemzadeh, A.; Alizadeh, M.

    2014-03-01

    NiTi and Ti porous specimens with appropriate pore characteristics for biomedical applications are produced by space holder method. Porosities of the specimens linearly increase from 14 to 65 and 42 to 70% for the Ti and NiTi specimens, respectively, with the urea space holder. Mechanical properties such as stiffness, fracture strain, and strength of the porous NiTi and Ti are adjustable with pore characteristics. The apparent elasticity modulus of NiTi specimens decrease from 3.5 to 0.73 GPa as porosity increases. Since the initial linear part of the stress-strain curve consists of elastic behavior, formation of stress-induced martensite, deformation and/or detwinning of martensite variants, and plastic deformation, the unloading slope of stress-strain curves is a better approximation for the elasticity modulus of the NiTi porous specimens as it is proved by an isotropic cubic cell model. The unloading slope of the NiTi specimen with 61% porosity is 3.1 GPa, while the apparent elasticity or loading slope is 0.85 GPa. In comparison to Ti, the high, recoverable strain of NiTi improves capability of it as a good candidate for bone replacement. Moreover, in contrast to Ti specimens, hysteresis loops are clearly observed in the stress-strain curves of NiTi specimens.

  2. Two-spring model for active compression textiles with integrated NiTi coil actuators

    NASA Astrophysics Data System (ADS)

    Holschuh, B.; Newman, D.

    2015-03-01

    This paper describes the development and implementation of a two-spring model to predict the performance of hybrid compression textiles combining passive elastic fabrics and integrated NiTi shape memory alloy (SMA) coil actuators. An analytic model that treats passive fabric-SMA coil systems as conjoined linear springs is presented to predict garment passive and active counter-pressure as a function of 11 design variables. For a fixed SMA coil design (encompassing five design variables), the model predicts that passive fabric material modulus, initial length, width and thickness determine both passive counter-pressure magnitude and activation stroke length, and that passive and active pressures are highly dependent on the relative unstretched lengths of the conjoined SMA-fabric system compared to the total limb circumference. Several passive fabrics were tested to determine their moduli and to generally assess the fabric linearity model assumption: two fabrics (spandex and neoprene) were found to behave linearly up to 200% strain, while two other fabrics (flat polyester elastic and a tri-laminate Lycra) were found to be nonlinear in the same strain envelope. Five hypothetical compression tourniquet designs are presented using experimentally determined fabric characteristics and previously studied SMA actuators developed at MIT. The performance of each tourniquet design is discussed with a specific focus on mechanical counter-pressure (MCP) space suit design requirements, with designs presented that achieve the full MCP design specification (\\gt 29.6 kPa) while minimizing (\\lt 5 mm) garment thickness. The modeling framework developed in this effort enables compression garment designers to tailor counter-pressure and activation stroke properties of active compression garments based on a variety of design parameters to meet a wide range of performance specifications.

  3. Effect of thermal oxidation on the surface characteristics and corrosion behavior of a Ta-implanted Ti-50.6Ni shape memory alloy

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-nan; Li, Yan; Zhao, Ting-ting

    2012-12-01

    A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing incidence X-ray diffraction (GIXRD) measurements were conducted to investigate the surface characteristics, including surface topography, elemental depth profiles, and surface phase structures. The surface roughness of the Ta-implanted NiTi increases after oxidation, and the higher the oxidation temperature is, the larger the value is. The surface of the Ta-implanted NiTi oxidized at 723 K is a nanolayer mainly composed of TiO2/Ta2O5 and TiO with depressed Ni content. The Ta-implanted NiTi oxidized at 873 K is mainly covered by rutile TiO2 in several micrometers of thickness. Potentiodynamic polarization tests indicated that the corrosion resistance of the Ta-implanted NiTi was improved after thermal oxidation at 723 K, but a negative impact was found for the Ta-implanted NiTi oxidized at 873 K.

  4. Electromagnetic induction heating of an orthopaedic nickel--titanium shape memory device.

    PubMed

    Müller, Christian W; Pfeifer, Ronny; El-Kashef, Tarek; Hurschler, Christof; Herzog, Dirk; Oszwald, Markus; Haasper, Carl; Krettek, Christian; Gösling, Thomas

    2010-12-01

    Shape memory orthopaedic implants made from nickel-titanium (NiTi) might allow the modulation of fracture healing, changing their cross-sectional shape by employing the shape memory effect. We aimed to show the feasibility and safety of contact-free electromagnetic induction heating of NiTi implants in a rat model. A water-cooled generator-oscillator combination was used. Induction characteristics were determined by measuring the temperature increase of a test sample in correlation to generator power and time. In 53 rats, NiTi implants were introduced into the right hind leg. The animals were transferred to the inductor, and the implant was electromagnetically heated to temperatures between 40 and 60°C. Blood samples were drawn before and 4 h after the procedure. IL-1, IL-4, IL-10, TNF-α, and IFN-γ were measured. Animals were euthanized at 3 weeks. Histological specimens from the hind leg and liver were retrieved and examined for inflammatory changes, necrosis, and corrosion pits. Cytokine measurements and histological specimens showed no significant differences among the groups. We concluded that electromagnetic induction heating of orthopedic NiTi implants is feasible and safe in a rat model. This is the first step in the development of new orthopedic implants in which stiffness or rigidity can be modified after implantation to optimize bone-healing.

  5. Anomalous expansion of Nb nanowires in a NiTi matrix under high pressure

    NASA Astrophysics Data System (ADS)

    Yu, Cun; Ren, Yang; Cui, Lishan; Ma, Zhiyuan; Yang, Wenge

    2016-10-01

    Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nano-wire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. Our discovery sheds new light on the nano-interfacial effect on mechanical anomalies in heterogeneous systems during a pressure-induced phase transition.

  6. Influence of electrolytic treatment time on the corrosion resistance of Ni-Ti orthodontic wire.

    PubMed

    Kaneto, Maki; Namura, Yasuhiro; Tamura, Takahiko; Shimizu, Noriyoshi; Tsutsumi, Yusuke; Hanawa, Takao; Yoneyama, Takayuki

    2013-01-01

    The purpose of this study was to examine the use of electrolytic treatment, which can improve the corrosion resistance of Ni-Ti orthodontic wires, to minimize adverse effects. Electrolytic treatment of Ni-Ti wires was performed in a solution composed of glycerol and lactic acid for 5, 15, or 30 min. The anodic polarization test, three-point bending test, and X-ray photoelectron spectroscopic analysis of the wire surface were performed to explore an optimal treatment condition. Breakdown potentials of treated wires increased with increasing treatment time and higher corrosion resistance was obtained by performing the electrolytic treatment for more than 5 min. The relative concentration of nickel in the layer was decreased in inverse proportion to the treatment time. The results suggest that the commercial Ni-Ti wire with low corrosion resistance can be improved by the electrolytic treatment for more than 5 min.

  7. Molecular dynamics study of the melting curve of NiTi alloy under pressure

    NASA Astrophysics Data System (ADS)

    Zeng, Zhao-Yi; Hu, Cui-E.; Cai, Ling-Cang; Chen, Xiang-Rong; Jing, Fu-Qian

    2011-02-01

    The melting curve of NiTi alloy was predicted by using molecular dynamics simulations combining with the embedded atom model potential. The calculated thermal equation of state consists well with our previous results obtained from quasiharmonic Debye approximation. Fitting the well-known Simon form to our Tm data yields the melting curves for NiTi: 1850(1 + P/21.938)0.328 (for one-phase method) and 1575(1 + P/7.476)0.305 (for two-phase method). The two-phase simulations can effectively eliminate the superheating in one-phase simulations. At 1 bar, the melting temperature of NiTi is 1575 ± 25 K and the corresponding melting slope is 64 K/GPa.

  8. In vitro biocompatibility of the surface ion modified NiTi alloy

    NASA Astrophysics Data System (ADS)

    Gudimova, Ekaterina Yu.; Meisner, Ludmila L.; Lotkov, Aleksander I.; Matveeva, Vera A.; Meisner, Stanislav N.; Matveev, Andrey L.; Shabalina, Olga I.

    2016-11-01

    This paper presents the results of the chemical, topographic and structural properties of the NiTi alloy surface and their changes after surface treatments by ion implantation techniques with use of ions Ta+ and Si+. The influence of physicochemical properties of the surface ion modified NiTi alloy was studied on in vitro cultured mesenchymal stem cells of the rats' bone marrow. It is shown that the ion surface modification improves histocompatibility of the NiTi alloy and leads to increase of proliferative activity of mesenchymal stem cells on its surface. It was experimentally found that a major contribution to viability improvement mesenchymal stem cells of rat marrow has the chemical composition and the microstructure of the surface area.

  9. In situ TEM observation of buffering the anode volume change by using NiTi alloy during electrochemical lithiation/delithiation.

    PubMed

    Zhang, L Q; Zhang, J S; Shao, Y; Jiang, D Q; Yang, F; Guo, Y P; Cui, L S

    2013-08-16

    A novel Ti3Sn/NiTi shape memory alloy anode with a sandwich structure was fabricated by arc melting. In order to characterize in situ the Ti3Sn/NiTi anode microstructure changes and phase transformations during cycling, a nanoscale lithium battery was set up inside a transmission electron microscope, which consists of Li metal as the cathode, the native Li2O layer on the surface of Li metal as the solid electrolyte, and the Ti3Sn/NiTi as the anode. Only the Ti3Sn intermetallic compound experienced the electrochemical reaction, while the NiTi alloy (inactive with Li(+)) was applied for buffering the Ti3Sn volume change during cycling. An obvious reaction front of Ti3Sn migrated from one end to the other during lithiation, which can also return after delithiation. It provides direct evidence that the NiTi alloy can effectively accommodate the anode volume change during electrochemical lithiation and delithiation.

  10. Experimental and numerical analysis of penetration/removal response of endodontic instrument made of single crystal Cu-based SMA: comparison with NiTi SMA instruments

    NASA Astrophysics Data System (ADS)

    Vincent, M.; Xolin, P.; Gevrey, A.-M.; Thiebaud, F.; Engels-Deutsch, M.; Ben Zineb, T.

    2017-04-01

    This paper presents an experimental and numerical study showing that single crystal shape memory alloy (SMA) Cu-based endodontic instruments can lead to equivalent mechanical performances compared to NiTi-based instruments besides their interesting biological properties. Following a previous finite element analysis (FEA) of single crystal CuAlBe endodontic instruments (Vincent et al 2015 J. Mater. Eng. Perform. 24 4128–39), prototypes with the determined geometrical parameters were machined and experimentally characterized in continuous rotation during a penetration/removal (P/R) protocol in artificial canals. The obtained mechanical responses were compared to responses of NiTi endodontic files in the same conditions. In addition, FEA was conducted and compared with the experimental results to validate the adopted modeling and to evaluate the local quantities inside the instrument as the stress state and the distribution of volume fraction of martensite. The obtained results highlight that single crystal CuAlBe SMA prototypes show equivalent mechanical responses to its NiTi homologous prototypes in the same P/R experimental conditions.

  11. Nanostructure of NiTi surface layers after Ta ion implantation

    NASA Astrophysics Data System (ADS)

    Girsova, S. L.; Poletika, T. M.; Meisner, L. L.; Schmidt, E. Yu.

    2016-11-01

    The elemental and phase composition and structure of the surface and near-surface layers of NiTi specimens after the Ta ion implantation with the fluency D = 3 × 1017 and 6 × 1017 cm-2 are examined. The methods of Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and electron dispersion analysis (EDS) are used. It is found that a nonuniform distribution of elements along the depth of the surface layer after the ion implantation of NiTi specimens, regardless of the regime, is accompanied by the formation of a number of sublayer structures.

  12. Corrosion resistance of porous NiTi biomedical alloy in simulated body fluids

    NASA Astrophysics Data System (ADS)

    Stergioudi, F.; Vogiatzis, C. A.; Pavlidou, E.; Skolianos, S.; Michailidis, N.

    2016-09-01

    The corrosion performance of two porous NiTi in physiological and Hank’s solutions was investigated by potentiodynamic polarization, cyclic polarization and impedance spectroscopy. Electric models simulating the corrosion mechanism at early stages of immersion were proposed, accounting for both microstructural observations and electrochemical results. Results indicate that both porous samples were susceptible to localized corrosion. The porosity increase (from 7% to 18%) resulted in larger and wider pore openings, thus favoring the corrosion resistance of 18% porous NiTi. Strengthening of corrosion resistance was observed in Hank’s solution. The pore morphology and micro-galvanic corrosion phenomena were determining factors affecting the corrosion resistance.

  13. Enhancement of NiTi superelastic endodontic instruments by TiO2 coating.

    PubMed

    Aun, Diego Pinheiro; Peixoto, Isabella Faria da Cunha; Houmard, Manuel; Buono, Vicente Tadeu Lopes

    2016-11-01

    Rotary nickel-titanium (NiTi) endodontic instruments were coated with a nanometric flexible TiO2 layer through dip-coating sol-gel. Control groups and coated samples of superelastic NiTi instruments model RaCe 25/0.06 (0.25mm tip-diameter, 6% conicity) were comparatively investigated with respect to the cutting efficiency, fatigue life, and corrosion resistance. Results showed an improvement in cutting efficiency for the coated samples and a high resistance to corrosion in NaClO. The coated instruments showed a better performance in fatigue life after corrosion.

  14. Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Kim, Dong Joo; Chung, Young-Soo; Kim, Hee Sun; Jung, Chungsung

    2015-01-01

    In this study, crack-closing tests of mortar beams reinforced by shape memory alloy (SMA) short fibers were performed. For this purpose, NiTi SMA fibers with a diameter of 0.965 mm and a length of 30 mm were made from SMA wires of 1.0 mm diameter by cold drawing. Four types of SMA fibers were prepared, namely, straight and dog-bone-shaped fiber and the two types of fibers with paper wrapping in the middle of the fibers. The paper provides an unbonded length of 15 mm. For bending tests, six types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B×H×L) were prepared. The SMA fibers were placed at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. This study investigated the influence of SMA fibers on the flexural strength of the beams from the measured force- deflection curves. After cracking, the beams were heated at the bottom by fire to activate the SMA fibers. Then, the beams recovered the deflection, and the cracks were closed. This study evaluated crack-closing capacity using the degree of crack recovery and deflection-recovery factor. The first factor is estimated from the crack-width before and after crack-closing, and the second one is obtained from the downward deflection due to loading and the upward deflection due to the closing force of the SMA fibers.

  15. Prestressing effect of cold-drawn short NiTi SMA fibres in steel reinforced mortar beams

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Kim, Dong Joo; Hwang, Jin-Ha; Kim, Woo Jin

    2016-08-01

    This study investigated the prestressing effect of cold-drawn short NiTi shape memory alloy (SMA) fibres in steel reinforced mortar beams. The SMA fibres were mixed with 1.5% volume content in a mortar matrix with the compressive strength of 50 MPa. The SMA fibres had an average length of 34 mm, and they were manufactured with a dog-bone shape: the diameters of the end- and middle-parts were 1.024 and 1.0 mm, respectively. Twenty mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B × H × L) were prepared. Two types of tests were conducted. One was to investigate the prestressing effect of the SMA fibres, and the beams with the SMA fibres were heated at the bottom. The other was to assess the bending behaviour of the beams prestressed by the SMA fibres. The SMA fibres induced upward deflection and cracking at the top surface by heating at the bottom; thus, they achieved an obvious prestressing effect. The beams that were prestressed by the SMA fibres did not show a significant difference in bending behaviour from that of the SMA fibre reinforced beams that were not subjected to heating. Stress analysis of the beams indicated that the prestressing effect decreased in relation to the cooling temperature.

  16. Understanding the Shape-Memory Behavior in Ti-(~49 At. Pct) Ni Alloy by Nanoindentation Measurement

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Datta, S.; Chakraborti, P. C.; Chattopadhyay, P. P.

    2013-04-01

    The influence of aging treatment on the work-hardening behavior of near-equiatomic NiTi alloy has been studied at the microstructural scale by conducting the instrumented indentation measurement. The maximum shape recovery is achieved at the peak aged condition. The improvement in shape recovery has been attributed to the delayed onset of plasticity. A comparison has been made between the recoverable strain obtained from the tensile experiments and the recovery index parameter determined from the nanoindentation measurements.

  17. Development and experimental evaluation of a novel annuloplasty ring with a shape memory alloy core

    NASA Astrophysics Data System (ADS)

    Purser, Molly Ferris

    A novel annuloplasty ring with a shape memory alloy core has been developed to facilitate minimally invasive mitral valve repair. In its activated (austenitic) phase, this prototype ring provides comparable mechanical properties as commercial semi-rigid rings. In its pre-activated (martensitic) phase, this ring is flexible enough to be introduced through an 8 mm trocar and easily manipulated with robotic instruments within the confines of a left atrial model. The core is constructed of 0.508 mm diameter NiTi, which is maintained below its M s temperature (24°C) during deployment and suturing. After suturing, the stiffener is heated to its Af temperature (37°C, normal human body temperature) enabling the NiTi to retain its optimal geometry and stiffness characteristics indefinitely. The NiTi core is shape set in a furnace to the appropriate size and optimal geometry during fabrication. The ring is cooled in a saline bath prior to surgery, making it compliant and easy to manipulate. Evaluation of the ring included mechanical testing, robotic evaluation, static pressure testing, dynamic flow testing and fatigue testing. Experimental results suggest that the NiTi core ring could be a viable alternative to flexible bands in robot-assisted mitral valve repair.

  18. Characterization of a 3D multi-mechanism SMA material model for the prediction of the cyclic "evolutionary" response of NiTi for use in actuations

    NASA Astrophysics Data System (ADS)

    Dhakal, Binod

    The intermetallic NiTi-based alloys are known as Shape Memory material. They exhibit unique ability to remember a shape after large deformation. They are desirable in various engineering applications, such as actuators, biomedical devices, vibration damping, etc, as they can absorb and dissipate mechanical/thermal energies by undergoing a reversible hysteretic shape change under the applied mechanical/thermal cyclic loadings. This reflects the effect of micro-structural changes occurring during phase transformation between Austenite(A) and Martensite(M), as well as differently-oriented M-variants. As typically utilized in applications, a particular shape memory alloy (SMA) device or component operates under a large number of thermo-mechanical cycles, hence, the importance of accounting for the cyclic behavior characteristics in modeling and characterization of these systems. A detailed study of the multi-mechanism-based, comprehensive, thus complex modeling framework (by Saleeb et al) and the determination of its material parameters responsible for the physical significance of the shape memory effect are made. This formulation utilizes multiple, inelastic mechanisms to regulate the partitioning of energy dissipation and storage governing the evolutionary thermo-mechanical behavior. Equipped with the understanding of the physical significance of the model parameters and utilizing the SMA modeling strategy effectively, a comprehensive characterization of the evolutionary, cyclic response of the complex real SMA, known as 55NiTi (Ni49.9Ti50.1) is carried out. The detailed comparisons between the SMA model and experimental results provided the necessary validation of the modeling capabilities of the framework to calibrate the complex alloys like 55NiTi. In addition, the details of interplays between the internal mechanisms to describe the material behavior within all the important response characteristic regions provides a convenient means to compliment the theoretical

  19. Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2012-01-01

    The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.

  20. Revealing ultralarge and localized elastic lattice strains in Nb nanowires embedded in NiTi matrix.

    PubMed

    Zang, Ketao; Mao, Shengcheng; Cai, Jixiang; Liu, Yinong; Li, Haixin; Hao, Shijie; Jiang, Daqiang; Cui, Lishan

    2015-12-02

    Freestanding nanowires have been found to exhibit ultra-large elastic strains (4 to 7%) and ultra-high strengths, but exploiting their intrinsic superior mechanical properties in bulk forms has proven to be difficult. A recent study has demonstrated that ultra-large elastic strains of ~6% can be achieved in Nb nanowires embedded in a NiTi matrix, on the principle of lattice strain matching. To verify this hypothesis, this study investigated the elastic deformation behavior of a Nb nanowire embedded in NiTi matrix by means of in situ transmission electron microscopic measurement during tensile deformation. The experimental work revealed that ultra-large local elastic lattice strains of up to 8% are induced in the Nb nanowire in regions adjacent to stress-induced martensite domains in the NiTi matrix, whilst other parts of the nanowires exhibit much reduced lattice strains when adjacent to the untransformed austenite in the NiTi matrix. These observations provide a direct evidence of the proposed mechanism of lattice strain matching, thus a novel approach to designing nanocomposites of superior mechanical properties.

  1. Do Mechanical and Physicochemical Properties of Orthodontic NiTi Wires Remain Stable In Vivo?

    PubMed

    Sarul, Michał; Rutkowska-Gorczyca, Małgorzata; Detyna, Jerzy; Zięty, Anna; Kawala, Maciej; Antoszewska-Smith, Joanna

    2016-01-01

    Introduction and Aim. Exceptional properties of the NiTi archwires may be jeopardized by the oral cavity; thus its long-term effect on the mechanical and physiochemical properties of NiTi archwires was the aim of work. Material and Methods. Study group comprised sixty 0.016 × 0.022 NiTi archwires from the same manufacturer evaluated (group A) after the first 12 weeks of orthodontic treatment. 30 mm long pieces cut off from each wire prior to insertion formed the control group B. Obeying the strict rules of randomization, all samples were subjected to microscopic evaluation and nanoindentation test. Results. Both groups displayed substantial presence of nonmetallic inclusions. Heterogeneity of the structure and its alteration after usage were found in groups B and A, respectively. Conclusions. Long-term, reliable prediction of biomechanics of NiTi wires in vivo is impossible, especially new archwires from the same vendor display different physiochemical properties. Moreover, manufacturers have to decrease contamination in the production process in order to minimize risk of mutual negative influence of nickel-titanium archwires and oral environment.

  2. Blast Coating of Superelastic NiTi Wire with PTFE to Enhance Wear Properties

    NASA Astrophysics Data System (ADS)

    Dunne, Conor F.; Roche, Kevin; Twomey, Barry; Hodgson, Darel; Stanton, Kenneth T.

    2015-03-01

    This work investigates the deposition of polytetrafluoroethylene (PTFE) onto a superelastic NiTi wire using an ambient temperature-coating technique known as CoBlast. The process utilises a stream of abrasive (Al2O3) and a coating medium (PTFE) sprayed simultaneously at the surface of the substrate. Superelastic NiTi wire is used in guidewire applications, and PTFE coatings are commonly applied to reduce damage to vessel walls during insertion and removal, and to aid in accurate positioning by minimising the force required to advance, retract or rotate the wire. The CoBlast coated wires were compared to wire treated with PTFE only. The coated samples were examined using variety of techniques: X-ray diffraction (XRD), microscopy, surface roughness, wear testing and flexural tests. The CoBlast coated samples had an adherent coating with a significant resistance to wear compared to the samples coated with PTFE only. The XRD revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of PTFE onto the surface of superelastic NiTi.

  3. Do Mechanical and Physicochemical Properties of Orthodontic NiTi Wires Remain Stable In Vivo?

    PubMed Central

    Rutkowska-Gorczyca, Małgorzata; Detyna, Jerzy; Zięty, Anna; Kawala, Maciej; Antoszewska-Smith, Joanna

    2016-01-01

    Introduction and Aim. Exceptional properties of the NiTi archwires may be jeopardized by the oral cavity; thus its long-term effect on the mechanical and physiochemical properties of NiTi archwires was the aim of work. Material and Methods. Study group comprised sixty 0.016 × 0.022 NiTi archwires from the same manufacturer evaluated (group A) after the first 12 weeks of orthodontic treatment. 30 mm long pieces cut off from each wire prior to insertion formed the control group B. Obeying the strict rules of randomization, all samples were subjected to microscopic evaluation and nanoindentation test. Results. Both groups displayed substantial presence of nonmetallic inclusions. Heterogeneity of the structure and its alteration after usage were found in groups B and A, respectively. Conclusions. Long-term, reliable prediction of biomechanics of NiTi wires in vivo is impossible, especially new archwires from the same vendor display different physiochemical properties. Moreover, manufacturers have to decrease contamination in the production process in order to minimize risk of mutual negative influence of nickel-titanium archwires and oral environment. PMID:28097137

  4. Revealing ultralarge and localized elastic lattice strains in Nb nanowires embedded in NiTi matrix

    PubMed Central

    Zang, Ketao; Mao, Shengcheng; Cai, Jixiang; Liu, Yinong; Li, Haixin; Hao, Shijie; Jiang, Daqiang; Cui, Lishan

    2015-01-01

    Freestanding nanowires have been found to exhibit ultra-large elastic strains (4 to 7%) and ultra-high strengths, but exploiting their intrinsic superior mechanical properties in bulk forms has proven to be difficult. A recent study has demonstrated that ultra-large elastic strains of ~6% can be achieved in Nb nanowires embedded in a NiTi matrix, on the principle of lattice strain matching. To verify this hypothesis, this study investigated the elastic deformation behavior of a Nb nanowire embedded in NiTi matrix by means of in situ transmission electron microscopic measurement during tensile deformation. The experimental work revealed that ultra-large local elastic lattice strains of up to 8% are induced in the Nb nanowire in regions adjacent to stress-induced martensite domains in the NiTi matrix, whilst other parts of the nanowires exhibit much reduced lattice strains when adjacent to the untransformed austenite in the NiTi matrix. These observations provide a direct evidence of the proposed mechanism of lattice strain matching, thus a novel approach to designing nanocomposites of superior mechanical properties. PMID:26625854

  5. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    NASA Astrophysics Data System (ADS)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  6. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  7. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy.

    PubMed

    Chembath, Manju; Balaraju, J N; Sujata, M

    2015-11-01

    The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in

  8. Effects of oxygen plasma source ion implantation on microstructure evolution and mechanical properties of nickel-titanium shape memory alloy

    NASA Astrophysics Data System (ADS)

    Tan, Lizhen

    Near-equiatomic NiTi is an important shape memory alloy used in both medical and non-medical applications, which are dependent upon the surface characteristics of NiTi. The work presented here is the first use of plasma source ion implantation with oxygen as the incident species to modify the surface structure of NiTi shape memory alloy. Two levels of voltage bias and three levels of ion dose were employed to investigate the effect of processing parameters on surface microstructure and surface-related properties. Several surface analytical techniques, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), were employed to analyze the effects of the surface modification on surface characteristics including oxide thickness, oxide constitution, phase distribution, morphology and topography. A two-layer surface structure consisting of an oxide layer and a precipitate accommodation layer was observed on modified NiTi. The surface morphology, roughness and hydrophilicity, which are considered to play important roles in affecting protein adsorption behavior, were found to be altered by surface modification. The effects of surface modification on surface-related properties including corrosion resistance, hardness and wear resistance were evaluated by cyclic potentiodynamic polarization tests, Knoop hardness microindentation and fretting wear tests, respectively. The optimum corrosion and wear resistance of NiTi were achieved with ion implantation under high bias and moderate dose. Archard's equation was modified by incorporating the pseudoelasticity effect on wear resistance in addition to hardness. The modified Archard's equation better describes the fretting wear resistance of NiTi. A combination of nanoindentation and AES was employed to understand the relationship between mechanical properties and composition of the modified material.

  9. Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.

    2008-01-01

    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.

  10. A uniaxial constitutive model for superelastic NiTi SMA including R-phase and martensite transformations and thermal effects

    NASA Astrophysics Data System (ADS)

    Helbert, Guillaume; Saint-Sulpice, Luc; Arbab Chirani, Shabnam; Dieng, Lamine; Lecompte, Thibaut; Calloch, Sylvain; Pilvin, Philippe

    2017-02-01

    The well-known martensitic transformation is not always the unique solid-solid phase change in NiTi shape memory alloys (SMA). For this material, R-phase can occur from both austenite and martensite. In some applications, macroscopic strain of the material can be limited to 2%. In these cases, R-phase contribution can not be neglected anymore when compared with martensite. Furthermore, different thermomechanical couplings have to be taken into account to carefully predict strain rate effects and to better describe application conditions. In this paper, a new model taking into account various phase transformations with thermomechanical couplings is presented. This model is based on several transformation criteria. In most applications, SMA are used as wires, submitted to tensile-tensile loadings, in the superelasticity working range. Consequently, a uniaxial reduction of the model is presented for its simplicity. A thermodynamic framework is proposed. It enables to describe the internal variables evolution laws. The simple and fast identification process of model parameters is briefly presented. To verify the validity of the proposed model, simulation results are compared with experimental ones. The influences of testing temperature and strain amplitude on the material behavior is discussed. The damping capacity is also studied, using an energy-based criterion.

  11. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation

    NASA Astrophysics Data System (ADS)

    Varela, Sebastian; ‘Saiid' Saiidi, M.

    2016-07-01

    This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.

  12. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Rasha A.; Fadl-allah, Sahar A.; El-Bagoury, Nader; El-Rab, Sanaa M. F. Gad

    2014-02-01

    Biocomposite consists of gold nanoparticles (AuNPs) and a natural polymer as Chitosan (CS) was electrodeposited over NiTi alloy to improve biocompatibility, biostability, surface corrosion resistance and antibacterial effect for orthopedic implantation. The forming process and surface morphology of this biocomposite coats over NiTi alloy were studied. The results showed that the nm-scale gold particles were embedded in the composite forming compact, thick and smooth coat. Elemental analysis revealed significant less Ni ion release from the coated NiTi alloy compared with the uncoated one by 20 fold. Furthermore, the electrochemical corrosion measurements indicated that AuNPs/CS composite coat was effective for improving corrosion resistance in different immersion times and at all pH values, which suggests that the coated NiTi alloys have potential for orthopedic applications. Additionally, the efficiencies of the biocomposite coats for inhibiting bacterial growth indicate high antibacterial effect.

  13. Parametric study and characterization of the isobaric thermomechanical transformation fatigue of nickel-rich NiTi SMA actuators

    NASA Astrophysics Data System (ADS)

    Bertacchini, Olivier W.; Schick, Justin; Lagoudas, Dimitris C.

    2009-03-01

    The recent development of various aerospace applications utilizing Ni-rich NiTi Shape memory Alloys (SMAs) as actuators motivated the need to characterize the cyclic response and the transformation fatigue behavior of such alloys. The fatigue life validation and certification of new designs is required in order to be implemented and used in future applications. For that purpose, a custom built fatigue test frame was designed to perform isobaric thermally induced transformation cycles on small dogbones SMA actuators (test gauge cross-section up to: 1.270 x 0.508 mm2). A parametric study on the cyclic response and transformation fatigue behavior of Ni-rich NiTi SMAs led to the optimization of several material/process and test parameters, namely: the applied stress range, the heat treatment, the heat treatment environment and the specimen thickness. However, fatigue testing was performed in a chilled waterless glycol environment maintained at a temperature of 5°C that showed evidence of corrosion-assisted transformation fatigue failure. Therefore, it was necessary to build a fatigue test frame that would employ a dry and inert cooling methodology to get away from any detrimental interactions between the specimens and the cooling medium (corrosion). The selected cooling method was gaseous nitrogen, sprayed into a thermally insulated chamber, maintaining a temperature of -20°C. The design of the gaseous nitrogen cooling was done in such a way that the actuation frequency is similar to the one obtained using the original design (~ 0.1 Hz). For both cooling methods, Joule resistive heating was used to heat the specimens. In addition and motivated by the difference in surface quality resulting from different material processing such as EDM wire cutting and heat treatments, EDM recast layer and oxide layer were removed. The removal was followed by an ultra-fine polish (0.05 μm) that was performed on a subset of the fatigue specimens. Experimental results are presented

  14. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys.

    PubMed

    Lifeng, Zhao; Yan, Hong; Dayun, Yang; Xiaoying, Lü; Tingfei, Xi; Deyuan, Zhang; Ying, Hong; Jinfeng, Yuan

    2011-04-01

    TiN coating has been demonstrated to improve the biocompatibility of bare NiTi alloys; however, essential biocompatibility differences between NiTi alloys before and after TiN coating are not known so far. In this study, to explore the underlying biological mechanisms of biocompatibility differences between them, the changes of bare and TiN-coated NiTi alloys in surface chemical composition, morphology, hydrophilicity, Ni ions release, cytotoxicity, apoptosis, and gene expression profiles were compared using energy-dispersive spectroscopy, scanning electron microscopy, contact angle, surface energy, Ni ions release analysis, the methylthiazoltetrazolium (MTT) method, flow cytometry and microarray methods, respectively. Pathways binding to networks and real-time polymerase chain reaction (PCR) were employed to analyze and validate the microarray data, respectively. It was found that, compared with the bare NiTi alloys, TiN coating significantly decreased Ni ions content on the surfaces of the NiTi alloys and reduced the release of Ni ions from the alloys, attenuated the inhibition of Ni ions to the expression of genes associated with anti-inflammatory, and also suppressed the promotion of Ni ions to the expression of apoptosis-related genes. Moreover, TiN coating distinctly improved the hydrophilicity and uniformity of the surfaces of the NiTi alloys, and contributed to the expression of genes participating in cell adhesion and other physiological activities. These results indicate that the TiN-coated NiTi alloys will help overcome the shortcomings of NiTi alloys used in clinical application currently, and can be expected to be a replacement of biomaterials for a medical device field.

  15. Ni ion release, osteoblast-material interactions, and hemocompatibility of hafnium-implanted NiTi alloy.

    PubMed

    Zhao, Tingting; Li, Yan; Zhao, Xinqing; Chen, Hong; Zhang, Tao

    2012-04-01

    Hafnium ion implantation was applied to NiTi alloy to suppress Ni ion release and enhance osteoblast-material interactions and hemocompatibility. The auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscope results showed that a composite TiO(2)/HfO(2) nanofilm with increased surface roughness was formed on the surface of NiTi, and Ni concentration was reduced in the superficial surface layer. Potentiodynamic polarization tests displayed that 4 mA NiTi sample possessed the highest E(br) - E(corr), 470 mV higher than that of untreated NiTi, suggesting a significant improvement on pitting corrosion resistance. Inductively coupled plasma mass spectrometry tests during 60 days immersion demonstrated that Ni ion release rate was remarkably decreased, for example, a reduction of 67% in the first day. The water contact angle increased and surface energy decreased after Hf implantation. Cell culture and methyl-thiazol-tetrazolium indicated that Hf-implanted NiTi expressed enhanced osteoblasts adhesion and proliferation, especially after 7 days culture. Hf implantation decreased fibrinogen adsorption, but had almost no effect on albumin adsorption. Platelets adhesion and activation were suppressed significantly (97% for 4 mA NiTi) and hemolysis rate was decreased by at least 57% after Hf implantation. Modified surface composition and morphology and decreased surface energy should be responsible for the improvement of cytocompatibility and hemocompatibility.

  16. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses

    NASA Astrophysics Data System (ADS)

    Pogrebnjak, A. D.; Bratushka, S. N.; Beresnev, V. M.; Levintant-Zayonts, N.

    2013-12-01

    The state of the art in ion implantation of superelastic NiTi shape memory alloys is analyzed. Various technological applications of the shape memory effect are outlined. The principles and techiques of ion implantation are described. Specific features of its application for modification of surface layers in surface engineering are considered. Key properties of shape memory alloys and problems in utilization of ion implantation to improve the surface properties of shape memory alloys, such as corrosion resistance, friction coefficient, wear resistance, etc. are discussed. The bibliography includes 162 references.

  17. Experimental characterization of shape memory alloy actuator cables

    NASA Astrophysics Data System (ADS)

    Biggs, Daniel B.; Shaw, John A.

    2016-04-01

    Wire rope (or cables) are a fundamental structural element in many engineering applications. Recently, there has been growing interest in stranding NiTi wires into cables to scale up the adaptive properties of NiTi tension elements and to make use of the desirable properties of wire rope. Exploratory experiments were performed to study the actuation behavior of two NiTi shape memory alloy cables and straight monofilament wire of the same material. The specimens were held under various dead loads ranging from 50 MPa to 400 MPa and thermally cycled 25 times from 140°C to 5°C at a rate of 12°C/min. Performance metrics of actuation stroke, residual strain, and work output were measured and compared between specimen types. The 7x7 cable exhibited similar actuation to the single straight wire, but with slightly longer stroke and marginally more shakedown, while maintaining equivalent specific work output. This leads to the conclusion that the 7x7 cable effectively scaled up the adaptive properties the straight wire. Under loads below 150 MPa, the 1x27 cable had up to double the actuation stroke and work output, but exhibited larger shakedown and poorer performance when loaded higher.

  18. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Vaidyanathan, Raj; Gaydosh, Darrell; Noebe, Ronald; Bigelow, Glen; Garg, Anita

    2008-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. This investigation extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional improvement in the work output of the material, which has a stress-free Af of 113 oC, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted in the aforementioned alloy at various stress levels from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 oC. The data indicated that the amount of applied stress influenced the transformation strain available in the system, as would be expected. However, the maximum temperature reached during the thermal excursion also plays a role in determining the transformation strain, with the maximum transformation strain being developed by thermal cycling to 290 oC. In situ, neutron diffraction showed that the differences in transformation strain were related to differences in martensite texture within the microstructure when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  19. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita

    2011-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  20. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    NASA Astrophysics Data System (ADS)

    Padula, Santo; Qiu, Shipeng; Gaydosh, Darrell; Noebe, Ronald; Bigelow, Glen; Garg, Anita; Vaidyanathan, Raj

    2012-12-01

    Over the past decade, interest in shape-memory-alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently, we showed that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt pct Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to (1) ascertain whether increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 386 K (113 °C), and (2) determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50 to 300 MPa using upper-cycle temperatures of 438 K, 473 K, 503 K, 533 K, 563 K, 593 K, and 623 K (165 °C, 200 °C, 230 °C, 260 °C, 290 °C, 320 °C, and 350 °C). The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 563 K (290 °C). In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape-memory alloys for optimal performance.

  1. Effect of surface modification on deformation localization in NiTi at cycling tensile loading

    NASA Astrophysics Data System (ADS)

    Poletika, T. M.; Girsova, S. L.; Lunev, A. G.; Meisner, L. L.

    2016-11-01

    The paper examines the regular features exhibited by transformation strain localization on macro- and mesoscale levels during cyclic loading for NiTi samples with two different surface states: the initial polished sample and the one subjected to ion implantation. The speckle photography method with speckle flicker rate measurement for image processing was used. It was shown that the initiation and the propagation of martensite, and hence the mechanical response are determined by the surface condition of the NiTi sample. Two scenarios of martensitic transformation were revealed: the heterogeneous diagonal transformation bands emerge across the sample with polished surface; a single front of the localized transformation in a Luders-like manner propagates through the sample with a modified surface.

  2. Design and Fabrication of Ni/Ti Multilayer for Neutron Supermirror

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong; Wang, Zhan-Shan; Zhu, Jing-Tao; Wang, Feng-Li; Wu, Yong-Rong; Qin, Shu-Ji; Chen, Ling-Yan

    2006-10-01

    In the applications of neutron guides and focusing devices, by using the Ni/Ti multilayer supermirrors (SM), the neutron flux is significantly enhanced, because the critical reflective angle of supermirrors increases m times compared to the one of natural bulk Ni. We design and fabricate the Ni/Ti multilayer supermirrors by considering the effect of the interfacial imperfection, such as interface roughness and diffusion, and by using the direct current magnetron sputtering technology. The reflective performances of these supermirrors are measured on a V14 neutron beam line at the Berlin Neutron Scattering Centre (BENSC), Germany. The measurement data suggest that the critical angles of the supermirrors are 1.5 and 2.2 times that of bulk Ni, respectively.

  3. Effect of rotational speed on root canal preparation with Hero 642 rotary Ni-Ti instruments.

    PubMed

    Karagöz-Küçükay, Işil; Ersev, Handan; Engin-Akkoca, Ece; Küçükay, Sedat; Gürsoy, Tankut

    2003-07-01

    The purpose of this study was to evaluate the influence of Hero 642 rotary Ni-Ti instruments driven at 300, 400, or 600 rpm on root canal straightening, loss of working length, and instrument breakage. Sixty mesial root canals from extracted human mandibular molars were divided into 3 groups of 20 each and were instrumented at the aforementioned rotational speeds with a crown-down technique. Using a digital intraoral radiography system directly on the images of pre- and postoperative radiographs, degrees of canal curvatures were measured and recorded. Statistical analysis showed that final canal curvatures and working lengths were significantly reduced compared with those of original values in each group (p < 0.001). However, using Hero 642 rotary Ni-Ti system at different rotational speeds had no effect on canal curvature and working length alterations (p > 0.05). No file breakage was observed in any of the groups.

  4. Construction of extracellular microenvironment to improve surface endothelialization of NiTi alloy substrate.

    PubMed

    Liu, Peng; Zhao, Yongchun; Yan, Ying; Hu, Yan; Yang, Weihu; Cai, Kaiyong

    2015-10-01

    To mimic extracellular microenvironment of endothelial cell, a bioactive multilayered structure of gelatin/chitosan pair, embedding with vascular endothelial growth factor (VEGF), was constructed onto NiTi alloy substrate surface via a layer-by-layer assembly technique. The successful fabrication of the multilayered structure was demonstrated by scanning electron microscopy, atomic force microscopy, contact angle measurement, attenuated total reflection-fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The growth behaviors of endothelial cells on various NiTi alloy substrates were investigated in vitro. Cytoskeleton observation, MTT assay, and wound healing assay proved that the VEGF-embedded multilayer structure positively stimulated adhesion, proliferation and motogenic responses of endothelial cells. More importantly, the present system promoted the nitric oxide production of endothelial cells. The approach affords an alternative to construct extracellular microenvironment for improving surface endothelialization of a cardiovascular implant.

  5. Surface ultrastructure and mechanical properties of three different white-coated NiTi archwires.

    PubMed

    Ryu, Seong-Hee; Lim, Byung-Suh; Kwak, Eun Joo; Lee, Gi-Ja; Choi, Samjin; Park, Ki-Ho

    2015-01-01

    The recent trend in orthodontic treatment is to apply esthetic materials to orthodontic appliances with adequate clinical performance. The aim of this study was to investigate the ultrastructure (surface roughness) and mechanical properties (load-deflection curve) of three as-received, white-coated superelastic nickel-titanium (NiTi) archwires using atomic force microscopy (AFM) and modified three-point bending test assessments, respectively. Three representative esthetic NiTi archwires were used, silver-platinum- and polymer-coated NiTi Natural Dany (Dany group), epoxy resin-coated Orthoforce Ultraesthetic™ (Ultra group), and Teflon®-coated Perfect (Perfect group). Uncoated metallic areas of each wire were used as controls. The diameter of the Perfect archwire was significantly larger than that of other archwires. The Dany and Ultra groups showed more deflection than the Perfect group. The hysteresis area of the Dany and Ultra groups showed approximately two- and fourfold increases compared to the control and the Perfect group. The Dany group (2037.5 ± 527.3 nm) had the highest peak-to-peak surface roughness in the coated areas, followed by the Ultra group (811.1 ± 407.5 nm) and the Perfect group (362.7 ± 195.8 nm). However, reverse nanostructural changes in the surface roughness were observed in the uncoated metallic areas. The results suggested that the load-deflection properties and the surface roughness of superelastic NiTi archwires were affected directly by the coating materials. Although the efficiency of orthodontic treatment was affected by various factors, when only considering the frictional force and mechanostructural properties, the epoxy resin-coated Orthoforce Ultraesthetic™ archwires were the most effective for orthodontic treatment.

  6. Laser-induced surface alloying in nanosized Ni/Ti multilayer structures

    NASA Astrophysics Data System (ADS)

    Petrović, Suzana; Radak, B.; Peruško, D.; Pelicon, P.; Kovač, J.; Mitrić, M.; Gaković, B.; Trtica, M.

    2013-01-01

    Laser-induced alloying effects on the composition and structure of different Ni/Ti multilayer structures were studied. Thin films composed of one, five, and ten (Ni/Ti) bilayers were deposited by DC ion sputtering on (1 0 0) Si wafers. Laser irradiations were performed by 150 ps pulses of a Nd:YAG laser operating at 1064 nm. The samples were characterized by Rutherford backscattering spectrometry (RBS), Auger electron spectroscopy (AES), X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). At a laser fluence of 0.9 J cm-2, interaction between Ni and Ti layers was initiated, and NiTi alloy formed in 5- and 10-bilayered samples. Progressed alloying was achieved at a laser fluence of 1.2 J cm-2. The alloy was formed mostly within the heat affected zone (HAZ) of the sample. Surface segregation of titanium was followed by formation of a 25 nm thin TiO2 film on the surface of the multilayered structures. In addition, parallel periodic surface structures on the surfaces of the 5- and 10-bilayered samples were clearly recorded. Their period in the case of the 5-bilayered system (0.77 μm) agrees very well with the predictions of the common theory, whereas, in the case of the 10-bilayered system, two periods of such structures are observed (1.43 μm and 0.4 μm), and none of them coincides with the prediction.

  7. Computational Modeling to Predict Fatigue Behavior of NiTi Stents: What Do We Need?

    PubMed

    Dordoni, Elena; Petrini, Lorenza; Wu, Wei; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo

    2015-05-20

    NiTi (nickel-titanium) stents are nowadays commonly used for the percutaneous treatment of peripheral arterial disease. However, their effectiveness is still debated in the clinical field. In fact a peculiar cyclic biomechanical environment is created before and after stent implantation, with the risk of device fatigue failure. An accurate study of the device fatigue behavior is of primary importance to ensure a successful stenting procedure. Regulatory authorities recognize the possibility of performing computational analyses instead of experimental tests for the assessment of medical devices. However, confidence in numerical methods is only possible after verification and validation of the models used. For the case of NiTi stents, mechanical properties are strongly dependent on the device dimensions and the whole treatments undergone during manufacturing process. Hence, special attention should be paid to the accuracy of the description of the device geometry and the material properties implementation into the numerical code, as well as to the definition of the fatigue limit. In this paper, a path for setting up an effective numerical model for NiTi stent fatigue assessment is proposed and the results of its application in a specific case study are illustrated.

  8. Computational Modeling to Predict Fatigue Behavior of NiTi Stents: What Do We Need?

    PubMed Central

    Dordoni, Elena; Petrini, Lorenza; Wu, Wei; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo

    2015-01-01

    NiTi (nickel-titanium) stents are nowadays commonly used for the percutaneous treatment of peripheral arterial disease. However, their effectiveness is still debated in the clinical field. In fact a peculiar cyclic biomechanical environment is created before and after stent implantation, with the risk of device fatigue failure. An accurate study of the device fatigue behavior is of primary importance to ensure a successful stenting procedure. Regulatory authorities recognize the possibility of performing computational analyses instead of experimental tests for the assessment of medical devices. However, confidence in numerical methods is only possible after verification and validation of the models used. For the case of NiTi stents, mechanical properties are strongly dependent on the device dimensions and the whole treatments undergone during manufacturing process. Hence, special attention should be paid to the accuracy of the description of the device geometry and the material properties implementation into the numerical code, as well as to the definition of the fatigue limit. In this paper, a path for setting up an effective numerical model for NiTi stent fatigue assessment is proposed and the results of its application in a specific case study are illustrated. PMID:26011245

  9. Calculation of defect properties of NiTi and FeTi

    SciTech Connect

    Lutton, R.T.; Sabochick, M.J. . Dept. of Engineering Physics); Lam, N.Q. )

    1990-12-01

    The energies and configurations of interstitials and vacancies in the B2 ordered compounds NiTi and FeTi were calculated using atomistic simulation. The stable configuration of a vacancy after the removal of an Ni atom was a vacant Ni site; similarly, the removal of an Fe atom in FeTi resulted in a vacant Fe site. Removal of a Ti atom in both compounds, however, resulted in a vacant Ni or Fe site and an adjacent antisite defect. The effective vacancy formation energies in NiTi and FeTi were calculated to be 1.48 and 1.07 eV, respectively. Interstitials in NiTi formed split {l angle}111{r angle} configurations consisting of a Ni-Ni dumbbell oriented in the {l angle}111{r angle} direction with one or two adjacent antisite defects. The Fe interstitial in FeTi had a similar configuration, except the dumbbell contained Fe atoms. The Ti interstitial in FeTi formed an {l angle}110{r angle} Fe-Fe dumbbell. 8 refs., 2 tabs.

  10. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys.

    PubMed

    Poon, R W Y; Yeung, K W K; Liu, X Y; Chu, P K; Chung, C Y; Lu, W W; Cheung, K M C; Chan, D

    2005-05-01

    Nickel-titanium (NiTi) shape memory alloys possess super-elasticity in addition to the well-known shape memory effect and are potentially suitable for orthopedic implants. However, a critical concern is the release of harmful Ni ions from the implants into the living tissues. We propose to enhance the corrosion resistance and other surface and biological properties of NiTi using carbon plasma immersion ion implantation and deposition (PIII&D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII&D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Our tribological tests show that the treated surfaces are mechanically more superior and cytotoxicity tests reveal that both sets of plasma-treated samples favor adhesion and proliferation of osteoblasts.

  11. Repairing cracks developed in mortar beams reinforced by cold-drawn NiTi or NiTiNb SMA fibers

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Kim, Dong Joo; Youn, Heejung; Nam, Tae-hyun

    2015-12-01

    In this study, mortar beams reinforced by shape memory alloy (SMA) fibers of NiTi and NiTiNb alloys were prepared to perform crack-repairing tests using three-point bending tests. The SMA fibers had a length of 30 mm, and their types were straight, dog-bone, and dog-bone with paper wrapping. For the bending tests, twelve types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B × H × L) were prepared. Half of them had a top steel reinforcement, and equal numbers of beams were assigned to the NiTi and NiTiNb fibers. Five SMA fibers were located at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. Epoxy was used to fill the cracks to bond the cracked surfaces using injection, and a hot-gun was used to heat the SMA fibers in the cracks. The crack widths were measured before and after the cracks were repaired, and force-displacement curves were obtained to assess the flexural strength recovery ratio of the beams. It does not appear that the crack-closing capacity of SMA fibers is a crucial factor to recover the flexural strength in repaired beams. However, adequate application of epoxy is critical for repairing cracks, and the residual stress of SMA fibers seems to contribute to increase flexural strength of repaired beams. The residual stress of SMA fibers functions as prestress on mortar and delays the initiation of cracking.

  12. Novel Processing for Creating 3D Architectured Porous Shape Memory Alloy

    DTIC Science & Technology

    2013-03-01

    Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS shape memory alloy, powder metallurgy , digital image...were used as a spaceholder with powder metallography. High carbon steel wires were chosen with a wire diameter of 400 μm. The wires were orthogonally...similar to the method detailed above, in that a composite of NiTi powders and a steel spaceholder frame is created, and the frame is electrochemically

  13. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic NiTi Ball Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2017-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  14. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Jefferson, Michael

    2015-01-01

    NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  15. An In Situ Study of Sintering Behavior and Phase Transformation Kinetics in NiTi Using Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Liss, Klaus-Dieter; Cao, Peng

    2015-12-01

    The powder sintering behavior of NiTi from an elemental powder mixture of Ni/Ti has been investigated, using an in situ neutron diffraction technique. In the sintered alloys, the overall porosity ranges from 9.2 to 15.6 pct, while the open-to-overall porosity ratio is between 8.3 and 63.7 pct and largely depends on the sintering temperature. In comparison to powder compacts sintered at 1223 K and 1373 K (950 °C and 1100 °C), the powder compact sintered at 1153 K (880 °C) shows a much smaller pore size, a higher open-to-overall porosity ratio but smaller shrinkage and a lower density. Direct evidence of eutectoid transformation in the binary Ni-Ti system during furnace cooling to ca. 890 K (617 °C) is provided by in situ neutron diffraction. The intensities of the B2-NiTi reflections decrease during the holding stage at 1373 K (1100 °C), which has been elaborated as an extinction effect according to the dynamical theory of neutron diffraction, when distorted crystallites gradually recover to perfect crystals. The analysis on the first five reflections clarifies the non-existence of any order-disorder transition in the NiTi phase from B2-to-BCC structure.

  16. Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells.

    PubMed

    Rokicki, Ryszard; Haider, Waseem; Hryniewicz, Tadeusz

    2012-09-01

    The influence of 6 % sodium hypochlorite (NaClO) treatment on adhesion and proliferation of MC3T3 pre-osteoblast cells seeded on electropolished (EP) and magnetoelectropolished (MEP) nitinol surfaces were investigated. The chemistry, topography, roughness, surface energy, wettability of EP and MEP nitinol surfaces before and after NaClO treatment were studied with X-ray photoelectron spectroscopy (XPS), profilometry, and contact angle meter. In vitro interaction of osteoblast cell and NaClO treated EP and MEP nitinol surfaces were assessed after 3 days of incubation by scanning electron microscopy. The XPS analysis shows that NaClO treatment increases oxygen content especially in subsurface oxide layer of EP and MEP nitinol. The changes of both basic components of nitinol, namely nickel and titanium in oxide layer, were negligible. The NaClO treatment did not influence physico-morphological surface properties of EP and MEP nitinol to a big extent. The osteoblast cells show remarkable adherence and proliferation improvement on NaClO treated EP and MEP nitinol surfaces. After 3 days of incubation they show almost total confluence on both NaClO treated surfaces. The present study shows that NaClO treatment of EP and MEP nitinol surfaces alters oxide layer by enriching it in oxygen and by this improves bone cell-nitinol interaction.

  17. On phase transformation behavior of porous Shape Memory Alloys.

    PubMed

    Liu, Bingfei; Dui, Guansuo; Zhu, Yuping

    2012-01-01

    This paper is concerned on the phase transformation mechanism of porous Shape Memory Alloys (SMAs). A unit-cell model is adopted to establish the constitutive relation for porous SMAs, the stress distributions, the phase distributions and the martensitic volume fractions for the model are then derived under both pure hydrostatic stress and uniaxial compression. Further, an example for the uniaxial response under compression for a porous Ni-Ti SMA material considering hydrostatic stress is supplied. Good agreement between the theoretical prediction of the proposed model and published experimental data is observed.

  18. Debris Evaluation after Root Canal Shaping with Rotating and Reciprocating Single-File Systems

    PubMed Central

    Dagna, Alberto; Gastaldo, Giulia; Beltrami, Riccardo; Poggio, Claudio

    2016-01-01

    This study evaluated the root canal dentine surface by scanning electron microscope (SEM) after shaping with two reciprocating single-file NiTi systems and two rotating single-file NiTi systems, in order to verify the presence/absence of the smear layer and the presence/absence of open tubules along the walls of each sample; Forty-eight single-rooted teeth were divided into four groups and shaped with OneShape (OS), F6 SkyTaper (F6), WaveOne (WO) and Reciproc and irrigated using 5.25% NaOCl and 17% EDTA. Root canal walls were analyzed by SEM at a standard magnification of 2500×. The presence/absence of the smear layer and the presence/absence of open tubules at the coronal, middle, and apical third of each canal were estimated using a five-step scale for scores. Numeric data were analyzed using Kruskal-Wallis and Mann-Whitney U statistical tests and significance was predetermined at P < 0.05; The Kruskal-Wallis ANOVA for debris score showed significant differences among the NiTi systems (P < 0.05). The Mann-Whitney test confirmed that reciprocating systems presented significantly higher score values than rotating files. The same results were assessed considering the smear layer scores. ANOVA confirmed that the apical third of the canal maintained a higher quantity of debris and smear layer after preparation of all the samples; Single-use NiTi systems used in continuous rotation appeared to be more effective than reciprocating instruments in leaving clean walls. The reciprocating systems produced more debris and smear layer than rotating instruments. PMID:27763503

  19. In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity.

    PubMed

    Li, Huafang; Cong, Ying; Zheng, Yufeng; Cui, Lishan

    2016-03-01

    In the present study, a novel kind of NiTiW shape memory alloy with chemical composition of Ni43.5Ti45.5W11 (at.%) has been successfully developed with excellent X-ray radiopacity by the introduction of pure W precipitates into the NiTi matrix phase. Its microstructure, X-ray radiopacity, mechanical properties, corrosion resistance in simulated body fluid, hemocompatibility and in vitro cytocompatibility were systematically investigated. The typical microstructural feature of NiTiW alloy at room temperature was tiny pure W particles randomly distributing in the NiTi matrix phase. The presence of W precipitates was found to result in enhanced radiopacity and microhardness of NiTiW alloy in comparison to that of NiTi binary alloy. NiTiW alloy exhibits excellent shape memory effect, and a maximum shape recovery ratio of about 30% was obtained with a total prestrain of 8% for the NiTiW alloy sample. In the electrochemical test, NiTiW alloy presented an excellent corrosion resistance in simulated body fluid, comparable to that of NiTi alloy. Hemocompatibility tests indicated that the NiTiW alloy has quite low hemolysis (lower than 0.5%) and the adherent platelet showed round shape without pseudopod. Besides, in vitro cell viability tests demonstrated that the cell viability is all above 90%, and the cells spread well on the NiTiW alloy, having polygon or spindle healthy morphology. The hemocompatibility tests, in vitro cell viability tests and morphology observation indicated that the NiTiW shape memory alloys have excellent biocompatibility. The excellent X-ray radiopacity makes the NiTiW alloys show obvious advantages in orthopedic, stomatological, neurological and cardiovascular domains where radiopacity is quite important factor in order to guarantee successful implantation.

  20. Effects of heat treatment on shape-setting and non-linearmechanical properties of Nitinol stent

    NASA Astrophysics Data System (ADS)

    Liu, Xiaopeng; Wang, Yinong; Qi, Min; Yang, Dazhi

    2007-07-01

    NiTi shape memory alloy is a temperature sensitive material with non-linear mechanical properties and good biocompatibility, which can be used for medical devices such as stent, catheter guide wire and orthodontic wire. The majority of nitinol stents are of the self-expanding type basing on the superelasticity. Nitinol stents are shape set into the open condition and compressed and inserted into the delivery catheter. Additional the shape-setting treatment can be used as a tool to accurately tune the transformation temperatures and mechanical properties. In this study, different heat treatments have been performed on the Ti-50.7at%Ni alloy wires. And results of shape-setting, austenite transformation finish temperature and non-linear mechanical property of NiTi shape memory alloy at body temperature have been investigated. The experimental results show that the proper shape-setting temperature should be chosen between 450-550 °C. And the shape-setting results were stabilization when the NiTi wires were constrain-treated at 500 and 550°C and ageing time longer than 10 minutes. The austenite finish temperatures increased with ageing time and increased first and then decreased with ageing temperature. The peak values were obtained at 400°C. When the heat treatments was performed at the same temperature, both the upper plateau stresses and lower plateau stresses decreased with the ageing time. Most of treated nitinol wires owned good recovery ability at body temperature and the permanent sets were less than 0.05% when short time ageing treatment was performed at 500°C.

  1. Bioperformance of shape memory alloy single crystals.

    PubMed

    Yahia, L'h; Manceur, A; Chaffraix, P

    2006-01-01

    Shape memory alloys (SMA) represent a large family of alloys that show unique characteristics. They have been exploited in several fields for diverse applications. For the last 20 years, these alloys and more particularly Ni-Ti alloys have revolutionized the field of metallic biomaterials. Applications in the biomedical area are multiple and these materials improve significantly the quality of the diagnostics, treatments and surgeries. To our knowledge, most devices are made of SMAs in the polycrystalline form. Nevertheless, the single crystal form shows several promising advantages especially concerning its mechanical performances. In this paper we describe the advantages, advances and limits of using different SMA single crystals for biomedical applications, including biocompatibility and corrosion resistance. We also discuss the low response time of classical thermal SMAs as well as the new advances in research on magnetic SMA single crystals.

  2. Issues Concerning the Oxidation of Ni(Pt)Ti Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James

    2011-01-01

    The oxidation behavior of the Ni-30Pt-50Ti high temperature shape memory alloy is compared to that of conventional NiTi nitinol SMAs. The oxidation rates were 1/4 those of NiTi under identical conditions. Ni-Ti-X SMAs are dominated by TiO2 scales, but, in some cases, the activation energy diverges for unexplained reasons. Typically, islands of metallic Ni or Pt(Ni) particles are embedded in lower scale layers due to rapid selective growth of TiO2 and low oxygen potential within the scale. The blocking effect of Pt-rich particles and lower diffusivity of Pt-rich depletion zones are proposed to account for the reduction in oxidation rates.

  3. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review.

    PubMed

    Ferreira, F; Adeodato, C; Barbosa, I; Aboud, L; Scelza, P; Zaccaro Scelza, M

    2017-02-01

    The aim of this review was to provide a detailed analysis of the literature concerning the correlation between different movement kinematics and the cyclic fatigue resistance of NiTi rotary endodontic instruments. From June 2014 to August 2015, four independent reviewers comprehensively and systematically searched the Medline (PubMed), EMBASE, Web of Science, Scopus and Google Scholar databases for works published since January 2005, using the following search terms: endodontics; nickel-titanium rotary files; continuous rotation; reciprocating motion; cyclic fatigue. In addition to the electronic searches, manual searches were performed to include articles listed in the reference sections of high-impact published articles that were not indexed in the databases. Laboratory studies in English language were considered for this review. The electronic and manual searches resulted in identification of 75 articles. Based on the inclusion criteria, 32 articles were selected for analysis of full-text copies. Specific analysis was then made of 20 articles that described the effects of reciprocating and continuous movements on cyclic fatigue of the instruments. A wide range of testing conditions and methodologies have been used to compare the cyclic fatigue resistance of rotary endodontic instruments. Most studies report that reciprocating motion improves the fatigue resistance of endodontic instruments, compared to continuous rotation, independent of other variables such as the speed of rotation, the angle or radius of curvature of simulated canals, geometry and taper, or the surface characteristics of the NiTi instruments.

  4. In vitro corrosion resistance of porous NiTi intervertebral fusion devices

    NASA Astrophysics Data System (ADS)

    Schrooten, Jan; Assad, Michel; Van Humbeeck, Jan; Leroux, Michel A.

    2007-02-01

    Porous titanium-nickel (PTN) intervertebral fusion devices, produced by self-propagating high-temperature synthesis, represent an alternative to traditional long-term implants in the orthopaedic field. PTN promotes tissue ingrowth and has succeeded short-term and long-term biocompatibility in vivo testing. In this in vitro study, the PTN morphology was characterized using microfocus computer tomography (μCT) in order to calculate the active PTN surface. Potentiodynamic polarization testing was then performed to evaluate the in vitro corrosion resistance of PTN devices in Hanks' based salt solution. Direct coupling experiments of PTN with Ti6Al4V were also performed in order to establish the galvanic corrosion resistance of PTN intervertebral implants in the presence of potential Ti6Al4V supplemental fixation devices. Compared to the behaviour of other orthopaedic biomaterials and solid NiTi devices, PTN devices showed a level of corrosion resistance that is comparable to other NiTi devices and acceptable for the intended orthopaedic application. Further improvement of the corrosion resistance is still possible by specific electrochemical surface treatments.

  5. Cell adhesion on NiTi thin film sputter-deposited meshes.

    PubMed

    Loger, K; Engel, A; Haupt, J; Li, Q; Lima de Miranda, R; Quandt, E; Lutter, G; Selhuber-Unkel, C

    2016-02-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium(NiTi) thin film mesheswere produced by means of magnetron sputter deposition.Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm2 and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133+) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm2 and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applicationsin cardiovascular tissue engineering, particularly for the fabrication of heart valves.

  6. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing.

    PubMed

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-02-07

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  7. Failure Analysis and Recovery of a 50-mm Highly Elastic Intermetallic NiTi Ball Bearing for an ISS Application

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Howard, S. Adam; Moore, Lewis

    2016-01-01

    Ball bearings used inside the ISS Distillation Assembly centrifuge require superior corrosion and shock resistance to withstand acidic wastewater exposure and heavy spacecraft launch related loads. These requirements challenge conventional steel bearings and provide an ideal pathfinder application for 50-mm bore, deep-groove ball bearings made from the corrosion immune and highly elastic intermetallic material 60NiTi. During early ground testing in 2014 one 60NiTi bearing unexpectedly and catastrophically failed after operating for only 200 hr. A second bearing running on the same shaft was completely unaffected. An investigation into the root cause of the failure determined that an excessively tight press fit of the bearing outer race coupled with NiTi's relatively low elastic modulus were key contributing factors. The proposed failure mode was successfully replicated by experiment. To further corroborate the root cause theory, a successful bearing life test using improved installation practices (selective fitting) was conducted. The results show that NiTi bearings are suitable for space applications provided that care is taken to accommodate their unique material characteristics.

  8. Peculiarities of structure and hardening of Ni-Ti alloy surface layers formed by 84Kr15+ ions irradiation at 147 MeV energy at high temperatures

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V.; Larionov, A.; Zheltova, G.

    2017-01-01

    The consistent patterns of changes in nanostructure and nanohardness of Ni-Ti alloy after irradiation with 84Kr15+ ions with 147 MeV energy to the fluence of 1·1019 m-2 at 250 and 3000C temperatures depending on phase composition have been experimentally studied. It was shown that significant (44 – 94%) softening of surface layers for the single-phase and two-phase Ni-Ti alloys is connected with the formation of bubble nanostructured defects and complete sputtering of the process layers. The role of nanostructure in roughness of the irradiated Ni-Ti alloy surface of various phase composition has been established.

  9. The molecular mechanism for effects of TiN coating on NiTi alloy on endothelial cell function.

    PubMed

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2014-08-01

    The aim of this study is to systematically investigate the molecular mechanism of different effects of nickel titanium (NiTi) alloy surface and titanium nitride (TiN) coating on endothelial cell function. Release of nickel (Ni) ion from bare and TiN-coated NiTi alloys and proliferation of endothelial cells on the two materials were evaluated, and then influence of the two materials on cellular protein expression profiles was investigated by proteomic technology. Subsequently, proteomic data were analyzed with bioinformatics analyses and further validated using a series of biological experiments. Results showed that although the two materials did not affect cell proliferation, the Ni ions released from bare NiTi alloy generated inhibition on pathways associated with actin cytoskeleton, focal adhesion, energy metabolism, inflammation, and amino acid metabolism. In comparison, TiN coating not only effectively prevented release of Ni ions from NiTi alloy, but also promoted actin cytoskeleton and focal adhesion formation, increased energy metabolism, enhanced regulation of inflammation, and promoted amino acid metabolism. Furthermore, the two processes, "the initial mediation of adsorbed serum protein layer to endothelial cell adhesion and growth on the two materials" from our previous study, and "the following action of the two materials on cellular protein expression profile", were linked up and comprehensively analyzed. It was found that in stage of cell adhesion (within 4 h), release of Ni ions from bare NiTi alloy was very low, and the activation of adsorbed proteins to cell adhesion and growth related biological pathways (such as regulation of actin cytoskeleton, and focal adhesion pathways) was almost as same as TiN-coated NiTi alloy. This indicated that the released Ni ions did not affect the mediation of adsorbed proteins to endothelial cell adhesion. However, in stage of cell growth and proliferation, the release of Ni ions from bare NiTi alloy increased with

  10. Actuation curvature limits for a composite beam with embedded shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Naghashian, S.; Fox, B. L.; Barnett, M. R.

    2014-06-01

    Shape memory alloy composites were manufactured using NiTi wires and woven glass fiber pre-impregnated fabrics. A closed form analytical model was developed to investigate the curvature achievable during actuation. The experimental results of actuation showed reasonable agreement with the model. Actuation temperatures were between ˜55 and 110 °C, curvatures of 0.25-0.5 m-1 were obtained and the stresses in the wires were estimated to have reached 265 MPa during actuation. An actuation curvature map was produced, which shows the actuation limits and approximate temperature-curvature curves for the general case of a composite containing shape memory alloy wires.

  11. Effect of Surface Alloying by Silicon on the Corrosion Resistance and Biocompatibility of the Binary NiTi

    NASA Astrophysics Data System (ADS)

    Psakhie, S. G.; Meisner, S. N.; Lotkov, A. I.; Meisner, L. L.; Tverdokhlebova, A. V.

    2014-07-01

    This paper presents the study on changes in element and phase compositions in the near-surface layer and on surface topography of the NiTi specimens after the silicon ion-beam treatment. The effect of these parameters of the near-surface layer on corrosion properties in biochemical solutions and biocompatibility with mesenchymal stem cells of rat marrow is studied. Ion-beam surface modification of the specimens was performed by a DIANA-3 implanter (Tomsk, Russia), using single-ion-beam pulses under oil-free pumping and high vacuum (10-4 Pa) conditions in a high-dose ion implantation regime. The fluence made 2 × 1017 cm-2, at an average accelerating voltage of 60 kV, and pulse repetition frequency of 50 Hz. The silicon ion-beam treatment of specimen surfaces is shown to bring about a nearly twofold improvement in the corrosion resistance of the material to attack by aqueous solutions of NaCl (artificial body fluid) and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ~3400 and ~6000 h, respectively (for the artificial plasma solution, a nearly 20-fold decrease in the Ni concentration is observed). It is shown that improvement of NiTi corrosion resistance after treatment by Si ions occurs mainly due to the formation of two-layer composite coating based on Ti oxides (outer layer) on the NiTi surface and adjacent inner layer of oxides, carbides, and silicides of the NiTi alloy components. Inner layer with high silicon concentration serves as a barrier layer preventing nickel penetration into biomedium. This, in our opinion, is the main reason why the NiTi alloy exhibits no cytotoxic properties after ion modification of its surface and leads to the biocompatibility improvement at the cellular level, respectively.

  12. Shape-memory alloy micro-actuator

    NASA Technical Reports Server (NTRS)

    Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)

    1991-01-01

    A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).

  13. Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi

    2017-01-01

    Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

  14. Temperature-dependent quantitative 3omega scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition.

    PubMed

    Chirtoc, M; Gibkes, J; Wernhardt, R; Pelzl, J; Wieck, A

    2008-09-01

    We develop the theoretical description of 3omega signals from the resistive Wollaston thermal probe (ThP) of a scanning thermal microscope (SThM) in terms of an equivalent low-pass filter. The normalized amplitude and phase frequency spectra are completely characterized by a single parameter, the crossover frequency f(c)(k) depending on the sample thermal conductivity k. The application concerns polycrystalline NiTi shape memory alloy microstructured by focused Ga ion beam milling and implantation. The calibration of the ThP combined with a novel two-step normalization procedure allowed quantitative exploitation of 3omega signal variations as small as -1.75% in amplitude and 0.60 degrees in phase upon heating the sample from room temperature to 100 degrees C. This corresponds to k increase of 23.9% that is consistent with the expected thermal conductivity variation due to martensite-austenite structural phase transition. To our knowledge this is for the first time that SThM 3omega phase information is used quantitatively as well. The static, calibrated 3omega measurements are complementary to 3omega SThM images of the patterned sample surface. The local SThM measurement of temperature-dependent thermal conductivity opens the possibility to imaging structural phase transitions at submicron scale.

  15. The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi. Part 1: Aged microstructure and micro-mechanical modeling

    SciTech Connect

    Gall, K.; Sehitoglu, H.; Chumlyakov, Y.I.; Kireeva, I.V.; Maier, H.J.

    1999-01-01

    Transmission electron microscopy is used to determine the microstructures of a Ti-50.8 at% Ni alloy given different aging treatments. Two different peak-aging treatments are shown to result in disk shaped semi-coherent Ti{sub 3}Ni{sub 4} precipitates with a diameter ranging from 50 nm to 200 nm depending on the aging temperature. In the peak-aged materials, strong strain fields are clearly visible on TEM micrographs. An Eshelby based model is used to predict the local stress fields due to the differences in the lattice parameters of the precipitates and surrounding matrix. The position dependent local stress fields are then resolved onto the 24 different martensite correspondence variant pairs (CVP`s). It is further demonstrated that due to the unique orientation relationship that exists between the precipitate variants and the martensite CVP`s, the local resolved shear stresses are extremely large on some CVP`s and negligible on others. When the Ni rich NiTi is over-aged, it is found that the precipitates coarsen to approximately 1000 nm, they become in-coherent, and the local stress fields disappear. It is also determined that after over-aging in the average composition of the matrix drops from 50.8 at% Ni to approximately 50.4 at% Ni. In a subsequent paper (part 2) the results here are used to explain the dependence of the critical transformation stress levels and martensite start temperatures on the aging treatment.

  16. Three-dimensional phase field simulation of the morphology and growth kinetics of Ni4Ti3 precipitates in a NiTi alloy

    NASA Astrophysics Data System (ADS)

    Ke, C. B.; Cao, S.; Zhang, X. P.

    2014-07-01

    A three-dimensional phase field model is applied to study the morphology and growth kinetics of Ni4Ti3 precipitates, as well as the Ni concentration distribution feature, during the aging of a NiTi alloy. The model can reproduce well the multiple-variants morphology of Ni4Ti3 precipitates. The diameter-to-thickness ratio of lenticular Ni4Ti3 precipitates in the equilibrium shape is 4.2. Simulation results show that the Ni depletion region near the face of Ni4Ti3 precipitates is broader than that near the edge of the precipitates, and both the depletion level of Ni concentration and the length of the Ni depletion region adjacent to the precipitates increase with the aging time. The growth of the precipitate diameter and thickness can be described by the power-law fitting equation, with growth exponent m = 0.47 for the diameter and m = 0.46 for the thickness, which are in good agreement with those obtained in previous experimental and analytical studies.

  17. Can human mesenchymal stem cells survive on a NiTi implant material subjected to cyclic loading?

    PubMed

    Habijan, T; Glogowski, T; Kühn, S; Pohl, M; Wittsiepe, J; Greulich, C; Eggeler, G; Schildhauer, T A; Köller, M

    2011-06-01

    Nickel-titanium shape memory alloys (NiTi-SMAs) exhibit mechanical and chemical properties which make them attractive candidate materials for various types of biomedical applications. However, the high nickel content of NiTi-SMAs may result in adverse tissue reactions, especially when they are considered for load-bearing implants. It is generally assumed that a protective titanium oxide layer separates the metallic alloy from its environment and that this explains the good biocompatibility of NiTi. Cyclic loading may result in failure of the protective oxide layer. The scientific objective of this work was to find out whether cyclic dynamic strain, in a range relevant for orthopedic implants, diminishes the biocompatibility of NiTi-SMAs. In order to analyze the biocompatibility of NiTi-SMA surfaces subjected to cyclic loading, NiTi-SMA tensile specimens were preloaded with mesenchymal stem cells, transferred to a sterile cell culture system and fixed to the pull rods of a tensile testing machine. Eighty-six thousand and four hundred strain cycles at 2% pseudoelastic strain were performed for a period of 24 h or 7 days. Cytokines (IL-6, IL-8 and VEGF) and nickel ion release were determined within the cell culture medium. Adherent cells on the tensile specimens were stained with calcein-AM and propidium iodide to determine cell viability. Dynamic loading of the tensile specimens did not influence the viability of adherent human mesenchymal stem cells (hMSCs) after 24 h or 7 days compared with the non-strained control. Dynamic cycles of loading and unloading did not affect nickel ion release from the tensile specimens. The release of IL-6 from hMSCs cultured under dynamic conditions was significantly higher after mechanical load (873 pg ml(-1)) compared with static conditions (323 pg ml(-1)). The present work demonstrates that a new type of mechanical in vitro cell culture experiment can provide information which previously could only be obtained in large animal

  18. A stabilized, high stress self-biasing shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Panton, B.; Zhou, Y. N.; Khan, M. I.

    2016-09-01

    A shape memory alloy (SMA) actuator that is biased internally would not need an external bias to achieve multiple actuation cycles. This would reduce cost, complexity and weight compared to standard one-way SMAs. The self-biasing actuators that have been developed to date have a lack of geometric and actuation stability. The current study developed a self-biasing NiTi actuator using a laser based vaporization process to alter the bulk composition of different regions. The martensitic laser processed NiTi region was the actuator, and un-processed austenitic base metal region was the internal bias. It was discovered that the laser processed region of the self-biasing actuator was unstable during high stress thermomechanical cycling due to the coarse grained microstructure. Cold-working of the half martensitic and half austenitic component resulted in similar deformation characteristics to single phase NiTi, which enabled the formation of a uniform nanocrystalline microstructure in both regions. When thermomechanically cycled 6000 times under stresses ranging from 180 to 400 MPa, it was discovered that this treated self-biasing actuator exhibited the stabilization behavior of traditional one-way actuators. This behavior was due to the uniform nanocrystalline microstructure, which impeded dislocation activity and ensured minimal plastic deformation.

  19. Modeling thermally induced martensitic transformations in nickel titanium shape memory alloys

    NASA Astrophysics Data System (ADS)

    Jaeger, Stefanie; Eggeler, Gunther; Kastner, Oliver

    2015-05-01

    During stress-free thermal analysis with differential scanning calorimetry (DSC), nickel titanium (NiTi) shape memory alloys show a thermal hysteresis which is affected by cooling/heating rates. Moreover, the Ni content of near equiatomic alloys governs the phase transition temperatures. This contribution aims at establishing a constitutive equation which can account for these effects, building on earlier work by Müller, Achenbach and Seelecke (MAS). To be specific, we discuss our new method with a focus on NiTi alloys. As in the original MAS model, our approach is rooted in a non-convex free energy representation and rate equations are utilized to incorporate history dependence during non-equilibrium processes. The relaxation times of these rate equations are determined by characteristic transformation probabilities which in turn are governed by the free energy landscape of our system. We show how the model can be parameterized to rationalize experimental DSC data observed for NiTi samples of variable composition and measured at variable cooling/heating rates. The good agreement between model predictions and experimental results suggests that thermal hystereses are not only related to interfacial strain energy effects but also affected by the transient character of the transformation process incorporating specific thermal relaxation times. Our analysis shows that we observe strong hysteretic effects when the cooling/heating rates exceed these characteristic relaxation rates.

  20. A Novel Shape Memory Alloy Annuloplasty Ring for Minimally Invasive Surgery: Design, Fabrication, and Evaluation

    PubMed Central

    Purser, Molly F.; Richards, Andrew L.; Cook, Richard C.; Osborne, Jason A.; Cormier, Denis R.; Buckner, Gregory D.

    2013-01-01

    A novel annuloplasty ring with a shape memory alloy core has been developed to facilitate minimally invasive mitral valve repair. In its activated (austenitic) phase, this prototype ring has comparable mechanical properties to commercial semi-rigid rings. In its pre-activated (martensitic) phase, this ring is flexible enough to be introduced through an 8-mm trocar and easily manipulated with robotic instruments within the confines of a left atrial model. The core is constructed of 0.50 mm diameter NiTi, which is maintained below its martensitic transition temperature (24 °C) during deployment and suturing. After suturing, the ring is heated above its austenitic transition temperature (37 °C, normal human body temperature) enabling the NiTi core to attain its optimal geometry and stiffness characteristics indefinitely. This article summarizes the design, fabrication, and evaluation of this prototype ring. Experimental results suggest that the NiTi core ring could be a viable alternative to flexible bands in robot-assisted minimally invasive mitral valve repair. PMID:20652747

  1. Predictive Modeling of the Constitutive Response of Precipitation Hardened Ni-Rich NiTi

    NASA Astrophysics Data System (ADS)

    Cox, A.; Franco, B.; Wang, S.; Baxevanis, T.; Karaman, I.; Lagoudas, D. C.

    2017-03-01

    The effective thermomechanical response of precipitation hardened near-equiatomic Ni-rich NiTi alloys is predicted on the basis of composition and heat treatment using a microscale-informed model. The model takes into account the structural effects of the precipitates (precipitate volume fraction, elastic properties, elastic mismatch between the precipitates and the matrix, and coherency stresses due to the lattice mismatch between the precipitates and the matrix) on the reversible martensitic transformation under load as well as the chemical effects resulting from the Ni-depletion of the matrix during precipitate growth. The post-aging thermomechanical response is predicted based on finite element simulations on representative microstructures, using the response of the solutionized material and time-temperature-martensitic transformation temperature maps. The predictions are compared with experiments for materials of different initial compositions and heat treatments and reasonably good agreement is demonstrated for relatively low precipitate volume fractions.

  2. Predictive Modeling of the Constitutive Response of Precipitation Hardened Ni-Rich NiTi

    NASA Astrophysics Data System (ADS)

    Cox, A.; Franco, B.; Wang, S.; Baxevanis, T.; Karaman, I.; Lagoudas, D. C.

    2017-01-01

    The effective thermomechanical response of precipitation hardened near-equiatomic Ni-rich NiTi alloys is predicted on the basis of composition and heat treatment using a microscale-informed model. The model takes into account the structural effects of the precipitates (precipitate volume fraction, elastic properties, elastic mismatch between the precipitates and the matrix, and coherency stresses due to the lattice mismatch between the precipitates and the matrix) on the reversible martensitic transformation under load as well as the chemical effects resulting from the Ni-depletion of the matrix during precipitate growth. The post-aging thermomechanical response is predicted based on finite element simulations on representative microstructures, using the response of the solutionized material and time-temperature-martensitic transformation temperature maps. The predictions are compared with experiments for materials of different initial compositions and heat treatments and reasonably good agreement is demonstrated for relatively low precipitate volume fractions.

  3. Effect of ceramic conversion treatments on the surface damage and nickel ion release of NiTi alloys under fretting corrosion conditions.

    PubMed

    Dong, H; Ju, X; Yang, H; Qian, L; Zhou, Z

    2008-02-01

    Recent researches have demonstrated that surface modification can improve the fretting wear resistance of NiTi alloys in air or enhance their aqueous corrosion resistance without fretting. However, little is known about the behaviour of surface engineered NiTi under fretting corrosion conditions. This is important for such body implants as orthodontic arch wires and orthopedic bone fixation devices because they need to withstand the combined attack of corrosion from body fluid and mechanical fretting. In this study, a NiTi alloy was ceramic conversion (CC) treated at 400 and 650 degrees C. The effect of the surface treatment on the fretting corrosion behaviour of NiTi alloy was investigated using fretting corrosion tests in the Ringer's solution. The experimental results have shown that the CC treatment can convert the surface of NiTi into a TiO2 layer, which can effectively improve the fretting corrosion resistance of NiTi alloy and significantly reduce Ni ion release into the Ringer's solution. Detailed SEM observations revealed that the untreated samples were severely damaged by adhesion and delamination; the high temperature (HT) (650 degrees C/1 h) treated samples were damaged mainly by spallation and adhesion; and the low temperature (LT) (400 degrees C/50 h) treated samples were characterised by mild abrasion. Mild oxidation and corrosion were also observed for all three types of samples tested under fretting corrosion conditions.

  4. Microstructure of cryogenically treated martensitic shape memory nickel-titanium alloy

    PubMed Central

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2015-01-01

    Context: Recent introduction of shape memory (SM) nickel-titanium (NiTi) alloy into endodontics is a major breakthrough. Although the flexibility of these instruments was enhanced, fracture of rotary endodontic instruments during instrumentation is an important challenge for the operator. Implementation of supplementary manufacturing methods that would improve the fatigue life of the instrument is desirable. Aim: The purpose of this study was to investigate the role of dry cryogenic treatment (CT) conditions on the microstructure of martensitic SM NiTi alloy. Materials and Methods: Experiments were conducted on Ni-51 wt% Ti-49 wt% SM alloy. Five cylindrical specimens and five sheet specimens were subjected to different CT conditions: Deep CT (DCT) 24 group: −185°C; 24 h, DCT 6 group: −185°C; 6 h, shallow CT (SCT) 24 group: −80°C, 24 h, SCT 6 group: −80°C, 6 h and control group. Microstructure of surface was observed on cylindrical specimens with an optical microscope and scanning electron microscope at different magnifications. Subsurface structure was analyzed on sheet specimens using X-ray diffraction (XRD). Results: Microstructures of all SM NiTi specimens had equiaxed grains (approximately 25 μm) with well-defined boundaries and precipitates. XRD patterns of cryogenically treated specimens revealed accentuation of austenite and martensite peaks. The volume of martensite and its crystallite size was relatively more in DCT 24 specimen. Conclusions: DCT with 24 h soaking period increases the martensite content of the SM NiTi alloy without altering the grain size. PMID:26180413

  5. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  6. Influence of Soft Drinks with Low pH on Different Ni-Ti Orthodontic Archwire Surface Patterns

    NASA Astrophysics Data System (ADS)

    Abalos, C.; Paul, A.; Mendoza, A.; Solano, E.; Palazon, C.; Gil, F. J.

    2013-03-01

    The aim of this study was to determine the influence of soft drinks on the surface of Ni-Ti archwires and their corrosion behavior. Archwires with different patterns (smooth, scratch, dimple, and crack) were selected and characterized by scanning electron microscopy and laser confocal microscopy. Immersion tests were performed in artificial saliva (pH 6.7) with a soft drink with a pH of 2.5 for 28 days. The results showed an increase in the surface defects and/or roughness of the dimple, crack and scratch patterns with the immersion times, and a decrease in corrosion resistance. A relationship between the surface pattern and the extent of the corrosion in Ni-Ti archwires with soft drinks at low pH has been demonstrated. Pattern should be taken into account in future studies, and manufacturing processes that produce surface defects (especially cracks) should be avoided.

  7. Fracture of Ni-Ti superelastic alloy under sustained tensile load in physiological saline solution containing hydrogen peroxide.

    PubMed

    Yokoyama, Ken'ichi; Ogawa, Toshio; Fujita, Atsushi; Asaoka, Kenzo; Sakai, Jun'ichi

    2007-09-01

    The fracture of Ni-Ti superelastic alloy has been investigated by a sustained tensile-loading test in physiological saline solution containing hydrogen peroxide (0.15M NaCl + 0.3M H(2)O(2)). The fracture always occurs when the applied stress exceeds the critical stress for martensite transformation. In contrast, under a low applied stress, the fracture does not always occur within 1000 h. The fracture is probably mainly caused by localized corrosion associated with the preferential dissolution of nickel ions. In 0.3M H(2)O(2) solution without NaCl, the fracture does not occur even under a high applied stress. The results of the present study imply that one reason for the fracture of the Ni-Ti superelastic alloy in vivo is localized corrosion due to the synergistic effects of hydrogen peroxide and sodium chloride under applied stress.

  8. SHADE: A Shape-Memory-Activated Device Promoting Ankle Dorsiflexion

    NASA Astrophysics Data System (ADS)

    Pittaccio, S.; Viscuso, S.; Rossini, M.; Magoni, L.; Pirovano, S.; Villa, E.; Besseghini, S.; Molteni, F.

    2009-08-01

    Acute post-stroke rehabilitation protocols include passive mobilization as a means to prevent contractures. A device (SHADE) that provides repetitive passive motion to a flaccid ankle by using shape memory alloy actuators could be of great help in providing this treatment. A suitable actuator was designed as a cartridge of approximately 150 × 20 × 15 mm, containing 2.5 m of 0.25 mm diameter NiTi wire. This actuator was activated by Joule’s effect employing a 7 s current input at 0.7 A, which provided 10 N through 76 mm displacement. Cooling and reset by natural convection took 30 s. A prototype of SHADE was assembled with two thermoplastic shells hinged together at the ankle and strapped on the shin and foot. Two actuators were fixed on the upper shell while an inextensible thread connected each NiTi wire to the foot shell. The passive ankle motion (passive range of motion, PROM) generated by SHADE was evaluated optoelectronically on three flaccid patients (58 ± 5 years old); acceptability was assessed by a questionnaire presented to further three flaccid patients (44 ± 11.5 years old) who used SHADE for 5 days, 30 min a day. SHADE was well accepted by all patients, produced good PROM, and caused no pain. The results prove that suitable limb mobilization can be produced by SMA actuators.

  9. The influence of FeTi and NiTi intermetallide additions on high-temperature oxidation of permalloy alloy

    SciTech Connect

    Klimenko, V.N.; Lavrenko, V.A.; Panasyuk, O.A.; Blasova, O.V.; Protsenko, T.G.

    1995-11-01

    As a rule powder metallurgy Permalloy alloys are used in production of parts for electronic instruments. For the purpose of controlling the magnetic and electrical properties and also the wear (in the case of production of magnetic heads) and corrosion resistance appropriate additions of metals or such compounds as carbides and oxides are added to the alloy. In this work use of FeTi and NiTi intermetallides produced by reaction sintering of powders of pure metals in a protective atmosphere as alloying additions to Permalloy is recommended. The size of the original powders is less than 100 {mu}m. For reaction sintering at temperature 50{degrees}C above the eutectic temperature in the Ti-TiFe and TiNi-Ni systems was selected. The contents of titanium, iron, and oxygen in the FeTi alloy is 51.9, 45.7, and 2.4 wt.%, respectively, and of titanium, nickel, and oxygen in the NiTi alloy 59.6, 31.9, and 4.6 wt.%. High-temperature oxidation in air up to 1300{degrees}C with a rate of change in temperature of 15{degrees}C of type 78N Permalloy with additions of FeTi and NiTi alloys was investigated with use of methods of differential thermal and differential thermogravimetric analyses on an OD-103 derivatograph under nonisothermal conditions. The reaction products were studied by x-ray diffraction phase analysis on a DRON-3 instrument in CoK{sub {alpha}}-radiation. Pure 78N alloy powder with a composition of 78.1% Ni + 19.3% Fe (specimen 1) and also with additions of 1% FeTi (specimen 2) and 1% NiTi (specimen 3) were subjected to oxidation.

  10. Effect of thermomechanical pre-treatment on short- and long-term Ni release from biomedical NiTi.

    PubMed

    Freiberg, Katharina E; Bremer-Streck, Sibylle; Kiehntopf, Michael; Rettenmayr, Markus; Undisz, Andreas

    2014-05-01

    The effect of annealing and deformation on short-term (21days) and long-term (8months) Ni release from biomedical NiTi wires is studied. The deformation of annealed NiTi wires causes cracking and flaking of the surface oxide layer. Flaking of oxide particles does not uncover the Ni-rich layer underneath the surface oxide layer, since at sites where flaking occurs, a thin (∼25nm) layer of oxide remains on top of this Ni-rich layer. The number of cracks in the oxide and Ni-rich layer, respectively, increases with deformation, and intercrystalline crack propagation into the Ni-rich layer and the NiTi bulk is observed. In plastically deformed wires, the cracks may remain opened, providing access of immersion liquid to these zones. Characteristics and quantity of short-term Ni release are significantly affected by the pre-deformation, resulting in an up to 2 times higher total Ni release within the first 21days of deformed compared to annealed wires. Pre-deformation does not significantly influence long-term Ni release; all annealed and deformed samples exhibit similar long-term Ni release rates. The source of Ni during short-term release is the Ni contained in the surface zone of the oxide layer. For high pre-deformation, the Ni-rich layer is a second source for Ni. This second source is also the cause for Ni release in long-term immersion experiments.

  11. Characterization of the thermoelastic martensitic transformation in a NiTi alloy driven by temperature variation and external stress

    NASA Astrophysics Data System (ADS)

    Liang, K. F.; Lin, Z. C.; Fung, P. C. W.; Zhang, J. X.

    1997-08-01

    In order to test the concept of the physics of dissipation during first-order phase transitions in solids, we measured the internal friction (Q-1) and the relative shear modulus (μ) during a thermoelastic martensitic transformation in a NiTi alloy. We adopted two approaches: temperature variation and application of external stress. This investigation of internal friction was carried out with various vibration frequencies ω, temperature variation rates T˙, and strain variation rates ɛ˙. The index l (coupling factor between phase interface and oscillating stress) and index n (rate exponent for the effective phase transformation driving force) have been calculated from the experimental data for each case and the values of l and n are about the same in the two (doped) NiTi samples, irrespective of whether the phase transition is driven by a temperature variation or stress induced process. We compare the values of n and l for the NiTi samples with that of the other samples (VO2 ceramics and FeMn alloys), reinforcing the previous physical interpretations of these indices. We believe the indices n and l are indeed fingerprints of first-order phase transitions in solids.

  12. Failure Analysis and Recovery of a 50mm Highly Elastic Intermetallic NiTi Ball Bearing for an ISS Application

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Howard, S. Adam; Moore, Lewis E., III

    2016-01-01

    The ISS Distillation Assembly centrifuge is the pathfinder application for 50mm bore, deep-groove ball bearings made from the highly elastic intermetallic material 60NiTi. Superior corrosion and shock resistance are required to withstand the acidic wastewater exposure and heavy spacecraft launch related loads that challenge conventional steel bearings. During early ground testing one bearing unexpectedly and catastrophically failed after operating for only 200 hours of run time. A second bearing running on the same shaft was completely unaffected. A thorough investigation into the root cause of the failure determined that an excessively tight press-fit of the bearing outer race coupled with NiTis relatively low elastic modulus were key contributing factors. The proposed failure mode was successfully duplicated by experiment. To further corroborate the root cause theory, a successful bearing life test using improved installation practices (selective fitting) was conducted. The results show that NiTi bearings are suitable for space applications provided that care is taken to accommodate their unique material characteristics.

  13. Ultrastructural effect of self-ligating bracket materials on stainless steel and superelastic NiTi wire surfaces.

    PubMed

    Choi, Samjin; Lee, Sunghoon; Cheong, Youjin; Park, Ki-Ho; Park, Hun-Kuk; Park, Young-Guk

    2012-08-01

    Frictional interactions between wires and brackets reduce the efficacy in orthodontic treatments. Self-ligating brackets (SLBs) are now more often used due to lower frictional forces when compared with conventional-ligating brackets. In this study, scanning electron microscopy and atomic force microscopy were used to examine the microstructural effects of stainless steel and ceramic SLBs on the surface roughness of stainless steel and superelastic NiTi wires both after in vivo clinical orthodontic treatment as well as in in vitro three-point bending experiments. A combination of two wires-0.019 in. × 0.025 in. stainless steel wires and 0.016 in. superelastic NiTi wires-and two SLBs-both passive-type stainless steel SLBs and active-type ceramic SLBs-was applied for 4 months (bicuspid-extraction) in an in vivo setting and for 1 month in an in vitro setting (200 g loads). After the SLB treatments, all wires exhibited severe scratches secondary to frictional interactions with the brackets. When used with the stainless steel SLBs (Damon 3MX®), the surfaces of 0.019 in. × 0.025 in. stainless steel (P < 0.0001) and 0.016 in. superelastic NiTi wires (P < 0.05) were significantly smoother than when used with the ceramic SLBs (Clippy-C®). Such results suggest that orthodontic treatments with stainless steel SLBs are more effective than with ceramic SLBs.

  14. Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys

    NASA Astrophysics Data System (ADS)

    Kaya, Irfan

    NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the

  15. Evaluation of Mechanical and Physical Properties of Clinically Used and Recycled Superelastic NiTi Wires

    PubMed Central

    Bavikati, Venkata Naidu; Mandava, Prasad; Killamsetty, Sai Sandeep; Nettam, Venkatesh; Karnati, Praveen Kumar Reddy

    2016-01-01

    Introduction The initial leveling and aligning phase has been simplified with the introduction of superelastic nickel-titanium archwires. The relatively high cost of these wires has prompted some of the clinicians to reuse them after sterilization. The quantitative changes in the surface properties of superelastic ‘NiTi’ wires after clinical application and recycling by autoclave method have not been established in earlier studies. Aim To quantify the changes in mechanical and physical properties of four different commercially available superelastic nitinol (NiTi) archwires after clinical usage and recycling. Materials and Methods The superelastic ‘NiTi archwires obtained from four different manufacturers: Group I-GAC (McMinnville, USA); Group II- 3M Company (California, USA); Group III- G&H Company(Franklin, USA) and Group IV- American Orthodontics (AO) (Sheboygan, USA) were selected for the study. Each of the four groups comprised of 20 samples of wire with 10 of them selected randomly as control and remaining 10 as test specimen in each group. The experimental archwires were placed on selected patients for a period of three months followed by Standard Autoclave sterilization at 121°C and 15 to 20 psi pressure for 20 minutes and were retrieved. The tensile strength was evaluated by Instron-Universal Testing Machine. The quantification of changes in surface roughness was investigated by grid method using Scanning Electron Microscope (SEM). The Control Wires (C) were evaluated at initial time “T1” where as the Experimental sample of wires (T) were subjected to testing at an initial time ‘T1’ and after clinical usage and sterilization at ‘T2’ Statistical Analysis Paired t-test was used for intra-group comparison and one way ANOVA and Post Hoc Tukey tests were used for inter-group comparison. Results There was significant decrease in tensile strength (p = 0.0015 to 0.001) and surface roughness (p< 0.001) between control and experimental arch wires

  16. High performance shape memory effect in nitinol wire for actuators with increased operating temperature range

    NASA Astrophysics Data System (ADS)

    Casati, Riccardo; Biffi, Carlo Alberto; Vedani, Maurizio; Tuissi, Ausonio

    2014-07-01

    In this research, the high performance shape memory effect (HP-SME) is experimented on a shape memory NiTi wire, with austenite finish temperature higher than room temperature. The HP-SME consists in the thermal cycling of stress induced martensite and it allows achieving mechanical work higher than that produced by conventional shape memory actuators based on the heating/cooling of detwinned martensite. The Nitinol wire was able to recover about 5.5% of deformation under a stress of 600 MPa and to withstand about 5000 cycles before failure. HP-SME path increased the operating temperature of the shape memory actuator wire. Functioning temperatures higher than 100°C was reached.

  17. The applications and research progresses of nickel-titanium shape memory alloy in reconstructive surgery.

    PubMed

    Li, Qiang; Zeng, Yanjun; Tang, Xiaoying

    2010-06-01

    In spite of some good successes and excellent researches of nickel-titanium shape memory alloy (NiTi-SMA) in reconstructive surgery, there are still serious limitations to the clinical applications of NiTi alloy today. The potential leakage of elements and ions could be toxic to cells, tissues and organs. This review discussed the properties, clinical applications, corrosion performance, biocompatibility, the possible preventive measures to improve corrosion resistance by surface/structure modifications and the long-term challenges of using SMAs.

  18. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications, Report on NASA-Kamatics SAA3-1288

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Jefferson, Michael

    2015-01-01

    Under NASA Space Act Agreement (SAA3-1288), NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54 kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  19. Surface roughness and interface width scaling of magnetron sputter deposited Ni/Ti multilayers

    SciTech Connect

    Maidul Haque, S.; Biswas, A.; Tokas, R. B.; Bhattacharyya, D.; Sahoo, N. K.; Bhattacharya, Debarati

    2013-09-14

    Using an indigenously built r.f. magnetron sputtering system, several single layer Ti and Ni films have been deposited at varying deposition conditions. All the samples have been characterized by Grazing Incidence X-ray Reflectivity (GIXR) and Atomic Force Microscopy to estimate their thickness, density, and roughness and a power law dependence of the surface roughness on the film thickness has been established. Subsequently, at optimized deposition condition of Ti and Ni, four Ni/Ti multilayers of 11-layer, 21-layer, 31-layer, and 51-layer having different bilayer thickness have been deposited. The multilayer samples have been characterized by GIXR and neutron reflectivity measurements and the experimental data have been fitted assuming an appropriate sample structure. A power law correlation between the interface width and bilayer thickness has been observed for the multilayer samples, which was explained in the light of alternate roughening/smoothening of multilayers and assuming that at the interface the growth “restarts” every time.

  20. Load bearing and stiffness tailored NiTi implants produced by additive manufacturing: a simulation study

    NASA Astrophysics Data System (ADS)

    Rahmanian, Rasool; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael; Elahinia, Mohammad

    2014-03-01

    Common metals for stable long-term implants (e.g. stainless steel, Titanium and Titanium alloys) are much stiffer than spongy cancellous and even stiffer than cortical bone. When bone and implant are loaded this stiffness mismatch results in stress shielding and as a consequence, degradation of surrounding bony structure can lead to disassociation of the implant. Due to its lower stiffness and high reversible deformability, which is associated with the superelastic behavior, NiTi is an attractive biomaterial for load bearing implants. However, the stiffness of austenitic Nitinol is closer to that of bone but still too high. Additive manufacturing provides, in addition to the fabrication of patient specific implants, the ability to solve the stiffness mismatch by adding engineered porosity to the implant. This in turn allows for the design of different stiffness profiles in one implant tailored to the physiological load conditions. This work covers a fundamental approach to bring this vision to reality. At first modeling of the mechanical behavior of different scaffold designs are presented as a proof of concept of stiffness tailoring. Based on these results different Nitinol scaffolds can be produced by additive manufacturing.

  1. Elastocaloric effect of Ni-Ti wire for application in a cooling device

    NASA Astrophysics Data System (ADS)

    Tušek, J.; Engelbrecht, K.; Mikkelsen, L. P.; Pryds, N.

    2015-03-01

    We report on the elastocaloric effect of a superelastic Ni-Ti wire to be used in a cooling device. Initially, each evaluated wire was subjected to 400 loading/unloading training cycles in order to stabilize its superelastic behavior. The wires were trained at different temperatures, which lead to different stabilized superelastic behaviors. The stabilized (trained) wires were further tested isothermally (at low strain-rate) and adiabatically (at high strain-rate) at different temperatures (from 312 K to 342 K). We studied the impact of the training temperature and resulting superelastic behavior on the adiabatic temperature changes. The largest measured adiabatic temperature change during loading was 25 K with a corresponding 21 K change during unloading (at 322 K). A special focus was put on the irreversibilities in the adiabatic temperature changes between loading and unloading. It was shown that there are two sources of the temperature irreversibilities: the hysteresis (and related entropy generation) and the temporary residual strain immediately after unloading, respectively. The latter results in the temporary bending of the wire and reduced negative adiabatic temperature change. The paper also shows the impact of the applied strain on the adiabatic temperature changes as well as the distribution of the elastocaloric effect over the wire during loading in the case of two wires trained at different temperatures and the virgin wire, respectively. In the end, we propose guidelines about the required material properties for an efficient elastocaloric cooling device.

  2. The Influence of the R-Phase on the Superelastic Behavior of NiTi

    NASA Astrophysics Data System (ADS)

    Duerig, T. W.; Bhattacharya, K.

    2015-06-01

    Approximately equiatomic Ni-Ti alloys, or Nitinol, can transform upon cooling or when stressed from a parent ordered cubic (B2) Austenite phase into two martensitic structures: a monoclinic structure commonly referred to as simply martensite and a rhombohedrally distorted martensite referred to as the R-phase. While the former is often more stable, the R-phase presents a substantially lower barrier to formation, creating an interesting competition for the succession of Austenite. This competition has markedly different outcomes depending upon whether Austenite instability is caused by cooling or by the application of stress. While medical applications are generally used isothermally, most characterization is done using thermal scans such as differential scanning calorimetry. This leads to frequent and significant misunderstandings regarding plateau stresses in particular. The purpose of this paper is to discuss the competition between these two martensites as the parent Austenite phase loses stability, and to clarify how tests can be properly conducted and interpreted to avoid confusion. To that end, the examples shown are not selected to be ideal or theoretical, but rather to illustrate complexities typical of those found in medical devices, such as cold worked conditions that make peaks difficult to interpret and "plateaus" ill-defined. Finally, a stress-induced M ⇒ R ⇒ M sequence will be discussed.

  3. Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi: Simulations vs. Experiment

    NASA Technical Reports Server (NTRS)

    Manchiraju, Sivom; Gaydosh, Darrell; Benafan, Othmane; Noebe, Ronald; Vaidyanathan, Raj; Anderson, Peter M.

    2011-01-01

    A recent microstructure-based FEM model that couples crystal-based plasticity, the B2<-> MB190 phase transformation and anisotropic elasticity at the grain scale is calibrated to recent data for polycrystalline NiTi (49.9 at.% Ni). Inputs include anisotropic elastic properties, texture and differential scanning calorimetry data, as well as a subset of recent isothermal deformation and load-biased thermal cycling data. The model is assessed against additional experimental data. Several experimental trends are captured - in particular, the transformation strain during thermal cycling monotonically increases and reaches a peak with increasing bias stress. This is achieved, in part, by modifying the martensite hardening matrix proposed by Patoor et al. [Patoor E, Eberhardt A, Berveiller M. J Phys IV 1996;6:277]. Some experimental trends are underestimated - in particular, the ratcheting of macrostrain during thermal cycling. This may reflect a model limitation that transformation-plasticity coupling is captured on a coarse (grain) scale but not on a fine (martensitic plate) scale.

  4. Cephalometric evaluation of open bite treatment with NiTi arch wires and anterior elastics.

    PubMed

    Küçükkeleş, N; Acar, A; Demirkaya, A A; Evrenol, B; Enacar, A

    1999-11-01

    The aim of this study was to evaluate cephalometrically the effects of open bite treatment with NiTi arch wires and anterior elastics. The study group comprised of 17 patients who displayed a high angle skeletal pattern, along with an anterior open bite. After initial leveling, 0.016 x 0.022 inch upper accentuated-curve and lower reverse-curve arch wires were placed, with anterior elastics applied in the canine regions. Cephalometric assessment was carried out on lateral head films taken at the beginning of treatment and on average 2.8 months after open bite closure was obtained. The results of this study indicated that open bite closure had been achieved mainly by extrusion of the lower incisors and uprighting of the upper incisors. The functional occlusal plane was leveled by extrusion of lower premolars and uprighting of lower molars. Lateral cephalograms obtained from 10 patients who had been available after 1 year postretention were used to evaluate relapse changes. During the follow-up period, position of the upper and lower incisors and the inclination of the occlusal plane were maintained. However, extrusion of upper and lower molar teeth resulted in a reduction in overbite.

  5. Application of Ni-Ti Alloy connector for the treatment of comminuted coronal plane supracondylar-condylar femoral fractures: a retrospective review of 21 patients

    PubMed Central

    2013-01-01

    Background Our preliminary retrospective study assessed outcomes after the use of Ni-Ti arched shape-memory connector (ASC) combined with partially threaded cancellous screws (PTCS) to repair coronal plane supracondylar-condylar femoral fractures. Methods Twenty-one patients (16 men and 5 women) with a mean age of 34.1 years (range, 28 to 44 years) with coronal plane supracondylar and condylar fractures of the distal femur were included in this study. Each patient underwent open reduction and internal fixation using the ASC and PTCS. Active functional exercises with restricted weight bearing were initiated the first postoperative day. A gradual increase in weight bearing status and range of motion was permitted and subjects progressed to full weight bearing by 8 weeks. Surgical time, blood loss, postoperative knee range of motion, American Knee Society Scores (KSS), and postoperative complications were assessed. Results The mean surgical time was 75 mins (range, 45 to 100 mins) and average blood loss was 105 ml (range, 35 to 130 ml). Mean follow-up was 65 months (range, 22 to 90 months). No subjects demonstrated evidence of osteonecrosis or arthritis at the final follow-up. The mean KSS was excellent (≥85) in 8 subjects, good (70-84) in 11 subjects, and fair (60-69) in 2 subjects. The mean active range of motion of knee flexion at final follow-up was 100 degrees (range, 85 to 110 degrees). Conclusions ASC combined with PTCS can serve as an effective means for managing comminuted femoral fractures that extend from the condyle to the supracondylar region. However, further prospective comparative studies and biomechanical analyses are needed to evaluate long-term outcomes using these materials. PMID:24341860

  6. Wear and metallographic analysis of WaveOne and reciproc NiTi instruments before and after three uses in root canals.

    PubMed

    Pirani, Chiara; Paolucci, Alessandro; Ruggeri, Oddone; Bossù, Maurizio; Polimeni, Antonella; Gatto, Maria Rosaria Antonella; Gandolfi, Maria Giovanna; Prati, Carlo

    2014-01-01

    Reciprocating instruments made from M-wire alloy have been proposed to reduce the risk of fracture. No information is available on the surface alteration after single and multiple uses in root canals. Two reciprocating NiTi instruments were used on extracted teeth up to three times. ESEM/EDS analysis was conducted to determine defects, alterations, and wear features of the apical third of instruments and metallographic analysis was performed on the cross-section of new and used instruments to compare alloy properties. Topography of apical portion was evaluated by AFM before and after uses. Extracted single-rooted teeth were divided into two groups and instrumented according to the manufacturer's recommendations with: (A) WaveOne Primary and (B) Reciproc R25. Each group was divided into three subgroups according to the number of canals instrumented: 1, 2, and 3, respectively. Chi square test was performed to verify homogeneity of defects distribution and GLM to evaluate the differences of RMS at baseline and after use for both groups (α level 0.05). No instrument fractured and no spiral distortions were observed under optical microscope even when the number of uses increased. Not significant differences were found for WaveOne and Reciproc. Blades presented a wrapped portion in WaveOne group and a more symmetrical feature in Reciproc group. Metallographic analysis revealed in both groups the presence of twinned martensitic grains with isolated flat austenitic areas. Both instruments demonstrated limited alteration, such as tip deformation and wear. This study confirmed the safe clinical use of both instruments for shaping multi-rooted teeth.

  7. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    NASA Astrophysics Data System (ADS)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-12-01

    High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  8. Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy

    PubMed Central

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2015-01-01

    Objectives: The aim of this study is to investigate the role of dry cryogenic treatment (CT) temperature and time on the Vickers hardness and wear resistance of new martensitic shape memory (SM) nickel-titanium (NiTi) alloy. The null hypothesis tested was that there is no difference in Vickers hardness and wear resistance between SM NiTi alloys following CT under two soaking temperatures and times. Materials and Methods: The composition and the phase transformation behavior of the alloy were examined by X-ray energy dispersive spectroscopy and differential scanning calorimetry, respectively. Fifteen cylindrical specimens and 50 sheet specimens were subjected to different CT conditions: Deep cryogenic treatment (DCT) 24 group: −185°C, 24 h; DCT six group: −185°C, 6 h; shallow cryogenic treatment (SCT) 24 group: −80°C, 24 h; SCT six group: −80°C, 6 h; and control group. Wear resistance was assessed from weight loss before and after reciprocatory wet sliding wear. Results: The as-received SM NiTi alloy contained 50.8 wt% nickel and possessed austenite finish temperature (Af) of 45.76°C. Reduction in Vickers hardness of specimens in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference [HSD]). The weight loss was significantly higher in DCT 24 group (P < 0.05; Tukey's HSD). Conclusion: Deep dry CT with 24 h soaking period significantly reduces the hardness and wear resistance of SM NiTi alloy. PMID:26929689

  9. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix.

    PubMed

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-10-24

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strain of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.

  10. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    DOE PAGES

    Wang, Shan; Cui, Lishan; Hao, Shijie; ...

    2014-10-24

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less

  11. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix

    SciTech Connect

    Wang, Shan; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Liu, Yinong; Liu, Zhenyang; Mao, Shengcheng; Han, Xiaodong; Ren, Yang

    2014-10-24

    This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strain of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.

  12. Do K-wires made from shape memory alloys increase pull-out forces? A preliminary experimental cadaver study in bovine bone.

    PubMed

    Wiebking, U; Gösling, T; Monschizada, W; Rau, T; Krettek, C

    2007-06-01

    After osteosynthesis of the proximal humerus by Kirschner wires (K-wire), loosening and secondary loss can occur. This study tested primary fixation of wires made from a shape memory alloy (SMA) Nitinol (NiTi), compared to conventional steel K-wires by pull-out tests. Blocks of cancellous bone were tested with three wire types: NiTi-K-wire with split apex geometry and conventional steel K-wires with and without threads. We found that NiTi-wires can be pulled out of bone more easily than steel wires (P=0.05), even though the former had rougher surfaces. The application of NiTi-wires through bone produced no better stability in comparison to normal steel K-wires, because of triggering the memory effect. Further studies are required to determine if NiTi wires of another appropriate design, surface and localization are superior to conventional wires in the context of this application.

  13. A novel approach to determine the effect of irrigation on temperature and failure of Ni-Ti endodontic rotary files

    PubMed Central

    Mousavi, Sayed Ali; Kargar-Dehnavi, Vida; Mousavi, Sayed Amir

    2012-01-01

    Background: Nickel-titanium (Ni-Ti) rotary instrument files are important devices in Endodontics in root canal preparation. Ni-Ti file breakage is a critical and problematic issue and irrigation techniques were applied to decrease risk of file failure root. The aim of the present study was to compare the temperature gradient change of different irrigation solutions with Ni-Ti rotary instrument system during root canal preparation and also to define their effects on the file failure. Materials and Methods: A novel computerized instrumentation was utilized and thirty standard (ProFile #25/.04) files were divided into three groups and subjected to a filing in the root canal test. Changes in temperature on teeth under constant instrumental conditions with custom-designed computerized experimental apparatus were measured by using a temperature sensor bonded to the apical hole. A rotary instrument for canal preparation in three series of solution was used and the changes in temperature after each solution were compared. Finally, the file failure results were mentored according to each step of test. Comparisons were performed between group status clinically by using ANOVA (t) test, once the sample showed up normal and differences of P<0.01 were considered significant. All data collected were computerized and analyzed for frequency, distribution, and statistical description. Results: There was a decrease in the temperature of the instruments, which were immersed in 5% NaOCl, when compared with the water group (P<0.01). There was also a decrease in the temperature of the instruments immersed in water, when compared with the no solution group (P<0.01). Test results showed that sodium hypochlorite, water, or air of root canals does alter the properties of gradual temperature change and contributes to the failure of the instruments. Conclusion: By immersing the file in 5% NaOCl, the temperature gradient decreased and instrument failure was reduced. PMID:23087732

  14. Dental students' perceptions about the endodontic treatments performed using NiTi rotary instruments and hand stainless steel files.

    PubMed

    Martins, Renata Castro; Seijo, Marília Oliveira Saraiva; Ferreira, Efigênia Ferreira; Paiva, Saul Martins; Ribeiro Sobrinho, Antônio Paulino

    2012-01-01

    This study evaluated the perceptions of Brazilian undergraduate dental students about the endodontic treatments performed using NiTi rotary instruments and hand stainless steel. Data were collected using a questionnaire administered to undergraduate dental students enrolled in endodontic disciplines. The students were divided into 3 groups: G1, students who had treated straight canals with SS hand instruments; G2, students who had treated curved canals with SS hand instruments; and G3, students who had treated both straight and curved canals with NiTi rotary instruments. The number of endodontic treatments performed, types of treated teeth, students' learning, time spent, encountered difficulties, quality of endodontic treatment and characteristics of the employed technique were analyzed. There was a 91.3% rate of return for the questionnaires. Mandibular molars were the most frequently treated teeth, followed by maxillary incisors. The Kruskal-Wallis test showed no differences in learning (p=0.528) or in the characteristics of the technique employed (p=0.560) among the three groups. G3 students performed a greater number of endodontic treatments (p<0.001) in a smaller time (p<0.001) than did G1 and G2 students. Difficulties were reported primarily by students in G2 and G3 compared with G1 (p=0.048). The quality of endodontic treatments differed only between G1 and G2 (p=0.045). The use of NiTi rotary instruments should be included in undergraduate dental curriculum, contributing to the increase of patients assisted and consequently to improve the clinical experience of the students.

  15. The structure of the NiTi surface layers after the ion-plasma alloying of Ta

    SciTech Connect

    Poletika, T. M. Girsova, S. L.; Meisner, L. L. Meisner, S. N.; Schmidt, E. Yu.

    2015-10-27

    The effect of the Ta-ion beam implantation on the micro- and nanostructures of the surface layers of NiTi alloy was investigated using transmission electron microscopy and Auger spectroscopy. It is found that the elements are distributed non-uniformly with depth, so that the sublayers differ significantly in structure. The modified surface layer was found to consist of two sublayers, i.e. the upper oxide layer and the lower-lying amorphous layer that contains a maximum of Ta atoms.

  16. Design of splints based on the NiTi alloy for the correction of joint deformities in the fingers

    PubMed Central

    2010-01-01

    Background The proximal interphalange joint (PIP) is fundamental for the functional nature of the hand. The contracture in flexion of the PIP, secondary to traumatisms or illnesses leads to an important functional loss. The use of correcting splints is the common procedure for treating this problem. Its functioning is based on the application of a small load and a prolonged stress which can be dynamic, static progressive or static serial. It is important that the therapist has a splint available which can release a constant and sufficient force to correct the contracture in flexion. Nowadays NiTi is commonly used in bio-engineering, due to its superelastical characteristics. The experience of the authors in the design of other devices based on the NiTi alloy, makes it possible to carry out a new design in this work - the production of a finger splint for the treatment of the contracture in flexion of the PIP joint. Methods Commercial orthosis have been characterized using a universal INSTRON 5565 machine. A computational simulation of the proposed design has been conducted, reproducing its performance and using a model "ad hoc" for the NiTi material. Once the parameters have been adjusted, the design is validated using the same type of test as those carried out on commercial orthosis. Results and Discussion For commercial splint the recovering force falls to excessively low values as the angle increases. Angle curves for different lengths and thicknesses of the proposed design have been obtained, with a practically constant recovering force value over a wide range of angles that vary between 30° and 150° in every case. Then the whole treatment is possible with only one splint, and without the need of progressive replacements as the joint recovers. Conclusions A new model of splint based on NiTi alloy has been designed, simulated and tested comparing its behaviour with two of the most regularly used splints. Its uses is recommended instead of other dynamic

  17. Embedded Shape Memory Alloy Particles for the Self-Sensing of Fatigue Crack Growth in an Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Leser, William Paul

    Future aerospace vehicles will be built using novel materials for mission conditions that are difficult to replicate in a laboratory. Structural health monitoring and condition-based maintenance will be critical to ensure the reliability of such vehicles. A multi-functional aluminum alloy containing embedded shape memory alloy (SMA) particles to detect fatigue crack growth is proposed. The regions of intensified strain near the tip of a growing fatigue crack cause the SMA particles to undergo a solid-to-solid phase transformation from austenite to martensite, releasing a detectable and identifiable acoustic emission (AE) signal that can be used to locate the crack in the affected component. This study investigates the AE response of two SMA systems, Ni-Ti, and Co-Ni-Al. Tensile (Ni-Ti) and compressive (Co-Ni-Al) tests were conducted to study the strain-induced transformation response in both of the alloy systems. It was found that the critical stress for transformation in both SMA systems was easily identified by a burst of AE activity during both transformation and reverse transformation. AE signals from these experiments were collected for use as training data for a Bayesian classifier to be used to identify transformation signals in a Al7050 matrix with embedded SMA particles. The Al/SMA composite was made by vacuum hot pressing SMA powder between aluminum plates. The effect of hot pressing temperature and subsequent heat treatments (solutionizing and peak aging) on the SMA particles was studied. It was found that, at the temperatures required, Co-Ni-Al developed a second phase that restricted the transformation from austenite to martensite, thus rendering it ineffective as a candidate for the embedded particles. Conversely, Ni-Ti did survive the embedding process and it was found that the solutionizing heat treatment applied after hot pressing was the main driver in determining the final transformation temperatures for the Ni-Ti particles. The effect of hot

  18. Mechanical and structural aspects of high-strain-rate deformation of NiTi alloy

    NASA Astrophysics Data System (ADS)

    Bragov, A. M.; Danilov, A. N.; Konstantinov, A. Yu.; Lomunov, A. K.; Motorin, A. S.; Razov, A. I.

    2015-04-01

    The mechanical behavior of the binary polycrystalline NiTi alloy with a quasi-equilibrium structure has been considered in the course of the high-strain-rate extension in a temperature range of 20-300°C. The quasi-equilibrium structure, which is necessary to ensure the long-term stability of special properties of the alloy, was achieved using aging, after which both the forward and reverse martensitic transformations exhibited a multistage character and the phase composition at room temperature was characterized by the presence of R and B19' martensites. To separate the contributions that come from the equilibrium structure and from the high rate of tension to the mechanical behavior of the alloy, a comparative analysis of the diagrams of high-strain-rate and quasi-static tension has been performed. It has been shown that the action of several mechanisms of reversible deformation is determined by the specific features of the equilibrium structure, and the level of stresses at which these mechanisms are developed is controlled by the rate of tension. The results of the X-ray diffraction study of the phase composition of the alloy samples after high-strain-rate tension, which make it possible to conclude that the mechanical behavior of martensite and austenite upon the dynamic tension of the alloy is determined by the development of stress-induced R → B19', B2 → R, and B2 → B19' transformations and by the processes of the detwinning and reorientation of crystals of B19' martensite, are given.

  19. Multiscale Characterization of Nickel Titanium Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Gall, Keith

    Shape memory alloys were characterized by a variety of methods to investigate the relationship between microstructural phase transformation, macroscale deformation due to mechanical loading, material geometry, and initial material state. The major portion of the work is application of digital image correlation at several length scales to SMAs under mechanical loading. In addition, the connection between electrical resistance, stress, and strain was studied in NiTi wires. Finally, a new processing method was investigated to develop porous NiTi samples, which can be examined under DIC in future work. The phase transformation temperatures of a Nickel-Titanium based shape memory alloy (SMA) were initially evaluated under stress-free conditions by the differential scanning calorimetric (DSC) technique. Results show that the phase transformation temperature is significantly higher for transition from de-twinned martensite to austenite than from twinned martensite or R phase to austenite. To further examine transformation temperatures as a function of initial state a tensile test apparatus with in-situ electrical resistance (ER) measurements was used to evaluate the transformation properties of SMAs at a variety of stress levels and initial compositions. The results show that stress has a significant influence on the transformation of detwinned martensite, but a small influence on R phase and twinned martensite transformations. Electrical resistance changes linearly with strain during the transformations from both kinds of martensite to austenite. The linearity between ER and strain during the transformation from de-twinned martensite to austenite is not affected by the stress, facilitating application to control algorithms. A revised phase diagram is drawn to express these results. To better understand the nature of the local and global strain fields that accompany phase transformation in shape memory alloys (SMAs), here we use high resolution imaging together with image

  20. Microtopography of metal surfaces influence fibroblast growth by modifying cell shape, cytoskeleton, and adhesion.

    PubMed

    Meredith, David O; Eschbach, Lukas; Riehle, Mathis O; Curtis, Adam S G; Richards, Robert G

    2007-11-01

    Stainless Steel (SS), titanium (cpTi), and Ti-6Al-7Nb (TAN) are frequently used metals in fracture fixation, which contact not only bone, but also soft tissue. In previous soft tissue cytocompatibility studies, TAN was demonstrated to inhibit cell growth in its "standard" micro-roughened state. To elucidate a possible mechanism for this inhibition, cell area, shape, adhesion, and cytoskeletal integrity was studied. Only minor changes in spreading were observed for cells on electropolished SS, cpTi, and TAN. Cells on "standard" cpTi were similarly spread in comparison with electropolished cpTi and TAN, although the topography influenced the cell periphery and also resulted in lower numbers and shorter length of focal adhesions. On "standard" microrough TAN, cell spreading was significantly lower than all other surfaces, and cell morphology differed by being more elongated. In addition, focal adhesion numbers and mean length were significantly lower on standard TAN than on all other surfaces, with 80% of the measured adhesions below a 2-microm threshold. Focal adhesion site location and maturation and microtubule integrity were compromised by the presence of protruding beta-phase microspikes found solely on the surface of standard TAN. This led us to propose that the impairment of focal adhesion numbers, maturation (length), and cell spreading to a possibly sufficient threshold observed on standard TAN blocks cell cycle progress and eventually cell growth on the surface. We believe, as demonstrated with standard cpTi and TAN, that a difference in surface morphology is influential for controlling cell behavior on implant surfaces.

  1. Surface form memory by indentation-planarization training of nickel titanium shape memory alloys

    NASA Astrophysics Data System (ADS)

    Fei, Xueling

    Shape memory alloys respond to deformation by indentation with strong two-way cyclic displacements on heating and cooling. Shallow indents can vanish on heating, and deeper indents will change depth when thermally cycled. In the present work, following indentation by an added step of surface planarization can furthermore produce what has been termed "Surface Form Memory" or SFM. The term SFM describes an effect that causes one surface form to reversibly transform to another, under thermal excitation. The term surface form is meant to distinguish between say, flat and "bumpy" surfaces, on a scale much larger than the intrinsic surface roughness. Surface protrusions, or 'exdents' may reach an amplitude near 20% of the initial indent depth, and may be created on nano to macroscopic size scales. The surface form memory effect may have special applications into novel optical, microelectromechanical, and tribological systems. Surface deformation of a NiTi shape memory alloy (SMA) was accomplished using spherical, cylindrical, pyramidal, and flat punch indenters. Single indents and indent arrays have been made. The amplitude of SFM after planarization was found to be related to the size of the subsurface deformation zone and can be maximized by thermal cycling, multiple indentations, by changing indent depth and spacing, and by varying indentation temperature parameters. The spatial extent of the subsurface deformation zone was studied by both experimental methods and finite element modeling. Methods such as successive front and back thinning probed the size of the deformation zone directly, while finite element modeling provided stress-strain information supporting the conclusion that the deformation zone responsible for the two-way effect was a slip zone that had plastic strains larger than 7%. NiTi SFM, when studied in constrained recovery experiments, showed an energy density up to 10 MJ/m3, which is about the same as that of a conventional NiTi actuator. This proves

  2. Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications.

    PubMed

    Hang, Ruiqiang; Liu, Yanlian; Zhao, Lingzhou; Gao, Ang; Bai, Long; Huang, Xiaobo; Zhang, Xiangyu; Tang, Bin; Chu, Paul K

    2014-12-18

    Nickel-titanium-oxide (Ni-Ti-O) nanotube arrays (NTAs) prepared on nearly equiatomic NiTi alloy shall have broad application potential such as for energy storage and biomedicine, but their precise structure control is a great challenge because of the high content of alloying element of Ni, a non-valve metal that cannot form a compact electronic insulating passive layer when anodized. In the present work, we systemically investigated the influence of various anodization parameters on the formation and structure of Ni-Ti-O NTAs and their potential applications. Our results show that well controlled NTAs can be fabricated during relatively wide ranges of the anodization voltage (5-90 V), electrolyte temperature (10-50°C) and electrolyte NH4F content (0.025-0.8 wt%) but within a narrow window of the electrolyte H2O content (0.0-1.0 vol%). Through modulating these parameters, the Ni-Ti-O NTAs with different diameter (15-70 nm) and length (45-1320 nm) can be produced in a controlled manner. Regarding potential applications, the Ni-Ti-O NTAs may be used as electrodes for electrochemical energy storage and non-enzymic glucose detection, and may constitute nanoscaled biofunctional coating to improve the biological performance of NiTi based biomedical implants.

  3. The effect of crystallographic texture on stress-induced martensitic transformation in NiTi: A computational analysis.

    PubMed

    Weafer, F M; Guo, Y; Bruzzi, M S

    2016-01-01

    NiTi׳s superelasticity is exploited in a number of biomedical devices, in particular self-expanding endovascular stents. These stents are often laser-cut from textured micro-tubing; texture is the distribution of crystallographic grain orientations in a polycrystalline material which has been experimentally shown to have a marked influence on mechanical properties. This study offers a computational examination into the effect of texture on the stress-induced martensite transformation (SIMT) in a micro-dogbone NiTi specimen subject to tensile loading. Finite Element Analysis (FEA) is employed to simulate the transformational behaviour of the specimen on a micro-scale level. To represent a realistic grain structure in the FEA model, grains present in a 200µm×290µm test site located at the centre edge of the specimen were identified using Scanning Electron Microscopy (SEM). Grains are assumed to have homogenous behaviour with properties varying according to their crystallographic orientation to the loading direction. Required material properties were extracted from uniaxial stress-strain curves of single crystals for each crystallographic orientation for input into the in-built UMAT/Nitinol. The orientation of each grain in the test site was identified using Electron Back-Scatter Diffraction (EBSD) techniques. In this way, a quantitative explanation is offered to the effect of crystallographic texture on SIMT. Finally, the evolution of grains in the specimen, during the transformation process, was experimentally investigated by means of an in-situ SEM tensile test.

  4. A systematic analysis of controlled clinical trials using the NiTi CAR™ compression ring in colorectal anastomoses.

    PubMed

    Tabola, R; Cirocchi, R; Fingerhut, A; Arezzo, A; Randolph, J; Grassi, V; Binda, G A; D'Andrea, V; Abraha, I; Popivanov, G; Di Saverio, S; Zbar, A

    2017-03-01

    Anastomotic leak following colorectal surgery can be a devastating adverse event. The ideal stapling device should be capable of rapid creation of an anastomosis with serosal apposition without the persistence of a foreign body or a foreign body reaction which potentially contribute to early anastomotic dehiscence or late anastomotic stricture. A systematic review was performed examining available data on controlled randomized and non-randomized trials assessing the NiTi compression anastomosis ring-(NiTi CAR™) (NiTi Solutions, Netanyah Israel) in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) standards. A protocol for this meta-analysis has been registered on PROSPERO (CRD42016050934). The initial search yielded 45 potentially relevant articles. After screening titles and abstracts for relevance and assessment for eligibility, 39 of these articles were eventually excluded leaving 6 studies for analysis in the review. Regarding the primary outcome measure, the overall anastomotic leak rate was 2.2% (5/230) in the compression anastomosis group compared with 3% (10/335) in the conventional anastomosis group; this difference was not statistically significant (RR 0.75, 95% CI 0.25-2.24; participants = 565; studies = 6; I (2) = 0%). There were no statistically significant differences between compression and conventional anastomoses in any of the secondary outcomes. This review was unable to demonstrate any statistically significant differences in favor of the compression anastomosis technique over conventional manual or stapled mechanical anastomoses.

  5. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.

    PubMed

    Yan, Xiao-Jun; Yang, Da-Zhi

    2006-04-01

    The purpose of this study was to investigate corrosion resistance of a laser spot-welded joint of NiTi alloy wires using potentiodynamic tests in Hank's solution at different PH values and the PH 7.4 NaCl solution for different Cl- concentrations. Scanning electron microscope observations were carried out before and after potentiodynamic tests. The composition of a laser spot-welded joint and base metal were characterized by using an electron probe microanalyzer. The results of potentiodynamic tests showed that corrosion resistance of a laser spot-welded joint of NiTi alloy wire was better than that of base metal, which exhibited a little higher breakdown potential and passive range, and a little lower passive current density. Corrosion resistances of a laser spot-welded joint and base metal decreased with increasing of the Cl- concentration and PH value. The improvement of corrosion resistance of the laser spot-welded joint was due to the decrease of the surface defects and the increase of the Ti/Ni ratio.

  6. Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications

    PubMed Central

    Hang, Ruiqiang; Liu, Yanlian; Zhao, Lingzhou; Gao, Ang; Bai, Long; Huang, Xiaobo; Zhang, Xiangyu; Tang, Bin; Chu, Paul K.

    2014-01-01

    Nickel-titanium-oxide (Ni-Ti-O) nanotube arrays (NTAs) prepared on nearly equiatomic NiTi alloy shall have broad application potential such as for energy storage and biomedicine, but their precise structure control is a great challenge because of the high content of alloying element of Ni, a non-valve metal that cannot form a compact electronic insulating passive layer when anodized. In the present work, we systemically investigated the influence of various anodization parameters on the formation and structure of Ni-Ti-O NTAs and their potential applications. Our results show that well controlled NTAs can be fabricated during relatively wide ranges of the anodization voltage (5–90 V), electrolyte temperature (10–50°C) and electrolyte NH4F content (0.025–0.8 wt%) but within a narrow window of the electrolyte H2O content (0.0–1.0 vol%). Through modulating these parameters, the Ni-Ti-O NTAs with different diameter (15–70 nm) and length (45–1320 nm) can be produced in a controlled manner. Regarding potential applications, the Ni-Ti-O NTAs may be used as electrodes for electrochemical energy storage and non-enzymic glucose detection, and may constitute nanoscaled biofunctional coating to improve the biological performance of NiTi based biomedical implants. PMID:25520180

  7. Effect of pH, fluoride and hydrofluoric acid concentration on ion release from NiTi wires with various coatings.

    PubMed

    Katic, Visnja; Curkovic, Lidija; Bosnjak, Magdalena Ujevic; Peros, Kristina; Mandic, Davor; Spalj, Stjepan

    2017-03-31

    Aim was to determine effect of pH, fluoride (F(-)) and hydrofluoric acid concentration (HF) on dynamic of nickel (Ni(2+)) and titanium (Ti(4+)) ions release. Nickel-titanium wires with untreated surface (NiTi), rhodium (RhNiTi) and nitride (NNiTi) coating were immersed once a week for five min in remineralizing agents, followed by immersion to artificial saliva. Ion release was recorded after 3, 7, 14, 21 and 28 days. Pearson correlations and linear regression were used for statistical analysis. Release of Ni(2+) from NiTi and NNiTi wires correlated highly linearly positively with HF (r=0.948 and 0.940, respectively); for RhNiTi the correlation was lower and negative (r=-0.605; p<0.05). The prediction of Ti(4+) release was significant for NiTi (r=0.797) and NNiTi (r=0.788; p<0.05) wire. Association with F(-) was lower; for pH it was not significant. HF predicts the release of ions from the NiTi wires better than the pH and F(-) of the prophylactic agents.

  8. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating

    NASA Astrophysics Data System (ADS)

    Li, Penghui; Li, Limin; Wang, Wenhao; Jin, Weihong; Liu, Xiangmei; Yeung, Kelvin W. K.; Chu, Paul K.

    2014-04-01

    To improve the corrosion resistance and hemocompatibility of biomedical NiTi alloy, hydrophobic polymer coatings are deposited by plasma polymerization in the presence of a fluorine-containing precursor using an atmospheric-pressure plasma jet. This process takes place at a low temperature in air and can be used to deposit fluoropolymer films using organic compounds that cannot be achieved by conventional polymerization techniques. The composition and chemical states of the polymer coatings are characterized by fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the coated and bare NiTi samples is assessed and compared by polarization tests and electrochemical impedance spectroscopy (EIS) in physiological solutions including simulated body fluids (SBF) and Dulbecco's Modified Eagle's medium (DMEM). The corrosion resistance of the coated NiTi alloy is evidently improved. Protein adsorption and platelet adhesion tests reveal that the adsorption ratio of albumin to fibrinogen is increased and the number of adherent platelets on the coating is greatly reduced. The plasma polymerized coating renders NiTi better in vitro hemocompatibility and is promising as a protective and hemocompatible coating on cardiovascular implants.

  9. Influence of laser parameters in generating the NiTi nanoparticles with a rotating target using underwater solid state Nd: YAG laser ablation

    NASA Astrophysics Data System (ADS)

    Gagrani, Rohit; Patra, Nandini; Rajagopalan, P.; Singh, Vipul; Palani, I. A.

    2016-09-01

    The great effort that the scientific community has put in the last decade in the study of nanoscience and nanotechnology has been leading the research toward the development of new methodologies of nanostructures synthesis. Among them, Pulsed Laser Ablation in Liquid, PLAL, is gaining an increasing interest thanks to several promising advantages, which include: environmental sustainability, easy experimental set-up (which does not require extreme conditions of the ambient of synthesis), long-lasting stability of the nanoparticles, which are produced completely free of undesired contaminants or dangerous synthesis reactants. In this work, a drop wise flow of deionized water on the periphery of NiTi rotating target was tested as a procedure for the significant production of NiTi nanoparticles. This is a novel technique to improve the ablation efficiency of nanoparticles than the existing techniques of laser ablation. The influence of varying external parameters like laser wavelengths and laser fluences on the size distribution of nanoparticle was investigated. Second harmonic and third harmonics of Nd: YAG nanosecond laser with three different laser fluences of 30 J/cm2, 40 J/cm2 and 50 J/cm2 was used to ablate the nitinol (Ni-55%, Ti-45%) target. The average particle size and redistribution was characterized by dynamic light scattering (DLS) and the crystalline formation of NiTi nanoparticles were analyzed by X-ray diffraction, where it confirms the alloy formation of NiTi nanoparticles.

  10. Characterization of Ternary NiTiPt High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Rios, Orlando; Noebe, Ronald; Biles, Tiffany; Garg, Anita; Palczer, Anna; Scheiman, Daniel; Seifert, Hans Jurgen; Kaufman, Michael

    2005-01-01

    Pt additions substituted for Ni in NiTi alloys are known to increase the transformation temperature of the alloy but only at fairly high Pt levels. However, until now only ternary compositions with a very specific stoichiometry, Ni50-xPtxTi50, have been investigated and then only to very limited extent. In order to learn about this potential high-temperature shape memory alloy system, a series of over twenty alloys along and on either side of a line of constant stoichiometry between NiTi and TiPt were arc melted, homogenized, and characterized in terms of their microstructure, transformation temperatures, and hardness. The resulting microstructures were examined by scanning electron microscopy and the phase compositions quantified by energy dispersive spectroscopy."Stoichiometric" compositions along a line of constant stoichiometry between NiTi to TiPt were essentially single phase but by any deviations from a stoichiometry of (Ni,Pt)50Ti50 resulted in the presence of at least two different intermetallic phases, depending on the overall composition of the alloy. Essentially all alloys, whether single or two-phase, still under went a martensitic transformation. It was found that the transformation temperatures were depressed with initial Pt additions but at levels greater than 10 at.% the transformation temperature increased linearly with Pt content. Also, the transformation temperatures were relatively insensitive to alloy stoichiometry within the range of alloys examined. Finally, the dependence of hardness on Pt content for a series of Ni50-xPtxTi50 alloys showed solution softening at low Pt levels, while hardening was observed in ternary alloys containing more than about 10 at.% Pt. On either side of these "stoichiometric" compositions, hardness was also found to increase significantly.

  11. Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments

    NASA Astrophysics Data System (ADS)

    Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak

    2015-10-01

    The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.

  12. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.; Clifton, Joshua S.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (100GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth vs. stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  13. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Moore, Lewis E.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GPa) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 mm diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  14. The Effect of Indenter Ball Radius on the Static Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2014-01-01

    Static load capacity is a critical design parameter for rolling element bearings used in space mechanisms because of the potential for Brinell (surface dent) damage due to shock and vibration loading events during rocket launch. Brinell damage to bearing raceways can lead to torque variations (noise) and reduced bearing life. The growing use of ceramic rolling elements with high stiffness in hybrid bearings exacerbates the situation. A new family of hard yet resilient materials based upon nickel-titanium is emerging to address such bearing challenges. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx. 100 GigaPascals) and has been shown to endure higher indentation loads than conventional and high performance steel. Indentation load capacity has been reported for relatively large (12.7 millimeters diameter) ceramic (Si3N4) indenter balls pressed against flat plates of 60NiTi. In order to develop damage load threshold criteria applicable to a wide range of bearing designs and sizes, the effects of indenter ball radius and the accuracy of interpolation of the Hertz contact stress relations for 60NiTi must be ascertained. In this paper, results of indentation tests involving ceramic balls ranging from 6.4 to 12.7 mm in diameter and highly polished 60NiTi flat plates are presented. When the resulting dent depth data for all the indenter ball sizes are normalized using the Hertz equations, the data (dent depth versus stress) are comparable. Thus when designing bearings made from 60NiTi, the Hertz stress relations can be applied with relative confidence over a range of rolling element sizes and internal geometries.

  15. Characterization of varied geometry shape memory alloy beams

    NASA Astrophysics Data System (ADS)

    Gravatt, Lynn M.; Mabe, James H.; Calkins, Frederick T.; Hartl, Darren J.

    2010-04-01

    Shape Memory Alloys (SMA) have proven to be a lightweight, low cost alternative to conventional actuators for a number of commercial applications. Future applications will require a more complex shape changes and a detailed understanding of the performance of more complex SMA actuators is required. The purpose of this study is to validate engineering models and design practices for SMA beams of various configurations for future applications. Until now, SMA actuators have been fabricated into relatively simple beam shapes. Boeing is now fabricating beams with more complicated geometries in order to determine their strength and shape memory characteristics. These more complicated shapes will allow for lighter and more compact SMA actuators as well as provide more complex shape control. Some of the geometries evaluated include vertical and horizontal I-beams, sine wave and linear wave beams, a truss, and a beam perforated with circular holes along the length. A total of six beams were tested; each was a complex shape made from 57% Nickel by weight with the remainder composed of Titanium (57NiTi). Each sample was put through a number of characterization tests. These include a 3-point bend tests to determine force/displacement properties, and thermal cycling under a range of isobaric loads to determine actuator properties. Experimental results were then compared to modeled results. Test results for one representative beam were used to calibrate a 3-D constitutive model implemented in an finite element framework. It is shown that the calibrated analysis tool is accurate in predicting the response of the other beams. Finally, the actuation work capabilities of the beams are compared using a second round of finite element anaylysis.

  16. Fabrication and modeling of shape memory alloy springs

    NASA Astrophysics Data System (ADS)

    Heidari, B.; Kadkhodaei, M.; Barati, M.; Karimzadeh, F.

    2016-12-01

    In this paper, shape memory alloy (SMA) helical springs are produced by shape setting two sets of NiTi (Ti-55.87 at% Ni) wires, one of which showing shape memory effect and another one showing pseudoelasticity at the ambient temperature. Different pitches as well as annealing temperatures are tried to investigate the effect of such parameters on the thermomechanical characteristics of the fabricated springs. Phase transformation temperatures of the products are measured by differential scanning calorimetry and are compared with those of the original wires. Compression tests are also carried out, and stiffness of each spring is determined. The desired pitches are so that a group of springs experiences phase transition during loading while the other does not. The former shows a varying stiffness upon the application of compression, but the latter acts as passive springs with a predetermined stiffness. Based on the von-Mises effective stress and strain, an enhanced one-dimensional constitutive model is further proposed to describe the shear stress-strain response within the coils of an SMA spring. The theoretically predicted force-displacement responses of the produced springs are shown to be in a reasonable agreement with the experimental results. Finally, effects of variations in geometric parameters on the axial force-displacement response of an SMA spring are investigated.

  17. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite

    NASA Astrophysics Data System (ADS)

    Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon

    2010-05-01

    Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in ∩-shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.

  18. A thermomechanical model accounting for the behavior of shape memory alloys in finite deformations

    NASA Astrophysics Data System (ADS)

    Haller, Laviniu; Nedjar, Boumedienne; Moumni, Ziad; Vedinaş, Ioan; Trană, Eugen

    2016-07-01

    Shape memory alloys (SMA) comport an interesting behavior. They can undertake large strains and then recover their undeformed shape by heating. In this context, one of the aspects that challenged many researchers was the development of a mathematical model to predict the behavior of a known SMA under real-life conditions, or finite strain. This paper is aimed at working out a finite strain mathematical model for a Ni-Ti SMA, under the superelastic experiment conditions and under uniaxial mechanical loading, based on the Zaki-Moumni 3D mathematical model developed under the small perturbations assumption. Within the current article, a comparison between experimental findings and calculated results is also investigated. The proposed finite strain mathematical model shows good agreement with experimental data.

  19. FOREWORD: Shape Memory and Related Technologies

    NASA Astrophysics Data System (ADS)

    Liu, Yong

    2005-10-01

    The International Symposium on Shape Memory and Related Technologies (SMART2004) successfully took place in Singapore from November 24 to 26, 2004. SMART2004 aimed to provide a forum for presenting and discussing recent developments in the processing, characterization, application and performance prediction of shape memory materials, particularly shape memory alloys and magnetic shape memory materials. In recent years, we have seen a surge in the research and application of shape memory materials. This is due on the one hand to the successful applications of shape memory alloys (SMAs), particularly NiTi (nitinol), in medical practices and, on the other hand, to the discovery of magnetic shape memory (MSM) materials (or, ferromagnetic shape memory alloys, FSMAs). In recent years, applications of SMAs in various engineering practices have flourished owing to the unique combination of novel properties including high power density related to shape recovery, superelasticity with tunable hysteresis, high damping capacity combined with good fatigue resistance, excellent wear resistance due to unconventional deformation mechanisms (stress-induced phase transformation and martensite reorientation), and excellent biocompatibility and anticorrosion resistance, etc. In~the case of MSMs (or FSMAs), their giant shape change in a relatively low magnetic field has great potential to supplement the traditional actuation mechanisms and to have a great impact on the world of modern technology. Common mechanisms existing in both types of materials, namely thermoelastic phase transformation, martensite domain switching and their controlling factors, are of particular interest to the scientific community. Despite some successful applications, some fundamental issues remain unsatisfactorily understood. This conference hoped to link the fundamental research to engineering practices, and to further identify remaining problems in order to further promote the applications of shape memory

  20. Superordinate Shape Classification Using Natural Shape Statistics

    ERIC Educational Resources Information Center

    Wilder, John; Feldman, Jacob; Singh, Manish

    2011-01-01

    This paper investigates the classification of shapes into broad natural categories such as "animal" or "leaf". We asked whether such coarse classifications can be achieved by a simple statistical classification of the shape skeleton. We surveyed databases of natural shapes, extracting shape skeletons and tabulating their…

  1. Calorimetry study of the synthesis of amorphous Ni-Ti alloys by mechanical alloying. [Ni33 Ti67

    SciTech Connect

    Schwarz, R.B.; Petrich, R.R.

    1988-01-01

    We synthesized amorphous Ni/sub 33/Ti/sub 67/ alloy powder by ball milling (a) a mixture of elemental nickel and titanium powders and (b) powders of the crystalline intermetallic NiTi/sub 2/. We characterized the reaction products as a function of ball-milling time by differential scanning calorimetry and x-ray diffraction. The measurements suggest that in process (a) the amorphous alloy forms by a solid-state interdiffusion reaction at the clean Ni/Ti interfaces generated by the mechanical attrition. In process (b), the crystalline alloy powder stores energy in the form of chemical disorder and lattice and point defects. The crystal-to-amorphous transformation occurs when the stored energy reaches a critical value. The achievement of the critical stored energy competes with the dynamic recovery of the lattice. 23 refs., 7 figs.

  2. Improve the corrosion and cytotoxic behavior of NiTi implants with use of the ion beam technologies

    NASA Astrophysics Data System (ADS)

    Meisner, L. L.; Matveeva, V. A.; Meisner, S. N.; Matveev, A. L.

    2015-11-01

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ˜3400 and ˜6000 h, respectively. It is found that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.

  3. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2014-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hardened construction materials to minimize wear and attain long life. In such components, loaded contact points (e.g., meshing gear teeth, bearing balls-raceway contacts) experience high contact stresses. The combination of high hardness and high elastic modulus often leads to damaging contact stress and denting, particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this webinar, Dr. DellaCorte will introduce the results of a research project that employs a superelastic alloy, Ni-Ti for rolling element bearing applications. Bearings and components made from such alloys can alleviate many problems encountered in advanced aerospace applications and may solve many terrestrial applications as well

  4. Effects of micro-magnetic field at the surface of 316L and NiTi alloy on blood compatibility.

    PubMed

    Liu, Qiang; Cheng, Xiao Nong; Fei, Huang Xia

    2011-03-01

    We have established the micro-magnetic field on the surfaces of 316L stainless steel and NiTi alloy through the magnetization process of sol-gel prepared TiO(2) thin film with the powder of SrFe(12)O(19). The nano-sized with brown color of SrFe(12)O(19) powder was verified by transmission electron microscope. By using X-ray diffraction, surface roughometer, and corrosion experimental test, the deposited thin film can decrease the etching of body fluid as well as prevent the hazardous Ni ions released from the metal. Moreover, with evaluation of dynamic cruor time test and blood platelets adhesion test, we found the micro-magnetic field of the thin film can improve the blood compatibility.

  5. Improve the corrosion and cytotoxic behavior of NiTi implants with use of the ion beam technologies

    SciTech Connect

    Meisner, L. L. Meisner, S. N.; Matveeva, V. A.; Matveev, A. L.

    2015-11-17

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ∼3400 and ∼6000 h, respectively. It is found that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.

  6. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting

    NASA Astrophysics Data System (ADS)

    Saedi, Soheil; Sadi Turabi, Ali; Taheri Andani, Mohsen; Haberland, Christoph; Elahinia, Mohammad; Karaca, Haluk

    2016-03-01

    This study presents the shape memory behavior of as-fabricated and solution annealed Ni50.8Ti49.2 alloys fabricated using the selective laser melting (SLM) technique. Results were compared to the initial ingot that was used to fabricate powders. Optical microscopy was employed to reveal the microstructure. The shape memory effect under constant compressive stress and isothermal compressive stress cycling tests were utilized to investigate the shape memory characteristics of the initial ingot and fabricated alloys. It was revealed that the SLM method and post heat treatments can be used to tailor the microstructure and shape memory response. Partial superelasticity was observed after the SLM process. Solutionizing the fabricated samples increased the strength and improved the superelasticity but slightly decreased the recoverable strain.

  7. Optimizing Ni-Ti-based shape memory alloys for ferroic cooling

    NASA Astrophysics Data System (ADS)

    Wieczorek, A.; Frenzel, J.; Schmidt, M.; Maaß, B.; Seelecke, S.; Schütze, A.; Eggeler, G.

    Due to their large latent heats, pseudoelastic Ni-Ti-based shape memory alloys (SMAs) are attractive candidate materials for ferroic cooling, where elementary solid-state processes like martensitic transformations yield the required heat effects. The present work aims for a chemical and microstructural optimization of Ni-Ti for ferroic cooling. A large number of Ni-Ti-based alloy compositions were evaluated in terms of phase transformation temperatures, latent heats, mechanical hysteresis widths and functional stability. The aim was to identify material states with superior properties for ferroic cooling. Different material states were prepared by arc melting, various heat treatments and thermo-mechanical processing. The cooling performance of selected materials was assessed by differential scanning calorimetry, uniaxial tensile loading/unloading, and by using a specially designed ferroic cooling demonstrator setup. A Ni45Ti47.25Cu5V2.75 SMA was identified as a potential candidate material for ferroic cooling. This material combines extremely stable pseudoelasticity at room temperature and a very low hysteresis width. The ferroic cooling efficiency of this material is four times higher than in the case of binary Ni-Ti.

  8. Modeling and cyclic behavior of segmental bridge column connected with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Roh, Hwasung; Reinhorn, Andrei M.; Lee, Jong Seh

    2012-09-01

    This paper examines the quasi-static cyclic behavior, lateral strength and equivalent damping capacities of a system of post-tensioned segmental bridge columns tied with large diameter martensitic Shape Memory Alloy (SMA) link-bars. Moment-curvature constitutive relationships are formulated and analysis tools are developed for the PT column, including a modified four-spring model prepared for the SMA bars. The suggested system is exemplified using a column with an aspect ratio of 7.5 and twelve 36.5 mm diameter NiTi martensitic SMA bars. A post-tensioning force of 40% to 60% of the tendon yield strength is applied in order to obtain a self re-centering system, considering the residual stress of the martensitic SMA bars. The cyclic response results show that the lateral strength remains consistently around 10% of the total vertical load and the equivalent viscous damping ratios reach 10%-12% of critical. When large diameter NiTi superelastic SMA bars are incorporated into the column system, the cyclic response varies substantially. The creep behavior of the superelastic SMA bar is accounted for since it affects the re-centering capability of the column. Two examples are presented to emphasize the modeling sensitivities for these special bars and quantify their cyclic behavior effects within the column assembly.

  9. Fabrication and Characterization of Nitinol-Copper Shape Memory Alloy Bimorph Actuators

    NASA Astrophysics Data System (ADS)

    Wongweerayoot, E.; Srituravanich, W.; Pimpin, A.

    2015-02-01

    This study aims to examine the effect of annealing conditions on nitinol (NiTi) characteristics and applies this knowledge to fabricate a NiTi-copper shape memory alloy bimorph actuator. The effect of the annealing conditions was investigated at various temperatures, i.e., 500, 600, and 650 °C, for 30 min. With the characterizations using x-ray diffraction, energy dispersive spectroscopy, and differential scanning calorimetry techniques, the results showed that annealing temperatures at 600 and 650 °C were able to appropriately form the crystalline structure of NiTi. However, at these high annealing temperatures, the oxide on a surface was unavoidable. In the fabrication of actuator, the annealing at 650 °C for 30 min was chosen, and it was performed at two pre-stressing conditions, i.e., straight and curved molds. From static and dynamic response experiments, the results suggested that the annealing temperature significantly affected the deflection of the actuator. On the other hand, the effect of pre-stressing conditions was relatively small. Furthermore, the micro gripper consisting of two NiTi-copper bimorph actuators successfully demonstrated for the viability of small object manipulation as the gripper was able to grasp and hold a small plastic ball with its weight of around 0.5 mg.

  10. Potential High-Temperature Shape-Memory Alloys Identified in the Ti(Ni,Pt) System

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Biles, Tiffany A.; Garg, Anita; Nathal, Michael V.

    2004-01-01

    "Shape memory" is a unique property of certain alloys that, when deformed (within certain strain limits) at low temperatures, will remember and recover to their original predeformed shape upon heating. It occurs when an alloy is deformed in the low-temperature martensitic phase and is then heated above its transformation temperature back to an austenitic state. As the material passes through this solid-state phase transformation on heating, it also recovers its original shape. This behavior is widely exploited, near room temperature, in commercially available NiTi alloys for connectors, couplings, valves, actuators, stents, and other medical and dental devices. In addition, there are limitless applications in the aerospace, automotive, chemical processing, and many other industries for materials that exhibit this type of shape-memory behavior at higher temperatures. But for high temperatures, there are currently no commercial shape-memory alloys. Although there are significant challenges to the development of high-temperature shape-memory alloys, at the NASA Glenn Research Center we have identified a series of alloy compositions in the Ti-Ni-Pt system that show great promise as potential high-temperature shape-memory materials.

  11. Cyclic fatigue resistance of OneShape, Reciproc, and WaveOne: An in vitro comparative study

    PubMed Central

    Dagna, Alberto; Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Bianchi, Stefano

    2014-01-01

    Aims: The aim of this in vitro study was to evaluate the cyclic fatigue resistance of three single-use nickel–titanium (NiTi) instruments. Materials and Methods: Forty files each of OneShape (OS), Reciproc R25 (R25), WaveOne Primary (WO) file, and ProTaper (PT) F2 (as control) were tested in four curved artificial canals with different angles and radii of curvature. The number of cycles to fracture (NCF) was determined and the data were compared for differences by using two-way analysis of variance (P < 0.05). Results: In general, all single-use instruments were more resistant than traditional rotary instrument used as control. R25 showed the highest cyclic fatigue resistance. One Shape and WO files showed similar cyclic fatigue resistance values, higher than PT F2. Conclusions: Within the limitations of this study, it can be concluded that R25 was the most fatigue resistant. OS rotary instruments seem to have good mechanical resistance, similar to NiTi files developed for reciprocating motion. PMID:24944449

  12. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    NASA Astrophysics Data System (ADS)

    Karamooz Ravari, M. R.; Nasr Esfahani, S.; Taheri Andani, M.; Kadkhodaei, M.; Ghaei, A.; Karaca, H.; Elahinia, M.

    2016-02-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress-strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure.

  13. Development of a flexible nanocomposite TiO2 film as a protective coating for bioapplications of superelastic NiTi alloys

    NASA Astrophysics Data System (ADS)

    Aun, Diego Pinheiro; Houmard, Manuel; Mermoux, Michel; Latu-Romain, Laurence; Joud, Jean-Charles; Berthomé, Gregory; Buono, Vicente Tadeu Lopes

    2016-07-01

    An experimental procedure to coat superelastic NiTi alloys with flexible TiO2 protective nanocomposite films using sol-gel technology was developed in this work to improve the metal biocompatibility without deteriorating its superelastic mechanical properties. The coatings were characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and glazing incidence X-ray diffraction. The elasticity of the film was tested in coated specimens submitted to three-point bending tests. A short densification by thermal treatment at 500 °C for 10 min yielded a bilayer film consisting of a 50 nm-thick crystallized TiO2 at the inner interface with another 50-nm-thick amorphous oxide film at the outer interface. This bilayer could sustain over 6.4% strain without cracking and could thus be used to coat biomedical instruments as well as other devices made with superelastic NiTi alloys.

  14. Structure of the near-surface layer of NiTi on the meso- and microscale levels after ion-beam surface treatment

    SciTech Connect

    Meisner, L. L. Meisner, S. N.; Poletika, T. M. Girsova, S. L.; Tverdichlebova, A. V.; Shulepov, I. A.

    2014-11-14

    Using the EBSD, SEM and TEM methods, the structure of surface layer of polycrystalline NiTi alloy samples was examined after the modification of material surface by the pulsed action of mean-energy silicon ion beam. It was found that the ion beam treatment would cause grain fragmentation of the near-surface layer to a depth 5÷50 μm; a higher extent of fragmentation was observed in grains whose close-packed planes were oriented approximately in the same direction as the ion beam was. The effect of high-intensity ion beam treatment on the anisotropic behavior of polycrystalline NiTi alloy and the mechanisms involved were also examined.

  15. TEM investigation of the surface layer structure [111]{sub B2} of the single NiTi crystal modified by the Si-ion beam implantation

    SciTech Connect

    Girsova, S. L. Poletika, T. M.; Meisner, S. N. Meisner, L. L.

    2015-10-27

    The study was carried on for the single NiTi crystals subjected to the Si-ion beam implantation. Using the transmission electron microscopy technique (TEM), the surface layer structure [111]{sub B2} was examined for the treated material. The modified near-surface sublayers were found to have different composition. Thus the uppermost sublayer contained mostly oxides; the lower-lying modified sublayer material was in an amorphous state and the thin underlying sublayer had a defect structure.

  16. Influence of Friction Resistance on Expression of Superelastic Properties of Initial NiTi Wires in “Reduced Friction” and Conventional Bracket Systems

    PubMed Central

    Reznikov, Natalie; Har-Zion, Gilad; Barkana, Idit; Abed, Yosef; Redlich, Meir

    2010-01-01

    Objectives. The aim of this study was to assess the influence of resistance to sliding on expression of superelastic properties of NiTi wires. Methods and Materials. A three-point bending test was performed for 0.014 NiTi wire engaged in self-ligating (Damon, SmartClip, In-Ovation) and conventional brackets (Victory) ligated with regular and reduced friction modules (Slide). The wire was deflected in the buccal direction and allowed to straighten. The maximum load, unloading plateau and unloading capacity were registered. Results. The lowest activation load was required in the active self-ligating group (In-Ovation 2.2 ± 0.4 N) and reduced friction module group (Victory/Slide 2.9 ± 0.4 N), followed by the passive self-ligating systems (Damon 3.6 ± 0.7 N, SmartClip 3.7 ± 0.4 N). Higher activation load was obtained in the conventionally ligated group (Victory/module 4.5 ± 0.4 N). Unloading plateau phase with the load magnitude ranging from 1.27 ± 0.4 N (In-Ovation) to 1.627 ± 0.4 N (Slide) was distinct in all groups but one (Victory). Conclusions. Higher friction at flanking points reduces the net force delivered by the wire. Unloading plateau phase of NiTi load-deflection curve disappears in the conventionally ligated group thus indicating to an incomplete expression of NiTi superelastic properties. A rigid passive bracket clip amplifies resistance to sliding in an active configuration and produces a permanent deflection of the wire. PMID:20981153

  17. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    PubMed

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application.

  18. Formation of a nano-pattering NiTi surface with Ni-depleted superficial layer to promote corrosion resistance and endothelial cell-material interaction.

    PubMed

    Zhao, Tingting; Li, Yan; Xia, Yun; Venkatraman, Subbu S; Xiang, Yan; Zhao, Xinqing

    2013-01-01

    Zirconium ion implantation was performed on NiTi alloy to suppress Ni ion release as well as to improve corrosion resistance and cell-material interaction. A thicker Ni-depleted nano-scale composite layer formed after Zr implantation and the corrosion resistance was evidently increased in aspects of increased E(br) - E(corr) (difference between corrosion potential and breakdown potential) and decreased corrosion current density. 2.5/2 NiTi sample possessed the highest E(br) - E(corr), more than 500 mV higher than that of untreated NiTi, suggesting a significant improvement on pitting corrosion resistance. Ni ion release rate of Zr-NiTi was decreased due to the depletion of Ni in the superficial surface layer and the diffusion resistance effect of the ZrO(2)/TiO(2) nano-film. Increased surface wettability induced by increased surface roughness was obtained after Zr implantation. Zr-NiTi samples were found to be favorable to endothelial cells (ECs) proliferation, especially after 5 and 7 days culture.

  19. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid.

    PubMed

    Khalili, V; Khalil-Allafi, J; Frenzel, J; Eggeler, G

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate.

  20. Fatigue Crack Growth Fundamentals in Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Ojha, A.; Patriarca, L.; Sehitoglu, H.

    2015-03-01

    In this study, based on a regression of the crack tip displacements, the stress intensity range in fatigue is quantitatively determined for the shape memory alloy Ni2FeGa. The results are compared to the calculated stress intensity ranges with a micro-mechanical analysis accounting for the transformation-induced tractions. The effective stress intensity ranges obtained with both methods are in close agreement. Also, the fatigue crack closure levels were measured as 30 % of the maximum load using virtual extensometers along the crack flanks. This result is also in close agreement with the regression and micro-mechanical modeling findings. The current work pointed to the importance of elastic moduli changes and the residual transformation strains playing a role in the fatigue crack growth behavior. Additional simulations are conducted for two other important shape memory alloys, NiTi and CuZnAl, where the reductions in stress intensity range were found to be lower than Ni2FeGa.

  1. Properties and medical applications of shape memory alloys.

    PubMed

    Tarniţă, Daniela; Tarniţă, D N; Bîzdoacă, N; Mîndrilă, I; Vasilescu, Mirela

    2009-01-01

    One of the most known intelligent material is nitinol, which offers many functional advantages over conventional implantable alloys. Applications of SMA to the biomedical field have been successful because of their functional qualities, enhancing both the possibility and the execution of less invasive surgeries. The biocompatibility of these alloys is one of their most important features. Different applications exploit the shape memory effect (one-way or two-way) and the super elasticity, so that they can be employed in orthopedic and cardiovascular applications, as well as in the manufacture of new surgical tools. Therefore, one can say that smart materials, especially SMA, are becoming noticeable in the biomedical field. Super elastic NiTi has become a material of strategic importance as it allows to overcome a wide range of technical and design issues relating to the miniaturization of medical devices and the increasing trend for less invasive and therefore less traumatic procedures. This paper will consider just why the main properties of shape memory alloys hold so many opportunities for medical devices and will review a selection of current applications.

  2. Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic Acid and sodium chloride solutions.

    PubMed

    Bonaccorso, Antonio; Tripi, Teresa Roberta; Rondelli, Gianni; Condorelli, Guglielmo Guido; Cantatore, Giuseppe; Schäfer, Edgar

    2008-02-01

    This study evaluated the pitting corrosion resistance of nickel-titanium (NiTi) rotary instruments with different surface treatments in 17% ethylenediaminetetraacetic acid (EDTA) and NaCl solutions. Electropolished RaCe instruments were allocated to group A, non-electropolished RaCe instruments to group B, and physical vapor deposition (PVD)-coated Alpha files to group C (10 instruments per group). Electrochemical measurements were carried out by using a potentiostat for galvanic current measurements. On the basis of electrochemical tests, no localized corrosion problems are to be expected in EDTA. In NaCl, pitting potential occurred at higher values for the electropolished and PVD instruments, indicating an increased corrosion resistance. There appears to be a risk of corrosion for NiTi instruments without surface treatments in contact with NaCl. NiTi files with PVD and electropolishing surface treatments showed an increase corrosion resistance.

  3. Shape-Shifting Plastic

    SciTech Connect

    2015-05-20

    A new plastic developed by ORNL and Washington State University transforms from its original shape through a series of temporary shapes and returns to its initial form. The shape-shifting process is controlled through changes in temperature

  4. Comparative evaluation of pentraxin 3 levels in GCF during canine retraction with active tieback and NiTi coil spring: An in vivo study

    PubMed Central

    Patel, Pratik; Shanthraj, Ravi; Bhagyalakshmi, A; Garg, Nekta; Vallakati, Anisha

    2016-01-01

    Objectives: To compare the levels of pentraxin 3 (PTX-3) in gingival crevicular fluid (GCF) in patients undergoing orthodontic canine retraction with active tieback and nickel titanium (NiTi) coil spring. Materials and Methods: Fifteen patients of the age group 15–25 years with first premolar extraction undergoing canine retraction were selected. One month after placement of 0.019” × 0.025” stainless steel wire, canine retraction was started with active tieback (150 g force) on upper right quadrant and NiTi coil spring (150 g force) on upper left quadrant. GCF samples were collected 1 h before commencement of canine retraction and thereafter at intervals of 1 h, 1 day, 1 week, and 2 weeks after application of force. The collected GCF was eluted from the microcapillary pipette in 100 μl phosphate-buffered saline (pH 5–7.2). The samples were analyzed for PTX-3 levels by the ELISA technique. Results: The mean levels of PTX-3 at 1 h before canine retraction (baseline) was 1.30 ± 0.22 ng/ml and at 1 h 1.66 ± 0.33 ng/ml, 1 day 2.65 ± 0.09 ng/ml, 1 week 1.96 ± 0.15 ng/ml, and 2 weeks 1.37 ± 0.18 ng/ml in active tieback group. The mean levels of PTX-3 at 1 h before canine retraction was 1.32 ± 0.30 ng/ml, and at 1 h 1.71 ± 0.39 ng/ml, 1 day 2.78 ± 0.12 ng/ml, 1 week 2.52 ± 0.18 ng/ml, and 2 weeks 2.12 ± 0.17 ng/ml in NiTi coil spring group. A significant difference of P < 0.001 was found in PTX-3 levels in GCF during canine retraction between active tieback and NiTi coil spring at 1 day, 1 week, and 2 weeks. Conclusion: The results showed that PTX-3 levels increased from 1 h after application of orthodontic force and reached peak at 1 day, followed by a gradual decrease at 1 week and 2 weeks in both active tie back and NiTi coil spring groups. PMID:27127751

  5. Observation and prediction of the deformation and fracture of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Creuziger, Adam

    This thesis explores the deformation and fracture behavior of two common shape memory alloys (SMAs), CuAlNi and NiTi. Millimeter, micrometer and nanometer scale features are observed and compared with crystallographic theory of martensite (CTM) predictions and finite element models. Observed fracture behavior, in conjunction with theory and modeling, shed light on the fracture behavior and deformation in shape memory materials. The in plane and out of plane deformations are quantitatively measured and compared with good agreement to predictions from the CTM. For deformation where the stress state was unknown, predicted martensite plates correlated well with observed features. When the stress state could be calculated using finite element analysis (FEA), an available work criterion was used to predict which type of martensite plate would form; with good agreement in arbitrarily oriented, notched CuAlNi samples. The out of plane deformation caused during transformation was quantitatively investigated and agrees well with the average strain of twinned martensite. Using a FEA model of a tapered martensite, the effect of boundary conditions on the out of plane deformation angle was explored. Some limitations on the available work criterion were found. The direction of the out of plane deformation near the notch is consistently such that the area directly ahead of the notch sinks downward. This effect, and the wide martensite plates observed after fracture occurs, indicate the role boundary conditions have on the transformation observed. These effects are not taken into account in the current available work criterion. In single crystal NiTi, the available work criterion was not predictive of the deformations observed in uniaxial tension or in notched samples. However, available work predictions were useful in predicting the fracture properties of notched single crystal NiTi samples, a capability not previously demonstrated. Investigation into the grain boundary fracture

  6. An innovative approach to achieve re-centering and ductility of cement mortar beams through randomly distributed pseudo-elastic shape memory alloy fibers

    NASA Astrophysics Data System (ADS)

    Shajil, N.; Srinivasan, S. M.; Santhanam, M.

    2012-04-01

    Fibers can play a major role in post cracking behavior of concrete members, because of their ability to bridge cracks and distribute the stress across the crack. Addition of steel fibers in mortar and concrete can improve toughness of the structural member and impart significant energy dissipation through slow pull out. However, steel fibers undergo plastic deformation at low strain levels, and cannot regain their shape upon unloading. This is a major disadvantage in strong cyclic loading conditions, such as those caused by earthquakes, where self-centering ability of the fibers is a desired characteristic in addition to ductility of the reinforced cement concrete. Fibers made from an alternative material such as shape memory alloy (SMA) could offer a scope for re-centering, thus improving performance especially after a severe loading has occurred. In this study, the load-deformation characteristics of SMA fiber reinforced cement mortar beams under cyclic loading conditions were investigated to assess the re-centering performance. This study involved experiments on prismatic members, and related analysis for the assessment and prediction of re-centering. The performances of NiTi fiber reinforced mortars are compared with mortars with same volume fraction of steel fibers. Since re-entrant corners and beam columns joints are prone to failure during a strong ground motion, a study was conducted to determine the behavior of these reinforced with NiTi fiber. Comparison is made with the results of steel fiber reinforced cases. NiTi fibers showed significantly improved re-centering and energy dissipation characteristics compared to the steel fibers.

  7. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  8. Modulated interaction in double-layer shape memory-based micro-designed actuators

    PubMed Central

    Crăciunescu, Corneliu; Ercuta, Aurel

    2015-01-01

    The effect of superposed transitions in actuators with layered shape memory alloy (SMA) films undergoing martensitic phase transformation is analyzed in terms of a model developed for two layers of different composition, deposited at the same temperature on a substrate. A significant difference is observed in the actuation versus temperature relationship, depending on the thermal and elastic properties of the SMA layers and their martensitic transformation temperature. The prediction of the actuation is exemplified using a multilayer model and is verified for a cantilever actuator with NiTi and NiMnGa layers deposited on a Si substrate. The model sets the ground for a smart selection of SMAs in order to achieve a modulated actuation. PMID:27877845

  9. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd

    2005-01-01

    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.

  10. Woven type smart soft composite beam with in-plane shape retention

    NASA Astrophysics Data System (ADS)

    Wu, Renzhe; Han, Min-Woo; Lee, Gil-Yong; Ahn, Sung-Hoon

    2013-12-01

    Shape memory alloy (SMA) wire embedded composites (SMAECs) are widely used as morphing structures in small-size and high-output systems. However, conventional SMAECs cannot keep deformed shapes without additional energy. In this paper, a new kind of smart structure named the woven type smart soft composite (SSC) beam is introduced, which is not only capable of morphing, but also maintaining its deformed shape without additional energy. The woven type SSC beam consists of two parts: woven wires and matrix. The selected woven wires are nitinol (Ni-Ti) SMA wires and glass fibers, while the matrix part is polydimethylsiloxane (PDMS). In order to evaluate the performance of the woven type SSC beam in areas such as in-plane deformation, blocking force and repeatability, a beam-shape specimen is prepared of size 100 mm (length) × 8 mm (width) ×3 mm (thickness). The fabricated SSC beam achieved 21 mm deformation and 16 mm shape retention. Blocking force was measured using a dynamometer, and was about 60 mN. In the repeatability test, it recovered almost the same position when its cooling time was 90 s more. Consequently, the woven type SSC beam can be applied to bio-mimicking, soft morphing actuators, consuming less energy than traditional SMAECs.

  11. Application of fiber Bragg grating sensors in monitoring fatigue failure of NiTi rotary endodontic instruments

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Shin, C. S.

    2011-11-01

    NiTi endodontic rotary instruments subjected to alternating tension and compression stress in root canals may fracture without prior warning. Once broken, extracting the fractured part from the canal is a difficult job and is annoying to both the patient and the dentist. Warning of an imminent fracture during clinical use will be a great help to avoid medical and legal complications. A monitoring system employing Fiber Bragg Grating (FBG) sensors has been attempted. The reason of using FBG is its small size which is very promising in integrating with the handpiece of the endodontic equipment. When cracking developed in an rotary instrument, we expect the natural vibration frequency of the instrument changes. If we can pick up the stress wave transmitted through the structural components of the rotary instruments, we may be able to detect the occurrence of a crack. In the current work, we found that we can successfully locate the operation period in the time domain by picking up and analyzing the sound wave using FBG. Furthermore, by employing Fast Fourier Transform (FFT) on the signal, we can reveal the energy variation and the frequency shifting phenomenon in specific section of frequency domain. For some characteristic frequencies, it was found that the energy and frequency varied in a well-defined pattern during the period of crack growth. It is hoped that with these information, the fatigue failure of rotary instruments can be closely monitored to avoid/alleviate the occurrence of unexpected fracture during clinical use.

  12. Application of fiber Bragg grating sensors in monitoring fatigue failure of NiTi rotary endodontic instruments

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Shin, C. S.

    2012-04-01

    NiTi endodontic rotary instruments subjected to alternating tension and compression stress in root canals may fracture without prior warning. Once broken, extracting the fractured part from the canal is a difficult job and is annoying to both the patient and the dentist. Warning of an imminent fracture during clinical use will be a great help to avoid medical and legal complications. A monitoring system employing Fiber Bragg Grating (FBG) sensors has been attempted. The reason of using FBG is its small size which is very promising in integrating with the handpiece of the endodontic equipment. When cracking developed in an rotary instrument, we expect the natural vibration frequency of the instrument changes. If we can pick up the stress wave transmitted through the structural components of the rotary instruments, we may be able to detect the occurrence of a crack. In the current work, we found that we can successfully locate the operation period in the time domain by picking up and analyzing the sound wave using FBG. Furthermore, by employing Fast Fourier Transform (FFT) on the signal, we can reveal the energy variation and the frequency shifting phenomenon in specific section of frequency domain. For some characteristic frequencies, it was found that the energy and frequency varied in a well-defined pattern during the period of crack growth. It is hoped that with these information, the fatigue failure of rotary instruments can be closely monitored to avoid/alleviate the occurrence of unexpected fracture during clinical use.

  13. MR-CT registration using a Ni-Ti prostate stent in image-guided radiotherapy of prostate cancer

    SciTech Connect

    Korsager, Anne Sofie; Ostergaard, Lasse Riis; Carl, Jesper

    2013-06-15

    Purpose: In image-guided radiotherapy of prostate cancer defining the clinical target volume often relies on magnetic resonance (MR). The task of transferring the clinical target volume from MR to standard planning computed tomography (CT) is not trivial due to prostate mobility. In this paper, an automatic local registration approach is proposed based on a newly developed removable Ni-Ti prostate stent.Methods: The registration uses the voxel similarity measure mutual information in a two-step approach where the pelvic bones are used to establish an initial registration for the local registration.Results: In a phantom study, the accuracy was measured to 0.97 mm and visual inspection showed accurate registration of all 30 data sets. The consistency of the registration was examined where translation and rotation displacements yield a rotation error of 0.41 Degree-Sign {+-} 0.45 Degree-Sign and a translation error of 1.67 {+-} 2.24 mm.Conclusions: This study demonstrated the feasibility for an automatic local MR-CT registration using the prostate stent.

  14. Inhibition of hydrogen embrittlement of Ni-Ti superelastic alloy in acid fluoride solution by hydrogen peroxide addition.

    PubMed

    Yokoyama, Ken'ichi; Yazaki, Yushin; Sakai, Jun'ichi

    2011-09-01

    Inhibition of the hydrogen embrittlement of Ni-Ti superelastic alloy in an acidulated phosphate fluoride (APF) solution has been attempted by adding various amounts of H(2)O(2). In a 0.2% APF solution, hydrogen absorption is markedly inhibited by adding H(2)O(2), although corrosion is slightly enhanced by increasing the amount of added H(2)O(2). By adding a small amount of H(2)O(2) (0.001 M), in the early stage of immersion, hydrogen embrittlement is inhibited and corrosion is only slightly enhanced. Upon adding H(2)O(2), it appears that the dominant cathodic reactions change from hydrogen evolution to H(2)O(2) reduction reactions, or the surface conditions of the alloy are changed by H(2)O(2) with a high oxidation capability, thereby inhibiting hydrogen absorption. The present study clearly indicates that infinitesimal addition of H(2)O(2) into acid fluoride solutions is effective for the inhibition of the hydrogen embrittlement of the alloy.

  15. Fabrication of Ni-Ti Alloy by Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering Technique

    NASA Astrophysics Data System (ADS)

    Salvetr, Pavel; Kubatík, Tomáš František; Pignol, Damien; Novák, Pavel

    2017-02-01

    This work is focused on the possibilities of preparing Ni-Ti46 wt pct alloy by powder metallurgy methods. The self-propagating high-temperature synthesis (SHS) and combination of SHS reaction, milling, and spark plasma sintering consolidation (SPS) are explored. The aim of this work is the development of preparation method with the lowest amount of undesirable phases (mainly Ti2Ni phase). The SHS with high heating rate (approx. 200 and 300 K min-1) was applied. Because the SHS product is very porous, it was milled in vibratory disk milling and consolidated by SPS technique at temperatures of 1173 K, 1273 K, and 1373 K (900 °C, 1000 °C, and 1100 °C). The microstructures of samples prepared by SHS reaction and combination of SHS reaction, milling, and SPS consolidation are compared. The changes in microstructure with increasing temperature of SPS consolidation are observed. Mechanical properties are tested by hardness measurement. The way to reduce the amount of Ti2Ni phase in structure is leaching of powder in 35 pct hydrochloric acid before SPS consolidation.

  16. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace Mechanism Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Noebe, Ronald D.; Stanford, Malcolm; Padula, Santo A.

    2011-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hard materials to minimize wear and attain long life. In such components, heavily loaded contact points (e.g., meshing gear teeth, bearing ball-raceway contacts) experience high contact stresses. The combination of high hardness, heavy loads and high elastic modulus often leads to damaging contact stress. In addition, mechanical component materials, such as tool steel or silicon nitride exhibit limited recoverable strain (typically less than 1 percent). These material attributes can lead to Brinell damage (e.g., denting) particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this paper, a superelastic alloy, 60NiTi, is considered for rolling element bearing applications. A series of Rockwell and Brinell hardness, compressive strength, fatigue and tribology tests are conducted and reported. The combination of high hardness, moderate elastic modulus, large recoverable strain, low density, and intrinsic corrosion immunity provide a path to bearings largely impervious to shock load damage. It is anticipated that bearings and components made from alloys with such attributes can alleviate many problems encountered in advanced aerospace applications.

  17. A new approach predicting the evolution of laminated nanostructures—martensite in NiTi as an example

    NASA Astrophysics Data System (ADS)

    Petersmann, M.; Antretter, T.; Waitz, T.; Fischer, F. D.

    2017-04-01

    A model for laminated nanostructures, combining classical energy minimization with full-field finite element calculations in a computationally fully automated manner, is set up and used to quantitatively analyse the interaction of grains via self-accommodation of their transformation strains. The well known Koistinenwell established B2–B19’ martensitic phase transformation in nanocrystalline NiTi is treated as an exemplary case to demonstrate our new framework. A systematic search for an optimal energy minimizing transformation path is employed within a full-field model, including crystallographic transformation strains and fully anisotropic elastic constants, by using the Python scripting language. The microstructure is updated based on previous calculation results. The underlying incremental free energy minimization criterion naturally reproduces the transformation kinetics. The sequence of grains subjected to transformation as well as the selection of martensitic variants within the grains are obtained yielding the evolution of the total interface energy as well as the strain energy, dominating our approach.

  18. Fabrication of Ni-Ti Alloy by Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering Technique

    NASA Astrophysics Data System (ADS)

    Salvetr, Pavel; Kubatík, Tomáš František; Pignol, Damien; Novák, Pavel

    2017-04-01

    This work is focused on the possibilities of preparing Ni-Ti46 wt pct alloy by powder metallurgy methods. The self-propagating high-temperature synthesis (SHS) and combination of SHS reaction, milling, and spark plasma sintering consolidation (SPS) are explored. The aim of this work is the development of preparation method with the lowest amount of undesirable phases (mainly Ti2Ni phase). The SHS with high heating rate (approx. 200 and 300 K min-1) was applied. Because the SHS product is very porous, it was milled in vibratory disk milling and consolidated by SPS technique at temperatures of 1173 K, 1273 K, and 1373 K (900 °C, 1000 °C, and 1100 °C). The microstructures of samples prepared by SHS reaction and combination of SHS reaction, milling, and SPS consolidation are compared. The changes in microstructure with increasing temperature of SPS consolidation are observed. Mechanical properties are tested by hardness measurement. The way to reduce the amount of Ti2Ni phase in structure is leaching of powder in 35 pct hydrochloric acid before SPS consolidation.

  19. From Shape to Letters.

    ERIC Educational Resources Information Center

    Schiller, Hillel A.

    In order to make letter shape recognition an integral part of perception training, the use of the line in its two basic shapes is proposed. Letter shapes may seem exceedingly complex linear shapes to young minds. Thus instead of instruction in configuration, instruction involving transformational activities to manipulate and create the…

  20. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  1. A Source Manual for Information on Nitinol and NiTi. First Revision

    DTIC Science & Technology

    1980-02-01

    Arnold Oak Ridge, TE 37830 Library of Congress Washington, D.C. 20540 Attn: Gift and Fxchange Division 53 -. r ; , •- 7 .," " .. . i i /lil i l l I I l...Banks, R.; Wahlig, M., NITINOL Engine Development LBL-5293 ERDA Contract W-7405-ENG-48 International Solar Energy Society Meeting, Winnipeg , Canada...Shape Memory Structures, Master Thesis, Naval Postgrad. School , AD-A009 967*, March 1975. 75A2 Anon., NITINOL: Metal with a Memory, All Hands, July 1975 p

  2. On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility.

    PubMed

    Es-Souni, Mohammed; Es-Souni, Martha; Fischer-Brandies, Helge

    2002-07-01

    The present paper compares the transformation behaviour and mechanical properties of two orthodontic wires of close chemical compositions. The effects of surface topography and surface finish residues on the potentiodynamic corrosion behaviour and biocompatibility are also reported. The cytotoxicity tests were performed on both alloys in fibroblast cell cultures from human gingiva using the MTT test. It is shown that the surface finish and the amounts of surface finish residues affect dramatically the corrosion resistance. Bad surface finish results in lower corrosion resistance. The in vitro biocompatibility, though not affected to the extent of corrosion resistance, is also reduced as the surface roughness and the amounts of residues increase. This is thought to be due to surface effects on corrosion and metallic ions release.

  3. Precipitate Phases in Several High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Initiated by the aerospace industry, there has been a great interest to develop high temperature shape memory alloys (HTSMAs) for actuator type of application at elevated temperatures. Several NiTi based ternary systems have been shown to be potential candidates for HTSMAs and this work focuses on one or more alloys in the TiNiPt, TiNiPd, NiTiHf, NiPdTiHf systems. The sheer scope of alloys of varying compositions across all four systems suggests that the questions raised and addressed in this work are just the tip of the iceberg. This work focuses on materials characterization and aims to investigate microstructural evolution of these alloys as a function of heat treatment. The information gained through the study can serve as guidance for future alloy processing. The emphasis of this work is to describe novel precipitate phases that are formed under aging in the ternary systems and one quaternary system. Employing conventional transmission electron microscopy (TEM), high resolution high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM), 3D atom probe tomography (3D APT), as well as ab initio calculations, the complete description of the unit cell for the new precipitates was determined. The methodology is summarized in the appendix to help elucidate some basics of such a process.

  4. Shape Memory Alloy (SMA)-Based Launch Lock

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  5. Tension, compression, and bending of superelastic shape memory alloy tubes

    NASA Astrophysics Data System (ADS)

    Reedlunn, Benjamin; Churchill, Christopher B.; Nelson, Emily E.; Shaw, John A.; Daly, Samantha H.

    2014-02-01

    While many uniaxial tension experiments of shape memory alloys (SMAs) have been published in the literature, relatively few experimental studies address their behavior in compression or bending, despite the prevalence of this latter deformation mode in applications. In this study, superelastic NiTi tubes from a single lot of material were characterized in tension, compression, and pure bending, which allowed us to make direct comparisons between the deformation modes for the first time. Custom built fixtures were used to overcome some long-standing experimental difficulties with performing well-controlled loading and accurate measurements during uniaxial compression (avoiding buckling) and large-rotation bending. In all experiments, the isothermal, global, mechanical responses were measured, and stereo digital image correlation (DIC) was used to measure the evolution of the strain fields on the tube's outer surface.As is characteristic of textured NiTi, our tubes exhibited significant tension-compression asymmetry in their uniaxial responses. Stress-induced transformations in tension exhibited flat force plateaus accompanied by strain localization and propagation. No such localization, however, was observed in compression, and the stress "plateaus" during compression always maintained a positive tangent modulus. While our uniaxial results are similar to the observations of previous researchers, the DIC strain measurements provided details of localized strain behavior with more clarity and allowed more quantitative measurements to be made. Consistent with the tension-compression asymmetry, our bending experiments showed a significant shift of the neutral axis towards the compression side. Furthermore, the tube exhibited strain localization on the tension side, but no localization on the compression side during bending. This is a new observation that has not been explored before. Detailed analysis of the strain distribution across the tube diameter revealed that the

  6. Challenges and Progress in the Development of High-Temperature Shape Memory Alloys Based on NiTiX Compositions for High-Force Actuator Applications

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Bigelow, Glen; Noebe, Ronald; Gaydosh, Darrell; Garg, Anita

    2006-01-01

    Interest in high-temperature shape memory alloys (HTSMA) has been growing in the aerospace, automotive, process control, and energy industries. However, actual materials development has seriously lagged component design, with current commercial NiTi alloys severely limited in their temperature capability. Additions of Pd, Pt, Au, Hf, and Zr at levels greater than 10 at.% have been shown to increase the transformation temperature of NiTi alloys, but with few exceptions, the shape memory behavior (strain recovery) of these NiTiX systems has been determined only under stress free conditions. Given the limited amount of basic mechanical test data and general lack of information regarding the work attributes of these materials, a program to investigate the mechanical behavior of potential HTSMAs, with transformation temperatures between 100 and 500 C, was initiated. This paper summarizes the results of studies, focusing on both the practical temperature limitations for ternary TiNiPd and TiNiPt systems based on the work output of these alloys and the ability of these alloys to undergo repeated thermal cycling under load without significant permanent deformation or "walking". These issues are ultimately controlled by the detwinning stress of the martensite and resistance to dislocation slip of the individual martensite and austenite phases. Finally, general rules that govern the development of useful, high work output, next-generation HTSMA materials, based on the lessons learned in this work, will be provided

  7. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    NASA Technical Reports Server (NTRS)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  8. Role of crystallographic anisotropy in the formation of surface layers of single NiTi crystals after ion-plasma alloying

    SciTech Connect

    Poletika, T. M. Girsova, S. L.; Meisner, L. L. Meisner, S. N.; Shulepov, I. A.

    2015-10-27

    The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.

  9. Management of long-term and reversible hysteroscopic sterilization: a novel device with nickel-titanium shape memory alloy

    PubMed Central

    2014-01-01

    Background Female sterilization is the second most commonly used method of contraception in the United States. Female sterilization can now be performed through laparoscopic, abdominal, or hysteroscopic approaches. The hysteroscopic sterilization may be a safer option than sterilization through laparoscopy or laparotomy because it avoids invading the abdominal cavity and undergoing general anaesthesia. Hysteroscopic sterilization mainly includes chemical agents and mechanical devices. Common issues related to the toxicity of the chemical agents used have raised concerns regarding this kind of contraception. The difficulty of the transcervical insertion of such mechanical devices into the fallopian tubes has increased the high incidence of device displacement or dislodgment. At present, Essure® is the only commercially available hysteroscopic sterilization device being used clinically. The system is irreversible and is not effective immediately. Presentation of the hypothesis Our new hysteroscopic sterility system consists of nickel-titanium (NiTi) shape memory alloy and a waterproof membrane. The NiTi alloy is covered with two coatings to avoid toxic Ni release and to prevent stimulation of epithelial tissue growth around the oviducts. Because of the shape memory effect of the NiTi alloy, the device works like an umbrella: it stays collapsed at low temperature before placement and opens by the force of shape memory activated by the body temperature after it is inserted hysteroscopically into the interstitial tubal lumen. The rim of the open device will incise into interstitial myometrium during the process of unfolding. Once the device is fixed, it blocks the tube completely. When the patient no longer wishes for sterilization, the device can be closed by perfusing liquid with low temperature into the uterine cavity, followed by prospective hysteroscopic removal. After the device removal, the fallopian tube will revert to its physiological functions. Testing the

  10. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    PubMed

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  11. A comparative evaluation of two rotary Ni-Ti instruments in the removal of gutta-percha during retreatment

    PubMed Central

    Preetam, C. S.; Chandrashekhar, M.; Gunaranjan, T.; Kumar, S. Kishore; Miskeen Sahib, S. A.; Kumar, M. Senthil

    2016-01-01

    Aim: The purpose of this study is to achieve an effective method to remove root canal filling material from the root canal system. The study, thus, aims to evaluate the efficacy of the cleaning ability of two different rotary Ni-Ti systems; ProTaper Retreatment files and RaCe System compared to hand instrumentation with Hedstrom files for the removal of gutta-percha during retreatment. Materials and Methods: Thirty mandibular premolars with one single straight canal were decoronated and instrumented with ProTaper files and filled with thermoplastic gutta-percha. After 30 days, the samples were divided into three groups and gutta-percha was removed with the test instruments. The postoperative radiographs were evaluated with known criteria by dividing the root into cervical third, middle third, and apical third. The results were tabulated and Statistical Package for Social Sciences Software (IBM Corporation) was used for analysis. Results: The mean deviation of the results were first calculated and then t-test and analysis of variance test (two-tailed P value) were evaluated for establishing significant differences. The rotary instruments were effective in removing the gutta-percha from the canals. Therefore, significant difference was observed between the efficacies of the two rotary systems used. The rotary instruments showed effective gutta-percha removal in the cervical and middle one third. (P > 0.05). However, apical debridement was effective with Hedstrom files. Conclusion: The study concluded the use of both rotary and hand instrumentation for effective removal of gutta-percha for retreatment. PMID:27652245

  12. Mechanical behavior of deep cryogenically treated martensitic shape memory nickel–titanium rotary endodontic instruments

    PubMed Central

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2016-01-01

    Objectives: The aim of this study was to investigate the role of deep cryogenic treatment (DCT) on the cyclic fatigue resistance and cutting efficiency of martensitic shape memory (SM) nickel–titanium (NiTi) rotary endodontic instruments. Materials and Methods: Seventy-five HyFlex® CM instruments were randomly divided into three groups of 25 each and subjected to different DCT (–185° C) conditions based on soaking time: DCT 24 group: 24 h, DCT 6 group: 6 h, and control group. Each group was randomly subdivided for evaluation of cyclic fatigue resistance in custom-made artificial canals (n = 15) and cutting efficiency in plexiglass simulators (n = 10). The cyclic fatigue resistance was measured by calculating the number of cycles to failure (NCF) and cutting efficiency was measured using the loss of weight method. Results: Increase in NCF of instruments in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference). There was no difference in weight loss of plexiglass simulators in all the groups (P > 0.05; one-way analysis of variance). In conclusion, deep dry cryogenic treatment with 24 h soaking time significantly increases the cyclic fatigue resistance without affecting the cutting efficiency of SM NiTi endodontic instruments. Materials and Methods: Seventy-five HyFlex® CM instruments were randomly divided into three groups of 25 each and subjected to different DCT (–185° C) conditions based on soaking time: DCT 24 group: 24 h, DCT 6 group: 6 h, and control group. Each group was randomly subdivided for evaluation of cyclic fatigue resistance in custom-made artificial canals (n = 15) and cutting efficiency in plexiglass simulators (n = 10). The cyclic fatigue resistance was measured by calculating the number of cycles to failure (NCF) and cutting efficiency was measured using the loss of weight method. Results: Increase in NCF of instruments in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference

  13. The Hue of Shapes

    ERIC Educational Resources Information Center

    Albertazzi, Liliana; Da Pos, Osvaldo; Canal, Luisa; Micciolo, Rocco; Malfatti, Michela; Vescovi, Massimo

    2013-01-01

    This article presents an experimental study on the naturally biased association between shape and color. For each basic geometric shape studied, participants were asked to indicate the color perceived as most closely related to it, choosing from the Natural Color System Hue Circle. Results show that the choices of color for each shape were not…

  14. Local Solid Shape

    PubMed Central

    Koenderink, Jan; van Doorn, Andrea

    2015-01-01

    Local solid shape applies to the surface curvature of small surface patches—essentially regions of approximately constant curvatures—of volumetric objects that are smooth volumetric regions in Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference is categorical. Although local solid shape has naturally been explored in haptics, results in vision are not forthcoming. We describe a simple experiment in which observers judge shape quality and magnitude of cinematographic presentations. Without prior training, observers readily use continuous shape index and Casorati curvature scales with reasonable resolution. PMID:27648217

  15. General shape optimization capability

    NASA Technical Reports Server (NTRS)

    Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson

    1991-01-01

    A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.

  16. Fabrication of self-expandable NiTi thin film devices with micro-electrode array for bioelectric sensing, stimulation and ablation.

    PubMed

    Bechtold, Christoph; de Miranda, Rodrigo Lima; Chluba, Christoph; Quandt, Eckhard

    2016-12-01

    Self-expandable medical devices provide mechanical functionality at a specific location of the human body and are viable for minimal invasive procedures. Besides radiopaque markers and drug-eluting coatings, next generation self-expandable devices can be equipped with additional functionality, such as conductive and flexible electrodes, which enables chronic recording of bioelectrical signals, stimulating or ablating tissue. This promises new therapeutic options in various medical fields, among them in particular neuromodulation (e.g. deep brain stimulation), BioMEMS, radio frequency ablation, mapping or denervation. However, the fabrication of such multi-functional devices is challenging. For this study we have realized a 35 μm thick, superelastic NiTi thin film stent structure with six isolated electrodes on the outer circumference, each electrode connected to a contact pad at the end of the stent structure, using magnetron sputtering, UV lithography and wet chemical etching. Mechanical and electrical properties of the device during typical loading conditions, i.e. crimping, simulated pulsatile and electrochemical testing, were characterized and reveal promising results. For the fabrication of future multifunctional, minimal invasive medical devices, such as electroceuticals or other intelligent implants, NiTi thin film technology is therefore a versatile alternative to conventional fabrication routes.

  17. Thermoelectric properties and electronic structure of substituted Heusler compounds: NiTi0.3-xScxZr0.35Hf0.35Sn

    NASA Astrophysics Data System (ADS)

    Ouardi, Siham; Fecher, Gerhard H.; Balke, Benjamin; Schwall, Michael; Kozina, Xeniya; Stryganyuk, Gregory; Felser, Claudia; Ikenaga, Eiji; Yamashita, Yoshiyuki; Ueda, Shigenori; Kobayashi, Keisuke

    2010-12-01

    The effect of Ti substitution by Sc on the thermoelectric properties of the Heusler compounds NiTi0.3-xScxZr0.35Hf0.35Sn (where 0NiTi0.3Zr0.35Hf0.35Sn showed n-type conductivity with a Seebeck coefficient of -288 μV/K at 350 K, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 μV/K (350 K) was obtained by 4% Sc substitution, which is the highest value for p-type thermoelectric compounds based on Heusler alloys. The electronic structure was studied by photoelectron spectroscopy excited by hard x-ray synchrotron radiation. Massive in gap states are observed for the parent compound. This proves that the electronic states close to the Fermi energy play a key role on the behavior of the transport properties. Especially, they are responsible for the high, negative Seebeck coefficient of the parent compound.

  18. Structural characterisation and mechanical FE analysis of conventional and M-Wire Ni-Ti alloys used in endodontic rotary instruments.

    PubMed

    Montalvão, Diogo; Alçada, Francisca Sena; Braz Fernandes, Francisco Manuel; de Vilaverde-Correia, Sancho

    2014-01-01

    The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40 °C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments' mechanical response. It was confirmed that M-Wire increases the instrument's flexibility, mainly due to the presence of R-phase at body temperature.

  19. A study on the influence of Ni-Ti M-Wire in the flexural fatigue life of endodontic rotary files by using Finite Element Analysis.

    PubMed

    Montalvão, Diogo; Shengwen, Qiu; Freitas, Manuel

    2014-07-01

    The aim of this paper is to analyze the cyclic performance of two different Ni-Ti endodontic rotary files made from different alloys under bending using Finite Element Analysis (FEA). When experimentation is not available, this is not a trivial task and most papers on the subject rely on static analysis only. Two Ni-Ti rotary instruments are selected, ProFile GT and a GT Series X (GTX). The latter file is made from M-Wire, which has been thermo-mechanically processed to have larger flexibility, according to its manufacturer. The mechanical response was studied by considering different scenarios in the FEA package, in which the material properties were introduced according to existing literature. The method and results are presented and discussed so that this paper can be used as a guideline for future works. Although not fully reflective of the instrument's behavior in a dynamic rotation intra-canal system, the models used constitute a good approximation when a comparison between two instruments is at stake. It is shown that the GTX file has a lower risk of fatigue fracture during its clinical use when compared to the GT file, especially when the root canal makes the file deform into an extreme geometry. However, if the root canal does not make the file deform more than a certain amount, the GT file is equally good from the point of view of mechanical endurance.

  20. Evaluation of Manual and Two-Rotary Niti Retreatment Systems in Removing Gutta-Percha Obturated with Two Root Canal Sealers

    PubMed Central

    Jayasenthil, Athikesavan; Sathish, Emmanuel Solomon; Prakash, Prashanth

    2012-01-01

    Objective. The objective of this study was to evaluate the efficacy of two retreatment NiTi systems (protaper universal retreatment files, R-Endo), when compared to manual technique in removing Gutta-percha obturated with two sealers. Study Design. Sixty extracted single-rooted premolars were instrumented with Protaper rotary files till F3. The specimens were divided into six groups. Groups 1, 2, 3 were obturated with Gutta-percha and zinc oxide eugenol and Groups 4, 5, 6 were obturated with Gutta-percha and AH-plus. The retreatment was carried out in groups 1 and 4 with H-files and GGdrills, groups 2 and 5 with R-endo retreatment files and groups 3 and 6 with Protaper retreatment files. The roots were sectioned and evaluated under optical stereomicroscope. Statistical analysis was performed with one-way ANOVA and Newman-Keul's test at P < 0.05. Results. The manual technique resulted in cleaner canal walls when compared with both rotary retreatment systems. Conclusion. NiTi rotary retreatment files can be used to remove the filling material quickly, but it should be followed by hand instruments to obtain better canal wall cleanliness. PMID:22997586