Science.gov

Sample records for electrospun polystyrene fibers

  1. Electrospun polystyrene fiber diameter influencing bacterial attachment, proliferation, and growth.

    PubMed

    Abrigo, Martina; Kingshott, Peter; McArthur, Sally L

    2015-04-15

    Electrospun materials have been widely investigated in the past few decades as candidates for tissue engineering applications. However, there is little available data on the mechanisms of interaction of bacteria with electrospun wound dressings of different morphology and surface chemistry. This knowledge could allow the development of effective devices against bacterial infections in chronic wounds. In this paper, the interactions of three bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) with electrospun polystyrene meshes were investigated. Bacterial response to meshes with different fiber diameters was assessed through a combination of scanning electron microscopy (SEM) and confocal microscopy. Experiments included attachment studies in liquid medium but also directly onto agar plates; the latter was aimed at mimicking a chronic wound environment. Fiber diameter was shown to affect the ability of bacteria to proliferate within the fibrous networks, depending on cell size and shape. The highest proliferation rates occurred when fiber diameter was close to the bacterial size. Nanofibers were found to induce conformational changes of rod shaped bacteria, limiting the colonization process and inducing cell death. The data suggest that simply tuning the morphological properties of electrospun fibers may be one strategy used to control biofilm formation within wound dressings.

  2. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup.

    PubMed

    Zhu, Haitao; Qiu, Shanshan; Jiang, Wei; Wu, Daxiong; Zhang, Canying

    2011-05-15

    A novel, high-capacity oil sorbent consisting of polyvinyl chloride (PVC)/polystyrene (PS) fiber was prepared by an electrospinning process. The sorption capacity, oil/water selectivity, and sorption mechanism of the PVC/PS sorbent were studied. The results showed that the sorption capacities of the PVC/PS sorbent for motor oil, peanut oil, diesel, and ethylene glycol were 146, 119, 38, and 81 g/g, respectively. It was about 5-9 times that of a commercial polypropylene (PP) sorbent. The PVC/PS sorbent also had excellent oil/water selectivity (about 1000 times) and high buoyancy in the cleanup of oil over water. The SEM analysis indicated that voids among fibers were the key for the high capacity. The electrospun PVC/PS sorbent is a better alternative to the widely used PP sorbent for oil spill cleanup.

  3. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  4. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  5. Nanomechanics of electrospun phospholipid fiber

    SciTech Connect

    Mendes, Ana C. E-mail: ioach@food.dtu.dk; Chronakis, Ioannis S. E-mail: ioach@food.dtu.dk; Nikogeorgos, Nikolaos; Lee, Seunghwan

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  6. Fabricating polystyrene fiber-dehydrogenase assemble as a functional biocatalyst.

    PubMed

    An, Hongjie; Jin, Bo; Dai, Sheng

    2015-01-01

    Immobilization of the enzymes on nano-structured materials is a promising approach to enhance enzyme stabilization, activation and reusability. This study aimed to develop polystyrene fiber-enzyme assembles to catalyze model formaldehyde to methanol dehydrogenation reaction, which is an essential step for bioconversion of CO2 to a renewable bioenergy. We fabricated and modified electrospun polystyrene fibers, which showed high capability to immobilize dehydrogenase for the fiber-enzyme assembles. Results from evaluation of biochemical activities of the fiber-enzyme assemble showed that nitriation with the nitric/sulfuric acid ratio (v/v, 10:1) and silanization treatment delivered desirable enzyme activity and long-term storage stability, showing great promising toward future large-scale applications. PMID:25435501

  7. Fabrication of Electrospun Polymer Fibers with Nonspherical Cross-Sections Using a Nanopressing Technique.

    PubMed

    Chen, Jiun-Tai; Kao, Yi-Huei; Kuo, Tyng-Yow; Liu, Chih-Ting; Chiu, Yu-Jing; Chu, Chien-Wei; Chi, Mu-Huan; Tsai, Chia-Chan

    2016-02-01

    The fabrication of electrospun polymer fibers is demonstrated with anisotropic cross-sections by applying a simple pressing method. Electrospun polystyrene or poly(methyl methacrylate) fibers are pressed by flat or patterned substrates while the samples are annealed at elevated temperatures. The shapes and morphologies of the pressed polymer fibers are controlled by the experimental conditions such as the pressing force, the pressing temperature, the pressing time, and the surface pattern of the substrate. At the same pressing force, the shape changes of the polymer fibers can be controlled by the pressing time. For shorter pressing times, the deformation process is dominated by the effect of pressing and fibers with barrel-shaped cross-sections can be generated. For longer pressing times, the effect of wetting becomes more important and fibers with dumbbell-shaped cross-sections can be obtained. Hierarchical polymer fibers with nanorods are fabricated by pressing the fibers with porous anodic aluminum oxide templates. PMID:26574243

  8. Electrospinning of Grooved Polystyrene Fibers: Effect of Solvent Systems.

    PubMed

    Liu, Wanjun; Huang, Chen; Jin, Xiangyu

    2015-12-01

    Secondary surface texture is of great significance to morphological variety and further expands the application areas of electrospun nanofibers. This paper presents the possibility of directly electrospinning grooved polystyrene (PS) fibers using both single and binary solvent systems. Solvents were classified as low boiling point solvent (LBPS): dichloromethane (DCM), acetone (ACE), and tetrahydrofuran (THF); high boiling point solvent (HBPS): N,N-dimethylformamide (DMF) and cyclohexanone (CYCo); and non-solvent (NS): 1-butanol (BuOH). By the systematic selection and combination of these solvents at given parameters, we found that single solvent systems produced non-grooved fibers. LBPS/DMF solvent systems resulted in fibers with different grooved textures, while LBPS/CYCo led to fibers with double grooved texture. Grooved fibers can also be fabricated from LBPS/LBPS, NS/LBPS, and NS/HBPS systems under specific conditions. The results indicated that the difference of evaporation rate (DER) between the two solvents played a key role in the formation of grooved texture. The formation of this unique texture should be attributed to three separate mechanisms, namely void-based elongation, wrinkle-based elongation, and collapsed jet-based elongation. Our findings can serve as guidelines for the preparation of ultrafine fibers with grooved secondary texture. PMID:26055481

  9. Electrospinning of Grooved Polystyrene Fibers: Effect of Solvent Systems

    NASA Astrophysics Data System (ADS)

    Liu, Wanjun; Huang, Chen; Jin, Xiangyu

    2015-05-01

    Secondary surface texture is of great significance to morphological variety and further expands the application areas of electrospun nanofibers. This paper presents the possibility of directly electrospinning grooved polystyrene (PS) fibers using both single and binary solvent systems. Solvents were classified as low boiling point solvent (LBPS): dichloromethane (DCM), acetone (ACE), and tetrahydrofuran (THF); high boiling point solvent (HBPS): N, N-dimethylformamide (DMF) and cyclohexanone (CYCo); and non-solvent (NS): 1-butanol (BuOH). By the systematic selection and combination of these solvents at given parameters, we found that single solvent systems produced non-grooved fibers. LBPS/DMF solvent systems resulted in fibers with different grooved textures, while LBPS/CYCo led to fibers with double grooved texture. Grooved fibers can also be fabricated from LBPS/LBPS, NS/LBPS, and NS/HBPS systems under specific conditions. The results indicated that the difference of evaporation rate (DER) between the two solvents played a key role in the formation of grooved texture. The formation of this unique texture should be attributed to three separate mechanisms, namely void-based elongation, wrinkle-based elongation, and collapsed jet-based elongation. Our findings can serve as guidelines for the preparation of ultrafine fibers with grooved secondary texture.

  10. Characterization of electrospun lignin based carbon fibers

    NASA Astrophysics Data System (ADS)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 - 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  11. Mechanical properties of single electrospun collagen type I fibers.

    PubMed

    Yang, Lanti; Fitié, Carel F C; van der Werf, Kees O; Bennink, Martin L; Dijkstra, Pieter J; Feijen, Jan

    2008-03-01

    The mechanical properties of single electrospun collagen fibers were investigated using scanning mode bending tests performed with an AFM. Electrospun collagen fibers with diameters ranging from 100 to 600 nm were successfully produced by electrospinning of an 8% w/v solution of acid soluble collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP). Circular dichroism (CD) spectroscopy showed that 45% of the triple helical structure of collagen molecules was denatured in the electrospun fibers. The electrospun fibers were water soluble and became insoluble after cross-linking with glutaraldehyde vapor for 24h. The bending moduli and shear moduli of both non- and cross-linked single electrospun collagen fibers were determined by scanning mode bending tests after depositing the fibers on glass substrates containing micro-channels. The bending moduli of the electrospun fibers ranged from 1.3 to 7.8 GPa at ambient conditions and ranged from 0.07 to 0.26 MPa when immersed in PBS buffer. As the diameter of the fibrils increased, a decrease in bending modulus was measured clearly indicating mechanical anisotropy of the fiber. Cross-linking of the electrospun fibers with glutaraldehyde vapor increased the shear modulus of the fiber from approximately 30 to approximately 50 MPa at ambient conditions. PMID:18082253

  12. Dual-biomimetic superhydrophobic electrospun polystyrene nanofibrous membranes for membrane distillation.

    PubMed

    Li, Xiong; Wang, Ce; Yang, Yin; Wang, Xuefen; Zhu, Meifang; Hsiao, Benjamin S

    2014-02-26

    A new type of dual-biomimetic hierarchically rough polystyrene (PS) superhydrophobic micro/nano-fibrous membrane was fabricated via a one-step electrospinning technique at various polymer concentrations from 15 to 30 wt %. The obtained micro/nano-fibers exhibited a nanopapillose, nanoporous, and microgrooved surface morphology that originated from mimicking the micro/nanoscale hierarchical structures of lotus leaf and silver ragwort leaf, respectively. Superhydrophobicity and high porosity of such resultant electrospun nanofibrous membranes make them attractive candidates for membrane distillation (MD) application with low energy water recovery. In this study, two kinds of optimized PS nanofibrous membranes with different thicknesses were applied for desalination via direct contact MD. The membranes maintained a high and stable permeate water vapor flux (104.8 ± 4.9 kg/m(2)·h, 20 g/L NaCl salt feed for a thinner PS nanofibrous membrane with thickness of 60 μm; 51 ± 4.5 kg/m(2)·h, 35 g/L NaCl salt feed for the thicker sample with thickness of 120 μm; ΔT = 50 °C) for a test period of 10 h without remarkable membrane pores wetting detected. These results were better than those of typical commercial polyvinylidene fluoride (PVDF) MD membranes or related PVDF nanofibrous membranes reported in literature, suggesting excellent competency of PS nanofibrous membranes for MD applications.

  13. Dual-biomimetic superhydrophobic electrospun polystyrene nanofibrous membranes for membrane distillation.

    PubMed

    Li, Xiong; Wang, Ce; Yang, Yin; Wang, Xuefen; Zhu, Meifang; Hsiao, Benjamin S

    2014-02-26

    A new type of dual-biomimetic hierarchically rough polystyrene (PS) superhydrophobic micro/nano-fibrous membrane was fabricated via a one-step electrospinning technique at various polymer concentrations from 15 to 30 wt %. The obtained micro/nano-fibers exhibited a nanopapillose, nanoporous, and microgrooved surface morphology that originated from mimicking the micro/nanoscale hierarchical structures of lotus leaf and silver ragwort leaf, respectively. Superhydrophobicity and high porosity of such resultant electrospun nanofibrous membranes make them attractive candidates for membrane distillation (MD) application with low energy water recovery. In this study, two kinds of optimized PS nanofibrous membranes with different thicknesses were applied for desalination via direct contact MD. The membranes maintained a high and stable permeate water vapor flux (104.8 ± 4.9 kg/m(2)·h, 20 g/L NaCl salt feed for a thinner PS nanofibrous membrane with thickness of 60 μm; 51 ± 4.5 kg/m(2)·h, 35 g/L NaCl salt feed for the thicker sample with thickness of 120 μm; ΔT = 50 °C) for a test period of 10 h without remarkable membrane pores wetting detected. These results were better than those of typical commercial polyvinylidene fluoride (PVDF) MD membranes or related PVDF nanofibrous membranes reported in literature, suggesting excellent competency of PS nanofibrous membranes for MD applications. PMID:24467347

  14. Characterization of electrospun lignin based carbon fibers

    SciTech Connect

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  15. Mechanisms of stability of electrospun polypeptide fibers

    NASA Astrophysics Data System (ADS)

    Gitnik, Alina; Khadka, Dhan; Cross, Michael; Le, Nicole; Haynie, Donald

    2013-03-01

    Electrospun nano- and microfibers made of biodegradable and absorbable polymers are of great interest in biomedical engineering for tissue engineering, wound healing and other purposes. We have investigated physical properties of fibers made of the synthetic organic polymer co-poly(L-glutamic acid4, L-tyrosine1) (PLEY). This water-soluble polypeptide has a net negative charge at neutral pH. Dehydrated fibers are crosslinked with a diimide reagent dissolved in ethanol, giving a maximum average number of crosslinks of 1 per polymer molecule. Fiber integrity has been assessed in an aqueous medium at pH 2, 7 and 12, before and after crosslinking. Non-crosslinked fibers dissolved rapidly at all pH values, on a timescale of seconds to minutes. Crosslinked fibers dissolved completely at pH 12, but not at pH 2 or pH 7, the rate depending on the concentration of crosslinking reagent and therefore the density of crosslinks. Dissolution at pH 12 is attributable to ionization of the tyrosine side chain, which has a nominal pKa of 10.4, an increase in electrostatic repulsion between side chains and the migration of counterions into the fiber. Fibers crosslinked in 50 mM EDC buckled on a timescale of minutes at pH 12 and dissolved shortly thereafter. Funding provided by the National Science Foundation

  16. Electrospun Fibers for Energy, Electronic, & Environmental Applications

    NASA Astrophysics Data System (ADS)

    Bedford, Nicholas M.

    Electrospinning is an established method for creating polymer and bio-polymer fibers of dimensions ranging from ˜10 nanometers to microns. The process typically involves applying a high voltage between a solution source (usually at the end of a capillary or syringe) and a substrate on which the nanofibers are deposited. The high electric field distorts the shape of the liquid droplet, creating a Taylor cone. Additional applied voltage ejects a liquid jet of the polymer solution in the Taylor cone toward the counter electrode. The formation of fibers is generated by the rapid electrostatic elongation and solvent evaporation of this viscoelastic jet, which typically generates an entangled non-woven mesh of fibers with a high surface area to volume ratio. Electrospinning is an attractive alternative to other processes for creating nano-scale fibers and high surface area to volume ratio surfaces due to its low start up cost, overall simplicity, wide range of processable materials, and the ability to generate a moderate amount of fibers in one step. It has also been demonstrated that coaxial electrospinning is possible, wherein the nanofiber has two distinct phases, one being the core and another being the sheath. This method is advantageous because properties of two materials can be combined into one fiber, while maintaining two distinct material phases. Materials that are inherently electrospinable could be made into fibers using this technique as well. The most common applications areas for electrospun fibers are in filtration and biomedical areas, with a comparatively small amount of work done in energy, environmental, and sensor applications. Furthermore, the use of biologically materials in electrospun fibers is an avenue of research that needs more exploration, given the unique properties these materials can exhibit. The research aim of this thesis is to explore the use of electrospun fibers for energy, electrical and environmental applications. For energy

  17. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface

    NASA Astrophysics Data System (ADS)

    Lin, Jinyou; Tian, Feng; Shang, Yanwei; Wang, Fujun; Ding, Bin; Yu, Jianyong; Guo, Zhi

    2013-03-01

    The pollution arising from oil spills is a matter of great concern due to its damaging impacts on the ecological environment, which has created a tremendous need to find more efficient materials for oil spill cleanup. In this work, we reported a sorbent for oil soak-up from a water surface with a high sorption capacity, good selectivity, and excellent reusability based on the hydrophobic-oleophilic fibrous mats that were fabricated via co-axial electrospinning polystyrene (PS) solution as the shell solution and polyurethane (PU) solution as the core solution. The fine structures of as-prepared fibers were regulated by manipulating the spinning voltages, core solution concentrations, and solvent compositions in shell solutions, which were also characterized by field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption method, and synchrotron radiation small-angle X-ray scattering. The effects of inter-fiber voids and intra-fiber porosity on oil sorption capacities were well studied. A comparison of oil sorption capacity for the single fiber with different porous structures was also investigated with the help of scanning transmission X-ray microscopy. The results showed that the sorption capacities of the as-prepared sorbent with regards to motor oil and sunflower seed oil can be 64.40 and 47.48 g g-1, respectively, approximately 2-3 times that of conventional polypropylene (PP) fibers for these two same oils. Even after five sorption cycles, a comparable oil sorption capacity with PP fibers was still maintained, exhibiting an excellent reusability. We believe that the composite PS-PU fibrous mats have a great potential application in wastewater treatment, oil accident remediation and environmental protection.The pollution arising from oil spills is a matter of great concern due to its damaging impacts on the ecological environment, which has created a tremendous need to find more efficient materials for oil spill cleanup. In

  18. Direct Piezoelectricity of Soft Composite Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Varga, Michael; Morvan, Jason; Diorio, Nick; Buyuktanir, Ebru; Harden, John; West, John; Jakli, Antal

    2013-03-01

    Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and poly lactic acid (PLA) were found to have large (d33 1nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at various BT concentrations. A testing apparatus was designed and constructed solely for these measurements involving AC stresses provided by a speaker in 10Hz-10kHz frequency range. The piezoelectric constant d33 ~1nC/N was found to be in agreement with the prior converse piezoelectric measurements. The largest signals were obtained with 6% BT/PLA composites, probably because the BT particles at higher concentrations could not be dispersed homogeneously. Importantly the direct piezoelectric signal is large enough to power a small LCD by simply pressing a 0.2mm thick 2 cm2 area mat by a finger. We expect to use these mats in active Braille cells and in liquid crystal writing tablets.

  19. Nanoporous polystyrene fibers for oil spill cleanup.

    PubMed

    Lin, Jinyou; Shang, Yanwei; Ding, Bin; Yang, Jianmao; Yu, Jianyong; Al-Deyab, Salem S

    2012-02-01

    The development of oil sorbents with high sorption capacity, low cost, scalable fabrication, and high selectivity is of great significance for water environmental protection, especially for oil spillage on seawater. In this work, we report nanoporous polystyrene (PS) fibers prepared via a one-step electrospinning process used as oil sorbents for oil spill cleanup. The oleophilic-hydrophobic PS oil sorbent with highly porous structures shows a motor oil sorption capacity of 113.87 g/g, approximately 3-4 times that of natural sorbents and nonwoven polypropylene fibrous mats. Additionally, the sorbents also exhibit a relatively high sorption capacity for edible oils, such as bean oil (111.80 g/g) and sunflower seed oil (96.89 g/g). The oil sorption mechanism of the PS sorbent and the sorption kinetics were investigated. Our nanoporous material has great potential for use in wastewater treatment, oil accident remediation and environmental protection.

  20. Superhydrophobic and superoleophillic surface of porous beaded electrospun polystrene and polysytrene-zeolite fiber for crude oil-water separation

    NASA Astrophysics Data System (ADS)

    Alayande, S. Oluwagbemiga; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.

    2016-04-01

    This research presents a cheap route procedure for the preparation of a potential adsorbent with superhydrophobic/superoleophillic properties for selective removal of crude oil from water. In this study, expanded polystyrene (EPS) was electrospun to produce beaded fibers in which zeolite was introduced to the polymer matrix in order to impart rough surface to non-beaded fiber. Films of the EPS and EPS/Zeolite solutions were also made for comparative study. The electrospun fibers EPS, EPS/Zeolite and resultant films were characterized using SEM, BET, FTIR and optical contact angle. The fibers exhibited superhydrophobic and superoleophillic wetting properties with water (>1500) and crude oil (00). The selective removal of crude oil presents new opportunity for the re-use of EPS as adsorbent in petroleum/petrochemical industry.

  1. Distributed feedback imprinted electrospun fiber lasers.

    PubMed

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario

    2014-10-01

    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips.

  2. Electrospun Fibers as a Scaffolding Platform for Bone Tissue Repair

    PubMed Central

    Lyu, Seungyoun; Huang, Chunlan; Yang, Hong; Zhang, Xinping

    2014-01-01

    The purpose of the study is to investigate the effects of electrospun fiber diameter and orientation on differentiation and ECM organization of bone marrow stromal cells (BMSCs), in attempt to provide rationale for fabrication of a periosteum mimetic for bone defect repair. Cellular growth, differentiation, and ECM organization were analyzed on PLGA-based random and aligned fibers using fluorescent microscopy, gene analyses, electron scanning microscopy (SEM), and multiphoton laser scanning microscopy (MPLSM). BMSCs on aligned fibers had a reduced number of ALP+ colony at day 10 as compared to the random fibers of the same size. However, the ALP+ area in the aligned fibers increased to a similar level as the random fibers at day 21 following stimulation with osteogenic media. Compared with the random fibers, BMSCs on the aligned fibers showed a higher expression of OSX and RUNX2. Analyses of ECM on decellularized spun fibers showed highly organized ECM arranged according to the orientation of the spun fibers, with a broad size distribution of collagen fibers in a range of 40nm to 2.4µm. Taken together, our data support the use of submicron-sized electrospun fibers for engineering of oriented fibrous tissue mimetic, such as periosteum, for guided bone repair and reconstruction. PMID:23580466

  3. Tailoring the grooved texture of electrospun polystyrene nanofibers by controlling the solvent system and relative humidity

    PubMed Central

    2014-01-01

    In this study, we have successfully fabricated electrospun polystyrene (PS) nanofibers having a diameter of 326 ± 50 nm with a parallel grooved texture using a mixed solvent of tetrahydrofuran (THF) and N,N-dimethylformamide (DMF). We discovered that solvent system, solution concentration, and relative humidity were the three key factors to the formation of grooved texture and the diameter of nanofibers. We demonstrated that grooved nanofibers with desired properties (e.g., different numbers of grooves, widths between two adjacent grooves, and depths of grooves) could be electrospun under certain conditions. When THF/DMF ratio was higher than 2:1, the formation mechanism of single grooved texture should be attributed to the formation of voids on the jet surface at the early stage of electrospinning and subsequent elongation and solidification of the voids into a line surface structure. When THF/DMF ratio was 1:1, the formation mechanism of grooved texture should be ascribed to the formation of wrinkled surface on the jet surface at the early stage of electrospinning and subsequent elongation into a grooved texture. Such findings can serve as guidelines for the preparation of grooved nanofibers with desired secondary morphology. PMID:25114643

  4. Various-sourced pectin and polyethylene oxide electrospun fibers.

    PubMed

    Rockwell, Pamela L; Kiechel, Marjorie A; Atchison, Jennifer S; Toth, Laura J; Schauer, Caroline L

    2014-07-17

    Pectin, a naturally occurring and biorenewable polysaccharide, is derived from plant cell wall tissue and used in applications ranging from food processing to biomedical engineering. Due to extraction methods and source variation, there is currently no consensus in literature as to the exact structure of pectin. Here, we have studied key material properties of electrospun pectin blends with polyethylene oxide (PEO) (1:1, v/v) in order to demonstrate the fabrication of a fibrous and less toxic material system, as well as to understand the effects of source variability on the resulting fibrous mats. The bulk pectin degree of esterification (DE) estimated using FTIR (bulk apple pomace (AP)=28%, bulk citrus peel (CP)=86% and bulk sugar beet pulp (SBP)=91%) was shown to inversely correlate with electrospun fiber crystallinity determined using XRD (PEO-AP=37%, PEO-CP=28% and PEO-SBP=23%). This in turn affected the trend observed for the mean fiber diameter (n=50) (PEO-AP=124 ± 26 nm, PEO-CP=493 ± 254 nm and PEO-SBP=581 ± 178 nm) and elastic tensile moduli (1.6 ± 0.2 MPa, 4.37 ± 0.64 MPa and 2.49 ± 1.46 MPa, respectively) of the fibrous mats. Electrospun fibers containing bulk AP had the lowest DE, highest crystallinity, smallest mean fiber diameter, and lowest tensile modulus compared to either the bulk CP or bulk SBP. Bound water in PEO-CP fiber and bulk pectin impurities in PEO-SPB were observed to influence fiber branching and mean diameter distributions, which in turn influenced the fiber tensile properties. These results indicate that pectin, when blended with PEO in water, produces submicron fibrous mats with pectin influencing the blend fiber properties. Moreover, the source of pectin is an important variable in creating electrospun blend fibrous mats with desired material properties.

  5. Coaxial electrospun fibers: applications in drug delivery and tissue engineering.

    PubMed

    Lu, Yang; Huang, Jiangnan; Yu, Guoqiang; Cardenas, Romel; Wei, Suying; Wujcik, Evan K; Guo, Zhanhu

    2016-09-01

    Coelectrospinning and emulsion electrospinning are two main methods for preparing core-sheath electrospun nanofibers in a cost-effective and efficient manner. Here, physical phenomena and the effects of solution and processing parameters on the coaxial fibers are introduced. Coaxial fibers with specific drugs encapsulated in the core can exhibit a sustained and controlled release. Their exhibited high surface area and three-dimensional nanofibrous network allows the electrospun fibers to resemble native extracellular matrices. These features of the nanofibers show that they have great potential in drug delivery and tissue engineering applications. Proteins, growth factors, antibiotics, and many other agents have been successfully encapsulated into coaxial fibers for drug delivery. A main advantage of the core-sheath design is that after the process of electrospinning and release, these drugs remain bioactive due to the protection of the sheath. Applications of coaxial fibers as scaffolds for tissue engineering include bone, cartilage, cardiac tissue, skin, blood vessels and nervous tissue, among others. A synopsis of novel coaxial electrospun fibers, discussing their applications in drug delivery and tissue engineering, is covered pertaining to proteins, growth factors, antibiotics, and other drugs and applications in the fields of bone, cartilage, cardiac, skin, blood vessel, and nervous tissue engineering, respectively. WIREs Nanomed Nanobiotechnol 2016, 8:654-677. doi: 10.1002/wnan.1391 For further resources related to this article, please visit the WIREs website. PMID:26848106

  6. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Peter, A. A.; Olaleye, Samuel Adebayo

    2016-01-01

    In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid-palm fruit bunch-dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

  7. Carbon fibers from electrospun polymeric phenolic resin precursors

    NASA Astrophysics Data System (ADS)

    Gee, Diane L.

    This dissertation presents a technique for producing carbon fibers of nano- to micro-sized dimension by utilizing a non-conventional fiber spinning approach with refractory polymers, followed by post-processing steps, to create new carbon materials with distinctive chemical/physical property characteristics. Phenolic resins, novolak and resole, are selected for this study because of their low cost, marketability, environmental friendliness, and high char yield upon pyrolysis. The new carbon fibers are at least an order of magnitude smaller than their conventionally processed counterpart, and possess significant advantages. Phenolic resin fibers, consisting of a blend of novolak and resole, are generated via electrospinning and are subsequently cured and pyrolyzed at temperatures from 800°C to 2000°C to form carbon fibers having diameters of ˜1 mum. Fiber analysis by scanning electron microscopy confirms that the morphology generated during the electrospinning processing is retained throughout the curing and carbonization processes. X-ray diffraction suggests the presence of highly graphitized carbon, which is further validated by high-resolution transmission electron microscopy (HRTEM) analysis. There is evidence of crystalline graphite, which may have nucleated on aligned sheets presence on the fiber surface. The physical characteristics of electrospun fibers are contrary to those exhibited by pyrolyzed phenolic resins, which fall into the classification of non-graphitizing. It is likely that the thin electrospun fibers offer a template that encourages ordering not usually seen in thicker fibers or bulk samples of carbonized phenolic resins.

  8. Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology

    PubMed Central

    Nezarati, Roya M.; Eifert, Michelle B.

    2013-01-01

    Electrospinning is a popular technique to fabricate tissue engineering scaffolds due to the exceptional tunability of fiber morphology that can be used to control scaffold mechanical properties, degradation rate, and cell behavior. Although the effects of modulating processing or solution parameters on fiber morphology have been extensively studied, there remains limited understanding of the impact of environmental parameters such as humidity. To address this gap, three polymers (poly(ethylene glycol) [PEG], polycaprolactone [PCL], and poly(carbonate urethane) [PCU]) were electrospun at a range of relative humidities (RH=5%–75%) and the resulting fiber architecture characterized with scanning electron microscopy. Low relative humidity (<50%) resulted in fiber breakage for all three polymers due to decreased electrostatic discharge from the jet. At high relative humidity (>50%), three distinct effects were observed based on individual polymer properties. An increase in fiber breakage and loss of fiber morphology occurred in the PEG system as a result of increased water absorption at high relative humidity. In contrast, surface pores on PCL fibers were observed and hypothesized to have formed via vapor-induced phase separation. Finally, decreased PCU fiber collection occurred at high humidity likely due to increased electrostatic discharge. These findings highlight that the effects of relative humidity on electrospun fiber morphology are dependent on polymer hydrophobicity, solvent miscibility with water, and solvent volatility. An additional study was conducted to highlight that small changes in molecular weight can strongly influence solution viscosity and resulting fiber morphology. We propose that solution viscosity rather than concentration is a more useful parameter to report in electrospinning methodology to enable reproduction of findings. In summary, this study further elucidates key mechanisms in electrospun fiber formation that can be utilized to

  9. Tough Stretchable Physically-Cross-linked Electrospun Hydrogel Fiber Mats.

    PubMed

    Yang, Yiming; Wang, Chao; Wiener, Clinton G; Hao, Jinkun; Shatas, Sophia; Weiss, R A; Vogt, Bryan D

    2016-09-01

    Nature uses supramolecular interactions and hierarchical structures to produce water-rich materials with combinations of properties that are challenging to obtain in synthetic systems. Here, we demonstrate hierarchical supramolecular hydrogels from electrospun, self-associated copolymers with unprecedented elongation and toughness for high porosity hydrogels. Hydrophobic association of perfluoronated comonomers provides the physical cross-links for these hydrogels based on copolymers of dimethyl acrylamide and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM). Intriguingly, the hydrogel fiber mats show an enhancement in toughness in comparison to compression molded bulk hydrogels. This difference is attributed to the size distribution of the hydrophobic aggregates where narrowing the distribution in the electrospun material enhances the toughness of the hydrogel. These hydrogel fiber mats exhibit extensibility more than double that of the bulk hydrogel and a comparable modulus despite the porosity of the fiber mat leading to >25 wt % increase in water content. PMID:27548013

  10. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.

    2013-01-01

    Toughening and other property enhancements of composite materials are typically implemented by-modifying the bulk properties of the constituents, either the fiber or matrix materials. This often leads to difficulties in processing and higher material costs. Many composites consist of tows or yarns (thousands of individual fibers) that are either filament wound or processed into a fabric by weaving or braiding. The matrix material can be added to the tow or fabric before final processing, resulting in a prepreg material, or infused into the fiber material during final processing by a variety of methods. By using a direct electrospun deposition method to apply thermoplastic nanofiber to the surface of the tows, the tow-tow interface in the resulting composite can be modified while using otherwise conventional materials and handling processes. Other materials of interest could also be incorporated into the electrospun precursor.

  11. Improved Cellular Infiltration in Electrospun Fiber via Engineered Porosity

    PubMed Central

    NAM, JIN; HUANG, YAN; AGARWAL, SUDHA; LANNUTTI, JOHN

    2016-01-01

    Small pore sizes inherent to electrospun matrices can hinder efficient cellular ingrowth. To facilitate infiltration while retaining its extracellular matrix-like character, electrospinning was combined with salt leaching to produce a scaffold having deliberate, engineered delaminations. We made elegant use of a specific randomizing component of the electrospinning process, the Taylor Cone and the falling fiber beneath it, to produce a uniform, well-spread distribution of salt particles. After 3 weeks of culture, up to 4 mm of cellular infiltration was observed, along with cellular coverage of up to 70% within the delaminations. To our knowledge, this represents the first observation of extensive cellular infiltration of electrospun matrices. Infiltration appears to be driven primarily by localized proliferation rather than coordinated cellular locomotion. Cells also moved from the salt-generated porosity into the surrounding electrospun fiber matrix. Given that the details of salt deposition (amount, size, and number density) are far from optimized, the result provides a convincing illustration of the ability of mammalian cells to interact with appropriately tailored electrospun matrices. These layered structures can be precisely fabricated by varying the deposition interval and particle size conceivably to produce in vivo-like gradients in porosity such that the resulting scaffolds better resemble the desired final structure. PMID:17536926

  12. Electrospun submicron bioactive glass fibers for bone tissue scaffold.

    PubMed

    Lu, H; Zhang, T; Wang, X P; Fang, Q F

    2009-03-01

    Submicron bioactive glass fibers 70S30C (70 mol% SiO(2), 30 mol% CaO) acting as bone tissue scaffolds were fabricated by electrospinning method. The scaffold is a hierarchical pore network that consists of interconnected fibers with macropores and mesopores. The structure, morphological characterization and mechanical properties of the submicron bioactive glass fibers were studied by XRD, EDS, FIIR, SEM, N(2) gas absorption analyses and nanoindentation. The effect of the voltage on the morphology of electrospun bioactive glass fibers was investigated. It was found that decreasing the applied voltage from 19 to 7 kV can facilitate the formation of finer fibers with fewer bead defects. The hardness and Young's modulus of submicron bioactive glass fibers were measured as 0.21 and 5.5 GPa, respectively. Comparing with other bone tissue scaffolds measured by nanoindentation, the elastic modulus of the present scaffold was relatively high and close to the bone.

  13. Electrospun fibers for the prevention of human immunodeficiency virus

    NASA Astrophysics Data System (ADS)

    Ball, Cameron

    HIV/AIDS education, testing, and treatment have thus far failed to cease the pandemic spread of the HIV virus. HIV prevention is hindered by a lack of protective options beyond the ABC approach of abstinence, being faithful, and using condoms. One approach to address this inadequacy is to develop antiviral products for vaginal or rectal application that provide receptive partner-initiated protection against viral infection during sex. Such products, termed anti-HIV microbicides, can especially empower young women to take control over their sexual health. This work explored a new approach to anti-HIV microbicides: electrospun fibers for the delivery of small-molecule antiretroviral drugs. Electrospun microbicides are nonwoven fabrics made from polymer-based nanofibers. The wide array of polymers available for electrospinning allowed for the incorporation and release of chemically diverse agents. Since electrospun fibers have an extremely high surface area to volume ratio, they serve as excellent delivery systems for rapid drug delivery of both hydrophilic and hydrophobic agents. The flexibility in the design of electrospun fibers afforded by coaxial electrospinning further enabled the formulation of sustained-release microbicides. To demonstrate the power of electrospinning to deliver drugs over multiple timescales, composite microbicide fabrics were created to provide both rapid and sustained drug release from a single device. This work has produced alternative microbicide formulations, while establishing methods for the thorough characterization of these systems and solutions for the needs of people at risk of HIV infection. By addressing problems in both HIV prevention and drug delivery, this work has expanded our capacity to engineer elegant solutions to complex and pressing global health challenges.

  14. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Bakis, Charles; Williams, Tiffany S.; Johnston, James C.; Kuczmarski, Maria A.; Roberts, Gary D.

    2014-01-01

    Composite materials offer significant weight savings in many aerospace applications. The toughness of the interface of fibers crossing at different angles often determines failure of composite components. A method for toughening the interface in fabric and filament wound components using directly electrospun thermoplastic nanofiber on carbon fiber tow is presented. The method was first demonstrated with limited trials, and then was scaled up to a continuous lab scale process. Filament wound tubes were fabricated and tested using unmodified baseline towpreg material and nanofiber coated towpreg.

  15. Morphological and mechanical analysis of electrospun shape memory polymer fibers

    NASA Astrophysics Data System (ADS)

    Budun, Sinem; İşgören, Erkan; Erdem, Ramazan; Yüksek, Metin

    2016-09-01

    Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape recovery measurement (130 ± 4%) was belonged to Y15K39. Mechanical properties of the electrospun webs were also investigated in both machine and transverse directions. Tensile and elongation values were also affected from fiber diameter distribution and morphological characteristics of the electrospun webs.

  16. Electrospun nanofiber scaffolds with gradations in fiber organization.

    PubMed

    Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D; Xie, Jingwei

    2015-01-01

    The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion.

  17. Electrospun nanofiber scaffolds with gradations in fiber organization.

    PubMed

    Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D; Xie, Jingwei

    2015-01-01

    The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion. PMID:25938562

  18. Electrospun fibers based on Arabic, karaya and kondagogu gums.

    PubMed

    Padil, Vinod Vellora Thekkae; Senan, Chandra; Wacławek, Stanisław; Černík, Miroslav

    2016-10-01

    Nanofibers of natural tree polysaccharides based on three gums namely Arabic (GA), karaya (GK) and kondagogu (KG) have been prepared for the first time using electrospinning. Electrospinning solutions were prepared by mixing gum solutions of GA, GK & KG with eco-friendly polymers such as polyvinyl alcohol (PVA) or polyethylene oxide (PEO). The present study focuses on the effect of electrospinning blended solutions of GA, GK or KG with PVA or PEO, additives which influence system parameters and process parameters. This has important effects on the electrospinning process and the resulting fibers whose morphology and physicochemical properties were evaluated. The mass ratios of 70:30 to 90:10 for PVA: GA, PVA: GK and PVA: KG were observed to establish an optimum blend solution ratio in order to fabricate uniform beadless nanofibers with an average diameter of 240±50, 220±40 and 210±30nm, respectively. Various structural and physicochemical properties of the electrospun fibers were investigated. Furthermore, the comparisons of various functionalities of the untreated and plasma treated electrospun fibers were assessed. The methane plasma treated nanofibers were shown to be of extremely specific surface area, improved water contact angle, high surface porosity and roughness and superior hydrophobic properties compared to untreated fibers. PMID:27212218

  19. Electrospun fibers based on Arabic, karaya and kondagogu gums.

    PubMed

    Padil, Vinod Vellora Thekkae; Senan, Chandra; Wacławek, Stanisław; Černík, Miroslav

    2016-10-01

    Nanofibers of natural tree polysaccharides based on three gums namely Arabic (GA), karaya (GK) and kondagogu (KG) have been prepared for the first time using electrospinning. Electrospinning solutions were prepared by mixing gum solutions of GA, GK & KG with eco-friendly polymers such as polyvinyl alcohol (PVA) or polyethylene oxide (PEO). The present study focuses on the effect of electrospinning blended solutions of GA, GK or KG with PVA or PEO, additives which influence system parameters and process parameters. This has important effects on the electrospinning process and the resulting fibers whose morphology and physicochemical properties were evaluated. The mass ratios of 70:30 to 90:10 for PVA: GA, PVA: GK and PVA: KG were observed to establish an optimum blend solution ratio in order to fabricate uniform beadless nanofibers with an average diameter of 240±50, 220±40 and 210±30nm, respectively. Various structural and physicochemical properties of the electrospun fibers were investigated. Furthermore, the comparisons of various functionalities of the untreated and plasma treated electrospun fibers were assessed. The methane plasma treated nanofibers were shown to be of extremely specific surface area, improved water contact angle, high surface porosity and roughness and superior hydrophobic properties compared to untreated fibers.

  20. Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun

    NASA Astrophysics Data System (ADS)

    Liu, Gui-fang; Zhang, Zi-dong; Dang, Feng; Cheng, Chuan-bing; Hou, Chuan-xin; Liu, Si-da

    2016-08-01

    BaFe12O19 fibers and hollow fibers were successfully prepared by electrospun and co-electrospun. A very interesting result appeared in this study that hollow fibers made by co-electrospun showed low coercivity values of a few hundred oersteds, compared with the coercivity values of more than thousand oersteds for the fibers made by electrospun. So the hollow fibers with high saturation magnetization (Ms) and while comparatively low coercivity (Hc) exhibited strong magnetism and basically showed soft character. And this character for hollow fibers will lead to increase of the permeability for the samples which is favorable for impedance matching in microwave absorption. So these hollow fibers are promised to have use in a number of applications, such as switching and sensing applications, electromagnetic materials, microwave absorber.

  1. Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers.

    PubMed

    López-Rubio, Amparo; Sanchez, Ester; Sanz, Yolanda; Lagaron, Jose M

    2009-10-12

    This study shows the application of the electrospinning technique as a viable method for the encapsulation and stabilization of bifidobacterial strains. Poly(vinyl alcohol) (PVOH) was used as the encapsulating material because it is generally recognized as safe (GRAS), has a high oxygen barrier when dry, and is water soluble, hence allowing easy recovery of the bacteria for viability testing. A coaxial setup was used for encapsulation, and the so-obtained electrospun fibers had a mean diameter of ca. 150 nm. Incorporation of B. animalis Bb12 led to a decrease in melting point and crystallinity of the PVOH fibers and to an increase in the polymer glass transition temperature. The viability tests, carried out at three different temperatures (room temperature and 4 and -20 degrees C) showed that B. animalis Bb12 encapsulated within the electrospun PVOH fibers remained viable for 40 days at room temperature and for 130 days at refrigeration temperature, whereas a significant viability decrease was observed in both cases when bacteria were not encapsulated (p = 0.015 and p = 0.002, respectively). PMID:19817490

  2. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface.

    PubMed

    Lin, Jinyou; Tian, Feng; Shang, Yanwei; Wang, Fujun; Ding, Bin; Yu, Jianyong; Guo, Zhi

    2013-04-01

    The pollution arising from oil spills is a matter of great concern due to its damaging impacts on the ecological environment, which has created a tremendous need to find more efficient materials for oil spill cleanup. In this work, we reported a sorbent for oil soak-up from a water surface with a high sorption capacity, good selectivity, and excellent reusability based on the hydrophobic-oleophilic fibrous mats that were fabricated via co-axial electrospinning polystyrene (PS) solution as the shell solution and polyurethane (PU) solution as the core solution. The fine structures of as-prepared fibers were regulated by manipulating the spinning voltages, core solution concentrations, and solvent compositions in shell solutions, which were also characterized by field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption method, and synchrotron radiation small-angle X-ray scattering. The effects of inter-fiber voids and intra-fiber porosity on oil sorption capacities were well studied. A comparison of oil sorption capacity for the single fiber with different porous structures was also investigated with the help of scanning transmission X-ray microscopy. The results showed that the sorption capacities of the as-prepared sorbent with regards to motor oil and sunflower seed oil can be 64.40 and 47.48 g g(-1), respectively, approximately 2-3 times that of conventional polypropylene (PP) fibers for these two same oils. Even after five sorption cycles, a comparable oil sorption capacity with PP fibers was still maintained, exhibiting an excellent reusability. We believe that the composite PS-PU fibrous mats have a great potential application in wastewater treatment, oil accident remediation and environmental protection.

  3. Tumor-Triggered Controlled Drug Release from Electrospun Fibers Using Inorganic Caps for Inhibiting Cancer Relapse.

    PubMed

    Zhao, Xin; Yuan, Ziming; Yildirimer, Lara; Zhao, Jingwen; Lin, Zhi Yuan William; Cao, Zhi; Pan, Guoqing; Cui, Wenguo

    2015-09-01

    A smart, tumor-trigged, controlled drug release using inorganic "caps" with CO3 (2-) functional groups in electrospun fibers is presented for inhibiting cancer relapse. When the drug-loaded intelligent electrospun fibers encounter pathological acidic environments, the inorganic gates react with the acids and produce CO2 gas, which enables water penetration into the core of the fibers to induce rapid drug release.

  4. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration.

    PubMed

    Wang, Han Bing; Mullins, Michael E; Cregg, Jared M; McCarthy, Connor W; Gilbert, Ryan J

    2010-08-01

    Aligned, electrospun fibers have shown great promise in facilitating directed neurite outgrowth within cell and animal models. While electrospun fiber diameter does influence cellular behavior, it is not known how aligned, electrospun fiber scaffolds of differing diameter influence neurite outgrowth and Schwann cell (SC) migration. Thus, the goal of this study was to first create highly aligned, electrospun fiber scaffolds of varying diameter and then assess neurite and SC behavior from dorsal root ganglia (DRG) explants. Three groups of highly aligned, electrospun poly-l-lactic acid (PLLA) fibers were created (1325+383 nm, large diameter fibers; 759+179 nm, intermediate diameter fibers; and 293+65 nm, small diameter fibers). Embryonic stage nine (E9) chick DRG were cultured on fiber substrates for 5 days and then the explants were stained against neurofilament and S100. DAPI stain was used to assess SC migration. Neurite length and SC migration distance were determined. In general, the direction of neurite extension and SC migration were guided along the aligned fibers. On the small diameter fiber substrate, the neurite length was 42% and 36% shorter than those on the intermediate and large fiber substrates, respectively. Interestingly, SC migration did not correlate with that of neurite extension in all situations. SCs migrated equivalently with extending neurites in both the small and large diameter scaffolds, but lagged behind neurites on the intermediate diameter scaffolds. Thus, in some situations, topography alone is sufficient to guide neurites without the leading support of SCs. Scanning electron microscopy images show that neurites cover the fibers and do not reside exclusively between fibers. Further, at the interface between fibers and neurites, filopodial extensions grab and attach to nearby fibers as they extend down the fiber substrate. Overall, the results and observations suggest that fiber diameter is an important parameter to consider when

  5. Effect of Relative Humidity on the Morphology of Electrospun Polymer Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of relative humidity on the morphology of electrospun nanofibers of poly(vinyl alcohol), poly(methyl metacrylate), poly(vinyl chloride), polystyrene, and poly(lactic acid) dissolved in solvents such as toluene and N,N-dimethylformamide, 2,2,2-trifluoroethanol and deionized water was studi...

  6. Morphology of electrospun fibers derived from High Internal Phase Emulsions.

    PubMed

    Samanta, Archana; Nandan, Bhanu; Srivastava, Rajiv K

    2016-06-01

    High Internal Phase Emulsions (HIPEs) are known for their excessive volume of dispersed phase (volume fraction of dispersed phase Φd>0.74) and are primarily used for polymerization of continuous phase monomer(s) thereby generating porous systems in a single step. In the present work, electrospinning of HIPEs formed from aqueous solution of poly(vinyl alcohol) (PVA) dispersed in continuous phase comprised of poly(ε-caprolactone) (PCL) solution in toluene is conducted. Effect of variation in volume fraction of dispersed and continuous phase on fiber morphology was studied. Fibers of co-continuous morphology were obtained due to coalescence and dielectrophoresis of the higher electrically conducting dispersed aqueous phase than toluene containing continuous phase. Removal of PVA was later done by washing of fibers with water to evaluate the presence of two phases in the fibers and relate it to original HIPE morphology of the emulsions. Heterogeneous and surface nucleation of PCL and Brij-58 confined within electrospun fibers of HIPEs was studied in detail and related to the original HIPE structure.

  7. Modification of jute fibers with polystyrene via atom transfer radical polymerization.

    PubMed

    Plackett, David; Jankova, Katja; Egsgaard, Helge; Hvilsted, Søren

    2005-01-01

    Atom transfer radical polymerization (ATRP) was investigated as a method of covalently bonding polystyrene to jute (Corchorus capsularis) and as a possible approach to fiber composites with enhanced properties. Jute fibers were modified with a brominated initiator and subsequently ATRP modified to attach polystyrene and then examined using SEM, DSC, TGA, FTIR, XPS, elemental analysis, and Py-GC-MS. These techniques confirmed that polystyrene had been covalently bound to the fibers and consequently ATRP-modified jute fiber mats were used to prepare hot-pressed polystyrene composites. Composite specimens were tensile tested and fracture surfaces examined using SEM. Although SEM examination suggested different fracture modes between unmodified fiber and ATRP-modified samples, the tensile strength of modified samples was slightly lower on average than that of unmodified samples. For fiber composite applications, we conclude that further optimization of the ATRP method is required, possibly targeting higher and more uniform loading of polystyrene on the fibers.

  8. Synthesis of titanium dioxide nanotubes from electrospun fiber templates

    NASA Astrophysics Data System (ADS)

    Qiu, Yejun; Yu, Jie

    2008-12-01

    Titanium dioxide (TiO 2) nanotubes were synthesized by impregnating stabilized electrospun polyacrylonitrile (PAN) fibers with titanium tetrachloride (TiCl 4) solution and subsequent calcination. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and energy dispersive X-ray spectroscopy (EDX) were used to characterize the structure and composition of the products. The resulting TiO 2 nanotubes are of high purity with anatase structure. The average diameter of the nanotubes is 220 nm with very thin walls about 20 nm. The tube walls are composed of many nanoparticles of about 10 nm. Due to the increased surface area and small crystal size, the present TiO 2 nanotubes may possess high catalytic properties.

  9. Electrospun fiber membranes enable proliferation of genetically modified cells

    PubMed Central

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  10. Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold

    NASA Technical Reports Server (NTRS)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)

    2015-01-01

    A scaffold assembly and related methods of manufacturing and/or using the scaffold for stem cell culture and tissue engineering applications are disclosed which at least partially mimic a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.

  11. Polydopamine Inter-Fiber Networks: New Strategy for Producing Rigid, Sticky, 3D Fluffy Electrospun Fibrous Polycaprolactone Sponges.

    PubMed

    Choi, Wuyong; Lee, Slgirim; Kim, Seung-Hyun; Jang, Jae-Hyung

    2016-06-01

    Designing versatile 3D interfaces that can precisely represent a biological environment is a prerequisite for the creation of artificial tissue structures. To this end, electrospun fibrous sponges, precisely mimicking an extracellular matrix and providing highly porous interfaces, have capabilities that can function as versatile physical cues to regenerate various tissues. However, their intrinsic features, such as sheet-like, thin, and weak structures, limit the design of a number of uses in tissue engineering applications. Herein, a highly facile methodology capable of fabricating rigid, sticky, spatially expanded fluffy electrospun fibrous sponges is proposed. A bio-inspired adhesive material, poly(dopamine) (pDA), is employed as a key mediator to provide rigidity and stickiness to the 3D poly(ε-caprolactone) (PCL) fibrous sponges, which are fabricated using a coaxial electrospinning with polystyrene followed by a selective leaching process. The iron ion induced oxidation of dopamine into pDA networks interwoven with PCL fibers results in significant increases in the rigidity of 3D fibrous sponges. Furthermore, the exposure of catecholamine groups on the fiber surfaces promotes the stable attachment of the sponges on wet organ surfaces and triggers the robust immobilization of biomolecules (e.g., proteins and gene vectors), demonstrating their potential for 3D scaffolds as well as drug delivery vehicles. Because fibrous structures are ubiquitous in the human body, these rigid, sticky, 3D fibrous sponges are good candidates for powerful biomaterial systems that functionally mimic a variety of tissue structures.

  12. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension

    PubMed Central

    Schaub, Nicholas J.; Le Beux, Clémentine; Miao, Jianjun; Linhardt, Robert J.; Alauzun, Johan G.; Laurencin, Danielle; Gilbert, Ryan J.

    2015-01-01

    The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used. PMID:26340351

  13. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension.

    PubMed

    Schaub, Nicholas J; Le Beux, Clémentine; Miao, Jianjun; Linhardt, Robert J; Alauzun, Johan G; Laurencin, Danielle; Gilbert, Ryan J

    2015-01-01

    The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used. PMID:26340351

  14. Tunable engineered skin mechanics via coaxial electrospun fiber core diameter.

    PubMed

    Blackstone, Britani Nicole; Drexler, Jason William; Powell, Heather Megan

    2014-10-01

    Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo.

  15. Coaxially electrospun fiber-based microbicides facilitate broadly tunable release of maraviroc.

    PubMed

    Ball, Cameron; Chou, Shih-Feng; Jiang, Yonghou; Woodrow, Kim A

    2016-06-01

    Electrospun fibers show potential as a topical delivery system for vaginal microbicides. Previous reports have demonstrated delivery of anti-HIV and anti-STI (sexually transmitted infection) agents from fibers formulated using hydrophilic, hydrophobic, or pH-responsive polymers that result in rapid, prolonged, or stimuli-responsive release, respectively. However, coaxial electrospun fibers have yet to be evaluated as a highly tunable microbicide delivery vehicle. In this research, we explored the opportunities and limitations of a model coaxial electrospun fiber system to provide broad and tunable release rates for the HIV entry inhibitor maraviroc. Specifically, we prepared ethyl cellulose (EC)-shell and polyvinylpyrrolidone (PVP)-core fibers that were capable of releasing actives over a range of hours to several days. We further demonstrated simple and effective methods for combining core-shell fibers with rapid-release formulations to provide combined instantaneous and sustained maraviroc release. In addition, we investigated the effect of varying release media on maraviroc release from core-shell fibers, and found that release was strongly influenced by media surface tension and drug ionization. Finally, in vitro cell culture studies show that our fiber formulations were not cytotoxic and that electrospun maraviroc maintained similar antiviral activity compared to neat maraviroc. PMID:27040202

  16. Structural, electrical, mechanical, and thermal properties of electrospun poly(lactic acid)/polyaniline blend fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conducting electrospun fiber mats based on PLA and PAni blends were obtained with average diameter values between 87 and 1,006 nm with PAni quantities from 0 to 5.6 wt.-%. Structural characteristics of fiber mats were compared to cast films with the same amount of PAni and studied by SEM, SAXS, and ...

  17. Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were exami...

  18. Structure and properties of electrospun polymer fibers and applications in biomedical engineering

    NASA Astrophysics Data System (ADS)

    Casper, Cheryl L.

    2006-04-01

    Increased interest in nanotechnology has revived a fiber processing technique invented back in the 1930's. Electrospinning produces nanometer to micron size fibers that are not otherwise achievable using conventional fiber spinning methods. Due to small fiber diameters, high surface area, tailorable surface morphology, and the creation of an interconnected fibrous network, electrospun fibers have found use in a variety of applications. However, a multitude of parameters directly affect the electrospinning process thus requiring a fundamental understanding of how various parameters affect the process and resulting fiber properties. Accordingly, the focus of this dissertation is to provide insight on how solution characteristics and processing parameters directly affect the electrospinning process, and then apply this knowledge to create electrospun membranes for biomedical applications. These fundamental studies provided insight on how to control the electrospinning process; this knowledge was then utilized to electrospin fibrous membranes for biomedical applications. One aspect of this work focused on incorporating low molecular weight heparin (LMWH) into electrospun fibers. Heparin is known for its ability to bind growth factors and thus it plays an integral role in drug delivery and tissue engineering applications. The goal of this work was to fabricate functionalized electrospun fibers to produce a biologically active matrix that would allow for the binding and delivery of growth factors for possible drug delivery applications. The electrospinning process was also utilized to fabricate native polymers such as collagen and gelatin into fiber form. The collagen and gelatin fibers were 2--6 mum in diameter and required crosslinking to stabilize the fibers. Crosslinking and sterilization protocols were investigated to optimize the conditions needed to produce collagen and gelatin electrospun membranes to be used in bone regeneration applications. (Abstract shortened

  19. Electrospun Poly(L-Lactide) Fiber with Ginsenoside Rg3 for Inhibiting Scar Hyperplasia of Skin

    PubMed Central

    Hu, Changmin; Li, Haiyan; Zhang, Yuguang; Chang, Jiang

    2013-01-01

    Hypertrophic scarring (HS) has been considered as a great concern for patients and a challenging problem for clinicians as it can be cosmetically disfiguring and functionally debilitating. In this study, Ginsenoside Rg3/Poly(l-lactide) (G-Rg3/PLLA) electrospun fibrous scaffolds covering on the full-thickness skin excisions location was designed to suppress the hypertrophic scar formation in vivo. SEM and XRD results indicated that the crystal G-Rg3 carried in PLLA electrospun fibers was in amorphous state, which facilitates the solubility of G-Rg3 in the PLLA electrospun fibrous scaffolds, and solubility of G-Rg3 in PBS is increased from 3.2 µg/ml for pure G-Rg3 powders to 19.4 µg/ml for incorporated in PLLA-10% fibers. The released G-Rg3 content in the physiological medium could be further altered from 324 to 3445 µg in a 40-day release period by adjusting the G-Rg3 incorporation amount in PLLA electrospun fibers. In vitro results demonstrated that electrospun G-Rg3/PLLA fibrous scaffold could significantly inhibit fibroblast cell growth and proliferation. In vivo results confirmed that the G-Rg3/PLLA electrospun fibrous scaffold showed significant improvements in terms of dermis layer thickness, fibroblast proliferation, collagen fibers and microvessels, revealing that the incorporation of the G-Rg3 in the fibers prevented the HS formation. The above results demonstrate the potential use of G-Rg3/PLLA electrospun fibrous scaffolds to rapidly minimize fibroblast growth and restore the structural and functional properties of wounded skin for patients with deep trauma, severe burn injury, and surgical incision. PMID:23874757

  20. Hydrogel–Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    PubMed Central

    Han, Ning; Rao, Shreyas S.; Johnson, Jed; Parikh, Kunal S.; Bradley, Patrick A.; Lannutti, John J.; Winter, Jessica O.

    2011-01-01

    Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron–prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel–electrospun fiber mat (EFM) composite coatings. In particular, poly(ethylene glycol)-poly(ε-caprolactone) (PEGPCL) hydrogel–poly(ε-caprolactone) EFM composites were applied as coatings for multielectrode arrays. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF), was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel–EFM composite materials can be applied to neural prostheses to improve neuron–electrode proximity and enhance long-term device performance and function. PMID:21441993

  1. Antibacterial activity and inhibition of adherence of Streptococcus mutans by propolis electrospun fibers.

    PubMed

    Asawahame, Chawalinee; Sutjarittangtham, Krit; Eitssayeam, Sukum; Tragoolpua, Yingmanee; Sirithunyalug, Busaban; Sirithunyalug, Jakkapan

    2015-02-01

    Mouth-dissolving fibers with antibacterial activity for the oral cavity were prepared by an electrospinning technique. Propolis extract was used as an active ingredient and polyvinylpyrrolidone (PVP) K90 as the polymer matrix. The morphology and diameter of the fibers were characterized by scanning electron microscopy. Antibacterial activity against Streptococcus mutans and the inhibition of S. mutans adhesion on a smooth glass surface during the biofilm formation were tested. Propolis, 5% (w/v), was combined with a PVP K90 solution, 8% (w/v), with or without Tween 80 including flavor additives and electrospun with an applied voltage of 15 kV. Uniform and smooth fibers of propolis-PVP K90 were obtained. The results showed that electrospun fibers with propolis extract can dissolve and release the propolis in water. Propolis-PVP electrospun fibers showed better antibacterial activity by reduction of bacteria adhesion on a smooth glass surface when compared to some commercial mouthwash products. These results indicated the potential of electrospun fibers to be used as mouth-dissolving fibers for effective antibacterial activity in the oral cavity.

  2. Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption

    NASA Astrophysics Data System (ADS)

    Lin, Jinyou; Tian, Feng; Shang, Yanwei; Wang, Fujun; Ding, Bin; Yu, Jianyong

    2012-08-01

    We report a facile method to control intra-fiber porosity via varying the relative humidity and inter-fiber voids through the blending of two different polymeric fibers via multi-nozzles spinning of electrospun fibers for selective adsorption of oil from water.We report a facile method to control intra-fiber porosity via varying the relative humidity and inter-fiber voids through the blending of two different polymeric fibers via multi-nozzles spinning of electrospun fibers for selective adsorption of oil from water. Electronic supplementary information (ESI) available: FE-SEM images, nitrogen physisorption isotherms, differential pore volume vs. pore width, SAXS 2D scattering patterns and SAXS curves of PS (Mw = 208 000 g mol-1) fibrous mats formed at different RH (Fig. S1). Iron element distribution of a single fiber (Fig. S2). A schematic diagram to show the multi-nozzles electrospinning (Fig. S3). FE-SEM images of as-prepared fibrous mats formed with various PS/PU nozzle ratios (Fig. S4). Nitrogen physisorption isotherms, SSA, and water contact angles of as-prepared fibrous mats formed with various PS/PU nozzle ratios (Fig. S5 and S6). Hydrophobicity-oleophilicity of an as-spun fibrous mat (Fig. S7). Typical tensile stress-strain curves of various PS fibrous mats with the addition of PU fibers formed from a 50 wt% PU resin (Fig. S8). Surface characterization of as-prepared fibers (Table S1). Tensile properties of the fibrous mats (Tables S2 and S3). See DOI: 10.1039/c2nr31515g

  3. Understanding Polymorphism Formation in Electrospun Fibers of Immiscible Poly(vinylidene fluoride) Blends

    SciTech Connect

    G Zhong; L Zhang; R Su; K Wang; H Fong; L Zhu

    2011-12-31

    Effects of electric poling, mechanical stretching, and dipolar interaction on the formation of ferroelectric ({beta} and/or {gamma}) phases in poly(vinylidene fluoride) (PVDF) have been studied in electrospun fibers of PVDF/polyacrylonitrile (PAN) and PVDF/polysulfone (PSF) blends with PVDF as the minor component, using wide-angle X-ray diffraction and Fourier transform infrared techniques. Experimental results of as-electrospun neat PVDF fibers (beaded vs. bead-free) showed that mechanical stretching during electrospinning, rather than electric poling, was effective to induce ferroelectric phases. For as-electrospun PVDF blend fibers with the non-polar PSF matrix, mechanical stretching during electrospinning again was capable of inducing some ferroelectric phases in addition to the major paraelectric ({alpha}) phase. However, after removing the mechanical stretching in a confined melt-recrystallization process, only the paraelectric phase was obtained. For as-electrospun PVDF blend fibers with the polar (or ferroelectric) PAN matrix, strong intermolecular interactions between polar PAN and PVDF played an important role in the ferroelectric phase formation in addition to the mechanical stretching effect during electrospinning. Even after the removal of mechanical stretching through the confined melt-recrystallization process, a significant amount of ferroelectric phases persisted. Comparing the ferroelectric phase formation between PVDF/PSF and PVDF/PAN blend fibers, we concluded that the local electric field-dipole interactions were the determining factor for the nucleation and growth of polar PVDF phases.

  4. Multifunctionalized electrospun silk fibers promote axon regeneration in central nervous system

    PubMed Central

    Wittmer, Corinne R.; Claudepierre, Thomas; Reber, Michael; Wiedemann, Peter; Garlick, Jonathan A.; Kaplan, David

    2012-01-01

    The repair of central nerves remains a major challenge in regenerative neurobiology. Regenerative guides possessing critical features such as cell adhesion, physical guiding and topical stimulation are needed. To generate such a guide, silk protein materials are prepared using electrospinning. The silk is selected for this study due to its biocompatibility and ability to be electrospun for the formation of aligned biofunctional nanofibers. The addition of Brain Derived Neurotrophic Factor (BDNF), Ciliary Neurotrophic Factor (CNTF) or both to the electrospun fibers enable enhanced function without impact to the structure or the surface morphology. Only a small fraction of the loaded growth factors is released over time allowing the fibers to continue to provide these factors to the cells for extended periods of time. The entrapped factors remain active and available to the cells as rat retinal ganglion cells (RGCs) exhibit longer axonal growth when in contact with the biofunctionalized fibers. Compare to non-functionalized fibers, the growth of neurites increased 2 fold on fibers containing BDNF, 2.5 fold with fibers containing CNTF and by almost 3-fold on fibers containing both factors. The results demonstrate the potential of aligned and functionalized electrospun silk fibers to promote nerve growth in the central nervous system, underlying the great potential of complex biomaterials in neuroregenerative strategies following axotomy and nerve crush traumas. PMID:22844266

  5. Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers.

    PubMed

    Zheng, Yingying; Cai, Chao; Zhang, Fuming; Monty, Jonathan; Linhardt, Robert J; Simmons, Trevor J

    2016-02-01

    Natural cotton was dissolved in a room-temperature ionic liquid 1-ethyl-3-methyl acetate and wet-jet electrospun to obtain nanoscale cotton fibers with a substantially reduced diameter-and therefore an increased surface area-relative to natural cotton fibers. The resulting nano-cotton fibers were esterified with trityl-3-mercaptopropionic acid, which after selective de-tritylation afforded nano-cotton fibers containing reactive thiol functionality. Silver nanoparticles that were covalently attached to these sulfhydryl groups were assembled next. The microstructure of the resulting nanocomposite was characterized, and the antibacterial activity of the resulting nano-cotton Ag-nanoparticle composite was also studied. This nanocomposite showed significant activity against both Gram-negative and Gram-positive bacteria. PMID:26751520

  6. Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers

    NASA Astrophysics Data System (ADS)

    Zheng, Yingying; Cai, Chao; Zhang, Fuming; Monty, Jonathan; Linhardt, Robert J.; Simmons, Trevor J.

    2016-02-01

    Natural cotton was dissolved in a room-temperature ionic liquid 1-ethyl-3-methyl acetate and wet-jet electrospun to obtain nanoscale cotton fibers with a substantially reduced diameter—and therefore an increased surface area—relative to natural cotton fibers. The resulting nano-cotton fibers were esterified with trityl-3-mercaptopropionic acid, which after selective de-tritylation afforded nano-cotton fibers containing reactive thiol functionality. Silver nanoparticles that were covalently attached to these sulfhydryl groups were assembled next. The microstructure of the resulting nanocomposite was characterized, and the antibacterial activity of the resulting nano-cotton Ag-nanoparticle composite was also studied. This nanocomposite showed significant activity against both Gram-negative and Gram-positive bacteria.

  7. Electrospun fiber and cast films produced using zein blends with nylon-6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blends of zein and nylon-6 (55k) were used to produce electrospun fibers and solution cast films. Zein was blended with nylon-6 in formic acid solution. When the amount of nylon-6 was 8% or less a compatible blend formed. The blend was determined to be compatible based on physical property measureme...

  8. Experimental development of advanced air filtration media based on electrospun polymer fibers

    NASA Astrophysics Data System (ADS)

    Ghochaghi, Negar

    Electrospinning is a process by which polymer fibers can be produced using an electrostatically driven fluid jet. Electrospun fibers can be produced at the micro- or nano-scale and are, therefore, very promising for air filtration applications. However, because electrospun fibers are electrically charged, it is difficult to control the morphology of filtration media. Fiber size, alignment and uniformity are very important factors that affect filter performance. The focus of this project is to understand the relationship between filter morphology and performance and to develop new methods to create filtration media with optimum morphology. This study is divided into three focus areas: unimodal and bimodal microscale fibrous media with aligned, orthogonal and random fiber orientations; unimodal and bimodal nanoscale fibers in random orientations; bimodal micrometer and nanometer fiber media with orthogonally aligned orientations. The results indicate that the most efficient filters, which are those with the highest ratio of particle collection efficiency divided by pressure drop, can be obtained through fabricating filters in orthogonal layers of aligned fibers with two different fiber diameters. Moreover, our results show that increasing the number of layers increases the performance of orthogonally layered fibers. Also, controlling fiber spacing in orthogonally layered micrometer fiber media can be an alternative way to study the filtration performance. Finally, such coatings presented throughout this research study can be designed and placed up-stream, down-stream, and/or in between conventional filters.

  9. Synchrotron X-ray Scattering Studies of Poly(lactide) Electrospun Fibers Containing Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Zhu, Yazhe; Cebe, Peggy

    2014-03-01

    Carbon nanotubes(CNTs) often serve as an effective nucleating agent that facilitates the crystallization of semicrystalline polymers. Here we study the influence of CNTs on thermal and structural properties of Poly-lactide (PLA), which is well-known as a biodegradable and biocompatible thermoplastic polymer. The effect of CNTs on the crystallization and melting behavior of electrospun fibers of poly (L-lactide) (PLLA, with 100% L-isomer) and poly (D-lactide) (PDLA, containing 4% D-isomer) was systemically studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform spectroscopy(FT-IR) and real time synchrotron wide-angle X-ray scattering (WAXS) . Multi-walled CNTs were co-electrospun with the poly(lactides) in weight ratios ranging from 0.1 to 4.0 wt% MW-CNT. PLA/carbon nanotubes composite electrospun fibers were successfully produced by appropriate choice of processing conditions and solution concentration. The morphologies of neat and CNT-filled electrospun nanofibers were observed by scanning electron microscopy. WAXS and DSC results show that lower content of CNTs contributes to higher speed of crystallization. However the results also showed that at the highest concentration of CNTs the ultimate crystallinity was reduced. FTIR and X-ray results show that PLA fibers have different crystal forms at high and low crystallization temperature. DSC results also show that D-lactide has reduced crystallinity compared to L-lactide.

  10. Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends.

    PubMed

    Samanta, Pratick; V, Thangapandian; Singh, Sajan; Srivastava, Rajiv; Nandan, Bhanu; Liu, Chien-Liang; Chen, Hsin-Lung

    2016-06-21

    We have studied the confined crystallization behaviour of poly(ethylene oxide) (PEO) in the electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO, where PS was present as the major component. The size and shape of PEO domains in the nanofibers were considerably different from those in the cast films, presumably because of the nano-dimensions of the nanofibers and the extensional forces experienced by the polymer solution during electrospinning. The phase-separated morphology in turn influenced the crystallization behaviour of PEO in the blend nanofibers. At a PEO weight fraction of ≥0.3, crystallization occurred through a heterogeneous nucleation mechanism similar to that in cast blend films. However, as the PEO weight fraction in the blend nanofibers was reduced from 0.3 to 0.2, an abrupt transformation of the nucleation mechanism from the heterogeneous to predominantly homogenous type was observed. The change in the nucleation mechanism implied a drastic reduction of the spatial continuity of PEO domains in the nanofibers, which was not encountered in the cast film. The melting temperature and crystallinity of the PEO crystallites developed in the nanofibers were also significantly lower than those in the corresponding cast films. The phenomena observed were reconciled by the morphological observation, which revealed that the phase separation under the radial constraint of the nanofibers led to the formation of small-sized fibrillar PEO domains with limited spatial connectivity. The thermal treatment of the PS/PEO blend nanofibers above the glass transition temperature of PS induced an even stronger confinement effect on PEO crystallization.

  11. Functionality in Electrospun Nanofibrous Membranes Based on Fiber's Size, Surface Area, and Molecular Orientation

    PubMed Central

    Matsumoto, Hidetoshi; Tanioka, Akihiko

    2011-01-01

    Electrospinning is a versatile method for forming continuous thin fibers based on an electrohydrodynamic process. This method has the following advantages: (i) the ability to produce thin fibers with diameters in the micrometer and nanometer ranges; (ii) one-step forming of the two- or three-dimensional nanofiber network assemblies (nanofibrous membranes); and (iii) applicability for a broad spectrum of molecules, such as synthetic and biological polymers and polymerless sol-gel systems. Electrospun nanofibrous membranes have received significant attention in terms of their practical applications. The major advantages of nanofibers or nanofibrous membranes are the functionalities based on their nanoscaled-size, highly specific surface area, and highly molecular orientation. These functionalities of the nanofibrous membranes can be controlled by their fiber diameter, surface chemistry and topology, and internal structure of the nanofibers. This report focuses on our studies and describes fundamental aspects and applications of electrospun nanofibrous membranes. PMID:24957735

  12. Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)/nanocellulose fibers.

    PubMed

    Si, Junhui; Cui, Zhixiang; Wang, Qianting; Liu, Qiong; Liu, Chuntai

    2016-06-01

    A biomimetic nanocomposite scaffold with HA formation on the electrospun poly(ɛ-caprolactone) (PCL)/nanocellulose (NC) fibrous matrix was developed in this study. The electrospun PCL/NC fiber mat was built and then biomineralized by treatment in simulated body fluid (SBF). Using such a rapid and effective procedure, a continuous biomimetic crystalline HA layer could be successfully formed without the need of any additional chemical modification of the substrate surface. The results showed that the introduction of NC into composite fibers is an effective approach to induce the deposition of HA nucleus as well as to improve their distribution and growth of a crystalline HA layer on the fibrous scaffolds. The water contact angle (WCA) of the PCL/NC/HA scaffolds decreases with increasing NC content and mineralization time, resulting in the enhancement of their hydrophilicity. These results indicated that HA-mineralized on PCL/NC fiber can be prepared directly by simply using SBF immersion. PMID:27083369

  13. Overcoming drug crystallization in electrospun fibers--Elucidating key parameters and developing strategies for drug delivery.

    PubMed

    Seif, Salem; Franzen, Lutz; Windbergs, Maike

    2015-01-15

    For the development of novel therapeutics, uncontrolled crystallization of drugs within delivery systems represents a major challenge. Especially for thin and flexible polymeric systems such as oral films or dermal wound dressings, the formation and growth of drug crystals can significantly affect drug distribution and release kinetics as well as physical storage stability. In this context, electrospinning was introduced as a fabrication technique with the potential to encapsulate drugs within ultrafine fibers by rapid solvent evaporation overcoming drug crystallization during fabrication and storage. However, these effects could so far only be shown for specific drug-polymer combinations and an in-depth understanding of the underlying processes of drug-loaded fiber formation and influencing key parameters is still missing. In this study, we systematically investigated crystal formation of caffeine as a model drug in electrospun fibers comparing different polymers. The solvent polarity was found to have a major impact on the drug crystal formation, whereas only a minor effect was attributed to the electrospinning process parameters. Based on an in-depth understanding of the underlying processes determining drug crystallization processes in electrospun fibers, key parameters could be identified which allow for the rational development of drug-loaded electrospun fibers overcoming drug crystallization.

  14. Electrospun titania-based fibers for high areal capacity Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Self, Ethan C.; Wycisk, Ryszard; Pintauro, Peter N.

    2015-05-01

    Electrospinning is utilized to prepare composite fiber Li-ion battery anodes containing titania and carbon nanoparticles with a poly (acrylic acid) binder. The electrospun material exhibits a stable charge/discharge capacity with only 5% capacity fade over 450 cycles at 0.5 C. Compared to a conventional slurry cast electrode of the same composition, the electrospun anode demonstrates 4-fold higher capacity retention (31% vs. 7.9%) at a charge/discharge rate of 5 C. Electrospinning is also used to prepare ultrathick anodes (>1 mm) with areal capacities up to 3.9 mAh cm-2. Notably, the thick electrodes exhibit areal capacities of 2.5 and 1.3 mAh cm-2 at 1 C and 2 C, respectively. Electrospun anodes with densely packed fibers have a 2 C volumetric capacity which exceeds that of the slurry cast material (21.2 and 17.5 mAh cm-3, respectively). The excellent performance of the electrospun anodes is attributed to interfiber voids which provide complete electrolyte intrusion, a large electrode/electrolyte interface, and short Li+ transport pathways between the electrolyte and titania nanoparticles.

  15. Effects of emulsion droplet size on the structure of electrospun ultrafine biocomposite fibers with cellulose nanocrystals.

    PubMed

    Li, Yingjie; Ko, Frank K; Hamad, Wadood Y

    2013-11-11

    Electrospinning of cellulose nanocrystals (CNC)/poly(lactic acid) (PLA) emulsions has been demonstrated to be an effective dispersion and alignment method to control assembly of CNC into continuous composite ultrafine fibers. CNC-PLA nanocomposite random-fiber mats and aligned-fiber yarns were prepared by emulsion electrospinning. A dispersed phase of CNC aqueous suspension and an immiscible continuous phase of PLA solution comprised the CNC-PLA water-in-oil (W/O) emulsion system. Under a set of specific conditions, the as-spun composite ultrafine fibers assumed core-shell or hollow structures. In these structures, CNCs were aligned along the core in the core-shell case, or on the wall of the hollow cylinder in the hollow fiber case. CNCs act as nucleating agents influencing PLA crystallinity, and improve the strength and stiffness of electrospun composite fibers. The effects of emulsion droplet size on fiber structural formation and CNC distribution within the electrospun fibers have been carefully examined. PMID:23789830

  16. Polymethacrylate coated electrospun PHB fibers: An exquisite outlook for fabrication of paper-based biosensors.

    PubMed

    Hosseini, Samira; Azari, Pedram; Farahmand, Elham; Gan, S N; Rothan, Hussin A; Yusof, Rohana; Koole, Leo H; Djordjevic, Ivan; Ibrahim, Fatimah

    2015-07-15

    Electrospun polyhydroxybutyrate (PHB) fibers were dip-coated by polymethyl methacrylate-co-methacrylic acid, poly(MMA-co-MAA), which was synthesized in different molar ratios of the monomers via free-radical polymerization. Fabricated platfrom was employed for immobilization of the dengue antibody and subsequent detection of dengue enveloped virus in enzyme-linked immunosorbent assay (ELISA). There is a major advantage for combination of electrospun fibers and copolymers. Fiber structre of electrospun PHB provides large specific surface area available for biomolecular interaction. In addition, polymer coated parts of the platform inherited the premanent presence of surface carboxyl (-COOH) groups from MAA segments of the copolymer which can be effectively used for covalent and physical protein immobilization. By tuning the concentration of MAA monomers in polymerization reaction the concentration of surface -COOH groups can be carefully controlled. Therefore two different techniques have been used for immobilization of the dengue antibody aimed for dengue detection: physical attachment of dengue antibodies to the surface and covalent immobilization of antibodies through carbodiimide chemistry. In that perspective, several different characterization techniques were employed to investigate the new polymeric fiber platform such as scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA) measurement and UV-vis titration. Regardless of the immobilization techniques, substantially higher signal intensity was recorded from developed platform in comparison to the conventional ELISA assay.

  17. Mussel inspired protein-mediated surface modification to electrospun fibers and their potential biomedical applications.

    PubMed

    Xie, Jingwei; Michael, Praveesuda Lorwattanapongsa; Zhong, Shaoping; Ma, Bing; MacEwan, Matthew R; Lim, Chwee Teck

    2012-04-01

    Mussel inspired proteins have been demonstrated to serve as a versatile biologic adhesive with numerous applications. The present study illustrates the use of such Mussel inspired proteins (polydopamine) in the fabrication of functionalized bio-inspired nanomaterials capable of both improving cell response and sustained delivery of model probes. X-ray photoelectron spectroscopy analysis confirmed the ability of dopamine to polymerize on the surface of plasma-treated, electrospun poly(ε-caprolactone) (PCL) fiber mats to form polydopamine coating. Transmission electron microscopy images demonstrated that self-polymerization of dopamine was induced by pH shift and that the thickness of polydopamine coating was readily modulated by adjusting the concentration of dopamine and reaction time. Polydopamine coatings were noted to affect the mechanical properties of underlying fiber mats, as mechanical testing demonstrated a decrease in elasticity and increase in stiffness of polydopamine-coated fiber mats. Polydopamine coatings were also utilized to effectively immobilize extracellular matrix proteins (i.e., fibronectin) on the surface of polydopamine-coated, electrospun fibers, resulting in enhancement of NIH3T3 cell attachment, spreading, and cytoskeletal development. Comparison of release rates of rhodamine 6G encapsulated in coated and uncoated PCL fibers also confirmed that polydopamine coatings modulate the release rate of loaded payloads. The authors further demonstrate the significant difference of rhodamine 6G adsorption kinetics in water between PCL fibers and polydopamine-coated PCL fibers. Taken together, polydopamine-mediated surface modification to electrospun fibers may be an effective means of fabricating a wide range of bio-inspired nanomaterials with unique properties for use in tissue engineering, drug delivery, and advanced biomedical applications.

  18. Electrospun Gelatin Fibers with a Multiple Release of Antibiotics Accelerate Dermal Regeneration in Infected Deep Burns.

    PubMed

    Chen, Jianmei; Liu, Zongguang; Chen, Maohua; Zhang, Hong; Li, Xiaohong

    2016-09-01

    Electrospun fibers of hydrophilic polymers meet challenges in a rapid degradation of fiber matrices and discharge of antibiotics to comply with requirements of infection control as a dermal regeneration template. In the current study, a pH conversion process is initially developed to ensure fluent electrospinning, an efficient in situ cross-linking of electrospun gelatin fibers with oxidized alginate and simultaneous loading of gentamicin sulfate (GS) and hydrophobic ciprofloxacin into fibers. The dual drug-loaded fibers indicate a complete release of GS during 6 d and a sustained release of ciprofloxacin for over three weeks, and the antibiotics release indicates significant growth inhibitions on Pseudomonas aeruginosa and Staphylococcus epidermidis. The wound healing efficacy is evaluated on a deep burn model infected with 10(8) CFU of P. aeruginosa. Compared with fibers with loaded individual drugs, the concomitant release of GS and ciprofloxacin significantly reduces the bacteria numbers in wound and livers, at around 2.30 × 10(5) and 1.25 × 10(3) CFU after 3 d, respectively. The wound re-epithelization, blood vessel formation, collagen deposition, and tissue remodeling process are accelerated with a complete healing observed after 21 d. This study provides a feasible strategy to design cross-linked hydrophilic fibers with an extended drug release for biomedical applications. PMID:27276339

  19. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Mannarino, Matthew Marchand

    Electrostatic fiber formation, or electrospinning, offers a particularly simple and robust method to create polymeric nanofibers of various sizes and morphologies. In electrospinning, a viscoelastic fluid is charged so that a liquid jet is ejected from the surface of the fluid (typically in the form of a drop supplied by a needle or spinneret) and collected on a grounded plate, creating a nonwoven fiber mat. Modification of the diameter of the fibers as well as the porosity, specific surface area, and mechanical properties of the mat allows one to tailor electrospun mats for specific applications. Despite the widespread and rapidly growing use of electrospinning in the fabrication of novel nanomaterials, there are no simple, universal methods of predicting, a priori, the properties of electrospun fibers from knowledge of the polymer solution properties and electrospinning operating conditions alone. Changing a single fluid or processing parameter can affect the jet and fiber formation through several mechanisms. For example, using a different solvent can change several properties of the electrospinning fluid, such as the dielectric constant, conductivity, surface tension, and solute-solvent interaction. The work in this thesis seeks to develop a simple relation for predicting terminal jet diameter during electrospinning, which accounts for solution viscoelasticity as well as solution conductivity and operating parameters that can be easily measured and controlled. The mechanical and tribological properties of electrospun fiber mats are of paramount importance to their utility as components in a variety of applications. Although some mechanical properties of these mats have been investigated previously, reports of their tribological properties are essentially nonexistent. In this thesis, electrospun nanofiber mats of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) and poly(hexamethylene adipamide) (PA 6,6) are characterized mechanically and tribologically

  20. Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration.

    PubMed

    Lee, Young Jun; Lee, Ji-Hye; Cho, Hyeong-Jin; Kim, Hyung Keun; Yoon, Taek Rim; Shin, Heungsoo

    2013-07-01

    The development of ideal barrier membranes with appropriate porosity and bioactivity is essential for the guidance of new bone formation in orthopedic and craniomaxillofacial surgery. In this study, we developed bioactive electrospun fibers based on poly (lactide-co-glycolic acid) (PLGA) by immobilizing bone-forming peptide 1 (BFP1) derived from the immature region of bone morphogenetic protein 7 (BMP7). We exploited polydopamine chemistry for the immobilization of BFP1; polydopamine (PD) was coated on the electrospun PLGA fibers, on which BFP1 was subsequently immobilized under weakly basic conditions. The immobilization of BFP1 was verified by characterizing the surface chemical composition and quantitatively measured by fluorescamine assay. The immobilization of BPF1 on the electrospun fibers supported the compact distribution of collagen I and the spreading of human mesenchymal stem cells (hMSCs). SEM micrographs demonstrated the aggregation of globular mineral accretions, with significant increases in ALP activity and calcium deposition when hMSCs were cultured on fibers immobilized with BFP1 for 14 days. We then implanted the prepared fibers onto mouse calvarial defects and analyzed bone formation after 2 months. Semi-quantification of bone growth from representative X-ray images showed that the bone area was approximately 20% in the defect-only group, while the group implanted with PLGA fibers showed significant improvements of 44.27 ± 7.37% and 57.59 ± 15.24% in the groups implanted with PD-coated PLGA and with BFP1-coated PLGA, respectively. Based on these results, our approach may be a promising tool to develop clinically-applicable bioactive membranes for guided bone regeneration."

  1. Controlled release of 6-aminonicotinamide from aligned, electrospun fibers alters astrocyte metabolism and dorsal root ganglia neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Schaub, Nicholas J.; Gilbert, Ryan J.

    2011-08-01

    Following central nervous system (CNS) injury, activated astrocytes form a glial scar that inhibits the migration of axons ultimately leading to regeneration failure. Biomaterials developed for CNS repair can provide local delivery of therapeutics and/or guidance mechanisms to encourage cell migration into damaged regions of the brain or spinal cord. Electrospun fibers are a promising type of biomaterial for CNS injury since these fibers can direct cellular and axonal migration while slowly delivering therapy to the injury site. In this study, it was hypothesized that inclusion of an anti-metabolite, 6-aminonicotinamide (6AN), within poly-l-lactic acid electrospun fibers could attenuate astrocyte metabolic activity while still directing axonal outgrowth. Electrospinning parameters were varied to produce highly aligned electrospun fibers that contained 10% or 20% (w/w) 6AN. 6AN release from the fiber substrates occurred continuously over 2 weeks. Astrocytes placed onto drug-releasing fibers were less active than those cultured on scaffolds without 6AN. Dorsal root ganglia placed onto control and drug-releasing scaffolds were able to direct neurites along the aligned fibers. However, neurite outgrowth was stunted by fibers that contained 20% 6AN. These results show that 6AN release from aligned, electrospun fibers can decrease astrocyte activity while still directing axonal outgrowth.

  2. Novel PGS/PCL electrospun fiber mats with patterned topographical features for cardiac patch applications.

    PubMed

    Tallawi, M; Dippold, D; Rai, R; D'Atri, D; Roether, J A; Schubert, D W; Rosellini, E; Engel, F B; Boccaccini, A R

    2016-12-01

    Nano- and micro-scale topographical features play a critical role in the induction and maintenance of various cellular properties and functions, including morphology, adhesion, gene regulation, and cell-to-cell communication. In addition, recent studies have indicated that the structure and function of heart tissue are also sensitive to mechanical cues at the nano- and micro-scale. Although fabrication methods exist for generating topographical features on polymeric scaffolds for cell culture, current techniques, especially those with nano-scale resolution, are typically complex, prohibitively expensive and not accessible to most biology laboratories. Here, we present a simple and tunable fabrication method for the production of patterned electrospun fibers that simulate the complex anisotropic and multi-scale architecture of cardiac tissue, to promote cardiac cell alignment. This method is based on the combination of electrospinning and soft lithography techniques, in which electrospun fibers, based on a blend of poly(glycerol sebacate) and poly(caprolactone), were collected on a patterned Teflon-coated silicon wafer with imprinted topographical features. Different surface topographies were investigated, such as squares and grooves, with constant or different interspatial distances. In vitro cell culture studies successfully demonstrated the alignment of both C2C12 myoblasts and neonatal rat cardiomyocytes on fabricated electrospun patterned surfaces. C2C12 cells were cultured over a period of 72h to study the effect of topographical cues on cell morphology. Cells attached within the first 8h after seeding and after 24h most of the cells started to align responding to the topographical cues. Similarly, cardiomyocytes responded to the topographical features by aligning themselves and by expressing Connexin 43 along cellular junctions. Summarizing, we have developed a new method with the potential to significantly promote cardiac tissue engineering by fabricating

  3. Apatite coating of electrospun PLGA fibers using a PVA vehicle system carrying calcium ions.

    PubMed

    Kim, In Ae; Rhee, Sang-Hoon

    2010-01-01

    A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite.

  4. Electrospun carbon nanofibers for improved electrical conductivity of fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Alarifi, Ibrahim M.; Alharbi, Abdulaziz; Khan, Waseem S.; Asmatulu, Ramazan

    2015-04-01

    Polyacrylonitrile (PAN) was dissolved in dimethylformamide (DMF), and then electrospun to generate nanofibers using various electrospinning conditions, such as pump speeds, DC voltages and tip-to-collector distances. The produced nanofibers were oxidized at 270 °C for 1 hr, and then carbonized at 850 °C in an argon gas for additional 1 hr. The resultant carbonized PAN nanofibers were placed on top of the pre-preg carbon fiber composites as top layers prior to the vacuum oven curing following the pre-preg composite curing procedures. The major purpose of this study is to determine if the carbonized nanofibers on the fiber reinforced composites can detect the structural defects on the composite, which may be useful for the structural health monitoring (SHM) of the composites. Scanning electron microscopy images showed that the electrospun PAN fibers were well integrated on the pre-preg composites. Electrical conductivity studies under various tensile loads revealed that nanoscale carbon fibers on the fiber reinforced composites detected small changes of loads by changing the resistance values. Electrically conductive composite manufacturing can have huge benefits over the conventional composites primarily used for the military and civilian aircraft and wind turbine blades.

  5. Ultrafast and fast bioerodible electrospun fiber mats for topical delivery of a hydrophilic peptide.

    PubMed

    Macri, Lauren K; Sheihet, Larisa; Singer, Adam J; Kohn, Joachim; Clark, Richard A F

    2012-08-10

    Biodegradable polymers that provide localized controlled delivery of therapeutics within hours to days may have an impact on the topical treatment of skin burns. Here we report for the first time the utility of tyrosine-derived polycarbonate terpolymer electrospun fiber mats as tunable drug delivery matrices. "Ultrafast" (<24 h) and "fast"-eroding (<7 days) terpolymers were identified. The degradation kinetics of both terpolymers was similar (<20% of initial molecular weight after 7 days), while erosion was significantly different (<1 and 4 days for ultrafast and fast fibers, respectively). To assess the delivery kinetics, a hydrophilic peptide (P12) was incorporated into the fibers as a model drug. The tunability of polymer composition and its control over release kinetics resulted in significantly different P12 delivery timeframes: total of 9 h ("ultrafast" via polymer erosion) and 4 days ("fast" via diffusion). The biocompatibility of these fibers was confirmed in a porcine excisional wound model by the (i) lack of inflammatory response to the terpolymers and their degradation products, and (ii) normal progression of healing evaluated for 28 days. These results suggest that electrospun tyrosine-derived fibers offer the potential for topical therapies that require ultrafast or fast dose-controlled delivery of the therapeutic.

  6. Electrospun fiber constructs for vocal fold tissue engineering: effects of alignment and elastomeric polypeptide coating

    PubMed Central

    Hughes, Lindsay A.; Gaston, Joel; McAlindon, Katherine; Woodhouse, Kimberly A.

    2014-01-01

    Vocal fold lamina propria extracellular matrix (ECM) is highly aligned and when injured, becomes disorganized with loss of the tissue’s critical biomechanical properties. This study examines the effects of electrospun fiber scaffold architecture and elastin-like polypeptide (ELP4) coating on human vocal fold fibroblast (HVFF) behavior for applications toward tissue engineering the vocal fold lamina propria. Electrospun Tecoflex™ scaffolds were made with aligned and unaligned fibers, and were characterized using scanning electron microscopy and uniaxial tensile testing. ELP4 was successfully adsorbed onto the scaffolds; HVFF were seeded and their viability, proliferation, morphology, and gene expression were characterized. Aligned and unaligned scaffolds had initial elastic moduli of ~14 MPa, ~5 MPa and ~0.3 MPa, ~0.6 MPa in the preferred and cross-preferred directions, respectively. Scaffold topography had an effect on the orientation of the cells, with HVFF seeded on aligned scaffolds having a significantly different (p < 0.001) angle of orientation than HVFF cultured on unaligned scaffolds. This same effect and significant difference (p < 0.001) was seen on aligned and unaligned scaffolds coated with ELP4. Scaffold alignment and ELP4 coating impacted ECM gene expression. ELP4 coating, and aligned scaffolds upregulated elastin synthesis when tested on day 7 without a concomitant upregulation of collagen III synthesis. Collectively, results indicate that aligned electrospun scaffolds and ELP4 coating, are promising candidates in the development of biodegradeable vocal fold lamina propria constructs. PMID:25462850

  7. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  8. Structural, electrical, mechanical and thermal properties of electrospun fibers of poly(lactic acid)/polyaniline blend.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conducting electrospun fiber mats based on PLA and PAni blends were obtained with average diameter values between 87 and 1 006nm with PAni quantities from 0 to 5.6 wt.-%. Structural characteristics of fiber mats were compared to cast films with the same amount of PAni and studied by SEM, SAXS, and A...

  9. Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity

    PubMed Central

    Lu, Ping; Xia, Younan

    2013-01-01

    This article presents a simple and reliable method for generating polystyrene (PS) yarns composed of bundles of nanofibrils by using a proper combination of solvent and relative humidity. We elucidated the mechanism responsible for the formation of this new morphology by systematically investigating the molecular interactions among the polymer, solvent(s), and water vapor. We demonstrated that vapor-induced phase separation played a pivotal role in generating the yarns with a unique structure. Furthermore, we discovered that the low vapor pressure of N,N-dimethylformamide (DMF) was critical to the evolution of pores in the interiors. On the contrary, the relatively high vapor pressure of tetrahydrofuran (THF) hindered the formation of interior pores but excelled in creating a rough surface. In all cases, our results clearly indicate that the formation of either internal porosity or surface roughness required the presence of water vapor, a nonsolvent of the polymer, at a proper level of relative humidity. The exact morphology or pore structure was dependent on the speed of evaporation for the solvent(s) (DMF, THF, and their mixtures), as well as the inter-diffusion and penetration of the nonsolvent (water) and solvent(s). Our findings can serve as guidelines for the preparation of fibers with desired porosity both internally and externally through electrospinning. PMID:23530752

  10. Ionic liquid assisted electrospun cellulose acetate fibers for aqueous removal of triclosan.

    PubMed

    Zhang, Gong; Sun, Meng; Liu, Yang; Liu, Huijuan; Qu, Jiuhui; Li, Jinghong

    2015-02-10

    The cellulose acetate (CA) membrane prepared via electrospun was innovatively utilized as fiber-adsorbent for the separation of aqueous triclson (TCS). It was found that the presence of the room temperature ionic liquid (RTIL) in the precursor amplified electric force toward the CA-solution, thereby benefiting the formation of CA fibers. The as-spun CA fibers exhibit excellent adsorptive performance toward TCS, with fast adsorption kinetics, and the maximum adsorption capacity achieved to 797.7 mg g(-1), which established much better performance in contrast to conventional adsorbents. We proposed that the adsorption of TCS onto CA fibers was primarily facilitated by the hydrogen bonding between the abundant carbonyl, hydroxyl groups of CA surface, and the hydrogen atoms of phenol functional groups in TCS molecular.

  11. Electrospun polyacrylonitrile nanocomposite fibers reinforced with iron nitrate nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohammed, Asif

    The methodology of preparing pure Polyacrylonitrile (PAN) fibers and magnetic PAN/FeNO3 composite Nanofibers is the traditional electrospinning process where fibers of diameter ranging less than 100 nm and larger lengths can be sophisticatedly produced on laboratory bench. With varying properties of polymer concentration, voltage and other parameters pure PAN fibers and those loaded with FeNO3 are produced. Analysis of those prepared fibers has been done through a series of experiments like SEM, FITR and X-ray Diffraction. SEM analysis explains the formation of fibers and leads to the selection of best possible ones for future methods of rheological and TGA analysis. In the past where similar contributions have been done for the fibers with FeO and Fe3O4 and the Nanoparticles, the same mentioned procedure replaces them with FeNO3. On the whole, uniform bead-less fibers are obtained and their behaviors' are studied as well. Also, graphical information for correlating the size of fibers and their polymer concentrations has been obtained. TGA analysis for recording their stability under different thermal conditions is reported. Anilining methods using microwave equipment are done instead of conventional ones.

  12. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G.

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  13. The Potential to Improve Cell Infiltration in Composite Fiber-Aligned Electrospun Scaffolds by the Selective Removal of Sacrificial Fibers

    PubMed Central

    Baker, Brendon M.; Gee, Albert O.; Metter, Robert B.; Nathan, Ashwin S.; Marklein, Ross L.; Burdick, Jason A.; Mauck, Robert L.

    2008-01-01

    Aligned electrospun scaffolds are a promising tool for engineering fibrous musculoskeletal tissues as they reproduce the mechanical anisotropy of these tissues and can direct ordered neo-tissue formation. However, these scaffolds suffer from a slow cellular infiltration rate, likely due in part to their dense fiber packing. We hypothesized that cell ingress could be expedited in scaffolds by increasing porosity, while at the same time preserving overall scaffold anisotropy. To test this hypothesis, poly(ε-caprolactone) (a slow-degrading polyester) and poly(ethylene oxide) (a water-soluble polymer) were co-electrospun from two separate spinnerets to form dual-polymer composite fiber-aligned scaffolds. Adjusting fabrication parameters produced aligned scaffolds with a full range of sacrificial (PEO) fiber contents. Tensile properties of scaffolds were a function of the ratio of PCL to PEO in the composite scaffolds, and were altered in a predictable fashion with removal of the PEO component. When seeded with mesenchymal stem cells (MSCs), increases in the starting sacrificial fraction (and porosity) improved cell infiltration and distribution after three weeks in culture. In pure PCL scaffolds, cells lined the scaffold periphery, while scaffolds containing >50% sacrificial PEO content had cells present throughout the scaffold. These findings indicate that cell infiltration can be expedited in dense fibrous assemblies with the removal of sacrificial fibers. This strategy may enhance in vitro and in vivo formation and maturation of a functional constructs for fibrous tissue engineering. PMID:18313138

  14. Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application.

    PubMed

    Somvipart, Siraporn; Kanokpanont, Sorada; Rangkupan, Rattapol; Ratanavaraporn, Juthamas; Damrongsakkul, Siriporn

    2013-04-01

    Thai silk fibroin and gelatin are attractive biomaterials for tissue engineering and controlled release applications due to their biocompatibility, biodegradability, and bioactive properties. The development of electrospun fiber mats from silk fibroin and gelatin were reported previously. However, burst drug release from such fiber mats remained the problem. In this study, the formation of beads on the fibers aiming to be used for the sustained release of drug was of our interest. The beaded fiber mats were fabricated using electrospinning technique by controlling the solution concentration, weight blending ratio of Thai silk fibroin/gelatin blend, and applied voltage. It was found that the optimal conditions including the solution concentration and the weight blending ratio of Thai silk fibroin/gelatin at 8-10% (w/v) and 70/30, respectively, with the applied voltage at 18 kV provided the fibers with homogeneous formation of beads. Then, the beaded fiber mats obtained were crosslinked by the reaction of carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS). Methylene blue as a model active compound was loaded on the fiber mats. The release test of methylene blue from the beaded fiber mats was carried out in comparison to that of the smooth fiber mats without beads. It was found that the beaded fiber mats could prolong the release of methylene blue, comparing to the smooth fiber mats without beads. This was possibly due to the beaded fiber mats that would absorb and retain higher amount of methylene blue than the fiber mats without beads. Thai silk fibroin/gelatin beaded fiber mats were established as an effective carrier for the controlled release applications.

  15. Creep anomaly in electrospun fibers made of globular proteins

    NASA Astrophysics Data System (ADS)

    Regev, Omri; Arinstein, Arkadii; Zussman, Eyal

    2013-12-01

    The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force.

  16. Creep anomaly in electrospun fibers made of globular proteins.

    PubMed

    Regev, Omri; Arinstein, Arkadii; Zussman, Eyal

    2013-12-01

    The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force. PMID:24483479

  17. Electrospun Nanofiber Coating of Fiber Materials: A Composite Toughening Approach

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Roberts, Gary D.

    2012-01-01

    Textile-based composites could significantly benefit from local toughening using nanofiber coatings. Nanofibers, thermoplastic or otherwise, can be applied to the surface of the fiber tow bundle, achieving toughening of the fiber tow contact surfaces, resulting in tougher and more damage-resistant/tolerant composite structures. The same technique could also be applied to other technologies such as tape laying, fiber placement, or filament winding operations. Other modifications to the composite properties such as thermal and electrical conductivity could be made through selection of appropriate nanofiber material. Control of the needle electric potential, precursor solution, ambient temperature, ambient humidity, airflow, etc., are used to vary the diameter and nanofiber coating morphology as needed. This method produces a product with a toughening agent applied to the fiber tow or other continuous composite precursor material where it is needed (at interfaces and boundaries) without interfering with other composite processing characteristics.

  18. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation.

    PubMed

    Cui, Wenguo; Li, Xiaohong; Zhu, Xinli; Yu, Guo; Zhou, Shaobing; Weng, Jie

    2006-05-01

    This study was aimed at assessing the potential use of electrospun fibers as drug delivery vehicles with focus on the different diameters and drug contents to control drug release and polymer fiber degradation. A drug-loaded solvent-casting polymer film was made with an average thickness of 100 microm for comparative purposes. DSC analysis indicated that electrospun fibers had a lower T(g) but higher transition enthalpy than solvent-casting polymer film due to the inner stress and high degree of alignment and orientation of polymer chains caused by the electrospinning process. Inoculation of paracetanol led to a further slight decrease in the T(g) and transition enthalpy. An in vitro drug release study showed that a pronounced burst release or steady release phase was initially observed followed by a plateau or gradual release during the rest time. Fibers with a larger diameter exhibited a longer period of nearly zero order release, and higher drug encapsulation led to a more significant burst release after incubation. In vitro degradation showed that the smaller diameter and higher drug entrapment led to more significant changes of morphologies. The electrospun fiber mat showed almost no molecular weight reduction, but mass loss was observed for fibers with small and medium size, which was characterized with surface erosion and inconsistent with the ordinarily polymer degrading form. Further wetting behavior analysis showed that the high water repellent property of electrospun fibers led to much slower water penetration into the fiber mat, which may contribute to the degradation profiles of surface erosion. The specific degradation profile and adjustable drug release behaviors by variation of fiber characteristics made the electrospun nonwoven mat a potential drug delivery system rather than polymer films and particles. PMID:16677047

  19. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation

    NASA Astrophysics Data System (ADS)

    Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.

    2014-08-01

    Objective. Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. Approach. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Main Results. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Significance. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.

  20. Neurite Outgrowth On Electrospun PLLA Fibers Is Enhanced By Exogenous Electrical Stimulation

    PubMed Central

    Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.

    2014-01-01

    Objective Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from DRG neurons than the presence of electrical stimulation or aligned topography alone. Approach To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide (PLLA) films or electrospun fibers (2 μm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Results Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurite, indicating topographical cues are responsible to guide neurite extension. Significance Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury. PMID:24891494

  1. Electrospun Poly(ε-caprolactone)/Polyhedral Oligomeric Silsesquioxane-Based Copolymer Blends: Evolution of Fiber Internal Structures.

    PubMed

    Bauer, Adam J P; Wu, Yitian; Li, Bingbing

    2016-05-01

    This study reports the structural transition of electrospun poly(ε-caprolactone) (PCL)/poly[(propylmethacryl-heptaisobutyl-polyhedral oligomeric silsesquioxane)-co-(methyl meth-acrylate)] (POSS-MMA) blends, from PCL-rich fibers, to bicontinuous PCL core/POSS-MMA shell fibers, to POSS-MMA-rich fibers with a discontinuous PCL inner phase. A ternary phase diagram depicting the electrospinnability of PCL/POSS-MMA solutions is constructed by evaluating the morphological features of fibers electrospun from solutions with various concentrations and PCL/POSS-MMA blend ratios. X-ray diffraction, Raman spectroscopy, and differential scanning calorimetry are further used to characterize the electrospun PCL/POSS-MMA hybrid fibers. These physicochemical characterization results are thoroughly discussed to understand the internal structures of the hybrid fibers, which are directly correlated to the phase separation behavior of the electrospun solutions. The current study provides further insight into the complex phase behavior of POSS-copolymer-based systems, which hold great potential for a broad spectrum of biomedical applications. PMID:26782272

  2. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

  3. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.

    PubMed

    Sóti, Péter Lajos; Weiser, Diana; Vigh, Tamás; Nagy, Zsombor Kristóf; Poppe, László; Marosi, György

    2016-03-01

    Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150). PMID:26724947

  4. Thickness-controllable electrospun fibers promote tubular structure formation by endothelial progenitor cells

    PubMed Central

    Hong, Jong Kyu; Bang, Ju Yup; Xu, Guan; Lee, Jun-Hee; Kim, Yeon-Ju; Lee, Ho-Jun; Kim, Han Seong; Kwon, Sang-Mo

    2015-01-01

    Controlling the thickness of an electrospun nanofibrous scaffold by altering its pore size has been shown to regulate cell behaviors such as cell infiltration into a three-dimensional (3D) scaffold. This is of great importance when manufacturing tissue-engineering scaffolds using an electrospinning process. In this study, we report the development of a novel process whereby additional aluminum foil layers were applied to the accumulated electrospun fibers of an existing aluminum foil collector, effectively reducing the incidence of charge buildup. Using this process, we fabricated an electrospun scaffold with a large pore (pore size >40 μm) while simultaneously controlling the thickness. We demonstrate that the large pore size triggered rapid infiltration (160 μm in 4 hours of cell culture) of individual endothelial progenitor cells (EPCs) and rapid cell colonization after seeding EPC spheroids. We confirmed that the 3D, but not two-dimensional, scaffold structures regulated tubular structure formation by the EPCs. Thus, incorporation of stem cells into a highly porous 3D scaffold with tunable thickness has implications for the regeneration of vascularized thick tissues and cardiac patch development. PMID:25709441

  5. Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications.

    PubMed

    Valente, T A M; Silva, D M; Gomes, P S; Fernandes, M H; Santos, J D; Sencadas, V

    2016-02-10

    Medically approved sterility methods should be a major concern when developing a polymeric scaffold, mainly when commercialization is envisaged. In the present work, poly(lactic acid) (PLA) fiber membranes were processed by electrospinning with random and aligned fiber alignment and sterilized under UV, ethylene oxide (EO), and γ-radiation, the most common ones for clinical applications. It was observed that UV light and γ-radiation do not influence fiber morphology or alignment, while electrospun samples treated with EO lead to fiber orientation loss and morphology changing from cylindrical fibers to ribbon-like structures, accompanied to an increase of polymer crystallinity up to 28%. UV light and γ-radiation sterilization methods showed to be less harmful to polymer morphology, without significant changes in polymer thermal and mechanical properties, but a slight increase of polymer wettability was detected, especially for the samples treated with UV radiation. In vitro results indicate that both UV and γ-radiation treatments of PLA membranes allow the adhesion and proliferation of MG 63 osteoblastic cells in a close interaction with the fiber meshes and with a growth pattern highly sensitive to the underlying random or aligned fiber orientation. These results are suggestive of the potential of both γ-radiation sterilized PLA membranes for clinical applications in regenerative medicine, especially those where customized membrane morphology and fiber alignment is an important issue. PMID:26756809

  6. Ofloxacin Loaded Electrospun Fibers for Ocular Drug Delivery: Effect of Formulation Variables on Fiber Morphology and Drug Release.

    PubMed

    Karataş, Ayşegül; Algan, Aslihan Hilal; Pekel-Bayramgil, Nursel; Turhan, Fatih; Altanlar, Nurten

    2016-01-01

    Ofloxacin (OFL) loaded poly(ε-caprolactone) (PCL) and PCL: poly(butylene succinate) PBS fibers as a drug delivery system in the treatment of ocular infections were prepared by electrospinning. In particular, the effect of some formulation variables including polymer:drug ratio (9:1, 8:2 and 7:3 w/w), solvent systems like dichloromethane (DCM), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMAc) and dimethylsulfoxide (DMSO), polymer blends of PCL:PBS at 80:20, 60:40 and 40:60 ratios on fiber morphology, fiber size were investigated. The morphology and diameter of the electrospun fibers were investigated by scanning electron microscopy (SEM) images also the thermal properties were evaluated by differential scanning calorimetry (DSC). The drug release behaviour from fibers and in vitro antibacterial activity were also studied. It was noticed that the average fiber diameter decreased with decreasing polymer amount in initial composition meanwhile the release of drug increased with increasing amount of drug in formulations. Solvent system of DCM:DMF at 80:20 ratio improved fiber morphology and resulted in a reduction in fiber diameter. It was found that smooth surface, flexible fibers with uniform morphology were obtained with 80:20 ratio of PCL:PBS compositions. All fibers showed a burst release of OFL. The initial amount of the released OFL was found to vary as a function of PCL:OFL ratio and polymer composition in the fiber. The microbiological activity of optimized formulation was evaluated using P. aeruginosa, S. epidermidis, S. Aureus and E. coli strains and the results of this study clearly demonstrated that freely released OFL from fibers inhibited the growth of the tested bacteria. The process of electrospinning had no adverse effect on the activity of incorporated drug in fibers.

  7. Ofloxacin Loaded Electrospun Fibers for Ocular Drug Delivery: Effect of Formulation Variables on Fiber Morphology and Drug Release.

    PubMed

    Karataş, Ayşegül; Algan, Aslihan Hilal; Pekel-Bayramgil, Nursel; Turhan, Fatih; Altanlar, Nurten

    2016-01-01

    Ofloxacin (OFL) loaded poly(ε-caprolactone) (PCL) and PCL: poly(butylene succinate) PBS fibers as a drug delivery system in the treatment of ocular infections were prepared by electrospinning. In particular, the effect of some formulation variables including polymer:drug ratio (9:1, 8:2 and 7:3 w/w), solvent systems like dichloromethane (DCM), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMAc) and dimethylsulfoxide (DMSO), polymer blends of PCL:PBS at 80:20, 60:40 and 40:60 ratios on fiber morphology, fiber size were investigated. The morphology and diameter of the electrospun fibers were investigated by scanning electron microscopy (SEM) images also the thermal properties were evaluated by differential scanning calorimetry (DSC). The drug release behaviour from fibers and in vitro antibacterial activity were also studied. It was noticed that the average fiber diameter decreased with decreasing polymer amount in initial composition meanwhile the release of drug increased with increasing amount of drug in formulations. Solvent system of DCM:DMF at 80:20 ratio improved fiber morphology and resulted in a reduction in fiber diameter. It was found that smooth surface, flexible fibers with uniform morphology were obtained with 80:20 ratio of PCL:PBS compositions. All fibers showed a burst release of OFL. The initial amount of the released OFL was found to vary as a function of PCL:OFL ratio and polymer composition in the fiber. The microbiological activity of optimized formulation was evaluated using P. aeruginosa, S. epidermidis, S. Aureus and E. coli strains and the results of this study clearly demonstrated that freely released OFL from fibers inhibited the growth of the tested bacteria. The process of electrospinning had no adverse effect on the activity of incorporated drug in fibers. PMID:26521656

  8. Local Mechanical Properties of Electrospun Fibers Correlate to Their Internal Nanostructure

    PubMed Central

    2013-01-01

    The properties of polymeric nanofibers can be tailored and enhanced by properly managing the structure of the polymer molecules at the nanoscale. Although electrospun polymer fibers are increasingly exploited in many technological applications, their internal nanostructure, determining their improved physical properties, is still poorly investigated and understood. Here, we unravel the internal structure of electrospun functional nanofibers made by prototype conjugated polymers. The unique features of near-field optical measurements are exploited to investigate the nanoscale spatial variation of the polymer density, evidencing the presence of a dense internal core embedded in a less dense polymeric shell. Interestingly, nanoscale mapping the fiber Young’s modulus demonstrates that the dense core is stiffer than the polymeric, less dense shell. These findings are rationalized by developing a theoretical model and simulations of the polymer molecular structural evolution during the electrospinning process. This model predicts that the stretching of the polymer network induces a contraction of the network toward the jet center with a local increase of the polymer density, as observed in the solid structure. The found complex internal structure opens an interesting perspective for improving and tailoring the molecular morphology and multifunctional electronic and optical properties of polymer fibers. PMID:24090350

  9. Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications.

    PubMed

    Kontogiannopoulos, Konstantinos N; Assimopoulou, Andreana N; Tsivintzelis, Ioannis; Panayiotou, Costas; Papageorgiou, Vassilios P

    2011-05-16

    Alkannin, shikonin (A/S) and their derivatives are naturally occurring hydroxynaphthoquinones with a well-established spectrum of wound healing, antimicrobial, anti-inflammatory, antioxidant and antitumor activity. Clinical studies over the years revealed that A/S derivatives-based wound healing preparations (such as HELIXDERM(®)) are among a very small group of therapeutics that modulate both the inflammatory and proliferative phases of wound healing and present significant tissue regenerative activity. The purpose of the present work was to combine the biological properties of A/S and the advantages of electrospun meshes to prepare a potent topical/transdermal biomaterial for A/S. Four biocompatible polymers (cellulose acetate, poly(L-lactide), poly(lactide-co-glycolide) LA/GA:50/50 and 75/25) were used for the first time, to produce electrospun fiber mats containing either shikonin or A/S mixture in various amounts. Both drugs were effectively loaded into the above biomaterials. The incorporation of drugs did not considerably affect fibers morphology and their mean diameter size varied from 315 to 670 nm. High drug entrapment efficiencies (ranged from 74% to 95%) and appropriate release profiles were achieved, that render these fibers as potential A/S topical/transdermal wound healing dressings. Given the multifunctional activity of the natural products alkannins and shikonins, their consideration as bioactive constituents for tissue engineering scaffolds seems a promising strategy for repairing and regenerating tissues and mainly skin.

  10. Enhanced emission efficiency in electrospun polyfluorene copolymer fibers

    NASA Astrophysics Data System (ADS)

    Morello, Giovanni; Polini, Alessandro; Girardo, Salvatore; Camposeo, Andrea; Pisignano, Dario

    2013-05-01

    We report on the unique emission features of light-emitting fibers made of a prototype conjugated polymer, namely, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1'-3}-thiadiazole)] (F8BT), realized by electrospinning with diameters in the range of 500-1000 nm. The fibers display emission polarized along their axis, evidencing a favoured alignment of the polymer molecules. Emission efficiency and time resolved measurements reveal an enhancement of both the quantum efficiency and the radiative rate (up to 22.5%) of the fibers compared to spin-coated films, shedding more light on their potential as miniaturized photon sources in optoelectronic devices requiring high recombination rates.

  11. Controlled Antibiotics Release System through Simple Blended Electrospun Fibers for Sustained Antibacterial Effects.

    PubMed

    Zhang, Zixin; Tang, Jianxiong; Wang, Heran; Xia, Qinghua; Xu, Shanshan; Han, Charles C

    2015-12-01

    Implantation of sustained antibacterial system after abdominal surgery could effectively prevent complicated intra-abdominal infection. In this study, a simple blended electrospun membrane made of poly(D,L-lactic-co-glycolide) (PLGA)/poly(dioxanone) (PDO)/Ciprofloxacin hydrochloride (CiH) could easily result in approximately linear drug release profile and sustained antibacterial activity against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The addition of PDO changed the stack structure of PLGA, which in turn influenced the fiber swelling and created drug diffusion channels. It could be a good candidate for reducing postoperative infection or be associated with other implant to resist biofilm formation. PMID:26596498

  12. Electrospun nanostructured polystyrene as a new coating material for solid-phase microextraction: Application to separation of multipesticides from honey samples.

    PubMed

    Zali, Sara; Jalali, Fahimeh; Es-Haghi, Ali; Shamsipur, Mojtaba

    2015-10-01

    For the first time, electrospun polystyrene nanostructure was used as coating material on a stainless steel wire for solid-phase microextraction. Surface morphology of the coating was studied by scanning electron microscopy which showed the formation of nanofibers on the wire. The coating was stable after conditioning at 250°C for 2h. The efficiency of the polystyrene coating was approved by extracting a mixture of seven pesticides (polar and apolar) from head space of honey samples followed by gas chromatography-mass spectrometry. The important parameters affecting extraction efficiency such as, extraction time and temperature, desorption conditions, agitation rate and ionic strength were investigated. Under optimized experimental conditions, detection limits for the investigated pesticides ranged from 0.1-2μgL(-1). The intra- and inter-day precisions of the developed method were 3.5-17.6% and 10.0-25.0%, respectively. Finally, all the investigated pesticides were spiked to honey samples and extracted by the proposed method. The accuracies of determination of all the species were found to be in the range of 81-125%. PMID:26363374

  13. Electrospun nanostructured polystyrene as a new coating material for solid-phase microextraction: Application to separation of multipesticides from honey samples.

    PubMed

    Zali, Sara; Jalali, Fahimeh; Es-Haghi, Ali; Shamsipur, Mojtaba

    2015-10-01

    For the first time, electrospun polystyrene nanostructure was used as coating material on a stainless steel wire for solid-phase microextraction. Surface morphology of the coating was studied by scanning electron microscopy which showed the formation of nanofibers on the wire. The coating was stable after conditioning at 250°C for 2h. The efficiency of the polystyrene coating was approved by extracting a mixture of seven pesticides (polar and apolar) from head space of honey samples followed by gas chromatography-mass spectrometry. The important parameters affecting extraction efficiency such as, extraction time and temperature, desorption conditions, agitation rate and ionic strength were investigated. Under optimized experimental conditions, detection limits for the investigated pesticides ranged from 0.1-2μgL(-1). The intra- and inter-day precisions of the developed method were 3.5-17.6% and 10.0-25.0%, respectively. Finally, all the investigated pesticides were spiked to honey samples and extracted by the proposed method. The accuracies of determination of all the species were found to be in the range of 81-125%.

  14. Electrospun TiO(2) fiber composite photoelectrodes for water splitting.

    PubMed

    Regonini, D; Teloeken, A C; Alves, A K; Berutti, F A; Gajda-Schrantz, K; Bergmann, C P; Graule, T; Clemens, F

    2013-11-27

    This work has focused on the development of electrospun TiO2 fiber composite photoelectrodes for hydrogen production by water splitting. For comparison, similar photoelectrodes were also developed using commercial TiO2 (Aeroxide P25) nanoparticles (NPs). Dispersions of either fibers or P25 NPs were used to make homogenous TiO2 films on fluorine-doped SnO2 (FTO) glass substrates by a doctor blade (DB) technique. Scanning electron microscopy (SEM) analysis revealed a much lower packing density of the DB fibers, with respect to DB-P25 TiO2 NPs; this was also directly reflected by the higher photocurrent measured for the NPs when irradiating the photoelectrodes at a light intensity of 1.5AM (1 sun, 1000 W/m(2)). For a better comparison of fibers vs. NPs, composite photoelectrodes by dip-coating (onto FTO) TiO2 sol-gel (SG) matrixes containing an equal amount (5 or 20 wt %) of either fibers or P25 NPs were also investigated. It emerged that the photoactivity of the fibers was significantly higher. For composites containing 5 wt % TiO2 fibers, a photocurrent of 0.5 mA/cm(2) (at 0.23 V vs Ag/AgCl) was measured, whereas 5 wt % P25 NPs only provided 0.2 mA/cm(2). When increasing to 20 wt % fibers or NPs, the photocurrent decreased, because of the formation of microcracks in the photoelectrodes, because of the shrinkage of the sol-gel. The high photoactivity of the fiber-based electrodes could be confirmed by incident photon to current efficiency (IPCE) measurements. Remarkably, the IPCE of composites containing 5 wt % fibers was between 35% and 40% in the region of 380-320 nm, and when accounting for transmission/reflection losses, the absorbed photon to current efficiency (APCE) was consistently over 60% between 380 nm and 320 nm. The superior photoactivity is attributed to the enhanced electron transport in the electrospun fibers, with respect to P25 NPs. According to this study, it is clear that the electronic connectivity ensured by the sol-gel also

  15. Optimization of fully aligned bioactive electrospun fibers for "in vitro" nerve guidance.

    PubMed

    Cirillo, Valentina; Guarino, Vincenzo; Alvarez-Perez, Marco Antonio; Marrese, Marica; Ambrosio, Luigi

    2014-10-01

    Complex architecture of natural tissues such as nerves requires the use of multifunctional scaffolds with peculiar topological and biochemical signals able to address cell behavior towards specific events at the cellular (microscale) and macromolecular (nanoscale) level. In this context, the electrospinning technique is useful to generate fiber assemblies having peculiar fiber diameters at the nanoscale and patterned by unidirectional ways, to facilitate neurite extension via contact guidance. Following a bio-mimetic approach, fully aligned polycaprolactone fibers blended with gelatin macromolecules have been fabricated as potential bioactive substrate for nerve regeneration. Morphological and topographic aspects of electrospun fibers assessed by SEM/AFM microscopy supported by image analyses elaboration allow estimating an increase of fully aligned fibers from 5 to 39% as collector rotating rate increases from 1,000 to 3,000 rpm. We verify that fully alignment of fibers positively influences in vitro response of hMSC and PC-12 cells in neurogenic way. Immunostaining images show that the presence of topological defects, i.e., kinks--due to more frequent fiber crossing--in the case of randomly organized fiber assembly concurs to interfere with proper neurite outgrowth. On the contrary, fully aligned fibers without kinks offer a more efficient contact guidance to direct the orientation of nerve cells along the fibers respect to randomly organized ones, promoting a high elongation of neurites at 7 days and the formation of bipolar extensions. So, this confirms that the topological cue of fully alignment of fibers elicits a favorable environment for nerve regeneration.

  16. Hydrolyzed Poly(acrylonitrile) Electrospun Ion-Exchange Fibers

    PubMed Central

    Jassal, Manisha; Bhowmick, Sankha; Sengupta, Sukalyan; Patra, Prabir K.; Walker, Douglas I.

    2014-01-01

    Abstract A potential ion-exchange material was developed from poly(acrylonitrile) fibers that were prepared by electrospinning followed by alkaline hydrolysis (to convert the nitrile group to the carboxylate functional group). Characterization studies performed on this material using X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier-Transform infra-red spectroscopy, and ion chromatography confirmed the presence of ion-exchange functional group (carboxylate). Optimum hydrolysis conditions resulted in an ion-exchange capacity of 2.39 meq/g. Ion-exchange fibers were used in a packed-bed column to selectively remove heavy-metal cation from the background of a benign, competing cation at a much higher concentration. The material can be efficiently regenerated and used for multiple cycles of exhaustion and regeneration. PMID:24963270

  17. In vitro biodegradation of designed tubular scaffolds of electrospun protein/polyglyconate blend fibers.

    PubMed

    Zhang, Xing; Thomas, Vinoy; Vohra, Yogesh K

    2009-04-01

    Electrospun polyglyconate (Maxon) and its blends with proteins such as gelatin and elastin, with a spatially designed layer structure, were prepared as potential scaffolds for vascular tissue engineering. In vitro biodegradation of the electrospun tubular protein/Maxon scaffolds in phosphate buffered saline (pH = 7.3) was studied for the first time. The biodegradation is manifested by uptake of the PBS medium by the hydrophilic proteins and also by the mass loss due to the removal of degraded fragments and uncrosslinked proteins from the matrices. The effect of degradation on the structure-property relations was evaluated by IR, XRD, and DSC analyses of the aged scaffolds. The degradation of amorphous phase of Maxon in the early stages of aging has resulted in an increase in the crystallinity of the polymer. SEM analysis indicated a significant change in nanofiber morphology and fiber-breaking. The mass loss and fiber breaking have negatively impacted the mechanical properties and the effect was maximum at 15-20 days of aging. The scaffold containing low molecular weight buffer soluble elastin revealed relatively better degradation properties compared to that containing high molecular weight buffer insoluble elastin.

  18. Fabrication of Gelatin-Based Electrospun Composite Fibers for Anti-Bacterial Properties and Protein Adsorption

    PubMed Central

    Gao, Ya; Wang, Yingbo; Wang, Yimin; Cui, Wenguo

    2016-01-01

    A major goal of biomimetics is the development of chemical compositions and structures that simulate the extracellular matrix. In this study, gelatin-based electrospun composite fibrous membranes were prepared by electrospinning to generate bone scaffold materials. The gelatin-based multicomponent composite fibers were fabricated using co-electrospinning, and the composite fibers of chitosan (CS), gelatin (Gel), hydroxyapatite (HA), and graphene oxide (GO) were successfully fabricated for multi-function characteristics of biomimetic scaffolds. The effect of component concentration on composite fiber morphology, antibacterial properties, and protein adsorption were investigated. Composite fibers exhibited effective antibacterial activity against Staphylococcus aureus and Escherichia coli. The study observed that the composite fibers have higher adsorption capacities of bovine serum albumin (BSA) at pH 5.32–6.00 than at pH 3.90–4.50 or 7.35. The protein adsorption on the surface of the composite fiber increased as the initial BSA concentration increased. The surface of the composite reached adsorption equilibrium at 20 min. These results have specific applications for the development of bone scaffold materials, and broad implications in the field of tissue engineering. PMID:27775645

  19. Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform

    PubMed Central

    Ayres, Chantal; Bowlin, Gary L.; Henderson, Scott C.; Taylor, Leander; Shultz, Jackie; Alexander, John; Telemeco, Todd A.; Simpson, David G.

    2010-01-01

    We describe the use of the fast Fourier transform (FFT) in the measurement of anisotropy in electrospun scaffolds of gelatin as a function of the starting conditions. In electrospinning, fiber alignment and overall scaffold anisotropy can be manipulated by controlling the motion of the collecting mandrel with respect to the source electrospinning solution. By using FFT to assign relative alignment values to an electrospun matrix it is possible to systematically evaluate how different processing variables impact the structure and material properties of a scaffold. Gelatin was suspended at varying concentrations (80, 100, 130, 150 mg/ml) and electrospun from 2,2,2 trifluoroethanol onto rotating mandrels (200–7000 RPM). At each starting concentration, fiber diameter remained constant over a wide range of mandrel RPM. Scaffold anisotropy developed as a function of fiber diameter and mandrel RPM. The induction of varying degrees of anisotropy imparted distinctive material properties to the electrospun scaffolds. The FFT is a rapid method for evaluating fiber alignment in tissue-engineering materials. PMID:16859744

  20. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    PubMed

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices. PMID:26650731

  1. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    PubMed

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices.

  2. Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Pant, Hem Raj; Kim, Han Joo; Bhatt, Lok Ranjan; Joshi, Mahesh Kumar; Kim, Eun Kyo; Kim, Jeong In; Abdal-hay, Abdalla; Hui, K. S.; Kim, Cheol Sang

    2013-11-01

    In this study, we describe the preparation and characterizations of chitin butyrate (CB) coated nylon-6 nanofibers using single-spinneret electrospinning of blends solution. The physicochemical properties of nylon-6 composite fibers with different proportions of CB to nylon-6 were determined using FE-SEM, TEM, FT-IR spectroscopy, and water contact angle measurement. FE-SEM and TEM images revealed that the nylon-6 and CB were immiscible in the as-spun nanofibers, and phase separated nanofiber morphology becomes more pronounced with increasing amounts of CB. The bone formation ability of composite fibers was evaluated by incubating in biomimetic simulated body fluid. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, osteoblast cells were seeded on the matrix. Results suggest that the deposition of CB layer on the surface of nylon-6 could increase its cell compatibility and bone formation ability. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in hard tissue engineering.

  3. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery

    PubMed Central

    Krogstad, Emily A.; Woodrow, Kim A.

    2014-01-01

    Electrospun fibers containing antiretroviral drugs have recently been investigated as a new dosage form for topical microbicides against HIV-1. However, little work has been done to evaluate the scalability of the fiber platform for pharmaceutical production of medical fabrics. Scalability and cost-effectiveness are essential criteria in developing fibers as a practical platform for use as a microbicide and for translation to clinical use. To address this critical gap in the development of fiber-based vaginal dosage forms, we assessed the scale-up potential of drug-eluting fibers delivering tenofovir (TFV), a nucleotide reverse transcriptase inhibitor and lead compound for topical HIV-1 chemoprophylaxis. Here we describe the process of free-surface electrospinning to scale up production of TFV fibers, and evaluate key attributes of the finished products such as fiber morphology, drug crystallinity, and drug loading and release kinetics. Poly(vinyl alcohol) (PVA) containing up to 60 wt% TFV was successfully electrospun into fibers using a nozzle-free production-scale electrospinning instrument. Actual TFV loading in fibers increased with increasing weight percent TFV in solution, and encapsulation efficiency was improved by maintaining TFV solubility and preventing drug sedimentation during batch processing. These results define important solution and processing parameters for scale-up production of TFV drug-eluting fibers by wire electrospinning, which may have significant implications for pharmaceutical manufacturing of fiber-based medical fabrics for clinical use. PMID:25169075

  4. Immobilized laminin concentration gradients on electrospun fiber scaffolds for controlled neurite outgrowth.

    PubMed

    Zander, Nicole E; Beebe, Thomas P

    2014-03-01

    Neuronal process growth is guided by extrinsic environmental cues such as extracellular matrix (ECM) proteins. Recent reports have described that the growth cone extension is superior across gradients of the ECM protein laminin compared to growth across uniformly distributed laminin. In this work, the authors have prepared gradients of laminin on aligned electrospun nanofibers for use as substrates for neuronal growth. The substrates therefore presented both topographical and chemical guidance cues. Step gradients were prepared by the controlled robotic immersion of plasma-treated polycaprolactone fibers reacted with N-hydroxysuccinimide into the protein solution. The gradients were analyzed using x-ray photoelectron spectroscopy and confocal laser scanning microscopy. Gradients with a dynamic range of protein concentrations were successfully generated and neurite outgrowth was evaluated using neuronlike pheochromocytoma cell line 12 (PC12) cells. After 10 days of culture, PC12 neurite lengths varied from 32.7 ± 14.2 μm to 76.3 ± 9.1 μm across the protein concentration gradient. Neurite lengths at the highest concentration end of the gradient were significantly longer than neurite lengths observed for cells cultured on samples with uniform protein coverage. Gradients were prepared both in the fiber direction and transverse to the fiber direction. Neurites preferentially aligned with the fiber direction in both cases indicating that fiber alignment has a more dominant role in controlling neurite orientation, compared to the chemical gradient. PMID:24739010

  5. Desalination by Membrane Distillation using Electrospun Polyamide Fiber Membranes with Surface Fluorination by Chemical Vapor Deposition.

    PubMed

    Guo, Fei; Servi, Amelia; Liu, Andong; Gleason, Karen K; Rutledge, Gregory C

    2015-04-22

    Fibrous membranes of poly(trimethyl hexamethylene terephthalamide) (PA6(3)T) were fabricated by electrospinning and rendered hydrophobic by applying a conformal coating of poly(1H,1H,2H,2H-perfluorodecyl acrylate) (PPFDA) using initiated chemical vapor deposition (iCVD). A set of iCVD-treated electrospun PA6(3)T fiber membranes with fiber diameters ranging from 0.25 to 1.8 μm were tested for desalination using the air gap membrane distillation configuration. Permeate fluxes of 2-11 kg/m2/h were observed for temperature differentials of 20-45 °C between the feed stream and condenser plate, with rejections in excess of 99.98%. The liquid entry pressure was observed to increase dramatically, from 15 to 373 kPa with reduction in fiber diameter. Contrary to expectation, for a given feed temperature the permeate flux was observed to increase for membranes of decreasing fiber diameter. The results for permeate flux and salt rejection show that it is possible to construct membranes for membrane distillation even from intrinsically hydrophilic materials after surface modification by iCVD and that the fiber diameter is shown to play an important role on the membrane distillation performance in terms of permeate flux, salt rejection, and liquid entry pressure. PMID:25835769

  6. A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity in vitro.

    PubMed

    Chen, Ping; Wu, Qing-Sheng; Ding, Ya-Ping; Chu, Maoquan; Huang, Zheng-Ming; Hu, Wen

    2010-11-01

    In order to improve both safety and efficacy of cancer chemotherapy of titanocene dichloride and overcome the shortcomings such as instability and short half-life in the human body, we report a controlled release system of titanocene dichloride by electrospun fiber and its in vitro antitumor activity against human lung tumor spca-1 cells. The system was developed by electrospinning. The release profiles of titanocene dichloride in PBS were researched by UV-Vis spectrophotometer. In vitro antitumor activities of the fibers were examined by MTT method. Titanocene dichloride was well incorporated in biodegradable poly(L-lactic acid) fibers. XRD results suggest that titanocene dichloride exists in the amorphous form in the fibers. The controlled release of titanocene dichloride can be gained for long time. MTT showed actual titanocene dichloride content 40, 80, 160 and 240 mg/L from the fibers mat, cell growth inhibition rates of 11.2%, 22.1%, 44.2% and 68.2% were achieved, respectively. The titanocene dichloride released has obvious inhibition effect against lung tumor cells. The system has an effect of controlled release of titanocene dichloride and may be used as an implantable anticancer drug in clinical applications in the future.

  7. Desalination by Membrane Distillation using Electrospun Polyamide Fiber Membranes with Surface Fluorination by Chemical Vapor Deposition.

    PubMed

    Guo, Fei; Servi, Amelia; Liu, Andong; Gleason, Karen K; Rutledge, Gregory C

    2015-04-22

    Fibrous membranes of poly(trimethyl hexamethylene terephthalamide) (PA6(3)T) were fabricated by electrospinning and rendered hydrophobic by applying a conformal coating of poly(1H,1H,2H,2H-perfluorodecyl acrylate) (PPFDA) using initiated chemical vapor deposition (iCVD). A set of iCVD-treated electrospun PA6(3)T fiber membranes with fiber diameters ranging from 0.25 to 1.8 μm were tested for desalination using the air gap membrane distillation configuration. Permeate fluxes of 2-11 kg/m2/h were observed for temperature differentials of 20-45 °C between the feed stream and condenser plate, with rejections in excess of 99.98%. The liquid entry pressure was observed to increase dramatically, from 15 to 373 kPa with reduction in fiber diameter. Contrary to expectation, for a given feed temperature the permeate flux was observed to increase for membranes of decreasing fiber diameter. The results for permeate flux and salt rejection show that it is possible to construct membranes for membrane distillation even from intrinsically hydrophilic materials after surface modification by iCVD and that the fiber diameter is shown to play an important role on the membrane distillation performance in terms of permeate flux, salt rejection, and liquid entry pressure.

  8. Kafirin Protein Based Electrospun Fibers with Tunable Mechanical Property, Wettability, and Release Profile.

    PubMed

    Xiao, Jie; Shi, Ce; Zheng, Huijuan; Shi, Zhen; Jiang, Dong; Li, Yunqi; Huang, Qingrong

    2016-04-27

    Kafirin (KAF), the prolamine protein from sorghum grain, is a promising resource for fabricating renewable and biodegradable materials. However, research efforts in fulfilling its potentials are still lacking. In this work, electrospun kafirin fibers from acetic acid/dichloromethane solutions are reported for the first time. Biodegradable polycaprolactone (PCL) was blended with kafirin to obtain hybrid KAF/PCL fiber mats with desirable physical properties. Hydrogen bonding between the N-H group of kafirin and the C═O group of PCL was detected in each blended formulation. Our small-angle X-ray scattering results indicated that the long spacing decreased and the average spacing between crystalline lamellae of PCL increased with the increase of kafirin content. Compared to the hydrophobic surface of neat PCL fiber mat, KAF/PCL fiber mats under most of the blend ratios showed hydrophilic surface character, and the swelling property was composition-dependent. The fiber mats evolved from brittle ones to flexible ones with the increase of relative content of PCL. The most desirable mechanical performance was obtained at a kafirin/PCL mass blend ratio of 1:2. To simulate the nutraceutical release in body fluid, carnosic acid (CA) was selected as a nutraceutical model, and release behaviors in selected KAF/PCL fiber mats were found to be diffusion controlled. Whereas the amorphous region of kafirin dominated the release rate, PCL functioned as a hydrophobic skeleton to maintain the 3D scaffold of the fiber matrix. The fabricated KAF/PCL fiber mats open up new applications of underutilized cereal protein in nutraceutical delivery. PMID:27032442

  9. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.

    PubMed

    Liu, Yaowen; Lu, Jinfu; Xu, Guisen; Wei, Jiaojun; Zhang, Zhibin; Li, Xiaohong

    2016-12-01

    The key to addressing the challenges facing cardiac tissue engineering is the integration of physical, chemical, and electrical cues into scaffolds. Aligned and conductive scaffolds have been fabricated as synthetic microenvironments to improve the function of cardiomyocytes. However, up to now, the influence of conductive capability and inner structure of fibrous scaffolds have not been determined on the cardiomyocyte morphologies and beating patterns. In the current study, highly aligned fibers were fabricated with loaded up to 6% of carbon nanotubes (CNTs) to modulate the electrical conductivity, while blend and coaxial electrospinning were utilized to create a bulk distribution of CNTs in fiber matrices and a spatial embedment in fiber cores, respectively. Conductive networks were formed in the fibrous scaffolds after the inoculation of over 3% CNTs, and the increase in the conductivity could maintain the cell viabilities, induce the cell elongation, enhance the production of sarcomeric α-actinin and troponin I, and promote the synchronous beating of cardiomyocytes. Although the conductivity of blend fibers is slightly higher than that of coaxial fibers with the same CNT loadings, the lower exposures to CNTs resulted in higher cell viability, elongation, extracellular matrix secretion and beating rates for cardiomyocytes on coaxial fibers. Taken altogether, core-sheath fibers with loaded 5% of CNTs in the fiber cores facilitated the cardiomyocyte growth with a production of organized contractile proteins and a pulsation frequency close to that of the atrium. It is suggested that electrospun scaffolds that couple conductivity and fibrous structure considerations may provide optimal stimuli to foster cell morphology and functions for myocardial regeneration or establishment of in vitro cardiomyocyte culture platform for drug screening.

  10. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.

    PubMed

    Liu, Yaowen; Lu, Jinfu; Xu, Guisen; Wei, Jiaojun; Zhang, Zhibin; Li, Xiaohong

    2016-12-01

    The key to addressing the challenges facing cardiac tissue engineering is the integration of physical, chemical, and electrical cues into scaffolds. Aligned and conductive scaffolds have been fabricated as synthetic microenvironments to improve the function of cardiomyocytes. However, up to now, the influence of conductive capability and inner structure of fibrous scaffolds have not been determined on the cardiomyocyte morphologies and beating patterns. In the current study, highly aligned fibers were fabricated with loaded up to 6% of carbon nanotubes (CNTs) to modulate the electrical conductivity, while blend and coaxial electrospinning were utilized to create a bulk distribution of CNTs in fiber matrices and a spatial embedment in fiber cores, respectively. Conductive networks were formed in the fibrous scaffolds after the inoculation of over 3% CNTs, and the increase in the conductivity could maintain the cell viabilities, induce the cell elongation, enhance the production of sarcomeric α-actinin and troponin I, and promote the synchronous beating of cardiomyocytes. Although the conductivity of blend fibers is slightly higher than that of coaxial fibers with the same CNT loadings, the lower exposures to CNTs resulted in higher cell viability, elongation, extracellular matrix secretion and beating rates for cardiomyocytes on coaxial fibers. Taken altogether, core-sheath fibers with loaded 5% of CNTs in the fiber cores facilitated the cardiomyocyte growth with a production of organized contractile proteins and a pulsation frequency close to that of the atrium. It is suggested that electrospun scaffolds that couple conductivity and fibrous structure considerations may provide optimal stimuli to foster cell morphology and functions for myocardial regeneration or establishment of in vitro cardiomyocyte culture platform for drug screening. PMID:27612781

  11. Electrospun PS/PAN fibers with improved mechanical property for removal of oil from water.

    PubMed

    Li, Peng; Qiao, Ying; Zhao, Lili; Yao, Dahu; Sun, Haixiang; Hou, Yingfei; Li, Shuo; Li, Qi

    2015-04-15

    A mechanically robust and high-capacity oil sorbent is prepared by electrospinning a blend of polystyrene (PS) and polyacrylonitrile (PAN). The morphology, oil sorption capacity and mechanical property of the fibers formed in different compositions are investigated in detail. It is shown that the oil sorption capacity is a result of both the chemical composition and the specific surface area which related to diameter size. The addition of PAN as a component in fibrous sorbents can significantly improve the mechanical properties of PS fibers. Moreover, the oil sorption capacity increases with decreasing fiber diameter. The results also show that the maximum sorption capacities of the PS/PAN sorbent for pump oil, peanut oil, diesel, and gasoline were 194.85, 131.70, 66.75, and 43.38 g g(-1), respectively. Additionally, the sorbent exhibits quick oil sorption speed as well as high buoyancy, which make it a promising candidate for use as an oil spill cleanup sorbent.

  12. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    PubMed Central

    Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

    2014-01-01

    Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895

  13. Whey protein concentrate doped electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement.

    PubMed

    Ahmed, Said Mahmoud; Ahmed, Hanaa; Tian, Chang; Tu, Qin; Guo, Yadan; Wang, Jinyi

    2016-07-01

    Design and fabrication of scaffolds using appropriate biomaterials are a key step for the creation of functionally engineered tissues and their clinical applications. Poly(epsilon-caprolactone) (PCL), a biodegradable and biocompatible material with negligible cytotoxicity, is widely used to fabricate nanofiber scaffolds by electrospinning for the applications of pharmaceutical products and wound dressings. However, the use of PCL as such in tissue engineering is limited due to its poor bioregulatory activity, high hydrophobicity, lack of functional groups and neutral charge. With the attempt to found nanofiber scaffolds with antibacterial activity for skin tissue engineering, in this study, whey protein concentrate (WPC) was used to modify the PCL nanofibers by doping it in the PCL electrospun solution. By adding proteins into PCL nanofibers, the degradability of the fibers may be increased, and this further allows an antibiotic incorporated in the fibers to be efficiently released. The morphology, wettability and degradation of the as-prepared PCL/WPC nanofibers were carefully characterized. The results showed that the PCL/WPC nanofibers possessed good morphology and wettability, as well as high degradation ability to compare with the pristine PCL fibers. Afterwords, tetracycline hydrochloride as a model antibiotic drug was doped in the PCL/WPC nanofibers. In vitro drug release assays demonstrated that PCL/WPC nanofibers had higher antibiotic release capability than the PCL nanofibers. Also, antibacterial activity evaluation against various bacteria showed that the drug-doped PCL/WPC fibers possessed more efficient antibacterial activity than the PCL nanofibers. PMID:27022878

  14. Morphology, release characteristics, and antimicrobial effect of nisin-loaded electrospun gelatin fiber mat.

    PubMed

    Dheraprasart, Chanuttaporn; Rengpipat, Sirirat; Supaphol, Pitt; Tattiyakul, Jirarat

    2009-11-01

    Gelatin electrospun (e-spun) fiber mats containing nisin were produced by electrostatic spinning of gelatin-nisin in 70% (vol/vol) acetic acid aqueous solutions. Varying nisin loading concentration (0 to 3% [wt/wt]) did not affect the fiber average diameter, whereas increasing gelatin concentration from 20 to 24% (wt/vol) caused an increase in the average diameter. All nisin-loaded gelatin e-spun fiber mats demonstrated inhibition against Lactobacillus plantarum TISTR 850. However, all fiber mats were fragile and easily dissolved in water. Cross-linking by saturated glutaraldehyde vapor at 37 degrees C for 5 min was done to strengthen the mat. Tensile strength, Young's modulus, and elongation of the cross-linked gelatin-nisin e-spun fiber mats varied in the range of 2.6 to 20.3 MPa, 163 to 966 MPa, and 1.7 to 5.9% , respectively. Cross-linking did not affect the mat's inhibition activity against L. plantarum TISTR 850. Nisin retention in cross-linked antimicrobial gelatin e-spun fiber mats was in the range of 1.0 to 1.22% . Increasing temperature caused an increase in nisin release, but increasing water activity did not cause a significant difference in nisin release over 50 h. After storage at 25 degrees C for 5 months, the antimicrobial gelatin e-spun fiber mat still showed inhibition against L. plantarum TISTR 850. The mats also inhibited the growth of Staphylococcus aureus and Listeria monocytogenes but not Salmonella Typhimurium. PMID:19903391

  15. A method to integrate patterned electrospun fibers with microfluidic systems to generate complex microenvironments for cell culture applications

    PubMed Central

    Wallin, Patric; Zandén, Carl; Carlberg, Björn; Hellström Erkenstam, Nina; Liu, Johan; Gold, Julie

    2012-01-01

    The properties of a cell’s microenvironment are one of the main driving forces in cellular fate processes and phenotype expression invivo. The ability to create controlled cell microenvironments invitro becomes increasingly important for studying or controlling phenotype expression in tissue engineering and drug discovery applications. This includes the capability to modify material surface properties within well-defined liquid environments in cell culture systems. One successful approach to mimic extra cellular matrix is with porous electrospun polymer fiber scaffolds, while microfluidic networks have been shown to efficiently generate spatially and temporally defined liquid microenvironments. Here, a method to integrate electrospun fibers with microfluidic networks was developed in order to form complex cell microenvironments with the capability to vary relevant parameters. Spatially defined regions of electrospun fibers of both aligned and random orientation were patterned on glass substrates that were irreversibly bonded to microfluidic networks produced in poly-dimethyl-siloxane. Concentration gradients obtained in the fiber containing channels were characterized experimentally and compared with values obtained by computational fluid dynamic simulations. Velocity and shear stress profiles, as well as vortex formation, were calculated to evaluate the influence of fiber pads on fluidic properties. The suitability of the system to support cell attachment and growth was demonstrated with a fibroblast cell line. The potential of the platform was further verified by a functional investigation of neural stem cell alignment in response to orientation of electrospun fibers versus a microfluidic generated chemoattractant gradient of stromal cell-derived factor 1 alpha. The described method is a competitive strategy to create complex microenvironments invitro that allow detailed studies on the interplay of topography, substrate surface properties, and soluble

  16. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer

    PubMed Central

    Liang, Yeru; Wu, Dingcai; Fu, Ruowen

    2013-01-01

    Electrospinning offers a powerful route for building one-dimensional (1D) micro/nanostructures, but a common requirement for toxic or corrosive organic solvents during the preparation of precursor solution has limited their large scale synthesis and broad applications. Here we report a facile and low-cost way to prepare 1D porous carbon microfibers by using an electrospun fiber-like natural product, i.e., silk cocoon, as precursor. We surprisingly found that by utilizing a simple carbonization treatment, the cocoon microfiber can be directly transformed into 1D carbon microfiber of ca. 6 μm diameter with a unique three-dimensional porous network structure composed of interconnected carbon nanoparticles of 10~40 nm diameter. We further showed that the as-prepared carbon product presents superior electrochemical performance as binder-free electrodes of supercapacitors and good adsorption property toward organic vapor. PMID:23350027

  17. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer.

    PubMed

    Liang, Yeru; Wu, Dingcai; Fu, Ruowen

    2013-01-01

    Electrospinning offers a powerful route for building one-dimensional (1D) micro/nanostructures, but a common requirement for toxic or corrosive organic solvents during the preparation of precursor solution has limited their large scale synthesis and broad applications. Here we report a facile and low-cost way to prepare 1D porous carbon microfibers by using an electrospun fiber-like natural product, i.e., silk cocoon, as precursor. We surprisingly found that by utilizing a simple carbonization treatment, the cocoon microfiber can be directly transformed into 1D carbon microfiber of ca. 6 μm diameter with a unique three-dimensional porous network structure composed of interconnected carbon nanoparticles of 10~40 nm diameter. We further showed that the as-prepared carbon product presents superior electrochemical performance as binder-free electrodes of supercapacitors and good adsorption property toward organic vapor. PMID:23350027

  18. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy.

    PubMed

    Fee, Timothy; Downs, Crawford; Eberhardt, Alan; Zhou, Yong; Berry, Joel

    2016-07-01

    It is well documented that electrospun tissue engineering scaffolds can be fabricated with variable degrees of fiber alignment to produce scaffolds with anisotropic mechanical properties. Several attempts have been made to quantify the degree of fiber alignment within an electrospun scaffold using image-based methods. However, these methods are limited by the inability to produce a quantitative measure of alignment that can be used to make comparisons across publications. Therefore, we have developed a new approach to quantifying the alignment present within a scaffold from scanning electron microscopic (SEM) images. The alignment is determined by using the Sobel approximation of the image gradient to determine the distribution of gradient angles with an image. This data was fit to a Von Mises distribution to find the dispersion parameter κ, which was used as a quantitative measure of fiber alignment. We fabricated four groups of electrospun polycaprolactone (PCL) + Gelatin scaffolds with alignments ranging from κ = 1.9 (aligned) to κ = 0.25 (random) and tested our alignment quantification method on these scaffolds. It was found that our alignment quantification method could distinguish between scaffolds of different alignments more accurately than two other published methods. Additionally, the alignment parameter κ was found to be a good predictor the mechanical anisotropy of our electrospun scaffolds. The ability to quantify fiber alignment within and make direct comparisons of scaffold fiber alignment across publications can reduce ambiguity between published results where cells are cultured on "highly aligned" fibrous scaffolds. This could have important implications for characterizing mechanics and cellular behavior on aligned tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1680-1686, 2016.

  19. Composites of Polystyrene/Wood Fiber, Processing Effect to Creep Resistance

    SciTech Connect

    Romero-Balderrama, L.; Mendoza-Duarte, M. E.; Flores-Gallardo, S. G.; Ibarra-Gomez, R.; Gaspar-Rosas, A.

    2008-07-07

    In the present work, PS/wood fiber composites were studied in relation to their creep response as to be affected by the incorporation of a silane type coupling agent. Two elaboration variables were also considered in the experiments: wood fiber content and type of composites processing (compression, extrusion and injection molding). A series of weight ratios PS/wood fiber, with and without coupling agent, were prepared, 90/10, 80/20, 70/30 and 60/40. For the compatibilized series, 1% wt of silane coupling agent in relation to the polystyrene weight was employed. The creep tests were performed inside the lineal viscoelastic region at 80 deg. C. A general improvement of the creep resistance for the compatibilized composites was observed independently of the elaboration process. However, the injection molded samples showed by far the lowest deformation with time. This behavior suggests that the high orientation of the fibers generated by the injection molding process, in relation to the extrusion and compression molding, promotes a higher superficial area of treated fiber to be in contact with the PS matrix, which enhances the adhesion and in consequence the resistance to creep.

  20. Regulated Non-Viral Gene Delivery from Coaxial Electrospun Fiber Mesh Scaffolds

    PubMed Central

    Saraf, Anita; Baggett, L. Scott; Raphael, Robert M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2009-01-01

    concentration. Furthermore, fibroblast-like cells seeded directly onto coaxial fiber mesh scaffolds containing PEI-HA and pDNA showed EGFP expression over 60 days, which was significantly greater than the EGFP expression observed with scaffolds containing pDNA alone. Hence, variable transfection activity can be achieved over extended periods of time upon release of pDNA and non-viral gene delivery vectors from electrospun coaxial fiber mesh scaffolds, with release and subsequent transfection controlled by tunable coaxial fiber mesh fabrication parameters. PMID:20006660

  1. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells

    NASA Astrophysics Data System (ADS)

    Both Engel, A.; Cherifi, A.; Tingry, S.; Cornu, D.; Peigney, A.; Laurent, Ch

    2013-06-01

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  2. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes.

    PubMed

    Hwang, Tae Hoon; Lee, Yong Min; Kong, Byung-Seon; Seo, Jin-Seok; Choi, Jang Wook

    2012-02-01

    Because of its unprecedented theoretical capacity near 4000 mAh/g, which is approximately 10-fold larger compared to those of the current commercial graphite anodes, silicon has been the most promising anode for lithium ion batteries, particularly targeting large-scale energy storage applications including electrical vehicles and utility grids. Nevertheless, Si suffers from its short cycle life as well as the limitation for scalable electrode fabrication. Herein, we develop an electrospinning process to produce core-shell fiber electrodes using a dual nozzle in a scalable manner. In the core-shell fibers, commercially available nanoparticles in the core are wrapped by the carbon shell. The unique core-shell structure resolves various issues of Si anode operations, such as pulverization, vulnerable contacts between Si and carbon conductors, and an unstable sold-electrolyte interphase, thereby exhibiting outstanding cell performance: a gravimetric capacity as high as 1384 mAh/g, a 5 min discharging rate capability while retaining 721 mAh/g, and cycle life of 300 cycles with almost no capacity loss. The electrospun core-shell one-dimensional fibers suggest a new design principle for robust and scalable lithium battery electrodes suffering from volume expansion.

  3. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells.

    PubMed

    Engel, A Both; Cherifi, A; Tingry, S; Cornu, D; Peigney, A; Laurent, Ch

    2013-06-21

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  4. Preparation of electrospun fiber mats using siloxane-containing vaterite and biodegradable polymer hybrids for bone regeneration.

    PubMed

    Fujikura, Kie; Lin, Sen; Nakamura, Jin; Obata, Akiko; Kasuga, Toshihiro

    2013-11-01

    An electrospun fiber mat using a new composite consisting of siloxane-containing vaterite (SiV) and poly(lactic-co-glycolic acid) (PLGA) (denoted by SiPLGVH) was prepared with the aim of applying it as a membrane for use in a guided bone regeneration (GBR) system. Another electrospun fiber mat using a previously described composite consisting of SiV and poly(L-lactic acid) (denoted by SiPVH) was also prepared as a comparative sample. SiPLG VH fiber mats showed superior results in terms of mechanical tensile properties and cellular behavior. Their elongation before failure was about eight times higher than that of SiPVH. The numbers of osteoblast-like cells that proliferated on the SiPLGVH fiber mats, regardless of the hydroxyapatite coating, were comparable to that of SiPVH. The cells spread more, two dimensionally, on the SiPLGVH fiber mats, since the pores between fibers were narrowed down because of swelling of the PLGA matrix during cell culture. This two-dimensional cellular proliferation quality on the SiPLGVH fiber mats is expected to be suitable for materials used in GBR, leading to control of infiltration of the soft tissue and great tissue integration with the surrounding tissue.

  5. Influence of calcination temperature on the surface area of submicron-sized Al2O3 electrospun fibers

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon Ung; Ramsier, Rex D.; Chase, George G.

    2016-03-01

    Submicron-sized Al2O3 fibers were formed by calcination of electrospun aluminum acetate/PVP composite fibers. At 650 °C, the fibers were amorphous. As the calcination temperature increased to 750 °C, the fibers transitioned from amorphous to 49 % crystalline gamma phase Al2O3. The crystallinity further increased with calcination temperature to 80 % gamma Al2O3 at 950 °C, but decreased above 950 °C as the crystal structure began to change to alpha phase. The fiber diameters tended to decrease as calcination temperature increased to 950 °C but increased as the alpha phase was formed at temperatures above 950 °C. Surface areas as measured by BET decreased as gamma phase crystallinity increased. Further decrease in surface area as the gamma phase crystal structure transitioned to alpha phase indicated changing internal pore structures of the fibers.

  6. Structure−Property Correlations in Hybrid Polymer−Nanoparticle Electrospun Fibers and Plasmonic Control over their Dichroic Behavior

    SciTech Connect

    Sharma, Nikhil; McKeown, Steven J.; Ma, Xin; Pochan, Darrin J.; Cloutier, Sylvain G.

    2010-12-07

    Electrospinning constitutes a simple and versatile approach of fabricating polymer heterostructures composed of nanofibers. A preferred alignment of polymer crystallites stems from complex shear elongational forces and generates a strong intrinsic optical anisotropy in typical electrospun fibers of semicrystalline polymers. While it can prove useful for certain devices, this intrinsic anisotropy can be extremely detrimental for other key applications such as high-performance polymer-based lighting and solar-energy harvesting platforms. We report a dramatic reduction in the intrinsic dichroism of electrospun poly(ethylene oxide) fibers resulting from the incorporation of inorganic nanoparticles in the polymer matrix. This effect is shown to originate from a controllable randomization of the orientational ordering of the crystalline domains in the hybrid nanofibers and not merely from a reduction in crystallinity. This improved understanding of the crystalline structure-optical property correlation then leads to a better control over the intrinsic anisotropy of electrospun fibers using localized surface-plasmon enhancement effects around metallic nanoparticles.

  7. Conjugated polymer dots-on-electrospun fibers as a fluorescent nanofibrous sensor for nerve gas stimulant.

    PubMed

    Jo, Seonyoung; Kim, Jongho; Noh, Jaeguk; Kim, Daigeun; Jang, Geunseok; Lee, Naeun; Lee, Eunji; Lee, Taek Seung

    2014-12-24

    A novel chemical warfare agent sensor based on conjugated polymer dots (CPdots) immobilized on the surface of poly(vinyl alcohol) (PVA)-silica nanofibers was prepared with a dots-on-fibers (DoF) hybrid nanostructure via simple electrospinning and subsequent immobilization processes. We synthesized a polyquinoxaline (PQ)-based CP as a highly emissive sensing probe and employed PVA-silica as a host polymer for the elctrospun fibers. It was demonstrated that the CPdots and amine-functionalized electrospun PVA-silica nanofibers interacted via an electrostatic interaction, which was stable under prolonged mechanical force. Because the CPdots were located on the surface of the nanofibers, the highly emissive properties of the CPdots could be maintained and even enhanced, leading to a sensitive turn-off detection protocol for chemical warfare agents. The prepared fluorescent DoF hybrid was quenched in the presence of a chemical warfare agent simulant, due to the electron transfer between the quinoxaline group in the polymer and the organophosphorous simulant. The detection time was almost instantaneous, and a very low limit of detection was observed (∼1.25 × 10(-6) M) with selectivity over other organophosphorous compounds. The DoF hybrid nanomaterial can be developed as a rapid, practical, portable, and stable chemical warfare agent-detecting system and, moreover, can find further applications in other sensing systems simply by changing the probe dots immobilized on the surface of nanofibers. PMID:25431844

  8. Long-term Controlled Drug Release from bi-component Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Xu, Shanshan; Zhang, Zixin; Xia, Qinghua; Han, Charles

    Multi-drug delivery systems with timed programmed release are hard to be produced due to the complex drug release kinetics which mainly refers to the diffusion of drug molecules from the fiber and the degradation of the carrier. This study focused on the whole life-time story of the long-term drug releasing fibrous systems. Electrospun membrane utilizing FDA approved polymers and broad-spectrum antibiotics showed specific drug release profiles which could be divided into three stages based on the profile slope. With throughout morphology observation, cumulative release amount and releasing duration, releasing kinetics and critical factors were fully discussed during three stages. Through changing the second component, approximately linear drug release profile and a drug release duration about 13 days was prepared, which is perfect for preventing post-operative infection. The addition of this semi-crystalline polymer in turn influenced the fiber swelling and created drug diffusion channels. In conclusion, through adjusting and optimization of the blending component, initial burst release, delayed release for certain duration, and especially the sustained release profile could all be controlled, as well as specific anti-bacterial behavior could be obtained.

  9. Electrospun poly(L-lactide-co-acryloyl carbonate) fiber scaffolds with a mechanically stable crimp structure for ligament tissue engineering.

    PubMed

    Chen, Fei; Hayami, James W S; Amsden, Brian G

    2014-05-12

    The aim of this study was to prepare a fibrous scaffold that possesses a crimped morphology using a photo-cross-linkable biodegradable copolymer. To obtain the crimped morphology, the polymer was first electrospun onto a rotating wire mandrel to obtain aligned straight fibers. Postprocessing by immersion in aqueous buffer at 37 °C generated a crimplike pattern in the fibers. It was reasoned that cross-linking the fibers following formation of the crimped structure would endow the scaffolds with a recoverable crimp pattern and mechanical properties similar to that of the collagen fibers in the anterior cruciate ligament (ACL). To achieve this aim, a trimethylene carbonate based monomer bearing an acrylate pendant group was synthesized and copolymerized with l-lactide. The copolymer was electrospun and photo-cross-linked yielding fibrous scaffolds possessing a substantial increase in tensile modulus and crimp stability compared to the uncross-linked fibrous scaffolds. The crimp-stabilized scaffolds also showed good cytocompatibility toward 3T3 fibroblasts, which attached and grew along the crimped fibers. These findings suggest that these cross-linked fiber scaffolds may be useful for the generation of cultured ligament tissue. PMID:24697661

  10. Fabrication of polystyrene fibers with tunable co-axial hollow tubing structure for oil spill cleanup

    NASA Astrophysics Data System (ADS)

    Zhang, Minxin; Chen, Jiafu; Chen, Bingjing; Cao, Jingjing; Hong, Min; Zhou, Chenxu; Xu, Qun

    2016-03-01

    Hollow tubing polystyrene (PS) fibers (HFs) with porous shell were successfully fabricated through co-axial electrospinning and selectively dissolving and removing polyvinyl pyrrolidone (PVP) core of the co-axial PS/PVP fibers using C2H5OH at room temperature. The size of co-axial hollow tubing structure (CHTS) and the thickness of shell can be controlled by varying the feed rate ratio of the core solution to the shell solution. The oil-sorption results show that the oil-sorption capacity increases with the increasing of the size of CHTS in the HFs, and the HFs have higher oil-sorption capacities than the porous PS fibers (PFs) without CHTS. It is noticeable that the diesel sorption capacity (66 g/g) of the HFs is approximately 1.74 times as much as that (38 g/g) of the PFs. The motor oil sorption capacity (147 g/g) of the HFs is approximately 1.55 times as much as that (95 g/g) of the PFs. It is suggested that the HFs have a better oil-sorption performance than the PFs, especially for the low viscosity oil, which is contributed to large CHTS and high porosity.

  11. A simple method for fabrication of electrospun fibers with controlled degree of alignment having potential for nerve regeneration applications.

    PubMed

    Vimal, Sunil Kumar; Ahamad, Nadim; Katti, Dhirendra S

    2016-06-01

    In peripheral nerve injuries where direct suturing of nerve endings is not feasible, nerve regeneration has been facilitated through the use of artificially aligned fibrous scaffolds that provide directional growth of neurons to bridge the gap. The degree of fiber alignment is crucial and can impact the directionality of cells in a fibrous scaffold. While there have been multiple approaches that have been used for controlling fiber alignment, however, they have been associated with a compromised control on other properties, such as diameter, morphology, curvature, and topology of fibers. Therefore, the present study demonstrates a modified electrospinning set-up, that enabled fabrication of electrospun fibers with controlled degree of alignment from non-aligned (NA), moderately aligned (MA, 75%) to highly aligned (HA, 95%) sub-micron fibers while keeping other physical properties unchanged. The results demonstrate that the aligned fibers (MA and HA) facilitated directional growth of human astrocytoma cells (U373), wherein the aspect ratio of cells was found to increase with an increase in degree of fibers alignment. In contrast to NA and MA fibers, the HA fibers showed improved contact guidance to U373 cells that was demonstrated by a significantly higher cell aspect ratio and nuclear aspect ratio. In conclusion, the present study demonstrated a modified electrospinning setup to fabricate differentially aligned fibrous scaffolds with the HA fibers showing potential for use in neural tissue engineering.

  12. Functional fiber mats with tunable diffuse reflectance composed of electrospun VO2/PVP composite fibers.

    PubMed

    Li, Shaotang; Li, Yamei; Qian, Kun; Ji, Shidong; Luo, Hongjie; Gao, Yanfeng; Jin, Ping

    2014-01-01

    Thermochromic VO2 nanoparticles have been dispersed into polyvinyl pyrrolidone (PVP) fibers by electrospinning of a VO2-PVP blend solution. The structure and optical properties of the obtained composite fiber mat were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis) spectrophotometry, and Fourier transform infrared (FT-IR) spectroscopy. The fiber mat revealed two diffuse reflectance states in infrared spectral region at temperatures under and above the phase transition temperature of VO2 and its IR reflectance is smaller in high temperature. The difference of diffuse reflectance between the two states (ΔRdif) was obvious to be more than 25% in the wavelengths from 1.5 μm to 6 μm. The diffuse reflectance of the fiber mat could be controlled by adjusting the diameter of the fiber or the content of VO2 in the fibers and this particular optical property was explained by a multiple scattering-absorbing process.

  13. Anisotropic Poly (glycerol sebacate)-Poly (ε-caprolactone) Electrospun Fibers Promote Endothelial Cell Guidance

    PubMed Central

    Gaharwar, Akhilesh K.; Nikkhah, Mehdi; Sant, Shilpa; Khademhosseini, Ali

    2015-01-01

    Topographical cell guidance is utilized to engineer highly organized and aligned cellular constructs for numerous tissue engineering applications. Recently, electrospun scaffolds fabricated using poly(glycerol sebacate) (PGS) and poly(ε-caprolactone) (PCL) have shown a great promise to support valvular interstitial cell functions for the development of tissue engineered heart valves. However, one of the major drawbacks of PGS-PCL scaffolds is the lack of control over cellular alignment. In this work we investigate the role of scaffold architecture on the endothelial cell alignment, proliferation and formation of organized cellular structures. In particular, PGS-PCL scaffolds with randomly oriented and highly aligned fibers with tunable mechanical properties were fabricated using electrospinning technique. After one week of culture, endothelial cells on the aligned scaffolds exhibit higher proliferation compared to those cultures on randomly oriented fibrous scaffolds. Furthermore, the endothelial cells reorganize in response to the topographical features of anisotropic scaffolds forming highly organize cellular constructs. Thus, the topographical contact guidance, provided by aligned PGS-PCL scaffolds, is envisioned to be useful in developing aligned cellular structures for vascular tissue engineering. PMID:25516556

  14. Electrospun fiber scaffolds of poly (glycerol-dodecanedioate) and its gelatin blended polymers for soft tissue engineering.

    PubMed

    Dai, Xizi; Kathiria, Khadija; Huang, Yen-Chih

    2014-09-01

    For tissue engineering applications, biodegradable scaffolds play a vital role in supporting and guiding the seeded cells to form functional tissues by mimicking the structure and function of native extracellular matrices. Previously, we have developed a biodegradable elastomer poly (glycerol-dodecanedioate) (PGD) with mechanical properties suitable for soft tissue engineering. In the study, we found that the PGD and PGD blended with gelatin (PGD/gelatin) were able to be electrospun into fibrous scaffolds, and the diameters of the fibers could be adjusted by controlling the PGD concentration. When using our newly designed electrospinning collector, fibers could be easily harvested and the size of the fiber mat could be flexibly adjusted. The data of Raman spectra also confirmed the esterfication reaction in PGD polymerization and showed no significant structure change after electrospinning. Biocompatibility testing of the PGD and PGD/gelatin, by using human foreskin fibroblasts, indicated that gelatin could enhance cell adhesion and proliferation. Overall, electrospun fibers made from PGD and PGD/gelatin exhibited several advantages including easy synthesis from renewable raw materials, flexible fabrication by using less toxic solvents like ethanol, and good biocompatibility.

  15. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds.

    PubMed

    Brennan, Meadhbh Á; Renaud, Audrey; Gamblin, Anne-Laure; D'Arros, Cyril; Nedellec, Steven; Trichet, Valerie; Layrolle, Pierre

    2015-08-01

    A major limitation of the 2D culture systems is that they fail to recapitulate the in vivo 3D cellular microenvironment whereby cell-cell and cell-extracellular matrix (ECM) interactions occur. In this paper, a biomaterial scaffold that mimics the structure of collagen fibers was produced by jet-spraying. This micro-fiber polycaprolactone (PCL) scaffold was evaluated for 3D culture of human bone marrow mesenchymal stromal cells (MSCs) in comparison with a commercially available electrospun scaffold. The jet-sprayed scaffolds had larger pore diameters, greater porosity, smaller diameter fibers, and more heterogeneous fiber diameter size distribution compared to the electrospun scaffolds. Cells on jet-sprayed constructs exhibited spread morphology with abundant cytoskeleton staining, whereas MSCs on electrospun scaffolds appeared less extended with fewer actin filaments. MSC proliferation and cell infiltration occurred at a faster rate on jet-sprayed compared to electrospun scaffolds. Osteogenic differentiation of MSCs and ECM production as measured by ALP, collagen and calcium deposition was superior on jet-sprayed compared to electrospun scaffolds. The jet-sprayed scaffold which mimics the native ECM and permits homogeneous cell infiltration is important for 3D in vitro applications such as bone cellular interaction studies or drug testing, as well as bone tissue engineering strategies. PMID:26238732

  16. Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-L-lactic acid fibers

    PubMed Central

    Zuidema, Jonathan M.; Hyzinski-García, María C.; Vlasselaer, Kristien Van; Zaccor, Nicholas; Plopper, George E.; Mongin, Alexander A.; Gilbert, Ryan J.

    2014-01-01

    Bioengineered fiber substrates are increasingly studied as a means to promote regeneration and remodeling in the injured central nervous system (CNS). Previous reports largely focused on the ability of oriented scaffolds to bridge injured regions and direct outgrowth of axonal projections. In the present work, we explored the effects of electrospun microfibers on the migration and physiological properties of brain astroglial cells. Primary rat astrocytes were cultured on either fibronectin-coated poly-l-lactic acid (PLLA) films, fibronectin-coated randomly oriented PLLA electrospun fibers, or fibronectin-coated aligned PLLA electrospun fibers. Aligned PLLA fibers strongly altered astrocytic morphology, orienting cell processes, actin microfilaments, and microtubules along the length of the fibers. On aligned fibers, astrocytes also significantly increased their migration rates in the direction of fiber orientation. We further investigated if fiber topography modifies astrocytic neuroprotective properties, namely glutamate and glutamine transport and metabolism. This was done by quantifying changes in mRNA expression (qRT-PCR) and protein levels (Western blotting) for a battery of relevant biomolecules. Interestingly, we found that cells grown on random and/or aligned fibers increased the expression levels of two glutamate transporters, GLAST and GLT-1, and an important metabolic enzyme, glutamine synthetase, as compared to the fibronectin-coated films. Functional assays revealed increases in glutamate transport rates due to GLT-1 mediated uptake, which was largely determined by the dihydrokainate-sensitive GLT-1. Overall, this study suggests that aligned PLLA fibers can promote directed astrocytic migration, and, of most importance, our in vitro results indicate for the first time that electrospun PLLA fibers can positively modify neuroprotective properties of glial cells by increasing rates of glutamate uptake. PMID:24246642

  17. Design of Electrospun Hydrogel Fibers Containing Multivalent Peptide Conjugates for Cardiac Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Rode, Nikhil Ajit

    A novel material was designed using biomimetic engineering principles to recreate the chemical and physical environment of the extracellular matrix for cardiac tissue engineering applications. In order to control the chemical and specific bioactive signals provided by the material, a multivalent conjugate of a RGD-containing cell-binding peptide with hyaluronic acid was synthesized. These conjugates were characterized using in-line size exclusion chromatography with static multi-angle light scattering, UV absorbance, and differential refractive index measurements (SEC-MALS-UV-RI) to determine their molecular weight and valency, as well as the distributions of each. These conjugates were electrospun with poly(ethylene glycol) and poly(ethylene glycol) diacrylate to create a nanofibrous hydrogel material embedded with bioinstructive macromolecules. This electrospinning process was explored and optimized to create well-formed nanofibers. The diameter and orientation of the fibers was controlled to closely mimic the nanostructure of the extracellular matrix of the myocardium. Further characterization of the material was performed to ensure that its mechanical properties resemble those found in the myocardium. The availability of the peptides embedded in the hydrogel material was confirmed by measuring peptides released by trypsin incubation and was found to be sufficient to cause cell adhesion. This material was capable of supporting cell culture, maintaining the viability of cultured fibroblasts and cardiomyocytes, and preserving cardiomyocyte functionality. In this way, this material shows promise of serving as a biomimetic in vitro scaffold for generation of functional myocardial tissue, with possible applications as an in vivo cardiac patch for repair of the damage myocardium post-myocardial infarction.

  18. Modification of poly(L-lactic acid) electrospun fibers and films with poly(propylene imine) dendrimer

    NASA Astrophysics Data System (ADS)

    Khaliliazar, Sh.; Akbari, S.; Kish, M. H.

    2016-02-01

    Poly(L-lactic acid) (PLLA) electrospun fibers and films were modified with the second generation of poly(propylene imine) dendrimer (PPI-G2) by three different approaches, namely, sodium hydroxide hydrolysis, plasma treatment and direct application of PPI-G2. For the first and the second approaches, PLLA was modified by sodium hydroxide hydrolysis or plasma treatment to produce carboxylic acid groups. Then, the carboxylic acid groups were activated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) and N,N‧-dicyclohexyl carbodiimide (DCC) as a hetero bi-functional cross-linker. The cross-linkers promoted the grafting of carboxylic acid groups on the modified PLLA with NH2 groups of PPI-G2. In the third approach, the PPI-G2 dendrimer was directly used as an aminolysis agent for the functionalization of PLLA in a one step process. FTIR analysis confirmed the presence of sbnd NH2 groups of PPI-G2 on the modified PLLA samples, resulting from each one of the three modification methods. Studies by SEM shows bead free electrospun fibers. Also, FE-SEM shows nano-cracks on the surface of films after modification. Contact angle, drug release tests, antibacterial effects and the dying results confirmed that these functionalization methods increased hydrophilicity and reactive side-chains of PLLA in the wet chemical process resulted in providing host-guest properties on the PLLA surface for adsorbing various kinds of guest molecules.

  19. Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics atomic force microscopy using etched scanning probes.

    PubMed

    Chlanda, Adrian; Rebis, Janusz; Kijeńska, Ewa; Wozniak, Michal J; Rozniatowski, Krzysztof; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof J

    2015-05-01

    Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail.

  20. The formation of web-like connection among electrospun chitosan/PVA fiber network by the reinforcement of ellipsoidal calcium carbonate.

    PubMed

    Sambudi, Nonni Soraya; Kim, Minjeong G; Park, Seung Bin

    2016-03-01

    The electrospun fibers consist of backbone fibers and nano-branch network are synthesized by loading of ellipsoidal calcium carbonate in the mixture of chitosan/poly(vinyl alcohol) (PVA) followed by electrospinning. The synthesized ellipsoidal calcium carbonate is in submicron size (730.7±152.4 nm for long axis and 212.6±51.3 nm for short axis). The electrospun backbone fibers experience an increasing in diameter by loading of calcium carbonate from 71.5±23.4 nm to 281.9±51.2 nm. The diameters of branch fibers in the web-network range from 15 nm to 65 nm with most distributions of fibers are in 30-35 nm. Calcium carbonate acts as reinforcing agent to improve the mechanical properties of fibers. The optimum value of Young's modulus is found at the incorporation of 3 wt.% of calcium carbonate in chitosan/PVA fibers, which is enhanced from 15.7±3 MPa to 432.4±94.3 MPa. On the other hand, the ultimate stress of fibers experiences a decrease. This result shows that the fiber network undergoes changes from flexible to more stiff by the inclusion of calcium carbonate. The thermal analysis results show that the crystallinity of polymer is changed by the existence of calcium carbonate in the fiber network. The immersion of fibers in simulated body fluid (SBF) results in the formation of apatite on the surface of fibers.

  1. The formation of web-like connection among electrospun chitosan/PVA fiber network by the reinforcement of ellipsoidal calcium carbonate.

    PubMed

    Sambudi, Nonni Soraya; Kim, Minjeong G; Park, Seung Bin

    2016-03-01

    The electrospun fibers consist of backbone fibers and nano-branch network are synthesized by loading of ellipsoidal calcium carbonate in the mixture of chitosan/poly(vinyl alcohol) (PVA) followed by electrospinning. The synthesized ellipsoidal calcium carbonate is in submicron size (730.7±152.4 nm for long axis and 212.6±51.3 nm for short axis). The electrospun backbone fibers experience an increasing in diameter by loading of calcium carbonate from 71.5±23.4 nm to 281.9±51.2 nm. The diameters of branch fibers in the web-network range from 15 nm to 65 nm with most distributions of fibers are in 30-35 nm. Calcium carbonate acts as reinforcing agent to improve the mechanical properties of fibers. The optimum value of Young's modulus is found at the incorporation of 3 wt.% of calcium carbonate in chitosan/PVA fibers, which is enhanced from 15.7±3 MPa to 432.4±94.3 MPa. On the other hand, the ultimate stress of fibers experiences a decrease. This result shows that the fiber network undergoes changes from flexible to more stiff by the inclusion of calcium carbonate. The thermal analysis results show that the crystallinity of polymer is changed by the existence of calcium carbonate in the fiber network. The immersion of fibers in simulated body fluid (SBF) results in the formation of apatite on the surface of fibers. PMID:26706559

  2. Two Different Approaches for Oral Administration of Voriconazole Loaded Formulations: Electrospun Fibers versus β-Cyclodextrin Complexes

    PubMed Central

    Siafaka, Panoraia I.; Üstündağ Okur, Neslihan; Mone, Mariza; Giannakopoulou, Spyridoula; Er, Sevda; Pavlidou, Eleni; Karavas, Evangelos; Bikiaris, Dimitrios N.

    2016-01-01

    In this work, a comparison between two different preparation methods for the improvement of dissolution rate of an antifungal agent is presented. Poly(ε-caprolactone) (PCL) electrospun fibers and β-cyclodextrin (β-CD) complexes, which were produced via an electrospinning process and an inclusion complexation method, respectively, were addressed for the treatment of fungal infections. Voriconazole (VRCZ) drug was selected as a model drug. PCL nanofibers were characterized on the basis of morphology while phase solubility studies for β-CDs complexes were performed. Various concentrations (5, 10, 15 and 20 wt %) of VRCZ were loaded to PCL fibers and β-CD inclusions to study the in vitro release profile as well as in vitro antifungal activity. The results clearly indicated that all formulations showed an improved VRCZ solubility and can inhibit fungi proliferation. PMID:26927072

  3. Guidance of in vitro migration of human mesenchymal stem cells and in vivo guided bone regeneration using aligned electrospun fibers.

    PubMed

    Lee, Ji-hye; Lee, Young Jun; Cho, Hyeong-jin; Shin, Heungsoo

    2014-08-01

    Tissue regeneration is a complex process in which numerous chemical and physical signals are coordinated in a specific spatiotemporal pattern. In this study, we tested our hypothesis that cell migration and bone tissue formation can be guided and facilitated by microscale morphological cues presented from a scaffold. We prepared poly(l-lactic acid) (PLLA) electrospun fibers with random and aligned structures and investigated their effect on in vitro migration of human mesenchymal stem cells (hMSCs) and in vivo bone growth using a critical-sized defect model. Using a polydopamine coating on the fibers, we compared the synergistic effects of chemical signals. The adhesion morphology of hMSCs was consistent with the direction of fiber alignment, whereas the proliferation of hMSCs was not affected. The orientation of fibers profoundly affected cell migration, in which hMSCs cultured on aligned fibers migrated 10.46-fold faster along the parallel direction than along the perpendicular direction on polydopamine-coated PLLA nanofibers. We implanted each fiber type into a mouse calvarial defect model for 2 months. The micro-computed tomography (CT) imaging demonstrated that regenerated bone area was the highest when mice were implanted with aligned fibers with polydopamine coating, indicating a positive synergistic effect on bone regeneration. More importantly, scanning electron microscopy microphotographs revealed that the direction of regenerated bone tissue appeared to be consistent with the direction of the implanted fibers, and transmission electron microscopy images showed that the orientation of collagen fibrils appeared to be overlapped along the direction of nanofibers. Taken together, our results demonstrate that the aligned nanofibers can provide spatial guidance for in vitro cell migration as well as in vivo bone regeneration, which may be incorporated as major instructive cues for the stimulation of tissue regeneration.

  4. Method to form a fiber/growth factor dual-gradient along electrospun silk for nerve regeneration.

    PubMed

    Dinis, Tony M; Elia, Roberto; Vidal, Guillaume; Auffret, Adrien; Kaplan, David L; Egles, Christophe

    2014-10-01

    Concentration gradients of guidance molecules influence cell behavior and growth in biological tissues and are therefore of interest for the design of biomedical scaffolds for regenerative medicine. We developed an electrospining method to generate a dual-gradient of bioactive molecules and fiber density along electrospun nanofibers without any post spinning treatment. Functionalization with fluorescent molecules demonstrated the efficiency of the method to generate a discontinuous concentration gradient along the aligned fibers. As a proof of concept for tissue engineering, the silk nanofibers were functionalized with increasing concentrations of nerve growth factor (NGF) and the biological activity was assessed and quantified with rat dorsal root ganglion (DRG) neurons cultures. Protein assays showed the absence of passive release of NGF from the functionalized fibers. The results demonstrated that the NGF concentration gradient led to an oriented and increased growth of DRG neurons (417.6 ± 55.7 μm) compared to a single uniform NGF concentration (264.5 ± 37.6 μm). The easy-to-use electrospinning technique combined with the multiple molecules that can be used for fiber functionalization makes this technique versatile for a broad range of applications from biosensors to regenerative medicine.

  5. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats.

    PubMed

    Lin, Chi-Chang; Fu, Shu-Juan

    2016-01-01

    Electrospinning is a versatile technique to generate large quantities of micro- or nano-fibers from a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized electrospun nano-fibers and use a mussel-inspired surface coating to regulate adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared poly(lactic acid) (PLA) fibers coated with polydopamine (PDA). The morphology, chemical composition, and surface properties of PDA/PLA were characterized by SEM and XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. Increased focal adhesion kinase (FAK) and collagen I levels and enhanced cell attachment and cell cycle progression were observed upon an increase in PDA content. In addition, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on a pure PLA mat. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenesis differentiation. Our results demonstrate that the bio-inspired coating synthetic degradable PLA polymer can be used as a simple technique to render the surfaces of synthetic biodegradable fibers, thus enabling them to direct the specific responses of hADSCs.

  6. Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch application.

    PubMed

    Rai, Ranjana; Tallawi, Marwa; Frati, Caterina; Falco, Angela; Gervasi, Andrea; Quaini, Federico; Roether, Judith A; Hochburger, Tobias; Schubert, Dirk W; Seik, Lothar; Barbani, Niccoletta; Lazzeri, Luigi; Rosellini, Elisabetta; Boccaccini, Aldo R

    2015-09-16

    Scaffolds for cardiac patch application must meet stringent requirements such as biocompatibility, biodegradability, and facilitate vascularization in the engineered tissue. Here, a bioactive, biocompatible, and biodegradable electrospun scaffold of poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) is proposed as a potential scaffold for cardiac patch application. The fibers are smooth bead free with average diameter = 0.8 ± 0.3 μm, mean pore size = 2.2 ± 1.2 μm, porosity = 62 ± 4%, and permeability higher than that of control biological tissue. For the first time, bioactive PGS-PCL fibers functionalized with vascular endothelial growth factor (VEGF) are developed, the approach used being chemical modification of the PGS-PCL fibers followed by subsequent binding of VEGF via amide bonding. The approach results in uniform immobilization of VEGF on the fibers; the concentrations are 1.0 μg cm(-2) for the PGS-PCL (H) and 0.60 μg cm(-2) for the PGS-PCL (L) samples. The bioactive scaffold supports the attachment and growth of seeded myogenic and vasculogenic cell lines. In fact, rat aortic endothelial cells also display angiogenic features indicating potential for the formation of vascular tree in the scaffold. These results therefore demonstrate the prospects of VEGF-functionalized PGS-PCL fibrous scaffold as promising matrix for cardiac patch application.

  7. Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch application.

    PubMed

    Rai, Ranjana; Tallawi, Marwa; Frati, Caterina; Falco, Angela; Gervasi, Andrea; Quaini, Federico; Roether, Judith A; Hochburger, Tobias; Schubert, Dirk W; Seik, Lothar; Barbani, Niccoletta; Lazzeri, Luigi; Rosellini, Elisabetta; Boccaccini, Aldo R

    2015-09-16

    Scaffolds for cardiac patch application must meet stringent requirements such as biocompatibility, biodegradability, and facilitate vascularization in the engineered tissue. Here, a bioactive, biocompatible, and biodegradable electrospun scaffold of poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) is proposed as a potential scaffold for cardiac patch application. The fibers are smooth bead free with average diameter = 0.8 ± 0.3 μm, mean pore size = 2.2 ± 1.2 μm, porosity = 62 ± 4%, and permeability higher than that of control biological tissue. For the first time, bioactive PGS-PCL fibers functionalized with vascular endothelial growth factor (VEGF) are developed, the approach used being chemical modification of the PGS-PCL fibers followed by subsequent binding of VEGF via amide bonding. The approach results in uniform immobilization of VEGF on the fibers; the concentrations are 1.0 μg cm(-2) for the PGS-PCL (H) and 0.60 μg cm(-2) for the PGS-PCL (L) samples. The bioactive scaffold supports the attachment and growth of seeded myogenic and vasculogenic cell lines. In fact, rat aortic endothelial cells also display angiogenic features indicating potential for the formation of vascular tree in the scaffold. These results therefore demonstrate the prospects of VEGF-functionalized PGS-PCL fibrous scaffold as promising matrix for cardiac patch application. PMID:26270628

  8. Fabrication of electrospun SiC fibers web/phenol resin composites for the application to high thermal conducting substrate.

    PubMed

    Kim, Tae-Eon; Bae, Jin Chul; Cho, Kwang Yeon; Shul, Yong-Gun; Kim, Chang Yeoul

    2013-05-01

    Polycabosilane (PCS) could be spun to form fiber web by electrospinning PCS solution in 30% dimethylformide (DMF)/toluene solvent at 25 kV. The electrospun web is stabilized at 200 degrees C for 1 hour to connect fibers by softening PCS webs and pyrolysed to synthesize silicon carbide (SiC) webs at 1800 degrees C. The pyrolysis at 1800 degrees C increased the SiC crystal size to 45 nm from 3 nm at 1300 degrees C. However, the pyrolysis at 1800 degrees C forms pores on the surface of SiC fibers due to oxygen evaporation generated during thermals curing. SiC/phenol composite webs could be fabricated by infiltration of phenol resin and hot pressing. The thermal conductivity measurement indicates that higher SiC fibers filler contents increase the thermal conductivity up to 1.9 W/mK for 40% fraction of filler contents from 0.5 W/mK for 20% fraction of filler.

  9. Catalytic Improvement on Counter Electrode of Dye-Sensitized Solar Cells Using Electrospun Pt Nano-Fibers.

    PubMed

    Seol, Hyunwoong; Shiratani, Masaharu; Seneekatima, Kannanut; Pornprasertsuk, Rojana

    2016-04-01

    A dye-sensitized solar cell is one of cost-competitive photovoltaic devices. For higher performance, all components have been actively studied and improved. However, Pt is still a dominant catalyst since first development although some catalytic materials were studied so far. Catalytic materials of counter electrode play an important role in the performance because it supplies electrons from counter electrode to electrolyte. Therefore, the catalytic activation of counter electrode is closely connected with the performance enhancement. In this work, Pt nano-fiber was fabricated by electrospinning and applied for the counter electrode. Its wide surface area is advantageous for good conductivity and catalytic activation. Morphological characteristics of nano-fibers were analyzed according to electrospinning conditions. Photovoltaic properties, cyclic voltammetry, impedance analysis verified the catalytic activation. Consequently, dye-sensitized solar cell with Pt nano-fiber electrospun at 5.0 kV of applied voltage had higher performance than conventional dye-sensitized solar cell with Pt thin film. This work is significant for related researches because all nano-fibers counter electrode material proposed so far never exceeded the performance of conventional Pt counter electrode. PMID:27451627

  10. Synthesis and characterization of magnetic diphase ZnFe2O4 /γ-Fe2O3 electrospun fibers

    PubMed Central

    Arias, M.; Pantojas, V.M.; Perales, O.; Otaño, W.

    2011-01-01

    Magnetic nanofibers of ZnFe2O4 / γ-Fe2O3 composite were synthesized by electrospinning from a sol-gel solution containing a molar ratio Fe/Zn of 3. The effects of the calcination temperature on the phase composition, particle size and magnetic properties have been investigated. Zinc ferrite fibers were obtained by calcinating the electrospun fibers in air from 300 °C to 800 °C and characterized by thermogravimetric analyses, Fourier transformed infrared spectroscopy, x-ray photoemission spectroscopy, x-ray diffraction, vibration sample magnetometry and magnetic force microscopy. The resulting fibers, with diameters ranging from 90 to 150 nm, were ferrimagnetic with high saturation magnetization as compared to bulk. Increasing the calcination temperature resulted in an increase in particle size and saturation magnetization. The observed increase in saturation magnetization was most likely due to the formation and growth of ZnFe2O4 /γ-Fe2O3 diphase crystals. The highest saturation magnetization (45 emu/g) was obtained for fibers calcined at 800 °C. PMID:21779141

  11. Method to form a fiber/growth factor dual-gradient along electrospun silk for nerve regeneration.

    PubMed

    Dinis, Tony M; Elia, Roberto; Vidal, Guillaume; Auffret, Adrien; Kaplan, David L; Egles, Christophe

    2014-10-01

    Concentration gradients of guidance molecules influence cell behavior and growth in biological tissues and are therefore of interest for the design of biomedical scaffolds for regenerative medicine. We developed an electrospining method to generate a dual-gradient of bioactive molecules and fiber density along electrospun nanofibers without any post spinning treatment. Functionalization with fluorescent molecules demonstrated the efficiency of the method to generate a discontinuous concentration gradient along the aligned fibers. As a proof of concept for tissue engineering, the silk nanofibers were functionalized with increasing concentrations of nerve growth factor (NGF) and the biological activity was assessed and quantified with rat dorsal root ganglion (DRG) neurons cultures. Protein assays showed the absence of passive release of NGF from the functionalized fibers. The results demonstrated that the NGF concentration gradient led to an oriented and increased growth of DRG neurons (417.6 ± 55.7 μm) compared to a single uniform NGF concentration (264.5 ± 37.6 μm). The easy-to-use electrospinning technique combined with the multiple molecules that can be used for fiber functionalization makes this technique versatile for a broad range of applications from biosensors to regenerative medicine. PMID:25203247

  12. Composite vascular scaffold combining electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves structure.

    PubMed

    Liu, Yuanyuan; Jiang, Chen; Li, Shuai; Hu, Qingxi

    2016-08-01

    While the field of tissue engineered vascular grafts has greatly advanced, many inadequacies still exist. Successfully developed scaffolds require mechanical and structural properties that match native vessels and optimal microenvironments that foster cell integration, adhesion and growth. We have developed a small diameter, three-layered composite vascular scaffold which consists of electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves by combining the electrospinning and dip-coating methods. Scaffold morphology and mechanics were assessed, quantified and compared to native vessels. Scaffolds were seeded with Human Umbilical Vein Endothelial Cells (HUVECs), cultured in vitro for 3 days and were evaluated for cell viability and morphology. The results showed that composite scaffolds had adjustable mechanical strength and favorable biocompatibility, which is important in the future clinical application of Tissue-engineered vascular grafts (TEVGs). PMID:26820993

  13. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers.

    PubMed

    Rodrigues, Bruno V M; Silva, Aline S; Melo, Gabriela F S; Vasconscellos, Luana M R; Marciano, Fernanda R; Lobo, Anderson O

    2016-02-01

    The use of poly (butylene adipate-co-terephthalate) (PBAT) in tissue engineering, more specifically in bone regeneration, has been underexplored to date due to its poor mechanical resistance. In order to overcome this drawback, this investigation presents an approach into the preparation of electrospun nanocomposite fibers from PBAT and low contents of superhydrophilic multi-walled carbon nanotubes (sMWCNT) (0.1-0.5wt.%) as reinforcing agent. We employed a wide range of characterization techniques to evaluate the properties of the resulting electrospun nanocomposites, including Field Emission Scanning Electronic Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM), tensile tests, contact angle measurements (CA) and biological assays. FE-SEM micrographs showed that while the addition of sMWCNT increased the presence of beads on the electrospun fibers' surfaces, the increase of the neat charge density due to their presence reduced the fibers' average diameter. The tensile test results pointed that sMWCNT acted as reinforcement in the PBAT electrospun matrix, enhancing its tensile strength (from 1.3 to 3.6MPa with addition of 0.5wt.% of sMWCNT) and leading to stiffer materials (lower elongation at break). An evaluation using MG63 cells revealed cell attachment into the biomaterials and that all samples were viable for biomedical applications, once no cytotoxic effect was observed. MG-63 cells osteogenic differentiation, measured by ALP activity, showed that mineralized nodules formation was increased in PBAT/0.5%CNTs when compared to control group (cells). This investigation demonstrated a feasible novel approach for producing electrospun nanocomposites from PBAT and sMWCNT with enhanced mechanical properties and adequate cell viability levels, which allows for a wide range of biomedical applications for these materials. PMID:26652433

  14. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers.

    PubMed

    Rodrigues, Bruno V M; Silva, Aline S; Melo, Gabriela F S; Vasconscellos, Luana M R; Marciano, Fernanda R; Lobo, Anderson O

    2016-02-01

    The use of poly (butylene adipate-co-terephthalate) (PBAT) in tissue engineering, more specifically in bone regeneration, has been underexplored to date due to its poor mechanical resistance. In order to overcome this drawback, this investigation presents an approach into the preparation of electrospun nanocomposite fibers from PBAT and low contents of superhydrophilic multi-walled carbon nanotubes (sMWCNT) (0.1-0.5wt.%) as reinforcing agent. We employed a wide range of characterization techniques to evaluate the properties of the resulting electrospun nanocomposites, including Field Emission Scanning Electronic Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM), tensile tests, contact angle measurements (CA) and biological assays. FE-SEM micrographs showed that while the addition of sMWCNT increased the presence of beads on the electrospun fibers' surfaces, the increase of the neat charge density due to their presence reduced the fibers' average diameter. The tensile test results pointed that sMWCNT acted as reinforcement in the PBAT electrospun matrix, enhancing its tensile strength (from 1.3 to 3.6MPa with addition of 0.5wt.% of sMWCNT) and leading to stiffer materials (lower elongation at break). An evaluation using MG63 cells revealed cell attachment into the biomaterials and that all samples were viable for biomedical applications, once no cytotoxic effect was observed. MG-63 cells osteogenic differentiation, measured by ALP activity, showed that mineralized nodules formation was increased in PBAT/0.5%CNTs when compared to control group (cells). This investigation demonstrated a feasible novel approach for producing electrospun nanocomposites from PBAT and sMWCNT with enhanced mechanical properties and adequate cell viability levels, which allows for a wide range of biomedical applications for these materials.

  15. Exovascular application of epigallocatechin-3-O-gallate-releasing electrospun poly(L-lactide glycolic acid) fiber sheets to reduce intimal hyperplasia in injured abdominal aorta.

    PubMed

    Lee, Mi Hee; Kwon, Byeong-ju; Koo, Min-Ah; Jang, Eui Hwa; Seon, Gyeung Mi; Park, Jong-Chul

    2015-09-01

    Intimal hyperplasia is an excessive ingrowth of tissue resulting in chronic structural lesions commonly found at sites of atherosclerotic lesions, arterial angioplasty, vascular graft anastomoses, and other vascular abnormalities. Epigallocatechin-3-O-gallate (EGCG) was shown to elicit antioxidant, anti-proliferative, and anti-thrombogenic effects. In this study, we used an electrospinning technique to synthesize EGCG-eluting biodegradable poly(L-lactide glycolic acid) (PLGA) fiber sheets for local delivery of EGCG and investigated the effect of their exovascular application on intimal hyperplasia following balloon-induced abdominal aorta injury in a rabbit experimental model. The morphology of the composite sheets was characterized using scanning electron microscopy and Fourier transform-infrared spectroscopy. EGCG was loaded and dispersed into the PLGA-based electrospun fibers. The EGCG-loaded PLGA sheets exhibited sustained EGCG release following the initial 24 h of burst release in phosphate-buffered saline. In vivo studies demonstrated significant inhibition of intimal hyperplasia following the application of the EGCG-eluting electrospun PLGA fiber sheets, compared with vehicle PLGA controls. In conclusion, our results show that exovascular application of EGCG-eluting PLGA electrospun fiber sheets may provide a useful system for the effective local delivery of drugs for the prevention of intimal hyperplasia. PMID:26391656

  16. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    PubMed

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-01

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers. PMID:26900879

  17. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    PubMed

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-01

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers.

  18. The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design.

    PubMed

    Gnavi, Sara; Fornasari, Benedetta Elena; Tonda-Turo, Chiara; Laurano, Rossella; Zanetti, Marco; Ciardelli, Gianluca; Geuna, Stefano

    2015-06-08

    Electrospun fibrous substrates mimicking extracellular matrices can be prepared by electrospinning, yielding aligned fibrous matrices as internal fillers to manufacture artificial nerves. Gelatin aligned nano-fibers were prepared by electrospinning after tuning the collector rotation speed. The effect of alignment on cell adhesion and proliferation was tested in vitro using primary cultures, the Schwann cell line, RT4-D6P2T, and the sensory neuron-like cell line, 50B11. Cell adhesion and proliferation were assessed by quantifying at several time-points. Aligned nano-fibers reduced adhesion and proliferation rate compared with random fibers. Schwann cell morphology and organization were investigated by immunostaining of the cytoskeleton. Cells were elongated with their longitudinal body parallel to the aligned fibers. B5011 neuron-like cells were aligned and had parallel axon growth when cultured on the aligned gelatin fibers. The data show that the alignment of electrospun gelatin fibers can modulate Schwann cells and axon organization in vitro, suggesting that this substrate shows promise as an internal filler for the design of artificial nerves for peripheral nerve reconstruction.

  19. The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design

    PubMed Central

    Gnavi, Sara; Fornasari, Benedetta Elena; Tonda-Turo, Chiara; Laurano, Rossella; Zanetti, Marco; Ciardelli, Gianluca; Geuna, Stefano

    2015-01-01

    Electrospun fibrous substrates mimicking extracellular matrices can be prepared by electrospinning, yielding aligned fibrous matrices as internal fillers to manufacture artificial nerves. Gelatin aligned nano-fibers were prepared by electrospinning after tuning the collector rotation speed. The effect of alignment on cell adhesion and proliferation was tested in vitro using primary cultures, the Schwann cell line, RT4-D6P2T, and the sensory neuron-like cell line, 50B11. Cell adhesion and proliferation were assessed by quantifying at several time-points. Aligned nano-fibers reduced adhesion and proliferation rate compared with random fibers. Schwann cell morphology and organization were investigated by immunostaining of the cytoskeleton. Cells were elongated with their longitudinal body parallel to the aligned fibers. B5011 neuron-like cells were aligned and had parallel axon growth when cultured on the aligned gelatin fibers. The data show that the alignment of electrospun gelatin fibers can modulate Schwann cells and axon organization in vitro, suggesting that this substrate shows promise as an internal filler for the design of artificial nerves for peripheral nerve reconstruction. PMID:26062130

  20. In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue.

    PubMed

    Takeda, Naoya; Tamura, Kenichi; Mineguchi, Ryo; Ishikawa, Yumiko; Haraguchi, Yuji; Shimizu, Tatsuya; Hara, Yusuke

    2016-06-01

    Engineered muscle tissues used as transplant tissues in regenerative medicine should have a three-dimensional and cell-dense structure like native tissue. For fabricating a 3D cell-dense muscle tissue from myoblasts, we proposed the electrospun type I collagen microfiber scaffold of the string-shape like a harp. The microfibers were oriented in the same direction to allow the myoblasts to align, and were strung at low density with micrometer intervals to create space for the cells to occupy. To realize this shape of the scaffold, we employed in situ cross-linking during electrospinning process for the first time to collagen fibers. The collagen microfibers in situ cross-linked with glutaraldehyde stably existed in the aqueous media and completely retained the original shape to save the spaces between the fibers for over 14 days. On the contrary, the conventional cross-linking method by exposure to a glutaraldehyde aqueous solution vapor partially dissolved and damaged the fiber to lose a low-density shape of the scaffold. Myoblasts could penetrate into the interior of the in situ cross-linked string-shaped scaffold and form the cell-dense muscle tissues. Histochemical analysis showed the total area occupied by the cells in the cross section of the tissue was approximately 73 %. Furthermore, the resulting muscle tissue fabricated from primary myoblasts showed typical sarcomeric cross-striations and the entire tissue continuously pulsated by autonomous contraction. Together with the in situ cross-linking, the string-shaped scaffold provides an efficient methodology to fabricate a cell-dense 3D muscle tissue, which could be applied in regenerative medicine in future. PMID:26472433

  1. Simultaneous Delivery of Highly Diverse Bioactive Compounds from Blend Electrospun Fibers for Skin Wound Healing.

    PubMed

    Peh, Priscilla; Lim, Natalie Sheng Jie; Blocki, Anna; Chee, Stella Min Ling; Park, Heyjin Chris; Liao, Susan; Chan, Casey; Raghunath, Michael

    2015-07-15

    Blend emulsion electrospinning is widely perceived to destroy the bioactivity of proteins, and a blend emulsion of water-soluble and nonsoluble molecules is believed to be thermodynamically unstable to electrospin smoothly. Here we demonstrate a method to retain the bioactivity of disparate fragile biomolecules when electrospun. Using bovine serum albumin as a carrier protein; water-soluble vitamin C, fat soluble vitamin D3, steroid hormone hydrocortisone, peptide hormone insulin, thyroid hormone triiodothyronine (T3), and peptide epidermal growth factor (EGF) were simultaneously blend-spun into PLGA-collagen nanofibers. Upon release, vitamin C maintained the ability to facilitate Type I collagen secretion by fibroblasts, EGF stimulated skin fibroblast proliferation, and insulin potentiated adipogenic differentiation. Transgenic cell reporter assays confirmed the bioactivity of vitamin D3, T3, and hydrocortisone. These factors concertedly increased keratinocyte and fibroblast proliferation while maintaining keratinocyte basal state. This method presents an elegant solution to simultaneously deliver disparate bioactive biomolecules for wound healing applications. PMID:26079091

  2. Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers.

    PubMed

    Natu, Mădălina V; de Sousa, Hermínio C; Gil, M H

    2010-09-15

    Bicomponent fibers of two semi-crystalline (co)polymers, poly(varepsilon-caprolactone), and poly(oxyethylene-b-oxypropylene-b-oxyethylene), were obtained by electrospinning. Acetazolamide and timolol maleate were loaded in the fibers in different concentrations (below and above the drug solubility limit in polymer) in order to determine the effect of drug solubility in polymer, drug state, drug loading and fiber composition on fiber morphology, drug distribution and release kinetics. The high loadings fibers (with drug in crystalline form) showed higher burst and faster release than low drug content fibers, indicating the release was more sustained when the drug was encapsulated inside the fibers, in amorphous form. Moreover, timolol maleate was released faster than acetazolamide, indicating that drug solubility in polymer influences the partition of drug between polymer and elution medium, while fiber composition also controlled drug release. At low loadings, total release was not achieved (cumulative release percentages smaller than 100%), suggesting that drug remained trapped in the fibers. The modeling of release data implied a three stage release mechanism: a dissolution stage, a desorption and subsequent diffusion through water-filled pores, followed by polymer degradation control.

  3. Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fibers

    SciTech Connect

    Li, Haopeng; Zhu, Yihua; Cao, Huimin; Yang, Xiaoling; Li, Chunzhong

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► The TiO{sub 2}-CDs nanostructured fibers are fabricated by using APS combining the electrospinning TiO{sub 2} nanostructured fibers and CDs. ► The CD can work as a photosensitizer in the degradation of rhodamine B under visible light irradiation. ► The TiO{sub 2}-CDs nanostructured fibers exhibit enhanced photocatalytic efficiency and can be easily handled and recycled. -- Abstract: The carbon dots (CDs) are new functional carbon-aceous materials. Compared to conventional dye molecules and semiconductor quantum dots, CDs are superior in chemical inertness and low toxicity. The TiO{sub 2}-CDs nanostructured fibers were fabricated by combining the electrospinning technique and reflux method. Compared with the pure TiO{sub 2} nanostructured fibers and P25, the TiO{sub 2}-CDs nanostructured fibers exhibited enhanced photocatalytic efficiency of photodegradation of rhodamine B (RhB) under visible light irradiation. The enhanced photocatalytic activity of TiO{sub 2}-CDs nanostructured fibers could be attributed to the presence of CDs embedded in TiO{sub 2} nanostructured fibers. The CD can work as a photosensitizer in the degradation. Furthermore, the TiO{sub 2}-CDs nanostructured fibers could be easily handled and recycled due to their one-dimensional nanostructural property.

  4. Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique.

    PubMed

    Baker, Stephen R; Banerjee, Soham; Bonin, Keith; Guthold, Martin

    2016-02-01

    Due to its low cost, biocompatibility and slow bioresorption, poly-ε-caprolactone (PCL) continues to be a suitable material for select biomedical engineering applications. We used a combined atomic force microscopy (AFM)/optical microscopy technique to determine key mechanical properties of individual electrospun PCL nanofibers with diameters between 440-1040nm. Compared to protein nanofibers, PCL nanofibers showed much lower adhesion, as they slipped on the substrate when mechanically manipulated. We, therefore, first developed a novel technique to anchor individual PCL nanofibers to micrometer-sized ridges on a substrate, and then mechanically tested anchored nanofibers. When held at constant strain, tensile stress relaxed with fast and slow relaxation times of 1.0±0.3s and 8.8±3.1s, respectively. The total tensile modulus was 62±26MPa, the elastic (non-relaxing) component of the tensile modulus was 53±36MPa. Individual PCL fibers could be stretched elastically (without permanent deformation) to strains of 19-23%. PCL nanofibers are rather extensible; they could be stretched to a strain of at least 98%, and a tensile strength of at least 12MPa, before they slipped off the AFM tip. PCL nanofibers that had aged for over a month at ambient conditions became stiffer and less elastic. Our technique provides accurate nanofiber mechanical data, which are needed to guide construction of scaffolds for cells and other biomedical devices. PMID:26652365

  5. Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers.

    PubMed

    Zhao, Xin; Zhao, Jingwen; Lin, Zhi Yuan William; Pan, Guoqing; Zhu, Yueqi; Cheng, Yingsheng; Cui, Wenguo

    2015-06-01

    Implantable tissue engineering scaffolds with temporally programmable multi-drug release are recognized as promising tools to improve therapeutic effects. A good example would be one that exhibits initial anti-inflammatory and long-term anti-tumor activities after tumor resection. In this study, a new strategy for self-coated interfacial layer on drug-loaded mesoporous silica nanoparticles (MSNs) based on mussel-mimetic catecholamine polymer (polydopamine, PDA) layer was developed between inorganic and organic matrix for controlling drug release. When the interface PDA coated MSNs were encapsulated in electrospun poly(L-lactide) (PLLA) fibers, the release rates of drugs located inside/outside the interfacial layer could be finely controlled, with short-term release of anti-inflammation ibuprofen (IBU) for 30 days in absence of interfacial interactions and sustained long-term release of doxorubicin (DOX) for 90 days in presence of interfacial interactions to inhibit potential tumor recurrence. The DOX@MSN-PDA/IBU/PLLA hybrid fibrous scaffolds were further found to inhibit proliferation of inflammatory macrophages and cancerous HeLa cells, while supporting the normal stromal fibroblast adhesion and proliferation at different release stages. These results have suggested that the interfacial obstruction layer at the organic/inorganic phase was able to control the release of drugs inside (slow)/outside (rapid) the interfacial layer in a programmable manner. We believe such interface polymer strategy will find applications in where temporally controlled multi-drug delivery is needed. PMID:25879640

  6. Electrospun fibers of PLA/P3HT blends for device and sensor applications

    NASA Astrophysics Data System (ADS)

    Serrano, William; Pinto, Nicholas

    2013-03-01

    The thermoplastic aliphatic polyester, poly (lactic acid) (PLA) is a biodegradable polymer that is sometimes used in implant screws for bone repair. Our focus was to fabricate fibers of this polymer and its blends with p-doped poly (3-hexylthiophene)-(P3HT) in order to extend its use to devices and/or sensors. PLA/P3HT fibers were prepared in air at room temperature using the electrospinning technique that is cheap, fast and reliable. Scanning Electron Microscope images of the fibers reveal that the presence of P3HT does not affect the fabrication of PLA fibers at low or high polymer concentrations in chloroform, retaining the same morphological structure of pure PLA fibers. The fiber diameters were in the range 1-10 microns. A slight increase in fiber formation results with the addition of P3HT, most likely due to a reduction of the solution surface tension. Results of the electrical characterization of this material will be presented. DoD and NSF

  7. In vitro immersion studies of optimized electrospun bioglass 45S5 fibers for tissue engineering application

    NASA Astrophysics Data System (ADS)

    Durgalakshmi, D.; Balakumar, S.

    2015-06-01

    Bioactive-glass scaffolds are crucial in bone tissue engineering application since, they work as temporary templates for tissue regrowth and provides structural support to the cells. However, many issues remain unfolded with regard to their design. In this study, for the first time bioactive glass 45S5 fibers were synthesized using electrospinning technique. The electrospinning process parameters were optimized to obtain reproducible fibers. The effect of solvent concentration and polymer concentration on fiber formation was clearly studied. In vitro studies in simulated body fluid (SBF) were performed to investigate the bioactivity and mineralization of the scaffold by inducing the formation of hydroxyapatite (HA) crystals.

  8. Facile patterning of electrospun polymer fibers enabled by electrostatic lensing interactions

    NASA Astrophysics Data System (ADS)

    Titov, Kirill; Tan, Jin-Chong

    2016-08-01

    Hierarchical polymer fibers with long-range ordering have been straightforwardly fabricated employing a macroscale patterned mesh comprising microscale metallic filaments as a conductive collector, in an otherwise conventional electrospinning apparatus. Using electrostatic simulations, we elucidate that the patterning electric field is extremely confined to the immediate vicinity of the mesh collector surface. This lensing phenomenon is controlling the fiber patterning effect, and its strength decays with height above the patterned surface. Our study sheds new light on the physical mechanism underpinning electrospinning and offers a new approach for engineering fiber architectures where a precise control of in-plane physical properties is sought.

  9. Diameter-Dependent Modulus and Melting Behavior in Electrospun Semicrystalline Polymer Fibers

    SciTech Connect

    Y Liu; S Chen; E Zussman; C Korach; W Zhao; M Rafailovich

    2011-12-31

    Confinement of the semicrystalline polymers, poly(ethylene-co-vinyl acetate) (PEVA) and low-density polyethylene (LDPE), produced by electrospinning has been observed to produce fibers with large protrusions, which have not been previously observed in fibers of comparable diameters produced by other methods. SAXS spectra confirmed the crystalline structure and determined that the lamellar spacing was almost unchanged from the bulk. Measurement of the mechanical properties of these fibers, by both shear modulation force microscopy (SMFM) and atomic force acoustic microscopy (AFAM), indicates that the modulii of these fibers increases with decreasing diameter, with the onset at {approx}10 {micro}m, which is an order of magnitude larger than previously reported. Melting point measurements indicate a decrease of more than 7% in T{sub m}/T{sub 0} (where T{sub m} is the melting point of semicrystalline polymer fibers and T{sub 0} is the melting point of the bulk polymer) for fibers ranging from 4 to 10 {micro}m in diameter. The functional form of the decrease followed a universal curve for PEVA, when scaled with T{sub 0}.

  10. Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting.

    PubMed

    Dufficy, Martin K; Geiger, Mackenzie T; Bonino, Christopher A; Khan, Saad A

    2015-11-17

    Fumed silica (FS) particles with hydrophobic (R805) or hydrophilic (A150) surface functionalities are incorporated in polyacrylonitrile (PAN) fibers by electrospinning to produce mats with controlled wettability. Rheological measurements are conducted to elucidate the particle-polymer interactions and characterize the system while microscopic and analytic tools are used to examine FS location within both fibers and films to aid in the fundamental understanding of wetting behavior. Unlike traditional polymers, we find these systems to be gel-like, yet electrospinnable; the fumed silica networks break down into smaller aggregates during the electrospinning process and disperse both within and on the surface of the fibers. Composite nanofiber mats containing R805 FS exhibit an apparent contact angle over 130° and remain hydrophobic over 30 min, while similar mats with A150 display rapid surface-wetting with a static contact angle of ∼30°. Wicking experiments reveal that the water absorption properties can be further manipulated, with R805 FS-impregnated mats taking up only 8% water relative to mat weight in 15 min. In contrast, PAN fibers containing A150 FS absorb 425% of water in the same period, even more than the pure PAN fiber (371%). The vastly different responses to water demonstrate the versatility of FS in surface modification, especially for submicron fibrous mats. The role of fumed silica in controlling wettability is discussed in terms of their surface functionality, placement on nanofibers and induced surface roughness. PMID:26477547

  11. Confinement-sensitive optical response of cholesteric liquid crystals in electrospun fibers.

    PubMed

    Enz, Eva; La Ferrara, Vera; Scalia, Giusy

    2013-08-27

    Soft self-assembling photonic materials such as cholesteric liquid crystals are attractive due to their multiple unique and useful properties, in particular, an optical band gap that can be continuously and dynamically tuned in response to weak external influences, easy device integration, compatibility with flexible architectures, and, as shown here, potential for submicrometer optical applications. We study such a system formed by a short-pitch cholesteric confined in the core of polymer fibers produced by coaxial electrospinning, showing that the selective reflection arising from the helical photonic structure of the liquid crystal is present even when its confining cavity is well below a micrometer in thickness, allowing as little as just half a turn of the helix to develop. At this scale, small height variations result in a dramatic change in the reflected color, in striking difference to the bulk behavior. These conclusions are made possible by combining focused ion beam (FIB) dissection and imaging of the internal fiber morphology with optical microscopy. The FIB dissection further reveals that the cross section of the cavity within the fiber can have a shape that is quite different from that of the outside fiber. This is critical for the photonic behavior of the composite fiber because different optical textures are generated not only by change in thickness but also by the shape of the cavity. Our results provide insights into the behavior of cholesterics in submicrometer cavities and demonstrate their potential at such dimensions.

  12. Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting.

    PubMed

    Dufficy, Martin K; Geiger, Mackenzie T; Bonino, Christopher A; Khan, Saad A

    2015-11-17

    Fumed silica (FS) particles with hydrophobic (R805) or hydrophilic (A150) surface functionalities are incorporated in polyacrylonitrile (PAN) fibers by electrospinning to produce mats with controlled wettability. Rheological measurements are conducted to elucidate the particle-polymer interactions and characterize the system while microscopic and analytic tools are used to examine FS location within both fibers and films to aid in the fundamental understanding of wetting behavior. Unlike traditional polymers, we find these systems to be gel-like, yet electrospinnable; the fumed silica networks break down into smaller aggregates during the electrospinning process and disperse both within and on the surface of the fibers. Composite nanofiber mats containing R805 FS exhibit an apparent contact angle over 130° and remain hydrophobic over 30 min, while similar mats with A150 display rapid surface-wetting with a static contact angle of ∼30°. Wicking experiments reveal that the water absorption properties can be further manipulated, with R805 FS-impregnated mats taking up only 8% water relative to mat weight in 15 min. In contrast, PAN fibers containing A150 FS absorb 425% of water in the same period, even more than the pure PAN fiber (371%). The vastly different responses to water demonstrate the versatility of FS in surface modification, especially for submicron fibrous mats. The role of fumed silica in controlling wettability is discussed in terms of their surface functionality, placement on nanofibers and induced surface roughness.

  13. Tough Stretchable Physically-Crosslinked Hydrogel Fiber Mats from Electrospun Statistical Copolymers

    NASA Astrophysics Data System (ADS)

    Yang, Yiming; Weiss, R. A.; Vogt, Bryan

    Nature uses supramolecular interactions combined with hierarchical structures to produce water-laden materials with combination of properties that are challenging to obtain in synthetic systems. Here we describe a simple method based on electrospinning of a self-associating amphiphilic copolymer. Immersion of the copolymer mats in water generates supramolecular hydrogels that are crosslinked by association of the fluorinated hydrophobic moieties in the copolymer. These robust hydrogel fiber mats exhibit extensibility greater than 225 % and the elastic modulus can be comparable to the bulk hydrogel despite the porous structure of the as-spun mat. Moreover, the stress dissipation by re-arrangement of the physically associated network leads to coalescence of the fibers that propagates from the surfaces to the interior of the mat. Both the mechanical properties and this fiber coalescence behavior can be tuned by selection of the copolymer composition and the initial fiber dimensions. These tough, stretchable hydrogel fiber mats could find utility in a variety of biomedical applications due to their unique properties.

  14. Functional electrospun membranes

    NASA Astrophysics Data System (ADS)

    Ognibene, G.; Fragalà, M. E.; Cristaldi, D. A.; Blanco, I.; Cicala, G.

    2016-05-01

    In this study we combined electrospun PES nanofibers with ZnO nanostructures in order to obtain a hierarchical nanostructured hybrid material to be use for active water filtration membranes. It benefits of flexibility and high surface area of the polymeric nanofibers as well as of additional functionalities of ZnOnanostructures. First, randomly oriented nanofibers with diameters of 716nm ±365 nm were electrospun on a glass fibers substrate from a solution of PES and DMF-TOL(1:1). ZnO nanorods were grown onto the surface of electrospun PES fibers by a Chemical Bath Deposition (CBD) process. It was preceed by a seeding process necessary to form nucleation sites for the subsequent radially aligned growth of ZnO nanowires. The morfology of the fibers and the effect of the seeding time have been analysed by SEM. The amount of ZnO nanowires grown over electrospun nanofibers was determined as 45% by weight. The high purity and crystallinity of the asobtained products are confirmed by XRD since all reflection peaks can be indexed to hexagonal wurtzite ZnO.

  15. Effect of Fiber Diameter on the Spreading, Proliferation and Differentiation of Chondrocytes on Electrospun Chitosan Matrices

    PubMed Central

    Noriega, Sandra E.; Hasanova, Gulnara I.; Schneider, Min Jeong; Larsen, Gustavo F.; Subramanian, Anuradha

    2012-01-01

    Tissue-engineered neocartilage with appropriate biomechanical properties holds promise not only for graft applications but also as a model system for controlled studies of chondrogenesis. Our objective in the present research study is to better understand the impact of fiber diameter on the cellular activity of chondrocytes cultured on nanofibrous matrices. By using the electrospinning process, fibrous scaffolds with fiber diameters ranging from 300 nm to 1 μm were prepared and the physicomechanical properties of the scaffolds were characterized. Bovine articular chondrocytes were then seeded and maintained on the scaffolds for 7 and 14 days in culture. An upregulation in the gene expression of collagen II was noted with decreasing fiber diameters. For cells that were cultured on scaffolds with a mean fiber diameter of 300 nm, a 2-fold higher ratio of collagen II/collagen I was noted when compared to cells cultured on sponge-like scaffolds prepared by freeze drying and lyophilization. Integrin (α5, αv, β1) gene expression was also observed to be influenced by matrix morphology. Our combined results suggest that matrix geometry can regulate and promote the retention of the chondrocyte genotype. PMID:21540560

  16. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds.

    PubMed

    Bean, Allison C; Tuan, Rocky S

    2015-01-29

    Chondrogenic differentiation of mesenchymal stem cells is strongly influenced by the surrounding chemical and structural milieu. Since the majority of the native cartilage extracellular matrix is composed of nanofibrous collagen fibrils, much of recent cartilage tissue engineering research has focused on developing and utilizing scaffolds with similar nanoscale architecture. However, current literature lacks consensus regarding the ideal fiber diameter, with differences in culture conditions making it difficult to compare between studies. Here, we aimed to develop a more thorough understanding of how cell-cell and cell-biomaterial interactions drive in vitro chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells (MSCs). Electrospun poly(ε-caprolactone) microfibers (4.3  ±  0.8 µm diameter, 90 μm(2) pore size) and nanofibers (440  ±  20 nm diameter, 1.2 μm(2) pore size) were seeded with MSCs at initial densities ranging from 1  ×  10(5) to 4  ×  10(6) cells cm(-3)-scaffold and cultured under transforming growth factor-β (TGF-β) induced chondrogenic conditions for 3 or 6 weeks. Chondrogenic gene expression, cellular proliferation, as well as sulfated glycosaminoglycan and collagen production were enhanced on microfiber in comparison to nanofiber scaffolds, with high initial seeding densities being required for significant chondrogenic differentiation and extracellular matrix deposition. Both cell-cell and cell-material interactions appear to play important roles in chondrogenic differentiation of MSCs in vitro and consideration of several variables simultaneously is essential for understanding cell behavior in order to develop an optimal tissue engineering strategy.

  17. Antibacterial Properties of Tough and Strong Electrospun PMMA/PEO Fiber Mats Filled with Lanasol—A Naturally Occurring Brominated Substance

    PubMed Central

    Andersson, Richard L.; Martínez-Abad, Antonio; Lagaron, José M.; Gedde, Ulf W.; Mallon, Peter E.; Olsson, Richard T.; Hedenqvist, Mikael S.

    2014-01-01

    A new type of antimicrobial, biocompatible and toughness enhanced ultra-thin fiber mats for biomedical applications is presented. The tough and porous fiber mats were obtained by electrospinning solution-blended poly (methyl methacrylate) (PMMA) and polyethylene oxide (PEO), filled with up to 25 wt % of Lanasol—a naturally occurring brominated cyclic compound that can be extracted from red sea algae. Antibacterial effectiveness was tested following the industrial Standard JIS L 1902 and under agitated medium (ASTM E2149). Even at the lowest concentrations of Lanasol, 4 wt %, a significant bactericidal effect was seen with a 4-log (99.99%) reduction in bacterial viability against S. aureus, which is one of the leading causes of hospital-acquired (nosocomial) infections in the world. The mechanical fiber toughness was insignificantly altered up to the maximum Lanasol concentration tested, and was for all fiber mats orders of magnitudes higher than electrospun fibers based on solely PMMA. This antimicrobial fiber system, relying on a dissolved antimicrobial agent (demonstrated by X-ray diffraction and Infrared (IR)-spectroscopy) rather than a dispersed and “mixed-in” solid antibacterial particle phase, presents a new concept which opens the door to tougher, stronger and more ductile antimicrobial fibers. PMID:25207601

  18. Engineering Multi-scale Electrospun Structure for Integration into Architected 3-D Nanofibers for Cimex Annihilation: Fabrication and Mechanism Study

    NASA Astrophysics Data System (ADS)

    He, Shan; Zhang, Linxi; Liu, Ying; Rafailovich, Miriam; Garcia CenterPolymers at Engineered Interfaces Team

    In this study, engineered electrospun scaffolds with fibers oriented with designed curvature in three dimensions (3D) including the looped structure were developed based on the principle of electrostatic repulsion. Here we illustrate that 3D electrospun recycled polystyrene fibers could closely mimic the unique architectures of multi-direction and multi-layer nano-spiderweb. In contrast to virgin PS, the recycled PS (Dart Styrofoam) are known to contain zinc stearate which acts as a surfactant resulting in higher electrical charge and larger fiber curvature, hence, lower modulus. The surfactant, which is known to decrease the surface tension, may have also been effective at decreasing the confinement of the PS, where chain stretching was shown to occur, in response to the high surface tension at the air interface. Three dimensional flexible architecture with complex structures are shown to be necessary in order to block the motion of Cimex lectularius. Here we show how an engineered electrospun network of surfactant modified polymer fibers with calculated dimensions can be used to immobilize the insects. The mechanical response of the fibers has to be specifically tailored so that it is elastically deformed, without fracturing or flowing. Carefully controlling and tailoring the electrospinning parameters we can now utilize architected 3D nanofiber to create an environmental-friendly Cimex immobilization device which can lead to annihilation solution for all the other harmful insects.

  19. Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate.

    PubMed

    Lin, Chi-Chang; Fu, Shu-Juan; Lin, Yu-Ching; Yang, I-Kuan; Gu, Yesong

    2014-07-01

    In this work, hydroxyapatite (HA) mineralized on chitosan (CS)-coated poly(lactic acid) (PLA) nanofiber mat was prepared and compared in terms of mineralization characteristics. Significant calcium phosphate crystals formed on various concentrations of CS-coated PLA fiber mat with better uniformity after 2h of incubation in 10 times simulated body fluid (10× SBF). X-ray diffraction results further indicated that the composition of the deposited mineral was a mixture of dicalcium phosphate dehydrates and apatite. Chitosan, a cationic polysaccharide, can promote more nucleation and growth of calcium phosphate under conditions of 0.4% chitosan concentrations. These results indicated that HA-mineralized on CS-coated PLA fiber mat can be prepared directly via simply using CS coating followed by SBF immersion, and the results also suggest that this composite can mimic structural, compositional, and biological functions of native bone and can serve as a good candidate for bone tissue engineering (BTE). PMID:24768970

  20. Enzyme-free ethanol sensor based on electrospun nickel nanoparticle-loaded carbon fiber paste electrode.

    PubMed

    Liu, Yang; Zhang, Lei; Guo, Qiaohui; Hou, Haoqing; You, Tianyan

    2010-03-24

    We have developed a novel nickel nanoparticle-loaded carbon fiber paste (NiCFP) electrode for enzyme-free determination of ethanol. An electrospinning technique was used to prepare the NiCF composite with large amounts of spherical nanoparticles firmly embedded in carbon fibers (CF). In application to electroanalysis of ethanol, the NiCFP electrode exhibited high amperometric response and good operational stability. The calibration curve was linear up to 87.5 mM with a detection limit of 0.25 mM, which is superior to that obtained with other transition metal based electrodes. For detection of ethanol present in liquor samples, the values obtained with the NiCFP electrode were in agreement with the ones declared on the label. The attractive analytical performance and simple preparation method make this novel material promising for the development of effective enzyme-free sensors.

  1. Coaxially electrospun axon-mimicking fibers for diffusion magnetic resonance imaging.

    PubMed

    Zhou, Feng-Lei; Hubbard, Penny L; Eichhorn, Stephen J; Parker, Geoffrey J M

    2012-11-01

    The study of brain structure and connectivity using diffusion magnetic resonance imaging (dMRI) has recently gained substantial interest. However, the use of dMRI still faces major challenges because of the lack of standard materials for validation. The present work reports on brain tissue-mimetic materials composed of hollow microfibers for application as a standard material in dMRI. These hollow fibers were fabricated via a simple and one-step coaxial electrospining (co-ES) process. Poly(ε-caprolactone) (PCL) and polyethylene oxide (PEO) were employed as shell and core materials, respectively, to achieve the most stable co-ES process. These co-ES hollow PCL fibers have different inner diameters, which mainly depend on the flow rate of the core solution and have the potential to cover the size range of the brain tissue we aimed to mimic. Co-ES aligned hollow PCL fibers were characterized using optical and electron microscopy and tested as brain white matter mimics on a high-field magnetic resonance imaging (MRI) scanner. To the best of our knowledge, this is the first time that co-ES hollow fibers have been successfully used as a tissue mimic or phantom in diffusion MRI. The results of the present study provide evidence that this phantom can mimic the dMRI behavior of cellular barriers imposed by axonal cell membranes and myelin; the measured diffusivity is compatible with that of in vivo biological tissues. Together these results suggest the potential use of co-ES hollow microfibers as tissue-mimicking phantoms in the field of medical imaging.

  2. Electrospun fibers as potential carrier systems for enhanced drug release of perphenazine.

    PubMed

    Bruni, Giovanna; Maggi, Lauretta; Tammaro, Loredana; Lorenzo, Rosadele Di; Friuli, Valeria; D'Aniello, Sharon; Maietta, Mariarosa; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Marini, Amedeo

    2016-09-10

    Solubility represents an important challenge for formulation of drugs, because the therapeutic efficacy of a drug depends on the bioavailability and ultimately on its solubility. Low aqueous solubility is one of the main issues related with formulation design and development of new molecules. Many drug molecules present bioavailability problems due to their poor solubility. For this reason there is a great interest in the development of new carrier systems able to enhance the dissolution of poorly water-soluble drugs. In this work, fibers containing an insoluble model drug and prepared by an electrospinning method, are proposed and evaluated to solve this problem. Two hydrophilic polymers, polyvinylpyrrolidone (Plasdone® K29/32) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used to increase the water solubility of perphenazine. The physico-chemical characterization suggests that the drug loaded in the fibers is in the amorphous state. Both polymeric carriers are effective to promote the drug dissolution rate in water, where this active pharmaceutical ingredient is insoluble, due to the fine dispersion of the drug into the polymeric matrices, obtained with this production technique. In fact, the dissolution profiles of the fibers, compared to the simple physical mixture of the two components, and to the reference commercial product Trilafon® 8mg tablets, show that a strong enhancement of the drug dissolution rate can be achieved with the electrospinning technique. PMID:27418562

  3. Electrospun fibers as potential carrier systems for enhanced drug release of perphenazine.

    PubMed

    Bruni, Giovanna; Maggi, Lauretta; Tammaro, Loredana; Lorenzo, Rosadele Di; Friuli, Valeria; D'Aniello, Sharon; Maietta, Mariarosa; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Marini, Amedeo

    2016-09-10

    Solubility represents an important challenge for formulation of drugs, because the therapeutic efficacy of a drug depends on the bioavailability and ultimately on its solubility. Low aqueous solubility is one of the main issues related with formulation design and development of new molecules. Many drug molecules present bioavailability problems due to their poor solubility. For this reason there is a great interest in the development of new carrier systems able to enhance the dissolution of poorly water-soluble drugs. In this work, fibers containing an insoluble model drug and prepared by an electrospinning method, are proposed and evaluated to solve this problem. Two hydrophilic polymers, polyvinylpyrrolidone (Plasdone® K29/32) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used to increase the water solubility of perphenazine. The physico-chemical characterization suggests that the drug loaded in the fibers is in the amorphous state. Both polymeric carriers are effective to promote the drug dissolution rate in water, where this active pharmaceutical ingredient is insoluble, due to the fine dispersion of the drug into the polymeric matrices, obtained with this production technique. In fact, the dissolution profiles of the fibers, compared to the simple physical mixture of the two components, and to the reference commercial product Trilafon® 8mg tablets, show that a strong enhancement of the drug dissolution rate can be achieved with the electrospinning technique.

  4. Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating.

    PubMed

    Bagheri, Habib; Roostaie, Ali

    2015-01-01

    In the present work, the roles of inorganic oxide nanoparticles on the extraction efficiency of polyethylene terephthalate-based nanocomposites were extensively studied. Four fiber coatings based on polyethylene terephthalate nanocomposites containing different types of nanoparticles along with a pristine polyethylene terephthalate polymer were conveniently electrospun on stainless steel wires. The applicability of new fiber coatings were examined by headspace-solid phase microextraction of some environmentally important volatile organic compound such as benzene, toluene, ethylbenzene and xylene (BTEX), as model compounds, from aqueous samples. Subsequently, the extracted analytes were transferred into a gas chromatography by thermal desorption. Parameters affecting the morphology and capability of the prepared nanocomposites including the type of nanoparticles and their doping levels along with the coating time were optimized. Four types of nanoparticles including Fe3O4, SiO2, CoO and NiO were examined as the doping agents and among them the presence of SiO2 in the prepared nanocomposite was prominent. The homogeneity and the porous surface structure of the SiO2-polyethylene terephthalate nanocomposite were confirmed by scanning electron microscopy indicating that the nanofibers diameters were lower than 300 nm. In addition, important parameters influencing the extraction and desorption process such as temperature and extraction time, ionic strength and desorption conditions were optimized. Eventually, the developed method was validated by gas chromatography-mass spectrometry. Under optimized conditions, the relative standard deviation values for a double distilled water spiked with the selected volatile organic compounds at 50 ng L(-1) were 2-7% (n=3) while the limits of detection were between 0.7 and 0.9 ng L(-1). The method was linear in the concentration range of 10 to 1,000 ng L(-1) (R(2)>0.9992). Finally, the developed method was applied to the analysis of

  5. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds.

    PubMed

    Moroni, Lorenzo; Licht, Ruud; de Boer, Jan; de Wijn, Joost R; van Blitterswijk, Clemens A

    2006-10-01

    Electrospinning (ESP) has lately shown a great potential as a novel scaffold fabrication technique for tissue engineering. Scaffolds are produced by spinning a polymeric solution in fibers through a spinneret connected to a high-voltage electric field. The fibers are then collected on a support, where the scaffold is created. Scaffolds can be of different shapes, depending on the collector geometry, and have high porosity and high surface per volume ratio, since the deposited fibers vary from the microscale to the nanoscale range. Such fibers are quite effective in terms of tissue regeneration, as cells can bridge the scaffold pores and fibers, resulting in a fast and homogeneous tissue growth. Furthermore, fibers can display a nanoporous ultrastructure due to solvent evaporation. The aim of this study was to characterize electrospun scaffolds from poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) copolymers and to unravel the mechanism of pore formation on the fibers. The effect of different fiber diameters and of their surface nanotopology on cell seeding, attachment, and proliferation was studied. Smooth fibers with diameter of 10microm were found to support an optimal cell seeding and attachment within the micrometer range analyzed. Moreover, a nanoporous surface significantly enhanced cell proliferation and cells spreading on the fibers. The fabrication of ESP scaffolds with incorporated dyes with different molecular dimensions is also reported and their release measured. These findings contribute to the field of cell-material interaction and lead to the fabrication of "smart" scaffolds which can direct cells morphology and proliferation, and eventually release biological signals to properly conduct tissue formation. PMID:16762409

  6. Preparation of silica-sustained electrospun polyvinylpyrrolidone fibers with uniform mesopores via oxidative removal of template molecules by H{sub 2}O{sub 2} treatment

    SciTech Connect

    Kang, Haigang; Zhu, Yihua; Shen, Jianhua; Yang, Xiaoling; Chen, Cheng; Cao, Huimin; Li, Chungzhong

    2010-07-15

    Silica-sustained electrospun PVP fibers with uniform mesopores were synthesized via facile oxidative removal of template molecules by H{sub 2}O{sub 2} extraction. Tetraethyl orthosilicate, polyvinylpyrrolidone (PVP), and triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer pluronic P{sub 123} compose the electrospinning sol to fabricate the silica-sustained PVP hybrid fibers. The effect of different post-treatment methods on the pore size distribution was investigated by calcination and extraction, respectively. Experimental results showed that oxidative removal of structure-directing agent P{sub 123} in the hybrid fibers by H{sub 2}O{sub 2} treatment can easily form narrow pore size distribution, and the incorporation of 3D silica skeleton built by hot steam aging facilitated preserving the original cylindrical morphology of fibers. Scanning electron microscopy (SEM), N{sub 2} adsorption-desorption isotherm, transmission electron microscopy (TEM), X-ray diffraction (XRD), FT-IR spectra and thermogravimetric analysis (TGA) were used to characterize the hybrid fibers. The hybrid fibers can be expected to have potential applications in drug release or tissue engineering because of their suitable pore size, large surface area and good biocompatibility.

  7. Electrospun Nanostructured Fibers of Collagen-Biomimetic Apatite on Titanium Alloy

    PubMed Central

    Iafisco, Michele; Foltran, Ismaela; Sabbatini, Simona; Tosi, Giorgio; Roveri, Norberto

    2012-01-01

    Titanium and its alloys are currently the mainly used materials to manufacture orthopaedic implants due to their excellent mechanical properties and corrosion resistance. Although these materials are bioinert, the improvement of biological properties (e.g., bone implant contact) can be obtained by the application of a material that mimics the bone extracellular matrix. To this aim, this work describes a new method to produce nanostructured collagen-apatite composites on titanium alloy substrate, by combining electrospinning and biomimetic mineralization. The characterization results showed that the obtained mineralized scaffolds have morphological, structural, and chemical compositional features similar to natural bone extracellular matrix. Finally, the topographic distribution of the chemical composition in the mineralized matrix evaluated by Fourier Transform Infrared microspectroscopy demonstrated that the apatite nanocrystals cover the collagen fibers assembled by the electrospinning. PMID:22400013

  8. Protease degradable electrospun fibrous hydrogels

    PubMed Central

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-01-01

    Electrospun nanofibers are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases (MMPs). Here, we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fiber populations support selective fiber degradation based on individual fiber degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications. PMID:25799370

  9. Electrospun Electroactive Polymers for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Pawlowski, Kristin J.; St.Clair, Tyler L.; McReynolds, Amber C.; Park, Cheol; Ounaies, Zoubeida; Siochi, Emilie J.; Harrison, Joycelyn S.

    2003-01-01

    Electrospun piezoelectric polymers are being developed for use as a component on lightweight wings for micro-air vehicles (MAV). The goal is to incorporate fibers with tailored properties to permit dynamic control and maneuverability during flight. In particular, electrospun fiber mats of two piezoelectric polymers were investigated to ascertain their potential for the MAV application. In the work reported here, the typical experimental set-up for electrospinning was modified to induce fiber orientation in the spun mats. The morphologies of the resulting fibers and fiber mats were evaluated for various experimental conditions, and a comparison between oriented and unoriented fiber mats was carried out.

  10. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    SciTech Connect

    Shames, Alexander I.; Bounioux, Celine; Katz, Eugene A.; Yerushalmi-Rozen, Rachel; Zussman, Eyal

    2012-03-12

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  11. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    NASA Astrophysics Data System (ADS)

    Shames, Alexander I.; Bounioux, Céline; Katz, Eugene A.; Yerushalmi-Rozen, Rachel; Zussman, Eyal

    2012-03-01

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  12. Mechanically Active Electrospun Materials

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee M.

    Electrospinning, a technique used to fabricate small diameter polymer fibers, has been employed to develop unique, active materials falling under two categories: (1) shape memory elastomeric composites (SMECs) and (2) water responsive fiber mats. (1) Previous work has characterized in detail the properties and behavior of traditional SMECs with isotropic fibers embedded in an elastomer matrix. The current work has two goals: (i) characterize laminated anisotropic SMECs and (ii) develop a fabrication process that is scalable for commercial SMEC manufacturing. The former ((i)) requires electrospinning aligned polymer fibers. The aligned fibers are similarly embedded in an elastomer matrix and stacked at various fiber orientations. The resulting laminated composite has a unique response to tensile deformation: after stretching and releasing, the composite curls. This curling response was characterized based on fiber orientation. The latter goal ((ii)) required use of a dual-electrospinning process to simultaneously electrospin two polymers. This fabrication approach incorporated only industrially relevant processing techniques, enabling the possibility of commercial application of a shape memory rubber. Furthermore, the approach had the added benefit of increased control over composition and material properties. (2) The strong elongational forces experienced by polymer chains during the electrospinning process induce molecular alignment along the length of electrospun fibers. Such orientation is maintained in the fibers as the polymer vitrifies. Consequently, residual stress is stored in electrospun fiber mats and can be recovered by heating through the polymer's glass transition temperature. Alternatively, the glass transition temperature can be depressed by introducing a plasticizing agent. Poly(vinyl acetate) (PVAc) is plasticized by water, and its glass transition temperature is lowered below room temperature. Therefore, the residual stress can be relaxed at room

  13. Orientation and morphology development in electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Lin, David Yuh-Shyang

    This thesis presents the morphology and orientation development of electrospun fibers from polymer solutions with volatile solvents. Polymer solution concentration had a strong effect on the morphology of both Nylon 6,6 and poly(lactic acid) (PLLA) fibers. Successful electrospinning occurred above the overlap concentration, c* (˜0.1 wt% for Nylon 6,6 and 0.13 to 0.16 wt% for PLLA). Beaded fiber to smooth fiber transitions (5.4 to 8.3 wt% for Nylon 6,6 and 3.0 wt% for PLLA) were observed around the entanglement concentrations, ce, corresponding to entanglement characteristic values, [eta]C, of 5.4 to 8.5 (Nylon 6,6) and 20 to 24 (PLLA). Processing parameters, including DC voltage (VD), AC voltage (VA), frequency of VA, and tip-to-target distance, did not significantly affect the morphology of electrospun Nylon 6,6 fibers, but increasing VA or frequency resulted in more uniform fibers. Fully-aligned, defect-free PLLA scaffolds with diameters between 200 and 800 nm were electrospun by decreasing the solution feed rate, increasing the voltage and tip-to-target distance, and using concentrations near the beaded to smooth fiber transition. Neurites from dorsal root ganglion (DRG) explants that were seeded on these scaffolds were shown to follow the direction of these fibers upon contact. After 12 days, these neurites still adhered to the fibers and extended ˜1.5 to 2 cm from their original contact position. Neuroblastoma (SH-EP and SH-SY5Y) and Schwann cells were found to elongate and align parallel to the direction of the fibers. Orientation of electrospun fibers was found to be a function of fiber diameters. Polarized light optical microscopy was used to characterize banded structures in electrospun poly(hexyl isocyanate) (PHIC) fibers. The orientational order observed in fibers with diameters between 2 mum and 13 mum increased linearly with decreasing diameters. The structure of electrospun PLLA fibers was determined to be the beta structure. Using the intensity

  14. Fluorine-Enriched Melt-Blown Fibers from Polymer Blends of Poly(butylene terephthalate) and a Fluorinated Multiblock Copolyester.

    PubMed

    Wang, Zaifei; Macosko, Christopher W; Bates, Frank S

    2016-01-13

    Melt-blown fibers (dav ∼1 μm) were produced from blends of poly(butylene terephthalate) (PBT) and a partially fluorinated random multiblock copolyester (PFCE) leading to enhanced hydrophobicity and even superhydrophobicity (static water contact angle = 157 ± 3°) of the associated fiber mats. XPS measurements demonstrated quantitatively that the surface fluorine content increased systematically with the bulk loading of PFCE, rising to nearly 20 atom %, which corresponds to 41 wt % PFCE at a bulk loading of 10 wt %. The PBT/PFCE fibers exhibit greater fluorine surface segregation than either melt-blown PBT/poly(ethylene-co-chlorotrifluoroethylene) (PBT/PECTFE) fibers or electrospun fibers obtained from blends of poly(styrene) and fluoroalkyl end-capped polystyrene (PS/PSCF). Dynamic contact angle measurements further demonstrated decreased surface adhesion energy of the melt-blown PBT/PFCE fiber mats due to the blooming of PFCE to the surface.

  15. Influence of electrospun fiber mesh size on hMSC oxygen metabolism in 3D collagen matrices: experimental and theoretical evidences.

    PubMed

    Guaccio, Angela; Guarino, Vincenzo; Perez, Marco A Alvarez-; Cirillo, Valentina; Netti, Paolo A; Ambrosio, Luigi

    2011-08-01

    The traditional paradigm of tissue engineering of regenerating in vitro tissue or organs, through the combination of an artificial matrix and a cellular population has progressively changed direction. The most recent concept is the realization of a fully functional biohybrid, where both, the artificial and the biotic phase, concur in the formation of the novel organic matter. In this direction, interest is growing in approaches taking advantage of the control at micro- and nano-scale of cell material interaction based on the realization of elementary tassels of cells and materials which constitute the beginning point for the expansion of 3D more complex structures. Since a spontaneous assembly of all these components is expected, however, it becomes more fundamental than ever to define the features influencing cellular behavior, either they were material functional properties, or material architecture. In this work, it has been investigated the direct effect of electrospun fiber sizes on oxygen metabolism of h-MSC cells, when any other culture parameter was kept constant. To this aim, thin PCL electrospun membranes, with micro- and nano-scale texturing, were layered between two collagen slices up to create a sandwich structure (µC-PCL-C and nC-PCL-C). Cells were seeded on membranes, and the oxygen consumption was determined by a phosphorescence quenching technique. Results indicate a strong effect of the architecture of scaffolds on cell metabolism, also revealed by the increasing of HIF1-α gene expression in nC-PCL-C. These findings offer new insights into the role of materials in specific cell activities, also implying the existence of very interesting criteria for the control of tissue growth through the tuning of scaffold architecture.

  16. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues.

    PubMed

    Samavedi, Satyavrata; Vaidya, Prasad; Gaddam, Prudhvidhar; Whittington, Abby R; Goldstein, Aaron S

    2014-12-01

    Although bone-patellar tendon-bone (B-PT-B) autografts are the gold standard for repair of anterior cruciate ligament ruptures, they suffer from drawbacks such as donor site morbidity and limited supply. Engineered tissues modeled after B-PT-B autografts are promising alternatives because they have the potential to regenerate connective tissue and facilitate osseointegration. Towards the long-term goal of regenerating ligaments and their bony insertions, the objective of this study was to construct 2D meshes and 3D cylindrical composite scaffolds - possessing simultaneous region-wise differences in fiber orientation, diameter, chemistry and mechanical properties - by electrospinning two different polymers from off-set spinnerets. Using a dual drum collector, 2D meshes consisting of an aligned polycaprolactone (PCL) fiber region, randomly oriented poly(lactide-co-glycolide) (PLGA) fiber region and a transition region (comprised of both PCL and PLGA fibers) were prepared, and region-wise differences were confirmed by microscopy and tensile testing. Bone marrow stromal cells (BMSCs) cultured on these meshes exhibited random orientations and low aspect ratios on the random PLGA regions, and high aspect ratios and alignment on the aligned PCL regions. Next, meshes containing an aligned PCL region flanked by two transition regions and two randomly oriented PLGA regions were prepared and processed into 3D cylindrical composite scaffolds using an interpenetrating photo-crosslinkable polyethylene glycol diacrylate hydrogel to recapitulate the shape of B-PT-B autografts. Tensile testing indicated that cylindrical composites were mechanically robust, and eventually failed due to stress concentration in the aligned PCL region. In summary, this study demonstrates a process to fabricate electrospun meshes possessing region-wise differences in properties that can elicit region-dependent cell responses, and be readily processed into scaffolds with the shape of B-PT-B autografts.

  17. Electrospun poly(L-lactic acid-co-ɛ-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation.

    PubMed

    Chen, Xi; Wang, Jing; An, Qingzhu; Li, Dawei; Liu, Peixi; Zhu, Wei; Mo, Xiumei

    2015-04-01

    Emulsion electrospinning is a convenient and promising method for incorporating proteins and drugs into nanofiber scaffolds. The aim of this study was to fabricate a nanofiber scaffold for anticoagulation and rapid endothelialization. For this purpose, we encapsulated heparin and vascular endothelial growth factor (VEGF) into the core of poly(L-lactic acid-co-ɛ-caprolactone) (P(LLA-CL)) core-shell nanofibers via emulsion electrospinning. The fiber morphology, core-shell structure and hydrophilicity of the nanofiber mats were analyzed by scanning electron microscopy, transmission electron microscopy and water contact angle. The blood compatibility was measured by hemolysis and anticoagulation testing. A CCK-8 assay was performed to study the promotion of endothelial progenitor cell (EPC) growth and was complemented by immunofluorescent staining and SEM. Our study demonstrates that heparin and VEGF can be incorporated into P(LLA-CL) nanofibers via emulsion. The released heparin performed well as an anticoagulant, and the released VEGF promoted EPC growth on the fiber scaffolds. These results imply that electrospun P(LLA-CL) nanofibers containing heparin and VEGF have great potential in the development of vascular grafts in cases where antithrombogenicity and accelerated endothelialization are desirable.

  18. Electrospun cellulose nitrate and polycaprolactone blended nanofibers

    NASA Astrophysics Data System (ADS)

    Nartker, Steven; Hassan, Mohamed; Stogsdill, Michael

    2015-03-01

    Pure cellulose nitrate (CN) and blends of CN and polycaprolactone were electrospun to form nonwoven mats. Polymers were dissolved in a mixed solvent system of tetrahydrofuran and N,N-dimethylformamide. The concentrations were varied to obtain sub-micron and nanoscale fiber mats. Fiber mats were analyzed using scanning electron microscopy, contact angle analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The fiber morphology, surface chemistry and contact angle data show that these electrospun materials are suitable for applications including biosensing, biomedical and tissue engineering.

  19. pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery.

    PubMed

    Hua, Dawei; Liu, Zhongche; Wang, Fang; Gao, Buhong; Chen, Fei; Zhang, Qilu; Xiong, Ranhua; Han, Jingquan; Samal, Sangram Keshari; De Smedt, Stefaan C; Huang, Chaobo

    2016-10-20

    In this study we present the use of co-axial electrospinning to produce core-shell composite micro-/nano- fibers of polyurethane (PU) and cellulose acetate phthalate (CAP). The designed fibers possess enhanced mechanical properties with a tensile strength of 13.27±2.32MPa, which is a clear improvement over the existing CAP fibers that suffer from a poor mechanical strength (0.2±0.03MPa). The CAP imparts pH responsiveness to the core-shell structure giving the fibers potential for "semen sensitive" (intravaginal) drug delivery. PMID:27474676

  20. pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery.

    PubMed

    Hua, Dawei; Liu, Zhongche; Wang, Fang; Gao, Buhong; Chen, Fei; Zhang, Qilu; Xiong, Ranhua; Han, Jingquan; Samal, Sangram Keshari; De Smedt, Stefaan C; Huang, Chaobo

    2016-10-20

    In this study we present the use of co-axial electrospinning to produce core-shell composite micro-/nano- fibers of polyurethane (PU) and cellulose acetate phthalate (CAP). The designed fibers possess enhanced mechanical properties with a tensile strength of 13.27±2.32MPa, which is a clear improvement over the existing CAP fibers that suffer from a poor mechanical strength (0.2±0.03MPa). The CAP imparts pH responsiveness to the core-shell structure giving the fibers potential for "semen sensitive" (intravaginal) drug delivery.

  1. Self-crimping, biodegradable, electrospun polymer microfibers.

    PubMed

    Surrao, Denver C; Hayami, James W S; Waldman, Stephen D; Amsden, Brian G

    2010-12-13

    Semicrystalline poly(l-lactide-co-ε-caprolactone) (P(LLA-CL)) was used to produce electrospun fibers with diameters on the subcellular scale. P(LLA-CL) was chosen because it is biocompatible and its chemical and physical properties are easily tunable. The use of a rotating wire mandrel as a collection device in the electrospinning process, along with high collection speeds, was used to align electrospun fibers. Upon removal of the fibers from the mandrel, the fibers shrunk in length, producing a crimp pattern characteristic of collagen fibrils in soft connective tissues. The crimping effect was determined to be a result of the residual stresses resident in the fibers due to the fiber alignment process and the difference between the operating temperature (T(op)) and the glass-transition temperature (T(g)) of the polymer. The electrospun fibers could be induced to crimp by adjusting the operating temperature to be greater than that of the polymer glass-transition temperature. Moreover, the crimped fibers exhibited a toe region in their stress-strain profile that is characteristic of collagen present in tendons and ligaments. The crimp pattern was retained during in vitro degradation over 4 weeks. Primary bovine fibroblasts seeded onto these crimped fibers attached, proliferated, and deposited extracellular matrix (ECM) molecules on the surface of the fiber mats. These self-crimping fibers hold great promise for use in tissue engineering scaffolds for connective tissues that require fibers similar in structure to that of crimped collagen fibrils. PMID:21047054

  2. Towards a novel bioelectrocatalytic platform based on “wiring” of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture

    NASA Astrophysics Data System (ADS)

    Gladisch, Johannes; Sarauli, David; Schäfer, Daniel; Dietzel, Birgit; Schulz, Burkhard; Lisdat, Fred

    2016-01-01

    Electrospinning is known as a fabrication technique for electrode architectures that serve as immobilization matrices for biomolecules. The current work demonstrates a novel approach to construct a conductive polymeric platform, capable not only of immobilization, but also of electrical connection of the biomolecule with the electrode. It is produced upon electrospinning from mixtures of three different highly conductive sulfonated polyanilines and polyacrylonitrile on ITO electrodes. The resulting fiber mats are with a well-retained conductivity. After coupling the enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) to polymeric structures and addition of the substrate glucose an efficient bioelectrocatalysis is demonstrated. Depending on the choice of the sulfonated polyanilline mediatorless bioelectrocatalysis starts at low potentials; no large overpotential is needed to drive the reaction. Thus, the electrospun conductive immobilization matrix acts here as a transducing element, representing a promising strategy to use 3D polymeric scaffolds as wiring agents for active enzymes. In addition, the mild and well reproducible fabrication process and the active role of the polymer film in withdrawing electrons from the reduced PQQ-GDH lead to a system with high stability. This could provide access to a larger group of enzymes for bioelectrochemical applications including biosensors and biofuel cells.

  3. Towards a novel bioelectrocatalytic platform based on "wiring" of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture.

    PubMed

    Gladisch, Johannes; Sarauli, David; Schäfer, Daniel; Dietzel, Birgit; Schulz, Burkhard; Lisdat, Fred

    2016-01-01

    Electrospinning is known as a fabrication technique for electrode architectures that serve as immobilization matrices for biomolecules. The current work demonstrates a novel approach to construct a conductive polymeric platform, capable not only of immobilization, but also of electrical connection of the biomolecule with the electrode. It is produced upon electrospinning from mixtures of three different highly conductive sulfonated polyanilines and polyacrylonitrile on ITO electrodes. The resulting fiber mats are with a well-retained conductivity. After coupling the enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) to polymeric structures and addition of the substrate glucose an efficient bioelectrocatalysis is demonstrated. Depending on the choice of the sulfonated polyanilline mediatorless bioelectrocatalysis starts at low potentials; no large overpotential is needed to drive the reaction. Thus, the electrospun conductive immobilization matrix acts here as a transducing element, representing a promising strategy to use 3D polymeric scaffolds as wiring agents for active enzymes. In addition, the mild and well reproducible fabrication process and the active role of the polymer film in withdrawing electrons from the reduced PQQ-GDH lead to a system with high stability. This could provide access to a larger group of enzymes for bioelectrochemical applications including biosensors and biofuel cells. PMID:26822141

  4. Towards a novel bioelectrocatalytic platform based on “wiring” of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture

    PubMed Central

    Gladisch, Johannes; Sarauli, David; Schäfer, Daniel; Dietzel, Birgit; Schulz, Burkhard; Lisdat, Fred

    2016-01-01

    Electrospinning is known as a fabrication technique for electrode architectures that serve as immobilization matrices for biomolecules. The current work demonstrates a novel approach to construct a conductive polymeric platform, capable not only of immobilization, but also of electrical connection of the biomolecule with the electrode. It is produced upon electrospinning from mixtures of three different highly conductive sulfonated polyanilines and polyacrylonitrile on ITO electrodes. The resulting fiber mats are with a well-retained conductivity. After coupling the enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) to polymeric structures and addition of the substrate glucose an efficient bioelectrocatalysis is demonstrated. Depending on the choice of the sulfonated polyanilline mediatorless bioelectrocatalysis starts at low potentials; no large overpotential is needed to drive the reaction. Thus, the electrospun conductive immobilization matrix acts here as a transducing element, representing a promising strategy to use 3D polymeric scaffolds as wiring agents for active enzymes. In addition, the mild and well reproducible fabrication process and the active role of the polymer film in withdrawing electrons from the reduced PQQ-GDH lead to a system with high stability. This could provide access to a larger group of enzymes for bioelectrochemical applications including biosensors and biofuel cells. PMID:26822141

  5. Preparation and Characterization of Coaxial Electrospun Fibers Containing Triclosan for Comparative Study of Release Properties with Amoxicillin and Epicatechin.

    PubMed

    Rodríguez-Félix, D E; Castillo-Ortega, M M; Nájera-Luna, A L; Montaño-Figueroa, A G; López-Peña, I Y; Del Castillo-Castro, T; Rodríguez-Félix, F; Quiroz-Castilloc, J M; Herrera-Franco, P J

    2016-01-01

    The optimal conditions for the fibers preparation of cellulose acetate (CA) and poly(vinyl pyrrolidone) (PVP) containing triclosan within the fiber were successfully found; the physicochemical characteristics of these fibrous membranes were corroborated by FTIR spectroscopy, thermal analysis, mechanical tests, SEM , and TEM analysis. The formation of composite fibers of CA and PVP containing triclosan at the core of the fiber was evidenced. A comparative study of the release properties of amoxicillin, epicatechin or triclosan embedded into fibers CA/PVP/CA was performed. As more interactions of the drug with CA or PVP occur, slower release of the drug into the release medium takes place. Regarding the drug delivery system design, it is important to consider the possible molecular interactions between the material components and predict how fast or slow the drug will be delivered into the corresponding medium. PMID:26634788

  6. Polystyrene Prints

    ERIC Educational Resources Information Center

    O'Malley, William

    1969-01-01

    Discussed are the exciting advantages and possibilities of using polystyrene trays found in meat packaging for printmaking. Among them are ease of use, low cost and quick availability of materials, beautiful textural effects. Procedures are explained for various age levels. (BF)

  7. Electrospun Collagen Fibers with Spatial Patterning of SDF1α for the Guidance of Neural Stem Cells.

    PubMed

    Li, Xiaoran; Liang, Hui; Sun, Jie; Zhuang, Yan; Xu, Bai; Dai, Jianwu

    2015-08-26

    Producing gradients of biological cues into nerve conduits is crucial for nerve guidance and regeneration. Herein, the fabrication of gradients of stromal cell-derived factor-1α (SDF1α) on electrospun collagen mats is reported using an electrohydrodynamic jet printing technique. The fabrication of various SDF1α gradated patterns on collagen fibrous mats is successfully demonstrated including shallow continuous gradient, steep continuous gradient, and step gradient by controlling the processing parameters. The SDF1α graded collagen scaffolds show a long-term stable gradient, as SDF1α is fused with a unique peptide of collagen binding domain (CBD), and CBD-SDF1α can specifically bind to the collagen mat. Such graded scaffolds exhibit sustained release of SDF1α. Further examination of neural stem cell (NSC) response to the CBD-SDF1α gradients with various patterns show that the NSCs can sense the CBD-SDF1α gradients, display a polarized morphology, and tend to migrate toward the region with a higher CBD-SDF1α content. The collagen mats with CBD-SDF1α gradients guide gradual distribution of NSCs, and NSC-differentiated neurons and astrocytes after seeding for 1 and 7 d. This new class of CBD-SDF1α gradient scaffolds can potentially be employed for guided nerve regeneration.

  8. Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Park, Gi Su; Lee, Jang-Soo; Kim, Sun Tai; Park, Soojin; Cho, Jaephil

    2013-12-01

    Highly porous nitrogen doped carbon fibers like churros morphology are prepared from a simple and cost-effective fabrication process, electrospinning with bicomponent polymer consisting of polystyrene (PS) and polyacrylonitrile (PAN). From appropriate ratio of two polymer and pyrolysis at 1100 °C, newly churros morphology with extremely high surface area (1271 m2 g-1) is prepared. During carbonization, more unstable PS than PAN plays a critical role in forming such morphology by acting as sacrifice materials, thus providing additional formation of inner pores and outer etched surfaces. Furthermore, it demonstrates excellent electrocatalytic activity toward ORR, which is attributed to highly meso- and macro porous nitrogen-doped large surface area and enhanced graphitic-nitrogen groups of carbon fibers. For example, the performance of a Zn-air cell based on the nitrogen-doped porous carbon nanofibers exhibits a peak power density of 194 mW cm-2, comparable to that based on a commercial Pt/C catalyst (192 mW cm-2). Further, the generation of hydrogen peroxide ions (<20%) in a half cell is similar to that on the commercial Pt/C catalyst.

  9. Fast equilibrium micro-extraction from biological fluids with biocompatible core-sheath electrospun nanofibers.

    PubMed

    Wu, Qian; Wu, Dapeng; Guan, Yafeng

    2013-06-18

    Sample preparation methods with high temporal resolution and matrix resistance will benefit fast direct analysis of analytes in a complex matrix, such as drug monitoring in biofluids. In this work, the core-sheath biocompatible electrospun nanofiber was fabricated as a micro-solid phase extraction material. With the poly(N-isopropylacrylamide) (PNIPAAm) as sheath polymer and polystyrene (PS) as core polymer, the fiber membrane was highly hydrophilic and exhibited good antifouling ability to proteins and cells. Its complete expansion in aqueous solution and its nanoscale fiber (100-200 nm) structure offered high mass transfer rate of analytes between liquid and solid phases. The equilibration time of microextraction with this membrane was all shorter than 2 min for eight drugs tested, and the linear ranges covered more than 3 orders of magnitude for most of them. This membrane could be applied to monitor free drugs in plasma and their protein binding kinetics by equilibrium-microextraction with a 2 min temporal resolution. The results showed that the core-sheath electrospun nanofiber membrane would be a better alternative of solid phase material for microextraction with good matrix-resistance ability and high temporal resolution. PMID:23700975

  10. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications.

    PubMed

    Vargas, E A Torres; do Vale Baracho, N C; de Brito, J; de Queiroz, A A A

    2010-03-01

    This study reports on the performance of electrospun hyperbranched polyglycerol nanofibers capable of providing an active agent delivery for wound dressing applications. The aim of this work was to prepare electrospun HPGL nanofibers containing Calendula officinalis as a wound-healing and anti-inflammatory agent. The morphology of the electrospun HPGL-C. officinalis nanofibers was analyzed using a scanning electron microscope. The results showed that the diameters of the fibers were in nanoscales. The release of C. officinalis from the electrospun HPGL fibers was determined by HPLC at a physiological temperature (37 degrees C). Rapid release of the C. officinalis from the electrospun HPGL-C. officinalis nanofibers was exhibited as result of the high swelling ability as well as the high porosity of the electrospun HPGL-C. officinalis membranes. The degree of swelling, and the mechanical and biocompatible properties of the electrospun HPGL fibers were determined. The results showed that, in physiological conditions, the water absorption into the HPGL electrospun fibers slowed down, governed by the rate at which the electrospun HPGL-C. officinalis membranes interacted with the physiological fluid. The rate of release of C. officinalis seemed to depend on the C. officinalis content in the HPGL nanofibers. From the elastic modulus, it could be seen that elastic electrospun HPGL fibers were obtained with increments of C. officinalis content in the HPGL-C. officinalis membranes. The results of in vivo experiments in rats suggested that HPGL-C. officinalis might be an interesting bioactive wound dressing material for clinical applications.

  11. Long TiO2 hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties.

    PubMed

    Zhan, Sihui; Chen, Dairong; Jiao, Xiuling; Tao, Caihong

    2006-06-15

    Long TiO2 hollow fibers with mesoporous walls have been fabricated with the sol-gel combined two-capillary spinneret electrospinning technique using a triblock copolymer (Pluronic, P123, (H(C2H5O)20(C3H7O)70 (C2H5O)20OH) as a pore-directing agent. The as-prepared hollow fibers were as long as 30 cm with an outer diameter of 0.1-4 microm and wall thickness of 60-500 nm. The diameters and wall thicknesses of the hollow fibers could be tuned by adjusting the electrospinning parameters. The fiber walls were composed of mesopores 6.7 nm in diameter as calculated from the N2 adsorption/desorption isotherm. The high-resolution TEM (HR-TEM) images exhibited that the mesopores were hexagonally aligned with a low order because of the curving of the pores. When comparing with other nanostructured TiO2 materials such as commercial TiO2 nanoparticles (P25, Degussa) and mesoporous TiO2 powders, the hollow fibers exhibited higher photocatalytic activities toward degradation of methylene blue and gaseous formaldehyde.

  12. Electrospun gelatin fiber mats containing a herbal—Centella asiatica—extract and release characteristic of asiaticoside

    NASA Astrophysics Data System (ADS)

    Sikareepaisan, Panprung; Suksamrarn, Apichart; Supaphol, Pitt

    2008-01-01

    Ultra-fine gelatin (type A, porcine skin, ~180 Bloom) fiber mats containing a methanolic crude extract of Centella asiatica (L.) Urban, a medicinal plant widely known for its traditional medical applications including its wound healing ability, were fabricated, for the first time, from the neat gelatin solution (22% w/v in 70 vol% acetic acid) containing the crude extract (mCA) in various amounts (i.e. 5-30 wt% based on the weight of gelatin powder) by electrospinning. Incorporation of mCA in the neat gelatin solution did not affect both the morphology and the size of the mCA-loaded gelatin fibers, as both of the neat and the mCA-loaded gelatin fibers were smooth and the average diameters of these fibers ranged between 226 and 232 nm. The cross-linked mCA-loaded e-spun gelatin fiber mat from the neat gelatin solution containing 30 wt% of mCA was further investigated for the release characteristic of asiaticoside, identified as the most active compound associated with the healing of wounds, in two different types of releasing medium, i.e. acetate buffer and the buffer containing 10 vol% of methanol, based on the thin-layer chromatography (TLC)-densitometry technique. Based on the unit weight of the actual amount of asiaticoside present in the specimens, the total amount of asiaticoside released from the fiber mat specimens was lower than that from the film counterparts while, based on the unit weight of the specimens, an opposite trend was observed.

  13. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.

    PubMed

    Zhu, Yujie; Fan, Xiulin; Suo, Liumin; Luo, Chao; Gao, Tao; Wang, Chunsheng

    2016-01-26

    In this study, an FeS2@carbon fiber electrode is developed with FeS2 nanoparticles either embedded in or attached to carbon fibers by using an electrospinning method. By applying this binder-free, metal-current-collector-free FeS2@carbon fiber electrode, both the redox reaction and capacity decay mechanisms for the Li-FeS2 system are revealed by changing the electrolyte (conventional carbonate electrolyte and a "solvent-in-salt"-type Li-S battery electrolyte) and working voltage ranges (1.0-3.0 V and 1.5-3.0 V vs Li/Li(+)). The FeS2@carbon fiber electrode shows stable cycling performance in both the conventional carbonate electrolyte and the solvent-in-salt-type Li-S battery electrolyte in the voltage range of 1.5-3.0 V. Electrochemical tests in the solvent-in-salt-type Li-S battery electrolyte indicate that the Li-FeS2 system becomes a hybrid of the Li-S cell and Li-iron sulfide cell after the initial cycle. Based on the understanding on the capacity decay mechanisms, the cycling stability of the Li-FeS2 system in the voltage range of 1.0-3.0 V is then significantly enhanced by coating the FeS2@carbon fiber electrode with a thin layer of Al2O3. The Al2O3-coated electrode demonstrates excellent cycling performance with high discharge energy densities at both the material level (∼1300 Wh/kg-FeS2) and the electrode level (∼1000 Wh/kg-FeS2 electrode). PMID:26700975

  14. Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors.

    PubMed

    Kang, Min Sil; Kim, Joong-Hyun; Singh, Rajendra K; Jang, Jun-Hyeog; Kim, Hae-Won

    2015-04-01

    A novel therapeutic design of nanofibrous scaffolds, holding a capacity to load and deliver dual growth factors, that targets bone regeneration is proposed. Mesoporous bioactive glass nanospheres (MBNs) were used as bioactive nanocarriers for long-term delivery of the osteogenic enhancer fibroblast growth factor 18 (FGF18). Furthermore, a core-shell structure of a biopolymer fiber made of polyethylene oxide/polycaprolactone was introduced to load FGF2, another type of cell proliferative and angiogenic growth factor, safely within the core while releasing it more rapidly than FGF18. The prepared MBNs showed enlarged mesopores of about 7 nm, with a large surface area and pore volume. The protein-loading capacity of MBNs was as high as 13% when tested using cytochrome C, a model protein. The protein-loaded MBNs were smoothly incorporated within the core of the fiber by electrospinning, while preserving a fibrous morphology. The incorporation of MBNs significantly increased the apatite-forming ability and mechanical properties of the core-shell fibers. The possibility of sequential delivery of two experimental growth factors, FGF2 and FGF18, incorporated either within the core-shell fiber (FGF2) or within MBNs (FGF18), was demonstrated by the use of cytochrome C. In vitro studies using rat mesenchymal stem cells demonstrated the effects of the FGF2-FGF18 loadings: significant stimulation of cell proliferation as well as the induction of alkaline phosphate activity and cellular mineralization. An in vivo study performed on rat calvarium defects for 6 weeks demonstrated that FGF2-FGF18-loaded fiber scaffolds had significantly higher bone-forming ability, in terms of bone volume and density. The current design utilizing novel MBN nanocarriers with a core-shell structure aims to release two types of growth factors, FGF2 and FGF18, in a sequential manner, and is considered to provide a promising therapeutic scaffold platform that is effective for bone regeneration. PMID

  15. Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors.

    PubMed

    Kang, Min Sil; Kim, Joong-Hyun; Singh, Rajendra K; Jang, Jun-Hyeog; Kim, Hae-Won

    2015-04-01

    A novel therapeutic design of nanofibrous scaffolds, holding a capacity to load and deliver dual growth factors, that targets bone regeneration is proposed. Mesoporous bioactive glass nanospheres (MBNs) were used as bioactive nanocarriers for long-term delivery of the osteogenic enhancer fibroblast growth factor 18 (FGF18). Furthermore, a core-shell structure of a biopolymer fiber made of polyethylene oxide/polycaprolactone was introduced to load FGF2, another type of cell proliferative and angiogenic growth factor, safely within the core while releasing it more rapidly than FGF18. The prepared MBNs showed enlarged mesopores of about 7 nm, with a large surface area and pore volume. The protein-loading capacity of MBNs was as high as 13% when tested using cytochrome C, a model protein. The protein-loaded MBNs were smoothly incorporated within the core of the fiber by electrospinning, while preserving a fibrous morphology. The incorporation of MBNs significantly increased the apatite-forming ability and mechanical properties of the core-shell fibers. The possibility of sequential delivery of two experimental growth factors, FGF2 and FGF18, incorporated either within the core-shell fiber (FGF2) or within MBNs (FGF18), was demonstrated by the use of cytochrome C. In vitro studies using rat mesenchymal stem cells demonstrated the effects of the FGF2-FGF18 loadings: significant stimulation of cell proliferation as well as the induction of alkaline phosphate activity and cellular mineralization. An in vivo study performed on rat calvarium defects for 6 weeks demonstrated that FGF2-FGF18-loaded fiber scaffolds had significantly higher bone-forming ability, in terms of bone volume and density. The current design utilizing novel MBN nanocarriers with a core-shell structure aims to release two types of growth factors, FGF2 and FGF18, in a sequential manner, and is considered to provide a promising therapeutic scaffold platform that is effective for bone regeneration.

  16. The Use of Nanoclays to Modify the Morphology and Photoluminescence of Electrospun Poly(9-vinylcarbazole)/Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] Blend Fibers

    NASA Astrophysics Data System (ADS)

    Balderas, Jesús-Uriel; Falcony, Ciro; Jiménez, Gloria-Lesly; Garzón, Amanda-Stephanie; Mondragón, Margarita

    2015-04-01

    The morphology and photoluminescence properties of electrospun poly(9-vinylcarbazole) (PVK)/poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) blend fibers, which were loaded with either halloysite clay nanotubes (HNTs) or an organically modified montmorillonite (OMMT) clay, were studied by scanning electron microscopy, transmission electron microscopy, and fluorescence spectroscopy. A concentration range of 0-30 wt.% was used for the clays, while the MEH-PPV concentration was fixed at 0.5 wt.%. Both clays, especially the OMMT clay, increased the phase separation of the components in the electrospun PVK/MEH-PPV blend fibers. This was attributed to their selective localization on the polymer phases. The HNTs and OMMT clay also increased energy transfer to the lowest energy states of MEH-PPV generated during electrospinning, and modified the amount of the partially overlapping conformation of carbazole groups (p-PVK) that constrained the aggregation of the PVK chains. These changes resulted in an increased emission from p-PVK, which varied depending on the type and concentration of the clay.

  17. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    PubMed Central

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering. PMID:25995630

  18. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering.

    PubMed

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells' adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering.

  19. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering.

    PubMed

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells' adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering. PMID:25995630

  20. Regulated release of a novel non-viral gene delivery vector from electrospun coaxial fiber mesh scaffolds

    NASA Astrophysics Data System (ADS)

    Saraf, Anita

    The development of novel strategies for tissue engineering entails the evolution of biopolymers into multifunctional constructs that can support the proliferation of cells and stimulate their differentiation into functional tissues. With that in mind, biocompatible polymers were fabricated into a novel gene delivery agent as well as three dimensional scaffolds that act as reservoirs and controlled release constructs. To fabricate a novel gene delivery agent a commercially available cationic polymer, poly(ethylenimine), PEI, was chemically conjugated to a ubiquitous glycosaminoglycan, hyaluronic acid (HA). The novel polymer, PEI-HA, had significantly reduced toxicity and improved transfection efficiency with multipotent human mesenchymal stem cells. This transfection efficiency could further be modulated by changing the concentration of sodium chloride and temperature used to assemble PEI-HA/DNA complexes. To facilitate the regulated delivery of these complexes in the context of tissue engineering, an emerging technology for scaffold fabrication, coaxial electrospinning was adapted to include PEI-HA and plasmid DNA within the scaffold fibers. Initially, a factorial design was employed to assess the influence of processing parameters in the absence of gene delivery vectors and plasmids. The study elucidated the role of sheath polymer concentration and core polymer concentration and molecular weight and the presence of sodium chloride on fiber diameters and morphologies. Subsequently, PEI-HA and plasmid DNA were entrapped within the sheath and core compartments of these fibers and the influence of processing parameters was assessed in the context of fiber diameter, release kinetics and transfection efficiency over a period of 60 days. The release of PEI-HA was found to be dependent upon the loading dose of the vector and plasmid. However, the transfection efficiency correlated to the core polymer properties, concentration and molecular weight. The processing

  1. The effect of thiolated additives on the properties of wheat gluten based plastics, aqueous solutions and electrospun fibers

    NASA Astrophysics Data System (ADS)

    Dong, Jing

    Wheat gluten (WG) is a promising substitute for petroleum-based plastics due to its unique ability to form a cohesive blend with viscoelastic properties once plasticized. Previous work blending WG with thiolated poly(vinyl alcohol) (TPVA) showed that both the strength and elongation of compression molded native WG bars can be improved via thiol/disulfide interchange reactions between WG and TPVA. In this study, the morphology of WG/TPVA blends was investigated by atomic force (AFM) and transmission electron microscopy (TEM), as well as by modulated dynamic scanning calorimetry (MDSC). Consistent with our earlier results, AFM and TEM imaging clearly indicated that TPVA is much more compatible with WG compared with poly(vinyl alcohol) (PVA) although there are still two phases in the blend: one WG rich phase and another TPVA rich phase. TPVA was also blended with WG in an aqueous solvent (1/1 (v/v) water/1-propanol mixture) to improve its solubility and spinnability. Control experiments were conducted with PVA and dithiothreitol (DTT) for comparison purposes. The concentration and the thiolation level of TPVA were also varied to explore the parameter space. The interactions of thiol groups from TPVA and soluble WG were found to be important during electrospinning. The fiber diameter became more uniform and the fiber quality increased very noticeably when TPVA was included. Furthermore, the time-dependent rheology behaviors of TPVA/WG and DTT/WG electrospinning solutions were investigated by using steady shear sweeps, oscillatory frequency sweeps, SE-HPLC and free -SH content determination. A two-step mechanism of interaction was proposed for DTT/WG and TPVA/WG solutions based on current results and other earlier studies. In comparison with WG and PVA/WG solutions, the reduction and reformation of disulfide linkages in both TPVA/WG and DTT/WG solutions were believed to play a key role in determining the rheological properties and molecular weight distribution of WG

  2. Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers.

    PubMed

    Abrigo, Martina; Kingshott, Peter; McArthur, Sally L

    2015-01-01

    Control over bacterial attachment and proliferation onto nanofibrous materials constitutes a major challenge for a variety of applications, including filtration membranes, protective clothing, wound dressings, and tissue engineering scaffolds. To develop effective devices, the interactions that occur between bacteria and nanofibers with different morphological and physicochemical properties need to be investigated. This paper explores the influence of fiber surface chemistry on bacterial behavior. Different chemical functionalities were generated on the surface of electrospun polystyrene nanofibers through plasma polymerization of four monomers (acrylic acid, allylamine, 1,7-octadiene, and 1,8-cineole). The interactions of Escherichia coli with the surface modified fibers were investigated through a combination of scanning electron microscopy and confocal laser scanning microscopy. Fiber wettability, surface charge, and chemistry were found to affect the ability of bacterial cells to attach and proliferate throughout the nanofiber meshes. The highest proportion of viable cells attachment occurred on the hydrophilic amine rich coating, followed by the hydrophobic octadiene. The acrylic acid coating rich in carboxyl groups showed a significantly lower attraction of bacterial cells. The 1,8-cineole retained the antibacterial activity of the monomer, resulting with a high proportion of dead isolated cells attached onto the fibers. Results showed that the surface chemistry properties of nanofibrous membranes can be strategically tuned to control bacterial behavior. PMID:26251319

  3. Electrospun Cu/Sn/C nanocomposite fiber anodes with superior usable lifetime for lithium- and sodium-ion batteries.

    PubMed

    Kim, Jae-Chan; Kim, Dong-Wan

    2014-11-01

    Cu/Sn/C composite nanofibers were synthesized by using dual-nozzle electrospinning and subsequent carbonization. The composite nanofibers are a homogeneous amorphous matrix comprised of Cu, Sn, and C with a trace of crystalline Sn. The Li- and Na-ion storage performance of the Cu/Sn/C fiber electrodes were investigated by using cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. Excellent, stable cycling performance indicates capacities of 490 and 220 mA h g(-1) for Li-ion (600 cycles) and Na-ion (200 cycles) batteries, respectively. This is a significant improvement over other reported Sn/C nanocomposite devices. These superior electrochemical properties could be attributed to the advantages of incorporating one-dimensional nanostructures into the electrodes, such as short electron diffusion lengths, large specific surface areas, ideal homogeneous structures for buffering volume changes, and better electronic conductivity that results from the amorphous copper and carbon matrix. PMID:25225075

  4. Fabrication of Gelatin/PCL Electrospun Fiber Mat with Bone Powder and the Study of Its Biocompatibility

    PubMed Central

    Rong, Dongming; Chen, Ping; Yang, Yuchao; Li, Qingtao; Wan, Wenbing; Fang, Xingxing; Zhang, Jie; Han, Zhongyu; Tian, Jing; Ouyang, Jun

    2016-01-01

    Fabricating ideal scaffolds for bone tissue engineering is a great challenge to researchers. To better mimic the mineral component and the microstructure of natural bone, several kinds of materials were adopted in our study, namely gelatin, polycaprolactone (PCL), nanohydroxyapatite (nHA), and bone powder. Three types of scaffolds were fabricated using electrospinning; gelatin/PCL, gelatin/PCL/nHA, and gelatin/PCL/bone powder. Scaffolds were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. Then, Adipose-derived Stem Cells (ADSCs) were seeded on these scaffolds to study cell morphology, cell viability, and proliferation. Through this study, we found that nHA and bone powder can be successfully united in gelatin/PCL fibers. When compared with gelatin/PCL and gelatin/PCL/nHA, the gelatin/PCL/bone powder scaffolds could provide a better environment to increase ADSCs’ growth, adhesion, and proliferation. Thus, we think that gelatin/PCL/bone powder has good biocompatibility, and, when compared with nHA, bone powder may be more effective in bone tissue engineering due to the bioactive factors contained in it. PMID:26959071

  5. A Comparison of Electrospun Polymers Reveals Poly(3-Hydroxybutyrate) Fiber as a Superior Scaffold for Cardiac Repair

    PubMed Central

    Castellano, Delia; Blanes, María; Marco, Bruno; Cerrada, Inmaculada; Ruiz-Saurí, Amparo; Pelacho, Beatriz; Araña, Miriam; Montero, Jose A.; Cambra, Vicente; Prosper, Felipe

    2014-01-01

    The development of biomaterials for myocardial tissue engineering requires a careful assessment of their performance with regards to functionality and biocompatibility, including the immune response. Poly(3-hydroxybutyrate) (PHB), poly(e-caprolactone) (PCL), silk, poly-lactic acid (PLA), and polyamide (PA) scaffolds were generated by electrospinning, and cell compatibility in vitro, and immune response and cardiac function in vitro and in vivo were compared with a noncrosslinked collagen membrane (Col) control material. Results showed that cell adhesion and growth of mesenchymal stem cells, cardiomyocytes, and cardiac fibroblasts in vitro was dependent on the polymer substrate, with PHB and PCL polymers permitting the greatest adhesion/growth of cells. Additionally, polymer substrates triggered unique expression profiles of anti- and pro-inflammatory cytokines in human peripheral blood mononuclear cells. Implantation of PCL, silk, PLA, and PA patches on the epicardial surface of healthy rats induced a classical foreign body reaction pattern, with encapsulation of polymer fibers and induction of the nonspecific immune response, whereas Col and PHB patches were progressively degraded. When implanted on infarcted rat heart, Col, PCL, and PHB reduced negative remodeling, but only PHB induced significant angiogenesis. Importantly, Col and PHB modified the inflammatory response to an M2 macrophage phenotype in cardiac tissue, indicating a more beneficial reparative process and remodeling. Collectively, these results identify PHB as a superior substrate for cardiac repair. PMID:24564648

  6. Preparation of photocrosslinkable polystyrene methylene cinnamate nanofibers via electrospinning.

    PubMed

    Yi, Chuan; Nirmala, R; Navamathavan, R; Li, Xiang-Dan; Kim, Hak-Yong

    2011-10-01

    Nanoscaled photocrosslinkable polystyrene methylene cinnamate (PSMC) nanofibers were fabricated by electrospinning. The PSMC was prepared by the modification of polystyrene as a starting material via a two-step reaction process, chloromethylation and esterification. The chemical structure of PSMC was confirmed by 1H NMR and Fourier transform infrared spectroscopy (FT-IR). The photosensitivity of the PSMC was investigated using ultraviolet (UV) spectroscopic methods. Electrospun PSMC nanofiber mat showed excellent solubility in many organic solvents. UV irradiation of the electrospun mats led to photodimerization to resist dissolving in organic solvents. The morphology of the nanofiber was observed by scanning electron microscopy (SEM) and the result indicated that the average diameter of nanofibers is 350 nm and the crosslinked nanofibers were not collapsed after dipping into organic solvent showing good solvent-stability. This photocrosslinked nanofibers has the potential application in filtration, catalyst carrier and protective coating.

  7. Plasma assisted synthesis of hollow nanofibers using electrospun sacrificial templates

    NASA Astrophysics Data System (ADS)

    Rahmathullah, Aflal M.; Jason Robinette, E.; Chen, Hong; Elabd, Yossef A.; Palmese, Giuseppe R.

    2007-12-01

    In this work, we describe the synthesis of nanostructured polymeric materials of controlled tubular geometries using oxygen plasma and polysiloxane-grafting onto electrospun fiber sacrificial templates. The fibers were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) to determine the extent of grafting, graft chemistry and the influence of plasma treatment. Scanning electron microscopy (SEM) was used to determine the morphology and size of the electrospun fibers and nanotubes. The average diameter of the electrospun fibers employed ranged between 300 nm and 1500 nm. The micrographs revealed differences that are dependent on the type of grafting chemistry as well as plasma treatment times. The template synthesis of polysiloxane nanotubes using polyester track-etched membranes also shows that the technique is applicable to different substrates.

  8. Electrospun Synthetic Polypeptide Nanofibrous Biomaterials

    NASA Astrophysics Data System (ADS)

    Khadka, Dhan; Haynie, Donald

    2011-03-01

    Water-insoluble nanofiber mats of synthetic polypeptides of defined composition have been prepared from fibers electrospun from aqueous solution in the absence of organic co-solvents. 20-50 kDa poly(L-glutamate, L-tyrosine) 4:1 (PLGY) but not 15-50 kDa or 50-100 kDa poly(L-glutamate) was spinnable at 20-55% (w/v) polymer in water. Applied voltage and needle-collector distance were crucial for spinnability. Attractive fibers were obtained at 50% polymer. Fiber diameter and mat morphology have been characterized by electron microscopy. Exposure of spun fiber mats to 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), which reacts with carboxylate, decreased fiber solubility. Fluorescein-conjugated poly(L-lysine) (FITC-PLL) but not the fluorophore alone was able bind PLGY fiber mats electrostatically, judging by fluorescence microscopy. Key advances of this work are the avoidance of an animal source of peptides and of an inorganic co-solvent to achieve polypeptide spinnability. Polypeptide fiber mats are a promising type of nano-structured biomaterial for applications in biomedicine and biotechnology.

  9. Electrospun conducting polymer nanofibers as the active material in sensors and diodes

    NASA Astrophysics Data System (ADS)

    Pinto, Nicholas J.

    2013-03-01

    Polyaniline doped with camphorsulfonic acid (PANi-HCSA) and poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PEDOT-PSSA) were electrospun separately to obtain individual nanofibers which were captured on Si/SiO2 substrates and electrically characterized. The fiber resistance was recorded as a function of time in the presence of vapours of aliphatic alcohols of varying sizes. Due to the large surface to volume ratio, uniform diameter and small quantity of active material used in the construction, these sensor responses are very quick. Sensors made from individual fibers also show true saturation upon exposure to and removal of the sensing gas. A Schottky diode was also fabricated using an n-doped Si/SiO2 substrate and a single PANi-HCSA fiber and tested in vacuum and in ammonia gas. The diode response was instantaneous upon exposure to ammonia with nearly complete recovery of the current upon pumping out the ammonia, thereby making it a reusable sensor with rectifying behaviour i.e. multifunctional.

  10. Shear adhesion strength of aligned electrospun nanofibers.

    PubMed

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities.

  11. Electrospun polystyrene/oxidized carbon nanotubes film as both sorbent for thin film microextraction and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    He, Xiao-Mei; Zhu, Gang-Tian; Yin, Jia; Zhao, Qin; Yuan, Bi-Feng; Feng, Yu-Qi

    2014-07-18

    In the current study, polystyrene/oxidized carbon nanotubes (PS/OCNTs) film was prepared and applied as both an adsorbent of thin film microextraction (TFME) and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the first time. The uniform size of PS/OCNTs film with OCNTs evenly and firmly immobilized in PS was obtained by electrospinning. And a novel TFME device was developed using the prepared PS/OCNTs film to enrich benzo[a]pyrene (BaP) from water, and also BaP and 1-hydroxypyrene (1-OHP) from urine sample. Then the extracted analytes on the PS/OCNTs film were directly applied to MALDI-MS analysis with PS/OCNTs film as the MALDI matrix. Our results show that PS/OCNTs film is a good TFME adsorbent toward the analytes and an excellent matrix for the sensitive determination of BaP and 1-OHP using MALDI-TOF-MS. The employment of PS/OCNTs as the matrix for MALDI can effectively avoid the large variation of signal intensity normally resulting from heterogeneous distribution of the adsorbed analyte on matrix layer, which therefore significantly improve spot-to-spot reproducibility. The introduction of PS in the film can prevent OCNTs from flying out of MALDI plate to damage the equipment. In addition, PS/OCNTs film also largely extended the duration of ion signal of target analyte compared to OCNTs matrix. The developed method was further successfully used to quantitatively determine BaP in environmental water and 1-OHP in urine samples. The results show that BaP and 1-OHP could be easily detected at concentrations of 50pgmL(-1) and 500pgmL(-1), respectively, indicating the high detection sensitivity of this method. For BaP analysis, the linear range was 0.1-20ngmL(-1) with a correlation coefficient of 0.9970 and the recoveries were in the range of 81.3 to 123.4% with the RSD≤8.5% (n=3); for urinary 1-OHP analysis, the linear range was 0.5-20ngmL(-1) with a correlation coefficient of 0.9937 and the recoveries

  12. A fabricated electro-spun sensor based on Lake Red C pigments doped into PAN (polyacrylonitrile) nano-fibers for electrochemical detection of Aflatoxin B1 in poultry feed and serum samples.

    PubMed

    Babakhanian, Arash; Momeneh, Tahereh; Aberoomand-azar, Parviz; Kaki, Samineh; Torki, Mehran; Hossein Kiaie, Seyed; Sadeghi, Ehsan; Dabirian, Farzad

    2015-11-21

    The aim of this work was to fabricate a novel nano-fiber modified electrode, involving Lake Red C (LRC) pigments doped into electrospun polyacrylonitrile (PAN) fibrous films. Cyclic voltammetry (CV), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) techniques were used for electrochemical and morphological characterization of the composite fibers. This sensor responds to Aflatoxin B1 (AFB1) over the concentration range of 40-120 nM with high accuracy and precision in analysis. The modified electrode exhibited an excellent electrocatalytic ability (α = 0.42, log K(s) = 4.21 s(-1), and Γ = 1.49 × 10(-5) mmol cm(-2)) for reduction of AFB1 at the optimum pH of 6 and working potential of -0.75 V (vs. SCE). The common substances accompanying AFB1 had no serious interferences on the response of the modified electrode to AFB1. The modified electrode indicated reproducible behavior and a high level stability during the experiments, making it particularly suitable for the analytical determination of AFB1 in poultry feed and serum samples. PMID:26460282

  13. A fabricated electro-spun sensor based on Lake Red C pigments doped into PAN (polyacrylonitrile) nano-fibers for electrochemical detection of Aflatoxin B1 in poultry feed and serum samples.

    PubMed

    Babakhanian, Arash; Momeneh, Tahereh; Aberoomand-azar, Parviz; Kaki, Samineh; Torki, Mehran; Hossein Kiaie, Seyed; Sadeghi, Ehsan; Dabirian, Farzad

    2015-11-21

    The aim of this work was to fabricate a novel nano-fiber modified electrode, involving Lake Red C (LRC) pigments doped into electrospun polyacrylonitrile (PAN) fibrous films. Cyclic voltammetry (CV), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) techniques were used for electrochemical and morphological characterization of the composite fibers. This sensor responds to Aflatoxin B1 (AFB1) over the concentration range of 40-120 nM with high accuracy and precision in analysis. The modified electrode exhibited an excellent electrocatalytic ability (α = 0.42, log K(s) = 4.21 s(-1), and Γ = 1.49 × 10(-5) mmol cm(-2)) for reduction of AFB1 at the optimum pH of 6 and working potential of -0.75 V (vs. SCE). The common substances accompanying AFB1 had no serious interferences on the response of the modified electrode to AFB1. The modified electrode indicated reproducible behavior and a high level stability during the experiments, making it particularly suitable for the analytical determination of AFB1 in poultry feed and serum samples.

  14. Method for Coating a Tow with an Electrospun Nanofiber

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W. (Inventor); Roberts, Gary D. (Inventor)

    2015-01-01

    Method and apparatus for enhancing the durability as well as the strength and stiffness of prepreg fiber tows of the sort used in composite materials are disclosed. The method involves adhering electrospun fibers onto the surface of such composite materials as filament-wound composite objects and the surface of prepreg fiber tows of the sort that are subsequently used in the production of composite materials of the filament-wound, woven, and braided sorts. The apparatus performs the methods described herein.

  15. Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials.

    PubMed

    Nitanan, Todsapon; Akkaramongkolporn, Prasert; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2013-05-01

    In this study, poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) blended with polyvinyl alcohol (PVA) was electrospun and then subjected to thermal crosslinking to produce PSSA-MA/PVA ion exchange nanofiber mats. The cationic drug neomycin (0.001, 0.01, and 0.1%, w/v) was loaded onto the cationic exchange fibers. The amount of neomycin loaded and released and the cytotoxicity of the fiber mats were analyzed. In vivo wound healing tests were also performed in Wistar rats. The results indicated that the diameters of the fibers were on the nanoscale (250 ± 21 nm). The ion exchange capacity (IEC) value and the percentage of water uptake were 2.19 ± 0.1 mequiv./g-dry fibers and 268 ± 15%, respectively. The loading capacity was increased upon increasing the neomycin concentration. An initial concentration of 0.1% (w/v) neomycin (F3) showed the highest loading capacity (65.7 mg/g-dry fibers). The neomycin-loaded nanofiber mats demonstrated satisfactory antibacterial activity against both Gram-positive and Gram-negative bacteria, and an in vivo wound healing test revealed that these mats performed better than gauze and blank nanofiber mats in decreasing acute wound size during the first week after tissue damage. In conclusion, the antibacterial neomycin-loaded PSSA-MA/PVA cationic exchange nanofiber mats have the potential for use as wound dressing materials.

  16. Microscopy and supporting data for osteoblast integration within an electrospun fibrous network

    PubMed Central

    Stachewicz, Urszula; Qiao, Tuya; Rawlinson, Simon C.F.; Veiga Almeida, Filipe; Li, Wei-Qi; Cattell, Michael; Barber, Asa H.

    2015-01-01

    This data article contains data related to the research article entitled “3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration” by Stachewicz et al. [1]. In this paper we include additional data showing degradation analysis of poly(d,l-lactide-co-glycolide acid) (PLGA) electrospun fibers in medium and air using fiber diameter distribution histograms. We also describe the steps used in “slice and view” tomography techniques with focused ion beam (FIB) microscopy and scanning electron microscopy (SEM) and detail the image analysis to obtain 3D reconstruction of osteoblast cell integration with electrospun network of fibers. Further supporting data and detailed information on the quantification of cell growth within the electrospun nanofiber membranes is provided. PMID:26693511

  17. Functionalized nanowires from electrospun polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Vega, E.; Katiyar, R.; Valentin, R.

    2007-05-01

    The ability to pattern materials in three dimensions is critical for several emerging technologies, including photonics, μfluidics, MEMS, and biomaterials. Electrospinning allows one to functionalized and rapidly fabricate materials in complex three-dimensional shapes without the need for expensive tooling, dies, or lithographic masks. Here, recent advances in functionalization techniques are reviewed with an emphasis on the push toward patterning finer feature sizes. Effects of material and process parameters on the diameter of electrospun Poly Ethylene Oxide (PEO) fibers were experimentally investigated. Experiments were conducted at the settings of solution flow rate, voltage and the collector distance. It also imparted the evaluation of the significance of each parameter on the resultant fiber diameter. All the factors were found statistically significant in the production of nanoscale fibers. Opportunities and challenges associated with electrospinning of polyacrylonitrile fibers are also highlighted.

  18. A Polystyrene Primer.

    ERIC Educational Resources Information Center

    Daniel, Robert A.

    1985-01-01

    One of the most common disposable materials in our society is polystyrene, of which grocery store meat trays, egg cartons, and several kinds of protective packing materials are made. Describes the characteristics of five different polystyrenes and some suggested uses for art classes. (RM)

  19. Free surface electrospinning of fibers containing microparticles.

    PubMed

    Brettmann, Blair K; Tsang, Shirley; Forward, Keith M; Rutledge, Gregory C; Myerson, Allan S; Trout, Bernhardt L

    2012-06-26

    Many materials have been fabricated using electrospinning, including pharmaceutical formulations, superhydrophobic surfaces, catalysis supports, filters, and tissue engineering scaffolds. Often these materials can benefit from microparticles included within the electrospun fibers. In this work, we evaluate a high-throughput free surface electrospinning technique to prepare fibers containing microparticles. We investigate the spinnability of polyvinylpyrrolidone (PVP) solutions containing suspended polystyrene (PS) beads of 1, 3, 5, and 10 μm diameter in order to better understand free surface electrospinning of particle suspensions. PS bead suspensions with both 55 kDa PVP and 1.3 MDa PVP were spinnable at 1:10, 1:5, and 1:2 PS:PVP mass loadings for all particle sizes studied. The final average fiber diameters ranged from 0.47 to 1.2 μm and were independent of the particle size and particle loading, indicating that the fiber diameter can be smaller than the particles entrained and can furthermore be adjusted based on solution properties and electrospinning parameters, as is the case for electrospinning of solutions without particles.

  20. Enhanced mechanical properties and cytocompatibility of electrospun poly(L-lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes

    NASA Astrophysics Data System (ADS)

    Luo, Chuang; Zou, Ziping; Luo, Binghong; Wen, Wei; Li, Huihua; Liu, Mingxian; Zhou, Changren

    2016-04-01

    To improve the dispersion and interfacial interaction between halloysite nanotubes (HNTs) and poly(L-lactide) (PLLA) matrix, and hence to increase the mechanical properties and cytocompatibility of the HNTs/PLLA composite, a facile approach was developed to prepare polydopamine-coated HNTs (D-HNTs) by the self-polymerization of dopamine (DOPA), and then HNTs and D-HNTs were further introduced into PLLA matrix to fabricate HNTs/PLLA and D-HNTs/PLLA fiber membranes based on electrospinning technique. The successful immobilization of the polydopamine (PDOPA) coating on the surfaces of HNTs was confirmed, and such PDOPA coating played an important role in improving the interfacial interaction between the nanotubes and PLLA matrix. The D-HNTs were dispersed in the matrix more uniformly than untreated HNTs, and relative smooth and uniform fiber were obtained for the D-HNTs/PLLA fiber membrane. As a result, the tensile strength and modulus of the D-HNTs/PLLA fiber membrane were obviously superior to those of the HNTs/PLLA fiber membrane. Cell culture results revealed that D-HNTs/PLLA fiber membrane was more effectively to promote MC3T3-E1 cells adhesion and proliferation than neat PLLA and HNTs/PLLA fiber membrane.

  1. A preliminary discourse on adhesion of nanofibers derived from electrospun polymers

    NASA Astrophysics Data System (ADS)

    Chen, Pei

    To bio-mimic gecko's foot hair, which possess high adhesion strength and can be re- usable for lifetime, fibrous membranes are fabricated by electrospinning to provide sufficient adhesion energy. Shaft-loaded blister test (SLBT) is firstly used to measure the work of adhesion between electrospun membrane and rigid substrate. Poly(vinylidene fluoride) (PVDF) were electrospun with an average fiber diameter of 333+/-59 nm. Commercial cardboard with inorganic coating was used to provide a model substrate for adhesion tests. In SLBT, the elastic response PVDF was analyzed and its adhesion energy measured. FEA model with cohesive layer is developed to evaluate the experiment results. The results show SLBT presented a viable methodology for evaluating the adhesion energy of electrospun polymer fabrics. Electrospun membranes with different fiber diameter are tested for their distinctive adhesion property. Five sets of PVDF membranes with different fiber diameters (from 201 +/- 86 nm to 2724 +/- 587 nm) are electrospun for size effect evaluation. Obtaining testing results from SLBT adhesion test, adhesion energy ranges from 258.83 +/- 43.54 mJ/m2 to 8.06 +/- 0.71 mJ/m2. Significant size effect is observed, and electrospun membrane composing from finer fibers possesses greater adhesion energy. Thickness effect is also evaluated. By stacking multiple layers of electrospun membrane together, membrane samples with different thickness are produced. Test results illustrate thick membrane trends to debond easier than thin membrane. After considering the characteristic of electrospun membrane, the effect of substrate is also evaluated. One approach is made by substituting SiC substrates with different roughness for cardboard substrate. The grit size of the SiC substrates varies from 5 mum to 68 mum. A correlation between adhesion energy and mean peak and valley roughness (Rz) is established from mechanical interlocking theory. The other approach is comparing adhesion energies if

  2. Engineering the Microstructure of Electrospun Fibrous Scaffolds by Microtopography

    PubMed Central

    Cheng, Qian; Lee, Benjamin L.-P.; Komvopoulos, Kyriakos; Li, Song

    2013-01-01

    Controlling the structure and organization of electrospun fibers is desirable for fabricating scaffolds and materials with defined microstructures. However, the effects of microtopography on the deposition and, in turn, the organization of the electrospun fibers are not well understood. In this study, conductive polydimethylsiloxane (PDMS) templates with different micropatterns were fabricated by combining photolithography, silicon wet etching, and PDMS molding techniques. The fiber organization was varied by fine-tuning the microtopography of the electrospinning collector. Fiber conformity and alignment were influenced by the depth and the slope of microtopography features, resulting in scaffolds comprising either an array of microdomains with different porosity and fiber alignment or an array of microwells. Microtopography affected the fiber organization for hundreds of micrometers below the scaffold surface, resulting in scaffolds with distinct surface properties on each side. In addition, the fiber diameter was also affected by the fiber conformity. The effects of the fiber arrangement in the scaffolds on the morphology, migration, and infiltration of cells were examined by in vitro and in vivo experiments. Cell morphology and organization were guided by the fibers in the microdomains, and cell migration was enhanced by the aligned fibers and the three-dimensional scaffold structure. Cell infiltration was correlated with the microdomain porosity. Microscale control of the fiber organization and the porosity at the surface and through the thickness of the fibrous scaffolds, as demonstrated by the results of this study, provides a powerful means of engineering the three-dimensional structure of electrospun fibrous scaffolds for cell and tissue engineering. PMID:23534553

  3. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation

    PubMed Central

    Han, Jingjia; Wu, Qingling; Xia, Younan; Wagner, Mary B; Xu, Chunhui

    2016-01-01

    Enhancing the maturation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) will facilitate their applications in disease modeling and drug discovery. Previous studies suggest that cell alignment could enhance hPSC-CM maturation; however, the robustness of this approach has not been well investigated. To this end, we examined if the anisotropic orientation of hPSC-CMs imposed by the underlying aligned fibers within a 3D microenvironment could improve the maturation of hPSC-CMs. Enriched hPSC-CMs were cultured for two weeks on Matrigel-coated anisotropic (aligned) and isotropic (random) polycaprolactone (PCL) fibrous scaffolds, as well as tissue culture polystyrenes (TCPs) as a control. As expected, hPSC-CMs grown on the two types of fibrous scaffolds exhibited anisotropic and isotropic orientations, respectively. Similar to cells on TCPs, hPSC-CMs cultured on these scaffolds expressed CM-associated proteins and were pharmacologically responsive to adrenergic receptor agonists, a muscarinic agonist, and a gap junction uncoupler in a dose-dependent manner. Although hPSC-CMs grown on anisotropic fibrous scaffolds displayed the highest expression of genes encoding a number of sarcomere proteins, calcium handling proteins and ion channels, their calcium transient kinetics were slower than cells grown on TCPs. These results suggest that electrospun anisotropic fibrous scaffolds, as a single method, have limited effect on improving the maturation of hPSC-CMs. PMID:27131761

  4. Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation.

    PubMed

    Bhutto, M Aqeel; Wu, Tong; Sun, Binbin; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-08-01

    Bioengineering strategies for peripheral nerve regeneration have been focusing on the development of alternative treatments for nerve repair. In present study we have blended the Vitamin B5 (50mg) with 8% P(LLA-CL) and P(LLA-CL)/SF solutions and produced aligned electrospun nanofiber mashes and characterized the material for its physiochemical and mechanical characteristics. The vitamin loaded composites nanofibers showed tensile strength of 8.73±1.38 and 8.4±1.37 in P(LLA-CL)/Vt and P(LLA-CL)/SF/Vt nanofibers mashes, respectively. By the addition of vitamin B5 the P(LLA-CL) nanofibers become hydrophilic and the contact angle decreased from 96° to 0° in 6min of duration. The effect of vitamin B5 on Schwann cells proliferation and viability were analyzed by using MTT assay and the number of cells cultured on vitamin loaded nanofiber mashes was significantly higher than the without vitamin loaded nanofiber samples after 5th day (p<0.05) whereas, P (LLA-CL)/SF/Vt exhibit the consistently highest cell numbers after 7th days culture as compare to P (LLA-CL)/Vt. The in vitro vitamin release behavior was observed in PBS solution and released vitamin was calculated by revers phase HPLC method. The sustain release behavior of vitamin B5 were noted higher in P(LLA-CL)/Vt (80%) nanofibers as compared to P (LLA-CL)/SF/Vt (62%) nanofibers after 24h. The present work provided a basis for further studies of this novel aligned nanofibrous material in nerve tissue repair or regeneration.

  5. Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation.

    PubMed

    Bhutto, M Aqeel; Wu, Tong; Sun, Binbin; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-08-01

    Bioengineering strategies for peripheral nerve regeneration have been focusing on the development of alternative treatments for nerve repair. In present study we have blended the Vitamin B5 (50mg) with 8% P(LLA-CL) and P(LLA-CL)/SF solutions and produced aligned electrospun nanofiber mashes and characterized the material for its physiochemical and mechanical characteristics. The vitamin loaded composites nanofibers showed tensile strength of 8.73±1.38 and 8.4±1.37 in P(LLA-CL)/Vt and P(LLA-CL)/SF/Vt nanofibers mashes, respectively. By the addition of vitamin B5 the P(LLA-CL) nanofibers become hydrophilic and the contact angle decreased from 96° to 0° in 6min of duration. The effect of vitamin B5 on Schwann cells proliferation and viability were analyzed by using MTT assay and the number of cells cultured on vitamin loaded nanofiber mashes was significantly higher than the without vitamin loaded nanofiber samples after 5th day (p<0.05) whereas, P (LLA-CL)/SF/Vt exhibit the consistently highest cell numbers after 7th days culture as compare to P (LLA-CL)/Vt. The in vitro vitamin release behavior was observed in PBS solution and released vitamin was calculated by revers phase HPLC method. The sustain release behavior of vitamin B5 were noted higher in P(LLA-CL)/Vt (80%) nanofibers as compared to P (LLA-CL)/SF/Vt (62%) nanofibers after 24h. The present work provided a basis for further studies of this novel aligned nanofibrous material in nerve tissue repair or regeneration. PMID:27085042

  6. Fabrication of electrospun poly (methyl methacrylate) nanofiber membranes

    NASA Astrophysics Data System (ADS)

    Sethupathy, M.; Sethuraman, V.; Manisankar, P.

    2013-02-01

    Electrospun nanofiber of poly(methyl methacrylate) (PMMA) was fabricated with different concentrations of polymer solution and the optimum concentration arrived at was 15 wt %. The surface morphology of the electrospun membrane was observed by scanning electron microscopy. It consist of thin fibers with an average diameter of about 200-450 nm. The images revealed that the nanofibers showed uniform diameter and no bead formation was observed. Impedance measurements were done for the membranes. PMMA nanofiber membrane showed an ionic conductivity of 1.53 × 10-3 Scm-1 at room temperature. FTIR results confirmed that there was no chemical change in the polymer. The results suggested that electrolyte uptake, ionic conduction and thermal behavior were improved for the PMMA electrospun nanofiber. Hence these nanofibres can very well be employed for the construction of dye-sensitized solar cells and Lithium batteries.

  7. Sodium Polystyrene Sulfonate

    MedlinePlus

    ... is used to treat hyperkalemia (increased amounts of potassium in the body). Sodium polystyrene sulfonate is in a class of medications called potassium-removing agents. It works by removing excess potassium ...

  8. Revealing the Hierarchical Mechanical Strength of Single Cellulose Acetate Electrospun Filaments through Ultrasonic Breakage.

    PubMed

    Avó, João; Fernandes, Susete N; Godinho, Maria H

    2015-06-01

    The tensile strength of single cellulose acetate electrospun fibers is determined through sonication-induced fragmentation in water using a model previously developed by Terentjev and co-workers. The fragmentation of the electrospun fibers results in a gradual shortening of their length until a constant modal length is achieved. A single electrospun CA fiber tensile strength of ≈ 150 MPa (55-280 MPa) is determined based on fracture statistics. It is also observed that the fragmented fibers show bunches of nanofilaments at their ends with similar diameters to those of round structures observed in the cross-section of the initial electrospun fibers (≈ 38 nm). The sonication of these nanofilaments gives rise to spherical particles with similar diameter dimensions, which allows the estimation of a value of the tensile strength of the order of 2 MPa for these nanostructures. The aggregation and the alignment of the nano filaments inside the electrospun fiber should be the source of its higher strength value.

  9. Effect of electrospun nanofibers on flexural properties of fiberglass composites

    NASA Astrophysics Data System (ADS)

    White, Fatima T.

    In the present study, sintered electrospun TEOS nanofibers were interleaved in S2 fiberglass woven fabric layers, and composite panels were fabricated using the heated vacuum assisted resin transfer molding (H-VARTM) process. Cured panels were water jet cut to obtain the flexural test coupons. Flexural coupons were then tested using ASTM D7264 standard. The mechanical properties such as flexural strength, ultimate flexural failure strains, flexural modulus, and fiber volume fraction were measured. The S-2 fiberglass composite with the sintered TEOS electrospun nanofibers displayed lower flexural stiffness and strength as compared to the composites that were fabricated using S-2 fiberglass composite without the TEOS electrospun nanofibers. The present study also indicated that the composites fabricated with sintered TEOS electrospun nanofibers have larger failure strains as compared to the ones that were fabricated without the presence of electrospun nanofibers. The study indicates that the nanoengineered composites have better energy absorbing mechanism under flexural loading as compared to conventional fiberglass composites without presence of nanofibers.

  10. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition.

    PubMed

    Keleş, Elif; Hazer, Baki; Cömert, Füsun B

    2013-04-01

    A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene-block-polyisoprene-block-polystyrene (PS-b-PI-b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS-b-PI-b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, (1)H NMR, (13)C NMR, GPC and FTIR.

  11. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  12. Electric Field Effects on Fiber Alignment Using an Auxiliary Electrode During Electrospinning

    NASA Technical Reports Server (NTRS)

    Carnell, Lisa S.; Siochi, Emilie J.; Wincheski, Russell A.; Holloway, Nancy M.; Clark, Robert L.

    2009-01-01

    Control of electrospun fiber placement and distribution was investigated by examining the effect of electric field parameters on the electrospinning of fibers. The experimental set-up used in this study eliminated the bending instability and whipping, allowing the jet to be modeled as a stable trajectory. Coupling of experimental and computational results suggests the potential for predicting aligned fiber distribution in electrospun mats.

  13. Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression.

    PubMed

    Zhao, Xin; Jiang, Shichao; Liu, Shen; Chen, Shuai; Lin, Zhi Yuan William; Pan, Guoqing; He, Fan; Li, Fengfeng; Fan, Cunyi; Cui, Wenguo

    2015-08-01

    To balance intrinsic and extrinsic healing during tendon repair is challenging in tendon surgery. We hypothesized that by mediating apoptotic gene and collagen synthesis of exogenous fibroblasts, the adhesion formation induced by extrinsic healing could be inhibited. With the maintenance of intrinsic healing, the tendon could be healed with proper function with no adhesion. In this study, we loaded hydrophilic mitomycin-C (MMC) into hyaluronan (HA) hydrosols, which were then encapsulated in poly(L-lactic acid) (PLLA) fibers by micro-sol electrospinning. This strategy successfully provided a controlled release of MMC to inhibit adhesion formations with no detrimental effect on intrinsic healing. We found that micro-sol electrospinning was an effective and facile approach to incorporate and control hydrophilic drug release from hydrophobic polyester fibers. MMC exhibited an initially rapid, and gradually steadier release during 40 days, and the release rates could be tuned by its concentration. In vitro studies revealed that low concentrations of MMC could inhibit fibroblast adhesion and proliferation. When lacerate tendons were healed using the MMC-HA loaded PLLA fibers in vivo, they exhibited comparable mechanical strength to the naturally healed tendons but with no significant presence of adhesion formation. We further identified the up-regulation of apoptotic protein Bax expression and down-regulation of proteins Bcl2, collage I, collagen III and α-SMA during the healing process associated with minimum adhesion formations. This approach presented here leverages new advances in drug delivery and nanotechnology and offers a promising strategy to balance intrinsic and extrinsic tendon healing through modulating genes associated with fibroblast apoptosis and collagen synthesis.

  14. Electrospun porous carbon nanofiber@MoS2 core/sheath fiber membranes as highly flexible and binder-free anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Miao, Yue-E.; Huang, Yunpeng; Zhang, Longsheng; Fan, Wei; Lai, Feili; Liu, Tianxi

    2015-06-01

    Self-standing membranes of porous carbon nanofiber (PCNF)@MoS2 core/sheath fibers have been facilely obtained through a combination of electrospinning, high-temperature carbonization and the solvothermal reaction. PCNF fibers with porous channels are used as building blocks for the construction of hierarchical PCNF@MoS2 composites where thin MoS2 nanosheets are uniformly distributed on the PCNF surface. Thus, a three-dimensional open structure is formed, which provides a highly conductive pathway for rapid charge-transfer reactions, as well as greatly improving the surface active sites of MoS2 for fast lithiation/delithiation of Li+ ions. The highly flexible PCNF@MoS2 composite membrane electrode exhibits synergistically improved electrochemical performance with a high specific capacity of 954 mA h g-1 upon the initial discharge, a high rate capability of 475 mA h g-1 even at a high current density of 1 A g-1, and good cycling stability with almost 100% retention after 50 cycles, indicating its potential application as a binder-free anode for high-performance lithium-ion batteries.Self-standing membranes of porous carbon nanofiber (PCNF)@MoS2 core/sheath fibers have been facilely obtained through a combination of electrospinning, high-temperature carbonization and the solvothermal reaction. PCNF fibers with porous channels are used as building blocks for the construction of hierarchical PCNF@MoS2 composites where thin MoS2 nanosheets are uniformly distributed on the PCNF surface. Thus, a three-dimensional open structure is formed, which provides a highly conductive pathway for rapid charge-transfer reactions, as well as greatly improving the surface active sites of MoS2 for fast lithiation/delithiation of Li+ ions. The highly flexible PCNF@MoS2 composite membrane electrode exhibits synergistically improved electrochemical performance with a high specific capacity of 954 mA h g-1 upon the initial discharge, a high rate capability of 475 mA h g-1 even at a high

  15. TOPICAL REVIEW: Electrospun nanofibrous materials for tissue engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Cui, Wenguo; Zhou, Yue; Chang, Jiang

    2010-02-01

    The electrospinning technique, which was invented about 100 years ago, has attracted more attention in recent years due to its possible biomedical applications. Electrospun fibers with high surface area to volume ratio and structures mimicking extracellular matrix (ECM) have shown great potential in tissue engineering and drug delivery. In order to develop electrospun fibers for these applications, different biocompatible materials have been used to fabricate fibers with different structures and morphologies, such as single fibers with different composition and structures (blending and core-shell composite fibers) and fiber assemblies (fiber bundles, membranes and scaffolds). This review summarizes the electrospinning techniques which control the composition and structures of the nanofibrous materials. It also outlines possible applications of these fibrous materials in skin, blood vessels, nervous system and bone tissue engineering, as well as in drug delivery.

  16. Immobilization of gold nanoclusters inside porous electrospun fibers for selective detection of Cu(II): A strategic approach to shielding pristine performance

    PubMed Central

    Senthamizhan, Anitha; Celebioglu, Asli; Balusamy, Brabu; Uyar, Tamer

    2015-01-01

    Here, a distinct demonstration of highly sensitive and selective detection of copper (Cu2+) in a vastly porous cellulose acetate fibers (pCAF) has been carried out using dithiothreitol capped gold nanocluster (DTT.AuNC) as fluorescent probe. A careful optimization of all potential factors affecting the performance of the probe for effective detection of Cu2+ were studied and the resultant sensor strip exhibiting unique features including high stability, retained parent fluorescence nature and reproducibility. The visual colorimetric detection of Cu2+ in water, presenting the selective sensing performance towards Cu2+ ions over Zn2+, Cd2+ and Hg2+ under UV light in naked eye, contrast to other metal ions that didn’t significantly produce such a change. The comparative sensing performance of DTT.AuNC@pCAF, keeping the nonporous CA fiber (DTT.AuNC@nCAF) as a support matrix has been demonstrated. The resulting weak response of DTT.AuNC@nCAF denotes the lack of ligand protection leading to the poor coordination ability with Cu2+. The determined detection limit (50 ppb) is far lower than the maximum level of Cu2+ in drinking water (1.3 ppm) set by U.S. Environmental Protection Agency (EPA). An interesting find from this study has been the specific oxidation nature between Cu2+ and DTT.AuNC, offering solid evidence for selective sensors. PMID:26489771

  17. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Ding, Bin; Chen, Li; Cui, Shizhong; Li, Kejing; Han, Qiming; Tan, Weilin

    2016-01-01

    The bone is a composite of inorganic and organic materials and possesses a complex hierarchical architecture consisting of mineralized fibrils formed by collagen molecules and coated with oriented hydroxyapatite. To regenerate bone tissue, it is necessary to provide a scaffold that mimics the architecture of the extracellular matrix in native bone. Here, we describe one such scaffold, a nanostructured composite with a core made of a composite of hydroxyapatite and tussah silk fibroin. The core is encased in a shell of tussah silk fibroin. The composite fibers were fabricated by coaxial electrospinning using green water solvent and were characterized using different techniques. In comparison to nanofibers of pure tussah silk, composite notably improved mechanical properties, with 90-fold and 2-fold higher initial modulus and breaking stress, respectively, obtained. Osteoblast-like MG-63 cells were cultivated on the composite to assess its suitability as a scaffold for bone tissue engineering. We found that the fiber scaffold supported cell adhesion and proliferation and functionally promoted alkaline phosphatase and mineral deposition relevant for biomineralization. In addition, the composite were more biocompatible than pure tussah silk fibroin or cover slip. Thus, the nanostructured composite has excellent biomimetic and mechanical properties and is a potential biocompatible scaffold for bone tissue engineering. PMID:26478319

  18. Immobilization of gold nanoclusters inside porous electrospun fibers for selective detection of Cu(II): A strategic approach to shielding pristine performance.

    PubMed

    Senthamizhan, Anitha; Celebioglu, Asli; Balusamy, Brabu; Uyar, Tamer

    2015-10-22

    Here, a distinct demonstration of highly sensitive and selective detection of copper (Cu(2+)) in a vastly porous cellulose acetate fibers (pCAF) has been carried out using dithiothreitol capped gold nanocluster (DTT.AuNC) as fluorescent probe. A careful optimization of all potential factors affecting the performance of the probe for effective detection of Cu(2+) were studied and the resultant sensor strip exhibiting unique features including high stability, retained parent fluorescence nature and reproducibility. The visual colorimetric detection of Cu(2+) in water, presenting the selective sensing performance towards Cu(2+) ions over Zn(2+), Cd(2+) and Hg(2+) under UV light in naked eye, contrast to other metal ions that didn't significantly produce such a change. The comparative sensing performance of DTT.AuNC@pCAF, keeping the nonporous CA fiber (DTT.AuNC@nCAF) as a support matrix has been demonstrated. The resulting weak response of DTT.AuNC@nCAF denotes the lack of ligand protection leading to the poor coordination ability with Cu(2+). The determined detection limit (50 ppb) is far lower than the maximum level of Cu(2+) in drinking water (1.3 ppm) set by U.S. Environmental Protection Agency (EPA). An interesting find from this study has been the specific oxidation nature between Cu(2+) and DTT.AuNC, offering solid evidence for selective sensors.

  19. Immobilization of gold nanoclusters inside porous electrospun fibers for selective detection of Cu(II): A strategic approach to shielding pristine performance

    NASA Astrophysics Data System (ADS)

    Senthamizhan, Anitha; Celebioglu, Asli; Balusamy, Brabu; Uyar, Tamer

    2015-10-01

    Here, a distinct demonstration of highly sensitive and selective detection of copper (Cu2+) in a vastly porous cellulose acetate fibers (pCAF) has been carried out using dithiothreitol capped gold nanocluster (DTT.AuNC) as fluorescent probe. A careful optimization of all potential factors affecting the performance of the probe for effective detection of Cu2+ were studied and the resultant sensor strip exhibiting unique features including high stability, retained parent fluorescence nature and reproducibility. The visual colorimetric detection of Cu2+ in water, presenting the selective sensing performance towards Cu2+ ions over Zn2+, Cd2+ and Hg2+ under UV light in naked eye, contrast to other metal ions that didn’t significantly produce such a change. The comparative sensing performance of DTT.AuNC@pCAF, keeping the nonporous CA fiber (DTT.AuNC@nCAF) as a support matrix has been demonstrated. The resulting weak response of DTT.AuNC@nCAF denotes the lack of ligand protection leading to the poor coordination ability with Cu2+. The determined detection limit (50 ppb) is far lower than the maximum level of Cu2+ in drinking water (1.3 ppm) set by U.S. Environmental Protection Agency (EPA). An interesting find from this study has been the specific oxidation nature between Cu2+ and DTT.AuNC, offering solid evidence for selective sensors.

  20. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Ding, Bin; Chen, Li; Cui, Shizhong; Li, Kejing; Han, Qiming; Tan, Weilin

    2016-01-01

    The bone is a composite of inorganic and organic materials and possesses a complex hierarchical architecture consisting of mineralized fibrils formed by collagen molecules and coated with oriented hydroxyapatite. To regenerate bone tissue, it is necessary to provide a scaffold that mimics the architecture of the extracellular matrix in native bone. Here, we describe one such scaffold, a nanostructured composite with a core made of a composite of hydroxyapatite and tussah silk fibroin. The core is encased in a shell of tussah silk fibroin. The composite fibers were fabricated by coaxial electrospinning using green water solvent and were characterized using different techniques. In comparison to nanofibers of pure tussah silk, composite notably improved mechanical properties, with 90-fold and 2-fold higher initial modulus and breaking stress, respectively, obtained. Osteoblast-like MG-63 cells were cultivated on the composite to assess its suitability as a scaffold for bone tissue engineering. We found that the fiber scaffold supported cell adhesion and proliferation and functionally promoted alkaline phosphatase and mineral deposition relevant for biomineralization. In addition, the composite were more biocompatible than pure tussah silk fibroin or cover slip. Thus, the nanostructured composite has excellent biomimetic and mechanical properties and is a potential biocompatible scaffold for bone tissue engineering.

  1. Robust fabrication of electrospun-like polymer mats to direct cell behaviour.

    PubMed

    Ballester-Beltrán, José; Lebourg, Myriam; Capella, Hector; Diaz Lantada, Andres; Salmerón-Sánchez, Manuel

    2014-09-01

    Currently, cell culture systems that include nanoscale topography are widely used in order to provide cells additional cues closer to the in vivo environment, seeking to mimic the natural extracellular matrix. Electrospinning is one of the most common techniques to produce nanofiber mats. However, since many sensitive parameters play an important role in the process, a lack of reproducibility is a major drawback. Here we present a simple and robust methodology to prepare reproducible electrospun-like samples. It consists of a polydimethylsiloxane mold reproducing the fiber pattern to solvent-cast a polymer solution and obtain the final sample. To validate this methodology, poly(L-lactic) acid (PLLA) samples were obtained and, after characterisation, bioactivity and ability to direct cell response were assessed. C2C12 myoblasts developed focal adhesions on the electrospun-like fibers and, when cultured under myogenic differentiation conditions, similar differentiation levels to electrospun PLLA fibers were obtained.

  2. Electrospun nitrocellulose and nylon: Design and fabrication of novel high performance platforms for protein blotting applications

    PubMed Central

    Manis, Ashley E; Bowman, James R; Bowlin, Gary L; Simpson, David G

    2007-01-01

    Background Electrospinning is a non-mechanical processing strategy that can be used to process a variety of native and synthetic polymers into highly porous materials composed of nano-scale to micron-scale diameter fibers. By nature, electrospun materials exhibit an extensive surface area and highly interconnected pore spaces. In this study we adopted a biological engineering approach to ask how the specific unique advantages of the electrospinning process might be exploited to produce a new class of research/diagnostic tools. Methods The electrospinning properties of nitrocellulose, charged nylon and blends of these materials are characterized. Results Nitrocellulose electrospun from a starting concentration of < 110 mg/ml acetone deposited as 4–8 μm diameter beads; at 110 mg/ml-to-140 mg/ml starting concentrations, this polymer deposited as 100–4000 nm diameter fibers. Nylon formed fibers when electrospun from 60–140 mg/ml HFIP, fibers ranged from 120 nm-6000 nm in diameter. Electrospun nitrocellulose exhibited superior protein retention and increased sensitivity in slot blot experiments with respect to the parent nitrocellulose material. Western immunoblot experiments using fibronectin as a model protein demonstrated that electrospun nylon exhibits increased protein binding and increased dynamic range in the chemiluminescence detection of antigens than sheets of the parent starting material. Composites of electrospun nitrocellulose and electrospun nylon exhibit high protein binding activity and provide increased sensitivity for the immuno-detection of antigens. Conclusion The flexibility afforded by electrospinning process makes it possible to tailor blotting membranes to specific applications. Electrospinning has a variety of potential applications in the clinical diagnostic field of use. PMID:18271978

  3. Development of a fast and sensitive glucose biosensor using iridium complex-doped electrospun optical fibrous membrane.

    PubMed

    Zhou, Cuisong; Shi, Yalin; Ding, Xiaodong; Li, Ming; Luo, Jiaojiao; Lu, Zhiyun; Xiao, Dan

    2013-01-15

    Polystyrene electrospun optical fibrous membrane (EOF) was fabricated using a one-step electrospinning technique, functionalized with glucose oxidases (GOD/EOF), and used as a quick and highly sensitive optical biosensor. Because of the doped iridium complex, the fibrous membrane emitted yellow luminescence (562 nm) when excited at 405 nm. Its luminescence was significantly enhanced with the presence of extremely low concentration glucose. The detection limit was of 1.0 × 10(-10) M (S/N = 3), superior to that of reported glucose biosensor with 1.2 × 10(-10) M. A linear range between the relative intensity increase and the logarithm of glucose concentration was exhibited from 3.0 × 10(-10) M to 1.3 × 10(-4) M, which was much wider than reported results. Notably, the response time was less than 1 s. These high sensitivity and fast response were attributed to the high surface-area-to-volume of the porous fibrous membrane, the efficient GOD biocatalyst reaction on the fibers surface, as well as the fast electron or energy transfer between dissolved oxygen and the optical fibrous membrane. PMID:23215003

  4. Solid polystyrene and deuterated polystyrene light output response to fast neutrons.

    PubMed

    Simpson, R; Danly, C; Glebov, V Yu; Hurlbut, C; Merrill, F E; Volegov, P L; Wilde, C

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  5. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Danly, C.; Glebov, V. Yu.; Hurlbut, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  6. Solid polystyrene and deuterated polystyrene light output response to fast neutrons.

    PubMed

    Simpson, R; Danly, C; Glebov, V Yu; Hurlbut, C; Merrill, F E; Volegov, P L; Wilde, C

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented. PMID:27131680

  7. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    PubMed

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay.

  8. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    PubMed

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. PMID:26776870

  9. Chain Confinement in Electrospun Nanocomposites: using Thermal Analysis to Investigate Polymer-Filler Interactions

    SciTech Connect

    Q Ma; B Mao; P Cebe

    2011-12-31

    We investigate the interaction of the polymer matrix and filler in electrospun nanofibers using advanced thermal analysis methods. In particular, we study the ability of silicon dioxide nanoparticles to affect the phase structure of poly(ethylene terephthalate), PET. SiO{sub 2} nanoparticles (either unmodified or modified with silane) ranging from 0 to 2.0 wt% in PET were electrospun from hexafluoro-2-propanol solutions. The morphologies of both the electrospun (ES) nanofibers and the SiO{sub 2} powders were observed by scanning and transmission electron microscopy, while the amorphous or crystalline nature of the fibers was determined by real-time wide-angle X-ray scattering. The fractions of the crystal, mobile amorphous, and rigid amorphous phases of the non-woven, nanofibrous composite mats were quantified by using heat capacity measurements. The amount of the immobilized polymer layer, the rigid amorphous fraction, was obtained from the specific reversing heat capacity for both as-spun amorphous fibers and isothermally crystallized fibers. Existence of the rigid amorphous phase in the absence of crystallinity was verified in nanocomposite fibers, and two origins for confinement of the rigid amorphous fraction are proposed. Thermal analysis of electrospun fibers, including quasi-isothermal methods, provides new insights to quantitatively characterize the polymer matrix phase structure and thermal transitions, such as devitrification of the rigid amorphous fraction.

  10. Metal Oxide Nanoparticles in Electrospun Polymers and Their Fate in Aqueous Waste Streams

    NASA Astrophysics Data System (ADS)

    Hoogesteijn von Reitzenstein, Natalia

    Nanotechnology is becoming increasingly present in our environment. Engineered nanoparticles (ENPs), defined as objects that measure less than 100 nanometers in at least one dimension, are being integrated into commercial products because of their small size, increased surface area, and quantum effects. These special properties have made ENPs antimicrobial agents in clothing and plastics, among other applications in industries such as pharmaceuticals, renewable energy, and prosthetics. This thesis incorporates investigations into both application of nanoparticles into polymers as well as implications of nanoparticle release into the environment. First, the integration of ENPs into polymer fibers via electrospinning was explored. Electrospinning uses an external electric field applied to a polymer solution to produce continuous fibers with large surface area and small volume, a quality which makes the fibers ideal for water and air purification purposes. Indium oxide and titanium dioxide nanoparticles were embedded in polyvinylpyrrolidone and polystyrene. Viscosity, critical voltage, and diameter of electrospun fibers were analyzed in order to determine the effects of nanoparticle integration into the polymers. Critical voltage and viscosity of solution increased at 5 wt% ENP concentration. Fiber morphology was not found to change significantly as a direct effect of ENP addition, but as an effect of increased viscosity and surface tension. These results indicate the possibility for seamless integration of ENPs into electrospun polymers. Implications of ENP release were investigated using phase distribution functional assays of nanoscale silver and silver sulfide, as well as photolysis experiments of nanoscale titanium dioxide to quantify hydroxyl radical production. Functional assays are a means of screening the relevant importance of multiple processes in the environmental fate and transport of ENPs. Four functional assays---water-soil, water-octanol, water

  11. Electrically conductive polyaniline-coated electrospun poly(vinylidene fluoride) mats

    NASA Astrophysics Data System (ADS)

    Merlini, Claudia; Barra, Guilherme; Ramoa, Sílvia; Contri, Giseli; Almeida, Rosemeire; D´Ávila, Marcos; Soares, Bluma

    2015-02-01

    Electrically conductive polyaniline (PANI)-coated electrospun poly(vinylidene fluoride) (PVDF) mats were fabricated through aniline (ANI) oxidative polymerization on electrospun PVDF mats. The effect of polymerization condition on structure and property of PVDF/PANI mats was investigated. The electrical conductivity and PANI content enhanced significantly with increasing ANI concentration due to the formation of a conducting polymer layer that completely coated the PVDF fibers surface. The PANI deposition on the PVDF fibers surface increased the Young Modulus and the elongation at break reduced significantly. Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) revealed that the electrospun PVDF and PVDF/PANI mats display a polymorph crystalline structure, with absorption bands associated to the β, α and γ phases.

  12. Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications.

    PubMed

    Konwarh, Rocktotpal; Karak, Niranjan; Misra, Manjusri

    2013-01-01

    Cellulose acetate (CA) has been a material of choice for spectrum of utilities across different domains ranging from high absorbing diapers to membrane filters. Electrospinning has conferred a whole new perspective to polymeric materials including CA in the context of multifarious applications across myriad of niches. In the present review, we try to bring out the recent trend (focused over last five years' progress) of research on electrospun CA fibers of nanoscale regime in the context of developmental strategies of their blends and nanocomposites for advanced applications. In the realm of biotechnology, electrospun CA fibers have found applications in biomolecule immobilization, tissue engineering, bio-sensing, nutraceutical delivery, bioseparation, crop protection, bioremediation and in the development of anti-counterfeiting and pH sensitive material, photocatalytic self-cleaning textile, temperature-adaptable fabric, and antimicrobial mats, amongst others. The present review discusses these diverse applications of electrospun CA nanofibers. PMID:23318668

  13. Nanoclay-Enriched Poly(ɛ-caprolactone) Electrospun Scaffolds for Osteogenic Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Gaharwar, Akhilesh K.; Mukundan, Shilpaa; Karaca, Elif; Dolatshahi-Pirouz, Alireza; Patel, Alpesh; Rangarajan, Kaushik; Mihaila, Silvia M.; Iviglia, Giorgio; Zhang, Hongbin

    2014-01-01

    Musculoskeletal tissue engineering aims at repairing and regenerating damaged tissues using biological tissue substitutes. One approach to achieve this aim is to develop osteoconductive scaffolds that facilitate the formation of functional bone tissue. We have fabricated nanoclay-enriched electrospun poly(ɛ-caprolactone) (PCL) scaffolds for osteogenic differentiation of human mesenchymal stem cells (hMSCs). A range of electrospun scaffolds is fabricated by varying the nanoclay concentrations within the PCL scaffolds. The addition of nanoclay decreases fiber diameter and increases surface roughness of electrospun fibers. The enrichment of PCL scaffold with nanoclay promotes in vitro biomineralization when subjected to simulated body fluid (SBF), indicating bioactive characteristics of the hybrid scaffolds. The degradation rate of PCL increases due to the addition of nanoclay. In addition, a significant increase in crystallization temperature of PCL is also observed due to enhanced surface interactions between PCL and nanoclay. The effect of nanoclay on the mechanical properties of electrospun fibers is also evaluated. The feasibility of using nanoclay-enriched PCL scaffolds for tissue engineering applications is investigated in vitro using hMSCs. The nanoclay-enriched electrospun PCL scaffolds support hMSCs adhesion and proliferation. The addition of nanoclay significantly enhances osteogenic differentiation of hMSCs on the electrospun scaffolds as evident by an increase in alkaline phosphates activity of hMSCs and higher deposition of mineralized extracellular matrix compared to PCL scaffolds. Given its unique bioactive characteristics, nanoclay-enriched PCL fibrous scaffold may be used for musculoskeletal tissue engineering. PMID:24842693

  14. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Gaharwar, Akhilesh K; Mukundan, Shilpaa; Karaca, Elif; Dolatshahi-Pirouz, Alireza; Patel, Alpesh; Rangarajan, Kaushik; Mihaila, Silvia M; Iviglia, Giorgio; Zhang, Hongbin; Khademhosseini, Ali

    2014-08-01

    Musculoskeletal tissue engineering aims at repairing and regenerating damaged tissues using biological tissue substitutes. One approach to achieve this aim is to develop osteoconductive scaffolds that facilitate the formation of functional bone tissue. We have fabricated nanoclay-enriched electrospun poly(ɛ-caprolactone) (PCL) scaffolds for osteogenic differentiation of human mesenchymal stem cells (hMSCs). A range of electrospun scaffolds is fabricated by varying the nanoclay concentrations within the PCL scaffolds. The addition of nanoclay decreases fiber diameter and increases surface roughness of electrospun fibers. The enrichment of PCL scaffold with nanoclay promotes in vitro biomineralization when subjected to simulated body fluid (SBF), indicating bioactive characteristics of the hybrid scaffolds. The degradation rate of PCL increases due to the addition of nanoclay. In addition, a significant increase in crystallization temperature of PCL is also observed due to enhanced surface interactions between PCL and nanoclay. The effect of nanoclay on the mechanical properties of electrospun fibers is also evaluated. The feasibility of using nanoclay-enriched PCL scaffolds for tissue engineering applications is investigated in vitro using hMSCs. The nanoclay-enriched electrospun PCL scaffolds support hMSCs adhesion and proliferation. The addition of nanoclay significantly enhances osteogenic differentiation of hMSCs on the electrospun scaffolds as evident by an increase in alkaline phosphates activity of hMSCs and higher deposition of mineralized extracellular matrix compared to PCL scaffolds. Given its unique bioactive characteristics, nanoclay-enriched PCL fibrous scaffold may be used for musculoskeletal tissue engineering. PMID:24842693

  15. Thermal conductivity of electrospun polyethylene nanofibers

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M.; Li, Deyu

    2015-10-01

    We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m-1 K-1, over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers.

  16. Impact of post-treatment on the characteristics of electrospun poly (vinyl alcohol)/chitosan nanofibers

    NASA Astrophysics Data System (ADS)

    Susanto, H.; Samsudin, A. M.; Faz, M. W.; Rani, M. P. H.

    2016-04-01

    Electrospun nanofibers have many advantages such as high porosity, easy to be fabricated in various size and high ratio of surface area to volume. This paper presents the preparation of electrospun PVA/Chitosan nanofibers and more specifically focuses on the effect of post-treatment on the permeability and morphology of electrospun PVA/chitosan nanofibers. The mixtures of various concentrations of PVA (6,7,8 wt%)and 2 wt%.chitosan solution (with the ratio of 3:1)were used in electrospun with a constant rate of 0.7 ml/hour. The post-treatment was conducted by immersing in a ethanol or glutaraldehyde solution to performed crosslink structure. The electrospun PVA/Chitosan nanofiber was characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results revealed that the viscosity of the mixture solution is directly proportional to its concentration. Increasing the viscosity increased the diameter of fiber but also made the larger beads formation. FTIR measurement exhibited the existence of relevant functional groups of both PVA and chitosan in the composites.The crosslinked structure was found for the electrospun PVA/Chitosan nanofibers treated with glutaraldehyde solution.

  17. Functionalized electrospun nanofibers as bioseparators in microfluidic systems.

    PubMed

    Matlock-Colangelo, Lauren; Cho, Daehwan; Pitner, Christine L; Frey, Margaret W; Baeumner, Antje J

    2012-05-01

    Functionalized electrospun nanofibers were integrated into microfluidic channels to serve as on-chip bioseparators. Specifically, poly(vinyl alcohol) (PVA) nanofiber mats were shown to successfully serve as bioseparators for negatively charged nanoparticles. Nanofibers were electrospun onto gold microelectrodes, which were incorporated into poly(methyl methacrylate) (PMMA) microfluidic devices using UV-assisted thermal bonding. PVA nanofibers functionalized with poly(hexadimethrine bromide) (polybrene) were positively charged and successfully filtered negatively charged liposomes out of a buffer solution, while negatively charged nanofibers functionalized with Poly(methyl vinyl ether-alt-maleic anhydride) (POLY(MVE/MA)) were shown to repel the liposomes. The effect of fiber mat thickness was studied using confocal fluorescence microscopy, determining a quite broad optimal range of thicknesses for specific liposome retention, which simplifies fiber mat production with respect to retention reliability. Finally, it was demonstrated that liposomes bound to positively charged nanofibers could be selectively released using a 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES)-sucrose-saline (HSS) solution of pH 9, which dramatically changes the nanofiber zeta potential and renders the positively charged nanofibers negatively charged. This is the first demonstration of functional electrospun nanofibers used to enable sample preparation procedures of isolation and concentration in lab-on-a-chip devices. This has far reaching impact on the ability to integrate functional surfaces and materials into microfluidic devices and to significantly expand their ability toward simple lab-on-a-chip devices.

  18. Electrochemical properties of electrospun poly(5-cyanoindole) submicron-fibrous electrode for zinc/polymer secondary battery

    NASA Astrophysics Data System (ADS)

    Cai, Zhijiang; Guo, Jie; Yang, Haizheng; Xu, Yi

    2015-04-01

    This study aims to develop an aqueous zinc/electrospun poly(5-cyanoindole) fibers secondary battery system. Zn foil and ZnCl2 are used as anode active materials and the electrolytic solution, respectively. Poly(5-cyanoindole) synthesized by chemical oxidation is electrospun into fibers and used as cathode active materials. FTIR and NMR test are carried out to investigate the chemical structure of poly(5-cyanoindole). Surface properties of electrospun poly(5-cyanoindole) fibers are studied by SEM, TEM, and BET. The performance of zinc/electrospun poly(5-cyanoindole) fibers battery system is evaluated in term of electrical conductivity, cyclic voltammogram, electrochemical impedance spectroscopy, discharge capacity and durability test. The cell achieves 2.0 V electromotive force with about 107-61 Ah Kg-1 discharge capacity at 0.2C-10C rate. At 800th cycle, the discharge capacity remains 80-57 Ah Kg-1 at 0.2C-2C rate, which is about 75-63% of the maximum discharge capacity. These results indicate that the cell has very excellent cyclic properties as well as fast charge/discharge properties. Electrospun poly(5-cyanoindole) fibers have been proved to be a better candidate than polyindole powder as cathode material in zinc/polymer battery.

  19. Electrospun materials for affinity-based engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Sill, T. J.; von Recum, H. A.

    2015-10-01

    Electrospinning is a process which can quickly and cheaply create materials of high surface to volume and aspect ratios from many materials, however in application toward drug delivery this can be a strong disadvantage as well. Diffusion of drug is proportional to the thickness of that device. In moving from macro to micro to nano-sized electrospun materials drug release rates change to profiles that are too fast to be therapeutically beneficial. In this work we use molecular interactions to further control the rate of release beyond that capable of diffusion alone. To do this we create materials with molecular pockets, which can "hold" therapeutic drugs through a reversible interaction such as a host/guest complexation. Through these complexes we show we are able to impact delivery of drug from electrospun materials, and also apply them in tissue engineering for the reversible presentation of biomolecules on a fiber surface.

  20. Cell Infiltration and Growth in a Low Density, Uncompressed Three-Dimensional Electrospun Nanofibrous Scaffold

    PubMed Central

    Blakeney, Bryan A.; Tambralli, Ajay; Anderson, Joel M.; Andukuri, Adinarayana; Lim, Dong-Jin; Dean, Derrick R.; Jun, Ho-Wook

    2010-01-01

    A limiting factor of traditional electrospinning is that the electrospun scaffolds consist entirely of tightly packed nanofiber layers that only provide a superficial porous structure due to the sheet-like assembly process. This unavoidable characteristic hinders cell infiltration and growth throughout the nanofibrous scaffolds. Numerous strategies have been tried to overcome this challenge, including the incorporation of nanoparticles, using larger microfibers, or removing embedded salt or water-soluble fibers to increase porosity. However, these methods still produce sheet-like nanofibrous scaffolds, failing to create a porous three-dimensional scaffold with good structural integrity. Thus, we have developed a three-dimensional cotton ball-like electrospun scaffold that consists of an accumulation of nanofibers in a low density and uncompressed manner. Instead of a traditional flat-plate collector, a grounded spherical dish and an array of needle-like probes were used to create a Focused, Low density, Uncompressed nanoFiber (FLUF) mesh scaffold. Scanning electron microscopy showed that the cotton ball-like scaffold consisted of electrospun nanofibers with a similar diameter but larger pores and less dense structure compared to the traditional electrospun scaffolds. In addition, laser confocal microscopy demonstrated an open porosity and loosely packed structure throughout the depth of the cotton ball-like scaffold, contrasting the superficially porous and tightly packed structure of the traditional electrospun scaffold. Cells seeded on the cotton ball-like scaffold infiltrated into the scaffold after 7 days of growth, compared to no penetrating growth for the traditional electrospun scaffold. Quantitative analysis showed approximately a 40% higher growth rate for cells on the cotton ball-like scaffold over a 7 day period, possibly due to the increased space for in-growth within the three-dimensional scaffolds. Overall, this method assembles a nanofibrous scaffold

  1. Polyhydroxyalkanoates: waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture.

    PubMed

    Canadas, Raphaël F; Cavalheiro, João M B T; Guerreiro, João D T; de Almeida, M Catarina M D; Pollet, Eric; da Silva, Cláudia Lobato; da Fonseca, M M R; Ferreira, Frederico Castelo

    2014-11-01

    This integrated study shows that waste glycerol can be bio-valorized by the fabrication of electrospun scaffolds for stem cells. Human mesenchymal stem cells (hMSC) provide an interesting model of regenerating cells because of their ability to differentiate into osteo-, chrondro-, adipo- and myogenic lineages. Moreover, hMSC have modulatory properties with potential on treatment of immunologic diseases. Electrospun fiber meshes offer tunable mechanical and physical properties that can mimic the structure of the native extracellular matrix, the natural environment where cells inhabit. Following a biorefinery approach, crude glycerol directly recovered from a biodiesel post-reaction stream was fed as major C source to Cupriavidus necator DSM 545 to produce polyhydroxyalkanoates at polymer titers of 9-25g/L. Two of the P(3HB-4HB-3HV) terpolymers produced, one containing 11.4% 4HB and 3.5% 3HV and the other containing 35.6% 4HB and 3.4% 3HV, were electrospun into fibers of average diameters of 600 and 1400nm, respectively. hMSC were cultured for 7 days in both fiber meshes, showing their ability to support stem cell growth at acceptable proliferation levels. Comparative results clearly demonstrate that scaffold topology is critical, with electrospun PHA fibers succeeding on the support of significant cell adhesion and proliferation, where planar PHA films failed.

  2. Packing Products: Polystyrene vs. Cornstarch

    ERIC Educational Resources Information Center

    Starr, Suzanne

    2009-01-01

    Packing materials such as polystyrene take thousands of years to decompose, whereas packing peanuts made from cornstarch, which some companies are now using, can serve the same purpose, but dissolve in water. The author illustrates this point to her class one rainy day using the sculptures students made from polystyrene and with the cornstarch…

  3. Fiber

    MedlinePlus

    ... broccoli, spinach, and artichokes legumes (split peas, soy, lentils, etc.) almonds Look for the fiber content of ... salsa, taco sauce, and cheese for dinner. Add lentils or whole-grain barley to your favorite soups. ...

  4. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli.

    PubMed

    Kuppan, Purushothaman; Vasanthan, Kirthanashri S; Sundaramurthi, Dhakshinamoorthy; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2011-09-12

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable polyester, was electrospun to form defect-free fibers with high surface-area-to-volume ratio for skin regeneration. Several parameters such as solvent ratio, polymer concentration, applied voltage, flow rate, and tip-to-target distance were optimized to achieve defect-free morphology. The average diameter of the PHBV fibers was 724 ± 91 nm. PHBV was also solvent-cast to form 2-D films, and its mechanical properties, porosity, and degradation rates were compared with PHBV fibers. Our results demonstrate that PHBV fibers exhibited higher porosity, increased ductility, and faster degradation rate when compared with PHBV 2-D films (p < 0.05). In vitro studies with PHBV fibers and 2-D films were carried out to evaluate the adhesion, viability, proliferation, and gene expression of human skin fibroblasts. Cells adhered and proliferated on both PHBV fibers and 2-D films. However, the proliferation of cells on the surface of PHBV fibers was comparable to tissue culture polystyrene (TCPS, control) (p > 0.05). The gene expression of collagen I and elastin was significantly up-regulated when compared with TCPS control, whereas collagen III was down-regulated on PHBV fibers and 2-D film after 14 days in culture. The less ductile PHBV 2-D films showed higher levels of elastin expression. Furthermore, the PHBV fibers in the presence and absence of an angiogenesis factor (R-Spondin 1) were evaluated for their wound healing capacity in a rat model. The wound contracture in R-Spondin-1-loaded PHBV fibers was found to be significantly higher when compared with PHBV fibers alone after 7 days (p < 0.05). Furthermore, the presence of fibers promoted an increase in collagen and aided re-epithelialization. Thus our results demonstrate that the topography and mechanical and chemical stimuli have a pronounced influence on the cell proliferation, gene expression, and wound healing.

  5. Electrospun Nanofibers for Regenerative Medicine**

    PubMed Central

    Liu, Wenying; Thomopoulos, Stavros

    2013-01-01

    This article reviews recent progress in applying electrospun nanofibers to the emerging field of regenerative medicine. We begin with a brief introduction to electrospinning and nanofibers, with a focus on issues related to the selection of materials, incorporation of bioactive molecules, degradation characteristics, control of mechanical properties, and facilitation of cell infiltration. We then discuss a number of approaches to fabrication of scaffolds from electrospun nanofibers, including techniques for controlling the alignment of nanofibers and for producing scaffolds with complex architectures. We also highlight applications of the nanofiber-based scaffolds in four areas of regenerative medicine that involve nerves, dural tissues, tendons, and the tendon-to-bone insertion site. We conclude this review with perspectives on challenges and future directions for design, fabrication, and utilization of scaffolds based on electrospun nanofibers. PMID:23184683

  6. Crystallization of atactic polystyrene

    NASA Astrophysics Data System (ADS)

    Chai, Yu; Forrest, James

    Atactic polystyrene is often used as an archetypical example of a material that has no crystalline ground state due to the lack of order in the arrangement of phenyl groups along the backbone. However, even in polymers with perfect Bernoullian (random) statistics, there is a probability that a given molecule will have larger blocks of a given stereoregularity. These blocks, in turn, could allow the formation of nanocrysalline domains. As a model system to investigate whether such blocks could lead to nanoscale crystallinity, we consider PS with Mw less than 1000 where there is a reasonable probability of a molecule having all meso or racemo diads . For the case of Mw 600, there are clear indications of crystal growth with two characteristic temperatures below which two different crystal species can nucleate and grow. Similar crystal growth and melting behavior is observed for Mw 1000.

  7. Electrospun Poly(lactic acid-co-glycolic acid) Scaffolds for Skin Tissue Engineering

    PubMed Central

    Kumbar, Sangamesh G.; Nukavarapu, Syam Prasad; James, Roshan; Nair, Lakshmi S.; Laurencin, Cato T.

    2008-01-01

    Electrospun fiber matrices composed of scaffolds of varying fiber diameters were investigated for potential application of severe skin loss. Few systematic studies have been performed to examine the effect of varying fiber diameter electrospun fiber matrices for skin regeneration. The present study reports the fabrication of poly[lactic acid-co-glycolic acid] (PLAGA) matrices with fiber diameters of 150–225, 200–300, 250–467, 500–900, 600–1200, 2500–3000 and 3250–6000 nm via electrospinning. All fiber matrices found to have a tensile modulus from 39.23 ± 8.15 to 79.21 ± 13.71 MPa which falls in the range for normal human skin. Further, the porous fiber matrices have porosity between 38–60 % and average pore diameters between 10–14µm. We evaluated the efficacy of these biodegradable fiber matrices as skin substitutes by seeding them with human skin fibroblasts (hSF). Human skin fibroblasts acquired a well spread morphology and showed significant progressive growth on fiber matrices in the 350–1100 nm diameter range. Collagen type III gene expression was significantly up-regulated in hSF seeded on matrices with fiber diameters in the range of 350–1100 nm. Based on the need, the proposed fiber skin substitutes can be successfully fabricated and optimized for skin fibroblast attachment and growth. PMID:18639927

  8. Surface Properties of Fluorosilane-Terminated Polystyrene with Polystyrene

    NASA Astrophysics Data System (ADS)

    Koberstein, Jeffrey; O'Rourke Muisener, Patricia; Yuan, Caigen; Baetzold, John P.

    2000-03-01

    In previous work we have demonstrated that end-group substitution is an effective means for the modification of polymer surface properties. The magnitude of this effect naturally diminishes for high molecular weight because the end group concentration varies inversely with chain length. End-functional polymers are however useful for surface modification when employed as an additive in a polymer blend. For example, fluorosilane-terminated polystyrene can be used to control the dewetting of polystyrene(1), even in small amounts. These additives are efficient because they segregate strongly to the homopolymer surface. In this report, we employ a self-consistent mean field lattice theory to calculate the surface structure and composition of end-functional polymers blend into a parent homopolymer. The calculations are compared to experimental data on the surface properties of blends of polystyrene with fluorosilane-terminated polystyrene. 1 Yuan, C.,Ouyang, M.,Koberstein, J. T., Macromolecules; 1999; 32(7); 2329-2333

  9. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications.

    PubMed

    Chen, Rui; Huang, Chen; Ke, Qinfei; He, Chuanglong; Wang, Hongsheng; Mo, Xiumei

    2010-09-01

    Collagen functionalized thermoplastic polyurethane nanofibers (TPU/collagen) were successfully produced by coaxial electrospinning technique with a goal to develop biomedical scaffold. A series of tests were conducted to characterize the compound nanofiber and its membrane in this study. Surface morphology and interior structure of the ultrafine fibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM), whereas the fiber diameter distribution was also measured. The crosslinked membranes were also characterized by SEM. Porosities of different kinds of electrospun mats were determined. The surface chemistry and chemical composition of collagen/TPU coaxial nanofibrous membranes were verified by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometry (FTIR). Mechanical measurements were carried out by applying tensile test loads to samples which were prepared from electrospun ultra fine non-woven fiber mats. The coaxial electrospun nanofibers were further investigated as a promising scaffold for PIECs culture. The results demonstrated that coaxial electrospun composite nanofibers had the characters of native extracellular matrix and may be used effectively as an alternative material for tissue engineering and functional biomaterials. PMID:20471809

  10. Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs

    NASA Astrophysics Data System (ADS)

    Reis, Tiago C.; Correia, Ilídio J.; Aguiar-Ricardo, Ana

    2013-07-01

    The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design.The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive

  11. Promotion of initial anti-tumor effect via polydopamine modified doxorubicin-loaded electrospun fibrous membranes

    PubMed Central

    Yuan, Ziming; Zhao, Xin; Wang, Xiaohu; Qiu, Wangwang; Chen, Xinliang; Zheng, Qi; Cui, Wenguo

    2014-01-01

    Drug-loaded electrospun PLLA membranes are not conducive to adhesion between materials and tissues due to the strong hydrophobicity of PLLA, which possibly attenuate the drugs’ effect loaded on the materials. In the present work, we developed a facile method to improve the hydrophilicity of doxorubicin (DOX)-loaded electrospun PLLA fibrous membranes, which could enhance the anti-tumor effect at the early stage after implantation. A mussel protein, polydopamine (PDA), could be easily grafted on the surface of hydrophobic DOX-loaded electrospun PLLA membranes (PLLA-DOX/pDA) in water solution. The morphology analysis of PLLA-DOX/pDA fibers displayed that though the fiber diameter was slightly swollen, they still maintained a 3D fibrous structure, and the XPS analysis certified that pDA had successfully been grafted onto the surface of the fibers. The results of surface wettability analysis showed that the contact angle decreased from 136.7° to 0° after grafting. In vitro MTT assay showed that the cytotoxicity of PLLA-DOX/pDA fibers was the strongest, and the stereologic cell counting assay demonstrated that the adhesiveness of PLLA/pDA fiber was significantly better than PLLA fiber. In vivo tumor-bearing mice displayed that, after one week of implantation, the tumor apoptosis and necrosis of PLLA-DOX/pDA fibers were the most obvious from histopathology and TUNEL assay. The caspase-3 activity of PLLA-DOX/pDA group was the highest using biochemical techniques, and the Bax: Bcl-2 ratio increased significantly in PLLA-DOX/pDA group through qRT-PCR analysis. All the results demonstrated that pDA can improve the affinity of the electrospun PLLA membranes and enhance the drug effect on tumors. PMID:25337186

  12. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications.

    PubMed

    Lalani, Reza; Liu, Lingyun

    2012-06-11

    Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) has been well studied for its superhydrophilic and ultralow biofouling properties, making it a promising material for superabsorbent and nonadherent wound dressings. Electrospinning provides multiple desirable features for wound dressings, including high absorptivity due to high surface-area-to-volume ratio, high gas permeation, and conformability to contour of the wound bed. The goal of this work is to develop a fibrous membrane of PSBMA via electrospinning and evaluate its properties related to wound dressing applications. Being superhydrophilic, PSBMA fibers fabricated by a conventional electrospinning method would readily dissolve in water, whereas if cross-linker is added, the formation of hydrogel would prevent electrospinning. A three-step polymerization-electrospinning-photo-cross-linking process was developed in this work to fabricate the cross-linked electrospun PSBMA fibrous membrane. Such electrospun membrane was stable in water and exhibited high water absorption of 353% (w/w), whereas the PSBMA hydrogel only absorbed 81% water. The electrospun membrane showed strong resistance to protein adsorption and cell attachment. Bacterial adhesion studies using Gram negative P. aeruginosa and Gram positive S. epidermidis showed that the PSBMA electrospun membrane was also highly resistant to bacterial adhesion. The Ag(+)-impregnated electrospun PSBMA membrane was shown microbicidal, against both S. epidermidis and P. aeruginosa. Such electrospun PSBMA membrane is ideal for a novel type of nonadherent, superabsorbent, and antimicrobial wound dressing. The superior water absorption aids in fluid removal from highly exudating wounds while keeping the wound hydrated to support healing. Because of the resistance to protein, cell, and bacterial adhesion, the dressing removal will neither cause patients' pain nor disturb the newly formed tissues. The dressing also prevents the attachment of environmental bacteria

  13. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications.

    PubMed

    Lalani, Reza; Liu, Lingyun

    2012-06-11

    Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) has been well studied for its superhydrophilic and ultralow biofouling properties, making it a promising material for superabsorbent and nonadherent wound dressings. Electrospinning provides multiple desirable features for wound dressings, including high absorptivity due to high surface-area-to-volume ratio, high gas permeation, and conformability to contour of the wound bed. The goal of this work is to develop a fibrous membrane of PSBMA via electrospinning and evaluate its properties related to wound dressing applications. Being superhydrophilic, PSBMA fibers fabricated by a conventional electrospinning method would readily dissolve in water, whereas if cross-linker is added, the formation of hydrogel would prevent electrospinning. A three-step polymerization-electrospinning-photo-cross-linking process was developed in this work to fabricate the cross-linked electrospun PSBMA fibrous membrane. Such electrospun membrane was stable in water and exhibited high water absorption of 353% (w/w), whereas the PSBMA hydrogel only absorbed 81% water. The electrospun membrane showed strong resistance to protein adsorption and cell attachment. Bacterial adhesion studies using Gram negative P. aeruginosa and Gram positive S. epidermidis showed that the PSBMA electrospun membrane was also highly resistant to bacterial adhesion. The Ag(+)-impregnated electrospun PSBMA membrane was shown microbicidal, against both S. epidermidis and P. aeruginosa. Such electrospun PSBMA membrane is ideal for a novel type of nonadherent, superabsorbent, and antimicrobial wound dressing. The superior water absorption aids in fluid removal from highly exudating wounds while keeping the wound hydrated to support healing. Because of the resistance to protein, cell, and bacterial adhesion, the dressing removal will neither cause patients' pain nor disturb the newly formed tissues. The dressing also prevents the attachment of environmental bacteria

  14. Electrospun multifunctional tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  15. Influence of self-assembly regenerated silk fibroin nanofibers on the properties of electrospun materials.

    PubMed

    Zhao, Huijing; Ren, Xia; Zhang, Yi; Huang, Lei

    2015-01-01

    In this study, self-assembly regenerated silk fibroin (RSF) nanofibers were prepared and observed by Atomic Force Microscope (AFM). Then RSF films containing nanospheres and nanofibers were prepared and dissolved with poly (L-lactide-co-ε-caprolactone) (PLCL) with a blending ratio of 30/70 in hexafluoro-2-propanol (HFIP). In order to determine whether different nanostructures in the solution influence the morphological, structural, and mechanical properties of the final electrospun materials, flat membranes were prepared and characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FT-IR), and mechanical testing. The secondary structure of as-spun materials with RSF nanofibers were not changed, however, the diameter of electrospun fibers decreased and tensile strength and elongation at breaks increased. Electrospun materials with RSF nanofibers have the potential to be used for skin, cartilage, and blood vessels because of their biocompatibility and improved mechanical properties.

  16. Influence of self-assembly regenerated silk fibroin nanofibers on the properties of electrospun materials.

    PubMed

    Zhao, Huijing; Ren, Xia; Zhang, Yi; Huang, Lei

    2015-01-01

    In this study, self-assembly regenerated silk fibroin (RSF) nanofibers were prepared and observed by Atomic Force Microscope (AFM). Then RSF films containing nanospheres and nanofibers were prepared and dissolved with poly (L-lactide-co-ε-caprolactone) (PLCL) with a blending ratio of 30/70 in hexafluoro-2-propanol (HFIP). In order to determine whether different nanostructures in the solution influence the morphological, structural, and mechanical properties of the final electrospun materials, flat membranes were prepared and characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FT-IR), and mechanical testing. The secondary structure of as-spun materials with RSF nanofibers were not changed, however, the diameter of electrospun fibers decreased and tensile strength and elongation at breaks increased. Electrospun materials with RSF nanofibers have the potential to be used for skin, cartilage, and blood vessels because of their biocompatibility and improved mechanical properties. PMID:26406088

  17. Synthesis and characterizations of electrospun sulfonated poly (ether ether ketone) SPEEK nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Hasbullah, N.; Sekak, K. A.; Ibrahim, I.

    2016-07-01

    A novel electrospun polymer electrolyte membrane (PEM) based on Sulfonated Poly (ether ether ketone) were prepared and characterized. The poly (ether ether ketone) PEEK was sulfonated using concentrated sulfuric acid at room temperature for 60 hours reaction time. The degree sulfonation (DS) of the SPEEK are 58% was determined by H1 NMR using area under the peak of the hydrogen shielding at aromatic ring of the SPEEK. Then, the functional group of the SPEEK was determined using Fourier transfer infrared (FTIR) showed O-H vibration at 3433 cm-1 of the sulfonated group (SO2-OH). The effect of the solvent and polymer concentration toward the electrospinning process was investigated which, the DMAc has electrospun ability compared to the DMSO. While, at 20 wt.% of the polymer concentration able to form a fine and uniform nanofiber, this was confirmed by FESEM that shown electrospun fiber mat SPEEK surface at nano scale diameter.

  18. Casting Using A Polystyrene Pattern

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter; Guenther, Bengamin; Vranas, Thomas; Veneris, Peter; Joyner, Michael

    1993-01-01

    New technique for making metal aircraft models saves significant amount of time and effort in comparison with conventional lost-wax method. Produces inexpensive, effective wind-tunnel models. Metal wind-tunnel model cast by use of polystyrene pattern.

  19. Aligned Electrospun Scaffolds and Elastogenic Factors for Vascular Cell-Mediated Elastic Matrix Assembly

    PubMed Central

    Bashur, Chris A.; Ramamurthi, Anand

    2011-01-01

    Strategies to enhance the production of organized elastic matrix by smooth muscle cells (SMCs) are critical in engineering functional vascular conduits. Therefore, the goal of this study was to determine the effect of different surfaces (i.e. random and aligned electrospun poly(ε-caprolactone) meshes and two-dimensional controls) and exogenous elastogenic factors on cultured rat aortic SMC phenotype and production of extracellular matrix. This study demonstrated that aligned electrospun fibers guide cell alignment, induce a more elongated cell morphology, and promote a more synthetic phenotype. Importantly, these cells produced greater amounts of elastin-rich matrix per cell on the electrospun scaffolds. In addition, exogenous elastogenic factors severely limited RASMC proliferation and promoted a more synthetic SMC phenotype on electrospun meshes, but they had less effect on two-dimensional controls. Finally, the elastogenic factors induced the SMCs to generate more matrix collagen and elastin on a per cell basis. Together, these results demonstrate the elastogenic benefits of electrospun meshes. PMID:21953981

  20. Preparation and characterization of naproxen-loaded electrospun thermoplastic polyurethane nanofibers as a drug delivery system.

    PubMed

    Akduman, Cigdem; Özgüney, Işık; Kumbasar, E Perrin Akcakoca

    2016-07-01

    The design and production of drug-loaded nanofiber based materials produced by electrospinning is of interest for use in innovative drug delivery systems. In the present study, ultra-fine fiber mats of thermoplastic polyurethane (TPU) containing naproxen (NAP) were successfully prepared by electrospinning from 8 and 10% (w/w) TPU solutions. The amount of NAP in the solutions was 10 and 20% based on the weight of TPU. The collection period of the drug-loaded electrospun TPU fibers was 5, 10 and 20h, and they were characterized by FTIR, DSC and TGA analysis. The morphology of the NAP-loaded electrospun TPU fiber mats was smooth, and the average diameters of these fibers varied between 523.66 and 723.50nm. The release characteristics of these fiber mats were determined by the total immersion method in the phosphate buffer solution at 37°C. It was observed that the collection period in terms of the mat thickness played a major role in the release rate of NAP from the electrospun TPU mats. PMID:27127068

  1. Foreign Body Reaction Associated with PET and PET/Chitosan Electrospun Nanofibrous Abdominal Meshes

    PubMed Central

    Veleirinho, Beatriz; Coelho, Daniela S.; Dias, Paulo F.; Maraschin, Marcelo; Pinto, Rúbia; Cargnin-Ferreira, Eduardo; Peixoto, Ana; Souza, José A.; Ribeiro-do-Valle, Rosa M.; Lopes-da-Silva, José A.

    2014-01-01

    Electrospun materials have been widely explored for biomedical applications because of their advantageous characteristics, i.e., tridimensional nanofibrous structure with high surface-to-volume ratio, high porosity, and pore interconnectivity. Furthermore, considering the similarities between the nanofiber networks and the extracellular matrix (ECM), as well as the accepted role of changes in ECM for hernia repair, electrospun polymer fiber assemblies have emerged as potential materials for incisional hernia repair. In this work, we describe the application of electrospun non-absorbable mats based on poly(ethylene terephthalate) (PET) in the repair of abdominal defects, comparing the performance of these meshes with that of a commercial polypropylene mesh and a multifilament PET mesh. PET and PET/chitosan electrospun meshes revealed good performance during incisional hernia surgery, post-operative period, and no evidence of intestinal adhesion was found. The electrospun meshes were flexible with high suture retention, showing tensile strengths of 3 MPa and breaking strains of 8–33%. Nevertheless, a significant foreign body reaction (FBR) was observed in animals treated with the nanofibrous materials. Animals implanted with PET and PET/chitosan electrospun meshes (fiber diameter of 0.71±0.28 µm and 3.01±0.72 µm, respectively) showed, respectively, foreign body granuloma formation, averaging 4.2-fold and 7.4-fold greater than the control commercial mesh group (Marlex). Many foreign body giant cells (FBGC) involving nanofiber pieces were also found in the PET and PET/chitosan groups (11.9 and 19.3 times more FBGC than control, respectively). In contrast, no important FBR was observed for PET microfibers (fiber diameter = 18.9±0.21 µm). Therefore, we suggest that the reduced dimension and the high surface-to-volume ratio of the electrospun fibers caused the FBR reaction, pointing out the need for further studies to elucidate the mechanisms underlying

  2. The Photovoltaic Performances of PVdF-HFP Electrospun Membranes Employed Quasi-Solid-State Dye Sensitized Solar Cells.

    PubMed

    Gnana kumar, G; Balanay, Mannix P; Nirmala, R; Kim, Dong Hee; Raj kumar, T; Senthilkumar, N; Kim, Ae Rhan; Yoo, Dong Jin

    2016-01-01

    The PVdF-HFP nanofiber membranes with different molecular weight were prepared by electrospinning technique and were investigated as solid state electrolyte membranes in quasi solid state dye sensitized solar cells (QS-DSSC). The homogeneously distributed and fully interconnected nanofibers were obtained for all of the prepared PVdF-HFP electrospun membranes and the average fiber diameters of fabricated membranes were dependent upon the molecular weight of polymer. The thermal stability of electrospun PVdF-HFP membrane was decreased with a decrement of molecular weight, specifying the high heat transfer area of small diameter nanofibers. The QS-DSSC fabricated with the lower molecular weight PVdF-HFP electrospun nanofiber membrane exhibited the power conversion efficiency of 1 = 5.38%, which is superior over the high molecular weight membranes and is comparable with the liquid electrolyte. Furthermore, the electrospun PVdF-HFP membrane exhibited long-term durability over the liquid electrolyte, owing to the higher adsorption and retention efficiencies of liquid electrolyte in its highly porous and interconnected nanofibers. Thus the proposed electrospun PVdF-HFP membrane effectively tackled the volatilization and leakage of liquid electrolyte and provided good photoconversion efficiency associated with an excellent stability, which constructs the prepared electrospun membranes as credible solid state candidates for the application of QS-DSSCs. PMID:27398491

  3. Structural and Cellular Characterization of Electrospun Recombinant Human Tropoelastin Biomaterials1

    PubMed Central

    McKenna, Kathryn A.; Gregory, Kenton W.; Sarao, Rebecca C.; Maslen, Cheryl L.; Glanville, Robert W.; Hinds, Monica T.

    2012-01-01

    An off-the-shelf vascular graft biomaterial for vascular bypass surgeries is an unmet clinical need. The vascular biomaterial must support cell growth, be non-thrombogenic, minimize intimal hyperplasia, match the structural properties of native vessels, and allow for regeneration of arterial tissue. Electrospun recombinant human tropoelastin (rTE) as a medial component of a vascular graft scaffold was investigated in this study by evaluating its structural properties, as well as its ability to support primary smooth muscle cell adhesion and growth. rTE solutions of 9, 15, and 20 wt% concentrations were electropun into sheets with average fiber diameters of 167 ± 32, 522 ± 67, and 735 ± 270 nm, and average pore sizes of 0.4 ± 0.1, 5.8 ± 4.3, and 4.9 ± 2.4 μm, respectively. Electrospun rTE fibers were cross-linked with disuccinimidyl suberate (DSS) to produce an insoluble fibrous polymeric recombinant tropoelastin (prTE) biomaterial. The smooth muscle cells attached via integrin binding. The proliferation of the smooth muscle cells on the electrospun prTE biomaterial was comparable to growth on prTE coated glass, glass alone and tissue culture plastic. Electrospun tropoelastin demonstrated the cell compatibility and design flexibility required of a graft biomaterial for vascular applications. PMID:21586601

  4. Size-dependent behavior of electrospun polymer nanofibers under small deformation

    NASA Astrophysics Data System (ADS)

    Arinstein, Arkadii; Zussman, Eyal

    2011-03-01

    A model describing a mechanism resulting in size-dependent behavior of electrospun polymer nanofibers under small deformation is proposed. According this model, the polymer matrix of the nanofibers consists of correlated groups of chains/subchains, partially orientated along the fiber. These supermolecular structures which were formed during electrospinning are confined by the fiber boundary. Thus, when the fiber elongates under external force the relative rotations of these correlated regions are hindered. As a result the elastic modulus depends on the diameter of the deformed fiber. In case of small fiber diameters this restriction is dominant while this effect decreases with increase of fiber diameter, and tends to zero for large fiber diameters according to square-law which was verified by experimental observations.

  5. Functional Reactive Polymer Electrospun Matrix.

    PubMed

    Agarwal, Vipul; Ho, Dominic; Ho, Diwei; Galabura, Yuriy; Yasin, Faizah; Gong, Peijun; Ye, Weike; Singh, Ruhani; Munshi, Alaa; Saunders, Martin; Woodward, Robert C; St Pierre, Timothy; Wood, Fiona M; Fear, Mark; Lorenser, Dirk; Sampson, David D; Zdyrko, Bogdan; Luzinov, Igor; Smith, Nicole M; Iyer, K Swaminathan

    2016-02-01

    Synthetic multifunctional electrospun composites are a new class of hybrid materials with many potential applications. However, the lack of an efficient, reactive large-area substrate has been one of the major limitations in the development of these materials as advanced functional platforms. Herein, we demonstrate the utility of electrospun poly(glycidyl methacrylate) films as a highly versatile platform for the development of functional nanostructured materials anchored to a surface. The utility of this platform as a reactive substrate is demonstrated by grafting poly(N-isopropylacrylamide) to incorporate stimuli-responsive properties. Additionally, we demonstrate that functional nanocomposites can be fabricated using this platform with properties for sensing, fluorescence imaging, and magneto-responsiveness. PMID:26780245

  6. Electrospun Vascular Grafts with Improved Compliance Matching to Native Vessels

    PubMed Central

    Nezarati, Roya M.; Eifert, Michelle B.; Dempsey, David K.; Cosgriff-Hernandez, Elizabeth

    2014-01-01

    Coronary artery bypass grafting (CABG) is one of the most commonly performed major surgeries in the United States. Autologous vessels such as the saphenous vein are the current gold standard for treatment; however, synthetic vascular prostheses made of expanded poly(tetrafluoroethylene) (ePTFE) or poly(ethylene terephthalate) (PET) are used when autologous vessels are unavailable. These synthetic grafts have a high failure rate in small diameter (<4 mm) applications due to rapid re-occlusion via intimal hyperplasia. Current strategies to improve clinical performance are focused on preventing intimal hyperplasia by fabricating grafts with compliance and burst pressure similar to native vessels. To this end, we have developed an electrospun vascular graft from segmented polyurethanes with tunable properties by altering material chemistry and graft microarchitecture. Relationships between polyurethane tensile properties and biomechanical properties were elucidated to select polymers with desirable properties. Graft thickness, fiber tortuosity, and fiber fusions were modulated to provide additional tools for controlling graft properties. Using a combination of these strategies, a vascular graft with compliance and burst pressure exceeding the saphenous vein autograft was fabricated (compliance = 6.0 ± 0.6 %/mmHg × 10−4, burst pressure = 2260 ± 160 mmHg). This graft is hypothesized to reduce intimal hyperplasia associated with low compliance in synthetic grafts and improve long term clinical success. Additionally, the fundamental relationships between electrospun mesh microarchitecture and mechanical properties identified in this work can be utilized in various biomedical applications. PMID:24846218

  7. Activation of lactoperoxidase system in milk by glucose oxidase immobilized in electrospun polylactide microfibers.

    PubMed

    Zhou, Y; Lim, L-T

    2009-03-01

    In this study, glucose oxidase (GOX) was immobilized in polylactide (PLA) fibers that were used to activate the lactoperoxidase (LP) system in milk. The GOX-containing microfibers were electrospun from emulsions prepared by dispersing aqueous GOX in PLA dissolved in a chloroform and N,N-dimethylformamide blend, using sorbitan monopalmitate as an emulsifier. The enzymatic activity of GOX-in-PLA fibers (1100 +/- 400 nm diameter) was more than 19 times higher than that of the GOX-in-PLA membrane formed by direct casting, due to the larger surface area of the electrospun fibers. The activation of LP in model solutions using GOX-in-PLA fibers provided a more sustained generation of antimicrobial OSCN(-) than direct activation using H(2)O(2). Preliminary evaluation on milk samples showed that the electrospun GOX-in-PLA microfibers are capable of activating the naturally present LP system, indicating that they may be promising for active food packaging applications to extend the shelf life of milk.

  8. Activation of lactoperoxidase system in milk by glucose oxidase immobilized in electrospun polylactide microfibers.

    PubMed

    Zhou, Y; Lim, L-T

    2009-03-01

    In this study, glucose oxidase (GOX) was immobilized in polylactide (PLA) fibers that were used to activate the lactoperoxidase (LP) system in milk. The GOX-containing microfibers were electrospun from emulsions prepared by dispersing aqueous GOX in PLA dissolved in a chloroform and N,N-dimethylformamide blend, using sorbitan monopalmitate as an emulsifier. The enzymatic activity of GOX-in-PLA fibers (1100 +/- 400 nm diameter) was more than 19 times higher than that of the GOX-in-PLA membrane formed by direct casting, due to the larger surface area of the electrospun fibers. The activation of LP in model solutions using GOX-in-PLA fibers provided a more sustained generation of antimicrobial OSCN(-) than direct activation using H(2)O(2). Preliminary evaluation on milk samples showed that the electrospun GOX-in-PLA microfibers are capable of activating the naturally present LP system, indicating that they may be promising for active food packaging applications to extend the shelf life of milk. PMID:19323732

  9. In-vitro release of fragrant l-carvone from electrospun poly(ϵ-caprolactone)/wheat cellulose scaffold.

    PubMed

    Ramamoorthy, Manjula; Rajiv, Sheeja

    2015-11-20

    The release kinetics of l-carvone loaded from electrospun poly(ϵ-caprolactone) (PCL) and Wheat cellulose (WC) blend were studied. WC was extracted from wheat straw, a cost effective agricultural waste by the acid hydrolysis method. A homogeneous solution of PCL-WC (13:3wt%) was optimized to produce beadless electrospun PCL-WC blend nanofibers. Further, WC and the prepared electrospun PCL-WC blend fibers were systematically characterized by ATR-FTIR, SEM, XRD, TGA, DTGA, and DSC measurements. The hydrophilic character of the blend fibers was analysed using swelling tests and contact angle measurements. The loading efficiency of l-carvone into the electrospun PCL-WC blend fibers was evaluated to be ∼70%. The in-vitro release of l-carvone from PCL-WC blend fibers followed Korsmeyer-Peppas kinetic model indicating the diffusion mechanism and the maximum release of l-carvone was found to be ∼84% over a period of 30h. These results would offer the prepared PCL-WC blend as an ideal fibrous mesh for fragrant antimicrobial textile applications. PMID:26344288

  10. Encapsulation of plai oil/2-hydroxypropyl-β-cyclodextrin inclusion complexes in polyvinylpyrrolidone (PVP) electrospun nanofibers for topical application.

    PubMed

    Tonglairoum, Prasopchai; Chuchote, Tudduo; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-06-01

    The aim of this study was to prepare electrospun polyvinylpyrrolidone (PVP)/2-hydroxypropyl-β-cyclodextrin (HPβCD) nanofiber mats and to incorporate plai oil (Zingiber Cassumunar Roxb.). The plai oil with 10, 20 and 30% wt to polymer were incorporated in the PVP/HPβCD solution and electrospun to obtain nanofibers. The morphology and structure of the PVP and PVP/HPβCD nanofiber mats with and without the plai oil were analyzed using scanning electron microscopy (SEM). The thermal behaviors of the nanofiber mats were characterized using differential scanning calorimeter (DSC). Terpinen-4-ol was used as a marker of the plai oil. The amount of plai oil remaining in the PVP/HPβCD nanofiber mats was determined using gas chromatography-mass spectoscopy (GC-MS). The SEM images revealed that all of the fibers were smooth. The average diameter of fibers was 212-450 nm, and decreased with the increasing of plai oil content. The release characteristics of plai oil from the fiber showed the fast release followed by a sustained release over the experimental time of 24 h. The release rate ranged was in the order of 10% > 20% ∼ 30% plai oil within 24 h. Electrospun fibers with 20% plai oil loading provided the controlled release and also showed the highest plai oil content. Hence, this electrospun nanofiber has a potential for use as an alternative topical application.

  11. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    PubMed Central

    Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo

    2011-01-01

    Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869

  12. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Wang, Hongxia; Wang, Huimin; Wang, Xungai

    2004-09-01

    Polystyrene nanofibres were electrospun with the inclusion of cationic surfactants, dodecyltrimethylammonium bromide (DTAB) or tetrabutylammonium chloride (TBAC), in the polymer solution. A small amount of cationic surfactant effectively stopped the formation of beaded fibres during the electrospinning. The cationic surfactants were also found to improve the solution conductivity, but had no effect on the viscosity. Only DTAB had an effect on the surface tension of the polymer solution, the surface tension decreasing slightly with an increase in the concentration of DTAB. The formation of beaded fibres was attributed to an insufficient stretch of the filaments during the whipping of the jet, due to a low charge density. Adding the cationic surfactants improved the net charge density that enhanced the whipping instability. The jet was stretched under stronger charge repulsion and at a higher speed, resulting in an exhaustion of the bead structure. In addition, a polymer/surfactant interaction was found in the polystyrene DTAB solution system, while this interaction was not found in the polystyrene TBAC system. The polymer/surfactant interaction led to the formation of thinner fibres than those formed in the absence of the interaction. The effects of a non-ionic surfactant, Triton X-405, on the electrospun fibres were also studied. The addition of Triton X-405 did not eliminate the fibre beads, but reduced the bead numbers and changed the morphology. Triton X-405 slightly improved the solution conductivity, and had a minor effect on the surface tension, but no effect on the viscosity.

  13. Electrospun Gallium Nitride Nanofibers

    SciTech Connect

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-19

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH{sub 3} flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  14. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    SciTech Connect

    Matveeva, V. G. Antonova, L. V. Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-27

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  15. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    NASA Astrophysics Data System (ADS)

    Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-01

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  16. Biocomposites electrospun with poly(ε-caprolactone) and silk fibroin powder for biomedical applications.

    PubMed

    Lee, Hyeongjin; Kim, GeunHyung

    2010-01-01

    Biomedical synthetic polymers have been used in soft and hard tissue regeneration because of their good processability and biodegradability. However, biomaterials such as poly(ε-caprolactone) (PCL) have various shortcomings, including intrinsic hydrophobicity and lack of bioactive functional groups. The material must be reinforced with natural biomaterials to achieve good cellular and mechanical performance as biomedical material. We fabricated a biocomposite using PCL and silk fibroin (SF) powder, which has good biocompatibility and mechanical properties. The hydrophilicity, mechanical properties and cellular behavior of the PCL/SF fibers were analyzed. In addition, we obtained a highly oriented conduit of electrospun biocomposite fibers by modifying the rolling collector of the electrospinning system. As the alignment of micro/nanofibers increased, the orthotropic mechanical properties were improved. The biocompatibility of the biocomposite was evaluated in a culture of bone-marrow-derived rat mesenchymal stem cells. The cellular result demonstrated the potential usefulness of electrospun biocomposites for various biomedical conduit systems. PMID:20537249

  17. Tough and transparent nylon-6 electrospun nanofiber reinforced melamine-formaldehyde composites.

    PubMed

    Jiang, Shaohua; Hou, Haoqing; Greiner, Andreas; Agarwal, Seema

    2012-05-01

    The use of nylon-6 electrospun nanofiber mats as reinforcement with synergistic effect in tensile strength and toughness for melamine-formaldehyde (MF) resin is highlighted in this article. Interestingly, there was a drastic effect of the wetting procedure of reinforcing fiber mat by the MF resin on the morphology and mechanical properties of the composites. The wetting of nylon fibers by passing through a solution of MF resin showed a core-shell morphology and a significant improvement in properties as compared to the dip-coating procedure for wetting of the fibers. Depending on the wt% of reinforcing nylon fiber mats, the composites could be considered as either fiber reinforced MF composites or MF glued nylon fibers.

  18. Vascularization and cellular isolation potential of a novel electrospun cell delivery vehicle.

    PubMed

    Krishnan, Laxminarayanan; Touroo, Jeremy; Reed, Robert; Boland, Eugene; Hoying, James B; Williams, Stuart K

    2014-07-01

    A clinical need exists for a cell delivery device that supports long-term cell viability, cell retention within the device and retrieval of delivered cells if necessary. Previously, cell isolation devices have been based on hollow fiber membranes, porous polymer scaffolds, alginate systems, or micro-machined membranes. We present the development and characterization of a novel dual porosity electrospun membrane based device, which supports cellular infiltration and vascularization of its outer porous layer and maintains cellular isolation within a lumen bounded by an inner low porosity layer. Electrospinning conditions were initially established to support electrospun fiber deposition onto nonconductive silicone surfaces. With these parameters established, devices for in vivo evaluations were produced using nylon as a nonconductive scaffold for deposition of dual porosity electrospun fibers. The outer porous layer supported the development of a penetrating microcirculation and the membrane supported the transfer of insulin from encapsulated sustained release pellets for 4 weeks. Viable cells implanted within the device could be identified after 2 weeks of implantation. Through the successful demonstration of survival and cellular isolation of human epithelial cells within the implanted devices and the ability to use the device to deliver insulin, we have established the utility of this device toward localized cell transplantation. The cell delivery device establishes a platform to test the feasibility of approaches to cell dose control and cell localization at the site of implantation in the clinical use of modified autologous or allogeneic cells. PMID:23913805

  19. Surface Entrapment of Fibronectin on Electrospun PLGA Scaffolds for Periodontal Tissue Engineering

    PubMed Central

    Gritsch, Kerstin; Salles, Vincent; Attik, Ghania N.; Grosgogeat, Brigitte

    2014-01-01

    Abstract Nowadays, the challenge in the tissue engineering field consists in the development of biomaterials designed to regenerate ad integrum damaged tissues. Despite the current use of bioresorbable polyesters such as poly(l-lactide) (PLA), poly(d,l-lactide-co-glycolide) (PLGA), and poly-ɛ-caprolactone in soft tissue regeneration researches, their hydrophobic properties negatively influence the cell adhesion. Here, to overcome it, we have developed a fibronectin (FN)-functionalized electrospun PLGA scaffold for periodontal ligament regeneration. Functionalization of electrospun PLGA scaffolds was performed by alkaline hydrolysis (0.1 or 0.01 M NaOH). Then, hydrolyzed scaffolds were coated by simple deposition of an FN layer (10 μg/mL). FN coating was evidenced by X-ray photoelectron analysis. A decrease of contact angle and greater cell adhesion to hydrolyzed, FN-coated PLGA scaffolds were noticed. Suitable degradation behavior without pH variations was observed for all samples up to 28 days. All treated materials presented strong shrinkage, fiber orientation loss, and collapsed fibers. However, functionalization process using 0.01 M NaOH concentration resulted in unchanged scaffold porosity, preserved chemical composition, and similar mechanical properties compared with untreated scaffolds. The proposed simplified method to functionalize electrospun PLGA fibers is an efficient route to make polyester scaffolds more biocompatible and shows potential for tissue engineering. PMID:24940563

  20. Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model

    PubMed Central

    Hartman, Olga; Zhang, Chu; Adams, Elizabeth L.; Farach-Carson, Mary C.; Petrelli, Nicholas J.; Chase, Bruce D.; Rabolt, John F.

    2010-01-01

    Because prostate cancer cells metastasize to bone and exhibit osteoblastic features (osteomimicry), the interrelationships between bone-specific microenvironment and prostate cancer cells at sites of bone metastasis are critical to disease progression. In this work the bone marrow microenvironment in vitro was recreated both by tailoring scaffolds physical properties and by functionalizing electrospun polymer fibers with a bioactive peptide derived from domain IV of perlecan heparan sulfate proteoglycan. Electrospun poly (ε-caprolactone) (PCL) fibers and PCL/gelatin composite scaffolds were modified covalently with perlecan domain IV (PlnDIV) peptide. The expression of tight junction protein (E-cadherin) and focal adhesion kinase (FAK) phosphorylation on tyrosine 397 also were investigated. The described bioactive motif significantly enhanced adherence and infiltration of the metastatic prostate cancer cells on all modified electrospun substrates by day 5 post-seeding. Cells cultured on PlnDIV-modified matrices organized stress fibers and increased proliferation at statistically significant rates. Additional findings suggest that presence of PlnDIV peptide in the matrix reduced expression of tight junction protein and binding to PlnDIV peptide was accompanied by increased focal adhesion kinase (FAK) phosphorylation on tyrosine 397. We conclude that PlnDIV peptide supports key signaling events leading to proliferation, survival, and migration of C4-2B cancer cells; hence its incorporation into electrospun matrix is a key improvement to create a successful three-dimensional (3-D) pharmacokinetic cancer model. PMID:20417554

  1. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications. PMID:26344279

  2. Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration.

    PubMed

    Lee, Ji Seok; Jin, Gyu Hyun; Yeo, Myung Gu; Jang, Chul Ho; Lee, Haengnam; Kim, Geun Hyung

    2012-09-01

    In this study, we designed a new biocomposite comprising electrospun polycaprolactone (PCL)/fucoidan, in which the fucoidan has various beneficial biological functions, including anticoagulant, antiviral, and immunomodulatory activity. To obtain the composite scaffolds, a mixture of PCL and fucoidan was electrospun using various compositions (1, 2, 3, and 10 wt.%) of fucoidan powders. The resultant electrospun composites exhibited improved tensile modulus and strength for limited weight fractions (<10 wt.%) of fucoidan when compared with the pure PCL fiber mats. In addition, the biocomposites showed dramatic hydrophilic properties at >3 wt.% of fucoidan in the PCL/fucoidan. The biocompatibility of the electrospun mats was examined in vitro using osteoblast-like cells (MG63). Total protein content, alkaline phosphatase activity, and calcium mineralization were assessed. Scanning electron microscopic images showed that the cells were distributed more widely and were agglomerated on PCL/fucoidan mats compared with pure PCL mats. In addition, total protein content, alkaline phosphatase activity, and calcium mineralization were higher with PCL/fucoidan mats than with pure PCL mats. These observations suggest that fucoidan-supplemented biocomposites would make excellent materials for tissue-engineering applications. PMID:24751028

  3. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications.

  4. Polystyrene Nanoparticles Perturb Lipid Membranes.

    PubMed

    Rossi, Giulia; Barnoud, Jonathan; Monticelli, Luca

    2014-01-01

    Polystyrene is abundant in marine debris. Like most synthetic polymers, it degrades very slowly, producing smaller and smaller particles easily ingested by wildlife. The presence of plastic microscopic particles in fish and marine wildlife is massive and well documented, but its impact on cellular activity is not understood. Biological activity generally requires interaction with biological membranes, but this is difficult to study at the molecular scale in vivo. Here we use coarse-grained molecular simulations to determine the effect of nanosized polystyrene (PS) particles on the properties of model biological membranes. We find that PS nanoparticles permeate easily into lipid membranes. Dissolved in the membrane core, PS chains alter membrane structure, significantly reduce molecular diffusion, and soften the membrane. Moreover, PS severely affects membrane lateral organization by stabilizing raft-like domains. Changes in membrane properties and lateral organization can severely affect the activity of membrane proteins and thereby cellular function.

  5. Fabrication of porous electrospun nanofibres

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Feng, Y.; Huang, Z.-M.; Ramakrishna, S.; Lim, C. T.

    2006-02-01

    Immiscible biopolymers of gelatin (Gt) and polycaprolactone (PCL) were first electrospun into a biomimicking composite fibre of Gt/PCL. Based on a phase separation study of the electrospun fibres, a leaching method was employed to generate 3D porous nanofibres by selectively removing the water soluble component of gelatin in a 37 °C aqueous solution of phosphate buffered saline. It was found that leaching treatment gave rise to a unique nanotopography containing grooves, ridges and elliptical pores on the surface as well as inside of the resultant individual nanofibres. Brunauer-Emmett-Teller (BET) area measurement indicated that the formed 3D porous fibres also brought in a pronounced increase of the surface area of fibres. The BET surface area of the porous fibres was observed to be about 2.4 times that of the precursor fibres, up to 15.84 m2 g-1 at its relatively large size of 800 nm diameter. The 3D porous fibres herein prepared could have considerable value for uses in developing highly integrated cell-scaffold tissue complexes and other industrial applications.

  6. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds.

    PubMed

    Gomes, S R; Rodrigues, G; Martins, G G; Henriques, C M R; Silva, J C

    2013-04-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation.

  7. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.

    PubMed

    Prabhakaran, Molamma P; Venugopal, Jayarama Reddy; Chyan, Tan Ter; Hai, Lim Beng; Chan, Casey K; Lim, Aymeric Yutang; Ramakrishna, Seeram

    2008-11-01

    Bridging of nerve gaps after injury is a major problem in peripheral nerve regeneration. Considering the potential application of a bio-artificial nerve guide material, polycaprolactone (PCL)/chitosan nanofibrous scaffolds was designed and evaluated in vitro using rat Schwann cells (RT4-D6P2T) for nerve tissue engineering. PCL, chitosan, and PCL/chitosan nanofibers with average fiber diameters of 630, 450, and 190 nm, respectively, were fabricated using an electrospinning process. The surface chemistry of the fabricated nanofibers was determined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Simple blending of PCL with chitosan proved an easy and efficient method for fabricating PCL/chitosan nanofibrous scaffolds, whose surface characteristics proved more hydrophilic than PCL nanofibers. Evaluation of mechanical properties showed that the Young's modulus and strain at break of the electrospun PCL/chitosan nanofibers were better than those of the chitosan nanofibers. Results of cell proliferation studies on nanofibrous scaffolds using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay showed 48% more cell proliferation on PCL/chitosan scaffolds than on PCL scaffolds after 8 days of culture. PCL/chitosan scaffolds showed better cell proliferation than PCL scaffolds and maintained their characteristic cell morphology, with spreading bipolar elongations to the nanofibrous substrates. This electrospun nanofibrous matrix thus proved of specific interest in tissue engineering for peripheral nerve regeneration. PMID:18657027

  8. Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications

    PubMed Central

    Liang, Dehai; Hsiao, Benjamin S.; Chu, Benjamin

    2009-01-01

    Functional nanofibrous scaffolds produced by electrospinning have great potential in many biomedical applications, such as tissue engineering, wound dressing, enzyme immobilization and drug (gene) delivery. For a specific successful application, the chemical, physical and biological properties of electrospun scaffolds should be adjusted to match the environment by using a combination of multi-component compositions and fabrication techniques where electrospinning has often become a pivotal tool. The property of the nanofibrous scaffold can be further improved with innovative development in electrospinning processes, such as two-component electrospinning and in-situ mixing electrospinning. Post modifications of electrospun membranes also provide effective means to render the electrospun scaffolds with controlled anisotropy and porosity. In this review, we review the materials, techniques and post modification methods to functionalize electrospun nanofibrous scaffolds suitable for biomedical applications. PMID:17884240

  9. Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes

    NASA Astrophysics Data System (ADS)

    Liao, Guan-Ming; Li, Pin-Chieh; Lin, Jia-Shiun; Ma, Wei-Ting; Yu, Bor-Chern; Li, Hsieh-Yu; Liu, Ying-Ling; Yang, Chun-Chen; Shih, Chao-Ming; Lue, Shingjiang Jessie

    2016-02-01

    Electrospun quaternized polyvinyl alcohol (Q-PVA) nanofibers are prepared, and a potassium hydroxide (KOH)-doped nanofiber mat demonstrates enhanced ionic conductivity compared with a dense Q-PVA film with KOH doping. The Q-PVA composite containing 5.98% electrospun Q-PVA nanofibers exhibits suppressed methanol permeability. Both the high conductivity and suppressed methanol permeability are attributed to the quasi-coaxial structure of the electrospun nanofibers. The core of the fibers exhibits a more amorphous region that forms highly conductive paths, while the outer shell of the nanofibers contains more polymer crystals that serve as a hard sheath surrounding the soft core. This shell induces mass transfer resistance and creates a tortuous fuel pathway that suppresses methanol permeation. Such a Q-PVA composite is an effective solid electrolyte that makes the use of alkaline fuel cells viable. In a direct methanol alkaline fuel cell operated at 60 °C, a peak power density of 54 mW cm-2 is obtained using the electrospun Q-PVA composite, a 36.4% increase compared with a cell employing a pristine Q-PVA film. These results demonstrate that highly conductive coaxial electrospun nanofibers can be prepared through a single-opening spinneret and provide a possible approach for high-performance electrolyte fabrication.

  10. Charge transport in the electrospun nanofiber composite membrane's three-dimensional fibrous structure

    NASA Astrophysics Data System (ADS)

    DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.

    2016-03-01

    In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.

  11. Smooth muscle tissue engineering in crosslinked electrospun gelatin scaffolds.

    PubMed

    Elsayed, Yahya; Lekakou, Constantina; Labeed, Fatima; Tomlins, Paul

    2016-01-01

    Crosslinked, multi-layer electrospun gelatin fiber scaffolds with generally ±45 degree fiber orientation have been used to grow human umbilical vein smooth muscle cells (HUVSMCs) to create a vascular tunica media graft. Scaffolds of different fiber diameter (2-5 μm in wet state), pore size, and porosity (16-21% in wet state) were assessed in terms of cell adherence and viability, cell proliferation, and migration in both in-plane and transverse directions through the scaffold as a function of time under static cell culture conditions. HUVSMC cell viability reached between 80 and 92% for all scaffolds after 9 days in culture. HUVSMCs adhered, elongated, and orientated in the fiber direction, and migrated through a scaffold thickness of 200-235 μm 9 days post-seeding under static conditions. The best scaffold was then used to assess the tissue engineering of HUVSMCs under dynamic conditions for a rotating, cell seeded, tubular scaffold in the bioreactor containing the culture medium. Dynamic conditions almost doubled the rate of cell proliferation through the scaffold, forming full tissue throughout a scaffold of 250-300 μm thickness 6 days post-seeding.

  12. Electrospun Composite Nanofibers of Semiconductive Polymers for Coaxial PN Junctions

    NASA Astrophysics Data System (ADS)

    Serrano, William; Thomas, Sylvia

    The objective of this research is to investigate the conditions under P3HT and Activink, semiconducting polymers, form 1 dimension (1D) coaxial p-n junctions and to characterize their behavior in the presence of UV radiation and organic gases. For the first time, fabrication and characterization of semiconductor polymeric single fiber coaxial arrangements will be studied. Electrospinning, a low cost, fast and reliable method, with a coaxial syringe arrangement will be used to fabricate these fibers. With the formation of fiber coaxial arrangements, there will be investigations of dimensionality crossovers e.g., from one-dimensional (1D) to two-dimensional (2D). Coaxial core/shell fibers have been realized as seen in a recent publication on an electrospun nanofiber p-n heterojunction of oxides (BiFeO3 and TiO2, respectively) using the electrospinning technique with hydrothermal method. In regards to organic semiconducting coaxial p-n junction nanofibers, no reported studies have been conducted, making this study fundamental and essential for organic semiconducting nano devices for flexible electronics and multi-dimensional integrated circuits.

  13. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers.

    PubMed

    Quirós, Jennifer; Borges, João P; Boltes, Karina; Rodea-Palomares, Ismael; Rosal, Roberto

    2015-12-15

    The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals. PMID:26142159

  14. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers.

    PubMed

    Quirós, Jennifer; Borges, João P; Boltes, Karina; Rodea-Palomares, Ismael; Rosal, Roberto

    2015-12-15

    The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  15. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach.

    PubMed

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m(3) (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  16. Preparation and characterization of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibrous mats

    NASA Astrophysics Data System (ADS)

    Xu, Yongjing; Zou, Liming; Lu, Hongwei; Chen, Zailing

    2015-07-01

    Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), as a biodegradable polyester, was electrospun to obtain defect-free fibers with high surface-area-to-volume ratio. Several parameters such as solvent ratio, polymer concentration, applied voltage, flow rate, and tip-to-target distance were optimized to achieve defect-free morphology. The average diameter of the PHBV fibers was 1400 nm. In order to evaluate the final properties of PHBV nanofibers, the following characterization techniques were employed: scanning electron microscopy (SEM), Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy, uniaxial tensile tests and dataphysics instruments.

  17. Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers

    NASA Astrophysics Data System (ADS)

    Khadka, Dhan Bahadur

    pH values. Variations in fiber morphology, elemental composition and stability have been studied by microscopy and energy-dispersive X-ray spectroscopy (EDX), following the treatment of samples at different pH values in the 2-12 range. Fiber stability has been interpreted with reference to the pH dependence of the UV absorbance and fluorescence of PLEY chains in solution. The data show that fiber stability is crucially dependent on the extent of side chain ionization, even after crosslinking. Self-organization kinetics of electrospun PLO and PLEY fibers during solvent annealing has been studied. After being crosslinked in situ , fibers were annealed in water at 22 °C. Analysis by Fourier transform infrared spectroscopy (FTIR) has revealed that annealing involved fiber restructuring with an overall time constant of 29 min for PLO and 63 min for PLEY, and that changes in the distribution of polymer conformations occurred during the first 13 min of annealing. There was a substantial decrease in the amount of Na+ bound to PLEY fibers during annealing. Kinetic modeling has indicated that two parallel pathways better account for the annealing trajectory than a single pathway with multiple transition states. Taken together, the results will advance the rational design of polypeptides for peptide-based materials, especially materials prepared by electrospinning. It is believed that this research will increase basic knowledge of polymer electrospinning and advance the development of electrospun materials, especially in medicine and biotechnology. The study has yielded two advances on previous work in the area: avoidance of an animal source of peptides and avoidance of inorganic solvent. The present results thus advance the growing field of peptide-based materials. Non-woven electrospun fiber mats made of polypeptides are increasingly considered attractive for basic research and technology development in biotechnology, medicine and other areas. (Abstract shortened by UMI.)

  18. Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan.

    PubMed

    Zhang, Yanzhong; Reddy, Venugopal Jayarama; Wong, Siew Yee; Li, Xu; Su, Bo; Ramakrishna, Seeram; Lim, Chwee Teck

    2010-06-01

    Electrospun chitosan (CTS)-based hydroxyapatite (HAp)/CTS biocomposite nanofibers for bone tissue engineering could afford a close biomimicry to the fibrous nanostructure and constituents of the hierarchically organized natural bone, but their biological performance is somewhat deficient compared with the HAp/collagen (Col) biocomposite system. This necessitates doping the electrospun HAp/CTS hybrid with the bioactive component of Col. We show herein that Col-doped HAp/CTS biocomposite (i.e., HAp/Col/CTS) containing 27.8 wt% HAp nanoparticles, 7.2 wt% Col, and 57.8 wt% CTS can be successfully electrospun into nanofibrous form through using small amount (7.2 wt%) of ultrahigh-molecular-weight poly(ethylene oxide) as the fiber-forming additive. Morphology, structure, composition, and mechanical properties of the electrospun HAp/Col/CTS scaffolds were examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy, and tensile tests, respectively. Human fetal osteoblasts on the nanofibrous HAp/Col/CTS scaffolds were cultured for up to 15 days to assess the cell-scaffold interaction and biomineralization effect. In comparison with different controls, significant increments in osteoblast proliferation, alkaline phosphatase expression, and mineral deposition were observed. Results obtained thus highlight that introduction of Col can significantly enhance the biological performance of osteoblasts on the CTS-based nanofibrous substrates and suggest that current electrospun HAp/Col/CTS biocomposite, as a highly biomimetic and bioactive nanofibrous structure, may be one of the most attractive candidates for various osteoregeneration-related applications. PMID:20088700

  19. Electrospun Polyaniline/Polyethylene Oxide Nanofiber Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A.

    2003-01-01

    We report on the observation of field effect transistor (FET) behavior in electrospun camphorsulfonic acid doped polyaniline(PANi)/polyethylene oxide(PE0) nanofibers. Saturation channel currents are observed at surprisingly low source/drain voltages. The hole mobility in the depletion regime is 1.4 x 10(exp -4) sq cm/V s while the 1-D charge density (at zero gate bias) is calculated to be approximately 1 hole per 50 two-ring repeat units of polyaniline, consistent with the rather high channel conductivity (approx. 10(exp -3) S/cm). Reducing or eliminating the PEO content in the fiber is expected to enhance device parameters. Electrospinning is thus proposed as a simple method of fabricating 1-D polymer FET's.

  20. The quintuple-shape memory effect in electrospun nanofiber membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  1. In vitro evaluation of electrospun gelatin-glutaraldehyde nanofibers

    NASA Astrophysics Data System (ADS)

    Zhan, Jianchao; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S.; Mo, Xiumei

    2016-03-01

    The gelatin-glutaraldehyde (gelatin-GA) nanofibers were electrospun in order to overcome the defects of ex-situ crosslinking process such as complex process, destruction of fiber morphology and decrease of porosity. The morphological structure, porosity, thermal property, moisture absorption and moisture retention performance, hydrolytic resistance, mechanical property and biocompatibility of nanofiber scaffolds were tested and characterized. The gelatin-GA nanofiber has nice uniform diameter and more than 80% porosity. The hydrolytic resistance and mechanical property of the gelatin-GA nanofiber scaffolds are greatly improved compared with that of gelatin nanofibers. The contact angle, moisture absorption, hydrolysis resistance, thermal resistance and mechanical property of gelatin-GA nanofiber scaffolds could be adjustable by varying the gelatin solution concentration and GA content. The gelatin-GA nanofibers had excellent properties, which are expected to be an ideal scaffold for biomedical and tissue engineering applications.

  2. Platinum blue staining of cells grown in electrospun scaffolds.

    PubMed

    Yusuf, Mohammed; Millas, Ana Luiza G; Estandarte, Ana Katrina C; Bhella, Gurdeep K; McKean, Robert; Bittencourt, Edison; Robinson, Ian K

    2014-01-01

    Fibroblast cells grown in electrospun polymer scaffolds were stained with platinum blue, a heavy metal stain, and imaged using scanning electron microscopy. Good contrast on the cells was achieved compared with samples that were gold sputter coated. The cell morphology could be clearly observed, and the cells could be distinguished from the scaffold fibers. Here we optimized the required concentration of platinum blue for imaging cells grown in scaffolds and show that a higher concentration causes platinum aggregation. Overall, platinum blue is a useful stain for imaging cells because of its enhanced contrast using scanning electron microscopy (SEM). In the future it would be useful to investigate cell growth and morphology using three-dimensional imaging methods.

  3. Preparation of a concentric layered structure of an electrospun nanofiber column for solid-phase extraction of mass viscous crude extracts.

    PubMed

    Qiu, Jinli; Yan, Yan; Chang, Hong; Liu, Xiongwei; Kang, Xuejun

    2016-06-01

    The packed nanofiber solid-phase extraction of crude extracts of a mass viscous sample is challenging because the interference and recalcitrant particulates in the sample may attach to the nanofiber and block the column, which leads to insufficient sample extraction. A novel concentric layered nanofiber solid-phase extraction (SPE) column using polystyrene-based electrospun nanofiber as the stationary phase has been employed for the pretreatment of mass viscous crude extracts. The layered column was fabricated by using untouched nanofiber with its natural morphology rather than hand-packing of spoiled fiber to the control packing density of the column. In the novel column, the SPE packed bed was divided into a multi-layer structure to provide uniform radial and axial packing and to part the mobile phase stream by the isolated layer with great superiority in aspects such as lower column pressure and faster elution speed. The feasibility and efficiency of the LFSPE column were then evaluated via determination of rhodamine B (RB) from spiked chili samples. Based on the LFSPE column, a linear spiked calibration curve in the range of 0.02-5 mg/kg was obtained. The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.001 and 0.004 mg/kg, respectively; recoveries at 0.1, 1, and 2 mg/kg (n = 3) were all up to 95 %; and the RSD values of inter-day and intra-day were all below 5 %. This novel LFSPE column overcame heterogeneous packing and exploited the wall effect in subtle ways, and exhibited great superiority by comparison with some existing methods. Graphical Abstract ᅟ. PMID:27086018

  4. Three-dimensional electrospun alginate nanofiber mats via tailored charge repulsions.

    PubMed

    Bonino, Christopher A; Efimenko, Kirill; Jeong, Sung In; Krebs, Melissa D; Alsberg, Eben; Khan, Saad A

    2012-06-25

    The formation of 3D electrospun mat structures from alginate-polyethylene oxide (PEO) solution blends is reported. These unique architectures expand the capabilities of traditional electrospun mats for applications such as regenerative medicine, where a scaffold can help to promote tissue growth in three dimensions. The mat structures extend off the surface of the flat collector plate without the need of any modifications in the electrospinning apparatus, are self-supported when the electric field is removed, and are composed of bundles of nanofibers. A mechanism for the unique formations is proposed, based on the fiber-fiber repulsions from surface charges on the negatively charged alginate. Furthermore, the role of the electric field in the distribution of alginate within the nanofibers is discussed. X-ray photoelectron spectroscopy is used to analyze the surface composition of the electrospun nanofiber mats and the data is related to cast films made in the absence of the electric field. Further techniques to tailor the 3D architecture and nanofiber morphology by changing the surface tension and relative humidity are also discussed.

  5. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects.

    PubMed

    Abrigo, Martina; McArthur, Sally L; Kingshott, Peter

    2014-06-01

    Chronic non-healing wounds show delayed and incomplete healing processes and in turn expose patients to a high risk of infection. Treatment currently focuses on dressings that prevent microbial infiltration and keep a balanced moisture and gas exchange environment. Antibacterial delivery from dressings has existed for some time, with responsive systems now aiming to trigger release only if infection occurs. Simultaneously, approaches that stimulate cell proliferation in the wound and encourage healing have been developed. Interestingly, few dressings appear capable of simultaneously impairing or treating infection and encouraging cell proliferation/wound healing. Electrospinning is a simple, cost-effective, and reproducible process that can utilize both synthetic and natural polymers to address these specific wound challenges. Electrospun meshes provide high-surface area, micro-porosity, and the ability to load drugs or other biomolecules into the fibers. Electrospun materials have been used as scaffolds for tissue engineering for a number of years, but there is surprisingly little literature on the interactions of fibers with bacteria and co-cultures of cells and bacteria. This Review examines the literature and data available on electrospun wound dressings and the research that is required to develop smart multifunctional wound dressings capable of treating infection and healing chronic wounds.

  6. Effect of deuterium on polystyrene degradation

    SciTech Connect

    Korshak, V.V.; Pavlova, S.S.A.; Gribkova, P.N.; Kozyreva, N.M.; Balykova, T.N.; Kirilin, A.I.

    1988-01-01

    The effect of replacing hydrogen by deuterium in polystyrene was studied on resistance to oxidative and thermal degradation. Polystyrene, polydeutero-styrene-D/sub 8/ containing 98-99 at.% deuterium, and a series of their statistical copolymers containing various proportions of deuterated and undeuterated monomer units were synthesized. The replacement of hydrogen by deuterium in polystyrene caused some increase in its resistance to thermal and oxidative destruction. A table shows that at all test temperatures, an increase in the fraction of deuterated monomer units in copolymer decreases the amounts of absorbed oxygen and evolved carbon oxides which is evidence for retadation of polystyrene oxidation when hydrogen is replaced by deuterium.

  7. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  8. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering.

    PubMed

    Hwang, Patrick T J; Murdock, Kyle; Alexander, Grant C; Salaam, Amanee D; Ng, Joshua I; Lim, Dong-Jin; Dean, Derrick; Jun, Ho-Wook

    2016-04-01

    Electrospinning has been widely used to fabricate scaffolds imitating the structure of natural extracellular matrix (ECM). However, conventional electrospinning produces tightly compacted nanofiber layers with only small superficial pores and a lack of bioactivity, which limit the usefulness of electrospinning in biomedical applications. Thus, a porous poly(ε-caprolactone) (PCL)/gelatin composite electrospun scaffold with crater-like structures was developed. Porous crater-like structures were created on the scaffold by a gas foaming/salt leaching process; this unique fiber structure had more large pore areas and higher porosity than the conventional electrospun fiber network. Various ratios of PCL/gelatin (concentration ratios: 100/0, 75/25, and 50/50) composite electrospun scaffolds with and without crater-like structures were characterized by their microstructures, surface chemistry, degradation, mechanical properties, and ability to facilitate cell growth and infiltration. The combination of PCL and gelatin endowed the scaffold with both structural stability of PCL and bioactivity of gelatin. All ratios of scaffolds with crater-like structures showed fairly similar surface chemistry, degradation rates, and mechanical properties to equivalent scaffolds without crater-like structures; however, craterized scaffolds displayed higher human mesenchymal stem cell (hMSC) proliferation and infiltration throughout the scaffolds after 7-day culture. Therefore, these results demonstrated that PCL/gelatin composite electrospun scaffolds with crater-like structures can provide a structurally and biochemically improved three-dimensional ECM-mimicking microenvironment. PMID:26567028

  9. Poly(ɛ-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering.

    PubMed

    Hwang, Patrick T J; Murdock, Kyle; Alexander, Grant C; Salaam, Amanee D; Ng, Joshua I; Lim, Dong-Jin; Dean, Derrick; Jun, Ho-Wook

    2016-04-01

    Electrospinning has been widely used to fabricate scaffolds imitating the structure of natural extracellular matrix (ECM). However, conventional electrospinning produces tightly compacted nanofiber layers with only small superficial pores and a lack of bioactivity, which limit the usefulness of electrospinning in biomedical applications. Thus, a porous poly(ε-caprolactone) (PCL)/gelatin composite electrospun scaffold with crater-like structures was developed. Porous crater-like structures were created on the scaffold by a gas foaming/salt leaching process; this unique fiber structure had more large pore areas and higher porosity than the conventional electrospun fiber network. Various ratios of PCL/gelatin (concentration ratios: 100/0, 75/25, and 50/50) composite electrospun scaffolds with and without crater-like structures were characterized by their microstructures, surface chemistry, degradation, mechanical properties, and ability to facilitate cell growth and infiltration. The combination of PCL and gelatin endowed the scaffold with both structural stability of PCL and bioactivity of gelatin. All ratios of scaffolds with crater-like structures showed fairly similar surface chemistry, degradation rates, and mechanical properties to equivalent scaffolds without crater-like structures; however, craterized scaffolds displayed higher human mesenchymal stem cell (hMSC) proliferation and infiltration throughout the scaffolds after 7-day culture. Therefore, these results demonstrated that PCL/gelatin composite electrospun scaffolds with crater-like structures can provide a structurally and biochemically improved three-dimensional ECM-mimicking microenvironment.

  10. Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers

    SciTech Connect

    Qi, Shishun; Zuo, Ruzhong; Liu, Yi; Wang, Yu

    2013-03-15

    Graphical abstract: Different morphologies are obtained for the electrospun niobium oxide nanofibers with different phase structures. The nanofibers of the two phase structures present different band gap value and the light absorption. Hexagonal phase nanofibers show better photocatalytic activity compared with the orthorhombic nanofibers. Highlights: ► Niobium oxide nanofibers of two phase structures were fabricated by electrospinning. ► Photocatalytic properties of the niobium oxide nanofibers were first explored. ► Nanofibers of different phase structures showed different photocatalytic activities. ► Reasons for the differences in the photocatalysis were carefully discussed. - Abstract: Niobium oxide (Nb{sub 2}O{sub 5}) nanofibers have been synthesized by sol–gel based electrospinning technique. Pure hexagonal phase (H-Nb{sub 2}O{sub 5}) and orthorhombic phase (O-Nb{sub 2}O{sub 5}) nanofibers were obtained by thermally annealing the electrospun Nb{sub 2}O{sub 5}/polyvinylpyrrolidone composite fibers in air at 500 °C and 700 °C, respectively. The fibers were characterized using the X-ray diffraction, scanning electron microscopy, specific surface area analyzer and UV–vis diffuse reflectance spectroscopy. Photocatalytic activities of the obtained nanofibers were evaluated depending on the degradation of methyl orange. The results indicate that the heat-treatment temperature, the crystalline structure and the morphology affected the physical and chemical properties of the as-prepared Nb{sub 2}O{sub 5} nanofibers. The H-Nb{sub 2}O{sub 5} nanofibers obtained at lower temperature showed better potential for the application as a promising photocatalyst.

  11. Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes.

    PubMed

    Celebioglu, Asli; Umu, Ozgun C O; Tekinay, Turgay; Uyar, Tamer

    2014-04-01

    The electrospinning of nanofibers (NF) from cyclodextrin inclusion complexes (CD-IC) with an antibacterial agent (triclosan) was achieved without using any carrier polymeric matrix. Polymer-free triclosan/CD-IC NF were electrospun from highly concentrated (160% CD, w/w) aqueous triclosan/CD-IC suspension by using two types of chemically modified CD; hydroxypropyl-beta-cyclodextrin (HPβCD) and hydroxypropyl-gamma-cyclodextrin (HPγCD). The morphological characterization of the electrospun triclosan/CD-IC NF by SEM elucidated that the triclosan/HPβCD-IC NF and triclosan/HPγCD-IC NF were bead-free having average fiber diameter of 520 ± 250 nm and 1,100 ± 660 nm, respectively. The presence of triclosan and the formation of triclosan/CD-IC within the fiber structure were confirmed by (1)H-NMR, FTIR, XRD, DSC, and TGA studies. The initial 1:1 molar ratio of the triclosan:CD was kept for triclosan/HPβCD-IC NF after the electrospinning and whereas 0.7:1 molar ratio was observed for triclosan/HPγCD-IC NF and some uncomplexed triclosan was detected suggesting that the complexation efficiency of triclosan with HPγCD was lower than that of HPβCD. The antibacterial properties of triclosan/CD-IC NF were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. It was observed that triclosan/HPβCD-IC NF and triclosan/HPγCD-IC NF showed better antibacterial activity against both bacteria compared to uncomplexed pure triclosan.

  12. Polystyrene nanoparticles affecting blood coagulation.

    PubMed

    Oslakovic, Cecilia; Cedervall, Tommy; Linse, Sara; Dahlbäck, Björn

    2012-08-01

    The association of nanoparticles (NPs) with blood coagulation proteins may influence the natural balance between pro- and anticoagulant pathways. We investigated whether polystyrene NPs, when added to human plasma, affected the generation of thrombin in plasma. Amine-modified NPs were found to decrease the thrombin formation due to binding of factors VII and IX to the NPs, which resulted in depletion of the respective protein in solution. In contrast, carboxyl-modified NPs were able to act as a surface for activation of the intrinsic pathway of blood coagulation in plasma. These results highlight the influence of NPs on a biologically important pathway.

  13. Bioactivity of cellulose acetate/hydroxyapatite nanoparticle composite fiber by an electro-spinning process.

    PubMed

    Kwak, Dae Hyun; Lee, Eun Ju; Kim, Deug Joong

    2014-11-01

    Hydroxyapatite/cellulose acetate composite webs were fabricated by an electro-spinning process. This electro-spinning process makes it possible to fabricate complex three-dimensional shapes. Nano fibrous web consisting of cellulose acetate and hydroxyapatite was produced from their mixture solution by using an electro-spinning process under high voltage. The surface of the electro-spun fiber was modified by a plasma and alkaline solution in order to increase its bioactivity. The structure, morphology and properties of the electro-spun fibers were investigated and an in-vitro bioactivity test was evaluated in simulated body fluid (SBF). Bioactivity of the electro-spun web was enhanced with the filler concentration and surface treatment. The surface changes of electro-spun fibers modified by plasma and alkaline solution were investigated by FT-IR (Fourier Transform Infrared Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy).

  14. Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering.

    PubMed

    Rnjak-Kovacina, Jelena; Wise, Steven G; Li, Zhe; Maitz, Peter K M; Young, Cara J; Wang, Yiwei; Weiss, Anthony S

    2012-10-01

    We present an electrospun synthetic human elastin:collagen composite scaffold aimed at dermal tissue engineering. The panel of electrospun human tropoelastin and ovine type I collagen blends comprised 80% tropoelastin+20% collagen, 60% tropoelastin+40% collagen and 50% tropoelastin+50% collagen. Electrospinning efficiency decreased with increasing collagen content under the conditions used. Physical and mechanical characterization encompassed fiber morphology, porosity, pore size and modulus, which were prioritized to identify the optimal candidate for dermal tissue regeneration. Scaffolds containing 80% tropoelastin and 20% collagen (80T20C) were selected on this basis for further cell interaction and animal implantation studies. 80T20C enhanced proliferation and migration rates of dermal fibroblasts in vitro and were well tolerated in a mouse subcutaneous implantation study where they persisted over 6 weeks. The 80T20C scaffolds supported fibroblast infiltration, de novo collagen deposition and new capillary formation.

  15. All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers

    NASA Astrophysics Data System (ADS)

    Laforgue, Alexis

    Poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers were obtained by the combination of electrospinning and vapor-phase polymerization. The fibers had diameters around 350 nm, and were soldered at most intersections, providing a strong dimensional stability to the mats. The nanofiber mats demonstrated very high conductivity (60 ± 10 S cm -1, the highest value reported so far for polymer nanofibers) as well as improved electrochemical properties, due to the ultraporous nature of the electrospun mats. The mats were incorporated into all-textile flexible supercapacitors, using carbon cloths as the current collectors and electrospun polyacrylonitrile (PAN) nanofibrous membranes as the separator. The textile layers were stacked and embedded in a solid electrolyte containing an ionic liquid and PVDF-co-HFP as the host polymer. The resulting supercapacitors were totally flexible and demonstrated interesting and stable performances in ambient conditions.

  16. Processing-structure-property studies of: (I) submicron polymeric fibers produced by electrospinning and (II) films of linear low density polyethylenes as influenced by the short chain branch length in copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst

    NASA Astrophysics Data System (ADS)

    Gupta, Pankaj

    The overall theme of the research discussed in this dissertation has been to explore processing-structure-property relationships for submicron polymeric fibers produced by electrospinning (Part I) and to ascertain whether or not the length of the short chain branch has any effect on the physical properties of films of linear low-density polyethylenes (LLDPEs) (Part II). The research efforts discussed in Part I of this dissertation relate to some fundamental as well as more applied investigations involving electrospinning. These include investigating the effects of solution rheology on fiber formation and developing novel methodologies to fabricate polymeric mats comprising of high specific surface submicron fibers of more than one polymer, high chemical resistant substrates produced by in situ photo crosslinking during electrospinning, superparamagnetic flexible substrates by electrospinning a solution of an elastomeric polymer containing ferrite nanoparticles of Mn-Zn-Ni and substrates for filtration applications. Bicomponent electrospinning of poly(vinyl chloride)-polyurethane and poly(vinylidiene fluoride)-polyurethane was successfully performed. In addition, filtration properties of single and bicomponent electrospun mats of polyacrylonitrile and polystyrene were investigated. Results indicated lower aerosol penetration or higher filtration efficiencies of the filters based on submicron electrospun fibers in comparison to the conventional filter materials. In addition, Part II of this dissertation explores whether or not the length of the short chain branch affects the physical properties of blown and compression molded films of LLDPEs that were synthesized by a single site metallocene catalyst. Here, three resins based on copolymers of ethylene/1-butene, ethylene/1-hexene, and ethylene/1-octene were utilized that were very similar in terms of their molecular weight and distribution, melt rheology, density, crystallinity and short chain branching content and

  17. Hysteresis Phenomenon in Heat-Voltage Curves of Polypyrrole-Coated Electrospun Nanofibrous and Regular Fibrous Mats

    NASA Astrophysics Data System (ADS)

    Oroumei, Azam; Tavanai, Hossein; Morshed, Mohammad

    2015-07-01

    This article verifies the hysteresis phenomenon in heat-voltage curves of polypyrrole-coated electrospun nanofibrous and regular fibrous mats. A third-order polynomial model fits the heat-voltage data better than a second-order polynomial model. It was also observed that the hysteresis loop area of nanofibrous and regular fibrous mats increases with decreasing fiber diameter. Moreover, the curvature of the hysteresis loops is significantly affected by the fiber diameter. In fact, the slope of the curvatures increases with decreasing fiber diameter.

  18. Electrospun Solid Dispersions of Maraviroc for Rapid Intravaginal Preexposure Prophylaxis of HIV

    PubMed Central

    Ball, Cameron

    2014-01-01

    The development of topical anti-human immunodeficiency virus (HIV) microbicides may provide women with strategies to protect themselves against sexual HIV transmission. Pericoital drug delivery systems intended for use immediately before sex, such as microbicide gels, must deliver high drug doses for maximal effectiveness. The goal of achieving a high antiretroviral dose is complicated by the need to simultaneously retain the dose and quickly release drug compounds into the tissue. For drugs with limited solubility in vaginal gels, increasing the gel volume to increase the dose can result in leakage. While solid dosage forms like films and tablets increase retention, they often require more than 15 min to fully dissolve, potentially increasing the risk of inducing epithelial abrasions during sex. Here, we demonstrate that water-soluble electrospun fibers, with their high surface area-to-volume ratio and ability to disperse antiretrovirals, can serve as an alternative solid dosage form for microbicides requiring both high drug loading and rapid hydration. We formulated maraviroc at up to 28 wt% into electrospun solid dispersions made from either polyvinylpyrrolidone or poly(ethylene oxide) nanofibers or microfibers and investigated the role of drug loading, distribution, and crystallinity in determining drug release rates into aqueous media. We show here that water-soluble electrospun materials can rapidly release maraviroc upon contact with moisture and that drug delivery is faster (less than 6 min under sink conditions) when maraviroc is electrospun in polyvinylpyrrolidone fibers containing an excipient wetting agent. These materials offer an alternative dosage form to current pericoital microbicides. PMID:24913168

  19. Electrospun solid dispersions of Maraviroc for rapid intravaginal preexposure prophylaxis of HIV.

    PubMed

    Ball, Cameron; Woodrow, Kim A

    2014-08-01

    The development of topical anti-human immunodeficiency virus (HIV) microbicides may provide women with strategies to protect themselves against sexual HIV transmission. Pericoital drug delivery systems intended for use immediately before sex, such as microbicide gels, must deliver high drug doses for maximal effectiveness. The goal of achieving a high antiretroviral dose is complicated by the need to simultaneously retain the dose and quickly release drug compounds into the tissue. For drugs with limited solubility in vaginal gels, increasing the gel volume to increase the dose can result in leakage. While solid dosage forms like films and tablets increase retention, they often require more than 15 min to fully dissolve, potentially increasing the risk of inducing epithelial abrasions during sex. Here, we demonstrate that water-soluble electrospun fibers, with their high surface area-to-volume ratio and ability to disperse antiretrovirals, can serve as an alternative solid dosage form for microbicides requiring both high drug loading and rapid hydration. We formulated maraviroc at up to 28 wt% into electrospun solid dispersions made from either polyvinylpyrrolidone or poly(ethylene oxide) nanofibers or microfibers and investigated the role of drug loading, distribution, and crystallinity in determining drug release rates into aqueous media. We show here that water-soluble electrospun materials can rapidly release maraviroc upon contact with moisture and that drug delivery is faster (less than 6 min under sink conditions) when maraviroc is electrospun in polyvinylpyrrolidone fibers containing an excipient wetting agent. These materials offer an alternative dosage form to current pericoital microbicides. PMID:24913168

  20. Electrospun nanofibrous mats: from vascular repair to osteointegration.

    PubMed

    Ribba, L; Parisi, M; D'Accorso, N B; Goyanes, S

    2014-12-01

    Electrospinning is a versatile technique for generating a mat of continuous fibers with diameters from a few nanometers to several micrometers. The diversity of electrospinnable materials, and the unique features associated with electrospun fibers make this technique and its resultant structures attractive for applications in the biomedical field. This article presents an overview of this technique focusing on its application for tissue engineering. In particular, the advantages and disadvantages of using an electrospinning mat for biomedical applications are discussed. It reviews the different available electrospinning configurations, detailing how the different process variables and material types determine the obtained fibers characteristics. Then a description of how nanofiber based scaffolds offer great promise in the regeneration or function restoration of damaged or diseased bones, muscles or nervous tissue is reported. Different methods for incorporating active agents on nanofibers and controlling their release mechanisms are also reviewed. The review concludes with some personal perspectives on the future work to be done in order to include electrospinning technique in the industrial development of biomedical materials.

  1. Coarse graining of polystyrene sulfonate

    NASA Astrophysics Data System (ADS)

    Perahia, Dvora; Agrawal, Anupriya; Grest, Gary S.

    2015-03-01

    Capturing large length scales in soft matter while retaining atomistic properties is imperative to computational studies. Here we develop a new coarse-grained model for polystyrene sulfonate (PSS) that often serves as a model system because of its narrow molecular weight distribution and defined degree of sulfonation. Four beads are used to represent polymer where the backbone, the phenyl group, and the sulfonated group are each represented by a different bead and the fourth one represents counterion, which is sodium in our case. Initial atomistic simulations of PSS melt with sulfonation levels of 2-10%, with a dielectric constant ɛ = 1 revealed a ``locked'' phase where motion of the polymer is limited. Dielectric constant of ɛ = 5 was used to accelerate the dynamics. Bonded interactions were obtained using Boltzmann inversion on the bonded distributions extracted from atomistic simulation. Non-bonded interaction of polystyrene monomer was taken from our previous work and potential of mean force was used as the initial guess for interaction of the ionic beads. This set of potential was subsequently iterated to get a good match with radial distribution functions. This potential and its transferability across dielectric constants and temperatures will be presented. Grant DE-SC007908.

  2. The fabrication and testing of electrospun silica nanofiber membranes for the detection of proteins

    NASA Astrophysics Data System (ADS)

    Tsou, P.-H.; Chou, C.-K.; Saldana, S. M.; Hung, M.-C.; Kameoka, J.

    2008-11-01

    In this study, we fabricated electrospun silica nanofiber membranes and investigated their use in biomolecular sensing. The diameter, porosity and surface-to-volume ratio of nanofiber membranes were investigated under different fabrication conditions. Using this type of nanofiber membrane, enzyme-linked immunosorbent assay (ELISA) was performed, and the results were compared with those obtained with conventional ELISA using polystyrene well plates. The minimum detectable concentration was determined as 0.19 ng ml-1 (1.6 pM), which is 32 times lower than that of conventional ELISA. In addition, the detection time for all processes for the nanofiber membrane was reduced to 1 h, compared with 1 day for conventional ELISA. The increased sensitivity, faster reaction time, and affordability of the nanofiber membrane make it well suited for bio-chip use.

  3. The fabrication and testing of electrospun silica nanofiber membranes for the detection of proteins

    PubMed Central

    Tsou, P-H; Chou, C-K; Saldana, SM; Hung, M-C; Kameoka, J

    2008-01-01

    In this study, we fabricated electrospun silica nanofiber membranes and investigated their use in biomolecular sensing. The diameter, porosity and surface-to-volume ratio of nanofiber membranes were investigated under different fabrication conditions. Using this type of nanofiber membrane, enzyme-linked immunosorbent assay (ELISA) was performed, and the results were compared with those obtained with conventional ELISA using polystyrene well plates. The minimum detectable concentration was determined as 0.19 ng ml−1 (1.6 pM), which is 32 times lower than that of conventional ELISA. In addition, the detection time for all processes for the nanofiber membrane was reduced to 1 h, compared with 1 day for conventional ELISA. The increased sensitivity, faster reaction time, and affordability of the nanofiber membrane make it well suited for bio-chip use. PMID:19081800

  4. Superoleophillic electrospun polystrene/exofoliated graphite fibre for selective removal of crude oil from water

    NASA Astrophysics Data System (ADS)

    Alayande, S. Oluwagbemiga; Dare, Enock O.; Olorundare, F. O. Grace; Nkosi, D.; Msagati, Titus A. M.; Mamba, B. B.

    2016-04-01

    During oil spills, the aquatic environment is greatly endangered because oil floats on water making the penetration of sunlight difficult therefore primary productivity is compromised, birds and aquatic organisms are totally eliminated within a short period. It is therefore essential to remove the oil from the water bodies after the spillage. This work reports on the fabrication of oil loving electrospun polystyrene-exofoliated graphite fibre with hydrophobic and oleophillic surface properties. The fibre was applied for the selective adsorption of crude oil from simulated crude oil spillage on water. The maximum oil adsorption capacity of the EPS/EG was 1.15 kg/g in 20 min while the lowest oil adsorption capacity was 0.81 kg/g in 10 min. Cheap oil adsorbent was developed with superoleophillic and superhydrophobic properties.

  5. bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis.

    PubMed

    Montero, Ramon B; Vial, Ximena; Nguyen, Dat Tat; Farhand, Sepehr; Reardon, Mark; Pham, Si M; Tsechpenakis, Gavriil; Andreopoulos, Fotios M

    2012-05-01

    Current therapeutic angiogenesis strategies are focused on the development of biologically responsive scaffolds that can deliver multiple angiogenic cytokines and/or cells in ischemic regions. Herein, we report on a novel electrospinning approach to fabricate cytokine-containing nanofibrous scaffolds with tunable architecture to promote angiogenesis. Fiber diameter and uniformity were controlled by varying the concentration of the polymeric (i.e. gelatin) solution, the feed rate, needle to collector distance, and electric field potential between the collector plate and injection needle. Scaffold fiber orientation (random vs. aligned) was achieved by alternating the polarity of two parallel electrodes placed on the collector plate thus dictating fiber deposition patterns. Basic fibroblast growth factor (bFGF) was physically immobilized within the gelatin scaffolds at variable concentrations and human umbilical vein endothelial cells (HUVEC) were seeded on the top of the scaffolds. Cell proliferation and migration was assessed as a function of growth factor loading and scaffold architecture. HUVECs successfully adhered onto gelatin B scaffolds and cell proliferation was directly proportional to the loading concentrations of the growth factor (0-100 bFGF ng/mL). Fiber orientation had a pronounced effect on cell morphology and orientation. Cells were spread along the fibers of the electrospun scaffolds with the aligned orientation and developed a spindle-like morphology parallel to the scaffold's fibers. In contrast, cells seeded onto the scaffolds with random fiber orientation, did not demonstrate any directionality and appeared to have a rounder shape. Capillary formation (i.e. sprouts length and number of sprouts per bead), assessed in a 3-D in vitro angiogenesis assay, was a function of bFGF loading concentration (0 ng, 50 ng and 100 ng per scaffold) for both types of electrospun scaffolds (i.e. with aligned or random fiber orientation).

  6. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation.

    PubMed

    Mo, X M; Xu, C Y; Kotaki, M; Ramakrishna, S

    2004-05-01

    Poly(L-lactide-co-epsilon-caprolactone) [P(LLA-CL)] with L-lactide to epsilon-caprolactone ratio of 75 to 25 has been electrospun into nanofibers. The relationship between electrospinning parameters and fiber diameter has been investigated. The fiber diameter decreased with decreasing polymer concentration and with increasing electrospinning voltage. The X-ray diffractometer and differential scanning colorimeter results suggested that the electrospun nanofibers developed highly oriented structure in CL-unit sequences during the electrospinning process. The biocompatibility of the nanofiber scaffold has been investigated by culturing cells on the nanofiber scaffold. Both smooth muscle cell and endothelial cell adhered and proliferated well on the P(LLA-CL) nanofiber scaffolds.

  7. Complementary characterization data in support of uniaxially aligned electrospun nanocomposites based on a model PVOH-epoxy system

    PubMed Central

    Karimi, Samaneh; Staiger, Mark P.; Buunk, Neil; Fessard, Alison; Tucker, Nick

    2016-01-01

    This paper presents complementary data corresponding to characterization tests done for our research article entitled “Uniaxially aligned electrospun fibers for advanced nanocomposites based on a model PVOH-epoxy system” (Karimi et al., 2016) [1]. Poly(vinyl alcohol) and epoxy resin were selected as a model system and the effect of electrospun fiber loading on polymer properties was examined in conjunction with two manufacturing methods. A novel electrospinning technology for production of uniaxially aligned nanofiber arrays was used. A conventional wet lay-up fabrication method is compared against a novel, hybrid electrospinning–electrospraying approach. The structure and thermomechanical properties of resulting composite materials were examined using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile testing. For discussion of obtained results please refer to the research paper (Karimi et al., 2016) [1]. PMID:26977430

  8. Electrospun nanofibers for cancer diagnosis and therapy.

    PubMed

    Chen, Zhou; Chen, Zhaofeng; Zhang, Aili; Hu, Jiaming; Wang, Xinmei; Yang, Zhaogang

    2016-06-24

    The advent of nanotechnology has provided unprecedented opportunities for nanomedicine. Electrospun nanofibers have some astounding features such as high loading capacity, extremely large surface area and porosity, high encapsulation efficiency, ease of modification, combination of diverse therapies, low cost and great benefits. These remarkable structure-dependent properties have far reaching application potential in cancer diagnosis and therapy such as ultra-sensitive sensing systems for point-of-care cancer detection, targeted cancer cell capture, and functional and smart anticancer drug delivery systems. This review summarizes the principal mechanism of electrospun nanofibers and a variety of modified electrospun nanofibers, illustrates their application in biosensors for cancer detection, and enumerates their application in implantable drug delivery for cancer therapy. PMID:27048889

  9. Protease-degradable electrospun fibrous hydrogels

    NASA Astrophysics Data System (ADS)

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-03-01

    Electrospun nanofibres are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases. Here we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose-dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fibre populations support selective fibre degradation based on individual fibre degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications.

  10. Electrospun nanofibers: Formation, characterization, and evaluation for nerve tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Zander, Nicole E.

    The effects of fiber alignment and surface chemistry, including the covalent attachment and physical adsorption of the extracellular matrix (ECM) proteins laminin and collagen, on the neurite outgrowth of neuron-like PC12 cells were examined. Neuron-like PC12 cells responded to fiber orientation, and were successfully contact-guided by aligned electrospun nanofibers. In addition, fibers with attached protein, either physically adsorbed or covalently attached, improved neurite outgrowth lengths. Furthermore, aligning the fibers and attaching the ECM protein laminin, in particular, significantly improved neurite outgrowth over randomly oriented fibers with laminin. Since this research suggested that protein concentration on the fibers was the dominant driving force for improved neurite outgrowth, the effect of protein concentration, incorporated onto the surface of the nanofibers, on neurite outgrowth was examined. Two ways to control protein concentration on the fibers were explored—the variation of the fiber-protein reaction time and the variation of the protein soaking solution concentration. In addition, analytical methods to quantify the concentration of protein, as well as the protein coverage, on the surface of the fibers were developed. Although most of the fiber mats had multilayer protein coverage, and hence physically adsorbed proteins which could potentially mean a loss in bioactivity, the neuron-like PC12 cell neurites responded in a dose-dependent manner with increased neurite lengths on scaffolds with higher protein concentrations. The work was extended further by forming protein gradients on the fiber mats in hopes of locally directing neurite outgrowth and orientation. Fiber mats with both linear gradients (continuous change in protein concentration) and step gradients (six regions of uniform protein coverage, with protein concentration increasing from region to region) were fabricated and analyzed. The step gradients formed in the aligned fiber

  11. Preparation and Characterizations of Rosin Based Thin Films and Fibers.

    PubMed

    Nirmala, R; Woo-il, Baek; Navamathavan, R; Kim, Hak Yong; Park, Soo-Jin

    2015-06-01

    In this study, we report the preparation and comparison of the rosin based thin films and electrospun fibers in terms of their formation and characterizations. Rosin in the form of thin films and fibers can be obtained via wet casting method and electrospinning process, respectively. Systematic experiments were performed to study the morphology, structure and thermal properties of the rosin thin films and electrospun fibers. Finally, in order to understand the accurate mass values of rosin in the different morphologies, we performed matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) spectroscopy. The rosin thin film prepared via wet casting method exhibited very smooth surfaces whereas the electrospun fibers were continuous without any beads over long distances. The MALDI-TOF data revealed that the most intense peak in the molecular weight of rosin components is about 302 for the rosin powder, thin film and fibers. On the other hand, some of the higher molecular component can also be observed for electrospun rosin fibers owing to the structural morphology. The present study demonstrated that the full structural characterization of the molecular species present in these different forms of rosin.

  12. Summary of the radiation damage studies of the SDC dopants in polystyrene

    SciTech Connect

    Pla-Dalmau, A.; Foster, G.W.; Zhang, G.

    1993-12-22

    Approximately 80 commercially available fluorescent organic compounds were studied as dopants in a polystyrene matrix for possible use in wavelength shifting (WLS) fibers. The goal was to find a new green- emitting WLS fiber which would outperform in light yield and decay time the currently available fiber doped with K-27. Therefore the fluorescent compounds of interest should exhibit the following spectroscopic characteristics in polystyrene: {lambda}{sub abs} = 400--450 nm,{lambda}{sub em} = 450--550 nm, {tau} = 3--7 ns and quantum efficiency of minimum 0.7. Polystyrene samples doped with different fluorescent compounds were prepared and characterized. Of all the compounds tested, only a series of coumarins exhibited the spectroscopic characteristics of interest. Radiation damage studies had to be performed on these samples in order to condusively determine if they were better candidates than K-27 for green WLS fibers. AU samples except those showing opacity or deep coloration were irradiated. They were, however, separated in two sets. Radiation damage set No. 20 was mainly formed by the coumarin derivatives. Radiation damage set No. 22 was based on the remaining samples. The irradiations were performed at the Phoenix Memorial Laboratory using a {sup 60}Co source. Both sets were exposed to a total dose of 10 Mrad in air, at a dose rate of 1.8 Mrad/h. Transmittance measurements were recorded before and after irradiation, and after annealing. After irradiation, the samples were annealed in oxygen to accelerate the recovery process.

  13. Electrospun Fibrous Scaffolds of Poly(glycerol-dodecanedioate) for Engineering Neural Tissues From Mouse Embryonic Stem Cells

    PubMed Central

    Dai, Xizi; Huang, Yen-Chih

    2014-01-01

    For tissue engineering applications, the preparation of biodegradable and biocompatible scaffolds is the most desirable but challenging task.  Among the various fabrication methods, electrospinning is the most attractive one due to its simplicity and versatility. Additionally, electrospun nanofibers mimic the size of natural extracellular matrix ensuring additional support for cell survival and growth. This study showed the viability of the fabrication of long fibers spanning a larger deposit area for a novel biodegradable and biocompatible polymer named poly(glycerol-dodecanoate) (PGD)1 by using a newly designed collector for electrospinning. PGD exhibits unique elastic properties with similar mechanical properties to nerve tissues, thus it is suitable for neural tissue engineering applications. The synthesis and fabrication set-up for making fibrous scaffolding materials was simple, highly reproducible, and inexpensive. In biocompatibility testing, cells derived from mouse embryonic stem cells could adhere to and grow on the electrospun PGD fibers. In summary, this protocol provided a versatile fabrication method for making PGD electrospun fibers to support the growth of mouse embryonic stem cell derived neural lineage cells. PMID:24961272

  14. Electrospun fibrous scaffolds of Poly(glycerol-dodecanedioate) for engineering neural tissues from mouse embryonic stem cells.

    PubMed

    Dai, Xizi; Huang, Yen-Chih

    2014-01-01

    For tissue engineering applications, the preparation of biodegradable and biocompatible scaffolds is the most desirable but challenging task.  Among the various fabrication methods, electrospinning is the most attractive one due to its simplicity and versatility. Additionally, electrospun nanofibers mimic the size of natural extracellular matrix ensuring additional support for cell survival and growth. This study showed the viability of the fabrication of long fibers spanning a larger deposit area for a novel biodegradable and biocompatible polymer named poly(glycerol-dodecanoate) (PGD)(1) by using a newly designed collector for electrospinning. PGD exhibits unique elastic properties with similar mechanical properties to nerve tissues, thus it is suitable for neural tissue engineering applications. The synthesis and fabrication set-up for making fibrous scaffolding materials was simple, highly reproducible, and inexpensive. In biocompatibility testing, cells derived from mouse embryonic stem cells could adhere to and grow on the electrospun PGD fibers. In summary, this protocol provided a versatile fabrication method for making PGD electrospun fibers to support the growth of mouse embryonic stem cell derived neural lineage cells.

  15. Mechanical Property Characterization of Electrospun Recombinant Human Tropoelastin for Vascular Graft Biomaterials

    PubMed Central

    McKenna, Kathryn A.; Hinds, Monica T.; Sarao, Rebecca C.; Wu, Ping-Cheng; Maslen, Cheryl L.; Glanville, Robert W.; Babcock, Darcie; Gregory, Kenton W.

    2011-01-01

    The development of vascular grafts has focused on finding a biomaterial that is non-thrombogenic, minimizes intimal hyperplasia, matches the mechanical properties of native vessels and allows for regeneration of arterial tissue. In this study, the structural and mechanical properties and the vascular cell compatibility of electrospun recombinant human tropoelastin (rTE) were evaluated as a potential vascular graft support matrix. Disuccinimidyl suberate (DSS) was used to cross-link electrospun rTE fibers to produce a polymeric recombinant tropoelastin (prTE) matrix that is stable in aqueous environments. Tubular 1 cm diameter prTE samples were constructed for uniaxial tensile testing and 4 mm small-diameter prTE tubular scaffolds were produced for burst pressure and cell compatibility evaluations from 15 wt% rTE solutions. Uniaxial tensile tests demonstrated an average ultimate tensile strength (UTS) of 0.36±0.05 MPa and elastic moduli of 0.15±0.04 MPa and 0.91±0.16 MPa, which were comparable to extracted native elastin. Burst pressures of 485 ± 25 mmHg were obtained from 4 mm ID scaffolds with 453 ± 74 μm average wall thickness. prTE supported endothelial cell growth with typical endothelial cell cobblestone morphology after 48 hours in culture. Cross-linked electrospun recombinant human tropoelastin has promising properties for utilization as a vascular graft biomaterial with customizable dimensions, a compliant matrix, and vascular cell compatibility. PMID:21846510

  16. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering

    PubMed Central

    Heydarkhan-Hagvall, Sepideh; Schenke-Layland, Katja; Dhanasopon, Andrew P.; Rofail, Fady; Smith, Hunter; Wu, Benjamin M.; Shemin, Richard; Beygui, Ramin E.; MacLellan, W. Robb

    2008-01-01

    Electrospinning using natural proteins or synthetic polymers is a promising technique for the fabrication of fibrous scaffolds for various tissue engineering applications. However, one limitation of scaffolds electrospun from natural proteins is the need to cross-link with glutaraldehyde for stability, which has been postulated to lead to many complications in vivo including graft failure. In this study, we determined the characteristics of hybrid scaffolds composed of natural proteins including collagen and elastin, as well as gelatin, and the synthetic polymer poly(ε-caprolactone) (PCL), so to avoid chemical cross-linking. Fiber size increased proportionally with increasing protein and polymer concentrations, whereas pore size decreased. Electrospun gelatin/PCL scaffolds showed a higher tensile strength when compared to collagen/elastin/PCL constructs. To determine the effects of pore size on cell attachment and migration, both hybrid scaffolds were seeded with adipose-derived stem cells. Scanning electron microscopy and nuclei staining of cell-seeded scaffolds demonstrated complete cell attachment to the surfaces of both hybrid scaffolds, although cell migration into the scaffold was predominantly seen in the gelatin/PCL hybrid. The combination of natural proteins and synthetic polymers to create electrospun fibrous structures resulted in scaffolds with favorable mechanical and biological properties. PMID:18403012

  17. Continuous High-Aligned Polyacrylonitrile Electrospun Nanofibers Yarns via Circular Deposition on Water Bath.

    PubMed

    Bin, Yu; Hao, Yu; Zhu, Meifang; Wang, Hongzhi

    2016-06-01

    A novel strategy for preparing high-aligned continuous Polyacrylonitrile (PAN) electrospun nanofibers yarns is introduced. The yarn is rolled up from circular deposition, which can be changed by controlling the humidity of spinning environment. High-aligned yarn is obtained with the rolling speed of 57 m/min. Very few defects are found in the received yarn. Also the as-spun yarn is drawn in hot water bath to improve its mechanical properties further. The mechanical properties and X-Ray Diffraction (XRD) tests are systematically investigated. The tensile strength of the as-spun yarn rolled with 57 m/min can reach 240 MPa, close to that of as-spun fibers from wet spinning. Furthermore, after drawn of 5 ratios, tensile strength of yarn comes to 580 MPa, which broaden the applied fields of electrospun nanofibers. In addition, the forming mechanism of yarn in the water bath is analyzed and compared with the previous work. Actually, it can be testified experimentally that PAN nanofibers yarn has the same mechanical properties as that prepared with the other approaches with the same testing conditions in this work. The continuous high-aligned electrospun nanofibers PAN yarn via circular deposition in this paper is capable of meeting the requirement of the more applications needing of high mechanical properties and alignment degree. PMID:27427608

  18. Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Qingfu; Yu, Yong; Ma, Jun; Zhang, Ning; Zhang, Jianjun; Liu, Zhihong; Cui, Guanglei

    2016-09-01

    A flame retardant and thermally dimensional stable membrane with high permeability and electrolyte wettability can overcome the safety issues of lithium ion batteries (LIBs) at elevated temperatures. In this work, a multifunctional thermoset nonwoven membrane composed of melamine formaldehyde resin (MFR) nano-fibers was prepared by a electro-spinning method. The resultant porous nonwoven membrane possesses superior permeability, electrolyte wettability and thermally dimensional stability. Using the electrospun MFR membrane, the LiFePO4/Li battery exhibits high safety and stable cycling performance at the elevated temperature of 120 °C. Most importantly, the MFR membrane contains lone pair electron in the nitrogen element, which can chelate with Mn2+ ions and suppress their transfer across the separator. Therefore, the LiMn2O4/graphite cells with the electrospun MFR multifunctional membranes reveal an improved cycle performance even at high temperature. This work demonstrated that electrospun MFR is a promising candidate material for high-safety separator of LIBs with stable cycling performance at elevated temperatures.

  19. Precipitation of polystyrene by spraying polystyrene-toluene solution into compressed HFC-134a

    SciTech Connect

    Tan, C.S.; Lin, H.Y.

    1999-10-01

    A precipitation process employing compressed 1,1,1,2-tetrafluoroethane (HFC-134a) as anti-solvent was used to recover polystyrene from toluene solution. In a continuous mode of operation, almost all the dissolved polystyrene could be precipitated under the condition that liquid HFC-134a was present in the precipitator. When the precipitator was full of gaseous HFC-134a only, a significant temperature rise was observed and the amount of the precipitated polystyrene was small. The effects of temperature, pressure, toluene solution flow rate, HFC-134a flow rate, and polystyrene concentration on the yield and morphology for the precipitated polystyrene were examined in this study. Microparticles of the precipitated polystyrene were obtained only when the solution jet traveled through gaseous HFC-134a first and then contacted with liquid HFC-134a in the precipitator.

  20. Effects of quaternization on the morphological stability and antibacterial activity of electrospun poly(DMAEMA-co-AMA) nanofibers.

    PubMed

    Xu, Jing-Wei; Wang, Yao; Yang, Yun-Feng; Ye, Xiang-Yu; Yao, Ke; Ji, Jian; Xu, Zhi-Kang

    2015-09-01

    Electrospun nanofibers with antibacterial activity are greatly promising for medical treatment and water purification. Herein we report antibacterial nanofibers electrospun from a series of poly(dimethylamino ethyl methacrylate-co-alkyl methacrylates) (poly(DMAEMA-co-AMA)) and to distinguish the effects of free and cross-linked cations derived from quanternization on the antibacterial activity. Poly(DMAEMA-co-AMA)s are simply synthesized by free radical polymerization from commercial monomers. DSC analysis indicates that they have Tg lower than room temperature and thus the electrospun nanofibers adhere to each other and evenly tend to form films, instead of keeping cylinderic shape. Benzyl chloride (BC) and p-xylylene dichloride (XDC) can quaternize DMAEMA units and to generate cations on the nanofiber surface. XPS analysis and colorimetric assay determine the quaternization degree and the surface accessible quaternary amines (N(+)), respectively. It is very promising that this quaternization endows the electrospun nanofibers with both stable morphology and antibacterial activity. The BC-quaternized fibers show better antibacterial behavior against Escherichia coli and Staphylococcus aureus than those of the XDC-quaternized/cross-linked ones, because cross-linking suppresses the chain mobility of cations. Our results confirm that antibacterial nanofibers can be facilely prepared and chain mobility of the formed cations is the necessary prerequisite for their antibacterial activity.

  1. Preparation, in vitro mineralization and osteoblast cell response of electrospun 13-93 bioactive glass nanofibers.

    PubMed

    Deliormanlı, Aylin M

    2015-08-01

    In this study, silicate based 13-93 bioactive glass fibers were prepared through sol-gel processing and electrospinning technique. A precursor solution containing poly (vinyl alcohol) and bioactive glass sol was used to produce fibers. The mixture was electrospun at a voltage of 20 kV by maintaining tip to a collector distance of 10 cm. The amorphous glass fibers with an average diameter of 464±95 nm were successfully obtained after calcination at 625 °C. Hydroxyapatite formation on calcined 13-93 fibers was investigated in simulated body fluid (SBF) using two different fiber concentrations (0.5 and 1 mg/ml) at 37 °C. When immersed in SBF, conversion to a calcium phosphate material showed a strong dependence on the fiber concentration. At 1mg/ml, the surface of the fibers converted to the hydroxyapatite-like material in SBF only after 30 days. At lower solid concentrations (0.5 mg/ml), an amorphous calcium phosphate layer formation was observed followed by the conversion to hydroxyapatite phase after 7 days of immersion. The XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay was conducted to evaluate the osteoblast cell response to the bioactive glass fibers.

  2. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules.

    PubMed

    Han, Daewoo; Steckl, Andrew J

    2013-08-28

    A novel dual drug delivery system is presented using triaxial structured nanofibers, which provides different release profiles for model drugs separately loaded in either the sheath or the core of the fiber. Homogenous, coaxial and triaxial fibers containing a combination of materials (PCL, polycaprolactone; PVP, polyvinylpyrrolidone) were fabricated. The drug release profiles were simulated using two color dyes (KAB, keyacid blue; KAU, keyacid uranine), whose release in physiological solution was measured using optical absorption as a function of time. To reach the level of 80% release of encapsulated dye from core, triaxial fibers with a PCL intermediate layer exhibited a ~24× slower release than that from coaxial fibers. At the same time, the hygroscopic sheath layer of the triaxial fibers provided an initial burst release (~ 80% within an hour) of a second dye as high as that from conventional single and coaxial fibers. The triaxial fiber membrane provides both a quick release from the outer sheath layer for short-term treatment and a sustained release from the fiber core for long-term treatment. The intermediate layer between inner core and outer sheath acts as a barrier to prevent leaching from the core, which can be especially important when the membranes are used in wet application. The formation of tri/multiaxially electrospun nanofibrous membranes will be greatly beneficial for biomedical applications by enabling different release profiles of two different drugs from a membrane.

  3. Characterization of Electrospun Nanofibrous Scaffolds for Nanobiomedical Applications

    NASA Astrophysics Data System (ADS)

    Emul, E.; Saglam, S.; Ates, H.; Korkusuz, F.; Saglam, N.

    2016-08-01

    The electrospinning method is employed in the production of porous fiber scaffolds, and the usage of electrospun scaffolds especially as drug carrier and bone reconstructive material such as implants is promising for future applications in tissue engineering. The number of publications has grown very rapidly in this field through the fabrication of complex scaffolds, novel approaches in nanotechnology, and improvements of imaging methods. Hence, characterization of these materials has also grown significantly important for getting satisfied and accurate results. This advantageous and versatile method is ideal for mimicking bone extracellular matrix, and many biodegradable and biocompatible polymers are preferred in the field of bone reconstruction. In this study, gelatin, gelatin/nanohydroxyapatite (nHAp) and gelatin/PLLA/nHAp scaffolds were fabricated by the electrospinning process. These composite fibers showed clear and continuous morphology according to observation through a scanning electron microscope and their component analyses were also determined by Fourier transform infrared spectrometer analyses. These characterization experiments revealed the great effects of the electrospinning method for biomedical applications and have an especially important role in bone reconstruction and production of implant coating material.

  4. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    SciTech Connect

    Papa, Antonio; Guarino, Vincenzo Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-12-17

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  5. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    NASA Astrophysics Data System (ADS)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-12-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  6. A flame-resistant modified polystyrene

    NASA Technical Reports Server (NTRS)

    Karle, D. W.; Kratze, R. H.; Pacioren, K. L.

    1975-01-01

    Several modified polystyrenes have been developed that are self-extinguishing in air. Information is included in report that also describes molding and fabrication properties, toxicology, and thermal behavior of the polymers.

  7. Thermal Decomposition of Radiation-Damaged Polystyrene

    SciTech Connect

    J Abrefah GS Klinger

    2000-09-26

    The radiation-damaged polystyrene material (''polycube'') used in this study was synthesized by mixing a high-density polystyrene (''Dylene Fines No. 100'') with plutonium and uranium oxides. The polycubes were used on the Hanford Site in the 1960s for criticality studies to determine the hydrogen-to-fissile atom ratios for neutron moderation during processing of spent nuclear fuel. Upon completion of the studies, two methods were developed to reclaim the transuranic (TRU) oxides from the polymer matrix: (1) burning the polycubes in air at 873 K; and (2) heating the polycubes in the absence of oxygen and scrubbing the released monomer and other volatile organics using carbon tetrachloride. Neither of these methods was satisfactory in separating the TRU oxides from the polystyrene. Consequently, the remaining polycubes were sent to the Hanford Plutonium Finishing Plant (PFP) for storage. Over time, the high dose of alpha and gamma radiation has resulted in a polystyrene matrix that is highly cross-linked and hydrogen deficient and a stabilization process is being developed in support of Defense Nuclear Facility Safety Board Recommendation 94-1. Baseline processes involve thermal treatment to pyrolyze the polycubes in a furnace to decompose the polystyrene and separate out the TRU oxides. Thermal decomposition products from this degraded polystyrene matrix were characterized by Pacific Northwest National Laboratory to provide information for determining the environmental impact of the process and for optimizing the process parameters. A gas chromatography/mass spectrometry (GC/MS) system coupled to a horizontal tube furnace was used for the characterization studies. The decomposition studies were performed both in air and helium atmospheres at 773 K, the planned processing temperature. The volatile and semi-volatile organic products identified for the radiation-damaged polystyrene were different from those observed for virgin polystyrene. The differences were in the

  8. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach.

    PubMed

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m(3) (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  9. Rheological and Mechanical Properties of Crosslinked Block Copolymer Nanofiber and Polystyrene Blends.

    NASA Astrophysics Data System (ADS)

    Ma, Sungwon; Thio, Yonathan

    2009-03-01

    The mechanical and rheological properties of blends of crosslinked and uncrosslinked poly(styrene)-b-poly(isoprene) copolymer with commercially available polystyrene were studied. Cylindrical morphology of PS-b-PI copolymer was employed for generating nanofiber morphology. Cold vulcanization process using sulfur monochloride (S2Cl2) was used to preserve the morphology. Blends of uncrosslinked PS-b-PI copolymer with neat polystyrene were also prepared. Both blend samples were prepared by solvent casting method with the filler contents varying between 0.5 and 10 wt%. The mechanical and rheological properties were characterized and the microstructures of the fiber and the systems were imaged. The dynamic moduli (G' and G'') of the crosslinked system increased with increasing the fiber content compared to the uncrosslinked system. The results were compared to the rheological model by fitting to Cross-Williamson. This blend study indicated critical volume concentration of nanofiber between 5 and 10 wt% of nanofiber content.

  10. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate

    PubMed Central

    2011-01-01

    Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone) (collagen/PCL) fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it is believed that this

  11. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering.

    PubMed

    Li, Mengmeng; Liu, Wenwen; Sun, Jiashu; Xianyu, Yunlei; Wang, Jidong; Zhang, Wei; Zheng, Wenfu; Huang, Deyong; Di, Shiyu; Long, Yun-Ze; Jiang, Xingyu

    2013-07-10

    In this work, we fabricated polymeric fibrous scaffolds for bone tissue engineering using primary human osteoblasts (HOB) as the model cell. By employing one simple approach, electrospinning, we produced poly(lactic-co-glycolic acid) (PLGA) scaffolds with different topographies including microspheres, beaded fibers, and uniform fibers, as well as the PLGA/nanohydroxyapatite (nano-HA) composite scaffold. The bone-bonding ability of electrospun scaffolds was investigated by using simulated body fluid (SBF) solution, and the nano-HA in PLGA/nano-HA composite scaffold can significantly enhance the formation of the bonelike apatites. Furthermore, we carried out in vitro experiments to test the performance of electrospun scaffolds by utilizing both mouse preosteoblast cell line (MC 3T3 E1) and HOB. Results including cell viability, alkaline phosphatase (ALP) activity, and osteocalcin concentration demonstrated that the PLGA/nano-HA fibers can promote the proliferation of HOB efficiently, indicating that it is a promising scaffold for human bone repair.

  12. Electrospun Poly(N-isopropylacrylamide)/Ethyl Cellulose Nanofibers as Thermoresponsive Drug Delivery Systems.

    PubMed

    Hu, Juan; Li, He-Yu; Williams, Gareth R; Yang, Hui-Hui; Tao, Lei; Zhu, Li-Min

    2016-03-01

    Fibers of poly(N-isopropylacrylamide) (PNIPAAm), ethyl cellulose (EC), and a blend of both were successfully fabricated by electrospinning. Analogous drug-loaded fibers were prepared loaded with ketoprofen (KET). Scanning and transmission electron microscopy showed that the fibers were largely smooth and cylindrical, with no phase separation observed. The addition of KET to the spinning solutions did not affect the morphology of resultant fibers, and no drug particles could be observed to separate from the polymer matrix. X-ray diffraction demonstrated that the drug was present in the amorphous physical form in the fiber matrix. There are significant intermolecular interactions between KET and polymers, as evidenced by IR spectroscopy and molecular modeling. Water contact angle measurements proved that the PNIPAAm and PNIPAAm/EC fibers switched from being hydrophilic to hydrophobic when the temperature was increased through the lower critical solution temperature of 32°C. In vitro drug release studies found that the PNIPAAm/EC blend nanofibers were able to synergistically combine the properties of the 2 polymers, giving temperature-sensitive systems with sustained release properties. In addition, they were established to be nontoxic and suitable for cell growth. This study demonstrates that electrospun-blend PNIPAAm/EC fibers comprise effective and biocompatible materials for drug delivery systems and tissue engineering. PMID:26886332

  13. Towards hybrid swimming microrobots: bacteria assisted propulsion of polystyrene beads.

    PubMed

    Behkam, Bahareh; Sitti, Metin

    2006-01-01

    Compactness and efficiency of biomotors makes them superior to man-made actuators and a very attractive choice of actuation for micro/nanorobots. However, biomotors are difficult to work with due to complications associated with their isolation and reconstitution. To circumvent this problem, here we use flagellar motors inside the intact cell of S. marcescens bacteria. An array of bacteria is used as propeller for a 10 microm polystyrene (PS) bead. PS bead is tracked for several seconds and its displacements is compared with diffusion length of a 10 microm particle. It is shown that the bead moves with an average velocity of 17 microm/s. Orientation of adhesion of S. marcescens to polydimethylsiloxane (PDMS) chips and microscale PS fibers was also investigated. It is shown that for both substrates; only bacteria from farther behind the leading edge of the swarm adhere in end-on configuration.

  14. Interaction of very cold neutrons with a polystyrene-polybutadiene-polystyrene block copolymer

    SciTech Connect

    Antonov, A.V.; Gerasimov, V.I.; Isakov, A.I.; Kuznetsov, S.P.; Meshkov, I.V.; Perekrestenko, A.D.; Tarasov, S.G.

    1985-03-10

    The total interaction cross sections have been studied as a function of the wavelength of very cold neutrons (summation/sub t/(lambda)) in a very-cold-neutron spectrometer (A. V. Antonov et al., Kratk. Soobshch. Fiz. 10, 10 (1977)) with a polystyrene-polybutadiene-polystyrene block copolymer at room temperature and at 99 K.

  15. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.

    PubMed

    Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel

    2015-11-01

    Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications. PMID:26249621

  16. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.

    PubMed

    Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel

    2015-11-01

    Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications.

  17. Superhydrophilic poly(L-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Correia, D. M.; Ribeiro, C.; Botelho, G.; Borges, J.; Lopes, C.; Vaz, F.; Carabineiro, S. A. C.; Machado, A. V.; Lanceros-Méndez, S.

    2016-05-01

    Poly(L-lactic acid), PLLA, electrospun membranes and films were plasma treated at different times and power with argon (Ar) and oxygen (O2), independently, in order to modify the hydrophobic nature of the PLLA membranes. Both Ar and O2 plasma treatments promote an increase in fiber average size of the electrospun membranes from 830 ± 282 nm to 866 ± 361 and 1179 ± 397 nm, respectively, for the maximum exposure time (970 s) and power (100 W). No influence of plasma treatment was detected in the physical-chemical characteristics of PLLA, such as chemical structure, polymer phase or degree of crystallinity. On the other hand, an increase in the roughness of the films was obtained both with argon and oxygen plasma treatments. Surface wettability studies revealed a decrease in the contact angle with increasing plasma treatment time for a given power and with increasing power for a given time in membranes and films and superhydrophilic electrospun fiber membranes were obtained. Results showed that the argon and oxygen plasma treatments can be used to tailor hydrophilicity of PLLA membranes for biomedical applications. MTT assay results indicated that plasma treatments under Ar and O2 do not influence the metabolic activity of MC3T3-E1 pre-osteoblast cells.

  18. Drug release behavior of electrospun twisted yarns as implantable medical devices.

    PubMed

    Maleki, H; Gharehaghaji, A A; Toliyat, T; Dijkstra, P J

    2016-01-01

    In this study, twisted drug-loaded poly(L-lactide) (PLLA) and hybrid poly(L-lactide)/poly(vinyl alcohol) (PLLA/PVA) yarns were produced using an electrospinning technique based on two oppositely charged nozzles. Cefazolin, an antibiotic drug was incorporated in the yarn fibers by addition to the PLLA electrospinning solution. Morphological studies showed that independent of the twist rate, uniform and smooth fibers were formed. The diameter of the electrospun fibers in the yarns decreased at higher twist rates but produced yarns with larger diameters. At increasing twist rates the crystallinity of the fibers in the yarns increased. In the presence of cefazolin the fiber diameter, yarn diameter and crystallinity were always lower than in the non-drug loaded yarns. In addition the yarn mechanical properties revealed a slightly lower strength, modulus and elongation at break upon drug loading. The effect of the twist rate on the cefazolin in vitro release behavior from both PLLA and hybrid yarns revealed similar profiles for both types of drug-loaded yarns. However, the total amount of drug released from the hybrid PLLA/PVA yarns was significantly higher. The release kinetics over a period of 30 d were fitted to different mathematical models. Cefazolin release from electrospun PLLA yarns was governed by a diffusion mechanism and could best be fitted by Peppas and Higuchi models. The models that were found best to describe the drug release mechanism from the hybrid PLLA/PVA yarns were a first-order model and the Higuchi model. PMID:27634914

  19. Role of single-walled carbon nanotubes on ester hydrolysis and topography of electrospun bovine serum albumin/poly(vinyl alcohol) membranes.

    PubMed

    Ford, Ericka N J; Suthiwangcharoen, Nisaraporn; D'Angelo, Paola A; Nagarajan, Ramanathan

    2014-07-23

    Electrospun membranes were studied for the chemical deactivation of threat agents by means of enzymatic proteins. Protein loading and the surface chemistry of hybrid nanofibers influenced the efficacy by which embedded enzymes could digest the substrate of interest. Bovine serum albumin (BSA), selected as a model protein, was electrospun into biologically active fibers of poly(vinyl alcohol), PVA. Single-walled carbon nanotubes (SWNTs) were blended within these mixtures to promote protein assembly during the process of electrospinning and subsequently the ester hydrolysis of the substrates. The SWNT incorporation was shown to influence the topography of PVA/BSA nanofibers and enzymatic activity against paraoxon, a simulant for organophosphate agents and a phosphorus analogue of p-nitrophenyl acetate (PNA). The esterase activity of BSA against PNA was uncompromised upon its inclusion within nanofibrous membranes because similar amounts of PNA were hydrolyzed by BSA in solution and the electrospun BSA. However, the availability of BSA along the fiber surface was shown to affect the ester hydrolysis of paraoxon. Atomic force microscopy images of nanofibers implicated the surface migration of BSA during the electrospinning of SWNT filled dispersions, especially as greater weight fractions of protein were added to the spinning mixtures. In turn, the PVA/SWNT/BSA nanofibers outperformed the nanotube free PVA/BSA membranes in terms of paraoxon digestion. The results support the development of electrospun polymer nanofiber platforms, modulated by SWNTs for enzyme catalytic applications relevant to soldier protective ensembles. PMID:25007411

  20. In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes.

    PubMed

    Cheng, Liying; Sun, Xiaoming; Hu, Changmin; Jin, Rong; Sun, Baoshan; Shi, Yaoming; Zhang, Lu; Cui, Wenguo; Zhang, Yuguang

    2013-12-01

    Clinically, hypertrophic scarring (HS) is a major concern for patients and has been a challenge for surgeons, as there is a lack of treatments that can intervene early in the formation of HS. This study reports on a Chinese drug, 20(R)-ginsenoside Rg3 (GS-Rg3), which can inhibit in vivo the early formation of HS and later HS hyperplasia by inducing the apoptosis of fibroblasts, inhibiting inflammation and down-regulating VEGF expression. Implantable biodegradable GS-Rg3-loaded poly(l-lactide) (PLA) fibrous membranes were successfully fabricated using co-electrospinning technology to control drug release and improve drug utilization. The in vivo releasing time of GS-Rg3 lasts for 3 months, and the drug concentration released in rabbits can be controlled by varying the drug content of the electrospun fibers. Histological observations of HE staining indicate that GS-Rg3/PLA significantly inhibits the HS formation, with obvious improvements in terms of dermis layer thickness, epidermis layer thickness and fibroblast proliferation. The results of immunohistochemistry staining and Masson's trichrome staining demonstrate that GS-Rg3/PLA electrospun fibrous membranes significantly inhibit HS formation, with decreased expression of collagen fibers and microvessels. VEGF protein levels are much lower in the group treated with GS-Rg3/PLA eletrospun membranes compared with other groups. These results demonstrate that GS-Rg3 is a novel drug, capable of inhibiting the early formation of HS and later HS hyperplasia. GS-Rg3/PLA electrospun membrane is a very promising new treatment for early and long-term treatment of HS.

  1. Shear-induced metastable states of end-grafted polystyrene

    SciTech Connect

    Sasa, Leslie A.; Yearley, Eric J.; Jablin, Michael S.; Majewski, Jaroslaw; Hjelm, Rex P.; Gilbertson, Robert D.; Lavine, Adrienne S.

    2011-08-15

    The in situ molecular scale response of end-grafted polystyrene to shear against a deuterated polystyrene melt was investigated with neutron reflectometry. The derived grafted polystyrene density profiles showed that the grafted polystyrene was retained on the quartz wafer during the measurements. The profiles suggested that the end-grafted polystyrene response to shear results in a series of metastable states, rather than equilibrium states assumed in the current theory. Except for some possible extension and/or contraction of the grafted polystyrene with shear, there was no obvious correlation between the grafted polymer structure and the shear thinning behavior observed in these samples.

  2. Electrospun Nanofibers for Neural and Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Xia, Younan

    2009-03-01

    Electrospinning has been exploited for almost one century to process polymers and other materials into nanofibers with controllable compositions, diameters, porosities, and porous structures for a variety of applications. Owing to its small size, high porosity, and large surface area, a nonwoven mat of electrospun nanofibers can serve as an ideal scaffold to mimic the extra cellular matrix for cell attachment and nutrient transportation. The nanofiber itself can also be functionalized through encapsulation or attachment of bioactive species such as extracellular matrix proteins, enzymes, and growth factors. In addition, the nanofibers can be further assembled into a variety of arrays or architectures by manipulating their alignment, stacking, or folding. All these attributes make electrospinning a powerful tool for generating nanostructured materials for a range of biomedical applications that include controlled release, drug delivery, and tissue engineering. This talk will focus on the use of electrospun nanofibers as scaffolds for neural and bone tissue engineering.

  3. Cytotoxicity associated with electrospun polyvinyl alcohol.

    PubMed

    Pathan, Saif G; Fitzgerald, Lisa M; Ali, Syed M; Damrauer, Scott M; Bide, Martin J; Nelson, David W; Ferran, Christiane; Phaneuf, Tina M; Phaneuf, Matthew D

    2015-11-01

    Polyvinyl alcohol (PVA) is a synthetic, water-soluble polymer, with applications in industries ranging from textiles to biomedical devices. Research on electrospinning of PVA has been targeted toward optimizing or finding novel applications in the biomedical field. However, the effects of electrospinning on PVA biocompatibility have not been thoroughly evaluated. In this study, the cytotoxicity of electrospun PVA (nPVA) which was not crosslinked after electrospinning was assessed. PVA polymers of several molecular weights were dissolved in distilled water and electrospun using the same parameters. Electrospun PVA materials with varying molecular weights were then dissolved in tissue culture medium and directly compared against solutions of nonelectrospun PVA polymer in human coronary artery smooth muscle cells and human coronary artery endothelial cells cultures. All nPVA solutions were cytotoxic at a threshold molar concentration that correlated with the molecular weight of the starting PVA polymer. In contrast, none of the nonelectrospun PVA solutions caused any cytotoxicity, regardless of their concentration in the cell culture. Evaluation of the nPVA material by differential scanning calorimetry confirmed that polymer degradation had occurred after electrospinning. To elucidate the identity of the nPVA component that caused cytotoxicity, nPVA materials were dissolved, fractionated using size exclusion columns, and the different fractions were added to HCASMC and human coronary artery endothelial cells cultures. These studies indicated that the cytotoxic component of the different nPVA solutions were present in the low-molecular-weight fraction. Additionally, the amount of PVA present in the 3-10 kg/mol fraction was approximately sixfold greater than that in the nonelectrospun samples. In conclusion, electrospinning of PVA resulted in small-molecular-weight fractions that were cytotoxic to cells. This result demonstrates that biocompatibility of electrospun

  4. Multi-Layer Electrospun Membrane Mimicking Tendon Sheath for Prevention of Tendon Adhesions

    PubMed Central

    Jiang, Shichao; Yan, Hede; Fan, Dapeng; Song, Jialin; Fan, Cunyi

    2015-01-01

    Defect of the tendon sheath after tendon injury is a main reason for tendon adhesions, but it is a daunting challenge for the biomimetic substitute of the tendon sheath after injury due to its multi-layer membrane-like structure and complex biologic functions. In this study, a multi-layer membrane with celecoxib-loaded poly(l-lactic acid)-polyethylene glycol (PELA) electrospun fibrous membrane as the outer layer, hyaluronic acid (HA) gel as middle layer, and PELA electrospun fibrous membrane as the inner layer was designed. The anti-adhesion efficacy of this multi-layer membrane was compared with a single-layer use in rabbit flexor digitorum profundus tendon model. The surface morphology showed that both PELA fibers and celecoxib-loaded PELA fibers in multi-layer membrane were uniform in size, randomly arrayed, very porous, and smooth without beads. Multi-layer membrane group had fewer peritendinous adhesions and better gliding than the PELA membrane group and control group in gross and histological observation. The similar mechanical characteristic and collagen expression of tendon repair site in the three groups indicated that the multi-layer membrane did not impair tendon healing. Taken together, our results demonstrated that such a biomimetic multi-layer sheath could be used as a potential strategy in clinics for promoting tendon gliding and preventing adhesion without poor tendon healing. PMID:25822877

  5. Gelatin-GAG electrospun nanofibrous scaffold for skin tissue engineering: fabrication and modeling of process parameters.

    PubMed

    Pezeshki-Modaress, Mohamad; Mirzadeh, Hamid; Zandi, Mojgan

    2015-03-01

    Electrospinning is a very useful technique for producing polymeric nanofibers by applying electrostatic forces. In this study, fabrication of novel gelatin/GAG nanofibrous mats and also the optimization of electrospinning process using response surface methodology were reported. At optimization section, gelatin/GAG blend ratio, applied voltage and feeding rate, their individual and interaction effects on the mean fiber diameter (MFD) and standard deviation of fiber diameter (SDF) were investigated. The obtained model for MFD has a quadratic relationship with gelatin/GAG blend ratio, applied voltage and feeding rate. The interactions of blend ratio and applied voltage and also applied voltage and flow rate were found significant but the interactions of blend ratio and flow rate were ignored. The optimum condition for gelatin/GAG electrospinning was also introduced using the model obtained in this study. The potential use of optimized electrospun mat in skin tissue engineering was evaluated using culturing of human dermal fibroblast cells (HDF). The SEM micrographs of HDF cells on the nanofibrous structure show that fibroblast cells can highly attach, grow and populate on the fabricated scaffold surface. The electrospun gelatin/GAG nanofibrous mats have a potential for using as scaffold for skin, cartilage and cornea tissue engineering.

  6. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering.

    PubMed

    Rajzer, Izabella; Menaszek, Elżbieta; Kwiatkowski, Ryszard; Planell, Josep A; Castano, Oscar

    2014-11-01

    In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold. PMID:25280695

  7. Comparison of electrospun and extruded Soluplus®-based solid dosage forms of improved dissolution.

    PubMed

    Nagy, Zsombor K; Balogh, Attila; Vajna, Balázs; Farkas, Attila; Patyi, Gergo; Kramarics, Aron; Marosi, György

    2012-01-01

    Electrospinning (ES) and extrusion of a poorly water-soluble active pharmaceutical ingredient were used to improve its dissolution, which is a major challenge in the field of pharmaceutical technology. Spironolactone was applied as model drug and recently developed polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) was used as carrier matrix and solubilizer. ES of the polymer matrix from ethanol solution was optimized at first without spironolactone and then the cosolution of the drug and the carrier was used for forming electrospun fibers. It resulted in real solid solution due to its very efficient amorphization effect. On the contrary, a low amount of crystalline spironolactone appeared in the extrudates according to Raman microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). Raman microspectrometry had the lowest detection limit of spironolactone crystals compared with XRD and differential scanning calorimetry. Both ES and extrusion techniques resulted in significantly improved dissolution. Electrospun ultrafine fibers increased the dissolution more effectively, owing to the formed solid solution and huge surface. The developed continuous technologies demonstrate great potential to tackle the challenge of inadequate dissolution of poorly water-soluble drugs in several cases.

  8. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix.

    PubMed

    Chen, Feng; Li, Xiaoqiang; Mo, Xiumei; He, Chuanglong; Wang, Hongsheng; Ikada, Yoshito

    2008-01-01

    Chitosan-poly(L-lactic acid-co-epsilon-caprolactone)(50:50) (P(LLA-CL)) (CS/P(LLA-CL)) blends were electrospun into nanofibers using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and trifluoroacetic acid (TFA) as solvents. Chitosan, which is difficult to electrospin into nanofibers, could be easily electrospun into nanofibers with addition of a small portion of P(LLA-CL). The fiber diameter depended on both the polymer concentration and the blend ratio of chitosan to P(LLA-CL). The average fiber diameter increased with increasing polymer concentration and decreasing the blend ratio of chitosan to P(LLA-CL). X-ray diffractometry (XRD) and Fourier-transform infrared (FT-IR) spectra were measured to characterize blended nanofibers. The porosity of CS/P(LLA-CL) nanofiber mats increased with increasing the weight ratio of chitosan to P(LLA-CL), while both the tensile strength and the ultimate strain increased with increasing P(LLA-CL) ratio. Fibroblast cell growth on nanofiber mats were investigated with MTT assay and scanning electron microscope (SEM) observation. The highest cell proliferation was observed on the nanofiber mats when the weight ratio of chitosan to P(LLA-CL) was 1:2. As SEM images shown, fibroblast cells showed a polygonal shape on blend nanofiber mats and migrated into the nanofiber mats.

  9. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection.

    PubMed

    Xue, Jiajia; Niu, Yuzhao; Gong, Min; Shi, Rui; Chen, Dafu; Zhang, Liqun; Lvov, Yuri

    2015-02-24

    Guided tissue regeneration/guided bone regeneration membranes with sustained drug delivery were developed by electrospinning drug-loaded halloysite clay nanotubes doped into poly(caprolactone)/gelatin microfibers. Use of 20 wt % nanotube content in fiber membranes allowed for 25 wt % metronidazole drug loading in the membrane. Nanotubes with a diameter of 50 nm and a length of 600 nm were aligned within the 400 nm diameter electrospun fibers, resulting in membranes with doubling of tensile strength along the collector rotating direction. The halloysite-doped membranes acted as barriers against cell ingrows and have good biocompatibility. The metronidazole-loaded halloysite nanotubes incorporated in the microfibers allowed for extended release of the drugs over 20 days, compared to 4 days when directly admixed into the microfibers. The sustained release of metronidazole from the membranes prevented the colonization of anaerobic Fusobacteria, while eukaryotic cells could still adhere to and proliferate on the drug-loaded composite membranes. This indicates the potential of halloysite clay nanotubes as drug containers that can be incorporated into electrospun membranes for clinical applications.

  10. Generation of Electrospun Nanofibers with Controllable Degrees of Crimping through a Simple, Plasticizer-based Treatment

    PubMed Central

    Liu, Wenying; Lipner, Justin; Moran, Christine H.; Feng, Liangzhu; Li, Xiyu

    2015-01-01

    A method was developed for generating crimped features in uniaxially aligned electrospun nanofibers to mimic the anatomic structure of collagen fibrils in tendon tissues. We demonstrated that nanofibers comprised of poly(lactic acid) (PLA) and its copolymers or blends would shrink to generate crimped features along the fiber axis when the sample was treated with ethanol. The degree of crimping could be readily controlled by pre-setting the extent of shrinkage allowed for the fibers. As indicated by results from both Raman spectroscopy and differential scanning calorimetry, the crimping was a result of the energy released from the residual stress contained in the electrospun nanofibers. Tensile testing indicates that the crimped nanofibers had a non-linear stiffening behavior with increasing strain, resembling the mechanical behavior of native tendon. In addition, the crimped nanofibers were able to provide better protection to the attached tendon fibroblasts under uniaxial strains when compared to their straight counterparts. Taken together, the crimped nanofibers present a promising new platform for tendon tissue engineering. PMID:25758008

  11. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering.

    PubMed

    Rajzer, Izabella; Menaszek, Elżbieta; Kwiatkowski, Ryszard; Planell, Josep A; Castano, Oscar

    2014-11-01

    In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix. The composite Gel/SG5/PCL scaffold exhibited more enhanced mechanical properties than individual Gel and Gel/SG5 scaffolds. The presence of SG5 nanoparticles accelerated the nucleation and growth of apatite crystals on the surface of the composite Gel/SG5/PCL scaffold in simulated body fluid (SBF). The osteoblast response in vitro to developed electrospun scaffolds (PCL and Gel/SG5/PCL) was investigated by using normal human primary NHOst cell lines. NHOst cell culture studies showed that higher alkaline phosphatase (ALP) activity and better mineralization were obtained in the case of composite materials than in pure PCL scaffolds. The mechanically strong PCL scaffold served as a skeleton, while the Gel/SG5 fibers facilitated cell spreading and mineralization of the scaffold.

  12. Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon-6 Nanofibers

    SciTech Connect

    Liu,Y.; Cui, L.; Guan, F.; Gao, Y.; Hedin, N.; Zhu, L.; Fong, H.

    2007-01-01

    Uniform nylon-6 nanofibers with diameters around 200 nm were prepared by electrospinning. Polymorphic phase transitions and crystal orientation of nylon-6 in unconfined (i.e., as-electrospun) and a high T{sub g} (340 C) polyimide confined nanofibers were studied. Similar to melt-spun nylon-6 fibers, electrospun nylon-6 nanofibers also exhibited predominant, metastable {gamma}-crystalline form, and the {gamma}-crystal (chain) axes preferentially oriented parallel to the fiber axis. Upon annealing above 150 C, {gamma}-form crystals gradually melted and recrystallized into thermodynamically stable {alpha}-form crystals, which ultimately melted at 220 C. Release of surface tension accompanied this melt-recrystallization process, as revealed by differential scanning calorimetry. For confined nanofibers, both the melt-recrystallization and surface tension release processes were substantially depressed; {gamma}-form crystals did not melt and recrystallize into {alpha}-form crystals until 210 C, only 10 C below the T{sub m} at 220 C. After complete melting of nanoconfined crystals at 240 C and recrystallization at 100 C, only {alpha}-form crystals oriented perpendicular to the nanofiber axis were obtained. In the polyimide-confined nanofibers, the Brill transition (from the monoclinic {alpha}-form to a high-temperature monoclinic form) was observed at 180-190 C, which was at least 20 C higher than that in unconfined nylon-6 at {approx}160 C. This, again, was attributed to the confinement effect.

  13. Process optimization of electrospun polycaprolactone and nanohydroxyapatite composite nanofibers using response surface methodology.

    PubMed

    Doustgani, A; Vasheghani-Farahani, E; Soleimani, M; Hashemi-Najafabadi, S

    2013-07-01

    Electrospinning is a process that produces continuous polymer fibers in the sub-micron range through the action of an external electric field imposed on a polymer solution or melt. In this study the effects of process parameters on the mean diameter of electrospun polycaprolactone and nanohydroxyapatite (nHA) composite nanofibers were investigated. The fiber morphology and mean fiber diameter of prepared nanofibers were investigated by scanning electron microscopy. Response surface methodology (RSM) was utilized to design the experiments at the settings of nHA concentration, applied voltage, spinning distance and the flow rate of polymer solution. It also used to find and evaluate a quantitative relationship between electrospinning parameters and average fiber diameters. Mean fiber diameter was correlated to these variables using a third order polynomial function. Value of R-square for the model was 0.96, which indicates that 96% of the variability in the dependent variable could be explained and only 4% of the total variations cannot be explained by the model. It was found that nHA concentration, applied voltage and spinning distance were the most effective parameters and the sole effect of flow rate was not important. The predicted fiber diameters were in good agreement with the experimental results.

  14. Molecular basis of fracture in polystyrene films

    SciTech Connect

    Sambasivam, M.; Klein, A.; Thomas, T.N.; Mohammadi, N.; Sperling, L.H.

    1993-12-31

    To understand the molecular mechanisms involved in the fracture of polystyrene films, a custom built dental burr grinding instrument was used. Films were made from latexes, compression molded polystyrene, and by photopolymerization. Latexes were prepared by direct miniemulsification of polystyrene using sodium lauryl sulfate as surfactant and cetyl and stearyl alcohols as co-surfactants. Grinding of various films was carried out at room temperature. GPC was used to determine the molecular weight before and after grinding. From the molecular weight reduction, the number of chain scissions per unit volume was determined. The energy required for the grinding process was also measured. The results are consistent with a model of exciting 300{+-}150 bonds (per chain fracture) to the breaking point. The most probable deformation mode, consuming maximum energy is envisaged as the scissor-like opening of the 109{degrees} -C-C-C bond angle.

  15. Reclamation of waste polystyrene by sulfonation

    SciTech Connect

    Inagaki, Yasuhito; Kuromiya, Miyuki; Noguchi, Tsutomu; Watanabe, Haruo

    1999-06-08

    Waste polystyrene containing additives was converted into a polymeric flocculant by a chemical modification. Specifically, waste polystyrene and waste high-impact polystyrene (HI-PS) containing rubber components or a coloring agent were sulfonated to produce a water-soluble polymer whose molecular weight ranged from 400,000 to 700,000. The polymer provides superior purification of the supernatant after flocculating a kaolin suspension than a conventional polymeric flocculant such as a partially hydrolyzed polyacrylamide (hereafter abbreviate PAA). Moreover, using the polymer and a PAA together provides a higher sedimentation rate and a purer supernatant in the treatment of actual wastewater than using each one separately. A new reclamation technology to convert waste plastic into a functional polymer is reported.

  16. Integration of Multiple Components in Polystyrene-based Microfluidic Devices Part 1: Fabrication and Characterization

    PubMed Central

    Johnson, Alicia S.; Anderson, Kari B.; Halpin, Stephen T.; Kirkpatrick, Douglas C.; Spence, Dana M.; Martin, R. Scott

    2012-01-01

    In Part I of a two-part series, we describe a simple, and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and micropipettors for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis. PMID:23120747

  17. Thermal Decomposition of Radiation-Damaged Polystyrene

    SciTech Connect

    Abrefah, John; Klinger, George S.

    2000-09-26

    The radiation-damaged polystyrene (given the identification name of 'polycube') was fabricated by mixing high-density polystyrene material ("Dylene Fines # 100") with plutonium and uranium oxides. The polycubes were used in the 1960s for criticality studies during processing of spent nuclear fuel. The polycubes have since been stored for almost 40 years at the Hanford Plutonium Finishing Plant (PFP) after failure of two processes to reclaim the plutonium and uranium oxides from the polystyrene matrix. Thermal decomposition products from this highly cross-linked polystyrene matrix were characterized using Gas Chromatograph/Mass Spectroscopy (GC/MS) system coupled to a horizontal furnace. The decomposition studies were performed in air and helium atmospheres at about 773 K. The volatile and semi-volatile organic products for the radiation-damaged polystyrene were different compared to virgin polystyrene. The differences were in the number of organic species generated and their concentrations. In the inert (i.e., helium) atmosphere, the major volatile organic products identified (in order of decreasing concentrations) were styrene, benzene, toluene, ethylbenzene, xylene, nathphalene, propane, .alpha.-methylbenzene, indene and 1,2,3-trimethylbenzene. But in air, the major volatile organic species identified changed slightly. Concentrations of the organic species in the inert atmosphere were significantly higher than those for the air atmosphere processing. Overall, 38 volatile organic species were identified in the inert atmosphere compared to 49 species in air. Twenty of the 38 species in the inert conditions were also products in the air atmosphere. Twenty-two oxidized organic products were identified during thermal processing in air.

  18. Tunable surface morphology of electrospun PMMA fiber using binary solvent

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhao, Jiang-hui; Liu, Peng; He, Ji-huan

    2016-02-01

    Superhydrophobic-superoleophilic fibrous polymethyl methacrylate (PMMA) membranes were prepared by electrospinning technique. The membranes exhibited a high water contact angle up to 153.9° and nearly zero oil contact angle. This super wettability property is attributed to hierarchical macro- and nanostructure on surface of PMMA membrane and can be conveniently tuned by adjusting the weight ratio of binary solvent of N,N-dimethylacetamide and acetone. Resultant fibrous PMMA membranes with superhydrophobic-superoleophilic property can be used in water treatment. This facile one-step strategy shows an alternative approach to produce special wettability surface and will benefit this material.

  19. Comparison of Adsorption/Desorption of Volatile Organic Compounds (VOCs) on Electrospun Nanofibers with Tenax TA for Potential Application in Sampling

    PubMed Central

    Chu, Lanling; Deng, Siwei; Zhao, Renshan; Deng, Jianjun; Kang, Xuejun

    2016-01-01

    The objective of this study was to compare the adsorption/desorption of target compounds on homemade electrospun nanofibers, polystyrene (PS) nanofibers, acrylic resin (AR) nanofibers and PS-AR composite nanofibers with Tenax TA. Ten volatile organic compounds (VOCs) were analyzed by preconcentration onto different sorbents followed by desorption (thermal and solvent orderly) and analysis by capillary gas chromatography. In comparison to Tenax TA, the electrospun nanofibers displayed a significant advantage in desorption efficiency and adsorption selectivity. Stability studies were conducted as a comparative experiment between PS-AR nanofibers and Tenax TA using toluene as the model compound. No stability problems were observed upon storage of toluene on both PS-AR nanofibers and Tenax TA over 60 hours period when maintained in an ultra-freezer (−80°C). The nanofibers provided slightly better stability for the adsorbed analytes than Tenax TA under other storage conditions. In addition, the nanofibers also provided slightly better precision than Tenax TA. The quantitative adsorption of PS-AR nanofibers exhibited a good linearity, as evidenced by the 0.988–0.999 range of regression coefficients (R). These results suggest that for VOCs sampling the electrospun nanofibers can be a potential ideal adsorbent. PMID:27776140

  20. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene.

    PubMed

    Mor, Roi; Sivan, Alex

    2008-11-01

    Polystyrene, which is one of the most utilized thermoplastics, is highly durable and is considered to be non-biodegradable. Hence, polystyrene waste accumulates in the environment posing an increasing ecological threat. In a previous study we have isolated a biofilm-producing strain (C208) of the actinomycete Rhodococcus ruber that degraded polyethylene films. Formation of biofilm, by C208, improved the biodegradation of polyethylene. Consequently, the present study aimed at monitoring the kinetics of biofilm formation by C208 on polystyrene, determining the physiological activity of the biofilm and analyzing its capacity to degrade polystyrene. Quantification of the biofilm biomass was performed using a modified crystal violet (CV) staining or by monitoring the protein content in the biofilm. When cultured on polystyrene flakes, most of the bacterial cells adhered to the polystyrene surface within few hours, forming a biofilm. The growth of the on polystyrene showed a pattern similar to that of a planktonic culture. Furthermore, the respiration rate, of the biofilm, exhibited a pattern similar to that of the biofilm growth. In contrast, the respiration activity of the planktonic population showed a constant decline with time. Addition of mineral oil (0.005% w/v), but not non-ionic surfactants, increased the biofilm biomass. Extended incubation of the biofilm for up to 8 weeks resulted in a small reduction in the polystyrene weight (0.8% of gravimetric weight loss). This study demonstrates the high affinity of C208 to polystyrene which lead to biofilm formation and, presumably, induced partial biodegradation. PMID:18401686

  1. Positron annihilation study of high impact polystyrene

    NASA Astrophysics Data System (ADS)

    Suzuki, Naoki; Takamori, Akimitsu; Baba, Junpei; Matsuda, Junichi; Hyodo, Toshio; Okamoto, Yasushi; Miyagi, Hiroshi

    2000-06-01

    Positron lifetime spectra for general purpose polystyrene (GPPS), polybutadiene rubber (PBR), and their copolymers, styrenebutadiene rubber (SBR) and high impact polystyrene (HIPS) have been measured. It has been found that the free volumes in the copolymers are smaller than the average over the individual polymers, due to the interfacial interaction between the styrene and rubber phases. A long-lived component with a mean lifetime of about 123 ns was observed in the spectrum for deformed HIPS, showing the existence of ortho-positronium ( o-Ps) in the deformation induced crazes.

  2. Investigating the potential of electrospun gelatin and collagen scaffolds for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Sisson, Kristin M.

    Electrospinning provides an avenue to explore tissue engineering with the ability to produce nano- and micro-sized fibers in a non-woven construct with properties ideal for a tissue engineered scaffold including: small diameter fibers, which create a large surface to volume ratio, and an interconnected porous network that enables cell migration, good mechanical integrity and a three-dimensional structure. A tissue engineered scaffold also must be biocompatible, biodegradable, non-toxic and able to be sterilized. All of these requirements can be satisfied by choosing an appropriate polymer and solvent system for electrospinning. The main objective of this research is to create a non-toxic, flat, bone tissue engineered scaffold to place into a non-immune compromised mouse. The current bone tissue repair and replacement methodologies include using metal and ceramic replacements or autologous and autogenous bone grafts. Each of these has its own set of disadvantages. Autologous grafts are bone harvested in one location in a patient and used in another location. This procedure is expensive, often results in pain and infection at the replacement site, and the actual harvesting procedure can cause problems for the patient. Autogenous grafts are bone harvested in one patient and used in another patient. The shortcomings include low donor availability and the possibility of rejection of the implant. The other options include using metal and ceramics to create replacement bone. However, metals provide good mechanical stability but can fail due to infection and also have poor integration into natural tissue. Ceramics, on the other hand, are brittle and have very low tensile strength. The natural extracellular matrix (ECM) of bone consists mainly of collagen type I. Electrospun fiber diameters closely resemble those of the natural ECM of bone. Thus, electrospinning a natural polymer like collagen type I for bone tissue engineering could make sense. Applications for these

  3. Investigation of the electrospun carbon web as the catalyst layer for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Guanjie; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2014-12-01

    Polyacrylonitrile (PAN) carbon nonwoven web consisting of 100-200 nm ultrafine fibers has been developed by electrospinning and subsequent carbonization process at 1000 °C for different times. The surface morphology, composition, structure, and electrical conductivity of the electrospun carbon webs (ECWs) as well as their electrochemical properties toward vanadium redox couples have been characterized. With the increasing of carbonization time, the electrochemical reversibility of the vanadium redox couples on the ECW is enhanced greatly. As the carbonization time increases up to 120 min, the hydrogen evolution is facilitated while the reversibility is promoted a little bit further. The excellent performance of ECW may be attributed to the conversion of fibers carbon structure and improvement of electrical conductivity. Due to the good electrochemical activity and freestanding 3-dimensional structure, the ECW carbonized for 90 min is used as catalyst layer in vanadium redox flow battery (VRFB) and enhances the cell performance.

  4. Advances in drug delivery via electrospun and electrosprayed nanomaterials.

    PubMed

    Zamani, Maedeh; Prabhakaran, Molamma P; Ramakrishna, Seeram

    2013-01-01

    Electrohydrodynamic (EHD) techniques refer to procedures that utilize electrostatic forces to fabricate fibers or particles of different shapes with sizes in the nano-range to a few microns through electrically charged fluid jet. Employing different techniques, such as blending, surface modification, and coaxial process, there is a great possibility of incorporating bioactive such molecules as drugs, DNA, and growth factors into the nanostructures fabricated via EHD techniques. By careful selection of materials and processing conditions, desired encapsulation efficiency as well as preserved bioactivity of the therapeutic agents can be achieved. The drug-loaded nanostructures produced can be applied via different routes, such as implantation, injection, and topical or oral administration for a wide range of disease treatment. Taking advantage of the recent developments in EHD techniques like the coaxial process or multilayered structures, individually controlled delivery of multiple drugs is achievable, which is of great demand in cancer therapy and growth-factor delivery. This review summarizes the most recent techniques and postmodification methods to fabricate electrospun nanofibers and electrosprayed particles for drug-delivery applications.

  5. Advances in drug delivery via electrospun and electrosprayed nanomaterials

    PubMed Central

    Zamani, Maedeh; Prabhakaran, Molamma P; Ramakrishna, Seeram

    2013-01-01

    Electrohydrodynamic (EHD) techniques refer to procedures that utilize electrostatic forces to fabricate fibers or particles of different shapes with sizes in the nano-range to a few microns through electrically charged fluid jet. Employing different techniques, such as blending, surface modification, and coaxial process, there is a great possibility of incorporating bioactive such molecules as drugs, DNA, and growth factors into the nanostructures fabricated via EHD techniques. By careful selection of materials and processing conditions, desired encapsulation efficiency as well as preserved bioactivity of the therapeutic agents can be achieved. The drug-loaded nanostructures produced can be applied via different routes, such as implantation, injection, and topical or oral administration for a wide range of disease treatment. Taking advantage of the recent developments in EHD techniques like the coaxial process or multilayered structures, individually controlled delivery of multiple drugs is achievable, which is of great demand in cancer therapy and growth-factor delivery. This review summarizes the most recent techniques and postmodification methods to fabricate electrospun nanofibers and electrosprayed particles for drug-delivery applications. PMID:23976851

  6. Rapid implantation of dissolving microneedles on an electrospun pillar array.

    PubMed

    Yang, Huisuk; Kim, Soyoung; Huh, Inyoung; Kim, Suyong; Lahiji, Shayan F; Kim, Miroo; Jung, Hyungil

    2015-09-01

    Dissolving microneedles (DMNs), designed to release drugs and dissolve after skin insertion, have been spotlighted as a novel transdermal delivery system due to their advantages such as minimal pain and tissue damage, ability to self-administer, and no associated hazardous residues. The drug delivery efficacy of DMNs, however, is limited by incomplete insertion and the extended period required for DMN dissolution. Here, we introduce a novel DMN delivery system, DMN on an electrospun pillar array (DEPA), which can rapidly implant DMNs into skin. DMNs were fabricated on a pillar array covered by a fibrous sheet produced by electrospinning PLGA solution (14%, w/v). DMNs were implanted into the skin by manual application (press and vibration for 10 s) by tearing of the fibers hung on the 300-μm pillars. Separation of DMNs from the fibrous sheet was dependent on both pillar height and the properties of the fibrous sheet. After evaluation of the implantation and dissolution of DMNs with diffusion of red dye by taking cross-sectional images of porcine skin, the hypoglycemic effect of insulin loaded DEPA was examined using a healthy mouse model. This DMN array overcomes critical issues associated with the low penetration efficiency of flat patch-based DMNs, and will allow realization of patient convenience with the desired drug efficacy. PMID:26117659

  7. Electrospun nitric oxide releasing bandage with enhanced wound healing.

    PubMed

    Lowe, A; Bills, J; Verma, R; Lavery, L; Davis, K; Balkus, K J

    2015-02-01

    Research has shown that nitric oxide (NO) enhances wound healing. The incorporation of NO into polymers for medical materials and surgical devices has potential benefits for many wound healing applications. In this work, acrylonitrile (AN)-based terpolymers were electrospun to form non-woven sheets of bandage or wound dressing type materials. NO is bound to the polymer backbone via the formation of a diazeniumdiolate group. In a 14 day NO release study, the dressings released 79 μmol NO g(-1) polymer. The NO-loaded dressings were tested for NO release in vivo, which demonstrate upregulation of NO-inducible genes with dressing application compared to empty dressings. Studies were also conducted to evaluate healing progression in wounds with dressing application performed weekly and daily. In two separate studies, excisional wounds were created on the dorsa of 10 mice. Dressings with NO loaded on the fibers or empty controls were applied to the wounds and measurements of the wound area were taken at each dressing change. The data show significantly enhanced healing progression in the wounds with weekly NO application, which is more dramatic with daily application. Further, the application of daily NO bandages results in improved wound vascularity. These data demonstrate the potential for this novel NO-releasing dressing as a valid wound healing therapy. PMID:25463501

  8. Stability of β-carotene in polyethylene oxide electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Peinado, I.; Mason, M.; Romano, A.; Biasioli, F.; Scampicchio, M.

    2016-05-01

    β-carotene (βc) was successfully incorporated into electrospun nanofibers of poly-(ethylene oxide) (PEO) with the aim of prolonging its shelf life and thermal stability. The physical and thermal properties of the βc-PEO-nanofibers were determined by scanning electron microscopy (SEM), color analysis, and differential scanning calorimetry (DSC). The nanofibers of PEO and βc-PEO exhibited average fiber diameters of 320 ± 46 and 230 ± 21 nm, with colorimetric coordinates L* = 95.7 ± 2.4 and 89.4 ± 4.6 and b* = -0.5 ± 0.1 and 6.2 ± 3.0 respectively. Thermogravimetric analysis coupled with Proton Transfer-Mass Spectroscopy (TGA/PTR-ms) demonstrated that coated βc inside PEO nanofibers increased thermal stability when compared to standard βc in powder form. In addition, β-carotene in the membranes showed higher stability during storage when compared with β-carotene in solution with a decrease in concentration of 57 ± 4% and 70 ± 2% respectively, thus should extend the shelf life of this compound. Also, TGA coupled with PTR-MS resulted in a promising technique to online-monitoring thermal degradation.

  9. Interfacial adhesion of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1987-01-01

    Relative adhesion strengths between AS4, AS1, and XAS carbon fibers and thermoplastic polymers were determined using the embedded single filament test. Polymers studied included polycarbonate, polyphenylene oxide, polyetherimide, polysulfone, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate polysiloxane block copolymer. Fiber surface treatments and sizings improved adhesion somewhat, but adhesion remained well below levels obtained with epoxy matrices. An explanation for the differences between the Hercules and Grafil fibers was sought using X ray photon spectroscopy, wetting, scanning electron microscopy and thermal desorption analysis.

  10. Redox active dendronized polystyrenes equipped with peripheral triarylamines

    PubMed Central

    Nokami, Toshiki; Musya, Naoki; Morofuji, Tatsuya; Takeda, Keiji; Takumi, Masahiro; Shimizu, Akihiro

    2014-01-01

    Summary Dendronized polystyrene having peripheral bromo groups was prepared from the dendronization of unfunctionalized polystyrene with dendritic diarylcarbenium ions bearing peripheral bromo groups using the “cation pool” method. The palladium-catalyzed amination of the peripheral bromo groups with diarylamine gave dendronized polystyrene equipped with peripheral triarylamines, which exhibited two sets of reversible redox peaks in the cyclic voltammetry curves. PMID:25670978

  11. Superhydrophobic and oleophobic fibers by coaxial electrospinning.

    PubMed

    Han, Daewoo; Steckl, Andrew J

    2009-08-18

    Control of surface wetting properties to produce strongly hydrophobic or hydrophilic effects is at the heart of many macro- and microfluidic applications. In this work, we have investigated coaxial electrospinning to produce core-sheath-structured nano/microfibers that combine different properties from individual core and sheath materials. Teflon AF is an amorphous fluoropolymer that is widely utilized as a hydrophobic material. Hydrophobic fluoropolymers are normally not electrospinnable because their low dielectric constant prevents sufficient charging for a solution to be electrospun. The first Teflon electrospun fibers are reported using coaxial electrospinning with Teflon AF sheath and poly(epsilon-caprolactone) (PCL) core materials. Using these core/sheath fibers, superhydrophobic and oleophobic membranes have been successfully produced. These coaxial fibers also preserve the core material properties as demonstrated with mechanical tensile tests. The fact that a normally nonelectrospinnable material such as Teflon AF has been successfully electrospun when combined with an electrospinnable core material indicates the potential of coaxial electrospinning to provide a new degree of freedom in terms of material combinations for many applications. PMID:19374456

  12. Superhydrophobic and oleophobic fibers by coaxial electrospinning.

    PubMed

    Han, Daewoo; Steckl, Andrew J

    2009-08-18

    Control of surface wetting properties to produce strongly hydrophobic or hydrophilic effects is at the heart of many macro- and microfluidic applications. In this work, we have investigated coaxial electrospinning to produce core-sheath-structured nano/microfibers that combine different properties from individual core and sheath materials. Teflon AF is an amorphous fluoropolymer that is widely utilized as a hydrophobic material. Hydrophobic fluoropolymers are normally not electrospinnable because their low dielectric constant prevents sufficient charging for a solution to be electrospun. The first Teflon electrospun fibers are reported using coaxial electrospinning with Teflon AF sheath and poly(epsilon-caprolactone) (PCL) core materials. Using these core/sheath fibers, superhydrophobic and oleophobic membranes have been successfully produced. These coaxial fibers also preserve the core material properties as demonstrated with mechanical tensile tests. The fact that a normally nonelectrospinnable material such as Teflon AF has been successfully electrospun when combined with an electrospinnable core material indicates the potential of coaxial electrospinning to provide a new degree of freedom in terms of material combinations for many applications.

  13. Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries.

    PubMed

    Liu, Qin; Wang, Yaobing; Dai, Liming; Yao, Jiannian

    2016-04-20

    A flexible nanoporous carbon-fiber film for wearable electronics is prepared by a facile and scalable method through pyrolysis of electrospun polyimide. It exhibits excellent bifunctional electrocatalytic activities for oxygen reduction and oxygen evolution. Flexible rechargeable zinc-air batteries based on the carbon-fiber film show high round-trip efficiency and mechanical stability.

  14. Synthesis and adsorption of functionalized polystyrenes

    SciTech Connect

    Iyengar, D.R.

    1992-12-31

    The effect of specifically interacting functional groups located at the chain ends of polystyrene on the absorption rate, adsorbance, graft density and surface excess are discussed from cyclohexane, a theta solvent and toluene. Polystyrenes with hydroxyl and carboxylic acid-end-groups in narrow molecular weight distribution are synthesized by anionic polymerization of styrene followed by suitable termination reactions. Thin layer chromatography (TLC) is developed as an analytical technique to predict trends in the adsorption of the polymers in a range of solvents. In particular the information about the localization of the end-group and therefore different chain architectures at the interface are inferred from this simple technique. Adsorption isotherms are obtained for each of the functionalized polymers of four different molecular weights, the selection of which was based on the TLC results. Kinetics of adsorption and the adsorbance data are determined by liquid counting of tritium labelled polymers. Graft density and surface excess data are calculated from the adsorbance data and other known parameters. It is shown, from these data, that polystyrenes with a carboxylic acid end-group form weakly stretched brushes at the glass-cyclohexane interface and mushrooms at the glass-toluene interface a result consistent with the higher osmotic repulsions towards packing in good solvents. Polystyrenes with function groups at both the chain ends are hypothesized to form a range of structures from those dominated by tails at higher concentrations to those dominated by loops and trains at lower solution concentrations. At higher molecular weights it is shown that functionalized a result consistent with the TLC predictions. Hydroxyl end-group is shown to be an ineffective sticky foot from its adsorbance vis-a-vis polystyrene.

  15. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.

    PubMed

    Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak

    2008-11-01

    Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures. PMID:18771778

  16. Topographic Cue from Electrospun Scaffolds Regulate Myelin-Related Gene Expressions in Schwann Cells.

    PubMed

    Radhakrishnan, Janani; Kuppuswamy, Ashok Ayyappa; Sethuraman, Swaminathan; Subramanian, Anuradha

    2015-03-01

    Matured Schwann cells play a vital role in promoting regeneration and restoration of functional peripheral nervous tissue. In the present study, two dimensional film, three dimensional random and longitudinally aligned electrospun fibers of poly(lactide-co-glycolide) were used to evaluate the effect of topography on expressions of myelin related genes. The aligned nanofibrous scaffold demonstrated significant increase in Schwann cell adhesion using after 3, 6 and 12 hours of culture compared to the film and random fibers. Cell morphology, degree of orientation and elongation factor evaluated using a scanning electron microscope revealed that cells on aligned scaffold have spindle morphology, whereas cells on random and two dimensional films favor spherical morphology confirming the effect of topography. Significant increase in elongation factor was observed in aligned scaffold as compared to film and random fibers (p < 0.05). The gene expression analysis revealed that aligned scaffold significantly up-regulated the expression of early myelination markers: myelin-associated glycoprotein and myelin protein zero, cell adhesion molecule: neural cadherin, extracellular matrix molecule: neurocan, as well the down-regulation of non-myelinating Schwann cell marker: neural cell adhesion molecule when compared to random and film (p < 0.05). The gene expression patterns of aligned fibers favor myelination of Schwann cells when compared to film and random fibers. Thus, our results demonstrate that the aligned topography of the scaffold promotes maturation of Schwann cells and thereby its myelination to maintain its functionality. PMID:26307833

  17. Improvement and characterization of the adhesion of electrospun PLDLA nanofibers on PLDLA-based 3D object substrates for orthopedic application.

    PubMed

    Wimpenny, I; Lahteenkorva, K; Suokas, E; Ashammakhi, N; Yang, Y

    2012-01-01

    Intensive research has demonstrated the clear biological potential of electrospun nanofibers for tissue regeneration and repair. However, nanofibers alone have limited mechanical properties. In this study we took poly(L-lactide-co-D-lactide) (PLDLA)-based 3D objects, one existing medical device (interference screws) and one medical device model (discs) as examples to form composites through coating their surface with electrospun PLDLA nanofibers. We specifically investigated the effects of electrospinning parameters on the improvement of adhesion of the electrospun nanofibers to the PLDLA-based substrates. To reveal the adhesion mechanisms, a novel peel test protocol was developed for the characterization of the adhesion and delamination phenomenon of the nanofibers deposited to substrates. The effect of incubation of the composites under physiological conditions on the adhesion of the nanofibers has also been studied. It was revealed that reduction of the working distance to 10 cm resulted in deposition of residual solvent during electrospinning of nanofibers onto the substrate, causing fiber-fiber bonding. Delamination of this coating occurred between the whole nanofiber layer and substrate, at low stress. Fibers deposited at 15 cm working distance were of smaller diameter and no residual solvent was observed during deposition. Delamination occurred between nanofiber layers, which peeled off under greater stress. This study represents a novel method for the alteration of nanofiber adhesion to substrates, and quantification of the change in the adhesion state, which has potential applications to develop better medical devices for orthopedic tissue repair and regeneration. PMID:21943952

  18. Electrospun Polycaprolactone Scaffolds for Small-Diameter Tissue Engineered Blood Vessels

    NASA Astrophysics Data System (ADS)

    Lee, Carol Hsiu-Yueh

    Cardiovascular disease is the leading cause of death in the United States with many patients requiring coronary artery bypass grafting. The current standard is using autografts such as the saphenous vein or intimal mammary artery, however creating a synthetic graft could eliminate this painful and inconvenient procedure. Large diameter grafts have long been established with materials such as DacronRTM and TeflonRTM, however these materials have not proved successful in small-diameter (< 6 mm) grafts where thrombosis and intimal hyperplasia are common in graft failure. With the use of a synthetic biodegradable polymer (polycaprolactone) we utilize our expertise in electrospinning and femtosecond laser ablation to create a novel tri-layered tissue engineered blood vessel containing microchannels. The benefits of creating a tri-layer is to mimic native arteries that contain an endothelium to prevent thrombosis in the inner layer, aligned smooth muscle cells in the middle to control vasodilation and constriction, and a mechanically robust outer layer. The following work evaluates the mechanical properties of such a graft (tensile, fatigue, burst pressure, and suture retention strength), the ability to rapidly align cells in laser ablated microchannels in PCL scaffolds, and the biological integration (co-culture of endothelial and smooth muscle cells) with electrospun PCL scaffolds. The conclusions from this work establish that the electrospun tri-layers provide adequate mechanical strength as a tissue engineered blood vessel, that laser ablated microchannels are able to contain the smooth muscle cells, and that cells are able to adhere to PCL fibers. However, future work includes adjusting microchannel dimensions to properly align smooth muscle cells along with perfect co-cultures of endothelial and smooth muscle cells on the electrospun tri-layer.

  19. Gas sensors based on electrospun nanofibers.

    PubMed

    Ding, Bin; Wang, Moran; Yu, Jianyong; Sun, Gang

    2009-01-01

    Nanofibers fabricated via electrospinning have specific surface approximately one to two orders of the magnitude larger than flat films, making them excellent candidates for potential applications in sensors. This review is an attempt to give an overview on gas sensors using electrospun nanofibers comprising polyelectrolytes, conducting polymer composites, and semiconductors based on various sensing techniques such as acoustic wave, resistive, photoelectric, and optical techniques. The results of sensing experiments indicate that the nanofiber-based sensors showed much higher sensitivity and quicker responses to target gases, compared with sensors based on flat films. PMID:22573976

  20. Controlled Dual Drug Release and In Vitro Cytotoxicity of Electrospun Poly(lactic-co-glycolic acid) Nanofibers Encapsulated with Micelles.

    PubMed

    Liu, Wanyun; Wei, Junchao; Wei, Yen; Chen, Yiwang

    2015-03-01

    In order to realize controlled dual release of two hydrophobic drugs with distinct rates in a vehicle, novel poly(lactic-co-glycolic acid) (PLGA) composite nanofibers encapsulated with micelles were successfully fabricated by "emulsion-electrospinning." Brefeldin A (BFA) was firstly embedded in monomethoxy-poly(ethylene glycol)-b-poly(L-lactide) (MePEG-PLLA) micelles. By means of "emulsion-electrospinning," paclitaxel (PTX) and polymeric micelles contained BFA were successfully loaded into the electrospun PLGA composite nanofibers. The in vitro release results demonstrated that the location of the drugs in the electrospun fibers determined their release profiles. BFA had a long-term and sustained release while PTX had a relatively rapid release in the dual drugs delivery system. In vitro cytotoxicity studies revealed that the composite nanofibers with two drugs restrained HepG-2 cells more efficiently. These results strongly suggested that the electrospun composite nanofibers containing polymeric micelles can be used as an effective controlled dual release of hydrophobic drugs and were suitable for postoperative chemotherapy of cancers. PMID:26307826

  1. Synthesis of β-Cyclodextrin-Based Electrospun Nanofiber Membranes for Highly Efficient Adsorption and Separation of Methylene Blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Wang, Ce

    2015-12-01

    Water-insoluble β-cyclodextrin-based fibers were synthesized by electrospinining followed by thermal cross-linking. The fibers were characterized by field-emission scanning electron microscopic (FE-SEM) and Fourier transformed infrared spectrometer (FT-IR). The highly insoluble fraction obtained from different pH values (3-11) indicates successful cross-linking reactions and their usability in aqueous solution. After the cross-linking reaction, the fibers' tensile strength increases significantly and the BET surface area is 19.49 m(2)/g. The cross-linked fibers exhibited high adsorption capacity for cationic dye methylene blue (MB) with good recyclability. The adsorption performance can be fitted well with pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacity is 826.45 mg/g according to Langmuir fitting. Due to electrostatic repulsion, the fibers show weak adsorption toward negatively charged anionic dye methyl orange (MO). On the basis of the selective adsorption, the fiber membrane can separate the MB/MO mixture solution by dynamic filtration at a high flow rate of 150 mL/min. The fibers can maintain good fibrous morphology and high separation efficiency even after five filtration-regeneration cycles. The obtained results suggested potential applications of β-cyclodextrin-based electrospun fibers in the dye wastewater treatment field. PMID:26572223

  2. Synthesis of β-Cyclodextrin-Based Electrospun Nanofiber Membranes for Highly Efficient Adsorption and Separation of Methylene Blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Wang, Ce

    2015-12-01

    Water-insoluble β-cyclodextrin-based fibers were synthesized by electrospinining followed by thermal cross-linking. The fibers were characterized by field-emission scanning electron microscopic (FE-SEM) and Fourier transformed infrared spectrometer (FT-IR). The highly insoluble fraction obtained from different pH values (3-11) indicates successful cross-linking reactions and their usability in aqueous solution. After the cross-linking reaction, the fibers' tensile strength increases significantly and the BET surface area is 19.49 m(2)/g. The cross-linked fibers exhibited high adsorption capacity for cationic dye methylene blue (MB) with good recyclability. The adsorption performance can be fitted well with pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacity is 826.45 mg/g according to Langmuir fitting. Due to electrostatic repulsion, the fibers show weak adsorption toward negatively charged anionic dye methyl orange (MO). On the basis of the selective adsorption, the fiber membrane can separate the MB/MO mixture solution by dynamic filtration at a high flow rate of 150 mL/min. The fibers can maintain good fibrous morphology and high separation efficiency even after five filtration-regeneration cycles. The obtained results suggested potential applications of β-cyclodextrin-based electrospun fibers in the dye wastewater treatment field.

  3. Integration of nondegradable polystyrene and degradable gelatin in a core–sheath nanofibrous patch for pelvic reconstruction

    PubMed Central

    Ge, Liangpeng; Li, Qingtao; Jiang, Junzi; You, Xiaoyan; Liu, Zuohua; Zhong, Wen; Huang, Yong; Xing, Malcolm MQ

    2015-01-01

    Pelvic organ prolapse (POP) is a serious health issue affecting many adult women. Complications of POP include pelvic pressure, pelvic pain, and problems in emptying their bowels or bladder. Sometimes, POP may even cause urinary outflow obstruction and lead to bladder or kidney infections. Currently, synthetic and naturally derived materials have been chosen for treatment of POP to reduce the high recurrence rates after surgical interventions. However, existing materials for POP treatment cannot meet the clinical requirements in terms of biocompatibility, mechanics, and minimal risk of rejection. Especially, erosion in synthetic polymers and rapid degradation in natural polymers limit their further applications in clinics. To address these concerns, we report a novel POP replacement using core–sheath polystyrene/gelatin electrospun nanofiber mesh. The outside gelatin sheath provides a hydrophilic surface and implantable integrity between host and guest, while the inner PS core offers the necessary mechanical support. The composite mesh shows graft accommodation in pelvic submucosa after implantation in vivo, as shown in hematoxylin–eosin staining and T helper cell phenotype and macrophage phenotype stainings. Qualitative analysis of inducible nitric oxide synthase, arginase, interferon-γ, and interleukin-10 gene expressions also indicates that the implanted composite mesh switches to accommodation mode 2 weeks postimplantation. Thus, these novel core–sheath polystyrene/gelatin nanofibrous membranes are promising in pelvic reconstruction. PMID:25995629

  4. Integration of nondegradable polystyrene and degradable gelatin in a core-sheath nanofibrous patch for pelvic reconstruction.

    PubMed

    Ge, Liangpeng; Li, Qingtao; Jiang, Junzi; You, Xiaoyan; Liu, Zuohua; Zhong, Wen; Huang, Yong; Xing, Malcolm M Q

    2015-01-01

    Pelvic organ prolapse (POP) is a serious health issue affecting many adult women. Complications of POP include pelvic pressure, pelvic pain, and problems in emptying their bowels or bladder. Sometimes, POP may even cause urinary outflow obstruction and lead to bladder or kidney infections. Currently, synthetic and naturally derived materials have been chosen for treatment of POP to reduce the high recurrence rates after surgical interventions. However, existing materials for POP treatment cannot meet the clinical requirements in terms of biocompatibility, mechanics, and minimal risk of rejection. Especially, erosion in synthetic polymers and rapid degradation in natural polymers limit their further applications in clinics. To address these concerns, we report a novel POP replacement using core-sheath polystyrene/gelatin electrospun nanofiber mesh. The outside gelatin sheath provides a hydrophilic surface and implantable integrity between host and guest, while the inner PS core offers the necessary mechanical support. The composite mesh shows graft accommodation in pelvic submucosa after implantation in vivo, as shown in hematoxylin-eosin staining and T helper cell phenotype and macrophage phenotype stainings. Qualitative analysis of inducible nitric oxide synthase, arginase, interferon-γ, and interleukin-10 gene expressions also indicates that the implanted composite mesh switches to accommodation mode 2 weeks postimplantation. Thus, these novel core-sheath polystyrene/gelatin nanofibrous membranes are promising in pelvic reconstruction.

  5. Anti-Neoplastic Cytotoxicity of SN-38-Loaded PCL/Gelatin Electrospun Composite Nanofiber Scaffolds against Human Glioblastoma Cells In Vitro.

    PubMed

    Zhu, Xiaodong; Ni, Shilei; Xia, Tongliang; Yao, Qingyu; Li, Haoyuan; Wang, Benlin; Wang, Jiangang; Li, Xingang; Su, Wandong

    2015-12-01

    Electrospun poly(ε-caprolactone) (PCL)/gelatin (GT) scaffolds were developed to provide controlled release of 7-ethyl-10-hydroxy camptothecin (SN-38). Acetic acid was introduced to improve the miscibility of PCL and GT to produce a homogeneous nanofiber membrane mixture. The effect of SN-38 content in binary mixtures on processability, fiber morphology, water sorption, swelling, and drug release was investigated. Electrospun PCL/GT blend nonwoven fibers showed fiber surface roughness, decreased PCL crystallinity, and increased swelling with increasing drug content of 1, 2, and 4 wt %. Additionally, increasing the SN-38 concentration reduced the degradation rate of the GT. Furthermore, we hypothesize the existence of a drug content saturation point in the monoaxial fiber to explain the different drug release patterns of PG2 compared with those of PG1 and PG4. The matrix also showed good biodegradation and anti-tumor function. Our results demonstrate that SN-38-loaded PCL/GT fibers can be obtained by electrospinning. The SN-38-loaded fibers merit further evaluation as a means to potentially prevent locoregional recurrence following surgical tumor resection. PMID:26505475

  6. Graphite fiber surface treatment to improve impact strength and fracture resistance in subsequent composites

    NASA Technical Reports Server (NTRS)

    Paul, J. T., Jr.; Buntin, G. A.

    1982-01-01

    Graphite (or carbon) fiber composite impact strength improvement was attempted by modifying the fiber surface. Elastomeric particles were made into lattices and deposited ionically on surface treated graphite fiber in an attempt to prepare a surface containing discrete rubber particles. With hard, nonelastomeric polystyrene discrete particle coverage was achieved. All the elastomeric containing lattices resulted in elastomer flow and filament agglomeration during drying.

  7. Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold.

    PubMed

    Binan, Loïc; Tendey, Charlène; De Crescenzo, Gregory; El Ayoubi, Rouwayda; Ajji, Abdellah; Jolicoeur, Mario

    2014-01-01

    Neural stem cells (NSCs) provide promising therapeutic potential for cell replacement therapy in spinal cord injury (SCI). However, high increases of cell viability and poor control of cell differentiation remain major obstacles. In this study, we have developed a non-woven material made of co-electrospun fibers of poly L-lactic acid and gelatin with a degradation rate and mechanical properties similar to peripheral nerve tissue and investigated their effect on cell survival and differentiation into motor neuronal lineages through the controlled release of retinoic acid (RA) and purmorphamine. Engineered Neural Stem-Like Cells (NSLCs) seeded on these fibers, with and without the instructive cues, differentiated into β-III-tubulin, HB-9, Islet-1, and choactase-positive motor neurons by immunostaining, in response to the release of the biomolecules. In addition, the bioactive material not only enhanced the differentiation into motor neuronal lineages but also promoted neurite outgrowth. This study elucidated that a combination of electrospun fiber scaffolds, neural stem cells, and controlled delivery of instructive cues could lead to the development of a better strategy for peripheral nerve injury repair. PMID:24161168

  8. Micropatterning Extracellular Matrix Proteins on Electrospun Fibrous Substrate Promote Human Mesenchymal Stem Cell Differentiation Toward Neurogenic Lineage.

    PubMed

    Li, Huaqiong; Wen, Feng; Chen, Huizhi; Pal, Mintu; Lai, Yuekun; Zhao, Allan Zijian; Tan, Lay Poh

    2016-01-13

    In this study, hybrid micropatterned grafts constructed via a combination of microcontact printing and electrospinning techniques process were utilized to investigate the influencing of patterning directions on human mesenchymal stem cells (hMSCs) differentiation to desired phenotypes. We found that the stem cells could align and elongate along the direction of the micropattern, where they randomly distributed on nonmicropatterned surfaces. Concomitant with patterning effect of component on stem cell alignment, a commensurate increase on the expression of neural lineage commitment markers, such as microtubule associated protein 2 (MAP2), Nestin, NeuroD1, and Class III β-Tubulin, were revealed from mRNA expression by quantitative Real Time PCR (qRT-PCR) and MAP2 expression by immunostaining. In addition, the effect of electrospun fiber orientation on cell behaviors was further examined. An angle of 45° between the direction of micropatterning and orientation of aligned fibers was verified to greatly prompt the outgrowth of filopodia and neurogenesis of hMSCs. This study demonstrates that the significance of hybrid components and electrospun fiber alignment in modulating cellular behavior and neurogenic lineage commitment of hMSCs, suggesting promising application of porous scaffolds with smart component and topography engineering in clinical regenerative medicine. PMID:26654444

  9. From design of bio-based biocomposite electrospun scaffolds to osteogenic differentiation of human mesenchymal stromal cells.

    PubMed

    Ramier, Julien; Grande, Daniel; Bouderlique, Thibault; Stoilova, Olya; Manolova, Nevena; Rashkov, Iliya; Langlois, Valérie; Albanese, Patricia; Renard, Estelle

    2014-06-01

    Electrospinning coupled with electrospraying provides a straightforward and robust route toward promising electrospun biocomposite scaffolds for bone tissue engineering. In this comparative investigation, four types of poly(3-hydroxybutyrate) (PHB)-based nanofibrous scaffolds were produced by electrospinning a PHB solution, a PHB/gelatin (GEL) mixture or a PHB/GEL/nHAs (hydroxyapatite nanoparticles) mixed solution, and by electrospinning a PHB/GEL solution and electrospraying a nHA dispersion simultaneously. SEM and TEM analyses demonstrated that the electrospun nHA-blended framework contained a majority of nHAs trapped within the constitutive fibers, whereas the electrospinning-electrospraying combination afforded fibers with a rough surface largely covered by the bioceramic. Structural and morphological characterizations were completed by FTIR, mercury intrusion porosimetry, and contact angle measurements. Furthermore, an in vitro investigation of human mesenchymal stromal cell (hMSC) adhesion and proliferation properties showed a faster cell development on gelatin-containing scaffolds. More interestingly, a long-term investigation of hMSC osteoblastic differentiation over 21 days indicate that hMSCs seeded onto the nHA-sprayed scaffold developed a significantly higher level of alkaline phosphatase activity, as well as a higher matrix biomineralization rate through the staining of the generated calcium deposits: the fiber surface deposition of nHAs by electrospraying enabled their direct exposure to hMSCs for an efficient transmission of the bioceramic osteoinductive and osteoconductive properties, producing a suitable biocomposite scaffold for bone tissue regeneration. PMID:24584668

  10. Micropatterning Extracellular Matrix Proteins on Electrospun Fibrous Substrate Promote Human Mesenchymal Stem Cell Differentiation Toward Neurogenic Lineage.

    PubMed

    Li, Huaqiong; Wen, Feng; Chen, Huizhi; Pal, Mintu; Lai, Yuekun; Zhao, Allan Zijian; Tan, Lay Poh

    2016-01-13

    In this study, hybrid micropatterned grafts constructed via a combination of microcontact printing and electrospinning techniques process were utilized to investigate the influencing of patterning directions on human mesenchymal stem cells (hMSCs) differentiation to desired phenotypes. We found that the stem cells could align and elongate along the direction of the micropattern, where they randomly distributed on nonmicropatterned surfaces. Concomitant with patterning effect of component on stem cell alignment, a commensurate increase on the expression of neural lineage commitment markers, such as microtubule associated protein 2 (MAP2), Nestin, NeuroD1, and Class III β-Tubulin, were revealed from mRNA expression by quantitative Real Time PCR (qRT-PCR) and MAP2 expression by immunostaining. In addition, the effect of electrospun fiber orientation on cell behaviors was further examined. An angle of 45° between the direction of micropatterning and orientation of aligned fibers was verified to greatly prompt the outgrowth of filopodia and neurogenesis of hMSCs. This study demonstrates that the significance of hybrid components and electrospun fiber alignment in modulating cellular behavior and neurogenic lineage commitment of hMSCs, suggesting promising application of porous scaffolds with smart component and topography engineering in clinical regenerative medicine.

  11. Fabrication and characterization of electrospun titania nanofibers

    SciTech Connect

    Chandrasekar, Ramya; Zhang, Lifeng; Howe, Jane Y; Hedin, Nyle E; Zhang, Y

    2009-01-01

    Titania (TiO2) nanofibers were fabricated by electrospinning three representative spin dopes made of titanium (IV) n-butoxide (TNBT) and polyvinylpyrrolidone (PVP) with the TNBT/PVP mass ratio being 1/2 in three solvent systems including N,N-dimethylformamide (DMF), isopropanol, and DMF/isopropanol (1/1 mass ratio) mixture, followed by pyrolysis at 500 C. The detailed morphological and structural properties of both the as-electrospun precursor nanofibers and the resulting final TiO2 nanofibers were characterized by SEM, TEM, and XRD. The results indicated that the precursor nanofibers and the final TiO2 nanofibers made from the spin dopes containing DMF alone or DMF/isopropanol mixture as the solvent had the common cylindrical morphology with diameters ranging from tens to hundreds of nanometers, while those made from the spin dope containing isopropanol alone as the solvent had an abnormal concave morphology with sizes/widths ranging from sub-microns to microns. Despite the morphological discrepancies, all precursor nanofibers were structurally amorphous without distinguishable phase separation, while all final TiO2 nanofibers consisted of anatase-phased TiO2 single-crystalline grains with sizes of approximately 10 nm. The electrospun TiO2 nanofiber mat is expected to significantly outperform other forms (such as powder and film) of TiO2 for the solar cell (particularly dye-sensitized solar cell) and photo-catalysis applications.

  12. Copper ion sensing with fluorescent electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Ongun, Merve Zeyrek; Ertekin, Kadriye; Gocmenturk, Mustafa; Ergun, Yavuz; Suslu, Aslıhan

    2012-05-01

    In this work, the use of electrospun nanofibrous materials as highly responsive fluorescence quenching-based copper sensitive chemosensor is reported. Poly(methyl methacrylate) and ethyl cellulose were used as polymeric support materials. Sensing slides were fabricated by electrospinning technique. Copper sensors based on the change in the fluorescence signal intensity of fluoroionophore; N'-3-(4-(dimethylamino phenly)allylidene)isonicotinohydrazide. The sensor slides exhibited high sensitivities due to the high surface area of the nanofibrous membrane structures. The preliminary results of Stern-Volmer analysis show that the sensitivities of electrospun nanofibrous membranes to detect Cu(II) ions are 6-20-fold higher than those of the continuous thin films. By this way we obtained linear calibration plots for Cu(II) ions in the concentration range of 10-12-10-5 M. The response times of the sensing slides were less than 1 min. Stability of the employed ionophore in the matrix materials was excellent and when stored in the ambient air of the laboratory there was no significant drift in signal intensity after 6 months. Our stability tests are still in progress.

  13. Development of electrospun bone-mimetic matrices for bone regenerative applications

    NASA Astrophysics Data System (ADS)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater

  14. Lobesia botrana IPM: electrospun polyester microfibers serve as biodegradable sex pheromone dispensers.

    PubMed

    Hummel, Hans E; Langner, S S

    2013-01-01

    Modern insect pest management is faced with an increasingly sophisticated set of requirements. Control agent/dispenser combinations must be at the same time safe, nontoxic, inexpensive, reproducibly efficacious, environmentally compatible, biodegradable, and sustainable, and should be based on renewable resources. The methods employed preferably should be suitable for the growing and tightly controlled organic growing sector as well. All this calls for a level of sophistication and reproducibility previously unknown. Only very few systems can offer this kind of performance, but fortunately can be found in the area of suitable pheromone/dispenser combinations. This report is an attempt to adapt electrospun Ecoflex polyester micro fibers of the Greiner-Wendorff type to the very specific needs of the grape growing industry. Specifically required are "semi-intelligent" dispenser materials. On a weight basis, the electrospun product should achieve as high a proportion as possible of "retainable" sex pheromone (E,Z)-7,9-dodecadienyl acetate of Lobesia botrana (Lep.: Tortricidae) and should release it as uniformly as possible into the surrounding airspace. Using the Doye bioassay, some progress indeed has recently been achieved with electrospun Ecoflex microfibers of 0.5-3.5 microm diameter. They were employed as dispensers for programmed sex pheromone release with an effective mating disruption duration of up to seven weeks. With one microfiber/pheromone treatment, this covers one entire flight period of the trivoltine L. botrana. Mechanical application of this microfiber/pheromone preparation (with the option of automation) is possible. Disruption effects are comparable with those of commercially available dispensers of the Isonet type. Exposed under vineyard conditions, Ecoflex polyester fibers are a spider silk like material which is biodegradable within half a year. Thus, after releasing its pheromone load, it does not need removal, which saves one cultivation step

  15. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Yu, Wenwen; Jiang, Xinquan; Cai, Ming; Zhao, Wen; Ye, Dongxia; Zhou, Yong; Zhu, Chao; Zhang, Xiuli; Lu, Xiaofeng; Zhang, Zhiyuan

    2014-04-01

    For artificial nerve conduits, great improvements have been achieved in mimicking the structures and components of autologous nerves. However, there are still some problems in conduit construction, especially in terms of mechanical properties, biomimetic surface tomography, electrical conductivity and sustained release of neurotrophic factors or cells. In this study, we designed and fabricated a novel electrospun nerve conduit enhanced by multi-walled carbon nanotubes (MWNTs) on the basis of a collagen/poly(ɛ-caprolactone) (collagen/PCL) fibrous scaffold. Our aim was to provide further knowledge about the mechanical effects and efficacy of MWNTs on nerve conduits as well as the biocompatibility and toxicology of MWNTs when applied in vivo. The results showed that as one component, carboxyl MWNTs could greatly alter the composite scaffold’s hydrophilicity, mechanical properties and degradability. The electrospun fibers enhanced by MWNTs could support Schwann cell adhesion and elongation as a substrate in vitro. In vivo animal studies demonstrated that the MWNT-enhanced collagen/PCL conduit could effectively promote nerve regeneration of sciatic nerve defect in rats and prevent muscle atrophy without invoking body rejection or serious chronic inflammation. All of these results showed that this MWNT-enhanced scaffold possesses good biocompatibility and MWNTs might be excellent candidates as engineered nanocarriers for further neurotrophic factor delivery research.

  16. Oriented growth of rat Schwann cells on aligned electrospun poly(methyl methacrylate) nanofibers.

    PubMed

    Xia, Haijian; Sun, Xiaochuan; Liu, Dan; Zhou, Yudong; Zhong, Dong

    2016-10-15

    Transplanted Schwann cells have the potential to serve as a support for regenerating neurites after spinal cord injury. However, implanted Schwann cells die off rapidly once transplanted partly owing to the absence of a proper matrix support, with a glia scar and a cavity being present instead at the injury site. For this report, we evaluated aligned electrospun poly(methyl methacrylate) nanofibers as a Schwann cell-loading scaffold in vitro. By monitoring the fluorescence of green fluorescence protein-containing Schwann cells cultured on nanofibers, we found that aligned nanofibers provided better support for the cells than did non-aligned nanofibers. The cells elongated along the long axes of the aligned nanofibers and formed longer cell processes than when the substrate was non-aligned nanofibers. By coculturing Schwann cells with dorsal root ganglion neurons, it was also found that Schwann cells and neurites of dorsal root ganglion neurons could share and both elongate along the orientation of aligned nanofibers and thus they had a higher chance of colocalization than cocultured on film and non-aligned fibers, which might be beneficial to the ensuring process of myelination. The results of the study indicate that aligned electrospun nanofibers may serve as a Schwann cell-loading scaffold for future implantation research. PMID:27653871

  17. A new method for the alignment of electrospun nanofibers by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Kobayashi, Natsumi; Miki, Norihisa; Hishida, Koichi; Hotta, Atsushi

    2014-03-01

    An effective way of controlling the alignment of electrospun nanofibers using oxygen plasma treatment was introduced. Poly (dimethylsiloxane) (PDMS) was selected as a base material for electrospinning and polyvinyl alcohol (PVA) was chosen as an electrospun-nanofiber material. It was found that most of PVA nanofibers were selectively deposited on the O2 plasma-treated area of PDMS, while only a few PVA nanofibers were randomly deposited on the untreated area of the PDMS film. Interestingly, a number of PVA nanofibers were neatly aligned along the border of the untreated area and the O2 plasma-treated area of PDMS. The surface structures and the morphology of the PDMS films with PVA nanofibers were analyzed by scanning electron microscopy, water contact angle measurements, and X-ray photon spectroscopy. By selecting the optimized ratio of treated and untreated area of PDMS film, it was found that more than 80% of PVA nanofibers could be deposited parallel to the border of the treated and untreated area of PDMS. We used PVA as a reference material for the nanofiber alignment in this study, but similar deposition behavior was also observed for polyurethane (PU) fibers.

  18. Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes.

    PubMed

    Kayaci, Fatma; Umu, Ozgun C O; Tekinay, Turgay; Uyar, Tamer

    2013-04-24

    Solid triclosan/cyclodextrin inclusion complexes (TR/CD-IC) were obtained and then incorporated in poly(lactic acid) (PLA) nanofibers via electrospinning. α-CD, β-CD, and γ-CD were tested for the formation of TR/CD-IC by a coprecipitation method; however, the findings indicated that α-CD could not form an inclusion complex with TR, whereas β-CD and γ-CD successfully formed TR/CD-IC crystals, and the molar ratio of TR to CD was found to be 1:1. The structural and thermal characteristics of TR/CD-IC were investigated by (1)H NMR, FTIR, XRD, DSC, and TGA studies. Then, the encapsulation of TR/β-CD-IC and TR/γ-CD-IC in PLA nanofibers was achieved. Electrospun PLA and PLA/TR nanofibers obtained for comparison were uniform, whereas the aggregates of TR/CD-IC crystals were present and distributed within the PLA fiber matrix as confirmed by SEM and XRD analyses. The antibacterial activity of these nanofibrous webs was investigated. The results indicated that PLA nanofibers incorporating TR/CD-IC showed better antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria compared to PLA nanofibers containing only TR without CD-IC. Electrospun nanofibrous webs incorporating TR/CD-IC may be applicable in active food packaging due to their very high surface area and nanoporous structure as well as efficient antibacterial property.

  19. Self-renewal of human embryonic stem cells on defined synthetic electrospun nanofibers.

    PubMed

    Kumar, Deepak; Dale, Tina P; Yang, Ying; Forsyth, Nicholas R

    2015-12-01

    Human embryonic stem cells (hESCs) are conventionally expanded and maintained in vitro on biological substrates. Synthetic electrospun polymer nanofibers have the potential to act as non-biological substrates in the culture of hESCs. Three synthetic, FDA approved polymers: poly-ɛ-caprolactone (PCL), poly-L-lactic acid (PLLA) and poly lactic-co-glycolic acid (PLGA) were electrospun as nanofibers (random or aligned conformations) on glass coverslips and their supportive role in hESC culture examined. Clonogenicity experiments demonstrated that nanofibrous scaffolds (PCL aligned and random, PLLA aligned a