Science.gov

Sample records for electrostatic accelerator eg-2

  1. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  2. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  3. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  4. Preliminary tests of the electrostatic plasma accelerator

    NASA Technical Reports Server (NTRS)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  5. [Universal electrogustometer EG-2].

    PubMed

    Wałkanis, Andrzej; Czesak, Michał; Pleskacz, Witold A

    2011-01-01

    Electrogustometry is a method for taste diagnosis and measurement. The EG-2 project is being developed in cooperation between Warsaw University of Technology and Military institute of Medicine in Warsaw. The device is an evolution of the recent universal electrogustometer EG-1 prototype. Due to considerations and experiences acquired during prototype usage, many enhancements have been incorporated into device. The aim was to create an easy-to-use, portable, battery powered device, enabled for fast measurements. Developed electrogustometer is using innovative, low-power microprocessor system, which control whole device. User interface is based on 5.7" graphical LCD (Liquid Crystal Display) and touchscreen. It can be directly operated by finger or with optional stylus. Dedicated GUI (Graphical User Interface) offers simple, predefined measurements and advance settings of signal parameters. It is also possible to store measurements results and patients data in an internal memory. User interface is multilanguage. Signals for patients examinations, supplied with bipolar electrode, are generated by an on-board circuit using DDS (Direct-Digital Synthesis) and DAC (Digital-to-Analog Converter). Electrogustometer is able to generate DC, sinus, triangle or rectangle signals with current amplitude from 0 to 500 pA and frequency form 0 to 500 Hz. Device is designed for manual and automeasurement modes. By using USB (Universal Serial Bus) port it is possible to retrieve data stored in internal memory and charging of built-in Li-lon battery as a source of power.

  6. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  7. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    SciTech Connect

    Brown, T.A.; Gillespie, G.H.

    1999-10-21

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS.

  8. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  9. Compact RF ion source for industrial electrostatic ion accelerator

    SciTech Connect

    Kwon, Hyeok-Jung Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  10. The GA PEAcH: A Portable Electrostatic Accelerator

    NASA Astrophysics Data System (ADS)

    McClanahan, Patrick; Burch, Ashlyn; Bivins, Quintorious; Garrett, Megan; Jordan, Zachary; Roberts, Rhett; Thomas, Benjamin; Careccia, Sharon; Johnson, Rommie; France, Ralph, III; McGill, K. C., Jr.; Spraker, Mark

    2014-03-01

    In collaboration with the University of North Georgia, we are constructing a portable electrostatic ion accelerator at Georgia College. It will use a model 2JA066280 R.F. ion source from National Electrostatics Corporation to produce ions from gaseous elements and a model AU-100N1 100 kV power supply to produce the accelerating voltage. The linear accelerator will be less than 2 meters in length. The beam energy will be roughly determined by the acceleration voltage. Low energy proton-induced fusion reactions are envisioned for both pure and applied physics research. One potential application is to use the 17 MeV γ-ray from the 7 Li (p , γ)8 Be reaction to help calibrate γ-ray detectors at the Hi γs facility. Supported by the Georgia College Faculty Research Grant Program.

  11. Electrostatic Acceleration of Microprojectiles to Ultrahypervelocities

    DTIC Science & Technology

    1989-06-01

    acceleration of emitted electrons to high energy and the conditions for insulator flashover . For systems involving charged-particle beams and/or long...related studies [3), elimi- nation of the vacuum -metal- insulator triple point has been shown to increase the allowable electric field strength...V/m. The ability to operate with a high electric field on the surface of a conductor is limited by several distinct constraints. First of all, the

  12. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    SciTech Connect

    Harada, S.; Baba, T.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yokota, S.; Yamazaki, T.; Shimizu, H.

    2014-11-10

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  13. Development of a fast voltage control method for electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-12-01

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed.

  14. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOEpatents

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  15. Inductive and Electrostatic Acceleration in Relativistic Jet-Plasma Interactions

    SciTech Connect

    Ng, Johnny S.T.; Noble, Robert J.; /SLAC

    2005-07-13

    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic (longitudinal) plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of two. The results are relevant to understanding the micro-physics at the interface region of an astrophysical jet with the interstellar plasma, for example, the edge of a wide jet or the jet-termination point.

  16. Ultrahigh impedance method to assess electrostatic accelerator performance

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2015-06-01

    This paper describes an investigation of problem-solving procedures to troubleshoot electrostatic accelerators. A novel technique to diagnose issues with high-voltage components is described. The main application of this technique is noninvasive testing of electrostatic accelerator high-voltage grading systems, measuring insulation resistance, or determining the volume and surface resistivity of insulation materials used in column posts and acceleration tubes. In addition, this technique allows verification of the continuity of the resistive divider assembly as a complete circuit, revealing if an electrical path exists between equipotential rings, resistors, tube electrodes, and column post-to-tube conductors. It is capable of identifying and locating a "microbreak" in a resistor and the experimental validation of the transfer function of the high impedance energy control element. A simple and practical fault-finding procedure has been developed based on fundamental principles. The experimental distributions of relative resistance deviations (Δ R /R ) for both accelerating tubes and posts were collected during five scheduled accelerator maintenance tank openings during 2013 and 2014. Components with measured Δ R /R >±2.5 % were considered faulty and put through a detailed examination, with faults categorized. In total, thirty four unique fault categories were identified and most would not be identifiable without the new technique described. The most common failure mode was permanent and irreversible insulator current leakage that developed after being exposed to the ambient environment. As a result of efficient in situ troubleshooting and fault-elimination techniques, the maximum values of |Δ R /R | are kept below 2.5% at the conclusion of maintenance procedures. The acceptance margin could be narrowed even further by a factor of 2.5 by increasing the test voltage from 40 V up to 100 V. Based on experience over the last two years, resistor and insulator

  17. Electrostatic-accelerator free-electron lasers for power beaming

    SciTech Connect

    Pinhasi, Y.; Yakover, I.M.; Gover, A.

    1995-12-31

    Novel concepts of electrostatic-accelerator free-electron lasers (EA-FELs) for energy transfer through the atmosphere are presented. The high average power attained from an EA-FEL makes it an efficient source of mm-wave for power beaming from a ground stations. General aspects of operating the FEL as a high power oscillator (like acceleration voltage, e-beam. current, gain and efficiency) are studied and design considerations are described. The study takes into account requirements of power beaming application such as characteristic dips in the atmospheric absorption spectrum, sizes of transmitting and receiving antennas and meteorological conditions. We present a conceptual design of a moderate voltage (.5-3 MeV) high current (1-10 Amp) EA-FEL operating at mm-wavelength bands, where the atmospheric attenuation allows efficient power beaming to space. The FEL parameters were calculated, employing analytical and numerical models. The performance parameters of the FEL (power, energy conversion efficiency average power) will be discussed in connection to the proposed application.

  18. Nonresonant Charged-Particle Acceleration by Electrostatic Waves Propagating across Fluctuating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Zelenyi, L. M.

    2015-10-01

    In this Letter, we demonstrate the effect of nonresonant charged-particle acceleration by an electrostatic wave propagating across the background magnetic field. We show that in the absence of resonance (i.e., when particle velocities are much smaller than the wave phase velocity) particles can be accelerated by electrostatic waves provided that the adiabaticity of particle motion is destroyed by magnetic field fluctuations. Thus, in a system with stochastic particle dynamics the electrostatic wave should be damped even in the absence of Landau resonance. The proposed mechanism is responsible for the acceleration of particles that cannot be accelerated via resonant wave-particle interactions. Simplicity of this straightforward acceleration scenario indicates a wide range of possible applications.

  19. Trends and applications for MeV electrostatic ion beam accelerators

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Stodola, S. E.

    2014-08-01

    The 1970s into the 1980s saw a major broadening of applications for electrostatic accelerators. Prior to this time, all accelerators were used primarily for nuclear structure research. In the 70s there was a significant move into production ion implantation with the necessary MeV ion beam analysis techniques such as RBS and ERD. Accelerators are still being built for these materials analysis techniques today. However, there is still a great ongoing expansion of applications for these machines. At the present time, the demand for electrostatic accelerators is near an all time high. The number of applications continues to grow. This paper will touch on some of the current applications which are as diverse as nuclear fission reactor developments and pharmacokinetics. In the field of nuclear engineering, MeV ion beams from electrostatic accelerators are being used in material damage studies and for iodine and actinide accelerator mass spectrometry (AMS). In the field of pharmacokinetics, electrostatic MeV accelerators are being used to detect extremely small amounts of above background 14C. This has significantly reduced the time required to reach first in human studies. These and other applications will be discussed.

  20. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  1. Present Trends In The Configurations And Applications Of Electrostatic Accelerator Systems

    NASA Astrophysics Data System (ADS)

    Norton, Gregory A.; Klody, George M.

    2011-06-01

    Despite the worldwide economic meltdown during the past two years and preceding any stimulus program projects, the market for electrostatic accelerators has increased on three fronts: new applications developed in an expanding range of fields; technical enhancements that increase the range, precision, and sensitivity of existing systems; and new accelerator projects in a growing number of developing countries. From the single application of basic nuclear structure research from the 1930's into the 1970's, the continued expansion of new applications and the technical improvements in electrostatic accelerators have dramatically affected the configurations and capabilities of accelerator systems to meet new requirements. This paper describes examples of recent developments in cosmology, exotic materials, high resolution RBS, compact AMS, dust acceleration, ion implantation, etc.

  2. Electrostatics

    SciTech Connect

    Wallace, John P.; Wallace, Michael J.

    2015-12-04

    Quantum mechanics should be able to generate the basic properties of a particle. One of the most basic properties are charge and the associated electrostatic electric field. Electrostatic force is a fundamental characteristics of a charged fermion and should have its nature described by the fermion’s structure. To produce the particle properties require two spaces that define both their dynamics and their base structure. Relativity and the conservation of energy dictate how these two separate spaces are connected and the differential equations that describe behavior within these two spaces. The main static characteristic of an elementary fermion are mass and charge. Mass represents a scale measure of the fermion and it appears that charge results from the detailed structure of the fermion, which must merge into the electric field description of Maxwell. Coulomb’s law is a good approximation for large distances, but it is a poor approximation at dimension on the order of a particle’s Compton wavelength. The relativistic description of the fermion in its own frame of reference contains the information required for producing the electrostatic field over all space without a singularity as a source. With this description it is possible to understand the first order correction to the ionization energy of hydrogen. The role of nuclear effects on ionization energies can now be better defined for nuclei heavier than hydrogen.

  3. Electrostatically accelerated encounter and folding for facile recognition of intrinsically disordered proteins.

    PubMed

    Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan

    2013-01-01

    Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via "electrostatic steering" and at the same time promote "folding-competent" encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for cellular

  4. Effect of plasma temperature on electrostatic shock generation and ion acceleration by laser

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Yu, M. Y.; Li Xuemei; Jin Zhangying; Wang Fengchao; Wen Meng

    2007-11-15

    The effect of plasma temperature on electrostatic shock generated by a circularly polarized laser pulse in overdense plasma is studied by particle-in-cell simulation. Ion reflection and transmission in the collisionless electrostatic shock (CES) are investigated analytically. As the initial ion temperature is varied, a distinct transition from the laser-driven piston scenario with all ions being reflected to the CES scenario with partial ion reflection is found. The results show that at low but finite temperatures the ions are much more accelerated than if they were cold.

  5. Experimental identification of electrostatic plasma waves within ion conic acceleration regions

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.

    1986-01-01

    The identification of electrostatic modes in the ionospheric and magnetospheric plasma is a difficult process. Some success has been achieved with electrostatic hydrogen cyclotron waves where Doppler broadening is insignificant and with zero-frequency turbulence where the spectrum is entirely Doppler shifted. However, it is not yet possible to identify specific modes in regions of transverse ion acceleration. If the modes are assumed to exist, some limits can be placed on their electric field amplitudes. An experimental technique to measure wavelength directly, thereby circumventing problems created by Doppler shifting, is reviewed.

  6. Miniaturization of electrostatic ion engines by ionization and acceleration coupling

    NASA Astrophysics Data System (ADS)

    Ferrer, P.; Tchonang, M. P.

    2011-08-01

    We introduce a thruster concept where the same electric field is responsible for both ionization of the neutrals and acceleration of the ions, by letting the propellant gas escape into a high-field region through a thin, hollow needle at high electric potential. Ionization occurs via the corona mechanism. The configuration is very similar to the FEEP, the difference being in the ionization mechanism and the use of gaseous propellant. Although tests showed that such a thruster only ionizes a small fraction of the neutral gas (<1%), the ions nevertheless impart a great deal of momentum to the plume, creating an ionic wind. We propose a model to estimate the electric behaviour of the system. A proof-of-concept thruster was tested, whose mass was <5 g, operating around 1500 V at thrust levels of 330 (±75) µN, consuming ~1.5 W and using air as a propellant. Comparison of electrical data with the models showed decent agreement. The tests were only suitable for initial data collection and the thruster only moderately resembled a working design, hence data such as efficiency cannot yet be meaningfully stated.

  7. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  8. Collisionless electrostatic shock formation and ion acceleration in intense laser interactions with near critical density plasmas

    NASA Astrophysics Data System (ADS)

    Liu, M.; Weng, S. M.; Li, Y. T.; Yuan, D. W.; Chen, M.; Mulser, P.; Sheng, Z. M.; Murakami, M.; Yu, L. L.; Zheng, X. L.; Zhang, J.

    2016-11-01

    Laser-driven collisionless electrostatic shock formation and the subsequent ion acceleration have been studied in near critical density plasmas. Particle-in-cell simulations show that both the speed of laser-driven collisionless electrostatic shock and the energies of shock-accelerated ions can be greatly enhanced due to fast laser propagation in near critical density plasmas. However, a response time longer than tens of laser wave cycles is required before the shock formation in a near critical density plasma, in contrast to the quick shock formation in a highly overdense target. More important, we find that some ions can be reflected by the collisionless shock even if the electrostatic potential jump across the shock is smaller than the ion kinetic energy in the shock frame, which seems against the conventional ion-reflection condition. These anomalous ion reflections are attributed to the strong time-oscillating electric field accompanying the laser-driven collisionless shock in a near critical density plasma.

  9. Targeting electrostatic interactions in accelerated molecular dynamics with application to protein partial unfolding.

    PubMed

    Flores-Canales, Jose C; Kurnikova, Maria

    2015-06-09

    Accelerated molecular dynamics (aMD) is a promising sampling method to generate an ensemble of conformations and to explore the free energy landscape of proteins in explicit solvent. Its success resides in its ability to reduce barriers in the dihedral and the total potential energy space. However, aMD simulations of large proteins can generate large fluctuations of the dihedral and total potential energy with little conformational changes in the protein structure. To facilitate wider conformational sampling of large proteins in explicit solvent, we developed a direct intrasolute electrostatic interactions accelerated MD (DISEI-aMD) approach. This method aims to reduce energy barriers within rapidly changing electrostatic interactions between solute atoms at short-range distances. It also results in improved reconstruction quality of the original statistical ensemble of the system. Recently, we characterized a pH-dependent partial unfolding of diphtheria toxin translocation domain (T-domain) using microsecond long MD simulations. In this work, we focus on the study of conformational changes of a low-pH T-domain model in explicit solvent using DISEI-aMD. On the basis of the simulations of the low-pH T-domain model, we show that the proposed sampling method accelerates conformational rearrangement significantly faster than multiple standard aMD simulations and microsecond long conventional MD simulations.

  10. Automatic Control System of Ion Electrostatic Accelerator and Anti-Interference Measures

    NASA Astrophysics Data System (ADS)

    Sun, Zhenwu; Huo, Yuping; Liu, Gencheng; Li, Yuxiao; Li, Tao

    2007-02-01

    An automatic control system for the electrostatic accelerator has been developed by adopting the PLC (Programmable Logic Controller) control technique, infrared and optical-fibre transmission technique and network communication with the purpose to improve the intelligence level of the accelerator and to enhance the ability of monitoring, collecting and recording parameters. In view of the control system' structure, some anti-interference measures have been adopted after analyzing the interference sources. The measures in hardware include controlling the position of the corona needle, using surge arresters, shielding, ground connection and stabilizing the voltage. The measures in terms of software involve inter-blocking protection, soft-spacing, time delay, and diagnostic and protective programs. The electromagnetic compatible ability of the control system has thus been effectively improved.

  11. A linear electrostatic accelerator for education and advanced diagnostics development for OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Sinenian, N.; Gatu Johnson, M.; Sio, H.; Waugh, C.; Orozco, D.; Penna, J.; Rinderknecht, H.; Rosenberg, M.; Zylstra, A.; Frenje, J.; Li, C. K.; Seguin, F.; Petrasso, R.; Ruiz, C.; Sangster, T.; Leeper, R.; Kilkenny, J.

    2013-10-01

    The MIT Linear Electrostatic Accelerator generates D-D and D-3He fusion products, which are used for development of nuclear diagnostics for OMEGA and the NIF. Fusion reaction rates of about 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) CVD-diamond-based bang time detector. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  12. Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup

    2016-10-01

    Collisionless electrostatic shock ion acceleration has become a major regime of laser-driven ion acceleration owing to generation of quasi-monoenergetic ion beams from moderate parametric conditions of lasers and plasmas in comparison with target-normal-sheath-acceleration or radiation pressure acceleration. In order to construct the shock, plasma heating is an essential condition for satisfying Mach number condition 1.5 acceleration could be achieved via electron heating by relativistic transparency of a circularly polarized (CP) laser pulse. This is different from the usual method of shock generation via the electron heating by oscillating ponderomotive force of a linearly polarized laser pulse. In this poster we show one-dimensional particle-in-cell simulation result to compare LP-shock with CP-shock ion acceleration for a broad range of parameters. As the main result, the CP-shock could be formed at lower density plasmas than the LP-shock due to the efficient density compression of CP pulses. This leads to higher shock velocity and ion energy. Comparison of other detailed characteristics such as transmittance, scale length dependence, and other results from the simulations is presented. In addition, two-dimensional simulation is also discussed in association with Weibel instability. This work was supported by the Basic Science Research Program (NRF- 2013R1A1A2006353) and the Creative Allied Project (CAP-15-06-ETRI).

  13. Enhanced ethanol production via electrostatically accelerated fermentation of glucose using Saccharomyces cerevisiae.

    PubMed

    Mathew, Anup Sam; Wang, Jiapeng; Luo, Jieling; Yau, Siu-Tung

    2015-10-30

    The global demand for ethanol as an alternative fuel continues to rise. Advancement in all aspects of ethanol production is deemed beneficial to the ethanol industry. Traditional fermentation requires 50-70 hours to produce the maximum ethanol concentration of 7-8% (v/v). Here we demonstrate an electrostatic fermentation method that is capable of accelerating the fermentation of glucose using generic Saccharomyces cerevisiae as the fermenting microorganism to produce ethanol. The method, when applied to the batch fermentation of 1 liter fermenting mixture containing dry yeast without pre-culture, is able to achieve ethanol yield on the high gravity level (12.3% v/v) in 24 hours. The fermentation results in almost complete consumption of glucose. With pre-cultured yeast, ethanol yield can reach 14% v/v in 20 hours. The scale-up capability of the method is demonstrated with 2 liter fermenting mixture. The method does not consume external energy due to its electrostatic nature. Our results indicate the applicability of the fermentation technique to industry applications.

  14. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  15. Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup

    2016-10-01

    Ion acceleration from laser-driven collisionless electrostatic shock (CES) is attracting much attention, as quasi-monoenergetic, tens of MeV ion beams are expected to be available from relatively moderate laser power and near-critical density plasmas. For generation of a high-speed shock by a laser pulse, it is important to compress a high-contrast density layer by hole-boring process, and to heat the electrons in the upstream, where the hole-boring speed should match the Mach number condition 1.5 acceleration by ultrashort LP and CP pulses using PIC simulations. Owing to the better ability of CP pulses in density compression, the CP-driven shock is generated more efficiently even in low density plasmas than the LP-driven shocks. As the hole-boring speed is higher in lower density plasmas, we observed consistently higher speed of the shock and accelerated ion energy when driven by CP pulses. Interesting point is that the CP-shock generation is determined predominantly by the transmittance only, while the LP-shock formation depends on other parameters such as plasma scale length. In 2D simulations, we found that Weibel instability is less effective in CP than LP, which enables more stable shock formation for given conditions of the laser and plasma. This work was supported by the Basic Science Research Program (NRF-2013R1A1A2006353) and the Creative Allied Project (CAP-15-06-ETRI).

  16. Electrostatic Wave Generation and Transverse Ion Acceleration by Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2007-01-01

    We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.

  17. A Case Study of Truncated Electrostatics for Simulation of Polyelectrolyte Brushes on GPU Accelerators.

    PubMed

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y; Dobrynin, Andrey V; Brown, W Michael

    2013-01-08

    Numerous issues have disrupted the trend for increasing computational performance with faster CPU clock frequencies. In order to exploit the potential performance of new computers, it is becoming increasingly desirable to re-evaluate computational physics methods and models with an eye toward approaches that allow for increased concurrency and data locality. The evaluation of long-range Coulombic interactions is a common bottleneck for molecular dynamics simulations. Enhanced truncation approaches have been proposed as an alternative method and are particularly well-suited for many-core architectures and GPUs due to the inherent fine-grain parallelism that can be exploited. In this paper, we compare efficient truncation-based approximations to evaluation of electrostatic forces with the more traditional particle-particle particle-mesh (P(3)M) method for the molecular dynamics simulation of polyelectrolyte brush layers. We show that with the use of GPU accelerators, large parallel simulations using P(3)M can be greater than 3 times faster due to a reduction in the mesh-size required. Alternatively, using a truncation-based scheme can improve performance even further. This approach can be up to 3.9 times faster than GPU-accelerated P(3)M for many polymer systems and results in accurate calculation of shear velocities and disjoining pressures for brush layers. For configurations with highly nonuniform charge distributions, however, we find that it is more efficient to use P(3)M; for these systems, computationally efficient parametrizations of the truncation-based approach do not produce accurate counterion density profiles or brush morphologies.

  18. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  19. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  20. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    PubMed

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone.

  1. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    PubMed Central

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  2. Accelerator-Based Boron Neutron Capture Therapy and the Development of a Dedicated Tandem-Electrostatic-Quadrupole

    SciTech Connect

    Kreiner, A. J.; Di Paolo, H.; Burlon, A. A.; Valda, A. A.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Kesque, J. M.; Giboudot, Y.; Levinas, P.; Fraiman, M.; Romeo, V.

    2007-10-26

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). Progress on an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. A 30 mA proton beam of 2.5 MeV are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the {sup 7}Li(p,n){sup 7}Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. The first design and construction of an ESQ module is discussed and its electrostatic fields are investigated theoretically and experimentally. Also new beam transport calculations through the accelerator are presented.

  3. Formation of electrostatic structures by wakefield acceleration in ultrarelativistic plasma flows: Electron acceleration to cosmic ray energies

    SciTech Connect

    Dieckmann, M.E.; Shukla, P.K.; Eliasson, B.

    2006-06-15

    The ever increasing performance of supercomputers is now enabling kinetic simulations of extreme astrophysical and laser produced plasmas. Three-dimensional particle-in-cell (PIC) simulations of relativistic shocks have revealed highly filamented spatial structures and their ability to accelerate particles to ultrarelativistic speeds. However, these PIC simulations have not yet revealed mechanisms that could produce particles with tera-electron volt energies and beyond. In this work, PIC simulations in one dimension (1D) of the foreshock region of an internal shock in a gamma ray burst are performed to address this issue. The large spatiotemporal range accessible to a 1D simulation enables the self-consistent evolution of proton phase space structures that can accelerate particles to giga-electron volt energies in the jet frame of reference, and to tens of tera-electron volt in the Earth's frame of reference. One potential source of ultrahigh energy cosmic rays may thus be the thermalization of relativistically moving plasma.

  4. A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators.

    PubMed

    Veltri, P; Cavenago, M; Serianni, G

    2014-02-01

    Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than λD. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.

  5. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF.

    PubMed

    Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J

    2012-04-01

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.

  6. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  7. High-Frequency Electrostatic Wave Generation and Transverse Ion Acceleration by Low Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2006-01-01

    Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.

  8. Production of {sup 17}F, {sup 15}O and other radioisotopes for PET using a 3 MV electrostatic tandem accelerator

    SciTech Connect

    Roberts, A. D.; Davidson, R. J.; Nickles, R. J.

    1999-06-10

    Target systems for the production of positron emitting radioisotopes used for medical research with positron emission tomography (PET) are under development for a 3 MV electrostatic tandem accelerator (NEC 9SDH-2). This machine is intended primarily for the continuous production of short lived tracers labeled with {sup 15}O (t{sub 1/2}=122 s) or {sup 17}F (t{sub 1/2}=65 s) for determining regional cerebral blood flow in humans. Simple gas, liquid, and solid target systems are presented for the production of [{sup 15}O]H{sub 2}O (yield at saturation 13 mCi/{mu}A), [{sup 17}F]F{sub 2} (22 mCi/{mu}A), [{sup 17}F] fluoride (aq.) (12 mCi/{mu}A), [{sup 18}F]fluoride (aq.) (21 mCi/{mu}A), [{sup 13}N] in graphite (25 mCi/{mu}A), and [{sup 11}C]CO{sub 2} (2.3 mCi/{mu}A). Current limitations on single window targets for each production are discussed.

  9. Properties of enzyme preparations and homogeneous enzymes - endoglucanases EG2 Penicillium verruculosum and LAM Myceliophthora thermophila.

    PubMed

    Merzlov, D A; Zorov, I N; Dotsenko, G S; Denisenko, Yu A; Rozhkova, A M; Satrutdinov, A D; Rubtsova, E A; Kondratieva, E G; Sinitsyn, A P

    2015-04-01

    The genes of endoglucanases EG2 (36.2 kDa) Penicillium verruculosum and LAM (30.8 kDa) Myceliophthora thermophila were cloned in P. verruculosum recombinant strain. New enzyme preparations with highly stable activity against β-glucan and laminarin were obtained and investigated, homogeneous enzymes EG2 (EC 3.2.1.4) and LAM (EC 3.2.1.6) being purified and characterized. For β-glucan, the EG2 Km value was found to be 10 times higher than that for LAM; however, EG2 demonstrated greater processivity due to its higher kcat. The pH and temperature optima of EG2 and LAM activity against barley β-glucan overlapped and were 4.3-4.9 and 61-67°C, respectively, and EG2 appeared to be more stable than LAM. Oligosaccharides with degree of polymerization 2-10 were formed by hydrolysis of β-glucan and laminarin by the studied enzymes. The recombinant enzyme preparations were faster and more effective in decreasing the reduced viscosity of wholegrain barley extract than some commercial enzyme preparations. Thus, the new enzyme preparations seem to be rather perspective as feed additives for degradation of non-starch polysaccharides in grain animal feed.

  10. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  11. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    SciTech Connect

    Pilan, N. Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  12. Progresses in Ab Initio QM/MM Free Energy Simulations of Electrostatic Energies in Proteins: Accelerated QM/MM Studies of pKa, Redox Reactions and Solvation Free Energies

    SciTech Connect

    Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh

    2009-03-01

    Hybrid quantum mechanical / molecular mechanical (QM/MM) approaches have been used to provide a general scheme for chemical reactions in proteins. However, such approaches still present a major challenge to computational chemists, not only because of the need for very large computer time in order to evaluate the QM energy but also because of the need for propercomputational sampling. This review focuses on the sampling issue in QM/MM evaluations of electrostatic energies in proteins. We chose this example since electrostatic energies play a major role in controlling the function of proteins and are key to the structure-function correlation of biological molecules. Thus, the correct treatment of electrostatics is essential for the accurate simulation of biological systems. Although we will be presenting here different types of QM/MM calculations of electrostatic energies (and related properties), our focus will be on pKa calculations. This reflects the fact that pKa of ionizable groups in proteins provide one of the most direct benchmarks for the accuracy of electrostatic models of macromolecules. While pKa calculations by semimacroscopic models have given reasonable results in many cases, existing attempts to perform pKa calculations using QM/MM-FEP have led to large discrepancies between calculated and experimental values. In this work, we accelerate our QM/MM calculations using an updated mean charge distribution and a classical reference potential. We examine both a surface residue (Asp3) of the bovine pancreatic trypsin inhibitor, as well as a residue buried in a hydrophobic pocket (Lys102) of the T4-lysozyme mutant. We demonstrate that by using this approach, we are able to reproduce the relevant sidechain pKas with an accuracy of 3 kcal/mol. This is well within the 7 kcal/mol energy difference observed in studies of enzymatic catalysis, and is thus sufficient accuracy to determine the main contributions to the catalytic energies of enzymes. We also provide an

  13. Electrostatic Toys.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1982-01-01

    Describes typical electrostatic toys which may be used to show students phenomena associated with sparks, sudden drops in potential, induction, and forces between bodies of like and opposite charges. Many of these demonstrations are suitable for student projects. (Author/JN)

  14. Electrostatic monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  15. Miniature Electrostatic Ion Thruster With Magnet

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A miniature electrostatic ion thruster is proposed that, with one exception, would be based on the same principles as those of the device described in the previous article, "Miniature Bipolar Electrostatic Ion Thruster". The exceptional feature of this thruster would be that, in addition to using electric fields for linear acceleration of ions and electrons, it would use a magnetic field to rotationally accelerate slow electrons into the ion stream to neutralize the ions.

  16. myPresto/omegagene: a GPU-accelerated molecular dynamics simulator tailored for enhanced conformational sampling methods with a non-Ewald electrostatic scheme

    PubMed Central

    Kasahara, Kota; Ma, Benson; Goto, Kota; Dasgupta, Bhaskar; Higo, Junichi; Fukuda, Ikuo; Mashimo, Tadaaki; Akiyama, Yutaka; Nakamura, Haruki

    2016-01-01

    Molecular dynamics (MD) is a promising computational approach to investigate dynamical behavior of molecular systems at the atomic level. Here, we present a new MD simulation engine named “myPresto/omegagene” that is tailored for enhanced conformational sampling methods with a non-Ewald electrostatic potential scheme. Our enhanced conformational sampling methods, e.g., the virtual-system-coupled multi-canonical MD (V-McMD) method, replace a multi-process parallelized run with multiple independent runs to avoid inter-node communication overhead. In addition, adopting the non-Ewald-based zero-multipole summation method (ZMM) makes it possible to eliminate the Fourier space calculations altogether. The combination of these state-of-the-art techniques realizes efficient and accurate calculations of the conformational ensemble at an equilibrium state. By taking these advantages, myPresto/omegagene is specialized for the single process execution with Graphics Processing Unit (GPU). We performed benchmark simulations for the 20-mer peptide, Trp-cage, with explicit solvent. One of the most thermodynamically stable conformations generated by the V-McMD simulation is very similar to an experimentally solved native conformation. Furthermore, the computation speed is four-times faster than that of our previous simulation engine, myPresto/psygene-G. The new simulator, myPresto/omegagene, is freely available at the following URLs: http://www.protein.osaka-u.ac.jp/rcsfp/pi/omegagene/ and http://presto.protein.osaka-u.ac.jp/myPresto4/. PMID:27924276

  17. myPresto/omegagene: a GPU-accelerated molecular dynamics simulator tailored for enhanced conformational sampling methods with a non-Ewald electrostatic scheme.

    PubMed

    Kasahara, Kota; Ma, Benson; Goto, Kota; Dasgupta, Bhaskar; Higo, Junichi; Fukuda, Ikuo; Mashimo, Tadaaki; Akiyama, Yutaka; Nakamura, Haruki

    2016-01-01

    Molecular dynamics (MD) is a promising computational approach to investigate dynamical behavior of molecular systems at the atomic level. Here, we present a new MD simulation engine named "myPresto/omegagene" that is tailored for enhanced conformational sampling methods with a non-Ewald electrostatic potential scheme. Our enhanced conformational sampling methods, e.g., the virtual-system-coupled multi-canonical MD (V-McMD) method, replace a multi-process parallelized run with multiple independent runs to avoid inter-node communication overhead. In addition, adopting the non-Ewald-based zero-multipole summation method (ZMM) makes it possible to eliminate the Fourier space calculations altogether. The combination of these state-of-the-art techniques realizes efficient and accurate calculations of the conformational ensemble at an equilibrium state. By taking these advantages, myPresto/omegagene is specialized for the single process execution with Graphics Processing Unit (GPU). We performed benchmark simulations for the 20-mer peptide, Trp-cage, with explicit solvent. One of the most thermodynamically stable conformations generated by the V-McMD simulation is very similar to an experimentally solved native conformation. Furthermore, the computation speed is four-times faster than that of our previous simulation engine, myPresto/psygene-G. The new simulator, myPresto/omegagene, is freely available at the following URLs: http://www.protein.osaka-u.ac.jp/rcsfp/pi/omegagene/ and http://presto.protein.osaka-u.ac.jp/myPresto4/.

  18. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography.

    PubMed

    Sadavarte, Rahul; Spearman, Maureen; Okun, Natalie; Butler, Michael; Ghosh, Raja

    2014-06-01

    Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc.

  19. Ion acceleration in electrostatic field of charged cavity created by ultra-short laser pulses of 1020-1021 W/cm2

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Yu.; Singh, P. K.; Ahmed, H.; Kakolee, K. F.; Scullion, C.; Jeong, T. W.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2017-01-01

    Ion acceleration resulting from the interaction of ultra-high intensity and ultra-high contrast (˜10-10) laser pulses with thin A l foil targets at 30° angle of laser incidence is studied. Proton maximum energies of 30 and 18 MeV are measured along the target normal rear and front sides, respectively, showing intensity scaling as Ib . For the target front bf r o n t= 0.5-0.6 and for the target rear br e a r= 0.7-0.8 is observed in the intensity range 1020-1021 W/cm2. The fast scaling from the target rear ˜I0.75 can be attributed enhancement of laser energy absorption as already observed at relatively low intensities. The backward acceleration of the front side protons with intensity scaling as ˜I0.5 can be attributed to the to the formation of a positively charged cavity at the target front via ponderomotive displacement of the target electrons at the interaction of relativistic intense laser pulses with a solid target. The experimental results are in a good agreement with theoretical predictions.

  20. Electrostatically screened, voltage-controlled electrostatic chuck

    DOEpatents

    Klebanoff, Leonard Elliott

    2001-01-01

    Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.

  1. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  2. The Electrostatic Bell

    NASA Astrophysics Data System (ADS)

    Martrou, Guillaume; Leonetti, Marc

    2016-11-01

    An initially static fluid-fluid interface is known to become unstable under a strong electric field leading to jet instability, surface pattern and spout formation. Applying an electric field to an initial dripping mode accelerates the dripping rate and leads to a continuous jet mode. We show that those two different configurations, when applied to dielectric liquids, can lead to the same instability, the formation of an unexpected macroscopic fluid bell-shape of typical size few times the capillary length even if the needle is as small as 200 μm . The instability results from the competition between the dielectric and the gravity forces, reminiscent of the Taylor-Melcher mechanism. The study is performed on several fluids of various densities, permittivity and surface tension on a large range of electric field. We show that the transition is an imperfect subcritical bifurcation with its characteristic bottleneck effect (lag time). Finally, in the case of flow rate, we established a shape diagram with four domains corresponding to dripping, jetting, bridge and electrostatic bell.

  3. Coherent Ion Acceleration Using Beating Electrostatic Waves

    DTIC Science & Technology

    2004-09-01

    out under contract from the US Air Force Office of Scientific Research (AFOSR) under Grant number F49620-02-1-0009. Technical Contract Manager : Dr...and G.S. Cladwell. Fast-fourier-transform spectral-analysis tecniques as a plasma fluctuation diagnostic tool. IEEE Trans. Plasma Sci., PS-1:261

  4. Electrostatic Levitator Electrodes

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Electrostatic levitation system inside Electrostatic Levitator (ESL) vacuum chamber. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  5. ELECTROSTATIC POWER GENERATOR.

    DTIC Science & Technology

    ELECTROSTATIC GENERATORS , POWER EQUIPMENT, ELECTRIC GOVERNORS, CIRCUITS, VACUUM SEALS, ELECTRICAL INSULATION, VACUUM, ELECTRODES, FINISHES, SURFACE...FINISHING, SURFACE PROPERTIES, HARDNESS, PULSE GENERATORS , TRANSFORMERS, FIELD EMISSION.

  6. ELECTROSTATIC POWER GENERATOR.

    DTIC Science & Technology

    ELECTROSTATIC GENERATORS , POWER EQUIPMENT, ELECTRICAL INSULATION, FIELD EMISSION, ELECTRODES, VACUUM, SURFACE PROPERTIES, ANODES, CATHODES, POLISHES...DIELECTRICS, COATINGS, PRESSURE, HARDNESS, PULSE GENERATORS , TRANSFORMERS, VACUUM SEALS, EQUATIONS.

  7. Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Rulison of Space System LORAl working with the Electrostatic Levitation (ESL) prior to the donation. Space System/LORAL donated the electrostatic containerless processing system to NASA's Marshall Space Flight Center (MSFC). The official hand over took place in July 1998.

  8. Edutainment Science: Electrostatics

    ERIC Educational Resources Information Center

    Ahlers, Carl

    2009-01-01

    Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…

  9. Oak Ridge 25-MV tandem accelerator

    SciTech Connect

    Jones, C.M.

    1981-01-01

    A brief description is presented of the scope and status of the heavy ion accelerator facility, and status of the project is discussed. Initial operation of the 25 MV tandem accelerator from National Electrostatics Corporation is covered. (GHT)

  10. Electrostatic Field Invisibility Cloak

    PubMed Central

    Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji

    2015-01-01

    The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications. PMID:26552343

  11. The electrostatic storage tube

    NASA Technical Reports Server (NTRS)

    Rutherford, R. E., Jr.

    1973-01-01

    An electrostatic camera system is discussed which is based on the electrostatic storage tube. The development of the system was begun following a series of experiments which indicated that the device offers signficantly improved performance over currently available devices. The approach used in developing the high performance camera involves: converting the input image to an electron image at low loss, applying a low noise gain process, and storing the resulting charge pattern in a low-loss target. The basic processes and elements of the electrostatic storage tube are illustrated and discussed. Graphs that depict the camera performance characteristics are included.

  12. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  13. More Electrostatic Explorations.

    ERIC Educational Resources Information Center

    Stewart, Gay; Gallai, Ditta

    1998-01-01

    Presents worksheet activities that enable students to explore the concept of electrostatic induction and learn the meaning of grounding. Students build two classic devices, the electrophorus and the leaf electroscope. (DDR)

  14. Graphene Electrostatic Microphone

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Onishi, Seita; Zettl, A.

    2015-03-01

    We demonstrate a wideband electrostatic graphene microphone displaying flat frequency response over the entire human audible region as well as into the ultrasonic regime. Using the microphone, low-level ultrasonic bat calls are successfully recorded. The microphone can be paired with a similarly constructed electrostatic graphene loudspeaker to create a wideband ultrasonic radio. Materials Sciences Division, Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute at the University of California - Berkeley.

  15. Electrostatic discharge test apparatus

    NASA Technical Reports Server (NTRS)

    Smith, William Conrad (Inventor)

    1988-01-01

    Electrostatic discharge properties of materials are quantitatively measured and ranked. Samples are rotated on a turntable beneath selectable, co-available electrostatic chargers, one being a corona charging element and the other a sample-engaging triboelectric charging element. Samples then pass under a voltage meter to measure the amount of residual charge on the samples. After charging is discontinued, measurements are continued to record the charge decay history over time.

  16. Electrostatic Levitator in Use

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Metal droplet levitated inside the Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  17. Electrostatic Levitator Electrode Layout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  18. Electrostatic Levitator Layout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    General oayout of Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  19. Miniature Bipolar Electrostatic Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  20. Electrostatics at the nanoscale.

    PubMed

    Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A

    2011-04-01

    Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.

  1. Electrostatic graphene loudspeaker

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Zettl, A.

    2013-06-01

    Graphene has extremely low mass density and high mechanical strength, and key qualities for efficient wide-frequency-response electrostatic audio speaker design. Low mass ensures good high frequency response, while high strength allows for relatively large free-standing diaphragms necessary for effective low frequency response. Here, we report on construction and testing of a miniaturized graphene-based electrostatic audio transducer. The speaker/earphone is straightforward in design and operation and has excellent frequency response across the entire audio frequency range (20 Hz-20 kHz), with performance matching or surpassing commercially available audio earphones.

  2. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  3. Electrostatic Levitator Inspected

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Larry Savage, Dr. Jan Rogers, Dr. Michael Robinson (All NASA) and Doug Huie (Mevatec) inspect the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  4. Electrostatic Levitator (ESL) Undercooling

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Graph depicting Electrostatic Levitator (ESL) heating and cooling cycle to achieve undercooling of liquid metals. The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. The electrostatic Levitator is one of several tools used in NASA's microgravity matierials sciences program.

  5. Electrostatic Levitator at Work

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A 3 mm drop of nickel-zirconium, heated to incandescence, hovers between electrically charged plates inside the Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  6. Nanoscale Electrostatics in Mitosis

    NASA Astrophysics Data System (ADS)

    Gagliardi, L. John; West, Patrick Michael

    2001-04-01

    Primitive biological cells had to divide with very little biology. This work simulates a physicochemical mechanism, based upon nanoscale electrostatics, which explains the anaphase A poleward motion of chromosomes. In the cytoplasmic medium that exists in biological cells, electrostatic fields are subject to strong attenuation by Debye screening, and therefore decrease rapidly over a distance equal to several Debye lengths. However, the existence of microtubules within cells changes the situation completely. Microtubule dimer subunits are electric dipolar structures, and can act as intermediaries that extend the reach of the electrostatic interaction over cellular distances. Experimental studies have shown that intracellular pH rises to a peak at mitosis, and decreases through cytokinesis. This result, in conjunction with the electric dipole nature of microtubule subunits and the Debye screened electrostatic force is sufficient to explain and unify the basic events during mitosis and cytokinesis: (1) assembly of asters, (2) motion of the asters to poles, (3) poleward motion of chromosomes (anaphase A), (4) cell elongation, and (5) cytokinesis. This paper will focus on a simulation of the dynamics if anaphase A motion based on this comprehensive model. The physicochemical mechanisms utilized by primitive cells could provide important clues regarding our understanding of cell division in modern eukaryotic cells.

  7. Magnetosheath electrostatic turbulence

    NASA Technical Reports Server (NTRS)

    Rodriquez, P.

    1977-01-01

    The spectrum of electrostatic plasma waves in the terrestrial magnetosheath was studied using the plasma wave experiment on the IMP-6 satellite. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz- 70 kHz) r.m.s. field intensities typically 0.01 - 1.0 millivolts/m. Peak intensities of about 1.0 millivolts/m near the electron plasma frequency (30 - 60 kHz) were detected occasionally. The components usually identified in the spectrum of magnetosheath electrostatic turbulence include a high frequency ( or = 30 kHz) component peaking at the electron plasma frequency f sub pe, a low frequency component with a broad intensity maximum below the nominal ion plasma frequency f sub pi (approximately f sub pe/43), and a less well defined intermediate component in the range f sub pi f f sub pe. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath.

  8. Electrostatics of Rigid Polyelectrolytes

    SciTech Connect

    Wong, G.C.L.

    2009-06-04

    The organization of rigid biological polyelectrolytes by multivalent ions and macroions are important for many fundamental problems in biology and biomedicine, such as cytoskeletal regulation and antimicrobial sequestration in cystic fibrosis. These polyelectrolytes have been used as model systems for understanding electrostatics in complex fluids. Here, we review some recent results in theory, simulations, and experiments.

  9. Ultrafast collisional ion heating by electrostatic shocks

    PubMed Central

    Turrell, A. E.; Sherlock, M.; Rose, S. J.

    2015-01-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory. PMID:26563440

  10. Biobriefcase electrostatic aerosol collector

    DOEpatents

    Bell, Perry M.; Christian, Allen T.; Bailey, Christopher G.; Willis, Ladona; Masquelier, Donald A.; Nasarabadi, Shanavaz L.

    2009-03-17

    A system for sampling air and collecting particles entrained in the air comprising a receiving surface, a liquid input that directs liquid to the receiving surface and produces a liquid surface, an air input that directs the air so that the air with particles entrained in the air impact the liquid surface, and an electrostatic contact connected to the liquid that imparts an electric charge to the liquid. The particles potentially including bioagents become captured in the liquid by the air with particles entrained in the air impacting the liquid surface. Collection efficiency is improved by the electrostatic contact electrically charging the liquid. The effects of impaction and adhesion due to electrically charging the liquid allows a unique combination in a particle capture medium that has a low fluid consumption rate while maintaining high efficiency.

  11. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  12. Electrostatically clean solar array

    NASA Technical Reports Server (NTRS)

    Stern, Theodore Garry (Inventor); Krumweide, Duane Eric (Inventor)

    2004-01-01

    Provided are methods of manufacturing an electrostatically clean solar array panel and the products resulting from the practice of these methods. The preferred method uses an array of solar cells, each with a coverglass where the method includes machining apertures into a flat, electrically conductive sheet so that each aperture is aligned with and undersized with respect to its matched coverglass sheet and thereby fashion a front side shield with apertures (FSA). The undersized portion about each aperture of the bottom side of the FSA shield is bonded to the topside portions nearest the edges of each aperture's matched coverglass. Edge clips are attached to the front side aperture shield edges with the edge clips electrically and mechanically connecting the tops of the coverglasses to the solar panel substrate. The FSA shield, edge clips and substrate edges are bonded so as to produce a conductively grounded electrostatically clean solar array panel.

  13. Electrostatic Levitator Operations

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Jan Rogers (left) and Larry Savage (foreground) of the Science Directorate at NASA's Marshall Space Flight Center are joined by Dr. Richard Weber (Center) and April Hixon of Containerless Research Inc. of Evanston, Ill., in conducting an experiment run of the Electrostatic Levitator (ESL) using insulating materials. Materials researchers use unique capability of the facility to levitate and study the properties of various materials important in manufacturing processes.

  14. Micromachined silicon electrostatic chuck

    SciTech Connect

    Anderson, R.A.; Seager, C.H.

    1994-12-31

    In the field of microelectronics, and in particular the fabrication of microelectronics during plasma etching processes, electrostatic chucks have been used to hold silicon wafers during the plasma etching process. Current electrostatic chucks that operate by the {open_quotes}Johnson-Rahbek Effect{close_quotes} consist of a metallic base plate that is typically coated with a thick layer of slightly conductive dielectric material. A silicon wafer of approximately the same size as the chuck is placed on top of the chuck and a potential difference of several hundred volts is applied between the silicon and the base plate of the electrostatic chuck. This causes an electrostatic attraction proportional to the square of the electric field in the gap between the silicon wafer and the chuck face. When the chuck is used in a plasma filled chamber the electric potential of the wafer tends to be fixed by the effective potential of the plasma. The purpose of the dielectric layer on the chuck is to prevent the silicon wafer from coming into direct electrical contact with the metallic part of the chuck and shorting out the potential difference. On the other hand, a small amount of conductivity appears to be desirable in the dielectric coating so that much of its free surface between points of contact with the silicon wafer is maintained near the potential of the metallic base plate; otherwise, a much larger potential difference would be needed to produce a sufficiently large electric field in the vacuum gap between the wafer and chuck. Typically, the face of the chuck has a pattern of grooves in which about 10 torr pressure of helium gas is maintained. This gas provides cooling (thermal contact) between the wafer and the chuck. A pressure of 10 torr is equivalent to about 0.2 psi.

  15. Electrostatics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, John

    2004-01-01

    The purpose of the research was to continue developing an understanding of electrostatic phenomena in preparation for any future flight opportunities of the EGM experiment, originally slated for a 2004 Space Station deployment. Work would be based on theoretical assessments, ground-based lab experiments, and reduced-gravity experiments. The ability to examine dipoles in the lab proved to be elusive, and thus, effort was concentrated on monopoles -how materials become charged, the fate of the charge, the role of material type, and so forth. Several significant milestones were achieved in this regard. In regard of the dipoles, experiments were designed in collaboration with the University of Chicago school district who had access to reduced gravity on the KC-135 aircraft. Two experiments were slated to fly last year but were cancelled after the Columbia accident. One of the experiments has been given a second life and will fly sometime in 2005 if the Shuttle flights resume. There remains active interest in the question of electrostatic dipoles within the educational community, and experiments using magnetic dipoles as a substitute are to be examined. The KC-135 experiments will also examine dispersion methods for particles as a verification of possible future techniques in microgravity. Both laboratory and theoretical work established a number of breakthroughs in our understanding of electrostatic phenomena. These breakthroughs are listed in this paper.

  16. Electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram K.; Wilson, John W.; Youngquist, Robert C.

    2008-09-01

    For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.

  17. Innovative Electrostatic Adhesion Technologies

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  18. Innovative Electrostatic Adhesion Technologies

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  19. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  20. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  1. GRADIO three-axis electrostatic accelerometers

    NASA Technical Reports Server (NTRS)

    Bernard, A.

    1987-01-01

    Dedicated accelerometers for satellite gravity gradiometry (GRADIO project) are described. The design profits from experience acquired with the CACTUS accelerometer payload of the satellite CASTOR-D5B and studies of highly accurate accelerometers for inertial navigation. The principle of operation, based on a three-axis electrostatic suspension of a cubic proof mass, is well suited for the measurements of accelerations less than 0.0001 m/sec/sec. A resolution better than 10 to the minus 11th power m/sec/sec/sq root Hz is expected.

  2. Spacecraft Electrostatic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  3. Electrostatic Return of Contaminants

    NASA Technical Reports Server (NTRS)

    Rantanen, R.; Gordon, T.

    2003-01-01

    A Model has been developed capable of calculating the electrostatic return of spacecraft-emitted molecules that are ionized and attracted back to the spacecraft by the spacecraft electric potential on its surfaces. The return of ionized contaminant molecules to charged spacecraft surfaces is very important to all altitudes. It is especially important at geosynchronous and interplanetary environments, since it may be the only mechanism by which contaminants can degrade a surface. This model is applicable to all altitudes and spacecraft geometries. In addition to results of the model will be completed to cover a wide range of potential space systems.

  4. Micromachined, Electrostatically Deformable Reflectors

    NASA Technical Reports Server (NTRS)

    Bartman, Randall K.; Wang, Paul K. C.; Miller, Linda M.; Kenny, Thomas W.; Kaiser, William J.; Hadaegh, Fred Y.; Agronin, Michael L.

    1995-01-01

    Micromachined, closed-loop, electrostatically actuated reflectors (microCLEARs) provide relatively simple and inexpensive alternatives to large, complex, expensive adaptive optics used to control wavefronts of beams of light in astronomy and in experimental laser weapons. Micromachining used to make deformable mirror, supporting structure, and actuation circuitry. Development of microCLEARs may not only overcome some of disadvantages and limitations of older adaptive optics but may also satisfy demands of potential market for small, inexpensive deformable mirrors in electronically controlled film cameras, video cameras, and other commercial optoelectronic instruments.

  5. Electrostatically Driven Nanoballoon Actuator.

    PubMed

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  6. PREFACE: Electrostatics 2015

    NASA Astrophysics Data System (ADS)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical

  7. Undamped electrostatic plasma waves

    SciTech Connect

    Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.

    2012-09-15

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.

  8. Electrostatic Beneficiation of Coal

    SciTech Connect

    D. Lindquist; K. B. Tennal; M. K. Mazumder

    1998-10-29

    It was suggested in the proposal that small particles, due to low inertia, may not impact on the surfaces of the tribocharger. They would, thus, not receive charge and would not be beneficiated in the electrostatic separation. A milling process was proposed in which the small particles are stirred together with larger carrier beads producing the desired contact charge exchange. A force is necessary for removing the coal particles from the carrier beads. In copying machines electrostatic force is used to pull toner particles away horn iron carrier particles which are held back by magnetic force. Aerodynamic force is used in test instruments for measuring the charge to mass ratio on toners. A similar system of milling and removal is desired for use with the small coal particles. The carrier beads need to be made of copper rather than iron. This complicates the separation process since copper is non-magnetic. We are working on coating of iron beads with a layer of copper. Dr. Robert Engleken of Arkansas State University has supplied us with several test batches of copper-coated iron in the size range of -40 +70 mesh. ` We are currently testing whether the milling process used with the copper coated iron beads produces the desired charge on the coal particles.

  9. Designing Electrostatic Accelerometers for Next Gravity Missions

    NASA Astrophysics Data System (ADS)

    Huynh, Phuong-Anh; Foulon, Bernard; Christophe, Bruno; Liorzou, Françoise; Boulanger, Damien; Lebat, Vincent

    2016-04-01

    Square cuboid electrostatic accelerometers sensor core have been used in various combinations in recent and still flying missions (CHAMP, GRACE, GOCE). ONERA is now in the process of delivering such accelerometers for the GRACE Follow-On mission. The goal is to demonstrate the performance benefits of an interferometry laser ranging method for future low-low satellite to satellite missions. The electrostatic accelerometer becoming thus the system main performance limiter, we propose for future missions a new symmetry which will allow for three ultrasensitive axes instead of two. This implies no performance ground testing, as the now cubic proof-mass will be too heavy, but only free fall tests in catapult mode, taking advantage of the additional microgravity testing time offered by the updated ZARM tower. The updated mission will be in better adequacy with the requirements of a next generation of smaller and drag compensated micro-satellites. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag and by radiation pressures, the accelerometer will become a major part of the attitude and orbit control system by acting as drag free sensor and by accurately measuring the angular accelerations. ONERA also works on a hybridization of the electrostatic accelerometer with an atomic interferometer to take advantage of the absolute nature of the atomic interferometer acceleration measurement and its great accuracy in the [5-100] mHz bandwidth. After a description of the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development, the presentation will describe the new cubic configuration and how its operations and performances can be verified in the Bremen drop tower.

  10. ELECTROSTATIC MEMORY SYSTEM

    DOEpatents

    Chu, J.C.

    1958-09-23

    An improved electrostatic memory system is de scribed fer a digital computer wherein a plarality of storage tubes are adapted to operate in either of two possible modes. According to the present irvention, duplicate storage tubes are provided fur each denominational order of the several binary digits. A single discriminator system is provided between corresponding duplicate tubes to determine the character of the infurmation stored in each. If either tube produces the selected type signal, corresponding to binazy "1" in the preferred embodiment, a "1" is regenerated in both tubes. In one mode of operation each bit of information is stored in two corresponding tubes, while in the other mode of operation each bit is stored in only one tube in the conventional manner.

  11. Versatile electrostatic trap

    SciTech Connect

    Veldhoven, Jacqueline van; Bethlem, Hendrick L.; Schnell, Melanie; Meijer, Gerard

    2006-06-15

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of {sup 15}ND{sub 3} molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to create either a double-well or a donut-shaped trapping field. The profile of the {sup 15}ND{sub 3} packet in each of these four trapping potentials is measured, and the dependence of the well-separation and barrier height of the double-well and donut potential on the hexapole and dipole term are discussed.

  12. MEMS electrostatic influence machines

    NASA Astrophysics Data System (ADS)

    Phu Le, Cuong; Halvorsen, Einar

    2016-11-01

    This paper analyses the possibility of MEMS electrostatic influence machines using electromechanical switches like the historical predecessors did two centuries ago. We find that a generator design relying entirely on standard silicon-on-insulator(SOI) micromachining is conceivable and analyze its performance by simulations. The concept appears preferable over comparable diode circuits due to its higher maximum energy, faster charging and low precharging voltage. A full electromechanical lumped-model including parasitic capacitances of the switches is built to capture the dynamic of the generator. Simulation results show that the output voltage can be exponentially bootstrapped from a very low precharging voltage so that otherwise inadequately small voltage differences or charge imbalances can be made useful.

  13. Teaching Electrostatics in University Courses

    ERIC Educational Resources Information Center

    Hughes, J. F.

    1974-01-01

    Describes an optional course on applied electrostatics that was offered to electrical engineers in their final year. Topics included the determination of electric fields, nature of the charging process, static electricity in liquids, solid state processes, charged particle applications, and electrostatic ignition. (GS)

  14. Electrostatic beneficiation of ores on the moon surface

    NASA Technical Reports Server (NTRS)

    Inculet, I. I.; Criswell, D. R.

    1979-01-01

    The feasibility of the electrostatic beneficiation of lunar ores is studied. It is shown that the lunar environment with its sustained high vacuum, low temperature, and low acceleration of gravity, is suitable for the use of the electrostatic technique with magnetic as well as nonmagnetic ores. Only an initial coarse screening will be required prior to processing, as the lunar soil is already in fine particulate form. The low temperature and the absence of water suggest the use of tribo-electrification for the electric charging of lunar soils.

  15. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  16. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  17. Electrostatic drops in orbit

    NASA Astrophysics Data System (ADS)

    Rodriguez, Isabel J.; Schmidt, Erin; Weislogel, Mark M.; Pettit, Donald

    2016-11-01

    We present what we think are the first intentional electrostatic orbits in the near-weightless environment of a drop tower. Classical physics problems involving Coulombic forces in orbital mechanics have traditionally been confined to thought experiments due to practical terrestrial experimental limitations, namely, the preponderance of gravity. However, the use of a drop tower as an experimental platform can overcome this challenge for brief periods. We demonstrate methanol-water droplets in orbit around a variety of charged objects- some of which can be used to validate special cases of N-body systems. Footage collected via a high-speed camera is analyzed and orbital trajectories are compared with existing theoretical predictions. Droplets of diameters 0.5 to 2mm in a variety of obits are observed. Due to the repeatability of drop tower initial conditions and effective low-g environment, such experiments may be used to construct empirical analogues and confirm analyses toward the benefit of other fields including space and planetary science. NASA Cooperative Agreement NNX12A047A, Portland State LSAMP, Robert E. McNair Scholars Program.

  18. Explosion safety in industrial electrostatics

    NASA Astrophysics Data System (ADS)

    Szabó, S. V.; Kiss, I.; Berta, I.

    2011-01-01

    Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.

  19. Computational Methods for Biomolecular Electrostatics

    PubMed Central

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  20. Electrostatic prepregging of thermoplastic matrices

    NASA Technical Reports Server (NTRS)

    Muzzy, John D.; Varughese, Babu; Thammongkol, Vivan; Tincher, Wayne

    1989-01-01

    Thermoplastic towpregs of PEEK/AS-4, PEEK/S-2 glass and LaRC-TPI/AS-4, produced by electrostatic deposition of charged and fluidized polymer powders on spread continuous fiber tows, are described. Processing parameters for combining PEEK 150 powder with unsized 3k AS-4 carbon fiber are presented. The experimental results for PEEK 150/AS-4 reveal that electrostatic fluidized bed coating may be an economically attractive process for producing towpreg.

  1. Electrostatic Confinement of Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Pacheco, Jose; Weathers, Duncan; Ordonez, Carlos

    2009-04-01

    Many experiments rely on the confinement of charged particles. Examples of these experiments range from fusion studies to antiproton-positron studies for antihydrogen production. Researchers have already developed a variety of techniques for controlling and trapping charged particles. Examples of systems devised for such purposes include electrostatic traps in the form of a cavity [1],[2] or in the form of a storage ring like ELISA [3]. For this project, we are pursuing a different approach [4], which relies on a purely electrostatic environment for ion confinement. This system consists of a periodic electrode configuration of cylindrical symmetry that acts to confine an ion beam in the radial direction. In this manner, it is expected that long particle lifetimes inside the trap will be achieved, and that the system will have an inherent scalability to different ion energy. Results obtained from simulation of the proposed system will be presented and discussed along with a brief overview of the steps taken to develop a laboratory prototype. [1] M. Dahan et al., Rev. Sci. Instr. 69 (1998) 76. [2] H. F. Krause et al., American Institute of Physics. CAARI 16^th Int'l Conf. (2001). [3] S.P. Moller et al., Proc. of the 1997 Particle Accelerator Conference. vol 1. pp 1027-1029. Vancouver, Canada. May 1997. [4] J.R. Correa et al., Nucl. Instr. and Meth. In Phys. Res. B 241 (2005) 909-912.

  2. Invited Review Article: The electrostatic plasma lens

    SciTech Connect

    Goncharov, Alexey

    2013-02-15

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  3. Engineering scale electrostatic enclosure demonstration

    SciTech Connect

    Meyer, L.C.

    1993-09-01

    This report presents results from an engineering scale electrostatic enclosure demonstration test. The electrostatic enclosure is part of an overall in-depth contamination control strategy for transuranic (TRU) waste recovery operations. TRU contaminants include small particles of plutonium compounds associated with defense-related waste recovery operations. Demonstration test items consisted of an outer Perma-con enclosure, an inner tent enclosure, and a ventilation system test section for testing electrostatic curtain devices. Three interchangeable test fixtures that could remove plutonium from the contaminated dust were tested in the test section. These were an electret filter, a CRT as an electrostatic field source, and an electrically charged parallel plate separator. Enclosure materials tested included polyethylene, anti-static construction fabric, and stainless steel. The soil size distribution was determined using an eight stage cascade impactor. Photographs of particles containing plutonium were obtained with a scanning electron microscope (SEM). The SEM also provided a second method of getting the size distribution. The amount of plutonium removed from the aerosol by the electrostatic devices was determined by radiochemistry from input and output aerosol samplers. The inner and outer enclosures performed adequately for plutonium handling operations and could be used for full scale operations.

  4. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  5. Polarizable multipolar electrostatics for cholesterol

    NASA Astrophysics Data System (ADS)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  6. Electrostatics at the molecular level

    NASA Astrophysics Data System (ADS)

    Zürcher, Ulrich

    2017-01-01

    In molecular systems, positive and negative charges are separated, making them ideal systems to examine electrostatic interactions. The attractive force between positive and negative charges is balanced by repulsive ‘forces’ that are quantum-mechanical in origin. We introduce an ‘effective’ potential energy that captures the repulsion; it allows us to obtain fairly accurate estimates of the bonding properties of molecular systems. We use units (e.g., kcal mol-1 for energy) that emphasize the relevance of electrostatics to macroscopic behavior.

  7. Fabrication of nanoscale electrostatic lenses

    NASA Astrophysics Data System (ADS)

    Sinno, I.; Sanz-Velasco, A.; Kang, S.; Jansen, H.; Olsson, E.; Enoksson, P.; Svensson, K.

    2010-09-01

    The fabrication of cylindrical multi-element electrostatic lenses at the nanoscale presents a challenge; they are high-aspect-ratio structures that should be rotationally symmetric, well aligned and freestanding, with smooth edges and flat, clean surfaces. In this paper, we present the fabrication results of a non-conventional process, which uses a combination of focused gallium ion-beam milling and hydrofluoric acid vapor etching. This process makes it possible to fabricate nanoscale electrostatic lenses down to 140 nm in aperture diameter and 4.2 µm in column length, with a superior control of the geometry as compared to conventional lithography-based techniques.

  8. Charge sniffer for electrostatics demonstrations

    NASA Astrophysics Data System (ADS)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  9. B-B bond activation and NHC ring-expansion reactions of diboron(4) compounds, and accurate molecular structures of B2(NMe2)4, B2eg2, B2neop2 and B2pin2.

    PubMed

    Eck, Martin; Würtemberger-Pietsch, Sabrina; Eichhorn, Antonius; Berthel, Johannes H J; Bertermann, Rüdiger; Paul, Ursula S D; Schneider, Heidi; Friedrich, Alexandra; Kleeberg, Christian; Radius, Udo; Marder, Todd B

    2017-03-14

    In this detailed study we report on the structures of the widely employed diboron(4) compounds bis(pinacolato)diboron (B2pin2) and bis(neopentyl glycolato)diboron (B2neop2), as well as bis(ethylene glycolato)diboron (B2eg2) and tetrakis(dimethylamino)diboron (B2(NMe2)4), and their reactivity, along with that of bis(catecholato)diboron (B2cat2) with backbone saturated and backbone unsaturared N-heterocyclic carbenes (NHCs) of different steric demand. Depending on the nature of the diboron(4) compound and the NHC used, Lewis-acid/Lewis-base adducts or NHC ring-expansion products stemming from B-B and C-N bond activation have been observed. The corresponding NHC adducts and NHC ring-expanded products were isolated and characterised via solid-state and solution NMR spectroscopy and X-ray diffraction. In general, we observed B-B bond and C-N bond activation at low temperature for B2eg2, at room temperature for B2neop2 and at higher temperature for B2cat2. The reactivity strongly depends on steric effects of the NHCs and the diboron(4) compounds, as well as on the corresponding Lewis-basicity and Lewis-acidity. Our results provide profound insight into the chemistry of these diboron(4) reagents with the nowadays ubiquitous NHCs, the stability of the corresponding NHC adducts and on B-B bond activation using Lewis-bases in general. We demonstrate that B-B bond activation may be triggered even at temperatures as low as -40 °C to -30 °C without any metal species involved. For example, the reactions of B2eg2 with sterically less demanding NHCs such as Me2Im(Me) and iPr2Im in solution led to the corresponding ring-expanded products at low temperatures. Furthermore, boronium [L2B(OR)2](+) and borenium [LB(OR)2](+) cations have been observed from the reaction of the bis-borate B2eg3 with the NHCs iPr2Im and Me2Im(Me), which led to the conclusion that the activation of bis-borates with NHCs (or Lewis-bases in general) might be a facile and simple route to access such species.

  10. Kr II Laser-Induced Fluorescence for Measuring Plasma Acceleration (Preprint)

    DTIC Science & Technology

    2012-02-01

    krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator...velocity as the krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions...present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration

  11. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  12. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  13. Resistivity Problems in Electrostatic Precipitation

    ERIC Educational Resources Information Center

    White, Harry J.

    1974-01-01

    The process of electrostatic precipitation has ever-increasing application in more efficient collection of fine particles from industrial air emissions. This article details a large number of new developments in the field. The emphasis is on high resistivity particles which are a common cause of poor precipitator performance. (LS)

  14. Defining protein electrostatic recognition processes

    NASA Astrophysics Data System (ADS)

    Getzoff, Elizabeth D.; Roberts, Victoria A.

    The objective is to elucidate the nature of electrostatic forces controlling protein recognition processes by using a tightly coupled computational and interactive computer graphics approach. The TURNIP program was developed to determine the most favorable precollision orientations for two molecules by systematic search of all orientations and evaluation of the resulting electrostatic interactions. TURNIP was applied to the transient interaction between two electron transfer metalloproteins, plastocyanin and cytochrome c. The results suggest that the productive electron-transfer complex involves interaction of the positive region of cytochrome c with the negative patch of plastocyanin, consistent with experimental data. Application of TURNIP to the formation of the stable complex between the HyHEL-5 antibody and its protein antigen lysozyme showed that long-distance electrostatic forces guide lysozyme toward the HyHEL-5 binding site, but do not fine tune its orientation. Determination of docked antigen/antibody complexes requires including steric as well as electrostatic interactions, as was done for the U10 mutant of the anti-phosphorylcholine antibody S107. The graphics program Flex, a convenient desktop workstation program for visualizing molecular dynamics and normal mode motions, was enhanced. Flex now has a user interface and was rewritten to use standard graphics libraries, so as to run on most desktop workstations.

  15. Electrostatic Precipitator (ESP) TRAINING MANUAL

    EPA Science Inventory

    The manual assists engineers in using a computer program, the ESPVI 4.0W, that models all elements of an electrostatic precipitator (ESP). The program is a product of the Electric Power Research Institute and runs in the Windows environment. Once an ESP is accurately modeled, the...

  16. Which is better, electrostatic or piezoelectric energy harvesting systems?

    NASA Astrophysics Data System (ADS)

    Elliott, A. D. T.; Miller, L. M.; Halvorsen, E.; Wright, P. K.; Mitcheson, P. D.

    2015-12-01

    This paper answers the often asked, and until now inadequately answered, question of which MEMS compatible transducer type achieves the best power density in an energy harvesting system. This question is usually poorly answered because of the number of variables which must be taken into account and the multi-domain nature of the modelling and optimisation. The work here includes models of the mechanics, transducer and the power processing circuits (e.g. rectification and battery management) which in turn include detailed semiconductor models. It is shown that electrostatic harvesters perform better than piezoelectric harvesters at low accelerations, due to lower energy losses, and the reverse is generally true at high accelerations. At very high accelerations using MEMS-scale devices the dielectric breakdown limit in piezoelectric energy harvesters severely decreases their performance thus electrostatics are again preferred. Using the insights gained in this comparison, the optimal transduction mechanism can be chosen as a function of harvesting operating frequency, acceleration and device size.

  17. Predictions for Electrostatic Dust Levitation about Bennu's Equator

    NASA Astrophysics Data System (ADS)

    Hartzell, C. M.; Zimmerman, M. I.

    2015-12-01

    Electrostatic dust levitation was first hypothesized to occur on the Moon due to observations of Lunar Horizon Glow and results from the Apollo 17 LEAM instrument. Due to their weaker gravitational acceleration and similar plasma environment, electrostatic dust motion was also hypothesized to occur on asteroids. There is still no conclusive evidence, however, that electrostatic levitation occurs on either asteroids or the Moon. The OSIRIS-REx mission will visit the asteroid Bennu in 2018-2019. We have numerically modeled the plasma environment around the equator of Bennu, with the asteroid assumed to have a circular equatorial cross section. Our plasma model presents a significant improvement over previous semi-analytical models as it can seamlessly capture the transition from day-side plasma sheath to night-side plasma wake. Using the plasma model and assuming a uniform density for gravity calculations, we identify the altitudes, longitudinal locations, and the associated grain sizes at which electrostatic levitation is expected to occur. Our predictions of dust levitation at Bennu will enable assessments of the observability of levitating dust during the OSIRIS-REx mission and guide any observations.

  18. Quantitative nanoscale electrostatics of viruses

    NASA Astrophysics Data System (ADS)

    Hernando-Pérez, M.; Cartagena-Rivera, A. X.; Lošdorfer Božič, A.; Carrillo, P. J. P.; San Martín, C.; Mateu, M. G.; Raman, A.; Podgornik, R.; de Pablo, P. J.

    2015-10-01

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of

  19. Coupling of transit time instabilities in electrostatic confinement fusion devices

    SciTech Connect

    Gruenwald, J. Fröhlich, M.

    2015-07-15

    A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of this instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.

  20. 3D simulations of an electrostatic quadrupole injector

    SciTech Connect

    Grote, D.P. |; Friedman, A.; Yu, S.

    1993-02-01

    Analysis of the dynamics of a space charge dominated beam in a lattice of electrostatic focusing structures requires a full three-dimensional conic that includes self-consistent space charge fields and the fields from the complex conductor shapes. The existing WARP3d code, a particle simulation code which has been developed for heavy-ion fusion (HIF) applications contains machinery for handling particles in three-dimensional fields. A successive overrelaxation field solver with subgrid-scale placement of boundaries for rounded surface and four-fold symmetry has been added to the code. The electrostatic quadrupole (ESQ) injector for the ILSE accelerator facility being planned at Lawrence Berkeley Laboratory is shown as an application. The issue of concern is possible emittance degradation because the focusing voltages are a significant fraction of the particles` energy and because there are significant nonlinear fields arising from the shapes of the quadrupole structures.

  1. Asteroid electrostatic instrumentation and modelling

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Bowles, N. E.; Urbak, E.; Keane, D.; Sawyer, E. C.

    2011-06-01

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  2. Electrostatic Gating of Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Goldman, A. M.

    2014-07-01

    Electrostatic gating of ultrathin films can be used to modify electronic and magnetic properties of materials by effecting controlled alterations of carrier concentration while, in principle, not changing the level of disorder. As such, electrostatic gating can facilitate the development of novel devices and can serve as a means of exploring the fundamental properties of materials in a manner far simpler than is possible with the conventional approach of chemical doping. The entire phase diagram of a compound can be traversed by changing the gate voltage. In this review, we survey results involving conventional field effect devices as well as more recent progress, which has involved structures that rely on electrochemical configurations such as electric double-layer transistors. We emphasize progress involving thin films of oxide materials such as high-temperature superconductors, magnetic oxides, and oxides that undergo metal-insulator transitions.

  3. Closed loop electrostatic levitation system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1985-01-01

    An electrostatic levitation system is described, which can closely control the position of objects of appreciable size. A plurality of electrodes surround the desired position of an electrostatically charged object, the position of the objects is monitored, and the voltages applied to the electrodes are varied to hold the object at a desired position. In one system, the object is suspended above a plate-like electrode which has a concave upper face to urge the object toward the vertical axis of the curved plate. An upper electrode that is also curved can be positioned above the object, to assure curvature of the field at any height above the lower plate. In another system, four spherical electrodes are positioned at the points of a tetrahedron, and the voltages applied to the electrodes are varied in accordance with the object position as detected by two sensors.

  4. Electrostatic interactions in molecular materials

    NASA Astrophysics Data System (ADS)

    Painelli, Anna; Terenziani, Francesca

    2004-03-01

    Non-additive collective behavior appears in molecular materials as a result of intermolecular interactions. We present a model for interacting polar and polarizable molecules that applies to different supramolecular architectures of donor-π-acceptor molecules. We follow a bottom-up modeling strategy: the detailed analysis of spectroscopic data of solvated molecules leads to the definition of a simple two-state model for the molecular units. Classical electrostatic interactions are then introduced to model molecular clusters. The molecular properties are strickingly affected by supramolecular interactions, as demonstrated by spectroscopic studies. Brand new phenomena, like phase transitions and multielectron transfer, with no counterpart at the molecular level are observed as direct consequences of electrostatic intermolecular interactions.

  5. Electrostatic Spraying With Conductive Liquids

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Dawn, Frederic S.; Erlandson, Robert E.; Atkins, Loren E.

    1989-01-01

    Thin, uniform polymer coatings applied in water base normally impossible to charge. Electrostatic sprayer modified so applies coatings suspended or dissolved in electrically conductive liquids. Nozzle and gun constructed of nonconductive molded plastic. Liquid passageway made long enough electrical leakage through it low. Coaxial hose for liquid built of polytetrafluoroethylene tube, insulating sleeve, and polyurethane jacket. Sprayer provided with insulated seal at gun-to-hose connection, nonconductive airhose, pressure tank electrically isolated from ground, and special nozzle electrode. Supply of atomizing air reduced so particle momentum controlled by electrostatic field more effectively. Developed to apply water-base polyurethane coating to woven, shaped polyester fabric. Coating provides pressure seal for fabric, which is part of spacesuit. Also useful for applying waterproof, decorative, or protective coatings to fabrics for use on Earth.

  6. Electrostatic generator/motor configurations

    DOEpatents

    Post, Richard F

    2014-02-04

    Electrostatic generators/motors designs are provided that generally may include a first cylindrical stator centered about a longitudinal axis; a second cylindrical stator centered about the axis, a first cylindrical rotor centered about the axis and located between the first cylindrical stator and the second cylindrical stator. The first cylindrical stator, the second cylindrical stator and the first cylindrical rotor may be concentrically aligned. A magnetic field having field lines about parallel with the longitudinal axis is provided.

  7. Electrostatic forces for personnel restraints

    NASA Technical Reports Server (NTRS)

    Ashby, N.; Ciciora, J.; Gardner, R.; Porter, K.

    1977-01-01

    The feasibility of utilizing electrostatic forces for personnel retention devices on exterior spacecraft surfaces was analyzed. The investigation covered: (1) determination of the state of the art; (2) analysis of potential adhesion surfaces; (3) safety considerations for personnel; (4) electromagnetic force field determination and its effect on spacecraft instrumentation; and (5) proposed advances to current technology based on documentation review, analyses, and experimental test data.

  8. Defining Protein Electrostatic Recognition Processes

    DTIC Science & Technology

    1992-01-01

    electrostatic Interactions, as we have done for the U10 mutant of the antl- phosphorylcholine antibody S107. We have enhanced the graphics program Fla, a...10486 9393-10486 phosphorylcholine -binding antibody S107, (Chign et al., 1989; Behar et al., 1989). This mutant antibody results from a single-site...mutation of Asp 101 to Ala, over 9 A distant from the antigen binding site, which results in a complete loss of phosphorylcholine binding activity. A

  9. Monitoring Mars for Electrostatic Disturbances

    NASA Technical Reports Server (NTRS)

    Compton, D.

    2011-01-01

    The DSN radio telescope DSS-13 was used to monitor Mars for electrostatic discharges from 17 February to 11 April, 2010, and from 19 April to 4 May, 2011, over a total of 72 sessions. Of these sessions, few showed noteworthy results and no outstanding electrostatic disturbances were observed on Mars from analyzing the kurtosis of radio emission from Mars. Electrostatic discharges on mars were originally detected in June of 2006 by Ruf et al. using DSS-13. he kurtosis (normalized fourth moment of the electrical field strength) is sensitive to non-thermal radiation. Two frequencies bands, either 2.4 and 8.4 GHz or 8.4 and 32 GHz were used. The non-thermal radiation spectrum should have peaks at the lowest three modes of the theoretical Schumann Resonances of Mars. The telescope was pointed away from Mars every 5 minutes for 45 seconds to confirm if Mars was indeed the sources of any events. It was shown that by including a down-link signal in one channel and by observing when the kurtosis changed as the telescope was pointed away from the source that the procedure can monitor Mars without the need of extra equipment monitoring a control source.

  10. KSC Electrostatic Discharge (ESD) Issues

    NASA Technical Reports Server (NTRS)

    Buhler, Charles

    2008-01-01

    Discussion of key electrostatic issues that have arisen during the past few years at KSC that the Electrostatics Laboratory has studied. The lab has studied in depth the Space Shuttle's Thermal Control System Blankets, the International Space Station Thermal Blanket, the Pan/Tilt Camera Blankets, the Kapton Purge Barrier Curtain, the Aclar Purge Barrier Curtain, the Thrust Vector Controller Blankets, the Tyvek Reaction Control System covers, the AID-PAK and FLU-9 pyro inflatable devices, the Velostat Solid Rocket Booster mats, and the SCAPE suits. In many cases these materials are insulating meaning that they might be a source of unsafe levels of electrostatic discharge (ESD). For each, the lab provided in-depth testing of each material within its current configuration to ensure that it does not cause an ESD concern that may violate the safety of the astronauts, the workers and equipment for NASA. For example the lab provides unique solutions and testing such as Spark Incendivity Testing that checks whether a material is capable of generating a spark strong enough to ignite a flammable gas. The lab makes recommendations to changes in specifications, procedures, and material if necessary. The lab also consults with a variety of non-safety related ESD issues for the agency.

  11. Ground Based Investigation of Electrostatic Accelerometer in HUST

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L

  12. A low-cost solar-cell front contact using trapped silver mesh and electrostatic bonding

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Younger, Peter R.

    1979-01-01

    A new system to provide a contact with a silver mesh trapped between the cell and an encapsulating glass cover is described. Borosilicate glass is joined to the cell by electrostatic bonding during which the glass is deformed around the silver mesh to form a permanent optically coupled integral bond to the cell. The hermetic seal prevents the silver from oxidizing and destroying the electrical contact formed during the bonding process. It is demonstrated that electrostatic glass/silicon bonds have excellent stability under a variety of accelerated environmental tests. Electrostatic bonds to thin films of AL2O3, Ta2O5, and ZrO2 on glass can be used to make antireflective coatings for solar cells manufactured by this process. Test solar cells were manufactured by electrostatic bonding with good curve fill factors and efficiencies of 10 percent.

  13. The Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    1986-01-01

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  14. Heliopause Electrostatic Rapid Transit System (HERTS)

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2015-01-01

    A recent six month investigation focused on: "Determining the benefits of propelling a scientific spacecraft by an 'Electric Sail' propulsion system to the edge of our solar system (the Heliopause), a distance of 100 to 120 AU, in ten years or less" has recently been completed by the Advance Concepts Office at NASA's MSFC. The concept investigated has been named the Heliopause Electrostatic Rapid Transit System (HERTS) by the MSFC team. The HERTS is a revolutionary propellant-less propulsion concept that is ideal for deep space missions to the Outer Planets, Heliopause, and beyond. It is unique in that it uses momentum exchange from naturally occurring solar wind protons to propel a spacecraft within the heliosphere. The propulsion system consists of an array of electrically positively-biased wires that extend outward 20 km from a rotating (one revolution per hour) spacecraft. It was determined that the HERTS system can accelerate a spacecraft to velocities as much as two to three times that possible by any realistic extrapolation of current state-of-the-art propulsion technologies- including solar electric and solar sail propulsion systems. The data produced show that a scientific spacecraft could reach distances of 100AU in less than 10 years. Moreover, it can be reasonably expected that this system could be developed within a decade and provide meaningful Heliophysics Science and Outer Planetary Science returns in the 2025-2035 timeframe.

  15. Electrostatic particle collection in vacuum

    NASA Astrophysics Data System (ADS)

    Afshar-Mohajer, Nima; Damit, Brian; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta

    2011-09-01

    Lunar grains accumulate charges due to solar-based ionizing radiations, and the repelling action of like-charged particles causes the levitation of lunar dust. The lunar dust deposit on sensitive and costly surfaces of investigative equipment is a serious concern in lunar explorations. Inspired by electrostatic precipitators (ESPs), the Electrostatic Lunar Dust Collector (ELDC) was proposed for collecting already charged lunar dust particles to prevent the lunar dust threat. As the conditions for terrestrial counterparts are not valid in the lunar environment, equations developed for terrestrial devices yield incorrect predictions in lunar application. Hence, a mathematical model was developed for the ELDC operating in vacuum to determine its collection efficiency. The ratios of electrical energy over potential energy, kinetic energy over potential energy and the ratio of ELDC dimensions were identified to be the key dimensionless parameters. Sensitivity analyses of the relevant parameters showed that depending on ELDC orientation, smaller particles would be collected more easily at vertical orientation, whereas larger particles were easier to collect in a horizontal ELDC configuration. In the worst case scenario, the electrostatic field needed to be 10 times stronger in the vertical mode in order to adequately collect larger particles. The collection efficiency was very sensitive to surface potential of lunar dust and it reached the maximum when surface potential was between 30 and 120 V. Except for regions of the lunar day side with surface potential close to zero, providing 1 kV ( E = 20 kV m -1) with the ELDC was more than enough for collecting all the particles in the most critical orientation. The needed field strength was about 4000 times less than that for repelling 1-μm size particles already settled on the surfaces. The analysis shows that the ELDC offers a viable solution for lunar dust control due to its effectiveness, ease of cleaning and low voltage

  16. Oak Ridge 25-MV tandem accelerator

    SciTech Connect

    Ziegler, N.F.; Richardson, E.G.; Mann, J.E.; Juras, R.C.; Jones, C.M.; Biggerstaff, J.A.; Benjamin, J.A.

    1981-01-01

    A new heavy-ion accelerator facility is nearing completion at the Oak Ridge National Laboratory. This paper presents a brief description of the scope and status of this project and a discussion of some aspects of the first operational experience with the 25 MV tandem accelerator which is being provided by the National Electrostatics Corporation (NEC) as a major component of the first phase of the facility.

  17. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    SciTech Connect

    Boscolo, I.; Gong, J.

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  18. Electrostatic effects in collagen fibrillization

    NASA Astrophysics Data System (ADS)

    Morozova, Svetlana; Muthukumar, Murugappan

    2014-03-01

    Using light scattering and AFM techniques, we have measured the kinetics of fibrillization of collagen (pertinent to the vitreous of human eye) as a function of pH and ionic strength. At higher and lower pH, collagen triple-peptides remain stable in solution without fibrillization. At neutral pH, the fibrillization occurs and its growth kinetics is slowed upon either an increase in ionic strength or a decrease in temperature. We present a model, based on polymer crystallization theory, to describe the observed electrostatic nature of collagen assembly.

  19. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  20. A New Accelerator-Based Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  1. Electrostatic potential map modelling with COSY Infinity

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  2. Electrostatic properties of graphitic nanostructures

    NASA Astrophysics Data System (ADS)

    Erbahar, Dogan

    2014-03-01

    Carbon nanostructures are considered to be one of the most important candidates of circuit elements for future nanoelectronics. However, being one of the main issues of conventional circuitry used today, charge accumulation on circuit elements can also be expected to have important effects on the performance of the nanoscale devices. In this work we investigated charge accumulation on various graphitic systems by simulated charge doping. We report ab initio density functional theory (DFT) calculations of electrostatically charged multilayered carbon nano structures. We investigate the effect of total and background charge on charge distribution profiles on the systems under consideration varying from multilayered graphene to multiwalled carbon nanotubes. We show that the charge distribution profile on the inner layers are mainly induced from the background charge which is imposed by the code on periodic systems. Our population anaylsis indicates that the outermost two layers effectively shields the inner layers electrostatically. Illuminating the typical skin depth of those systems our results could give important insights for designing the nanocircuit elements.

  3. Electrostatic Tuning of Cellular Excitability

    PubMed Central

    Börjesson, Sara I.; Parkkari, Teija; Hammarström, Sven; Elinder, Fredrik

    2010-01-01

    Abstract Voltage-gated ion channels regulate the electric activity of excitable tissues, such as the heart and brain. Therefore, treatment for conditions of disturbed excitability is often based on drugs that target ion channels. In this study of a voltage-gated K channel, we propose what we believe to be a novel pharmacological mechanism for how to regulate channel activity. Charged lipophilic substances can tune channel opening, and consequently excitability, by an electrostatic interaction with the channel's voltage sensors. The direction of the effect depends on the charge of the substance. This was shown by three compounds sharing an arachidonyl backbone but bearing different charge: arachidonic acid, methyl arachidonate, and arachidonyl amine. Computer simulations of membrane excitability showed that small changes in the voltage dependence of Na and K channels have prominent impact on excitability and the tendency for repetitive firing. For instance, a shift in the voltage dependence of a K channel with −5 or +5 mV corresponds to a threefold increase or decrease in K channel density, respectively. We suggest that electrostatic tuning of ion channel activity constitutes a novel and powerful pharmacological approach with which to affect cellular excitability. PMID:20141752

  4. Breakdown mechanisms in electrostatic deflector

    NASA Astrophysics Data System (ADS)

    Re, M.; Cuttone, G.; Zappalà, E.; Passarello, S.

    2001-12-01

    The Electrostatic Beam Deflectors for the K800 Superconducting Cyclotron are the most critical elements of the beam extraction system. It has been carried out an accurate investigation from the microscopic point of view, leading to a better comprehension of the complex phenomena taking part in the breakdown process. The environmental conditions are high electric field (up to 130 kV/cm), high magnetic field (up to 5 T) in addition with high energy (70 MeV/u) and high power ion beam. It has been found that all the materials constituent the electrostatic deflector, and not only the electrodes, give an important contribute to the mechanism of breakdown that occurs in two main ways: insulator metalization and enhanced electrodes electron emission. These two effects are involved in a positive feedback process which amplifies the effects leading to a fast breakdown. These phenomena are here shown and some possible solutions are at the moment under test using several bulk (Mo, Ti, Cu) and coating materials (TiN, Diamond Like Carbon).

  5. Electrostatic charging of lunar dust

    SciTech Connect

    Walch, Bob; Horanyi, Mihaly; Robertson, Scott

    1998-10-21

    Transient dust clouds suspended above the lunar surface were indicated by the horizon glow observed by the Surveyor spacecrafts and the Lunar Ejecta and Meteorite Experiment (Apollo 17), for example. The theoretical models cannot fully explain these observations, but they all suggest that electrostatic charging of the lunar surface due to exposure to the solar wind plasma and UV radiation could result in levitation, transport and ejection of small grains. We report on our experimental studies of the electrostatic charging properties of an Apollo-17 soil sample and two lunar simulants MLS-1 and JSC-1. We have measured their charge after exposing individual grains to a beam of fast electrons with energies in the range of 20{<=}E{<=}90 eV. Our measurements indicate that the secondary electron emission yield of the Apollo-17 sample is intermediate between MLS-1 and JSC-1, closer to that of MLS-1. We will also discuss our plans to develop a laboratory lunar surface model, where time dependent illumination and plasma bombardment will closely emulate the conditions on the surface of the Moon.

  6. Microencapsulation and Electrostatic Processing Device

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  7. Molecular electrostatic potential as a graph.

    PubMed

    Daza, Edgar E; Maza, Julio; Torres, Raul

    2013-06-01

    We present several procedures to represent molecular electrostatic potential as a graph, based on the pattern of critical points and their neighborhood relations. This representation is used for the molecular electrostatic comparison, which is reduced to a comparison of tree-type graphs. Several methods to compare trees are also presented. The applications of this algorithm to compare and classify molecules through their electrostatic potential are illustrated.

  8. Electrostatic atomization: Effect of electrode materials on electrostatic atomizer performance

    NASA Astrophysics Data System (ADS)

    Sankaran, Abhilash; Staszel, Christopher; Kashir, Babak; Perri, Anthony; Mashayek, Farzad; Yarin, Alexander

    2016-11-01

    Electrostatic atomization was studied experimentally with a pointed electrode in a converging nozzle. Experiments were carried out on poorly conductive canola oil where it was observed that electrode material may affect charge transfer. This points at the possible faradaic reactions that can occur at the surfaces of the electrodes. The supply voltage is applied to the sharp electrode and the grounded nozzle body constitutes the counter-electrode. The charge transfer is controlled by the electrochemical reactions on both the electrodes. The electrical performance study of the atomizer issuing a charged oil jet was conducted using three different nozzle body materials - brass, copper and stainless steel. Also, two sharp electrode materials - brass and stainless steel - were tested. The experimental results revealed that both the nozzle body material, as well as the sharp electrode material affected the spray and leak currents. Moreover, the effect of the sharp electrode material is quite significant. This research is supported by NSF Grant 1505276.

  9. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples.

  10. Multilevel Summation of Electrostatic Potentials Using Graphics Processing Units*

    PubMed Central

    Hardy, David J.; Stone, John E.; Schulten, Klaus

    2009-01-01

    Physical and engineering practicalities involved in microprocessor design have resulted in flat performance growth for traditional single-core microprocessors. The urgent need for continuing increases in the performance of scientific applications requires the use of many-core processors and accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the multilevel summation method for computing electrostatic potentials and forces for a system of charged atoms, which is a problem of paramount importance in biomolecular modeling applications. We present and test a new GPU algorithm for the long-range part of the potentials that computes a cutoff pair potential between lattice points, essentially convolving a fixed 3-D lattice of “weights” over all sub-cubes of a much larger lattice. The implementation exploits the different memory subsystems provided on the GPU to stream optimally sized data sets through the multiprocessors. We demonstrate for the full multilevel summation calculation speedups of up to 26 using a single GPU and 46 using multiple GPUs, enabling the computation of a high-resolution map of the electrostatic potential for a system of 1.5 million atoms in under 12 seconds. PMID:20161132

  11. Electrostatic analysis of nanoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Xu, Yang

    We present a multiscale method, seamlessly combining semiclassical, effective-mass Schrodinger (EMS), and tight-binding (TB) theories proposed for electrostatic analysis of silicon nanoelectromechanical systems (NEMS). By using appropriate criteria, we identify the physical models that are accurate in each local region. If the local physical model is semiclassical, the charge density is directly computed by the semiclassical theory. If the local physical model is quantum-mechanical (EMS or TB model), the charge density is calculated by using the theory of local density of states (LDOS). The LDOS is efficiently calculated from Green's function by using Haydock's recursion method where the Green's function is expressed as a continued fraction based on the local Hamiltonian. Once the charge density is determined, a Poisson equation is solved self-consistently to determine the electronic properties. The accuracy and efficiency of the multiscale method are demonstrated by considering several NEMS examples. The multiscale method can be used to compute the effect of surface and interior defects such as vacancies and broken bonds on the performance of microelectromechanical systems (MEMS). By combining multiscale electrostatic analysis with mechanical analysis, we compute the capacitance-voltage and pull-in/pull-out voltages of MEMS switches in the presence of defects in the dielectric oxide layer. Our results indicate that both surface and interior defects can change the pull-in/pull-out voltages significantly. These voltage offsets can lead to an eventual failure of the MEMS switches. The self-consistent TB method is used to investigate carbon nanotube (CNT)-based sensors. We compute the screening effects of semiconducting and metallic single-wall carbon nanotubes (SWNTs) when water molecules and various ions pass through the nanotubes. The trajectories of ions and water molecules are obtained from molecular dynamics (MD) simulations. It is shown that metallic SWNTs have

  12. Portable liquid collection electrostatic precipitator

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.

    2005-10-18

    A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.

  13. Microencapsulation and Electrostatic Processing Method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  14. Large Aperture Electrostatic Dust Detector

    SciTech Connect

    C.H. Skinner, R. Hensley, and A.L Roquemore

    2007-10-09

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  15. Review on the modeling of electrostatic MEMS.

    PubMed

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices.

  16. Electrostatics experiments with sharp metal points

    NASA Astrophysics Data System (ADS)

    Ivanov, Dragia; Nikolov, Stefan

    2016-11-01

    In this paper we examine the phenomena that arise around an electrically charged sharp metal spike and present numerous experiments that can be used in the teaching of electrostatics. The experiments are quite spectacular and attention-grabbing while being relatively simple and easy to perform in any decently supplied physics education laboratory that is equipped with an electrostatic machine (like a Wimshurst machine).

  17. Ionic electrostatic excitations along biological membranes

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2011-02-01

    A theoretical analysis of ionic electrostatic excitations of a charged biological membrane is presented within the framework of the fluid theory for surface ions inside and outside the cell, in conjunction with the Poisson's equation. General expressions of dispersion relations are obtained for electrostatic oscillations of intrinsic cellular with different shapes and symmetries.

  18. Electrostatics with Computer-Interfaced Charge Sensors

    ERIC Educational Resources Information Center

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  19. Using Programmable Calculators to Solve Electrostatics Problems.

    ERIC Educational Resources Information Center

    Yerian, Stephen C.; Denker, Dennis A.

    1985-01-01

    Provides a simple routine which allows first-year physics students to use programmable calculators to solve otherwise complex electrostatic problems. These problems involve finding electrostatic potential and electric field on the axis of a uniformly charged ring. Modest programing skills are required of students. (DH)

  20. Control of electrostatic damage to electronic circuits

    SciTech Connect

    Kirk, W.J. Jr.

    1980-03-01

    Static is caused by the flow of materials and people within an environment. The static voltages generated by these movements can degrade or destroy many solid state devices currently being used in sophisticated electronic equipment. Discharge of static voltages through these sensitive devices during assembly operations can lead to a nonfunctional assembly fabricated from parts which previously were acceptable or to later failure of an assembly which was functional after fabrication. Sources of electrostatic charges, equipment and methods for minimizing the generation of electrostatic voltages during the production, assembly and packaging of solid state electronic equipment, and the sensitivity of solid state devices to electrostatic damage are discussed. It is concluded that static awareness is the key to an effective electrostatic damage (ESD) control program, and that production facilities must incorporate electrostatic protection facilities, materials, and processes so that workers can concentrate on producing a high-quality product without having to be overly concerned about ESD procedures. (LCL)

  1. Electrostatic thin film chemical and biological sensor

    DOEpatents

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  2. Electrostatic interaction in atomic force microscopy

    PubMed Central

    Butt, Hans-Jüurgen

    1991-01-01

    In atomic force microscopy, the stylus experiences an electrostatic force when imaging in aqueous medium above a charged surface. This force has been calculated numerically with continuum theory for a silicon nitrite or silicon oxide stylus. For comparison, the Van der Waals force was also calculated. In contrast to the Van der Waals attraction, the electrostatic force is repulsive. At a distance of 0.5 nm the electrostatic force is typically 10-12-10-10 N and thus comparable in strength to the Van der Waals force. The electrostatic force increases with increasing surface charge density and decreases roughly exponentially with distance. It can be reduced by imaging in high salt concentrations. Below surface potentials of ≈50 mV, a simple analytical approximation of the electrostatic force is described. PMID:19431803

  3. Roles of long-range electrostatic domain interactions and K+ in phosphoenzyme transition of Ca2+-ATPase.

    PubMed

    Yamasaki, Kazuo; Daiho, Takashi; Danko, Stefania; Suzuki, Hiroshi

    2013-07-12

    Sarcoplasmic reticulum Ca(2+)-ATPase couples the motions and rearrangements of three cytoplasmic domains (A, P, and N) with Ca(2+) transport. We explored the role of electrostatic force in the domain dynamics in a rate-limiting phosphoenzyme (EP) transition by a systematic approach combining electrostatic screening with salts, computer analysis of electric fields in crystal structures, and mutations. Low KCl concentration activated and increasing salt above 0.1 m inhibited the EP transition. A plot of the logarithm of the transition rate versus the square of the mean activity coefficient of the protein gave a linear relationship allowing division of the activation energy into an electrostatic component and a non-electrostatic component in which the screenable electrostatic forces are shielded by salt. Results show that the structural change in the transition is sterically restricted, but that strong electrostatic forces, when K(+) is specifically bound at the P domain, come into play to accelerate the reaction. Electric field analysis revealed long-range electrostatic interactions between the N and P domains around their hinge. Mutations of the residues directly involved and other charged residues at the hinge disrupted in parallel the electric field and the structural transition. Favorable electrostatics evidently provides a low energy path for the critical N domain motion toward the P domain, overcoming steric restriction. The systematic approach employed here is, in general, a powerful tool for understanding the structural mechanisms of enzymes.

  4. Heavy Ion Fusion Accelerator Research (HIFAR)

    SciTech Connect

    Not Available

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C{sub s}+ sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac.

  5. ELECTROSTATICALLY ENHANCED BARRIER FILTER COLLECTION

    SciTech Connect

    John Erjavec; Michael D. Mann; Ryan Z. Knutson; Michael L. Swanson; Michael E. Collings

    2003-06-01

    This work was performed through the University of North Dakota (UND) Chemical Engineering Department with assistance from UND's Energy & Environmental Research Center. This research was undertaken in response to the U.S. Department of Energy Federal Technology Center Program Solicitation No. DE-PS26-99FT40479, Support of Advanced Coal Research at U.S. Universities and Colleges. Specifically, this research was in support of the UCR Core Program and addressees Topic 1, Improved Hot-Gas Contaminant and Particulate Removal Techniques, introducing an advanced design for particulate removal. Integrated gasification combined cycle (IGCC) offers the potential for very high efficiency and clean electric generation. In IGCC, the product gas from the gasifier needs to be cleaned of particulate matter to avoid erosion and high-temperature corrosion difficulties arising with the turbine blades. Current methods involve cooling the gases to {approx}100 C to condense alkalis and remove sulfur and particulates using conventional scrubber technology. This ''cool'' gas is then directed to a turbine for electric generation. While IGCC has the potential to reach efficiencies of over 50%, the current need to cool the product gas for cleaning prior to firing it in a turbine is keeping IGCC from reaching its full potential. The objective of the current project was to develop a highly reliable particulate collector system that can meet the most stringent turbine requirements and emission standards, can operate at temperatures above 1500 F, is applicable for use with all U.S. coals, is compatible with various sorbent injection schemes for sulfur and alkali control, can be integrated into a variety of configurations for both pressurized gasification and combustion, increases allowable face velocity to reduce filter system capital cost, and is cost-competitive with existing technologies. The collector being developed is a new concept in particulate control called electrostatically enhanced

  6. Electrostatic-free piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Seol, Daehee; Lu, Xiaoli; Alexe, Marin; Kim, Yunseok

    2017-01-01

    Contact and non-contact based atomic force microscopy (AFM) approaches have been extensively utilized to explore various nanoscale surface properties. In most AFM-based measurements, a concurrent electrostatic effect between the AFM tip/cantilever and sample surface can occur. This electrostatic effect often hinders accurate measurements. Thus, it is very important to quantify as well as remove the impact of the electrostatic effect on AFM-based measurements. In this study, we examine the impact of the electrostatic effect on the electromechanical (EM) response in piezoresponse force microscopy as a model AFM mode. We quantitatively studied the effects of increasing the external electric field and reducing the spring constant of a cantilever. Further, we explored ways to minimize the electrostatic effect. The results provide broad guidelines for quantitatively analyzing the EM response as well as, eventually, for obtaining the electrostatic-free EM response. The conclusions can be applied to other AFM-based measurements that are subject to a strong electrostatic effect between the AFM tip/cantilever and sample surface, regardless of contact and non-contact modes.

  7. Intrinsic electrostatic effects in nanostructured ceramics

    SciTech Connect

    Uberuaga, Blas Pedro; Stanek, Chris R; Nerikar, Pankaj V

    2009-01-01

    Using empirical potentials, we have found that electrostatic dipoles can be created at grain boundaries formed from non-polar surfaces of fluorite-structured materials. In particular, the {Sigma}5(310)/[001] symmetric tilt grain boundary reconstructs to break the symmetry in the atomic structure at the boundary, forming the dipole. This dipole results in an abrupt change in electrostatic potential across the boundary. In multilayered ceramics composed of stacks of grain boundaries, the change in electrostatic potential at the boundary results in profound electrostatic effects within the crystalline layers, the nature of which depends on the electrostatic boundary conditions. For open-circuit boundary conditions, layers with either high or low electrostatic potential are formed. By contrast, for short-circuit boundary conditions, electric fields can be created within each layer, the strength of which then depends on the thickness of the layers. These electrostatic effects may have important consequences for the behavior of defects and dopants within these materials and offer the possibility of interesting technological applications.

  8. Electrostatic-free piezoresponse force microscopy

    PubMed Central

    Kim, Sungho; Seol, Daehee; Lu, Xiaoli; Alexe, Marin; Kim, Yunseok

    2017-01-01

    Contact and non-contact based atomic force microscopy (AFM) approaches have been extensively utilized to explore various nanoscale surface properties. In most AFM-based measurements, a concurrent electrostatic effect between the AFM tip/cantilever and sample surface can occur. This electrostatic effect often hinders accurate measurements. Thus, it is very important to quantify as well as remove the impact of the electrostatic effect on AFM-based measurements. In this study, we examine the impact of the electrostatic effect on the electromechanical (EM) response in piezoresponse force microscopy as a model AFM mode. We quantitatively studied the effects of increasing the external electric field and reducing the spring constant of a cantilever. Further, we explored ways to minimize the electrostatic effect. The results provide broad guidelines for quantitatively analyzing the EM response as well as, eventually, for obtaining the electrostatic-free EM response. The conclusions can be applied to other AFM-based measurements that are subject to a strong electrostatic effect between the AFM tip/cantilever and sample surface, regardless of contact and non-contact modes. PMID:28139715

  9. DNA/chitosan electrostatic complex.

    PubMed

    Bravo-Anaya, Lourdes Mónica; Soltero, J F Armando; Rinaudo, Marguerite

    2016-07-01

    Up to now, chitosan and DNA have been investigated for gene delivery due to chitosan advantages. It is recognized that chitosan is a biocompatible and biodegradable non-viral vector that does not produce immunological reactions, contrary to viral vectors. Chitosan has also been used and studied for its ability to protect DNA against nuclease degradation and to transfect DNA into several kinds of cells. In this work, high molecular weight DNA is compacted with chitosan. DNA-chitosan complex stoichiometry, net charge, dimensions, conformation and thermal stability are determined and discussed. The influence of external salt and chitosan molecular weight on the stoichiometry is also discussed. The isoelectric point of the complexes was found to be directly related to the protonation degree of chitosan. It is clearly demonstrated that the net charge of DNA-chitosan complex can be expressed in terms of the ratio [NH3(+)]/[P(-)], showing that the electrostatic interactions between DNA and chitosan are the main phenomena taking place in the solution. Compaction of DNA long chain complexed with low molar mass chitosan gives nanoparticles with an average radius around 150nm. Stable nanoparticles are obtained for a partial neutralization of phosphate ionic sites (i.e.: [NH3(+)]/[P(-)] fraction between 0.35 and 0.80).

  10. Electrostatic evaluation of isosteric analogues

    NASA Astrophysics Data System (ADS)

    Sayle, Roger; Nicholls, Anthony

    2006-04-01

    A method is presented for enumerating a large number of isosteric analogues of a ligand from a known protein-ligand complex structure and then rapidly calculating an estimate of their binding energies. This approach takes full advantage of the observed crystal structure, by reusing the atomic co-ordinates determined experimentally for one ligand, to approximate those of similar compounds that have approximately the same shape. By assuming that compounds with similar shapes adopt similar binding poses, and that entropic and protein flexibility effects are approximately constant across such an isosteric series ("the frozen ligand approximation"), it is possible to order their binding affinities relatively accurately. Additionally, the constraint that the atomic coordinates are invariant allows for a dramatic simplification in the Poisson-Boltzmann method used to calculation the electrostatic component of the binding energy. This algorithmic improvement allows for the calculation of tens of thousands of binding energies per second for drug-like molecules, enabling this technique to be used in screening large virtual libraries of isosteric analogues. Most significantly, this procedure is shown to be able to reproduce SAR effects of subtle medicinal chemistry substitutions. Finally, this paper reports the results of the proposed methodology on␣seven model systems; dihydrofolate reductase, Lck␣kinase, ribosome inactivating protein, l-arabinose binding protein, neuraminidase, HIV-1 reverse transcriptase and COX-2.

  11. Electrostatic Stabilization Of Growing Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1991-01-01

    Proposed technique produces large crystals in compact, economical apparatus. Report presents concept for supporting protein crystals during growth in microgravity. Yields crystals larger and more-nearly perfect than those grown on Earth. Combines best features of sandwich-drop and electrostatic-levitation methods of support. Drop of protein solution inserted between pair of glass or plastic plates, as in sandwich-drop-support method. Electrostatically charged ring confines drop laterally and shapes it, as in electrostatic technique. Apparatus also made to accommodate several drops simultaneously between same pair of supporting plates. Drops can be inserted and crystals removed through ducts in plates.

  12. Thermodynamic Bounds on Nonlinear Electrostatic Perturbations in Intense Charged Particle Beams

    SciTech Connect

    Nikolas C. Logan and Ronald C. Davidson

    2012-07-18

    This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (TllT⊥ < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.

  13. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  14. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  15. Monitoring by Control Technique - Electrostatic Precipitators

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about electrostatic precipitator control techniques used to reduce pollutant emissions.

  16. The Electrocardiogram as an Example of Electrostatics

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    Develops a simplified electrostatic model of the heart with conduction within the torso neglected to relate electrocardiogram patterns to the charge distribution within the myocardium. Suggests its application to explanation of Coulomb's law in general physics. (CC)

  17. Nonlinear electrostatic drift Kelvin-Helmholtz instability

    NASA Technical Reports Server (NTRS)

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1993-01-01

    Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.

  18. NEW APPROACHES: A novel Kelvin Electrostatic Generator

    NASA Astrophysics Data System (ADS)

    Hill, M.; Jacobs, D. J.

    1997-01-01

    A form of the Kelvin Electrostatic Generator, made from readily available components, is described and an explanation given of how it works. The device described can generate 10 - 12 mm long sparks in air.

  19. Electrostatic discharge control for STDN stations

    NASA Technical Reports Server (NTRS)

    Mckiernan, J.

    1983-01-01

    This manual defines the requirements and control methods necessary to control the effect of electrostatic discharges that damage or destroy electronic equipment components. Test procedures for measuring the effectiveness of the control are included.

  20. Electrostatic processing of polymers and polymer composites

    NASA Astrophysics Data System (ADS)

    Sanders, Elliot Howard

    2005-11-01

    Polymers are a broad class of molecules whose use in modern life is undeniable ranging from automobile parts to pharmaceuticals. One method applicable to polymer material production is known as electrostatic processing which includes electrospraying, used to produce films or microparticles, and electrospinning, which can be used to produce fibers or non-woven materials. Electrostatic processing typically results in products with droplet or fiber diameters on the micron or nanometer scale. We have sought to develop novel polymeric materials and composites using electrostatic processing. The end uses of these materials were diverse, and included controlled release of drugs, microencapsulation of proteins and enzymes, provision of molecular cues for directed cell growth, hydronium ion transport, and electrically conductive polymer and catalytically active composites. We have successfully demonstrated that electrostatic processing can be used to produce a wide variety of functionally active polymer based materials with significant commercial, medical, and scientific potential.

  1. Electrostatic correlations near charged planar surfaces

    PubMed Central

    Deng, Mingge; Em Karniadakis, George

    2014-01-01

    Electrostatic correlation effects near charged planar surfaces immersed in a symmetric electrolytes solution are systematically studied by numerically solving the nonlinear six-dimensional electrostatic self-consistent equations. We compare our numerical results with widely accepted mean-field (MF) theory results, and find that the MF theory remains quantitatively accurate only in weakly charged regimes, whereas in strongly charged regimes, the MF predictions deviate drastically due to the electrostatic correlation effects. We also observe a first-order like phase-transition corresponding to the counterion condensation phenomenon in strongly charged regimes, and compute the phase diagram numerically within a wide parameter range. Finally, we investigate the interactions between two likely-charged planar surfaces, which repulse each other as MF theory predicts in weakly charged regimes. However, our results show that they attract each other above a certain distance in strongly charged regimes due to significant electrostatic correlations. PMID:25194382

  2. Electrostatic Beneficiation of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Captain, James; Captain, Janine; Arens, Ellen; Quinn, Jacqueline; Calle, Carlos

    2006-01-01

    Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (> 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and < 25 pm), where very little difference in surface composition was observed between the sizes. Samples of the smallest (< 25 pm) and largest (> 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.

  3. Electrostatic camera system functional design study

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Cook, F. J.; Moore, R. F.

    1972-01-01

    A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.

  4. Electrostatic Levitation Furnace for the ISS

    NASA Technical Reports Server (NTRS)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  5. High-energy capacitance electrostatic micromotors

    NASA Astrophysics Data System (ADS)

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  6. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  7. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  8. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  9. An improved proximity force approximation for electrostatics

    SciTech Connect

    Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  10. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  11. Electrostatic steering and beamlet aiming in large neutral beam injectors

    SciTech Connect

    Veltri, P. Chitarin, G.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.; Cavenago, M.

    2015-04-08

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ∼ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic ”steerer” to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed.

  12. Electrostatic steering and beamlet aiming in large neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Veltri, P.; Cavenago, M.; Chitarin, G.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2015-04-01

    Neutral beam injection is the main method for plasma heating in magnetic confinement fusion devices. In high energy injector (E>100 keV/amu), neutrals are obtained with reasonable efficiency by conversion of negative ions (H- or D-) via electron detachment reactions. In the case of ITER injectors, which shall operate at 1 MeV, a total ion current of ˜ 40 A is required to satisfy the heating power demand. Gridded electrodes are therefore used in the accelerator, so that 1280 negative ion beamlets are accelerated together. A carefully designed aiming system is required to control the beamlet trajectories, and to deliver their power on a focal point located several meters away from the beam source. In nowadays injectors, the aiming is typically obtained by aperture offset technique or by grid shaping. This paper discuss an alternative concept of beamlets aiming, based on an electrostatic "steerer" to be placed at the end of the accelerator. A feasibility study of this component is also presented, and its main advantages and drawbacks with respect to other methods are discussed.

  13. Development And Testing Of The Inertial Electrostatic Confinement Diffusion Thruster

    NASA Technical Reports Server (NTRS)

    Becnel, Mark D.; Polzin, Kurt A.

    2013-01-01

    The Inertial Electrostatic Confinement (IEC) diffusion thruster is an experiment in active development that takes advantage of physical phenomenon that occurs during operation of an IEC device. The IEC device has been proposed as a fusion reactor design that relies on traditional electrostatic ion acceleration and is typically arranged in a spherical geometry. The design incorporates two radially-symmetric spherical electrodes. Often the inner electrode utilizes a grid of wire shaped in a sphere with a radius 15 to 50 percent of the radius of the outer electrode. The inner electrode traditionally has 90 percent or more transparency to allow particles (ions) to pass to the center of the spheres and collide/recombine in the dense plasma core at r=0. When operating the IEC, an unsteady plasma leak is typically observed passing out one of the gaps in the lattice grid of the inner electrode. The IED diffusion thruster is based upon the idea that this plasma leak can be used for propulsive purposes. The IEC diffusion thruster utilizes the radial symmetry found in the IEC device. A cylindrical configuration is employed here as it will produce a dense core of plasma the length of the cylindrical grid while promoting the plasma leak to exhaust through an electromagnetic nozzle at one end of the apparatus. A proof-of-concept IEC diffusion thruster is operational and under testing using argon as propellant (Figure 1).

  14. Acceleration units for the Induction Linac Systems Experiment (ILSE)

    SciTech Connect

    Faltens, A.; Brady, V.; Brodzik, D.; Hansen, L.; Laslett, L.J.; Mukherjee, S.; Bubp, D.; Ravenscroft, D.; Reginato, L.

    1989-03-01

    The design of a high current heavy ion induction linac driver for inertial confinement fusion is optimized by adjusting the acceleration units along the length of the accelerator to match the beam current, energy, and pulse duration at any location. At the low energy end of the machine the optimum is a large number of electrostatically focused parallel beamlets, whereas at higher energies the optimum is a smaller number of magnetically focused beams. ILSE parallels this strategy by using 16 electrostatically focused beamlets at the low end followed by 4 magnetically focused beams after beam combining. 3 refs., 2 figs.

  15. Detecting chameleon dark energy via an electrostatic analogy.

    PubMed

    Jones-Smith, Katherine; Ferrer, Francesc

    2012-06-01

    The late-time accelerated expansion of the Universe could be caused by a scalar field that is screened on small scales, as in the case of chameleon or symmetron scenarios. We present an analogy between such scalar fields and electrostatics, which allows calculation of the field profile for general extended bodies. Interestingly, the field demonstrates a "lightning rod" effect, where it becomes enhanced near the ends of a pointed or elongated object. Drawing from this correspondence, we show that nonspherical test bodies immersed in a background field will experience a net torque caused by the scalar field. This effect, with no counterpart in the gravitational case, can be potentially tested in future experiments.

  16. Preliminary design of electrostatic sensors for MITICA beam line components

    SciTech Connect

    Spagnolo, S. Spolaore, M.; Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Serianni, G.; Veltri, P.

    2016-02-15

    Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.

  17. High voltage conditioning of the electrostatic deflector of MARA

    NASA Astrophysics Data System (ADS)

    Partanen, J.; Johansen, U.; Sarén, J.; Tuunanen, J.; Uusitalo, J.

    2016-06-01

    MARA is a new recoil mass separator in the Accelerator Laboratory of University of Jyväskylä (JYFL-ACCLAB) with a mass resolving power of 250 and an ion-optical configuration of QQQDEDM . In this paper the construction, control and conditioning of its electrostatic deflector are described. The deflector was designed for voltages up to 500 kV accross the gap, corresponding to a 3.6 MV/m field, to accomodate fusion reactions with inverse kinematics. Titanium electrodes with a beam dump opening in the anode are used. The conditioning procedure, which has been used repeatedly to take the deflector to 450 kV, is described, along with the safety systems and precautions that are in place.

  18. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    PubMed

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-08-10

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.

  19. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle

    PubMed Central

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  20. Generating Monoenergetic Heavy-Ion Bunches with Laser-Induced Electrostatic Shocks

    SciTech Connect

    Ji Liangliang; Shen Baifei; Zhang Xiaomei; Wang Fengchao; Jin Zhangyin; Li Xuemei; Wen Meng; Cary, John R.

    2008-10-17

    A method for efficient laser acceleration of heavy ions by electrostatic shock is investigated using particle-in-cell (PIC) simulation and analytical modeling. When a small number of heavy ions are mixed with light ions, the heavy ions can be accelerated to the same velocity as the light ions so that they gain much higher energy because of their large mass. Accordingly, a sandwich target design with a thin compound ion layer between two light-ion layers and a micro-structured target design are proposed for obtaining monoenergetic heavy-ion beams.

  1. Electrostatic effects on hyaluronic acid configuration

    NASA Astrophysics Data System (ADS)

    Berezney, John; Saleh, Omar

    2015-03-01

    In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.

  2. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  3. Beam Control for Ion Induction Accelerators

    SciTech Connect

    Sangster, T.C.; Ahle, L.

    2000-02-17

    Coordinated bending and acceleration of an intense space-charge-dominated ion beam has been achieved for the first time. This required the development of a variable waveform, precision, bi-polar high voltage pulser and a precision, high repetition rate induction core modulator. Waveforms applied to the induction cores accelerate the beam as the bi-polar high voltage pulser delivers a voltage ramp to electrostatic dipoles which bend the beam through a 90 degree permanent magnet quadrupole lattice. Further work on emittance minimization is also reported.

  4. Arbitrary order permanent Cartesian multipolar electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Boateng, H. A.; Todorov, I. T.

    2015-01-01

    Recently, there has been a concerted effort to implement advanced classical potential energy surfaces by adding higher order multipoles to fixed point charge electrostatics in a bid to increase the accuracy of simulations of condensed phase systems. One major hurdle is the unwieldy nature of the expressions which in part has limited developers mostly to including only dipoles and quadrupoles. In this paper, we present a generalization of the Cartesian formulation of electrostatic multipolar interactions that enables the specification of an arbitrary order of multipoles. Specifically, we derive formulas for arbitrary order implementation of the particle mesh Ewald method and give a closed form formula for the stress tensor in the reciprocal space. In addition, we provide recurrence relations for common electrostatic potentials employed in molecular simulations, which allows for the generalization to arbitrary order and guarantees a computational cost that scales as O(p3) for Cartesian multipole interactions of order p.

  5. Using electrostatic modelling to study cone discharges

    NASA Astrophysics Data System (ADS)

    Azizi, W.

    2015-10-01

    Cone discharges, also known as bulking brush discharges, can arise when charged insulating powder accumulates in a heap in silos. They can be an effective ignition source to relatively ignition sensitive powders and therefore represent a possible electrostatic hazard. The current international guidance on control of electrostatic hazards (IEC/TS 60079-32-1 [1]), endorses the usage of electrostatic modelling to estimate the electric field above the powder heap. “Such model calculations should be based on the charge to mass ratio, bulk density and filling rate of the powder, the relative permittivity and resistivity of the bulked powder as well as the silo geometry.” This study shows a practical demonstration of this modelling technique. It also examines whether the shape of the heap affects the strength of the electric field above the powder heap, and thus the likelihood of cone discharges from occurring.

  6. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  7. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  8. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  9. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  10. Electron acceleration during guide field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Lapenta, Giovanni; Delzanno, Gian Luca; Egedal, Jan

    2008-03-01

    Particle-in-cell simulations of the guide field intermittent magnetic reconnection are performed to study electron acceleration and pitch angle distributions. During the growing stage of reconnection, the power-law distribution function for the high-energy electrons and the pitch angle distributions of the low-energy electrons are obtained and compare favorably with observations by the Wind spacecraft. Direct evidence is found for the secondary acceleration during the later reconnection stage. A correlation between the generation of energetic electrons and the induced reconnection electric field is found. Energetic electrons are accelerated first around the X line, and then in the region outside the diffusion region, when the reconnection electric field has a bipolar structure. The physical mechanisms of these accelerations are discussed. The in-plane electrostatic field that traps the low-energy electrons and causes the anisotropic pitch angle distributions has been observed.

  11. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  12. Electrostatic patch potentials in Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph; Somers, David; Munday, Jeremy

    2015-03-01

    Measurements of the Casimir force require the elimination of the electrostatic force between interacting surfaces. The force can be minimized by applying a potential to one of the two surfaces. However, electrostatic patch potentials remain and contribute an additional force which can obscure the Casimir force signal. We will discuss recent measurements of patch potentials made with Heterodyne Amplitude-Modulated Kelvin Probe Force Microscopy that suggest patches could be responsible for >1% of the signal in some Casimir force measurements, and thus make the distinction between different theoretical models of the Casimir force (e.g. a Drude-model or a plasma-model for the dielectric response) difficult to discern.

  13. Electrostatic supersolitons in three-species plasmas

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.; Kourakis, Ioannis

    2013-01-15

    Superficially, electrostatic potential profiles of supersolitons look like those of traditional solitons. However, their electric field profiles are markedly different, having additional extrema on the wings of the standard bipolar structure. This new concept was recently pointed out in the literature for a plasma model with five species. Here, it is shown that electrostatic supersolitons are not an artefact of exotic, complicated plasma models, but can exist even in three-species plasmas and are likely to occur in space plasmas. Further, a methodology is given to delineate their existence domains in a systematic fashion by determining the specific limiting factors.

  14. Kelvin transformation and inverse multipoles in electrostatics

    NASA Astrophysics Data System (ADS)

    Amaral, R. L. P. G.; Ventura, O. S.; Lemos, N. A.

    2017-03-01

    The inversion in the sphere or Kelvin transformation, which exchanges the radial coordinate for its inverse, is used as a guide to relate distinct electrostatic problems with dual features. The exact solution of some nontrivial problems are obtained through the mapping from simple highly symmetric systems. In particular, the concept of multipole expansion is revisited from a point of view opposed to the usual one: the sources are distributed in a region far from the origin while the electrostatic potential is described at points close to it.

  15. Fabrication of Electrostatically Actuated Microshutters Arrays

    NASA Technical Reports Server (NTRS)

    Oh, L.; Li, M.; Kelly, D.; Kutyrev, A.; Moseley, S.

    2016-01-01

    A new fabrication process has been developed to actuate microshutter arrays (MSA) electrostatically at NASA Goddard Space Flight Center. The microshutters, made with silicon nitride membranes with a pixel size of 100 x 200 sq microns, rotate on torsion bars. The microshutters are actuated, latched, and addressed electrostatically by applying voltages on the electrodes the front and back sides of the microshutters. The atomic layer deposition (ALD) of aluminum oxide was used to insulate electrodes on the back side of walls; the insulation can withstand over 100 V. The ALD aluminum oxide is dry etched, and then the microshutters are released in vapor HF.

  16. Inherently tunable electrostatic assembly of membrane proteins.

    PubMed

    Liang, Hongjun; Whited, Gregg; Nguyen, Chi; Okerlund, Adam; Stucky, Galen D

    2008-01-01

    Membrane proteins are a class of nanoscopic entities that control the matter, energy, and information transport across cellular boundaries. Electrostatic interactions are shown to direct the rapid co-assembly of proteorhodopsin (PR) and lipids into long-range crystalline arrays. The roles of inherent charge variations on lipid membranes and PR variants with different compositions are examined by tuning recombinant PR variants with different extramembrane domain sizes and charged amino acid substitutions, lipid membrane compositions, and lipid-to-PR stoichiometric ratios. Rational control of this predominantly electrostatic assembly for PR crystallization is demonstrated, and the same principles should be applicable to the assembly and crystallization of other integral membrane proteins.

  17. Dr. Jan Rogers with Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Jan Rogers, project scientist for the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center(MSFC). The ESL uses static electricity to suspend an obejct (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials sciences program.

  18. Deppdb--DNA electrostatic potential properties database: electrostatic properties of genome DNA.

    PubMed

    Osypov, Alexander A; Krutinin, Gleb G; Kamzolova, Svetlana G

    2010-06-01

    The electrostatic properties of genome DNA influence its interactions with different proteins, in particular, the regulation of transcription by RNA-polymerases. DEPPDB--DNA Electrostatic Potential Properties Database--was developed to hold and provide all available information on the electrostatic properties of genome DNA combined with its sequence and annotation of biological and structural properties of genome elements and whole genomes. Genomes in DEPPDB are organized on a taxonomical basis. Currently, the database contains all the completely sequenced bacterial and viral genomes according to NCBI RefSeq. General properties of the genome DNA electrostatic potential profile and principles of its formation are revealed. This potential correlates with the GC content but does not correspond to it exactly and strongly depends on both the sequence arrangement and its context (flanking regions). Analysis of the promoter regions for bacterial and viral RNA polymerases revealed a correspondence between the scale of these proteins' physical properties and electrostatic profile patterns. We also discovered a direct correlation between the potential value and the binding frequency of RNA polymerase to DNA, supporting the idea of the role of electrostatics in these interactions. This matches a pronounced tendency of the promoter regions to possess higher values of the electrostatic potential.

  19. DEPPDB - DNA electrostatic potential properties database. Electrostatic properties of genome DNA elements.

    PubMed

    Osypov, Alexander A; Krutinin, Gleb G; Krutinina, Eugenia A; Kamzolova, Svetlana G

    2012-04-01

    Electrostatic properties of genome DNA are important to its interactions with different proteins, in particular, related to transcription. DEPPDB - DNA Electrostatic Potential (and other Physical) Properties Database - provides information on the electrostatic and other physical properties of genome DNA combined with its sequence and annotation of biological and structural properties of genomes and their elements. Genomes are organized on taxonomical basis, supporting comparative and evolutionary studies. Currently, DEPPDB contains all completely sequenced bacterial, viral, mitochondrial, and plastids genomes according to the NCBI RefSeq, and some model eukaryotic genomes. Data for promoters, regulation sites, binding proteins, etc., are incorporated from established DBs and literature. The database is complemented by analytical tools. User sequences calculations are available. Case studies discovered electrostatics complementing DNA bending in E.coli plasmid BNT2 promoter functioning, possibly affecting host-environment metabolic switch. Transcription factors binding sites gravitate to high potential regions, confirming the electrostatics universal importance in protein-DNA interactions beyond the classical promoter-RNA polymerase recognition and regulation. Other genome elements, such as terminators, also show electrostatic peculiarities. Most intriguing are gene starts, exhibiting taxonomic correlations. The necessity of the genome electrostatic properties studies is discussed.

  20. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  1. Particle Accelerators in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  2. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    PubMed

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc.

  3. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  4. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  5. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  6. Investigation of Electrostatic Charge in Hose Lines

    DTIC Science & Technology

    2006-10-01

    storage tanks and, thereby, impose hazardous electrical energy concentrations sufficient to cause incendive arc discharges. This hazard problem... dissipater additives with the objective of quantifying and minimizing electrostatic charging in flexible fuel transport hoses. 0 1 2 3 4 5 6 7 8

  7. Electrostatic 'bounce' instability in a magnetotail configuration

    SciTech Connect

    Fruit, G.; Louarn, P.; Tur, A.

    2013-02-15

    To understand the possible destabilization of two-dimensional current sheets, a kinetic model is proposed to describe the resonant interaction between electrostatic modes and trapped particles that bounce within the sheet. This work follows the initial investigation by Tur et al.[Phys. Plasmas 17, 102905 (2010)] that is revised and extended. Using a quasi-parabolic equilibrium state, the linearized gyro-kinetic Vlasov equation is solved for electrostatic fluctuations with period of the order of the electron bounce period. Using an appropriated Fourier expansion of the particle motion along the magnetic field, the complete time integration of the non-local perturbed distribution functions is performed. The dispersion relation for electrostatic modes is then obtained through the quasineutrality condition. It is found that strongly unstable electrostatic modes may develop provided that the current sheet is moderately stretched and, more important, that the proportion of passing particle remains small (less than typically 10%). This strong but finely tuned instability may offer opportunities to explain features of magnetospheric substorms.

  8. Electrostatics of a Family of Conducting Toroids

    ERIC Educational Resources Information Center

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  9. Electrostatic Enhancement of Coagulation in Protoplanetary Nebulae

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Cuzzi, J.

    2001-01-01

    Microgravity experiments suggest that electrostatic forces (overwhelmed by normal Earth gravity) could greatly enhance cohesive strength of preplanetary aggregates. Cohesive forces may be 103 times larger than those for van der Waals adhesion. Additional information is contained in the original extended abstract.

  10. Electrostatic sampling of trace DNA from clothing.

    PubMed

    Zieger, Martin; Defaux, Priscille Merciani; Utz, Silvia

    2016-05-01

    During acts of physical aggression, offenders frequently come into contact with clothes of the victim, thereby leaving traces of DNA-bearing biological material on the garments. Since tape-lifting and swabbing, the currently established methods for non-destructive trace DNA sampling from clothing, both have their shortcomings in collection efficiency and handling, we thought about a new collection method for these challenging samples. Testing two readily available electrostatic devices for their potential to sample biological material from garments made of different fabrics, we found one of them, the electrostatic dust print lifter (DPL), to perform comparable to well-established sampling with wet cotton swabs. In simulated aggression scenarios, we had the same success rate for the establishment of single aggressor profiles, suitable for database submission, with both the DPL and wet swabbing. However, we lost a substantial amount of information with electrostatic sampling, since almost no mixed aggressor-victim profiles suitable for database entry could be established, compared to conventional swabbing. This study serves as a proof of principle for electrostatic DNA sampling from items of clothing. The technique still requires optimization before it might be used in real casework. But we are confident that in the future it could be an efficient and convenient contribution to the toolbox of forensic practitioners.

  11. The Electrostatic Environments of Mars: Atmospheric Discharges

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.

    2016-01-01

    The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  12. Electrostatic transfer of epitaxial graphene to glass.

    SciTech Connect

    Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne; Biedermann, Laura Butler; Beechem Iii, Thomas Edwin; Ross, Anthony Joseph, III

    2010-12-01

    We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environment [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.

  13. Electrostatic fuel conditioning of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  14. Efficient optimization of electrostatic interactions between biomolecules.

    SciTech Connect

    Bardhan, J. P.; Altman, M. D.; White, J. K.; Tidor, B.; Mathematics and Computer Science; MIT

    2007-01-01

    We present a PDE-constrained approach to optimizing the electrostatic interactions between two biomolecules. These interactions play important roles in the determination of binding affinity and specificity, and are therefore of significant interest when designing a ligand molecule to bind tightly to a receptor. Using a popular continuum model and physically reasonable assumptions, the electrostatic component of the binding free energy is a convex, quadratic function of the ligand charge distribution. Traditional optimization methods require exhaustive pre-computation, and the expense has precluded a full exploration of the promise of electrostatic optimization in biomolecule analysis and design. In this paper we describe an approach in which the electrostatic simulations and optimization problem are solved simultaneously; unlike many PDE- constrained optimization frameworks, the proposed method does not incorporate the PDE as a set of equality constraints. This co-optimization approach can be used by itself to solve unconstrained problems or those with linear equality constraints, or in conjunction with primal-dual interior point methods to solve problems with inequality constraints. Model problems demonstrate that the co-optimization method is computationally efficient and can be used to solve realistic problems.

  15. Electrostatic sensitivity of secondary high explosives

    SciTech Connect

    Campos, C.A.

    1980-06-01

    An Electrostatic Sensitivity Test System designed at Pantex was used to evaluate the secondary high explosives PETN, HMX, RDX, HNS I, HNS II and TATB. The purpose of this study was to establish test conditions for a standard electrostatic sensitivity test and measure baseline data of a few secondary explosives. Although secondary explosives are often considered quite insensitive to an electrostatic discharge, PETN, HMX, and RDX were initiated. Several external elements to the high explosive were found to have an influence on sensitivity. Initiation appeared to be dependent on the nature of the discharge current curve. Those elements recognized as having a significant effect on the results were held constant in this study. These included: distance between discharge plates; sample moisture content; material density; and system resistance, capacitance and inductance. However, no attempt was made in this study to determine the extent to which the high explosive response to electrostatic discharge is affected by these factors since such correlation is not necessary to determine relative sensitivities.

  16. Electrostatic dust protection for optical elements

    NASA Astrophysics Data System (ADS)

    Hoenig, S. A.

    1982-02-01

    The application of electrostatic technology to the protection of optical components in earth-mounted and satellite orbital systems has been investigated. Theory and experiment indicate it is quite practical to prevent dust deposition in an earth environment. A mathematical analysis indicates even better results should be obtained in an orbital vehicle.

  17. Electrostatic MEMS devices with high reliability

    SciTech Connect

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  18. Test progress on the electrostatic membrane reflector

    NASA Technical Reports Server (NTRS)

    Goslee, J. W.; Mihora, D. J.

    1981-01-01

    NASA is currently developing a low mass antenna which derives its reflector surface quality from the application of electrostatic forces to form a thin membrane into the desired concave reflector surface. The shuttle-deployed antenna would have a diameter of 100 m and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. Surface quality measurements have been made on a highly deformable elastic membrane, pressurized by electrostatic forces. Included are the effects of the perimeter boundary, splicing of the membrane, the long-scale smoothness of commercial membranes, and the spatial controllability of the membrane using voltage adjustments to alter the electrostatic forces. The electrostatic membrane was found to operate well in an open-loop sense, showing a high degree of position stability and negligible power consumption in dry air. Visco-electric creep was not evident, but the polymer membrane did expand and contract considerably due to its hygroscopic expansion coefficient. A residual roughness of about 0.75 mm existed with the polymer used in these tests; this error is attributed to seams and membrane anisotropy where the material is stiffer in one direction.

  19. Dynamics of electrostatic microelectromechanical systems actuators

    NASA Astrophysics Data System (ADS)

    Yang, Yisong; Zhang, Ruifeng; Zhao, Le

    2012-02-01

    Electrostatic actuators are simple but important switching devices for microelectromechanical systems applications. Due to the difficulties associated with the electrostatic nonlinearity, precise mathematical description is often hard to obtain for the dynamics of these actuators. Here we present two sharp theorems concerning the dynamics of an undamped electrostatic actuator with one-degree of freedom, subject to linear and nonlinear elastic forces, respectively. We prove that both situations are characterized by the onset of one-stagnation-point periodic response below a well-defined pull-in voltage and a finite-time touch-down or collapse of the actuator above this pull-in voltage. In the linear-force situation, the stagnation level, pull-in voltage, and pull-in coordinate of the movable electrode may all be determined explicitly, following the recent work of Leus and Elata based on numerics. Furthermore, in the nonlinear-force situation, the stagnation level, pull-in voltage, and pull-in coordinate may be described completely in terms of the electrostatic and mechanical parameters of the model so that they approach those in the linear-force situation monotonically in the zero nonlinear-force limit.

  20. OPERATION AND MAINTENANCE MANUAL FOR ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The manual focuses on the operation and maintenance (O/M) of typical electrostatic precipitators (ESPs). It summarizes available information on theory and design in sufficient detail to provide a basic background O/M portions of the manual. Although O/M-related air pollution prob...

  1. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  2. Dust particle injector for hypervelocity accelerators provides high charge-to-mass ratio

    NASA Technical Reports Server (NTRS)

    Berg, O. E.

    1966-01-01

    Injector imparts a high charge-to-mass ratio to microparticles and injects them into an electrostatic accelerator so that the particles are accelerated to meteoric speeds. It employs relatively large masses in the anode and cathode structures with a relatively wide separation, thus permitting a large increase in the allowable injection voltages.

  3. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  4. Optimization design combined with coupled structural-electrostatic analysis for the electrostatically controlled deployable membrane reflector

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Yang, Guigeng; Zhang, Yiqun

    2015-01-01

    The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.

  5. PREFACE: 13th International Conference on Electrostatics

    NASA Astrophysics Data System (ADS)

    Taylor, D. Martin

    2011-06-01

    Electrostatics 2011 was held in the city of Bangor which is located in North West Wales in an area of outstanding natural beauty close to the Snowdonia mountain range and bordering the Irish Sea. The history of the area goes back into the mists of times, but a continuous technological thread can be traced from the stone- and bronze-age craftsmen, who inhabited the area several thousand years ago, via the civil engineering and fortifications of the Romans and Edward I of England, through Marconi's long-wave trans-Atlantic transmitter near Caernarfon to the conference host. The School of Electronic Engineering at Bangor University has contributed much to the discipline of Electrostatics not only in teaching and research but also in supporting industry. It was a great pleasure for me, therefore, to have the pleasure of welcoming the world's experts in Electrostatics to Bangor in April 2011. In my preface to the Proceedings of Electrostatics 1999, I reported that almost 90 papers were presented. Interestingly, a similar number were presented in 2011 testifying to the importance and endurance of the subject. The all-embracing nature of electrostatics is captured in the pictorial depiction used for the conference logo: a hand-held plasma ball with its close link to gaseous discharges and the superimposed Antarctic aurora highlighting the featured conference themes of atmospheric, planetary and environmental electrostatics. Leading these themes were three invited contributions, the first by Giles Harrison who delivered the Bill Bright Memorial Lecture 'Fair weather atmospheric electricity', Carlos Calle on 'The electrostatic environments of Mars and the Moon' and Istvan Berta on 'Lightning protection - challenges, solutions and questionable steps in the 21st century'. Leading other key sessions were invited papers by Atsushi Ohsawa on 'Statistical analysis of fires and explosions attributed to static electricity over the last 50 years in Japanese industry' and Antonio

  6. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  7. Dispersion relation of electrostatic ion cyclotron waves in multi-component magneto-plasma

    SciTech Connect

    Khaira, Vibhooti Ahirwar, G.

    2015-07-31

    Electrostatic ion cyclotron waves in multi component plasma composed of electrons (denoted by e{sup −}), hydrogen ions (denoted by H{sup +}), helium ions (denoted by He{sup +}) and positively charged oxygen ions (denoted by O{sup +})in magnetized cold plasma. The wave is assumed to propagate perpendicular to the static magnetic field. It is found that the addition of heavy ions in the plasma dispersion modified the lower hybrid mode and also allowed an ion-ion mode. The frequencies of the lower hybrid and ion- ion hybrid modes are derived using cold plasma theory. It is observed that the effect of multi-ionfor different plasma densities on electrostatic ion cyclotron waves is to enhance the wave frequencies. The results are interpreted for the magnetosphere has been applied parameters by auroral acceleration region.

  8. Design, fabrication and levitation experiments of a micromachined electrostatically suspended six-axis accelerometer.

    PubMed

    Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng

    2011-01-01

    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated.

  9. Model of a SNS Electrostatic LEBT with a Near-Ground Beam Chopper

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Stockli, M. P.

    2009-03-01

    The low energy beam transport (LEBT) of the Spallation Neutron Source (SNS) accelerator consists of two electrostatic lenses, of which the second is split into four electrically-isolated segments. Adding fast pulsed voltages to the lens high voltage creates the transverse fields required for beam chopping. Electric sparks, however, create transients that enter the fast high-voltage switches, which are occasionally damaged and cause machine downtime. This work models a new configuration of the electrostatic LEBT, which chops the beam with four shielded, near-ground electrodes between the two lenses. The model shows that the new configuration can match the RFQ injection requirements and sufficiently deflect the beam in the phase-space using the same chopping voltages as in the baseline LEBT.

  10. Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping.

    PubMed

    Stockem, A; Grismayer, T; Fonseca, R A; Silva, L O

    2014-09-05

    A new magnetic field generation mechanism in electrostatic shocks is found, which can produce fields with magnetic energy density as high as 0.01 of the kinetic energy density of the flows on time scales ∼10(4)ωpe-1. Electron trapping during the shock formation process creates a strong temperature anisotropy in the distribution function, giving rise to the pure Weibel instability. The generated magnetic field is well confined to the downstream region of the electrostatic shock. The shock formation process is not modified, and the features of the shock front responsible for ion acceleration, which are currently probed in laser-plasma laboratory experiments, are maintained. However, such a strong magnetic field determines the particle trajectories downstream and has the potential to modify the signatures of the collisionless shock.

  11. Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer

    PubMed Central

    Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng

    2011-01-01

    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated. PMID:22247662

  12. Teaching Electrostatics and Entropy in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.

  13. Electrostatic trapping of metastable NH molecules

    SciTech Connect

    Hoekstra, Steven; Metsaelae, Markus; Zieger, Peter C.; Scharfenberg, Ludwig; Gilijamse, Joop J.; Meijer, Gerard; Meerakker, Sebastiaan Y. T. van de

    2007-12-15

    We report on the Stark deceleration and electrostatic trapping of {sup 14}NH (a{sup 1}{delta}) radicals. In the trap, the molecules are excited on the spin-forbidden A{sup 3}{pi}<-a{sup 1}{delta} transition and detected via their subsequent fluorescence to the X{sup 3}{sigma}{sup -} ground state. The 1/e trapping time is 1.4{+-}0.1 s, from which a lower limit of 2.7 s for the radiative lifetime of the a{sup 1}{delta}, v=0, J=2 state is deduced. The spectral profile of the molecules in the trapping field is measured to probe their spatial distribution. Electrostatic trapping of metastable NH followed by optical pumping of the trapped molecules to the electronic ground state is an important step toward accumulation of these radicals in a magnetic trap.

  14. Contemporary NMR Studies of Protein Electrostatics.

    PubMed

    Hass, Mathias A S; Mulder, Frans A A

    2015-01-01

    Electrostatics play an important role in many aspects of protein chemistry. However, the accurate determination of side chain proton affinity in proteins by experiment and theory remains challenging. In recent years the field of nuclear magnetic resonance spectroscopy has advanced the way that protonation states are measured, allowing researchers to examine electrostatic interactions at an unprecedented level of detail and accuracy. Experiments are now in place that follow pH-dependent (13)C and (15)N chemical shifts as spatially close as possible to the sites of protonation, allowing all titratable amino acid side chains to be probed sequence specifically. The strong and telling response of carefully selected reporter nuclei allows individual titration events to be monitored. At the same time, improved frameworks allow researchers to model multiple coupled protonation equilibria and to identify the underlying pH-dependent contributions to the chemical shifts.

  15. A simplified electrostatic model for hydrolase catalysis.

    PubMed

    Pessoa Filho, Pedro de Alcantara; Prausnitz, John M

    2015-07-01

    Toward the development of an electrostatic model for enzyme catalysis, the active site of the enzyme is represented by a cavity whose surface (and beyond) is populated by electric charges as determined by pH and the enzyme's structure. The electric field in the cavity is obtained from electrostatics and a suitable computer program. The key chemical bond in the substrate, at its ends, has partial charges with opposite signs determined from published force-field parameters. The electric field attracts one end of the bond and repels the other, causing bond tension. If that tension exceeds the attractive force between the atoms, the bond breaks; the enzyme is then a successful catalyst. To illustrate this very simple model, based on numerous assumptions, some results are presented for three hydrolases: hen-egg white lysozyme, bovine trypsin and bovine ribonuclease. Attention is given to the effect of pH.

  16. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  17. Test progress on the electrostatic membrane reflector

    NASA Technical Reports Server (NTRS)

    Mihora, D. J.

    1981-01-01

    An extemely lightweight type of precision reflector antenna, being developed for potential deployment from the space shuttle, uses electrostatic forces to tension a thin membrane and form it into a concave reflector surface. The typical shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center built and is currently testing a subscale (16 foot diameter) model of the membrane reflector portion of such an antenna. Preliminary test results and principal factors affecting surface quality are addressed. Factors included are the effect of the perimeter boundary, splicing of the membrane, the long-scale smoothness of commercial membranes, and the spatial controllability of the membrane using voltage adjustments to alter the electrostatic pressure. Only readily available commercial membranes are considered.

  18. Electrostatic antenna space environment interaction study

    NASA Technical Reports Server (NTRS)

    Katz, I.

    1981-01-01

    The interactions of the electrostatic antenna with the space environment in both low Earth orbit and geosynchronous orbit are investigated. It is concluded that the electrostatically controlled membrane mirror is a viable concept for space applications. However, great care must be taken to enclose the high voltage electrodes in a Faraday cage structure to separate the high voltage region from the ambient plasma. For this reason, metallized cloth is not acceptable as a membrane material. Conventional spacecraft charging at geosynchronous orbit should not be a problem provided ancillary structures (such as booms) are given nonnegligible conductivity and adequate grounding. Power loss due to plasma electrons entering the high field region is a potentially serious problem. In low earth orbit any opening whatever in the Faraday cage is likely to produce an unacceptable power drain.

  19. Clinical requirements and accelerator concepts for BNCT

    SciTech Connect

    Ludewigt, B.A.; Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Leung, K.N.; Reginato, L.L.; Wells, R.P.

    1997-05-01

    Accelerator-based neutron sources are an attractive alternative to nuclear reactors for providing epithermal neutron beams for Boron Neutron Capture Therapy. Based on clinical requirements and neutronics modeling the use of proton and deuteron induced reactions in {sup 7}Li and {sup 9}Be targets has been compared. Excellent epithermal neutron beams can be produced via the {sup 7}Li(p,n){sup 7}Be reaction at proton energies of {approximately}2.5 MeV. An electrostatic quadrupole accelerator and a lithium target, which can deliver and handle 2.5 MeV protons at beam currents up to 50 mA, are under development for an accelerator-based BNCT facility at the Lawrence Berkeley National Laboratory.

  20. Electrostatic waves in general magnetic field configurations

    SciTech Connect

    Chen, L.; Tsai, S.T.

    1981-07-01

    A scheme for investigating linear electrostatic waves in general magnetically confined plasmas is presented. The scheme is a generalization of the low-frequency (less than the cyclotron frequency) gyrokinetic formalism of Rutherford and Frieman as well as Taylor and Hastie to arbitrary frequencies. Governing integral wave equations for slab plasmas with magnetic shear as well as axisymmetric tokamaks are then derived to illustrate the applications.

  1. Controlling Charged Particles with Inhomogeneous Electrostatic Fields

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A. (Inventor)

    2016-01-01

    An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.

  2. Measurement and control of electrostatic patch potentials

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Munday, Jeremy N.

    Electrostatic patch potentials hinder many precision measurements, particularly measurements of the Casimir force. Despite the improved force sensitivity achieved over the last decade, only recently have attempts been made to measure and quantify the effects of patch potentials. Here we present an analysis of patch potentials measured by Kelvin probe force microscopy (KPFM) and discuss methods to control these potentials (e.g. humidity, material choice, etc).

  3. Experimental Results of an Electrostatic Injector

    DTIC Science & Technology

    2014-10-01

    is important especially in the realm of biofuels . In the long term, the United States Department of Defense (DOD) is interested in converting many...of their vehicles to biofuels . Both the U.S. Army and Navy have invested substantially into research pertaining to converting existing fleets to... biofuel compatibility. The recent work of Owkes and Desjardins has investigated the effects of electrostatic spray with biofuels [11]. They

  4. Thermoelectric properties of electrostatically tunable antidot lattices

    NASA Astrophysics Data System (ADS)

    Goswami, Srijit; Siegert, Christoph; Shamim, Saquib; Pepper, Michael; Farrer, Ian; Ritchie, David A.; Ghosh, Arindam

    2010-09-01

    We report on the fabrication and characterization of a device which allows the formation of an antidot lattice (ADL) using only electrostatic gating. The antidot potential and Fermi energy of the system can be tuned independently. Well defined commensurability features in magnetoresistance as well as magnetothermopower are observed. We show that the thermopower can be used to efficiently map out the potential landscape of the ADL.

  5. Application of electrostatic prevention technology on polyethylene silos

    NASA Astrophysics Data System (ADS)

    Gong, Hong; Liu, Quanzhen; Tan, Fenggui; Zhang, Yunpeng

    2013-03-01

    The main reasons of static electric explosion accidents in polyolefin plant silos were analyzed in this paper, and the study finds that the reasons include control failure of flammable gas content in the feed, high electrification caused by the wind supply, and frequent electrostatic discharge in silos. The electrostatic-reducing technologies of polyolefin powder were introduced, and its application performance in polyolefin plant silos was also clarified. In addition, the methods including FDCS and DGES for evaluation of electrostatic explosion in polyolefin plant silo were proposed. In the end, the risk of electrostatic explosion in PE plant blended silo was evaluated before and after application of electrostatic reducing technology.

  6. Cloverleaf microgyroscope with electrostatic alignment and tuning

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2007-01-01

    A micro-gyroscope (10) having closed loop output operation by a control voltage (V.sub.ty), that is demodulated by a drive axis (x-axis) signal V.sub.thx of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis) V.sub.thy.about.0. Closed loop drive axis torque, V.sub.tx maintains a constant drive axis amplitude signal, V.sub.thx. The present invention provides independent alignment and tuning of the micro-gyroscope by using separate electrodes and electrostatic bias voltages to adjust alignment and tuning. A quadrature amplitude signal, or cross-axis transfer function peak amplitude is used to detect misalignment that is corrected to zero by an electrostatic bias voltage adjustment. The cross-axis transfer function is either V.sub.thy/V.sub.ty or V.sub.tnx/V.sub.tx. A quadrature signal noise level, or difference in natural frequencies estimated from measurements of the transfer functions is used to detect residual mistuning, that is corrected to zero by a second electrostatic bias voltage adjustment.

  7. Brownian dynamics simulation of electrostatically interacting proteins

    NASA Astrophysics Data System (ADS)

    Ermakova, E.; Krushelnitsky, A. G.; Fedotov, V. D.

    Brownian dynamics simulation software has been developed to study the dynamics of proteins as a whole in solution. The proteins were modelled as spheres with point dipoles embedded in the centre of sphere. A set of Brownian dynamics simulations at different values of the dipole moments, protein concentration and translational diffusion coefficient was performed to investigate the influence of interprotein electrostatic interactions on dynamic protein behaviour in solution. It was shown that these interactions led to the slowing down of protein rotation and a complex non-exponential shape of the rotational correlation function. Analysis of the correlation functions was performed within the frame of the model of electrostatic interprotein interactions advanced earlier on the basis of NMR and dielectric spectroscopy data. This model assumes that, due to electrostatic interactions, protein Brownian rotation becomes anisotropic. The lifetime of this anisotropy is controlled mainly by translational diffusion of proteins. Thus, the correlation function can be decomposed into two components corresponding to anisotropic Brownian rotation and an isotropic motion of an external electric field vector produced by the surrounding proteins.

  8. Biomolecular electrostatics and solvation: a computational perspective

    PubMed Central

    Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G.; Schnieders, Michael J.; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A.

    2012-01-01

    An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view towards describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g., solvent structure, polarization, ion binding, and nonpolar behavior) in order to provide a background to understand the different types of solvation models. PMID:23217364

  9. Electrostatic Potential of Specific Mineral Faces

    SciTech Connect

    Zarzycki, Piotr P.; Chatman, Shawn ME; Preocanin, Tajana; Rosso, Kevin M.

    2011-07-05

    Reaction rates of environmental processes occurring at hydrated mineral surfaces are primarily controlled by the electrostatic potential that develops at the interface. This potential depends on the structure of exposed crystal faces, as well as the pH and the type of ions and their interactions with these faces. Despite its importance, experimental methods for determining fundamental electrostatic properties of specific crystal faces such as the point of zero charge are few. Here we show that this information may be obtained from simple, cyclic potentiometric titration using a well characterized single-crystal electrode exposing the face of interest. The method exploits the presence of a hysteresis loop in the titration measurements that allows extraction of key electrostatic descriptors using the Maxwell construction. The approach is demonstrated for hematite (α-Fe2O3) (001), and a thermodynamic proof is provided for the resulting estimate of its point of zero charge. Insight gained from this method will aid in predicting the fate of migrating contaminants, mineral growth/dissolution processes, mineral-microbiological interactions, and in testing surface complexation theories.

  10. Electrostatic separation of brass from industrial wastes

    SciTech Connect

    Iuga, A.; Morar, R.; Samuila, A.; Mihailescu, M.; Cuglesan, I.; Dascalescu, L.

    1999-05-01

    Previous studies have demonstrated that electrostatic separation can be successfully employed for the recycling of nonferrous metals from chopped electric wire and cable scrap. The aim of this paper was to investigate the possibility of using the electric field forces for the selective sorting of other granular mixtures, such as brass dross. Laboratory tests of electrostatic separation were carried out on three samples: 0.08--1 mm, 0.08--0.2 mm, and 0.2--1 mm, containing more than 66% of brass. Sample 1 was separated in a corona-electrostatic field, generated by a standard electrode arrangement: a grounded rotating roll electrode (diameter 150 mm) and two high-voltage electrodes (wire-type dual corona electrode + tubular electrode). Processing of the other two samples was carried out in a custom-designed separator comprising an extended corona field generated between a matrix-type multineedle corona electrode and a roll electrode of large diameter (250 mm). Chemical analysis of the products showed that more than 90% of the brass can be recovered with a purity higher than 95%. The extended corona field electrode arrangement proposed in this paper seems to be a promising solution for the effective recycling of other granular wastes containing copper, aluminum, and their alloys.

  11. Multistage ion acceleration in the interaction of intense short laser pulse with ultrathin target

    NASA Astrophysics Data System (ADS)

    Mirzanejhad, Saeed; Joulaei, Atefeh; Babaei, Javad

    2016-12-01

    New analytical formalism is invented in the description of ion acceleration in the interaction of intense high-contrast short laser pulse with ultrathin target. The electrostatic shock wave acceleration is our fundamental point of view, but different criteria are obtained for description of various acceleration phenomenon. Acceleration condition for an ion with a definite charge to mass ratio ( z / m ) and initial velocity β0 is obtained in the electrostatic shock (ES) field in front side of the foil. According to this point of view, self organized multistage ion acceleration formalism is proposed and confirmed by the 1D3V particle in cell simulation results. In this formalism, ions may be re-accelerated repeatedly in the developing ES field.

  12. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  13. Investigation on particle flow characteristics using electrostatic sensor array

    NASA Astrophysics Data System (ADS)

    Fu, Feifei; Xu, Chuanlong; Heming, Gao, Jian, Li; Wang, Shimin

    2012-03-01

    In recent years, great advance has been made on electrostatic sensing technique for gas-solid flow measurement. Electrostatic tomography(EST) has been used in experiment researches as a novel non-intrusive measurement technique. Electrostatic sensor array is one of the key parts of electrostatic tomography system. Based on the image reconstruction algorithm, the charge on the particles can be obtained from the electrostatic measurement signals. However, reports on the relationship between the electrostatic signal acquired by the electrostatic sensor array and flow characteristics of the particles were very few. In this paper the mathematical model of the electrostatic sensor array was adopted, and its spatial sensitivity field was investigated. In the experiment, the electrostatic signals of the quarter flow and full pipe flow were acquired by the electrostatic sensor array. Based on the EST experiment and Power Spectrum Analysis of Signal, the energy distributions of those two flow patterns were compared. Results show that the sensitivity of the electrostatic sensor array is inhomogeneous in three-dimensional space. For this reason, the energy distributions of those two flow patterns are distinguished.

  14. Electrostatic fields in a dusty Martian environment

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1991-01-01

    While there have been several studies suggesting the possibility of electrical activity on Mars, to date there have been no measurements to search for evidence of such activity. In the absence of widespread water clouds and convective storm systems similar to those on the Earth and Jupiter, the most likely candidate for the creation of electrostatic charges and fields is triboelectric charging of dust, i.e., the friction between blown dust and the ground, and of dust particles with each other. Terrestrial experience demonstrates that electric fields 5 to 15 kV-m(exp -1) are not uncommon in dust storms and dust devils in desert regions, where the polarity varies according to the chemical composition and grain size. Simple laboratory experiments have demonstrated that modest electrostatic fields of roughly 5,000 V-m(exp -1) may be produced, along with electrical spark discharges and glow discharges, in a simulation of a dusty, turbulent Martian surface environment. While the Viking landers operated for several years with no apparent deleterious effects from electrostatic charging, this may have been at least partly due to good engineering design utilizing pre-1976 electronic circuitry to minimize the possibility of differential charging among the various system components. However, free roaming rovers, astronauts, and airborne probes may conceivably encounter an environment where electrostatic charging is a frequent occurrence, either by way of induction from a static electric field or friction with the dusty surface and atmosphere. This raises the possibility of spark discharges or current surges when subsequent contact is made with other pieces of electrical equipment, and the possibility of damage to modern microelectronic circuitry. Measurements of electrostatic fields on the surface of Mars could therefore be valuable for assessing this danger. Electric field measurements could also be useful for detecting natural discharges that originate in dust storms. This

  15. Transient electromagnetic modeling of the ZR accelerator water convolute and stack.

    SciTech Connect

    Lehr, Jane Marie; Elizondo-Decanini, Juan Manuel; Turner, C. David; Coats, Rebecca Sue; Bohnhoff, William J.; Pointon, Timothy David; Pasik, Michael Francis; Johnson, William Arthur; Savage, Mark Edward

    2005-06-01

    The ZR accelerator is a refurbishment of Sandia National Laboratories Z accelerator [1]. The ZR accelerator components were designed using electrostatic and circuit modeling tools. Transient electromagnetic modeling has played a complementary role in the analysis of ZR components [2]. In this paper we describe a 3D transient electromagnetic analysis of the ZR water convolute and stack using edge-based finite element techniques.

  16. Variable energy constant current accelerator structure

    DOEpatents

    Anderson, Oscar A.

    1990-01-01

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.

  17. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  18. Electrostatic MEMS vibration energy harvester for HVAC applications

    NASA Astrophysics Data System (ADS)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.

    2015-12-01

    This paper reports on an electrostatic MEMS vibration energy harvester with gapclosing interdigitated electrodes, designed for and tested on HVAC air ducts. The device is fabricated on SOI wafers using a custom microfabrication process. A dual-level physical stopper system is implemented in order to control the minimum gap between the electrodes and maximize the power output. It utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls, which defines the absolute minimum gap and provides electrical insulation. The fabricated device was first tested on a vibration shaker to characterize its resonant behavior. The device exhibits spring hardening behavior due to impacts with the stoppers and spring softening behavior with increasing voltage bias. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mgRMS and a primary frequency of 60 Hz with a PSD of 7.15·10-2 g2/Hz. The peak power measured is 12nW (0.6 nW RMS) with a PSD of 6.9·10-11 W/Hz at 240 Hz (four times of the primary frequency of 60 Hz), which is the highest output reported for similar vibration conditions and biasing voltages.

  19. Design and Simulation of Bistable Microsystem with Frequency-up conversion effect for Electrostatic Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Vysotskyi, Bogdan; Parrain, Fabien; Lefeuvre, Elie; Leroux, Xavier; Aubry, Denis; Gaucher, Philippe

    2016-10-01

    This work is dedicated for the study of energy harvesters implemented in form of microelectromechanical systems (MEMS) used to harvest ambient vibrations for powering standalone electronic devices. The previewed application is to power a leadless pacemaker with mechanical energy of the heartbeat, which requires the amount of power typically more than 1μW. The target of the presented article is to combine the effect of bistability and nonlinear coupling by electrostatic effect in order to achieve the high value of bandwidth at the low frequency under the low accelerations. Such system is expected to bring high power density performance. This study is performed mostly by numerical simulation.

  20. Neutron yield and Lawson criterion for plasma with inertial electrostatic confinement

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu; Kurilenkov, Yu K.

    2016-11-01

    The physics of plasma formation is discussed in the systems with inertial electrostatic confinement (IEC) during the convergent to the axis of cylindrical geometry of the ion flow accelerated periodically in the field of virtual cathode, which is formed by the injected electrons. The ranges of plasma parameters and the resulting neutron yield are determined for different modes of ion flux formation. The requirements are formulated to the technical parameters of the system with IEC to create both a powerful neutron source with a rate of generation exceeding 1010-1012 particles/s and to achieve a positive energy output (analogue of Lawson criterion).

  1. Excitation of electrostatic waves in the electron cyclotron frequency range during magnetic reconnection in laboratory overdense plasmas

    SciTech Connect

    Kuwahata, A.; Igami, H.; Kawamori, E.; Kogi, Y.; Inomoto, M.; Ono, Y.

    2014-10-15

    We report the observation of electromagnetic radiation at high harmonics of the electron cyclotron frequency that was considered to be converted from electrostatic waves called electron Bernstein waves (EBWs) during magnetic reconnection in laboratory overdense plasmas. The excitation of EBWs was attributed to the thermalization of electrons accelerated by the reconnection electric field around the X-point. The radiative process discussed here is an acceptable explanation for observed radio waves pulsation associated with major flares.

  2. Electrostatic interactions in hirudin-thrombin binding.

    PubMed

    Sharp, K A

    1996-08-30

    Hirudin is a good anticoagulant owing to potent inhibition of the serine protease thrombin. An aspartate- and glutamate-rich portion of hirudin plays an important part in its tight binding to thrombin through a ladder of salt bridges, and these residues have previously been mutated to asparagine or glutamine. Detailed calculations of the electrostatic contribution to changes in binding from these mutations have been performed using the finite-difference Poisson-Boltzmann method which include charge--charge interactions, solvation interactions, the residual electrostatic interaction of mutant residues, pKa shifts, and ionic strength. Single mutant effects on binding energy were close to experimental values, except for the D55N mutant whose effect is overestimated, perhaps because of displacement of a bound chloride ion from the site where it binds. Multiple mutation values were generally overestimated. The effect of pKa shifts upon the binding is significant for one hirudin residue E58, but this appears to be due to a poor salt bridge with thrombin caused by crystal contacts. Electrostatic interaction between the acidic residues is unfavorable. However, analysis of experimental multiple mutation/single mutation data shows apparently negative interactions between these residues, from which it is concluded that structural changes can occur in the complex to relieve an unfavorable interaction when more than one acidic residue is mutated. In all cases, there is a loss in stability of the complex from mutations due to loss of favorable charge--charge interactions with thrombin, but this is largely compensated for by reduced unfavorable desolvation interactions, and by residual polar interactions in the Asn/Gln mutants.

  3. SPARCLE: Electrostatic Tool for Lunar Dust Control

    SciTech Connect

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Cheung, C. Y.; Keller, J. F.; Moore, M.; Calle, C. I.

    2009-03-16

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the dust which could compromise performance and to collect dust for characterization. Solving the dust problem is essential before we return to the Moon. During the Apollo missions, the discovery was made that regolith fines, or dust, behaved like abrasive velcro, coating surfaces, clogging mechanisms, and making movement progressively more difficult as it was mechanically stirred up during surface operations, and abrading surfaces, including spacesuits, when attempts were made to remove it manually. In addition, some of the astronauts experienced breathing difficulties when exposed to dust that got into the crew compartment. The successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Here we will describe the surface properties of dust particles, the basis for their behavior, and an electrostatically-based approach and methodology for addressing this issue confirmed by our preliminary results. Our device concept utilizes a focused electron beam to control the electrostatic potential of the surface. A plate of the opposite potential is then used to induce dust migration in the presence of an electrical field. Our goal is a compact device of <5 kg mass and using <5 watts of power to be operational in <5 years with heritage from ionic sweepers for active spacecraft potential control (e.g., on POLAR). Rovers could be fitted with devices that could harness the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  4. Electrostatic Surface Characterization by Scanning Probe Microscopy.

    NASA Astrophysics Data System (ADS)

    Leng, Yaojian

    1995-01-01

    The electrostatic properties of surfaces are important in biological, polymer and semiconductor physics. Several newly developed scanning probe microscopies can provide nanometer scale characterization of these surfaces. In the course of this work, an Electrostatic Force Microscope (EFM) and a Kelvin Probe Force Microscope (KPFM) have been built using interferometric force detection. An EFM is a modified noncontact mode Atomic Force Microscope, capable of simultaneously measuring surface topography, surface charge or surface potential, and capacitance. A KPFM is similar to the classical Kelvin method in measuring surface potential, only in this case, forces are detected instead of currents. A 10^{-4} A/surdHz displacement detection sensitivity has been achieved. A 200 A spatial resolution and a sub-mV electrostatic potential sensitivity have been demonstrated. The capability of the EFM to map charge and dielectric variations on biological and polymeric surfaces has been demonstrated. Studies have been made on red blood cells, modified Teflon FEP films, and contact lens materials. A quantitative method to measure surface charge density on a nanometer scale has been established. The redistribution of mobile surface ions has been visualized for the first time by the EFM on a submicron scale. It has been shown that the drift in the saturation current observed on the open gate field effect transistor is due to the migration of mobile surface ions under lateral fields. Atomic ordering in GaInP, controlled either by growth temperature or by substrate misorientation, has been studied by the KPFM both in cross section and on the growth plane. It is shown that KPFM is capable of distinguishing ordered GaInP from disordered GaInP. The contrast is observed to depend on the applied ac amplitude used in the measurement. The experiments indicate that ordering in GaInP modifies the density and/or lifetime of the surface states.

  5. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  6. Multiple magnetic microrobot control using electrostatic anchoring

    NASA Astrophysics Data System (ADS)

    Pawashe, Chytra; Floyd, Steven; Sitti, Metin

    2009-04-01

    Addressing power and control to individual untethered microrobots is a challenge for small-scale robotics. We present a 250×130×100 μm3 magnetic robot wirelessly driven by pulsed external magnetic fields. An induced stick-slip motion results in translation speeds over 8 mm/s. Control of multiple robots is achieved by an array of addressable electrostatic anchoring pads on the surface, which selectively fixes microrobots, preventing translation. We demonstrate control of two microrobots in both uncoupled individual motion and coupled symmetric motion. An estimated anchoring force of 23.0 μN is necessary to effectively fix each microrobot.

  7. Electrostatic gating in carbon nanotube aptasensors

    NASA Astrophysics Data System (ADS)

    Zheng, Han Yue; Alsager, Omar A.; Zhu, Bicheng; Travas-Sejdic, Jadranka; Hodgkiss, Justin M.; Plank, Natalie O. V.

    2016-07-01

    Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10 picomolar. The signal was shown to arise from a specific aptamer-target interaction that stabilises a G-quadruplex structure, bringing high negative charge density near the CNT channel. Electrostatic gating is established via the specificity and the sign of the current response, and by observing its suppression when higher ionic strength decreases the Debye length at the CNT-water interface. Sensitivity towards potassium and selectivity against other ions is demonstrated in both resistive mode and real time transistor mode measurements. The effective device architecture presented, along with the identification of clear response signatures, should inform the development of new electronic biosensors using the growing library of aptamer receptors.Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10

  8. Spiderweb deformation induced by electrostatically charged insects

    NASA Astrophysics Data System (ADS)

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-07-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture.

  9. DNA under Force: Mechanics, Electrostatics, and Hydration

    PubMed Central

    Li, Jingqiang; Wijeratne, Sithara S.; Qiu, Xiangyun; Kiang, Ching-Hwa

    2015-01-01

    Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  10. Nonadiabatic transitions in electrostatically trapped ammonia molecules

    SciTech Connect

    Kirste, Moritz; Schnell, Melanie; Meijer, Gerard; Sartakov, Boris G.

    2009-05-15

    Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps by comparing the trapping times in traps with a zero and a nonzero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for the present samples that are at relatively high temperatures of 30 mK. It is anticipated that losses due to nonadiabatic transitions in electric fields are omnipresent in ongoing experiments on cold molecules.

  11. ELECTROSTATIC AIR CLEANING DEVICE AND METHOD

    DOEpatents

    Silverman, L.; Anderson, D.M.

    1961-07-18

    A method and apparatus for utilizing friction-charged particulate material from an aerosol are described. A bed of the plastic spheres is prepared, and the aerosol is passed upwardly through the bed at a rate just large enough to maintain the bed in a fluidized state wim over-all circulation of the balls. Wire members criss-crossing through the bed rub against the balls and maintain their surfaces with electrostatic charges. The particulate material in the aerosol adheres to the surfaces of the balls.

  12. Magnetospheric electrostatic emissions and cold plasma densities

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1978-01-01

    A synoptic study of electric wave, magnetometer, and plasma data from IMP-6 was carried out for times when banded electrostatic waves are observed between harmonics of the electron gyrofrequency in the earth's outer magnetosphere. Four separate classes of such waves were previously identified. The spatial and temporal occurrences of waves in each class are summarized here, as are correlations of occurrence with geomagnetic activity. Most importantly, associations between the observations of waves of different classes and the relative portions of cold and hot electrons present at the position of the spacecraft are established. Finally, evidence for the signature of the loss cone is sought in the plasma data.

  13. Surface Acoustic Wave Atomizer and Electrostatic Deposition

    NASA Astrophysics Data System (ADS)

    Yamagata, Yutaka

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  14. Surface acoustic wave atomizer and electrostatic deposition.

    PubMed

    Yamagata, Yutaka

    2010-01-01

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  15. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  16. Measurement of exciton correlations using electrostatic lattices

    NASA Astrophysics Data System (ADS)

    Remeika, M.; Leonard, J. R.; Dorow, C. J.; Fogler, M. M.; Butov, L. V.; Hanson, M.; Gossard, A. C.

    2015-09-01

    We present a method for determining correlations in a gas of indirect excitons in a semiconductor quantum well structure. The method involves subjecting the excitons to a periodic electrostatic potential that causes modulations of the exciton density and photoluminescence (PL). Experimentally measured amplitudes of energy and intensity modulations of exciton PL serve as an input to a theoretical estimate of the exciton correlation parameter and temperature. We also present a proof-of-principle demonstration of the method for determining the correlation parameter and discuss how its accuracy can be improved.

  17. A Low Cost Electrostatically Focused TWT

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K.; Wintucky, Edwin G.; Williams, W. D. (Technical Monitor)

    2002-01-01

    Ring-loop circuits are well known for their simplicity, low cost, compactness, low mass, high gain and efficiency and absence of backward wave oscillations. Peak powers over 20 kw have been achieved. They also have low harmonic output and excellent phase performance. We have developed a double ring-loop circuit that permits electrostatic focusing of an electron beam to at least 0.4 micro pervs. This eliminates the magnet stack and further lowers cost and weight. It permits glass rod fastening of circuit elements as well as gun and collector assemblies, as is done in cathode ray tubes. Using CRT construction techniques, the TWT can be built on automated equipment.

  18. Sharp boundary analysis of electrostatic flute modes

    SciTech Connect

    Lemons, D. S.

    1989-07-01

    A linear, electrostatic, stability analysis of a magnetized cross-fielddrifting plasma with a sharp boundary is presented. The analysis corrects anerror in a previously published sharp boundary theory (Phys. Fluids /bold 19/,882 (1976)) and extends another theory (Geophys. Res. Lett. /bold 14/, 60(1987)) to include finite electron mass and non-neutral perturbations. Theinstability's long wavelength structure is associated with the classical fluteinstability, while the peak of the growth rate curve, at much shorterwavelengths, is a Buneman-like instability.

  19. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  20. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  1. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  2. Electrostatic testing of thin plastic materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1988-01-01

    Ten thin plastic materials (Velostat, RCAS 1200, Llumalloy, Herculite 80, RCAS 2400, Wrightlon 7000, PVC, Aclar 22A, Mylar, and Polyethylene) were tested for electrostatic properties by four different devices: (1) The static decay meter, (2) the manual triboelectric testing device, (3) the robotic triboelectric testing device, and (4) the resistivity measurement adapter device. The static decay meter measured the electrostatic decay rates in accordance with the Federal Test Method Standard 101B, Method 4046. The manual and the robotic triboelectric devices measured the triboelectric generated peak voltages and the five-second decay voltages in accordance with the criteria for acceptance standards at Kennedy Space Center. The resistivity measurement adapter measured the surface resistivity of each material. An analysis was made to correlate the data among the four testing devices. For the material tested the pass/fail results were compared for the 4046 method and the triboelectric testing devices. For the limited number of materials tested, the relationship between decay rate and surface resistivity was investigated as well as the relationship between triboelectric peak voltage and surface resistivity.

  3. Elasticity and Electrostatics of Plectonemic DNA

    PubMed Central

    Clauvelin, N.; Audoly, B.; Neukirch, S.

    2009-01-01

    We present a self-contained theory for the mechanical response of DNA in single molecule experiments. Our model is based on a one-dimensional continuum description of the DNA molecule and accounts both for its elasticity and for DNA-DNA electrostatic interactions. We consider the classical loading geometry used in experiments where one end of the molecule is attached to a substrate and the other one is pulled by a tensile force and twisted by a given number of turns. We focus on configurations relevant to the limit of a large number of turns, which are made up of two phases, one with linear DNA and the other one with superhelical DNA. The model takes into account thermal fluctuations in the linear phase and electrostatic interactions in the superhelical phase. The values of the torsional stress, of the supercoiling radius and angle, and key features of the experimental extension-rotation curves, namely the slope of the linear region and thermal buckling threshold, are predicted. They are found in good agreement with experimental data. PMID:19413977

  4. Electrostatic gating in carbon nanotube aptasensors.

    PubMed

    Zheng, Han Yue; Alsager, Omar A; Zhu, Bicheng; Travas-Sejdic, Jadranka; Hodgkiss, Justin M; Plank, Natalie O V

    2016-07-14

    Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10 picomolar. The signal was shown to arise from a specific aptamer-target interaction that stabilises a G-quadruplex structure, bringing high negative charge density near the CNT channel. Electrostatic gating is established via the specificity and the sign of the current response, and by observing its suppression when higher ionic strength decreases the Debye length at the CNT-water interface. Sensitivity towards potassium and selectivity against other ions is demonstrated in both resistive mode and real time transistor mode measurements. The effective device architecture presented, along with the identification of clear response signatures, should inform the development of new electronic biosensors using the growing library of aptamer receptors.

  5. Ion beam probing of electrostatic fields

    NASA Technical Reports Server (NTRS)

    Persson, H.

    1979-01-01

    The determination of a cylindrically symmetric, time-independent electrostatic potential V in a magnetic field B with the same symmetry by measurements of the deflection of a primary beam of ions is analyzed and substantiated by examples. Special attention is given to the requirements on canonical angular momentum and total energy set by an arbitrary, nonmonotone V, to scaling laws obtained by normalization, and to the analogy with ionospheric sounding. The inversion procedure with the Abel analysis of an equivalent problem with a one-dimensional fictitious potential is used in a numerical experiment with application to the NASA Lewis Modified Penning Discharge. The determination of V from a study of secondary beams of ions with increased charge produced by hot plasma electrons is also analyzed, both from a general point of view and with application to the NASA Lewis SUMMA experiment. Simple formulas and geometrical constructions are given for the minimum energy necessary to reach the axis, the whole plasma, and any point in the magnetic field. The common, simplifying assumption that V is a small perturbation is critically and constructively analyzed; an iteration scheme for successively correcting the orbits and points of ionization for the electrostatic potential is suggested.

  6. Electrostatic control of thermoelectricity in molecular junctions.

    PubMed

    Kim, Youngsang; Jeong, Wonho; Kim, Kyeongtae; Lee, Woochul; Reddy, Pramod

    2014-11-01

    Molecular junctions hold significant promise for efficient and high-power-output thermoelectric energy conversion. Recent experiments have probed the thermoelectric properties of molecular junctions. However, electrostatic control of thermoelectric properties via a gate electrode has not been possible due to technical challenges in creating temperature differentials in three-terminal devices. Here, we show that extremely large temperature gradients (exceeding 1 × 10(9) K m(-1)) can be established in nanoscale gaps bridged by molecules, while simultaneously controlling their electronic structure via a gate electrode. Using this platform, we study prototypical Au-biphenyl-4,4'-dithiol-Au and Au-fullerene-Au junctions to demonstrate that the Seebeck coefficient and the electrical conductance of molecular junctions can be simultaneously increased by electrostatic control. Moreover, from our studies of fullerene junctions, we show that thermoelectric properties can be significantly enhanced when the dominant transport orbital is located close to the chemical potential (Fermi level) of the electrodes. These results illustrate the intimate relationship between the thermoelectric properties and charge transmission characteristics of molecular junctions and should enable systematic exploration of the recent computational predictions that promise extremely efficient thermoelectric energy conversion in molecular junctions.

  7. Electrostatic self-assembly of biomolecules

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica

    2015-03-01

    Charged filaments and membranes are natural structures abundant in cell media. In this talk we discuss the assembly of amphiphiles into biocompatible fibers, ribbons and membranes. We describe one- and two-dimensional assemblies that undergo re-entrant transitions in crystalline packing in response to changes in the solution pH and/or salt concentration resulting in different mesoscale morphologies and properties. In the case of one-dimensional structures, we discuss self-assembled amphiphiles into highly charged nanofibers in water that order into two-dimensional crystals. These fibers of about 6 nm cross-sectional diameter form crystalline arrays with inter-fiber spacings of up to 130 nm. Solution concentration and temperature can be adjusted to control the inter-fiber spacings. The addition of salt destroys crystal packing, indicating that electrostatic repulsions are necessary for the observed ordering. We describe the crystallization of bundles of filament networks interacting via long-range repulsions in confinement by a phenomenological model. Two distinct crystallization mechanisms in the short and large screening length regimes are discussed and the phase diagram is obtained. Simulation of large bundles predicts the existence of topological defects among bundled filaments. Crystallization processes driven by electrostatic attractions are also discussed. Funded by Center for Bio-Inspired Energy Science (CBES), which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000989.

  8. Microscopic models for bridging electrostatics and currents

    NASA Astrophysics Data System (ADS)

    Borghi, L.; DeAmbrosis, A.; Mascheretti, P.

    2007-03-01

    A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.

  9. Designing and operating electrostatically driven microengines

    SciTech Connect

    Rodgers, M.S.; Sniegowski, J.J.; Miller, S.L.; LaVigne, G.F.

    1998-02-01

    Microelectromechanical engines that convert the linear outputs from dual orthogonal electrostatic actuators to rotary motion were first developed in 1993. Referred to as microengines, these early devices demonstrated the potential of microelectromechanical technology, but, as expected from any first-of-its-kind device, were not yet optimized. Yield was relatively low, and the 10 micronewtons of force generated by the actuators was not always enough to ensure reliable operation. Since initial development, these engines have undergone a continuous series of significant improvements on three separate fronts: design, fabrication, and electrical activation. Although all three areas will be discussed, emphasis will be on aspects related to mechanical design and generation of the electrical waveforms used to drive these devices. Microtransmissions that dramatically increase torque will also be discussed. Electrostatically driven microengines can be operated at hundreds of thousands of revolutions per minute making large gear reduction ratios feasible; overall ratios of 3,000,000:1 have been successfully demonstrated. Today`s microengines have evolved into high endurance (one test device has seen over 7,000,000,000 revolutions), high yield, robust devices that have become the primary actuation source for MicroElectroMechanical Systems (MEMS) at Sandia National Laboratories.

  10. Development of Electrostatically Clean Solar Array Panels

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  11. Dimer packings with gaps and electrostatics

    PubMed Central

    Ciucu, Mihai

    2008-01-01

    Fisher and Stephenson conjectured in 1963 that the correlation function (defined by dimer packings) of two unit holes on the square lattice is rotationally invariant in the limit of large separation between the holes. We consider the same problem on the hexagonal lattice, extend it to an arbitrary finite collection of holes, and present an explicit conjectural answer. In recent work we managed to prove this conjecture in two fairly general cases. The quantity giving the answer can be regarded as the exponential of the negative of the two-dimensional electrostatic energy of a system of charges naturally associated with the holes. We further develop this analogy to electrostatics by presenting two different natural ways to define a field in our setup, and showing that both lead to the electric field, in the limit of large separations between the holes. For one of the fields, this is also stated as a limit shape theorem for random surfaces, with the continuum limit being a sum of helicoids. We conclude by explaining the relationship of our results to previous results in the physics literature on spin correlations in the Ising model.

  12. Long range electrostatic forces in ionic liquids.

    PubMed

    Gebbie, Matthew A; Smith, Alexander M; Dobbs, Howard A; Lee, Alpha A; Warr, Gregory G; Banquy, Xavier; Valtiner, Markus; Rutland, Mark W; Israelachvili, Jacob N; Perkin, Susan; Atkin, Rob

    2017-01-19

    Ionic liquids are pure salts that are liquid under ambient conditions. As liquids composed solely of ions, the scientific consensus has been that ionic liquids have exceedingly high ionic strengths and thus very short Debye screening lengths. However, several recent experiments from laboratories around the world have reported data for the approach of two surfaces separated by ionic liquids which revealed remarkable long range forces that appear to be electrostatic in origin. Evidence has accumulated demonstrating long range surface forces for several different combinations of ionic liquids and electrically charged surfaces, as well as for concentrated mixtures of inorganic salts in solvent. The original interpretation of these forces, that ionic liquids could be envisioned as "dilute electrolytes," was controversial, and the origin of long range forces in ionic liquids remains the subject of discussion. Here we seek to collate and examine the evidence for long range surface forces in ionic liquids, identify key outstanding questions, and explore possible mechanisms underlying the origin of these long range forces. Long range surface forces in ionic liquids and other highly concentrated electrolytes hold diverse implications from designing ionic liquids for energy storage applications to rationalizing electrostatic correlations in biological self-assembly.

  13. New Method for Quantifying Ignition Sensitivity from Electrostatic Discharge

    DTIC Science & Technology

    2015-05-01

    ARL-TN-0675 ● MAY 2015 US Army Research Laboratory New Method for Quantifying Ignition Sensitivity from Electrostatic Discharge...Research Laboratory New Method for Quantifying Ignition Sensitivity from Electrostatic Discharge by Eric S Collins Oak Ridge Associated...Ignition Sensitivity from Electrostatic Discharge 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Eric S Collins

  14. Fast and precise computation of electrostatic fields with a charge simulation method using modern programming techniques

    SciTech Connect

    Schmidt, S.; Zech, G.; Otto, W.

    1996-05-01

    A precise computation of the electrostatic field is of considerable importance for the optimization of devices with electrooptical imaging. Another field of interest is the development of particle detectors like wire chambers or microstrip chambers. Inside a gas volume of such a detector a high electrostatic field is produced at small electrodes. Particles passing the detector ionize a certain number of gas molecules. The electrons produced by this process are moving along the field lines. When they reach a high field region they are accelerated and in turn ionize the gas. This leads to a charge avalanche that induces a signal on the electrodes that can be measured. To simulate these detectors the field has to be computed to high precision, especially in regions where the field is large, since the gas gain depends exponentially on the field strength. For signal simulation also the drift velocity of the positive ions which is proportional to the field, the induced charges on the electrodes, and the capacitances are of interest. Here a method to reduce the computational effort for numerical calculation of electrostatic fields by a Charge Simulation Method is introduced. By simplifying complex charge configurations for the evaluation of the field at large distances, the computation time can be reduced considerably preserving high precision. Since the method is ideally suited to object-oriented programming it has been implemented in C++.

  15. Friction coefficient dependence on electrostatic tribocharging

    NASA Astrophysics Data System (ADS)

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-08-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  16. Powder electrostatic enamelling of household appliances

    NASA Astrophysics Data System (ADS)

    Bragina, L.; Shalygina, O.; Kuryakin, N.; Annenkov, V.; Guzenko, N.; Kupriyanenko, K.; Hudyakov, V.; Landik, A.

    2011-12-01

    Principles and practices of contemporary resource and energy saving technology of powder electrostatic application (POESTA)of vitreous enamel coatings are described. Its technological, economic and ecological advantages over slip enamelling in household appliances manufacture are discussed. We develop the principles of synthesis of special glass frits with high electric resistivity for POESTA and discuss the results of studies aimed at the development and industrial implementation of ground, direct-on and coloured cover enamels for household appliances and direct-on thermally resistant chemically durable coatings with antibacterial effect for protection of inner tanks of water heaters. Finally, we describe the development of compositions for easy-to-clean, catalytic and pyrolytic coatings.

  17. Turbulence in electrostatic ion acoustic shocks

    NASA Technical Reports Server (NTRS)

    Means, R. W.; Coroniti, F. V.; Wong, A. Y.; White, R. B.

    1973-01-01

    Three types of collisionless electrostatic ion acoustic shocks are investigated using a double plasma (DP) device: (1) laminar shocks; (2) small amplitude turbulent shocks in which the turbulence is confined to be upstream of the shock potential jump; and (3) large amplitude turbulent shocks in which the wave turbulence occurs throughout the shock transition. The wave turbulence is generated by ions which are reflected from the shock potential; linear theory spatial growth increments agree with experimental values. The experimental relationship between the shock Mach number and the shock potential is shown to be inconsistent with theoretical shock models which assume that the electrons are isothermal. Theoretical calculations which assume a trapped electron equation of a state and a turbulently flattened velocity distrubution function for the reflected ions yields a Mach number vs potential relationship in agreement with experiment.

  18. Electrostatic micromembrane actuator arrays as motion generator

    NASA Astrophysics Data System (ADS)

    Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.

    2004-05-01

    A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.

  19. Multifractality in plasma edge electrostatic turbulence

    NASA Astrophysics Data System (ADS)

    Neto, C. Rodrigues; Guimarães-Filho, Z. O.; Caldas, I. L.; Nascimento, I. C.; Kuznetsov, Yu. K.

    2008-08-01

    Plasma edge turbulence in Tokamak Chauffage Alfvén Brésilien (TCABR) [R. M. O. Galvão et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences.

  20. Controlling synaptotagmin activity by electrostatic screening.

    PubMed

    Park, Yongsoo; Hernandez, Javier M; van den Bogaart, Geert; Ahmed, Saheeb; Holt, Matthew; Riedel, Dietmar; Jahn, Reinhard

    2012-10-01

    Exocytosis of neurosecretory vesicles is mediated by the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins syntaxin-1, synaptobrevin and SNAP-25, with synaptotagmin functioning as the major Ca(2+) sensor for triggering membrane fusion. Here we show that bovine chromaffin granules readily fuse with large unilamellar liposomes in a SNARE-dependent manner. Fusion is enhanced by Ca(2+), but only when the target liposomes contain phosphatidylinositol-4,5-bisphosphate and when polyphosphate anions, such as nucleotides or pyrophosphate, are present. Ca(2+)-dependent enhancement is mediated by endogenous synaptotagmin-1. Polyphosphates operate by an electrostatic mechanism that reverses an inactivating cis association of synaptotagmin-1 with its own membrane without affecting trans binding. Hence, the balancing of trans- and cis-membrane interactions of synaptotagmin-1 could be a crucial element in the pathway of Ca(2+)-dependent exocytosis.

  1. Electrostatic Discharge Effects on Thin Film Resistors

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  2. Electrostatic Modeling of Vacuum Insulator Triple Junctions

    SciTech Connect

    Tully, L K; Goerz, D A; Houck, T L; Javedani, J B

    2006-10-25

    Triple junctions are often initiation points for insulator flashover in pulsed power devices. The two-dimensional finite-element TriComp [1] modeling software suite was utilized for its electrostatic field modeling package to investigate electric field behavior in the anode and cathode triple junctions of a high voltage vacuum-insulator interface. TriComp enables simple extraction of values from a macroscopic solution for use as boundary conditions in a subset solution. Electric fields computed with this zoom capability correlate with theoretical analysis of the anode and cathode triple junctions within submicron distances for nominal electrode spacing of 1.0 cm. This paper will discuss the iterative zoom process with TriComp finite-element software and the corresponding theoretical verification of the results.

  3. Electrostatically gated membrane permeability in inorganic protocells

    NASA Astrophysics Data System (ADS)

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  4. Electrostatically gated membrane permeability in inorganic protocells.

    PubMed

    Li, Mei; Harbron, Rachel L; Weaver, Jonathan V M; Binks, Bernard P; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  5. Electrostatic Charging of the Pathfinder Rover

    NASA Technical Reports Server (NTRS)

    Siebert, Mark W.; Kolecki, Joseph C.

    1996-01-01

    The Mars Pathfinder mission will send a lander and a rover to the martian surface. Because of the extremely dry conditions on Mars, electrostatic charging of the rover is expected to occur as it moves about. Charge accumulation may result in high electrical potentials and discharge through the martian atmosphere. Such discharge could interfere with the operation of electrical elements on the rover. A strategy was sought to mitigate this charge accumulation as a precautionary measure. Ground tests were performed to demonstrate charging in laboratory conditions simulating the surface conditions expected at Mars. Tests showed that a rover wheel, driven at typical rover speeds, will accumulate electrical charge and develop significant electrical potentials (average observed, 110 volts). Measurements were made of wheel electrical potential, and wheel capacitance. From these quantities, the amount of absolute charge was estimated. An engineering solution was developed and recommended to mitigate charge accumulation. That solution has been implemented on the actual rover.

  6. Processes and applications of electrostatic fiber formation

    NASA Astrophysics Data System (ADS)

    Rutledge, Gregory C.

    2008-12-01

    'Electrospinning' is an electrohydrodynamic jetting process that enables the production of continuous fibers, tubes and wires with diameters as small as 10 nm. The process itself is dependent upon electrostatic interactions such as charge-charge repulsion and charge-field interaction. The interplay of charge repulsion, viscoelasticity and surface tension gives rise to interesting electrohydrodynamic phenomena that challenge fundamental understanding as well as practical implementation and quality control in the final fibers. The morphology and diameter of these fibers can be understood and controlled through manipulation of fluid properties and operating parameters. The fibers thus produced are illustrative of nanotechnology in a 1-dimensional form, and have inspired considerable activity in the research community into their potential applications. Proposed uses range from high performance filtration media and membranes, to sensors and actuators, to medical devices and drug delivery vehicles. Two examples, tissue scaffold engineering and superhydrophobicity, are illustrated here.

  7. Nonplanar electrostatic shock waves in dense plasmas

    SciTech Connect

    Masood, W.; Rizvi, H.

    2010-02-15

    Two-dimensional quantum ion acoustic shock waves (QIASWs) are studied in an unmagnetized plasma consisting of electrons and ions. In this regard, a nonplanar quantum Kadomtsev-Petviashvili-Burgers (QKPB) equation is derived using the small amplitude perturbation expansion method. Using the tangent hyperbolic method, an analytical solution of the planar QKPB equation is obtained and subsequently used as the initial profile to numerically solve the nonplanar QKPB equation. It is observed that the increasing number density (and correspondingly the quantum Bohm potential) and kinematic viscosity affect the propagation characteristics of the QIASW. The temporal evolution of the nonplanar QIASW is investigated both in Cartesian and polar planes and the results are discussed from the numerical stand point. The results of the present study may be applicable in the study of propagation of small amplitude localized electrostatic shock structures in dense astrophysical environments.

  8. Friction coefficient dependence on electrostatic tribocharging.

    PubMed

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  9. Probe Measurements of Electrostatic Fluctuations in LDX

    NASA Astrophysics Data System (ADS)

    Ortiz, E. E.; Mauel, M. E.; Garnier, D. T.; Hansen, A. K.; Levitt, B. J.; Kesner, J.; Boxer, A.; Ellsworth, J. L.; Karim, I.; Mahar, S.; Roach, A. H.; Zimmermann, M.

    2004-11-01

    Electrostatic fluctuations play an important role in the equilibrium and stability of a high-beta plasma confined in a dipolar magnetic field. Initial plasma experiments in LDX will use movable edge probes to measure plasma potential, plasma characteristics, and plasma mass flow. Three probe systems have been installed: a triple Langmuir probe (constructed of 1 cm long, 0.5 mm dia. tungsten wire probe tips), an emissive probe (constructed of 0.9 cm long, 1 mm dia. thoriated tungsten wire), and a Mach probe (constructed with two 0.7 cm long, 1.5 mm dia. tungsten wires). Each probe is mounted on an adjustable feed-through capable of scanning parameters along a 40 cm cord at the plasma edge. Initial measurements and interpretations from first plasma experiments will be presented.

  10. Electrode geometry for electrostatic generators and motors

    DOEpatents

    Post, Richard F.

    2016-02-23

    An electrostatic (ES) device is described with electrodes that improve its performance metrics. Devices include ES generators and ES motors, which are comprised of one or more stators (stationary members) and one or more rotors (rotatable members). The stator and rotors are configured as a pair of concentric cylindrical structures and aligned about a common axis. The stator and rotor are comprised of an ensemble of discrete, longitudinal electrodes, which are axially oriented in an annular arrangement. The shape of the electrodes described herein enables the ES device to function at voltages significantly greater than that of the existing art, resulting in devices with greater power-handling capability and overall efficiency. Electrode shapes include, but are not limited to, rods, corrugated sheets and emulations thereof.

  11. Electrostatic attraction between overall neutral surfaces.

    PubMed

    Adar, Ram M; Andelman, David; Diamant, Haim

    2016-08-01

    Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.

  12. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  13. Use of Membrane Collectors in Electrostatic Precipitators.

    PubMed

    Bayless, David J; Pasic, Hajrudin; Alam, M Khairul; Shi, Liming; Haynes, Brian; Cochran, Joe; Khan, Wajahat

    2001-10-01

    Membrane collection surfaces, developed and patented by researchers at Ohio University, were used to replace steel plates in a dry electrostatic precipitator (ESP). Such replacement facilitates tension-based rapping, which shears the adhered particle layer from the collector surface more effectively than hammer-based rapping. Tests were performed to measure the collection efficiency of the membranes and to quantify the potential improvements of this novel cleaning technique with respect to re-entrainment. Results indicate that even semiconductor materials (e.g., carbon fibers) collect ash nearly as efficiently as steel plates, potentially indicating that collection surface resistivity is primarily dictated by the accumulated ash layer and not by the underlying plate conductivity. In addition, virtually all sheared particles separated from the collecting membranes fell within the boundary layer of the membrane, indicating extremely low potential for re-entrainment.

  14. Use of membrane collectors in electrostatic precipitators.

    PubMed

    Bayless, D J; Pasic, H; Alam, M K; Shi, L; Haynes, B; Cochran, J; Khan, W

    2001-10-01

    Membrane collection surfaces, developed and patented by researchers at Ohio University, were used to replace steel plates in a dry electrostatic precipitator (ESP). Such replacement facilitates tension-based rapping, which shears the adhered particle layer from the collector surface more effectively than hammer-based rapping. Tests were performed to measure the collection efficiency of the membranes and to quantify the potential improvements of this novel cleaning technique with respect to re-entrainment. Results indicate that even semiconductor materials (e.g., carbon fibers) collect ash nearly as efficiently as steel plates, potentially indicating that collection surface resistivity is primarily dictated by the accumulated ash layer and not by the underlying plate conductivity. In addition, virtually all sheared particles separated from the collecting membranes fell within the boundary layer of the membrane, indicating extremely low potential for re-entrainment.

  15. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    PubMed

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  16. Electrostatic electron cyclotron harmonic instability near Ganymede

    NASA Astrophysics Data System (ADS)

    Tripathi, A. K.; Singhal, R. P.; Singh, K. P.; Singh, O. N.

    2014-08-01

    Jupiter's moon—Ganymede—is the largest satellite in our solar system. Galileo spacecraft made six close flybys to explore Ganymede. More information was acquired about particle population, magnetic field and plasma waves during these encounters. In this paper, our aim is to study the generation of electrostatic electron cyclotron harmonic (ECH) emissions in the vicinity of Ganymede using the observed particle data. The calculated ECH wave's growth rates are analyzed in the light of observations of plasma waves along the path of Galileo near Ganymede. Dispersion relation for electrostatic mode is solved to obtain the temporal growth rates. A new electron distribution function, fitted to distribution observed near Ganymede, is used in the calculations. A parametric study is performed to evaluate the effect of loss-cone angle and the ratio of plasma to gyro-frequency on growth rates. It is found that ECH waves growth rates generally decrease as the loss-cone angle is increased. However, the ratio plasma to gyro-frequency has almost no effect on the growth rates. These parameters vary considerably along the Galileo trajectory near Ganymede. This is the first study which relates the occurrence of ECH waves with the particle and magnetic field data in the vicinity of Ganymede. The study of ECH wave growth rate near Ganymede is important for the calculation of pitch angle scattering rates of low-energy electrons and their subsequent precipitation into the thin atmosphere of Ganymede producing ultraviolet emissions. Results of the present study may also be relevant for the upcoming JUNO and JUICE missions to Jupiter.

  17. Aspects of electrostatics in BTZ geometries

    NASA Astrophysics Data System (ADS)

    Herrera, Y.; Hurovich, V.; Santillán, O.; Simeone, C.

    2015-10-01

    In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which a regularization prescription based on the Haddamard Green function is employed. The differences between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead asymptotically AdS. In addition, the relative distance d (r ,r +1 ) between two particles located at a radius r and r +1 in the geometry tends to zero when r →∞. This behavior, which is radically different in a flat geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is that there exist several regularization methods other than the one we are employing, and there does not exist a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for asymptotic points in the geometry.

  18. Characterization of the Electrostatic Environment of Launchers

    NASA Astrophysics Data System (ADS)

    Soyah, Jamila; Mantion, Pascal; Herlem, Yannick

    2016-05-01

    The purpose of this study was to update knowledge in characterization of the electrostatic environment of launchers in order to be able to propose reductions of design constraints.The first part of this study showed that flashover discharges are the most energetic discharges likely to occur on a launcher. They are mostly due to accumulations of charges by triboelectricity on the external surface of the launcher while flying through clouds containing a lot of small solid particles.Actually flashover discharges are mitigated by limiting the surface's resistance of dielectric materials such as thermal protection set on the external skin of the launcher, thanks to antistatic paints that avoid significant accumulations of charges.But this specified limitation leads to a lot of non- conformances during production phases and, as a result, this leads to additional costs and delays in launches campaigns. That is why on-ground tests have been defined in order to assess the accessibility of a relaxation of those specifications, which would reduce non-conformances.On-ground tests have been carried out, in the second part, on samples of thermal protections covered with antistatic paints with different degraded values of surface resistance. These tests aimed at checking in which conditions a surface discharge can occur in order to deduce a relationship between characteristics of the samples (surface resistance, half-discharge time) and the occurrence of a surface discharge, at ambient pressure and at low pressure.In the third part, in-flight experiments have been defined in order to confirm some hypotheses considered in the study and to assess some parameters in a more accurate way like the incoming charges density per surface unit or the voltage between stages when they get separated, in order to assess more accurately whether the unwinding equalization wire dedicated to maintain the electrostatic balance between stages is necessary or not.

  19. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-10-10

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  20. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-03-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  1. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  2. Future accelerator technology

    SciTech Connect

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes.

  3. ACCELERATION AND THE GIFTED.

    ERIC Educational Resources Information Center

    GIBSON, ARTHUR R.; STEPHANS, THOMAS M.

    ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…

  4. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  5. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  6. A Bridge between Two Important Problems in Optics and Electrostatics

    ERIC Educational Resources Information Center

    Capelli, R.; Pozzi, G.

    2008-01-01

    It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…

  7. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics

    NASA Astrophysics Data System (ADS)

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G.; Cornil, Jérôme; Beljonne, David

    2016-11-01

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.

  8. Electrostatically suspended and sensed micro-mechanical rate gyroscope

    NASA Technical Reports Server (NTRS)

    Torti, R.; Gerver, M.; Gondhalekar, V.; Bart, S.; Maxwell, B.

    1994-01-01

    The goal of this work is development of fully electrostatically suspended and rebalancing angular rate sensing micro-gyroscope fabricated according to standard VLSI techniques. Fabrication of test structures is proceeding. Off chip electronics for the electrostatic sensing and driving circuits has been tested. The prototype device will be assembled in a hybrid construction including the FET input stages of the sensors.

  9. Electrostatic waves and the strong diffusion of magnetospheric electrons

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Ashour-Abdalla, M.

    1982-01-01

    A comprehensive review of electron pitch angle scattering in the magnetosphere and the plasma waves responsible for it is presented, emphasizing the strong diffusion of diffuse auroral electrons by electrostatic electron cyclotron harmonic waves. The weak diffusion of energetic radiation belt electrons within the plasmasphere is reviewed briefly. Several new suggestions concerning the quasilinear diffusion from and saturation of electrostatic waves are included.

  10. Collective Ion Acceleration and Electron Beam Propagation in Dielectric Guides.

    DTIC Science & Technology

    1980-04-01

    PULSE 600 Under * Typical Experimental Conditions and (b) Transported Beam Current at Positions of 2 cm and 15 cm Down Guide . .3-6 3-4 Beam-Front...of the dielectric guide. A low-temperature plasma is formed at the irradiated surface of the guide by various processes , including volume breakdown...of the dielectric, surface flashover , and ionization and breakdown of desorbed gas. The ions of this plasma are accelerated electrostatically into the

  11. Staging and laser acceleration of ions in underdense plasma

    NASA Astrophysics Data System (ADS)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  12. Electrostatic forces in wind-pollination—Part 1: Measurement of the electrostatic charge on pollen

    NASA Astrophysics Data System (ADS)

    Bowker, George E.; Crenshaw, Hugh C.

    Under fair weather conditions, a weak electric field exists between negative charge induced on the surface of plants and positive charge in the air. This field is magnified around points (e.g. stigmas) and can reach values up to 3×10 6 V m -1. If wind-dispersed pollen grains are electrically charged, the electrostatic force (which is the product of the pollen's charge and the electric field at the pollen's location) could influence pollen capture. In this article, we report measurements of the electrostatic charge carried by wind-dispersed pollen grains. Pollen charge was measured using an adaptation of the Millikan oil-drop experiment for seven anemophilous plants: Acer rubrum, Cedrus atlantica, Cedrus deodara, Juniperus virginiana, Pinus taeda, Plantago lanceolata and Ulmus alata. All species had charged pollen, some were positive others negative. The distributions (number of pollen grains as a function of charge) were bipolar and roughly centered about zero although some distributions were skewed towards positive charges. Most pollen carried small amounts of charge, 0.8 fC in magnitude, on average. A few carried charges up to 40 fC. For Juniperus, pollen charges were also measured in nature and these results concurred with those found in the laboratory. For nearly all charged pollen grains, the likelihood that electrostatics influence pollen capture is evident.

  13. Electrostatic excitation for the force amplification of microcantilever sensors.

    PubMed

    Shokuhfar, Ali; Heydari, Payam; Ebrahimi-Nejad, Salman

    2011-01-01

    This paper describes an electrostatic excited microcantilever sensor operating in static mode that is more sensitive than traditional microcantilevers. The proposed sensor comprises a simple microcantilever with electrostatic excitation ability and an optical or piezoresistive detector. Initially the microcantilever is excited by electrostatic force to near pull-in voltage. The nonlinear behavior of the microcantilever in near pull-in voltage i.e., the inverse-square relation between displacement and electrostatic force provides a novel method for force amplification. In this situation, any external load applied to the sensor will be amplified by electrostatic force leading to more displacement. We prove that the proposed microcantilever sensor can be 2 to 100 orders more sensitive compared with traditional microcantilevers sensors of the same dimensions. The results for surface stress and the free-end point force load are discussed.

  14. Diffuse Aurora on Ganymede Driven by Electrostatic Waves

    NASA Astrophysics Data System (ADS)

    Singhal, R. P.; Tripathi, A. K.; Halder, S.; Singh, O. N., II

    2016-12-01

    The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earlier works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50-70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.

  15. Electrostatic catalysis of a Diels-Alder reaction.

    PubMed

    Aragonès, Albert C; Haworth, Naomi L; Darwish, Nadim; Ciampi, Simone; Bloomfield, Nathaniel J; Wallace, Gordon G; Diez-Perez, Ismael; Coote, Michelle L

    2016-03-03

    It is often thought that the ability to control reaction rates with an applied electrical potential gradient is unique to redox systems. However, recent theoretical studies suggest that oriented electric fields could affect the outcomes of a range of chemical reactions, regardless of whether a redox system is involved. This possibility arises because many formally covalent species can be stabilized via minor charge-separated resonance contributors. When an applied electric field is aligned in such a way as to electrostatically stabilize one of these minor forms, the degree of resonance increases, resulting in the overall stabilization of the molecule or transition state. This means that it should be possible to manipulate the kinetics and thermodynamics of non-redox processes using an external electric field, as long as the orientation of the approaching reactants with respect to the field stimulus can be controlled. Here, we provide experimental evidence that the formation of carbon-carbon bonds is accelerated by an electric field. We have designed a surface model system to probe the Diels-Alder reaction, and coupled it with a scanning tunnelling microscopy break-junction approach. This technique, performed at the single-molecule level, is perfectly suited to deliver an electric-field stimulus across approaching reactants. We find a fivefold increase in the frequency of formation of single-molecule junctions, resulting from the reaction that occurs when the electric field is present and aligned so as to favour electron flow from the dienophile to the diene. Our results are qualitatively consistent with those predicted by quantum-chemical calculations in a theoretical model of this system, and herald a new approach to chemical catalysis.

  16. Electron acceleration by Landau resonance with whistler mode wave packets

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Reinleitner, L. A.

    1983-01-01

    Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.

  17. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  18. Dust Accelerators And Their Applications In High-Temperature Plasmas

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui

    2011-06-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  19. Dust accelerators and their applications in high-temperature plasmas

    SciTech Connect

    Wang, Zhehui; Ticos, Catakin M

    2010-01-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  20. Accelerator based X-ray facilities applied to freight control

    NASA Astrophysics Data System (ADS)

    Gaillard, G.

    1996-06-01

    The first accelerator based X-ray facility dedicated to freight control, in this case air-freight pallets, became operational at Roissy-Charles-de-Gaulle airport in 1991. Since then, five other facilities have been built, three in Europe and the other two in China, for the control of trucks and sea-containers. In order to be able to see through these very large and dense objects, X-ray energies of several MeV are necessary. Two types of electron accelerators are used for the production of the X-ray beams: linear accelerators and electrostatic accelerators (Van de Graff or Pelletrons), depending on the beam quality requirements which depend on the technology used for the detection of X-rays. A brief description of the functioning of the X-ray inspection facilities is presented in this article as well as an estimation of their global cost and of their profitability.

  1. An investigation of the optics of a 5-element electrostatic lens for use with a high brightness ion source

    NASA Astrophysics Data System (ADS)

    Colman, R. A.; Legge, G. J. F.

    1994-03-01

    The optics of a configuration consisting of a biased ion source exit canal, followed by a four-electrode electrostatic lens is investigated. This effectively operates as a five-electrode electrostatic lens (although two electrodes are in fact wired at the same potential). This lens displays three degrees of freedom in achieving a required beam focus. In particular, this lens is investigated to determine its optimal configuration for the present, low voltage ion source and its suitability for use with a high voltage field ionization ion source. The finite element method is used to calculate the electrostatic field in the lens, and optical properties are extracted from ray tracing. A full range of "accelerating" and "decelerating" focusing modes are analysed with a range of final to initial voltage ratios of between 1 and 16, and with and without a beam crossover inside the lens. It is found that aberrations are lowest for large initial acceleration, and with no beam crossover, with the optimal aberrations being relatively insensitive to the final electrode voltage. Calculations suggest, however, that the introduction of a high voltage field ionization source would almost certainly preclude the use of the optimal lens configuration in practice.

  2. Flexible electrostatic nanogenerator using graphene oxide film

    NASA Astrophysics Data System (ADS)

    Tian, He; Ma, Shuo; Zhao, Hai-Ming; Wu, Can; Ge, Jie; Xie, Dan; Yang, Yi; Ren, Tian-Ling

    2013-09-01

    Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could significantly enhance the output voltage from 0.1 V to 2.0 V. The mechanism of our nanogenerator can be explained by an electrostatic effect, which is fundamentally different from that of previously reported piezoelectric and triboelectric generators. In this manuscript, we demonstrate flexible nanogenerators with large-area graphene based materials, which may open up new avenues of research with regard to applications in energy harvesting.Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could

  3. Electrostatic Dust Control for Planetary Rovers

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Farrell, W. M.; Nuth, J. A.; Stubbs, T. J.; Rilee, M. L.

    2005-12-01

    Detailed study of the physical and chemical nature of the fine particulate portion of the regoliths of these bodies is a key to understanding micrometeorite bombardment and the nature of regolith formation. Thus, missions to sample the surfaces of atmosphereless bodies, including the Moon, asteroids, and Mercury, have been identified as crucial components of solar system exploration over the next decades. We have proposed autonomous reconfigurable robotic manual assistants and lander/rovers for such missions. On the other hand, dust poses problems for mechanisms and exposed surfaces on landers/rovers sent to such bodies. Compromise of seals and loss of sample material, as well as mechanical damage to systems and surfaces, occurred after hours of operation during the Apollo missions. Thus both dust mitigation and dust collection are issues which must be addressed for sampling missions. Dust activity on atmosphereless bodies is ubiquitous and induced by complex interactions of fine particulates, environmentally-dependent fields, and charged particles with vehicle surfaces and mechanisms. Dust particles are both abrasive and adhesive as a result of the melting and crushing from micrometeorite bombardment. Thus, dust dynamics result from the interplay between mechanical and electrostatic forces and are a critical environmental factor with which all rover technologies must deal. We have considered various strategies for dust mitigation. Passive ones include the use of conducting surfaces and O-ring sealing of all mechanisms. Several active mechanisms for not only removing but collecting dust are under consideration. Our inter-disciplinary team is investigating the feasibility of an electrostatically based concept for a dust control. Relatively little work has been done on empirically simulating what happens when another surface is introduced into a non-conducting, dusty regolith. We plan to test our concept by performing empirical simulations of the interaction between

  4. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  5. Electrostatic wire stabilizing a charged particle beam

    DOEpatents

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  6. Conservation and Role of Electrostatics in Thymidylate Synthase

    NASA Astrophysics Data System (ADS)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C.

    2015-11-01

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  7. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  8. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent

    2013-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical

  9. Component mode synthesis approach for quantum mechanical electrostatic and transport analysis of nanoscale structures and devices

    NASA Astrophysics Data System (ADS)

    Gao, Zhe

    As the dimensions of commonly used semiconductor devices have shrunk into nanometer regime, it is recognized that the influence of quantum effects on their electrostatic and transport properties cannot be ignored. In the past few decades, various computational models and approaches have been developed to analyze these properties in nanostructures and devices. Among these computational models, the Schrodinger-Poisson model has been widely adopted for quantum mechanical electrostatic and transport analysis of nanostructures and devices such as quantum wires, metal--oxide--semiconductor field effect transistors (MOSFETs) and nanoelectromechanical systems (NEMS). The numerical results allow for evaluations of the electrical properties such as charge concentration and potential profile in these structures. The emergence of MOSFETs with multiple gates, such as Trigates, FinFETs and Pi-gates, offers a superior electrostatic control of devices by the gates, which can be therefore used to reduce the short channel effects within those devices. Full 2-D electrostatic and transport analysis enables a better understanding of the scalability of devices, geometric effects on the potential and charge distribution, and transport characteristics of the transistors. The Schrodinger-Poisson model is attractive due to its simplicity and straightforward implementation by using standard numerical methods. However, as it is required to solve a generalized eigenvalue problem generated from the discretization of the Schrodinger equation, the computational cost of the analysis increases quickly when the system's degrees of freedom (DOFs) increase. For this reason, techniques that enable an efficient solution of discretized Schrodinger equation in multidimensional domains are desirable. In this work, we seek to accelerate the numerical solution of the Schrodinger equation by using a component mode synthesis (CMS) approach. In the CMS approach, a nanostructure is divided into a set of

  10. Electrostatic shape-shifting ion optics

    DOEpatents

    Dahl, David A.; Scott, Jill R.; Appelhans, Anthony D.

    2006-05-02

    Electrostatic shape-shifting ion optics includes an outer electrode that defines an interior region between first and second opposed open ends. A first inner electrode is positioned within the interior region of the outer electrode at about the first open end. A second inner electrode is positioned within the interior region of the outer electrode at about the second open end. A first end cap electrode is positioned at about a first open end of the first inner electrode so that the first end cap electrode substantially encloses the first open end of the first inner electrode. A second end cap electrode is positioned at about a second open end of the second inner electrode so that the second end cap electrode substantially encloses the second open end of the second inner electrode. A voltage source operatively connected to each of the electrodes applies voltage functions to each of the electrodes to produce an electric field within an interior space enclosed by the electrodes.

  11. Electrostatic charge interactions in ordered powder mixes.

    PubMed

    Staniforth, J N; Rees, J E

    1982-02-01

    A method is described for measuring the electrostatic charge generated in powders following contact with a plane substrate. The method uses a Faraday well connected to an electrometer and allows the specific charge of powders to be determined. Of the various drugs and excipients studied, most charged electronegatively following contact with glass surfaces, but became electropositive after contact with polyethylene surfaces. The charge interactions of drug and excipient powders modified the behaviour of ordered mixes formed in similar conditions to those of charge measurement. Powders with like charges formed less stable ordered mixes than those in which drug and excipient particles carried opposite charges. Following triboelectrification in an air cyclone constructed of brass, powders had charges at least 100 times greater than those formed after contact with glass surfaces. Optimization of the triboelectric charging conditions allowed ordered mixes to be prepared in which a maximum electronegative charge was applied to the excipient whilst the drug was given a maximum electropositive charge. Studies of segregation/stability showed that ordered mixes subjected to triboelectrification were less prone to segregation than uncharged powders.

  12. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  13. Flexible electrostatic nanogenerator using graphene oxide film.

    PubMed

    Tian, He; Ma, Shuo; Zhao, Hai-Ming; Wu, Can; Ge, Jie; Xie, Dan; Yang, Yi; Ren, Tian-Ling

    2013-10-07

    Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could significantly enhance the output voltage from 0.1 V to 2.0 V. The mechanism of our nanogenerator can be explained by an electrostatic effect, which is fundamentally different from that of previously reported piezoelectric and triboelectric generators. In this manuscript, we demonstrate flexible nanogenerators with large-area graphene based materials, which may open up new avenues of research with regard to applications in energy harvesting.

  14. Electrostatic comb drive for vertical actuation

    SciTech Connect

    Lee, A. P., LLNL

    1997-07-10

    The electrostatic comb finger drive has become an integral design for microsensor and microactuator applications. This paper reports on utilizing the levitation effect of comb fingers to design vertical-to-the-substrate actuation for interferometric applications. For typical polysilicon comb drives with 2 {micro}m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 {micro}m above the stationary comb fingers. This distance is ideal for many phase shifting interferometric applications. Theoretical calculations of the vertical actuation characteristics are compared with the experimental results, and a general design guideline is derived from these results. The suspension flexure stiffnesses, gravity forces, squeeze film damping, and comb finger thicknesses are parameters investigated which affect the displacement curve of the vertical microactuator. By designing a parallel plate capacitor between the suspended mass and the substrate, in situ position sensing can be used to control the vertical movement, providing a total feedback-controlled system. Fundamentals of various capacitive position sensing techniques are discussed. Experimental verification is carried out by a Zygo distance measurement interferometer.

  15. Membrane-based wet electrostatic precipitation

    SciTech Connect

    David J. Bayless; Liming Shi; Gregory Kremer; Ben J. Stuart; James Reynolds; John Caine

    2005-06-01

    Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or waterbased) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at First Energy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with {approximately}15% less collecting area. 15 refs., 7 figs., 6 tabs.

  16. Tribocharging Lunar Soil for Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.

  17. Electrostatic Breakdown Analysis using EMsolve and BEMSTER

    SciTech Connect

    Fasenfest, B; White, D

    2005-05-27

    Computer simulations modeling electrostatic behavior were used to simulate dielectric breakdown problems. These simulations modeled composite dielectric and conducting structures to see how much voltage difference or charge accumulation could occur before dielectric breakdown occurred in an air region. Two different computer codes were used for the analysis; EMSolve and BEMSTER. EMSolve, an existing LLNL internal finite element code, requires that a complete volume mesh of the problem be constructed. BEMSTER, a boundary-element code, was developed from an extension of the FEMSTER libraries which power EMSolve. The boundary-integral code offers the advantages of solving for accumulated charge and maximum electric field directly, and of only requiring a surface mesh. However, because it does not automatically solve for the voltage and electric field everywhere in space, post-processing and visualization are slightly more difficult than with EMSolve. Both codes were compared to several analytical solutions, and then applied to the structures of interest. Both codes showed good agreement with the analytic solution and with each other.

  18. Electrostatic field between non-concentric cylinders

    SciTech Connect

    Garcia, M

    2000-01-10

    This report describes a closed-form solution to the electrostatic potential, and the electric field, between non-concentric cylinders, with the inner cylinder charged and the outer cylinder grounded. This problem is an abstraction of the situation of an electron beam within a drift tube. Capacitive and surface current probes on the inner wall of the outer cylinder are used to detect the asymmetry of the field when the beam is off center. The solution of this problem allows for a quantitative relationship between probe-array signals and beam deflection. probe-arrays of this type are called ''beam bugs'' at LLNL. The solution described here is suggested by the analysis presented in [3]. The essential point is that the 2D potential for a line source decreases along a radius as the logarithm of the distance. The non-concentric cylinder problem has a unique profile of this type for each ray from ({rho}, {sigma}) linking the inner cylinder at equipotential V{sub 2}, and the outer cylinder at equipotential 0.

  19. Electrostatically-tuned dimensional crossover in nanowires

    NASA Astrophysics Data System (ADS)

    Tomczyk, Michelle; Cheng, Guanglei; Huang, Mengchen; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    The electron system at the interface of two complex oxides, LaAlO3 and SrTiO3, exhibits a number of interesting strongly-correlated electronic properties, such as superconductivity and spin-orbit coupling. Reduced dimensionality is made accessible through nanowire devices created with conducting AFM lithography. Here, we describe an electrostatically-controlled dimensionality crossover in weak antilocalization behavior of LaAlO3/SrTiO3 nanowires at low temperature. These measurements give insight to the interplay of spin-orbit coupling and dimensionality. Characterizing the behavior of the strongly-correlated electronic properties in these reduced dimensions is necessary in order to develop this system as a multifunctional nanoelectronics platform. We gratefully acknowledge financial support from the following agencies and grants: ARO (W911NF-08-1-0317), AFOSR FA9550-10-1-0524 (JL) and FA9550-12-1-0342 (CBE), and NSF (DMR-1104191, DMR-1124131 (JL), ONR N00014-15-1-2847 (JL) and DMR-1234096 (CBE).

  20. Electrostatic model for hydrogen bonds in alcohols

    SciTech Connect

    Giguere, P.A.; Pigeon-Gosselin, M.

    1988-11-01

    The authors have measured the Raman spectra of liquid methanol at temperatures between 50/sup 0/ and -77/sup 0/C. The weak O-H stretching bands appear, under amplification, more and more asymmetric as the temperature is lowered. They can be decomposed into three Gaussian components centered at about 3220, 3310, and 3400 cm/sup -1/. The former, predominant at low temperature, corresponds to single, linear hydrogen bonds (LHB) between two molecules. The other two are assigned to branched hydrogen bonds, respectively bifurcated (BHB), between three molecules, and trifurcated (THB), between four molecules. They conclude that the molecular structure of liquid alcohols is not chain-like, as presumed so far, but a three-dimensional network featuring a mixture of single (LBH), and multiple hydrogen bonds (BHB, and THB). They are mainly electrostatic in nature, their relative proportions and geometry governed by the packing conditions for minimum energy. They form distinct trimers and tetramers in dilute solutions of alcohols in inert solvents and frozen matrices, and the latter even in the vapor.

  1. Integrating electrostatic adhesion to composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2015-04-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Using a combination of established fabrication techniques, electroadhesive elements are co-cured within a composite host structure during manufacture. This provides an almost symbiotic relationship between the electroadhesive and the composite structure, with the electroadhesive providing an additional functionality, whilst the epoxy matrix material of the composite acts as a dielectric for the high voltage electrodes of the device. Silicone rubber coated devices have been shown to offer high shear load (85kPa) capability for GFRP components held together using this technique. Through careful control of the connection interface, we consider the incorporation of these devices within complete composite structures for additional functionality. The ability to vary the internal connectivity of structural elements could allow for incremental changes in connectivity between discrete sub-structures, potentially introducing variable stiffness to the global structure.

  2. Membrane-based wet electrostatic precipitation.

    PubMed

    Bayless, David J; Shi, Liming; Kremer, Gregory; Stuart, Ben J; Reynolds, James; Caine, John

    2005-06-01

    Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or water-based) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at FirstEnergy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with approximately 15% less collecting area.

  3. Electrostatic ion cyclotron velocity shear instability

    SciTech Connect

    Lemons, D.S.; Winske, D.; Gary, S.P. )

    1992-12-01

    An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, [kappa][rho][sub i] [approximately] 0.5, and one at short wavelength, [kappa][rho][sub i] > 1.5 ([kappa][rho][sub i] is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit.

  4. ELECTROSTATIC MODE ASSOCIATED WITH PINCH VELOCITY IN RFPS

    SciTech Connect

    DELZANNO, GIAN LUCA; FINN, JOHN M.; CHACON, LUIS

    2007-02-08

    The existence of a new electrostatic instability is shown for RFP (reversed field pinch) equilibria. This mode arises due to the non-zero equilibrium radial flow (pinch flow). In RFP simulations with no-stress boundary conditions on the tangential velocity at the radial wall, this electrostatic mode is unstable and dominates the nonlinear dynamics, even in the presence of the MHD modes typically responsible for the reversal of the axial magnetic field at edge. Nonlinearly, this mode leads to two beams moving azimuthally towards each other, which eventually collide. The electrostatic mode can be controlled by using Dirichlet (no-slip) boundary conditions on the azimuthal velocity at the radial wall.

  5. An interpretation of electrostatic density shocks in space plasma

    SciTech Connect

    Shi Jiankui; Zhang Tielong; Torkar, Klaus; Liu Zhenxing

    2005-08-15

    A physical model of electrostatic shocks observed in space plasma is established by deriving the 'Sagdeev potential' from the magnetohydrodynamic equations in a cylindrical coordinate system. The results show that the electrostatic density shock and its corresponding solitary electric-field structure can develop from an ion acoustic wave or an ion cyclotron wave if the Mach number and the initial electric field satisfy some conditions. Some features of the shock wave are discussed. The result can be used to interpret the electrostatic shock observed in geospace plasma.

  6. Orientation and transformation of flagella in electrostatic field

    SciTech Connect

    Washizu, M. ); Shikida, M. . Central Research Lab.); Aizawa, S.; Hotani, H. )

    1992-10-01

    As an extension of electrostatic molecular manipulation being developed b the authors using a high-frequency high-intensity field produce din microfabricated electrode systems, electrically induced transformation of bacterial flagella are studied. Flagella are known to assume a variety of distinct helical forms, and transformations among these polymorphic states are induced by environmental changes or by mechanical force. In this paper, the orientation time constant of flagella is first measured under the electrostatic field produced in microfabricated electrodes in order to estimate the magnitude of the induced dipole moment. Then, by further raising the field intensity, observations on the electrostatically induced transformation is made.

  7. A Feasability Study of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael Ryan; Phillips, James Ralph; Kelley, Joshua David; Mackey, Paul J.; Holbert, Eirik; Clements, Gregory R.; Calle, Carlos I.

    2014-01-01

    Mars rover missions rely on time-consuming, power-exhausting processes to analyze the Martian regolith. A low power electrostatic sensor in the wheels of a future Mars rover could be used to quickly determine when the rover is driving over a different type of regolith. The Electrostatics and Surface Physics Laboratory at NASA's Kennedy Space Center developed the Wheel Electrostatic Spectrometer as a feasibility study to investigate this option. In this paper, we discuss recent advances in this technology to increase the repeatability of the tribocharging experiments, along with supporting data. In addition, we discuss the development of a static elimination tool optimized for Martian conditions.

  8. Vibration suppression in MEMS devices using electrostatic forces

    NASA Astrophysics Data System (ADS)

    Haddad Khodaparast, Hamed; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon

    2016-04-01

    This paper investigates the use of electrostatic forces for vibration control of MEMS devices. A micro beam subject to electrostatic loading is considered. The electrostatic forces cause softening nonlinearity and their amplitudes are proportional to the square of applied DC voltages. An optimization problem is set up to minimize the vibration level of the micro-beam at given excitation frequencies. A new method based on incrementing nonlinear control parameters of the system and Harmonic Balance is used to obtain the required DC voltages that suppress unwanted vibration of the micro-beam. The results are illustrated using numerical simulations

  9. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.

    PubMed

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-02-15

    Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom-atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom-atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ℓA+ ℓB + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom-atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are only slightly larger than those calculated at HF/6-31G(d,p) level. This convergence behavior is transferable to the well-known amyloid beta polypeptide Aβ1-42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance.

  10. Accelerating Particles with Plasma

    ScienceCinema

    Litos, Michael; Hogan, Mark

    2016-07-12

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  11. Peak acceleration limiter

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1972-01-01

    Device is described that limits accelerations by shutting off shaker table power very rapidly in acceleration tests. Absolute value of accelerometer signal is used to trigger electronic switch which terminates test and sounds alarm.

  12. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  13. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  14. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  15. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  16. Ionospheric electron acceleration by electromagnetic waves near regions of plasma resonances

    NASA Astrophysics Data System (ADS)

    Villalon, Elena

    1989-03-01

    Electron acceleration by electromagnetic fields propagating in the inhomogeneous ionospheric plasma is investigated. It is found that high-amplitude short wavelength electrostatic waves are generated by the incident electromagnetic fields that penetrate the radio window. These waves can very efficiently transfer their energy to the electrons if the incident frequency is near the second harmonic of the cyclotron frequency.

  17. Accelerators, Colliders, and Snakes

    NASA Astrophysics Data System (ADS)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  18. Biofilm formation and local electrostatic force characteristics of Escherichia coli O157:H7 observed by electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Y. J.; Jo, W.; Yang, Y.; Park, S.

    2007-04-01

    The authors report growth media dependence of electrostatic force characteristics in Escherichia coli O157:H7 biofilm through local measurement by electrostatic force microscopy (EFM). The difference values of electrostatic interaction between the bacterial surface and the abiotic surface show an exponential decay behavior during biofilm development. In the EFM data, the biofilm in the low nutrient media shows a faster decay than the biofilm in the rich media. The surface potential in the bacterial cells was changed from 957to149mV. Local characterization of extracellular materials extracted from the bacteria reveals the progress of the biofilm formation and functional complexities.

  19. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  20. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  1. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  2. Instability of Dielectrics and Conductors in Electrostatic Fields

    NASA Astrophysics Data System (ADS)

    Allaire, Grégoire; Rauch, Jeffrey

    2017-04-01

    This article proves most of the assertion in §116 of Maxwell's treatise on electromagnetism. The results go under the name Earnshaw's Theorem and assert the absence of stable equilibrium configurations of conductors and dielectrics in an external electrostatic field.

  3. PHYSICS UPDATE: Does electrostatic shielding work both ways?

    NASA Astrophysics Data System (ADS)

    Sharma, Natthi L.; Reid, David D.

    1998-09-01

    We demonstrate that there is a sense in which electrostatic shielding works both ways and that Richard Feynman's discussion to this effect in The Feynman Lectures on Physics, though ambiguous, is not incorrect.

  4. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    SciTech Connect

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  5. Microfluidic pressure amplifier circuits and electrostatic gates for pneumatic microsystems

    SciTech Connect

    Tice, Joshua D.; Bassett, Thomas A.; Desai, Amit V.; Apblett, Christopher A.; Kenis, Paul J. A.

    2016-09-20

    An electrostatic actuator is provide that can include a fluidic line, a first electrode, and a second electrode such that a gate chamber portion of the fluidic line is sandwiched between the first electrode and the second electrode. The electrostatic actuator can also include a pressure-balancing channel in fluid communication with the gate chamber portion where the first electrode is sandwiched between the pressure-balancing channel and the gate chamber portion. A pneumatic valve system is provided which includes an electrostatic gate and a fluidic channel fluidly separate from a fluidic control line. A pneumatic valve portion of the fluidic control line can be positioned relative to a portion of the fluidic channel such that expansion of the pneumatic valve portion restricts fluid flow through the fluidic channel. Methods of using an electrostatic actuator and a pneumatic valve system are also provided.

  6. Effect of particle distribution on electrostatic tomography system

    NASA Astrophysics Data System (ADS)

    Gao, Heming; Xu, Chuanlong; Fu, Feifei; Wang, Shimin

    2012-03-01

    Particle is charged due to frictional contact and collisions between particles and pipe wall. Electrostatic tomography technology (EST) is used to monitor the traveling particle charge. However the electric field distribution in the electrostatic sensor arrays is simultaneously affected by both the particle permittivity distribution and particle charge. In the paper, the effect of the different particle flow regimes on EST is investigated numerically and experimentally. Results indicated the particle distribution affected the induced charge on the electrostatic sensor array. But the effect relates to the relationship between the charge distribution and the particle distribution. Furthermore, a fusion of dual modality tomography system consisting of a capacitance sensor and electrostatic sensor arrays is used to investigate the relationship between the particle distribution and charge distribution in a gravity conveying rig. Results showed that the higher particle concentration has higher charge distribution in the gravity conveying rig. Additionally, the measurement of the mass flow rate by EST was investigated.

  7. 4. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. 5 (Martin Stupich) - U.S. Steel Homestead Works, Open Hearth Steelmaking Plant, Along Monongahela River, Homestead, Allegheny County, PA

  8. 5. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. 5 (Martin Stupich) - U.S. Steel Homestead Works, Open Hearth Steelmaking Plant, Along Monongahela River, Homestead, Allegheny County, PA

  9. Electrostatic aggregation of finely-comminuted geological materials

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, R.

    1986-01-01

    Electrostatic forces are known to have a significant effect on the behavior of finely comminuted particulate material: perhaps the most prevalent expression of this being electrostatic aggregation of particles into relatively coherent clumps. However, the precise role of electrostatic attraction and repulsion in determining the behavior of geological materials (such as volcanic ash and aeolian dust) is poorly understood. Electrostatic aggregation of fine particles is difficult to study on Earth either in the geological or laboratory environment principally because the material in an aggregated state remains airborne for such a short period of time. Experiments conducted in the NASA/JCS - KC135 aircraft are discussed. The aircraft experiments are seen as precursors to more elaborate and scientifically more comprehensive Shuttle or Space Station activities.

  10. Electrostatic aggregation of finely-comminuted geological materials

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Greeley, Ronald

    1987-01-01

    Electrostatic forces are known to have a significant effect on the behavior of finely comminuted particulate material: perhaps the most prevalent expression of this being electrostatic aggregation of particles into relatively coherent clumps. However, the precise role of electrostatic attraction and repulsion in determining the behavior of geological materials (such as volcanic ash and aeolian dust) is poorly understood. Electrostatic aggregation of fine particles is difficult to study on earth either in the geological or laboratory environment principally because the material in an aggregated state remains airborne for such a short period of time. Experiments conducted in the NASA/JSC - KC135 aircraft are discussed. The aircraft experiments are seen as precursors to more elaborate and scientifically more comprehensive Shuttle or Space Station activities.

  11. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes

    PubMed Central

    Platre, Matthieu Pierre

    2017-01-01

    ABSTRACT A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells. PMID:28102755

  12. The source of Saturn electrostatic discharges: Atmospheric storms

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Connerney, J. E. P.; Desch, M. D.

    1983-01-01

    Important properties of the recently discovered Saturn electrostatic discharges are entirely consistent with an extended lightning storm system in Saturn's atmosphere. The presently favored B-ring location is ruled out.

  13. The Calculation of the Electrostatic Potential of Infinite Charge Distributions

    ERIC Educational Resources Information Center

    Redzic, Dragan V.

    2012-01-01

    We discuss some interesting aspects in the calculation of the electrostatic potential of charge distributions extending to infinity. The presentation is suitable for the advanced undergraduate level. (Contains 3 footnotes.)

  14. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  15. The Contribution of Surface Potential to Diverse Problems in Electrostatics

    NASA Astrophysics Data System (ADS)

    Horenstein, M.

    2015-10-01

    Electrostatics spans many different subject areas. Some comprise “good electrostatics,” where charge is used for desirable purposes. Such areas include industrial manufacturing, electrophotography, surface modification, precipitators, aerosol control, and MEMS. Other areas comprise “bad electrostatics,” where charge is undesirable. Such areas include hazardous discharges, ESD, health effects, nuisance triboelectrification, particle contamination, and lightning. Conference proceedings such as this one inevitably include papers grouped around these topics. One common thread throughout is the surface potential developed when charge resides on an insulator surface. Often, the charged insulator will be in intimate contact with a ground plane. At other times, the charged insulator will be isolated. In either case, the resulting surface potential is important to such processes as propagating brush discharges, charge along a moving web, electrostatic biasing effects in MEMS, non-contacting voltmeters, field-effect transistor sensors, and the maximum possible charge on a woven fabric.

  16. Fabrication of miniaturized electrostatic deflectors using LIGA

    SciTech Connect

    Jackson, K.H.; Khan-Malek, C.; Muray, L.P.

    1997-04-01

    Miniaturized electron beam columns ({open_quotes}microcolumns{close_quotes}) have been demonstrated to be suitable candidates for scanning electron microscopy (SEM), e-beam lithography and other high resolution, low voltage applications. In the present technology, microcolumns consist of {open_quotes}selectively scaled{close_quotes} micro-sized lenses and apertures, fabricated from silicon membranes with e-beam lithography, reactive ion beam etching and other semiconductor thin-film techniques. These miniaturized electron-optical elements provide significant advantages over conventional optics in performance and ease of fabrication. Since lens aberrations scale roughly with size, it is possible to fabricate simple microcolumns with extremely high brightness sources and electrostatic objective lenses, with resolution and beam current comparable to conventional e-beam columns. Moreover since microcolumns typically operate at low voltages (1 KeV), the proximity effects encountered in e-beam lithography become negligible. For high throughput applications, batch fabrication methods may be used to build large parallel arrays of microcolumns. To date, the best reported performance with a 1 keV cold field emission cathode, is 30 nm resolution at a working distance of 2mm in a 3.5mm column. Fabrication of the microcolumn deflector and stigmator, however, have remained beyond the capabilities of conventional machining operations and semiconductor processing technology. This work examines the LIGA process as a superior alternative to fabrication of the deflectors, especially in terms of degree of miniaturization, dimensional control, placement accuracy, run-out, facet smoothness and choice of suitable materials. LIGA is a combination of deep X-ray lithography, electroplating, and injection molding processes which allow the fabrication of microstructures.

  17. Electrostatic Dust Detection and Removal for ITER

    SciTech Connect

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-09-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 μm spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.

  18. Linear and Nonlinear Electrostatic Waves in Unmagnetized Dusty Plasmas

    SciTech Connect

    Mamun, A. A.; Shukla, P. K.

    2010-12-14

    A rigorous and systematic theoretical study has been made of linear and nonlinear electrostatic waves propagating in unmagnetized dusty plasmas. The basic features of linear and nonlinear electrostatic waves (particularly, dust-ion-acoustic and dust-acoustic waves) for different space and laboratory dusty plasma conditions are described. The experimental observations of such linear and nonlinear features of dust-ion-acoustic and dust-acoustic waves are briefly discussed.

  19. APPARATUS FOR CLEANING GASES WITH ELECTROSTATICALLY CHARGED PARTICLES

    DOEpatents

    Johnstone, H.F.

    1960-02-01

    An apparatus is described for cleaning gases with the help of electrostatically charged pellets. The pellets are blown past baffles in a conduit and into the center of a rotuting body of the gas to be cleaned. The pellets are charged electrostatically by impinging on the baffles. The pellets collect the particles suspended in the gas in their passage from the center of the rotating body to its edge.

  20. Test plan for engineering scale electrostatic enclosure demonstration

    SciTech Connect

    Meyer, L.C.

    1993-02-01

    This test plan describes experimental details of an engineering-scale electrostatic enclosure demonstration to be performed at the Idaho National Engineering Laboratory in fiscal year (FY)-93. This demonstration will investigate, in the engineering scale, the feasibility of using electrostatic enclosures and devices to control the spread of contaminants during transuranic waste handling operations. Test objectives, detailed experimental procedures, and data quality objectives necessary to perform the FY-93 experiments are included in this plan.

  1. Research on Electrostatic Propulsion Using C60 Molecules.

    DTIC Science & Technology

    2007-11-02

    fullerene extract containing C60 and C70 in a ratio of approximately 85% to 15%. The fullerene mix was Soxhlet extracted with toluene from soot. Pure C60...The objective of this program has been to determine properties of fullerenes relevant for electrostatic propulsion, to demonstrate ion extraction ...electrostatic propulsion, to demonstrate ion extraction from a discharge, and to assess the implications for fullerene ion thrusters. The experiments we

  2. Electrostatic quadrupole array for focusing parallel beams of charged particles

    DOEpatents

    Brodowski, John

    1982-11-23

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.

  3. Electrostatic Transport and Manipulation of Lunar Soil and Dust

    SciTech Connect

    Kawamoto, Hiroyuki

    2008-01-21

    Transport and manipulation technologies of lunar soil and dust are under development utilizing the electrostatic force. Transport of particles is realized by an electrostatic conveyer consisting of parallel electrodes. Four-phase traveling electrostatic wave was applied to the electrodes to transport particles upon the conveyer and it was demonstrated that particles were efficiently transported under conditions of low frequency, high voltage, and the application of rectangular wave. Not only linear but also curved and closed transport was demonstrated. Numerical investigation was carried out with a three-dimensional hard-sphere model of the Distinct Element Method to clarify the mechanism of the transport and to predict performances in the lunar environment. This technology is expected to be utilized not only for the transport of bulk soil but also for the cleaning of a solar panel and an optical lens. Another technology is an electrostatic manipulation system to manipulate single particle. A manipulator consisted of two parallel pin electrodes. When voltage was applied between the electrodes, electrophoresis force generated in non-uniform electrostatic field was applied to the particle near the tip of the electrode. The particle was captured by the application of the voltage and released from the manipulator by turning off the voltage. It was possible to manipulate not only insulative but also conductive particles. Three-dimensional electrostatic field calculation was conducted to calculate the electrophoresis force and the Coulomb force.

  4. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  5. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  6. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  7. Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Wu, Jin; Tang, Lihua; Hu, Liangxing; Woh Lye, Sun; Miao, Jianmin

    2017-04-01

    This paper presents a sandwich-structured MEMS electret-based vibrational energy harvester (e-VEH) that has two opposite-charged electrets integrated into a single electrostatic device. Compared to the conventional two-plate configuration where the maximum charge can only be induced when the movable mass reaches its lowest position, the proposed harvester is capable of creating maximum charge induction at both the highest and the lowest extremes, leading to an enhanced output performance. As a proof of concept, an out-of-plane MEMS e-VEH device with an overall volume of about 0.24 cm3 is designed, modeled, fabricated and characterized. A holistic equivalent circuit model incorporating the mechanical dynamic model and two capacitive circuits has been established to study the charge circulations. With the fabricated prototype, the experimental analysis demonstrates the superior performance of the proposed sandwiched e-VEH: the output voltage increases by 80.9% and 18.6% at an acceleration of 5 m s‑2 compared to the top electret alone and bottom electret alone configurations, respectively. The experimental results also confirm the waveform derivation with the increase of excitation, which is in good agreement with the circuit simulation results. The proposed sandwiched e-VEH topology provides an effective and convenient methodology for improving the performance of electrostatic energy harvesting devices.

  8. Micromachined Accelerometers With Optical Interferometric Read-Out and Integrated Electrostatic Actuation

    PubMed Central

    Hall, Neal A.; Okandan, Murat; Littrell, Robert; Serkland, Darwin K.; Keeler, Gordon A.; Peterson, Ken; Bicen, Baris; Garcia, Caesar T.; Degertekin, F. Levent

    2008-01-01

    A micromachined accelerometer device structure with diffraction-based optical detection and integrated electrostatic actuation is introduced. The sensor consists of a bulk silicon proof mass electrode that moves vertically with respect to a rigid diffraction grating backplate electrode to provide interferometric detection resolution of the proof-mass displacement when illuminated with coherent light. The sensor architecture includes a monolithically integrated electrostatic actuation port that enables the application of precisely controlled broadband forces to the proof mass while the displacement is simultaneously and independently measured optically. This enables several useful features such as dynamic self-characterization and a variety of force-feedback modalities, including alteration of device dynamics in situ. These features are experimentally demonstrated with sensors that have been optoelectronically integrated into sub-cubic-millimeter volumes using an entirely surface-normal, rigid, and robust embodiment incorporating vertical cavity surface emitting lasers and integrated photodetector arrays. In addition to small form factor and high acceleration resolution, the ability to self-characterize and alter device dynamics in situ may be advantageous. This allows periodic calibration and in situ matching of sensor dynamics among an array of accelerometers or seismometers configured in a network. PMID:19079635

  9. A systematic approach for precision electrostatic mode tuning of a MEMS gyroscope

    NASA Astrophysics Data System (ADS)

    Hu, Z. X.; Gallacher, B. J.; Burdess, J. S.; Bowles, S. R.; Grigg, H. T. D.

    2014-12-01

    In this paper a systematic approach to precision electrostatic frequency tuning of the operational modes of a MEMS ring vibratory gyroscope is presented. In both rate and rate integrating gyroscopes the frequency split between the two modes of vibration which detect the Coriolis acceleration is one of the principal factors in determining the sensitivity and noise floor of the sensor. In high precision applications in the defence/aerospace sector a frequency split of the order of 10 mHz or less is highly desirable. In the ground-breaking Hemispherical Resonator Gyroscope (HRG) electrostatic tuning has been employed as a tuning mechanism. However, a description of the procedure is not available in the literature. The tuning scheme described here involves assessing mode mistuning by the ratio of the in-phase and quadrature components of the response to an external force that has similar properties to the gyroscopic force resulting from Coriolis action, and choosing the tuning voltages so that independent modification of the elements of the system stiffness matrix can be achieved. Experiments on a commercially available gyroscope with a natural frequency of 14 kHz show that the frequency split can be reduced from 1.5 Hz to 6 mHz. This represents a frequency precision of better than 1 part in a million.

  10. Investigation of gap-closing interdigitated capacitors for electrostatic vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Oxaal, John; Foster, Daniel; Hella, Mona; Borca-Tasciuc, Diana-Andra

    2015-10-01

    This paper reports on the dynamic characteristics of a MEMS electrostatic harvester employing interdigitated gap-closing topology. Devices are fabricated using SOIMUMPS technology and are characterized with and without biasing voltages for a broad range of excitation accelerations. At low vibration amplitudes the presence of a dc bias causes the resonant frequency peak to shift to lower frequencies with increasing bias. At higher vibration amplitudes the dynamic response of the devices exhibits the behavior of a Duffing oscillator with spring softening due to nonlinear stiffness attributed to the effect of electrostatic forces. Specifically, the devices exhibit sweep direction hysteresis with jump phenomena due to the multivaluedness of the response curve. Amplitude sweeps at constant frequency and varying bias voltage also show jump phenomena, highlighting how slight differences in operating conditions dramatically affect device performance. Spring hardening effects are reported for devices contaminated with dust particles. The paper also discusses SOIMUMPS limitations, the importance of reducing off-axis vibration during testing, characterization methods, and the effect of grounding on parasitic capacitance.

  11. A New Z-axis Resonant Micro-Accelerometer Based on Electrostatic Stiffness

    PubMed Central

    Yang, Bo; Wang, Xingjun; Dai, Bo; Liu, Xiaojun

    2015-01-01

    Presented in the paper is the design, the simulation, the fabrication and the experiment of a new z-axis resonant accelerometer based on the electrostatic stiffness. The new z-axis resonant micro-accelerometer, which consists of a torsional accelerometer and two plane resonators, decouples the sensing movement of the accelerometer from the oscillation of the plane resonators by electrostatic stiffness, which will improve the performance. The new structure and the sensitive theory of the acceleration are illuminated, and the equation of the scale factor is deduced under ideal conditions firstly. The Ansys simulation is implemented to verify the basic principle of the torsional accelerometer and the plane resonator individually. The structure simulation results prove that the effective frequency of the torsional accelerometer and the plane resonator are 0.66 kHz and 13.3 kHz, respectively. Then, the new structure is fabricated by the standard three-mask deep dry silicon on glass (DDSOG) process and encapsulated by parallel seam welding. Finally, the detecting and control circuits are designed to achieve the closed-loop self-oscillation, to trace the natural frequency of resonator and to measure the system frequency. Experimental results show that the new z-axis resonant accelerometer has a scale factor of 31.65 Hz/g, a bias stability of 727 μg and a dynamic range of over 10 g, which proves that the new z-axis resonant micro-accelerometer is practicable. PMID:25569748

  12. Present status of Accelerator-Based BNCT

    PubMed Central

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A.; Minsky, Daniel M.; Debray, Mario E.; Somacal, Hector R.; Capoulat, María Eugenia; Herrera, María S.; del Grosso, Mariela F.; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    Aim This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). Background There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. Materials and methods A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Results Endothermic 7Li(p,n)7Be and 9Be(p,n)9B and exothermic 9Be(d,n)10B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. 9Be(p,n)9B needs at least 4–5 MeV bombarding energy to have a sufficient yield, while 9Be(d,n)10B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. Conclusions 7Li(p,n)7Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. 9Be(d,n)10B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions. PMID:26933390

  13. Preliminary design of a 10 MV ion accelerator

    SciTech Connect

    Fessenden, T.J.; Celata, C.M.; Faltens, A.; Henderson, T.; Judd, D.L.; Keefe, D.; Laslett, L.J.; Meneghetti, J.; Pixe, C.; Vanecek, D.

    1986-06-01

    At the low energy end of an induction linac HIF driver the beam current is limited by our ability to control space charge by a focusing system. As a consequence, HIF induction accelerator designs feature simultaneous acceleration of many beams in parallel within a single accelerator structure. As the speed of the beams increase, the focusing system changes from electrostatic to magnetic quadrupoles with a corresponding increase in the maximum allowable current. At that point the beams are merged thereby decreasing the cost of the subsequent accelerator structure. The LBL group is developing an experiment to study the physics of merging and of focusing ion beams. In the design, parallel beams of ions (C/sup +/, Al/sup +/, or Al/sup + +/) are accelerated to several MV and merged transversely. The merged beams are then further accelerated and the growth in transverse and longitudinal emittance is determined for comparison with theory. The apparatus will then be used to study the problems associated with focusing ion beams to a small spot. Details of the accelerator design and considerations of the physics of combining beams are presented.

  14. PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)

    NASA Astrophysics Data System (ADS)

    Li, Jie

    2013-03-01

    ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the

  15. Numerical and laboratory simulations of auroral acceleration

    SciTech Connect

    Gunell, H.; De Keyser, J.; Mann, I.

    2013-10-15

    The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.

  16. Developing acceleration schedules for NDCX-II

    SciTech Connect

    Sharp, W.M.; Friedman, A.; Grote, D.P.; Henestroza, E.; Leitner, M.A.; Waldron, W.L.

    2008-08-01

    The Virtual National Laboratory for Heavy-Ion Fusion Science is developing a physics design for NDCX-II, an experiment to study warm dense matter heated by ions near the Bragg-peak energy. Present plans call for using about thirty induction cells to accelerate 30 nC of Li+ ions to more than 3 MeV, followed by neutralized drift-compression. To heat targets to useful temperatures, the beam must be compressed to a millimeter-scale radius and a duration of about 1 ns. An interactive 1-D particle-in-cell simulation with an electrostatic field solver, acceleration-gap fringe fields, and a library of realizable analytic waveforms has been used for developing NDCX-II acceleration schedules. Axisymmetric simulations with WARP have validated this 1-D model and have been used both to design transverse focusing and to compensate for injection non-uniformities and radial variation of the fields. Highlights of this work are presented here.

  17. Design aspects of an electrostatic electron cooler for low-energy RHIC operation

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Brodowski, J.; Chang, X.Y.; Gassner, D.; Hoff, L.; Kayran, D.; Kewisch, J.; Oerter, B.; Pendzick, A.; Tepikian, S.; Thieberger, P.; Prost, L.; Shemyakin, A.

    2011-03-28

    Electron cooling was proposed to increase the luminosity of the Relativistic Heavy Ion Collider (RHIC) operation for heavy ion beam energies below 10 GeV/nucleon. The electron cooling system needed should be able to deliver an electron beam of adequate quality in a wide range of electron beam energies (0.9-5 MeV). An option of using an electrostatic accelerator to produce electrons for cooling heavy ions in RHIC was evaluated in detail. In this paper, we describe the requirements and options which were considered in the design of such a cooler for RHIC, as well as the associated challenges. The expected luminosity improvement and limitations with such an electron cooling system are also discussed.

  18. Fluid preconditioning for Newton–Krylov-based, fully implicit, electrostatic particle-in-cell simulations

    SciTech Connect

    Chen, G.; Chacón, L.; Leibs, C.A.; Knoll, D.A.; Taitano, W.

    2014-02-01

    A recent proof-of-principle study proposes an energy- and charge-conserving, nonlinearly implicit electrostatic particle-in-cell (PIC) algorithm in one dimension [9]. The algorithm in the reference employs an unpreconditioned Jacobian-free Newton–Krylov method, which ensures nonlinear convergence at every timestep (resolving the dynamical timescale of interest). Kinetic enslavement, which is one key component of the algorithm, not only enables fully implicit PIC as a practical approach, but also allows preconditioning the kinetic solver with a fluid approximation. This study proposes such a preconditioner, in which the linearized moment equations are closed with moments computed from particles. Effective acceleration of the linear GMRES solve is demonstrated, on both uniform and non-uniform meshes. The algorithm performance is largely insensitive to the electron–ion mass ratio. Numerical experiments are performed on a 1D multi-scale ion acoustic wave test problem.

  19. New high-resolution electrostatic ion mass analyzer using time of flight

    NASA Technical Reports Server (NTRS)

    Hamilton, D. C.; Gloeckler, G.; Ipavich, F. M.; Lundgren, R. A.; Sheldon, R. B.

    1990-01-01

    The design of a high-resolution ion-mass analyzer is described, which is based on an accurate measurement of the time of flight (TOF) of ions within a region configured to produce a harmonic potential. In this device, the TOF, which is independent of ion energy, is determined from a start pulse from secondary electrons produced when the ion passes through a thin carbon foil at the entrance of the TOF region and at a stop pulse from the ion striking a microchannel plate upon exciting the region. A laboratory prototype instrument called 'VMASS' was built and was tested at the Goddard Space Flight Center electrostatic accelerator, showing a good mass resolution of the instrument. Sensors of the VMASS type will form part of the WIND Solar Wind and Suprathermal Ion experiment, the Soho mission, and the Advanced Composition Explorer.

  20. Charged particle tracking through electrostatic wire meshes using the finite element method

    NASA Astrophysics Data System (ADS)

    Devlin, L. J.; Karamyshev, O.; Welsch, C. P.

    2016-06-01

    Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed. The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.

  1. Electrostatic vibration energy harvester with 2.4-GHz Cockcroft-Walton rectenna start-up

    NASA Astrophysics Data System (ADS)

    Takhedmit, Hakim; Saddi, Zied; Karami, Armine; Basset, Philippe; Cirio, Laurent

    2017-02-01

    In this paper, we propose the design, fabrication and experiments of a macro-scale electrostatic vibration energy harvester (e-VEH), pre-charged wirelessly for the first time with a 2.4-GHz Cockcroft-Walton rectenna. The rectenna is designed and optimized to operate at low power densities and provide high voltage levels: 0.5 V at 0.76 μW/cm2 and 1 V at 1.53 μW/cm2. The e-VEH uses a Bennet doubler as a conditioning circuit. Experiments show a 23-V voltage across the transducer terminal, when the harvester is excited at 25 Hz by 1.5 g of external acceleration. An accumulated energy of 275 μJ and a maximum available power of 0.4 μW are achieved. xml:lang="fr"

  2. Electrostatic trapping and in situ detection of Rydberg atoms above chip-based transmission lines

    NASA Astrophysics Data System (ADS)

    Lancuba, P.; Hogan, S. D.

    2016-04-01

    Beams of helium atoms in Rydberg-Stark states with principal quantum number n = 48 and electric dipole moments of 4600 D have been decelerated from a mean initial longitudinal speed of 2000 m s-1 to zero velocity in the laboratory-fixed frame-of-reference in the continuously moving electric traps of a transmission-line decelerator. In this process accelerations up to -1.3× {10}7 m s-2 were applied, and changes in kinetic energy of {{Δ }}{E}{kin}=1.3× {10}-20 J ({{Δ }}{E}{kin}/e=83 meV) per atom were achieved. Guided and decelerated atoms, and those confined in stationary electrostatic traps, were detected in situ by pulsed electric field ionisation. The results of numerical calculations of particle trajectories within the decelerator have been used to characterise the observed deceleration efficiencies, and aid in the interpretation of the experimental data.

  3. Positron bunching and electrostatic transport system for the production and emission of dense positronium clouds into vacuum

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A. S.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Fesel, J.; Fontana, A.; Forslund, O. K.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jernelv, I. L.; Jordan, E.; Kaltenbacher, T.; Kellerbauer, A.; Kimura, M.; Koetting, T.; Krasnicky, D.; Lagomarsino, V.; Lebrun, P.; Lansonneur, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienäcker, B.; Røhne, O. M.; Rosenberger, S.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zavatarelli, S.; Zmeskal, J.

    2015-11-01

    We describe a system designed to re-bunch positron pulses delivered by an accumulator supplied by a positron source and a Surko-trap. Positron pulses from the accumulator are magnetically guided in a 0.085 T field and are injected into a region free of magnetic fields through a μ -metal field terminator. Here positrons are temporally compressed, electrostatically guided and accelerated towards a porous silicon target for the production and emission of positronium into vacuum. Positrons are focused in a spot of less than 4 mm FWTM in bunches of ∼8 ns FWHM. Emission of positronium into the vacuum is shown by single shot positron annihilation lifetime spectroscopy.

  4. Comparison of density functionals for energy and structural differences between the high- [5T2g: (t2g)4(eg)2] and low- [1A1g: (t2g)6(eg)0] spin states of the hexaquoferrous cation [Fe(H2O)6]2+.

    PubMed

    Fouqueau, Antony; Mer, Sébastien; Casida, Mark E; Lawson Daku, Latevi Max; Hauser, Andreas; Mineva, Tsonka; Neese, Frank

    2004-05-22

    A comparison of density functionals is made for the calculation of energy and geometry differences for the high- [(5)T(2g): (t(2g))(4)(e(g))(2)] and low- [(1)A(1g): (t(2g))(6)(e(g))(0)] spin states of the hexaquoferrous cation [Fe(H(2)O)(6)](2+). Since very little experimental results are available (except for crystal structures involving the cation in its high-spin state), the primary comparison is with our own complete active-space self-consistent field (CASSCF), second-order perturbation theory-corrected complete active-space self-consistent field (CASPT2), and spectroscopy-oriented configuration interaction (SORCI) calculations. We find that generalized gradient approximations (GGAs) and the B3LYP hybrid functional provide geometries in good agreement with experiment and with our CASSCF calculations provided sufficiently extended basis sets are used (i.e., polarization functions on the iron and polarization and diffuse functions on the water molecules). In contrast, CASPT2 calculations of the low-spin-high-spin energy difference DeltaE(LH)=E(LS)-E(HS) appear to be significantly overestimated due to basis set limitations in the sense that the energy difference of the atomic asymptotes ((5)D-->(1)I excitation of Fe(2+)) are overestimated by about 3000 cm(-1). An empirical shift of the molecular DeltaE(LH) based upon atomic calculations provides a best estimate of 12 000-13 000 cm(-1). Our unshifted SORCI result is 13 300 cm(-1), consistent with previous comparisons between SORCI and experimental excitation energies which suggest that no such empirical shift is needed in conjunction with this method. In contrast, after estimation of incomplete basis set effects, GGAs with one exception underestimate this value by 3000-4000 cm(-1) while the B3LYP functional underestimates it by only about 1000 cm(-1). The exception is the GGA functional RPBE which appears to perform as well as or better than the B3LYP functional for the properties studied here. In order to obtain a best estimate of the molecular DeltaE(LH) within the context of density functional theory (DFT) calculations we have also performed atomic excitation energy calculations using the multiplet sum method. These atomic DFT calculations suggest that no empirical correction is needed for the DFT calculations.

  5. An introduction to acceleration mechanisms

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration. (LSP)

  6. Experimental study of a Hall current plasma accelerator

    NASA Astrophysics Data System (ADS)

    Li, Zhongmin

    Electromagnetic propulsion holds the promise of potential prime space propulsion by combining high exhaust velocities with high mass flow rates compared to other electric propulsion devices. The primary objective of this study is to experimentally investigate the plasma acceleration due to Hall effect in the presence of applied magnetic and electric fields. This is the first attempt to integrate a non-equilibrium microwave plasma with a Hall current plasma accelerator. A linear Hall current plasma accelerator segmented with 5 pairs of electrodes was developed and tested. A non-equilibrium microwave plasma generated by a 6 kW microwave generator was used to feed the accelerator. The discharge voltage, current, and the Hall current through each pair of the electrodes were measured. Velocity measurement techniques including the MHD open-circuit, the combined emissive probe and MHD open-circuit, and the time-of-flight electrostatic probe were developed and implemented. The near field plasma properties were also measured by multiple Langmuir probes. Theoretical analyses were conducted using both electromagnetic and electrostatic models. Both models predicted that large axial electric field and ionization fraction are critical to obtaining high specific impulse and efficient acceleration. The role of the magnetic field is to trap the electrons, and thus distribute the electric field across the whole plasma for acceleration of ions. The experimental results show that axial discharge voltages increased with increasing magnetic field. A strong plasma acceleration zone was noted at the region closest to the cathode. Within this zone, the Hall current and Hall parameter are much larger than elsewhere along the flow path. So is the axial electric field. This suggested a very strong Hall effect in the accelerator. The mean Hall parameters varied from less than one to the order of 10 in the high power tests. Significant acceleration of the plasma by the linear Hall current

  7. A Potential Role of Double Layers on Solar Wind Acceleration

    NASA Astrophysics Data System (ADS)

    Parks, G. K.; McCarthy, M.; Lee, E.; Hong, J.

    2012-12-01

    The distribution function of solar wind (SW) is non-Maxwellian and often includes field-aligned beams. Recently, electrostatic solitary waves (ESW) have been observed in the SW and they have been interpreted as double layers. Taking a cue from Earth's auroral observations that large-scale electric field parallel to magnetic field may be due to many double layers distributed along the geomagnetic field, we have looked at the potential role double layers could play in SW acceleration. This picture would suggest that the halo component of the SW represents a beam that has been accelerated by parallel electric field. The core electrons come from secondaries produced by the beam going through the solar coronal atmosphere. The source of the super-halo component is not known and we speculate that it could represent the field-aligned non-thermal high-energy halo electrons that have been accelerated to ``runaway" energies.

  8. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  9. Optimization of Electron Beam Transport for a 3-MeV DC Accelerator

    NASA Astrophysics Data System (ADS)

    Baruah, S.; Bhattacharjee, D.; Tiwari, R.; Sahu, G. K.; Thakur, K. B.; Mittal, K. C.; Gantayet, L. M.

    2012-11-01

    Transport of a low-current-density electron beam is simulated for an electrostatic accelerator system. Representative charged particles are uniformly assigned for emission from a circular indirectly-heated cathode of an axial electron gun. The beam is accelerated stepwise up to energy of 1 MeV electrostatically in a length-span of ~3 m using multiple accelerating electrodes in a column of ten tubes. The simulation is done under relativistic condition and the effect of the magnetic field induced by the cathode-heating filament current is taken into account. The beam diameter is tracked at different axial locations for various settings of the electrode potentials. Attempts have been made to examine and explain data on beam transport efficiency obtained from experimental observations.

  10. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  11. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  12. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent

    2014-05-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with

  13. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    NASA Astrophysics Data System (ADS)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  14. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  15. Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target

    SciTech Connect

    Wang, J. W.; Murakami, M.; Weng, S. M.; Xu, H.; Ju, J. J.; Luan, S. X.; Yu, W.

    2014-12-15

    A new ion acceleration scheme, namely, target parallel Coulomb acceleration, is proposed in which a carbon plate sandwiched between gold layers is irradiated with intense linearly polarized laser pulses. The high electrostatic field generated by the gold ions efficiently accelerates the embedded carbon ions parallel to the plane of the target. The ion beam is found to be collimated by the concave-shaped Coulomb potential. As a result, a quasi-monoenergetic and collimated C{sup 6+}-ion beam with an energy exceeding 10 MeV/nucleon is produced at a laser intensity of 5 × 10{sup 19} W/cm{sup 2}.

  16. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  17. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  18. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  19. The foxhole accelerating structure

    SciTech Connect

    Fernow, R.C.; Claus, J.

    1992-07-17

    This report examines some properties of a new type of open accelerating structure. It consists of a series of rectangular cavities, which we call foxholes, joined by a beam channel. The power for accelerating the particles comes from an external radiation source and enters the cavities through their open upper surfaces. Analytic and computer calculations are presented showing that the foxhole is a suitable structure for accelerating relativistic electrons.

  20. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  1. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  2. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  3. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  4. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  5. FFAGS for rapid acceleration

    SciTech Connect

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  6. Experimental Study on Electrostatic Hazards in Sprayed Liquid

    NASA Astrophysics Data System (ADS)

    Choi, Kwang Seok; Yamaguma, Mizuki; Ohsawa, Atsushi

    2007-12-01

    In this study, to evaluate ignition hazards in a paint process, electrostatic sparks in the sprayed area and the amount of charge while spraying were observed. With the objective of preventing accidents involving fires and/or explosions, we deal also with the ignitability due to an electrostatic spark of a sprayed liquid relative to the percentage of nitrogen (N2), including compression in an air cylinder. For this study, an air-spray-type handheld gun with a 1-mm-internal-diameter orifice and a supply of air pressure in the range of 0.1 to 1 MPa were used. With regard to the materials, water, including some sodium chloride, was used to investigate the charge amount of the sprayed liquid, and kerosene was selected for ignition tests while spraying. Several electrostatic sparks in the sprayed region were observed while spraying. Some values of the electrostatic charge observed in the course of this study would be unsafe in the painting industry. Thus, if any of the conductive parts of the equipment are not grounded, incendiary electrostatic sparks can result. The ignitability of sprayed liquid was markedly reduced; the percentage of N2 in the air was substituted for pressurized pure air, and its efficiency increased with air pressure.

  7. Geometric and electrostatic modeling using molecular rigidity functions

    DOE PAGES

    Mu, Lin; Xia, Kelin; Wei, Guowei

    2017-03-01

    Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less

  8. A model study of sequential enzyme reactions and electrostatic channeling.

    PubMed

    Eun, Changsun; Kekenes-Huskey, Peter M; Metzger, Vincent T; McCammon, J Andrew

    2014-03-14

    We study models of two sequential enzyme-catalyzed reactions as a basic functional building block for coupled biochemical networks. We investigate the influence of enzyme distributions and long-range molecular interactions on reaction kinetics, which have been exploited in biological systems to maximize metabolic efficiency and signaling effects. Specifically, we examine how the maximal rate of product generation in a series of sequential reactions is dependent on the enzyme distribution and the electrostatic composition of its participant enzymes and substrates. We find that close proximity between enzymes does not guarantee optimal reaction rates, as the benefit of decreasing enzyme separation is countered by the volume excluded by adjacent enzymes. We further quantify the extent to which the electrostatic potential increases the efficiency of transferring substrate between enzymes, which supports the existence of electrostatic channeling in nature. Here, a major finding is that the role of attractive electrostatic interactions in confining intermediate substrates in the vicinity of the enzymes can contribute more to net reactive throughput than the directional properties of the electrostatic fields. These findings shed light on the interplay of long-range interactions and enzyme distributions in coupled enzyme-catalyzed reactions, and their influence on signaling in biological systems.

  9. Role of electrostatic fields in space and astrophysical systems.

    NASA Astrophysics Data System (ADS)

    Lapenta, G.

    2005-12-01

    An unsuspected agent is emerging as a key player in a number of processes relevant to space, solar and astrophysical systems: electrostatic fields. We focus here on two processes that are present both in space and laboratory plasmas. First, we consider the formation and properties of current sheets. Current sheets are key enablers for large scale system evolution: often large scale processes lead to the formation of thin sheets where small scale processes couple with larger scales. Our recent work proposes that small scales instabilities can produce electrostatic fields on large scales with profound effects on the evolution of the system where the sheet is present. In particular, their effect can lead to the onset of reconnection. Second, a recent discovery suggests that electrostatic fields can affect the evolution of confined plasmas in laboratory experiments [2] suggesting that electrostatic fields can be a major player in magnetic dynamo processes. Our work suggests that similar processes can be also at play in space and astrophysical plasmas. We report a number of simulations that put forward a new possibility: that electrostatic fields can be a major player in processes where magnetic field energy is created (dynamo) or destroyed (reconnection). [1] W. Daughton, G. Lapenta, P. Ricci, Phys. Rev. Lett., 93, 105004, 2004 [2] D. Bonfiglio, S. Cappello, D. F. Escande, Phys. Rev. Lett., 94, 145001, 2005

  10. Long-range electrostatic screening in ionic liquids.

    PubMed

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.

  11. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  12. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  13. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  14. Reduction of Sample Rotation in Electrostatic Levitation

    NASA Technical Reports Server (NTRS)

    Hyers, R. W; Johnson, W. L.; Savage, L.; Rogers, J. R.

    2000-01-01

    In many containerless processing systems, control of sample rotation is an important issue. Sample rotation is even more important for microgravity containerless processing systems, where the centrifugal acceleration can approach 1 g for even a small rotation rate. Prior work on rotation control by Rhim focused on driving the sample rotation at a controlled rate for droplet dynamics experiments and measurement of electrical conductivity. His technique allows controlled, fast rotation, but for many microgravity experiments the goal is zero rotation. To minimize sample rotation, two approaches are apparent: first, to identify and balance or eliminate the driving forces for undesired sample rotation, or second, implement a feedback-based rotation control loop in parallel with the position control loop. In this work, we have taken the first approach. To minimize sample rotation, the simplest approach is to identify and balance or eliminate the driving forces for undesired sample rotation. Our experiments show that the dominant driving force for rotation of machined Zr spheres in the MSFC ESL is photon pressure from the heating laser. Experimental results showing the correlation between heating power and torque are compared to theoretical predictions, and a strategy for minimizing the torque due to photon pressure is presented.

  15. High-gradient acceleration of electrons in a plasma loaded wiggler

    SciTech Connect

    Maroli, C.; Petrillo, V.

    1995-12-31

    The interaction of an electron beam with a transverse electromagnetic field and an electrostatic wave in a plasma loaded wiggler is described by means of system of self-consistent nonlinear equations. We demonstrate that the system is able to sustain resonantly high-amplitude electrostatic waves with phase velocity c, which gives rise to high gradient acceleration of the electron beam. Both gradient and saturation value of the average gamma factor of the beam increase considerably with increasing magnetic field of the wiggler and plasma density.

  16. Guide to Coupled Electrostatic-Structural Analyses with Arpeggio

    SciTech Connect

    Porter, Vicki L.

    2006-09-01

    Many applications in micromechanical systems (MEMS) involve electrostatically actuated parts. Arpeggio is a code for facilitating loose coupling between computational mechanics modules in a parallel computing environment. This document describes how to use Arpeggio for coupled elecromechanical analyses using examples commonly encountered in MEMS applications, namely the response of structures to loads imposed by electrostatic fields. For this type of analysis, Arpeggio is used to couple Adagio, a three dimensional finite element code for nonlinear, quasi static or implicit dynamic analysis of three-dimensional structures, with BEM, a boundary integral method code for the analysis of electrostatic fields. This guide describes the methodology used for the loose coupling and the commands the user needs in an input file to perform such an analysis. All commands related to coupled analyses are described and examples are provided.

  17. Electrostatic Limit of Detection of Nanowire-Based Sensors.

    PubMed

    Henning, Alex; Molotskii, Michel; Swaminathan, Nandhini; Vaknin, Yonathan; Godkin, Andrey; Shalev, Gil; Rosenwaks, Yossi

    2015-10-07

    Scanning gate microscopy is used to determine the electrostatic limit of detection (LOD) of a nanowire (NW) based chemical sensor with a precision of sub-elementary charge. The presented method is validated with an electrostatically formed NW whose active area and shape are tunable by biasing a multiple gate field-effect transistor (FET). By using the tip of an atomic force microscope (AFM) as a local top gate, the field effect of adsorbed molecules is emulated. The tip induced charge is quantified with an analytical electrostatic model and it is shown that the NW sensor is sensitive to about an elementary charge and that the measurements with the AFM tip are in agreement with sensing of ethanol vapor. This method is applicable to any FET-based chemical and biological sensor, provides a means to predict the absolute sensor performance limit, and suggests a standardized way to compare LODs and sensitivities of various sensors.

  18. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    NASA Technical Reports Server (NTRS)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  19. Stochastic threshold for ion heating with beating electrostatic waves.

    PubMed

    Jorns, B; Choueiri, E Y

    2013-06-14

    The stochastic threshold for the heating of ions in a magnetized plasma with two electrostatic waves is experimentally characterized. Two obliquely propagating electrostatic modes are launched in a magnetized plasma with frequencies that differ by the ion cyclotron frequency. The values of the wave amplitudes where a rapid increase in the local ion temperature occurs is then parametrically investigated. It is found that the two threshold wave amplitudes are linearly related and that this dependence translates to a lower required energy density for the onset of heating when compared to the case of a single electrostatic wave. Agreement also is demonstrated between the experimentally observed threshold for stochastic heating and an analytical prediction [B. Jorns and E. Y. Choueiri, Phys. Rev. E 87, 013107 (2013)] for this threshold.

  20. Uphill Movement of Sessile Droplets by Electrostatic Actuation.

    PubMed

    Datta, S; Das, A K; Das, P K

    2015-09-22

    The dynamics of uphill motion and the internal circulation of a sessile droplet by inducing asymmetric electrocapillarity were formulated and investigated numerically. We developed and analyzed a coupled electro-hydrodynamic model that includes conservative body and surface forces along with electrostatic effects. The interplay between gravity and electrostatic actuation is influenced by induction voltage, the inclination of the surface, and the droplet volume. Actuation voltage on the sessile drop causes an internal circulation which, upon increasing strength, overcomes the gravitational pull to climb uphill. As uphill droplet climbing is a spatiotemporal phenomenon, droplet volume plays a major role in accommodating the internal circulations and subsequent climb. Simultaneously, actuation due to electrostatic force behaves differently on different inclined surfaces, causing a roll down at higher inclination and an uphill climb at lower ones. A pattern map has been generated to identify favorable conditions for uphill movement based on the inclination, actuation voltage, and volume of the droplet.