Image method for electrostatic energy of polarizable dipolar spheres
NASA Astrophysics Data System (ADS)
Gustafson, Kyle S.; Xu, Guoxi; Freed, Karl F.; Qin, Jian
2017-08-01
The multiple-scattering theory for the electrostatics of many-body systems of monopolar spherical particles, embedded in a dielectric medium, is generalized to describe the electrostatics of these particles with embedded dipoles and multipoles. The Neumann image line construction for the electrostatic polarization produced by one particle is generalized to compute the energy, forces, and torques for the many-body system as functions of the positions of the particles. The approach is validated by comparison with direct numerical calculation, and the convergence rate is analyzed and expressed in terms of the discontinuity in dielectric contrast and particle density. As an illustration of this formalism, the stability of small particle clusters is analyzed. The theory is developed in a form that can readily be adapted to Monte Carlo and molecular dynamics simulations for polarizable particles and, more generally, to study the interactions among polarizable molecules.
Density functional theory study of the capacitance of single file ions in a narrow cylinder
Kong, Xian; Wu, Jianzhong; Henderson, Douglas
2014-11-14
In this paper, the differential capacitance of a model organic electrolyte in a cylindrical pore that is so narrow that the ions can form only a single file is studied by means of density functional theory (DFT). Kornyshev (2013), has studied this system and found the differential capacitance to have only a double hump shape (the so-called camel shape) whereas other geometries show this behavior only at low ionic concentrations that are typical for aqueous electrolytes. However, his calculation is rather approximate. In this DFT study we find that the double hump shape occurs only at low ionic concentrations. Atmore » high concentrations, the capacitance has only a single hump. Kornyshev considers a metallic cylinder and approximately includes the contributions of electrostatic images. Electrostatic images are not easily incorporated into DFT. In conclusion, images are not considered in this study and the question of whether Kornyshev’s result is due to his approximations or images cannot be answered. Simulations to answer this question are planned.« less
A rigorous and simpler method of image charges
NASA Astrophysics Data System (ADS)
Ladera, C. L.; Donoso, G.
2016-07-01
The method of image charges relies on the proven uniqueness of the solution of the Laplace differential equation for an electrostatic potential which satisfies some specified boundary conditions. Granted by that uniqueness, the method of images is rightly described as nothing but shrewdly guessing which and where image charges are to be placed to solve the given electrostatics problem. Here we present an alternative image charges method that is based not on guessing but on rigorous and simpler theoretical grounds, namely the constant potential inside any conductor and the application of powerful geometric symmetries. The aforementioned required uniqueness and, more importantly, guessing are therefore both altogether dispensed with. Our two new theoretical fundaments also allow the image charges method to be introduced in earlier physics courses for engineering and sciences students, instead of its present and usual introduction in electromagnetic theory courses that demand familiarity with the Laplace differential equation and its boundary conditions.
21 CFR 892.1630 - Electrostatic x-ray imaging system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for medical...
21 CFR 892.1630 - Electrostatic x-ray imaging system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for medical...
Including diverging electrostatic potential in 3D-RISM theory: The charged wall case.
Vyalov, Ivan; Rocchia, Walter
2018-03-21
Although three-dimensional site-site molecular integral equations of liquids are a powerful tool of the modern theoretical chemistry, their applications to the problem of characterizing the electrical double layer originating at the solid-liquid interface with a macroscopic substrate are severely limited by the fact that an infinitely extended charged plane generates a divergent electrostatic potential. Such potentials cannot be treated within the standard 3D-Reference Interaction Site Model equation solution framework since it leads to functions that are not Fourier transformable. In this paper, we apply a renormalization procedure to overcome this obstacle. We then check the validity and numerical accuracy of the proposed computational scheme on the prototypical gold (111) surface in contact with water/alkali chloride solution. We observe that despite the proposed method requires, to achieve converged charge densities, a higher spatial resolution than that suited to the estimation of biomolecular solvation with either 3D-RISM or continuum electrostatics approaches, it still is computationally efficient. Introducing the electrostatic potential of an infinite wall, which is periodic in 2 dimensions, we avoid edge effects, permit a robust integration of Poisson's equation, and obtain the 3D electrostatic potential profile for the first time in such calculations. We show that the potential within the electrical double layer presents oscillations which are not grasped by the Debye-Hückel and Gouy-Chapman theories. This electrostatic potential deviates from its average of up to 1-2 V at small distances from the substrate along the lateral directions. Applications of this theoretical development are relevant, for example, for liquid scanning tunneling microscopy imaging.
Including diverging electrostatic potential in 3D-RISM theory: The charged wall case
NASA Astrophysics Data System (ADS)
Vyalov, Ivan; Rocchia, Walter
2018-03-01
Although three-dimensional site-site molecular integral equations of liquids are a powerful tool of the modern theoretical chemistry, their applications to the problem of characterizing the electrical double layer originating at the solid-liquid interface with a macroscopic substrate are severely limited by the fact that an infinitely extended charged plane generates a divergent electrostatic potential. Such potentials cannot be treated within the standard 3D-Reference Interaction Site Model equation solution framework since it leads to functions that are not Fourier transformable. In this paper, we apply a renormalization procedure to overcome this obstacle. We then check the validity and numerical accuracy of the proposed computational scheme on the prototypical gold (111) surface in contact with water/alkali chloride solution. We observe that despite the proposed method requires, to achieve converged charge densities, a higher spatial resolution than that suited to the estimation of biomolecular solvation with either 3D-RISM or continuum electrostatics approaches, it still is computationally efficient. Introducing the electrostatic potential of an infinite wall, which is periodic in 2 dimensions, we avoid edge effects, permit a robust integration of Poisson's equation, and obtain the 3D electrostatic potential profile for the first time in such calculations. We show that the potential within the electrical double layer presents oscillations which are not grasped by the Debye-Hückel and Gouy-Chapman theories. This electrostatic potential deviates from its average of up to 1-2 V at small distances from the substrate along the lateral directions. Applications of this theoretical development are relevant, for example, for liquid scanning tunneling microscopy imaging.
Large enhancement of capacitance driven by electrostatic image forces
NASA Astrophysics Data System (ADS)
Loth, Matthew Scott
The purpose of this thesis is to examine the role of electrostatic images in determining the capacitance and the structure of the electrostatic double layer (EDL) formed at the interface of a metal electrode and an electrolyte. Current mean field theories, and the majority of simulations, do not account for ions to form image charges in the metal electrodes and claim that the capacitance of the double layer cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments, and simulations where the images are included, the apparent width of the capacitor is substantially smaller. Monte Carlo simulations are used to examine the interface between a metal electrode and a room temperature ionic liquid (RTIL) modeled by hard spheres (the "restricted primitive model"). Image charges for each ion are included in the simulated electrode. At moderately low temperatures the capacitance of the metal/RTIL interface is so large that the effective thickness of the electrostatic double-layer is up to 3 times smaller than the ion radius. To interpret these results, an approach is used that is based on the interaction between discrete ions and their image charges, which therefore goes beyond the mean-field approximation. When a voltage is applied across the interface, the strong image attraction causes counterions to condense onto the metal surface to form compact ion-image dipoles. These dipoles repel each other to form a correlated liquid. When the surface density of these dipoles is low, the insertion of an additional dipole does not require much energy. This leads to a large capacitance C that decreases monotonically with voltage V, producing a "bell-shaped" C( V) curve. In the case of a semi-metal electrode, the finite screening radius of the electrode shifts the reflection plane for image charges to the interior of the electrode resulting in a "camel-shaped" C(V) curve, which is parabolic near V = 0, reaches a maximum and then decreases. These predictions are in qualitative agreement with experiment. A similarly simple model is employed to simulate the EDL of superionic crystals. In this case only small cations are mobile and other ions form an oppositely charged background. Simulations show an effective thickness of the EDL that may be 3 times smaller than the ion radius. The weak repulsion of ion-image dipoles again plays a central role in determining the capacitance in this theory, which is in reasonable agreement with experiment. Finally, the problem of a strongly charged, insulating macroion in a dilute solution of multivalent counterions is considered. While an ideal conductor does not exist in the problem, and no images are explicitly included, simulations demonstrate that adsorbed counterions form a strongly correlated liquid of at the surface of the macroion and acts as an effective metal surface. In fact, the surface screens the electric field of distant ions with a negative screening radius. The simulation results serve to confirm existing non-mean-field theories.
Electrostatics of lipid bilayer bending.
Chou, T; Jarić, M V; Siggia, E D
1997-01-01
The electrostatic contribution to spontaneous membrane curvature is calculated within Poisson-Boltzmann theory under a variety of assumptions and emphasizing parameters in the physiological range. Asymmetrical surface charges can be fixed with respect to bilayer midplane area or with respect to the lipid-water area, but induce curvatures of opposite signs. Unequal screening layers on the two sides of a vesicle (e.g., multivalent cationic proteins on one side and monovalent salt on the other) also induce bending. For reasonable parameters, tubules formed by electrostatically induced bending can have radii in the 50-100-nm range, often seen in many intracellular organelles. Thus membrane associated proteins may induce curvature and subsequent budding, without themselves being intrinsically curved. Furthermore, we derive the previously unexplored effects of respecting the strict conservation of charge within the interior of a vesicle. The electrostatic component of the bending modulus is small under most of our conditions and is left as an experimental parameter. The large parameter space of conditions is surveyed in an array of graphs. Images FIGURE 1 FIGURE 10 PMID:9129807
Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai
2009-03-14
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
NASA Astrophysics Data System (ADS)
Bardhan, Jaydeep P.; Knepley, Matthew G.; Anitescu, Mihai
2009-03-01
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Comparison of intense electrostatic waves near f/sub UHR/ with linear instability theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurth, W.S.; Frank, L.A.; Gurnett, D.A.
1979-06-01
Intense electrostatic waves beyond the plasmapause have recently been identified at frequencies near the upper hybrid resonance frequency. In addition, the waves occur within a band at an odd, half-harmonic of the local electron gyrofrequency. These bands of electrostatic turbulence are among the most intense waves detected within the earth's magnetosphere. Measurements obtained with the ISEE 1 plasma wave receiver show that the intense waves appear to be intensifications of an electrostatic cyclotron harmonic band near the upper hybrid resonance frequency. A straightforward explanation of intense waves at the upper hybrid resonance frequency exists in the electrostatic multi-cyclotron emission theory.more » For a broad range of plasma parameters nonconvective instability or large spatial growth rates occur within the cyclotron band encompassing the cold upper hybrid frequency. Comparison of spatial growth rate spectra with measured wave spectra shows that there is excellent qualitative agreement between the linear theory and the observed wave characteristics.« less
NASA Technical Reports Server (NTRS)
Miller, Ronald H.; Winske, Dan; Gary, S. P.
1992-01-01
A second-order theory for electrostatic instabilities driven by counterstreaming ion beams is developed which describes momentum coupling and heating of the plasma via wave-particle interactions. Exchange rates between the waves and particles are derived, which are suitable for the fluid equations simulating microscopic effects on macroscopic scales. Using a fully kinetic simulation, the electrostatic ion cyclotron instability due to counterstreaming H(+) beams has been simulated. A power spectrum from the kinetic simulation is used to evaluate second-order exchange rates. The calculated heating and momentum loss from second-order theory is compared to the numerical simulation.
Long-ranged contributions to solvation free energies from theory and short-ranged models
Remsing, Richard C.; Liu, Shule; Weeks, John D.
2016-01-01
Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object. PMID:26929375
Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...
NASA Technical Reports Server (NTRS)
Jenkins, R. V.; Jones, W. L., Jr.
1974-01-01
The theory for calculating the current collected by a negatively biased cylindrical electrostatic probe at an arbitrary angle of attack in a weakley ionized flowing plasma is presented. The theory was constructed by considering both random and directed motion simultaneous with dynamic coupling of the flow properties and of the electric field of the probe. This direct approach yielded a theory that is more general than static plasma theories modified to account for flow. Theoretical calculations are compared with experimental electrostatic probe data obtained in the free stream of an arc-heated hypersonic wind tunnel. The theoretical calculations are based on flow conditions and plasma electron densities measured by an independent microwave interferometer technique. In addition, the theory is compared with laboratory and satellite data previously published by other investigators. In each case the comparison gives good agreement.
NASA Technical Reports Server (NTRS)
Whitson, D. W.
1975-01-01
An introduction to the theory of corona discharge and electrostatic phenomena is presented. The theory is mainly qualitative so that workers in the field should not have to go outside this manual for an understanding of the relevant phenomena. Some of the problems that may occur with the space shuttle in regard to electrical discharge are discussed.
Analytical theory of the space-charge region of lateral p-n junctions in nanofilms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurugubelli, Vijaya Kumar, E-mail: vkgurugubelli@gmail.com; Karmalkar, Shreepad
There is growing interest in fabricating conventional semiconductor devices in a nanofilm which could be a 3D material with one reduced dimension (e.g., silicon-on-insulator (SOI) film), or single/multiple layers of a 2D material (e.g., MoS{sub 2}), or a two dimensional electron gas/two dimensional hole gas (2DEG/2DHG) layer. Lateral p-n junctions are essential parts of these devices. The space-charge region electrostatics in these nanofilm junctions is strongly affected by the surrounding field, unlike in bulk junctions. Current device physics of nanofilms lacks a simple analytical theory of this 2D electrostatics of lateral p-n junctions. We present such a theory taking intomore » account the film's thickness, permittivity, doping, interface charge, and possibly different ambient permittivities on film's either side. In analogy to the textbook theory of the 1D electrostatics of bulk p-n junctions, our theory yields simple formulas for the depletion width, the extent of space-charge tails beyond this width, and the screening length associated with the space-charge layer in nanofilm junctions; these formulas agree with numerical simulations and measurements. Our theory introduces an electrostatic thickness index to classify nanofilms into sheets, bulk and intermediate sized.« less
NASA Astrophysics Data System (ADS)
Zahid, F.; Paulsson, M.; Polizzi, E.; Ghosh, A. W.; Siddiqui, L.; Datta, S.
2005-08-01
We present a transport model for molecular conduction involving an extended Hückel theoretical treatment of the molecular chemistry combined with a nonequilibrium Green's function treatment of quantum transport. The self-consistent potential is approximated by CNDO (complete neglect of differential overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode configurations employing only a single adjustable parameter to locate the Fermi energy. As this model is based on semiempirical methods it is computationally inexpensive and flexible compared to ab initio models, yet at the same time it is able to capture salient qualitative features as well as several relevant quantitative details of transport. We apply our model to investigate recent experimental data on alkane dithiol molecules obtained in a nanopore setup. We also present a comparison study of single molecule transistors and identify electronic properties that control their performance.
Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee; ...
2016-09-08
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
NASA Astrophysics Data System (ADS)
Sahu, Jyoti; Juvekar, Vinay A.
2018-05-01
Prediction of the osmotic coefficient of concentrated electrolytes is needed in a wide variety of industrial applications. There is a need to correctly segregate the electrostatic contribution to osmotic coefficient from nonelectrostatic contribution. This is achieved in a rational way in this work. Using the Robinson-Stokes-Glueckauf hydrated ion model to predict non-electrostatic contribution to the osmotic coefficient, it is shown that hydration number should be independent of concentration so that the observed linear dependence of osmotic coefficient on electrolyte concentration in high concentration range could be predicted. The hydration number of several electrolytes (LiCl, NaCl, KCl, MgCl2, and MgSO4) has been estimated by this method. The hydration number predicted by this model shows correct dependence on temperature. It is also shown that the electrostatic contribution to osmotic coefficient is underpredicted by the Debye-Hückel theory at concentration beyond 0.1 m. The Debye-Hückel theory is modified by introducing a concentration dependent hydrated ionic size. Using the present analysis, it is possible to correctly estimate the electrostatic contribution to the osmotic coefficient, beyond the range of validation of the D-H theory. This would allow development of a more fundamental model for electrostatic interaction at high electrolyte concentrations.
Self-excited electrostatic pendulum showing electrohydrodynamic-force-induced oscillation
NASA Astrophysics Data System (ADS)
Stephan, Karl D.; Hernandez Guerrero, José M.
2017-12-01
The electrohydrodynamic (EHD) effect ("ion wind") associated with corona discharges in air has been extensively investigated and modeled. We present a simple experiment that shows how both the magnitude and direction of EHD forces can change in such a way as to impart energy continuously to an oscillating electrostatic pendulum. The amplitude of oscillations of an electrostatic pendulum subject to EHD forces can grow approximately exponentially over a period of minutes, and we describe a qualitative theory to account for this effect, along with implications of these experiments for theories of ball lightning.
Green's function and image system for the Laplace operator in the prolate spheroidal geometry
NASA Astrophysics Data System (ADS)
Xue, Changfeng; Deng, Shaozhong
2017-01-01
In the present paper, electrostatic image theory is studied for Green's function for the Laplace operator in the case where the fundamental domain is either the exterior or the interior of a prolate spheroid. In either case, an image system is developed to consist of a point image inside the complement of the fundamental domain and an additional symmetric continuous surface image over a confocal prolate spheroid outside the fundamental domain, although the process of calculating such an image system is easier for the exterior than for the interior Green's function. The total charge of the surface image is zero and its centroid is at the origin of the prolate spheroid. In addition, if the source is on the focal axis outside the prolate spheroid, then the image system of the exterior Green's function consists of a point image on the focal axis and a line image on the line segment between the two focal points.
Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics
NASA Astrophysics Data System (ADS)
Paillusson, Fabien; Blossey, Ralf
2010-11-01
Polar liquids like water carry a characteristic nanometric length scale, the correlation length of orientation polarizations. Continuum theories that can capture this feature commonly run under the name of “nonlocal” electrostatics since their dielectric response is characterized by a scale-dependent dielectric function ɛ(q) , where q is the wave vector; the Poisson(-Boltzmann) equation then turns into an integro-differential equation. Recently, “local” formulations have been put forward for these theories and applied to water, solvated ions, and proteins. We review the local formalism and show how it can be applied to a structured liquid in slit and plate geometries, and solve the Poisson-Boltzmann theory for a charged plate in a structured solvent with counterions. Our results establish a coherent picture of the local version of nonlocal electrostatics and show its ease of use when compared to the original formulation.
Electric potential and electric field imaging
NASA Astrophysics Data System (ADS)
Generazio, E. R.
2017-02-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Electrostatic Estimation of Intercalant Jump-Diffusion Barriers Using Finite-Size Ion Models.
Zimmermann, Nils E R; Hannah, Daniel C; Rong, Ziqin; Liu, Miao; Ceder, Gerbrand; Haranczyk, Maciej; Persson, Kristin A
2018-02-01
We report on a scheme for estimating intercalant jump-diffusion barriers that are typically obtained from demanding density functional theory-nudged elastic band calculations. The key idea is to relax a chain of states in the field of the electrostatic potential that is averaged over a spherical volume using different finite-size ion models. For magnesium migrating in typical intercalation materials such as transition-metal oxides, we find that the optimal model is a relatively large shell. This data-driven result parallels typical assumptions made in models based on Onsager's reaction field theory to quantitatively estimate electrostatic solvent effects. Because of its efficiency, our potential of electrostatics-finite ion size (PfEFIS) barrier estimation scheme will enable rapid identification of materials with good ionic mobility.
21 CFR 892.1630 - Electrostatic x-ray imaging system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrostatic x-ray imaging system. 892.1630 Section 892.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... visible image. This generic type of device may include signal analysis and display equipment, patient and...
21 CFR 892.1630 - Electrostatic x-ray imaging system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrostatic x-ray imaging system. 892.1630 Section 892.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... visible image. This generic type of device may include signal analysis and display equipment, patient and...
21 CFR 892.1630 - Electrostatic x-ray imaging system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrostatic x-ray imaging system. 892.1630 Section 892.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... visible image. This generic type of device may include signal analysis and display equipment, patient and...
Chameleon gravity, electrostatics, and kinematics in the outer galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourhasan, R.; Mann, R.B.; Afshordi, N.
2011-12-01
Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of the fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude.more » In this paper, we argue that thin-shell conditions are equivalent to ''conducting'' boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of the equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.« less
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
NASA Astrophysics Data System (ADS)
Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI
2018-05-01
Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.
Statistical field theory description of inhomogeneous polarizable soft matter
NASA Astrophysics Data System (ADS)
Martin, Jonathan M.; Li, Wei; Delaney, Kris T.; Fredrickson, Glenn H.
2016-10-01
We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.
Bonthuis, Douwe Jan; Netz, Roland R
2013-10-03
Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.
Statistical field theory description of inhomogeneous polarizable soft matter.
Martin, Jonathan M; Li, Wei; Delaney, Kris T; Fredrickson, Glenn H
2016-10-21
We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.
ERIC Educational Resources Information Center
Williamson, Vickie M.; Hegarty, Mary; Deslongchamps, Ghislain; Williamson, Kenneth C., III
2013-01-01
This pilot study examined students' use of ball-and-stick images versus electrostatic potential maps when asked questions about electron density, positive charge, proton attack, and hydroxide attack with six different molecules (two alcohols, two carboxylic acids, and two hydroxycarboxylic acids). Students' viewing of these dual images…
NASA Technical Reports Server (NTRS)
Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.
1980-01-01
Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.
Electrostatics of polymer translocation events in electrolyte solutions.
Buyukdagli, Sahin; Ala-Nissila, T
2016-07-07
We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.
A fluorescent imaging technique for quantifying spray deposits on plant leaves
USDA-ARS?s Scientific Manuscript database
Because of the unique characteristics of electrostatically-charged sprays, use of traditional methods to quantify deposition from these sprays has been challenging. A new fluorescent imaging technique was developed to quantify spray deposits from electrostatically-charged sprays on natural plant lea...
Electric Potential and Electric Field Imaging with Applications
NASA Technical Reports Server (NTRS)
Generazio, Ed
2016-01-01
The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurrus, Elizabeth; Engel, Dave; Star, Keith
The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that has provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suitemore » of accompanying software since its release in 2001. In this manuscript, we discuss the models and capabilities that have recently been implemented within the APBS software package including: a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory based algorithm for determining pKa values, and an improved web-based visualization tool for viewing electrostatics.« less
Improvements to the APBS biomolecular solvation software suite.
Jurrus, Elizabeth; Engel, Dave; Star, Keith; Monson, Kyle; Brandi, Juan; Felberg, Lisa E; Brookes, David H; Wilson, Leighton; Chen, Jiahui; Liles, Karina; Chun, Minju; Li, Peter; Gohara, David W; Dolinsky, Todd; Konecny, Robert; Koes, David R; Nielsen, Jens Erik; Head-Gordon, Teresa; Geng, Weihua; Krasny, Robert; Wei, Guo-Wei; Holst, Michael J; McCammon, J Andrew; Baker, Nathan A
2018-01-01
The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory-based algorithm for determining pK a values, and an improved web-based visualization tool for viewing electrostatics. © 2017 The Protein Society.
Controlled electrostatic methodology for imaging indentations in documents.
Yaraskavitch, Luke; Graydon, Matthew; Tanaka, Tobin; Ng, Lay-Keow
2008-05-20
The electrostatic process for imaging indentations on documents using the ESDA device is investigated under controlled experimental settings. An in-house modified commercial xerographic developer housing is used to control the uniformity and volume of toner deposition, allowing for reproducible image development. Along with this novel development tool, an electrostatic voltmeter and fixed environmental conditions facilitate an optimization process. Sample documents are preconditioned in a humidity cabinet with microprocessor control, and the significant benefit of humidification above 70% RH on image quality is verified. Improving on the subjective methods of previous studies, image quality analysis is carried out in an objective and reproducible manner using the PIAS-II. For the seven commercial paper types tested, the optimum ESDA operating point is found to be at an electric potential near -400V at the Mylar surface; however, for most paper types, the optimum operating regime is found to be quite broad, spanning relatively small electric potentials between -200 and -550V. At -400V, the film right above an indented area generally carries a voltage which is 30-50V less negative than the non-indented background. In contrast with Seward's findings [G.H. Seward, Model for electrostatic imaging of forensic evidence via discharge through Mylar-paper path, J. Appl. Phys. 83 (3) (1998) 1450-1456; G.H. Seward, Practical implications of the charge transport model for electrostatic detection apparatus (ESDA), J. Forensic Sci. 44 (4) (1999) 832-836], a period of charge decay before image development is not required when operating in this optimal regime. A brief investigation of the role played by paper-to-paper friction during the indentation process is conducted using our optimized development method.
Subtleties in Energy Calculations in the Image Method
ERIC Educational Resources Information Center
Taddei, M. M.; Mendes, T. N. C.; Farina, C.
2009-01-01
In this pedagogical work, we point out a subtle mistake that can be made by undergraduate or graduate students in the computation of the electrostatic energy of a system containing charges and perfect conductors if they naively use the image method. Specifically, we show that naive expressions for the electrostatic energy for these systems…
3D RISM theory with fast reciprocal-space electrostatics.
Heil, Jochen; Kast, Stefan M
2015-03-21
The calculation of electrostatic solute-solvent interactions in 3D RISM ("three-dimensional reference interaction site model") integral equation theory is recast in a form that allows for a computational treatment analogous to the "particle-mesh Ewald" formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.
Electrostatic Rate Enhancement and Transient Complex of Protein-Protein Association
Alsallaq, Ramzi; Zhou, Huan-Xiang
2012-01-01
The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ~105 – 106 M−1s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys. J. 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by kD = kD0 exp(−
OPERATION AND MAINTENANCE MANUAL FOR ELECTROSTATIC PRECIPITATORS
The manual focuses on the operation and maintenance (O/M) of typical electrostatic precipitators (ESPs). It summarizes available information on theory and design in sufficient detail to provide a basic background O/M portions of the manual. Although O/M-related air pollution prob...
The report briefly describes the fundamental mechanisms and limiting factors involved in the electrostatic precipitation process. It discusses theories and procedures used in the computer model to describe the physical mechanisms, and generally describes the major operations perf...
Electrostatic analogy for symmetron gravity
NASA Astrophysics Data System (ADS)
Ogden, Lillie; Brown, Katherine; Mathur, Harsh; Rovelli, Kevin
2017-12-01
The symmetron model is a scalar-tensor theory of gravity with a screening mechanism that suppresses the effect of the symmetron field at high densities characteristic of the Solar System and laboratory scales but allows it to act with gravitational strength at low density on the cosmological scale. We elucidate the screening mechanism by showing that in the quasistatic Newtonian limit there are precise analogies between symmetron gravity and electrostatics for both strong and weak screening. For strong screening we find that large dense bodies behave in a manner analogous to perfect conductors in electrostatics. Based on this analogy we find that the symmetron field exhibits a lightning rod effect wherein the field gradients are enhanced near the ends of pointed or elongated objects. An ellipsoid placed in a uniform symmetron gradient is shown to experience a torque. By symmetry there is no gravitational torque in this case. Hence this effect unmasks the symmetron and might serve as the basis for future laboratory experiments. The symmetron force between a point mass and a large dense body includes a component corresponding to the interaction of the point mass with its image in the larger body. None of these effects have counterparts in the Newtonian limit of Einstein gravity. We discuss the similarities between symmetron gravity and the chameleon model as well as the differences between the two.
The electrostatic persistence length of polymers beyond the OSF limit.
Everaers, R; Milchev, A; Yamakov, V
2002-05-01
We use large-scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length l(e) of isolated, uniformly charged polymers with Debye-Hückel intrachain interactions in the limit where the screening length kappa(-1) exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction l(e) proportional to kappa(-2) by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theories of electrostatic bending rigidity and electrostatically excluded volume to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We show that previous results pointing into this direction are due to a combination of excluded-volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.
Macroion solutions in the cell model studied by field theory and Monte Carlo simulations.
Lue, Leo; Linse, Per
2011-12-14
Aqueous solutions of charged spherical macroions with variable dielectric permittivity and their associated counterions are examined within the cell model using a field theory and Monte Carlo simulations. The field theory is based on separation of fields into short- and long-wavelength terms, which are subjected to different statistical-mechanical treatments. The simulations were performed by using a new, accurate, and fast algorithm for numerical evaluation of the electrostatic polarization interaction. The field theory provides counterion distributions outside a macroion in good agreement with the simulation results over the full range from weak to strong electrostatic coupling. A low-dielectric macroion leads to a displacement of the counterions away from the macroion. © 2011 American Institute of Physics
Budkov, Yu A; Kolesnikov, A L
2016-11-01
We present a new simple self-consistent field theory of a polarizable flexible polymer chain under an external constant electric field with account for the many-body electrostatic dipole correlations. We show the effects of electrostatic dipole correlations on the electric-field-induced globule-coil transition. We demonstrate that only when the polymer chain is in the coil conformation, the electrostatic dipole correlations of monomers can be considered as pairwise. However, when the polymer chain is in a collapsed state, the dipole correlations have to be considered at the many-body level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
Cordelair, Jens; Greil, Peter
2003-09-15
A new solution for the Poisson equation for the diffuse part of the double layer around spherical particles will be presented. The numerical results are compared with the solution of the well-known DLVO theory. The range of the diffuse layer differs considerably in the two theories. Also, the inconsistent representation of the surface and diffuse layer charge in the DLVO theory do not occur in the new theory. Experimental zeta potential measurements were used to determine the charge of colloidal Al2O3 and ZrO2 particles. It is shown that the calculated charge can be interpreted as a superposition of independent H+ and OH- adsorption isotherms. The corresponding Langmuir adsorption isotherms are taken to model the zeta potential dependence on pH. In the vicinity of the isoelectric point the model fits well with the experimental data, but at higher ion concentrations considerable deviations occur. The deviations are discussed. Furthermore, the numerical results for the run of the potential in the diffuse part of the double layer were used to determine the electrostatic interaction potential between the particles in correlation with the zeta potential measurements. The corresponding total interaction potentials, including the van der Waals attraction, were taken to calculate the coagulation half-life for a suspension with a particle loading of 2 vol%. It is shown that stability against coagulation is maintained for Al2O3 particles in the pH region between 3.3 and 7 and for ZrO2 only around pH 5. Stability against flocculation can be achieved in the pH regime between 4.5 and 7 for Al2O3, while the examined ZrO2 particles are not stable against flocculation in aqueous suspensions.
NASA Astrophysics Data System (ADS)
Cho, Yeongsu; Berkelbach, Timothy C.
2018-01-01
We present an electrostatic theory of band-gap renormalization in atomically thin semiconductors that captures the strong sensitivity to the surrounding dielectric environment. In particular, our theory aims to correct known band gaps, such as that of the three-dimensional bulk crystal. Combining our quasiparticle band gaps with an effective-mass theory of excitons yields environmentally sensitive optical gaps as would be observed in absorption or photoluminescence. For an isolated monolayer of MoS2, the presented theory is in good agreement with ab initio results based on the G W approximation and the Bethe-Salpeter equation. We find that changes in the electronic band gap are almost exactly offset by changes in the exciton binding energy such that the energy of the first optical transition is nearly independent of the electrostatic environment, rationalizing experimental observations.
Crystal Field in Rare-Earth Complexes: From Electrostatics to Bonding.
Alessandri, Riccardo; Zulfikri, Habiburrahman; Autschbach, Jochen; Bolvin, Hélène
2018-04-11
The flexibility of first-principles (ab initio) calculations with the SO-CASSCF (complete active space self-consistent field theory with a treatment of the spin-orbit (SO) coupling by state interaction) method is used to quantify the electrostatic and covalent contributions to crystal field parameters. Two types of systems are chosen for illustration: 1) The ionic and experimentally well-characterized PrCl 3 crystal; this study permits a revisitation of the partition of contributions proposed in the early days of crystal field theory; and 2) a series of sandwich molecules [Ln(η n -C n H n ) 2 ] q , with Ln=Dy, Ho, Er, and Tm and n=5, 6, and 8, in which the interaction between Ln III and the aromatic ligands is more difficult to describe within an electrostatic approach. It is shown that a model with three layers of charges reproduces the electrostatic field generated by the ligands and that the covalency plays a qualitative role. The one-electron character of crystal field theory is discussed and shown to be valuable, although it is not completely quantitative. This permits a reduction of the many-electron problem to a discussion of the energy of the seven 4f orbitals. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrostatics of a Point Charge between Intersecting Planes: Exact Solutions and Method of Images
ERIC Educational Resources Information Center
Mei, W. N.; Holloway, A.
2005-01-01
In this work, the authors present a commonly used example in electrostatics that could be solved exactly in a conventional manner, yet expressed in a compact form, and simultaneously work out special cases using the method of images. Then, by plotting the potentials and electric fields obtained from these two methods, the authors demonstrate that…
Two Magnets and a Ball Bearing: A Simple Demonstration of the Methods of Images.
ERIC Educational Resources Information Center
Poon, W. C. K.
2003-01-01
Investigates the behavior of a bar magnet with a steel ball bearing on one pole as it approaches another bar magnet. Maps the problem onto electrostatics and explains observations based on the behavior of point charges near an isolated, uncharged sphere. Offers a simple demonstration of the method of images in electrostatics. (Author/NB)
Counterion-induced swelling of ionic microgels
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Tang, Qiyun
2016-10-01
Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.
Electrostatic rate enhancement and transient complex of protein-protein association.
Alsallaq, Ramzi; Zhou, Huan-Xiang
2008-04-01
The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to approximately 10(5)-10(6) M(-1) s(-1). Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys J 1997;73:2441-2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by $k_{\\bf D}$ = $k_{D}0\\ {exp} ( - \\langle U_{el} \\rangle;{\\star}/k_{B} T),$ where k(D) and k(D0) are the rates in the presence and absence of electrostatic interactions, respectively, U(el) is the average electrostatic interaction energy in a "transient-complex" ensemble, and k(B)T is the thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with the experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007;15:215-224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. (c) 2007 Wiley-Liss, Inc.
Ferroelectric hydration shells around proteins: electrostatics of the protein-water interface.
LeBard, David N; Matyushov, Dmitry V
2010-07-22
Numerical simulations of hydrated proteins show that protein hydration shells are polarized into a ferroelectric layer with large values of the average dipole moment magnitude and the dipole moment variance. The emergence of the new polarized mesophase dramatically alters the statistics of electrostatic fluctuations at the protein-water interface. The linear response relation between the average electrostatic potential and its variance breaks down, with the breadth of the electrostatic fluctuations far exceeding the expectations of the linear response theories. The dynamics of these non-Gaussian electrostatic fluctuations are dominated by a slow (approximately = 1 ns) component that freezes in at the temperature of the dynamical transition of proteins. The ferroelectric shell propagates 3-5 water diameters into the bulk.
Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K
2009-01-01
We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.
Bardhan, Jaydeep P.; Altman, Michael D.
2009-01-01
We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839
Satoh, Hisao; Haneda, Satoshi; Ikeda, Tadayoshi; Morita, Shizuo; Fukuchi, Masakazu
1996-01-01
In an image forming apparatus having a detachable process cartridge in which an image carrier on which an electrostatic latent image is formed, and a developing unit which develops the electrostatic latent image so that a toner image can be formed, both integrally formed into one unit. There is provided a developer container including a discharge section which can be inserted into a supply opening of the developing unit, and a container in which a predetermined amount of developer is contained, wherein the developer container is provided to the toner supply opening of the developing unit and the developer is supplied into the developing unit housing when a toner stirring screw of the developing unit is rotated.
Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H
2018-05-28
We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.
NASA Astrophysics Data System (ADS)
Grzetic, Douglas J.; Delaney, Kris T.; Fredrickson, Glenn H.
2018-05-01
We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ ˜ ) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor S (k ) and the dielectric function ɛ ^ (k ) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters BAA, BAB, and BBB, which then determine χ ˜ . The one-loop theory not only enables the quantitative prediction of χ ˜ but also provides useful insight into the dependence of χ ˜ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ɛ ^ (k ) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ ˜ N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.
A small-gap electrostatic micro-actuator for large deflections
Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam
2015-01-01
Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S
1995-01-01
We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain < 11% acidic lipid, the -25 mV equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:7756540
NASA Astrophysics Data System (ADS)
Rezaei Kivi, Araz; Azizi, Saber; Norouzi, Peyman
2017-12-01
In this paper, the nonlinear size-dependent static and dynamic behavior of an electrostatically actuated nano-beam is investigated. A fully clamped nano-beam is considered for the modeling of the deformable electrode of the NEMS. The governing differential equation of the motion is derived using Hamiltonian principle based on couple stress theory; a non-classical theory for considering length scale effects. The nonlinear partial differential equation of the motion is discretized to a nonlinear Duffing type ODE's using Galerkin method. Static and dynamic pull-in instabilities obtained by both classical theory and MCST are compared. At the second stage of analysis, shooting technique is utilized to obtain the frequency response curve, and to capture the periodic solutions of the motion; the stability of the periodic solutions are gained by Floquet theory. The nonlinear dynamic behavior of the deformable electrode due to the AC harmonic accompanied with size dependency is investigated.
Electric Field Imaging Project
NASA Technical Reports Server (NTRS)
Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward
2016-01-01
NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.
2017-01-01
The high charge density of nucleic acids and resulting ion atmosphere profoundly influence the conformational landscape of RNA and DNA and their association with small molecules and proteins. Electrostatic theories have been applied to quantitatively model the electrostatic potential surrounding nucleic acids and the effects of the surrounding ion atmosphere, but experimental measures of the potential and tests of these models have often been complicated by conformational changes and multisite binding equilibria, among other factors. We sought a simple system to further test the basic predictions from electrostatics theory and to measure the energetic consequences of the nucleic acid electrostatic field. We turned to a DNA system developed by Bevilacqua and co-workers that involves a proton as a ligand whose binding is accompanied by formation of an internal AH+·C wobble pair [Siegfried, N. A., et al. Biochemistry, 2010, 49, 3225]. Consistent with predictions from polyelectrolyte models, we observed logarithmic dependences of proton affinity versus salt concentration of −0.96 ± 0.03 and −0.52 ± 0.01 with monovalent and divalent cations, respectively, and these results help clarify prior results that appeared to conflict with these fundamental models. Strikingly, quantitation of the ion atmosphere content indicates that divalent cations are preferentially lost over monovalent cations upon A·C protonation, providing experimental indication of the preferential localization of more highly charged cations to the inner shell of the ion atmosphere. The internal AH+·C wobble system further allowed us to parse energetic contributions and extract estimates for the electrostatic potential at the position of protonation. The results give a potential near the DNA surface at 20 mM Mg2+ that is much less substantial than at 20 mM K+ (−120 mV vs −210 mV). These values and difference are similar to predictions from theory, and the potential is substantially reduced at higher salt, also as predicted; however, even at 1 M K+ the potential remains substantial, counter to common assumptions. The A·C protonation module allows extraction of new properties of the ion atmosphere and provides an electrostatic meter that will allow local electrostatic potential and energetics to be measured within nucleic acids and their complexes with proteins. PMID:28489947
Impact of local electrostatic field rearrangement on field ionization
NASA Astrophysics Data System (ADS)
Katnagallu, Shyam; Dagan, Michal; Parviainen, Stefan; Nematollahi, Ali; Grabowski, Blazej; Bagot, Paul A. J.; Rolland, Nicolas; Neugebauer, Jörg; Raabe, Dierk; Vurpillot, François; Moody, Michael P.; Gault, Baptiste
2018-03-01
Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.
Analysis of the instability underlying electrostatic suppression of the Leidenfrost state
NASA Astrophysics Data System (ADS)
Shahriari, Arjang; Das, Soumik; Bahadur, Vaibhav; Bonnecaze, Roger T.
2017-03-01
A liquid droplet on a hot solid can generate enough vapor to prevent its contact on the surface and reduce the rate of heat transfer, the so-called Leidenfrost effect. We show theoretically and experimentally that for a sufficiently high electrostatic potential on the droplet, the formation of the vapor layer is suppressed. The interplay of the destabilizing electrostatic force and stabilizing capillary force and evaporation determines the minimum or threshold voltage to suppress the Leidenfrost effect. Linear stability theory accurately predicts threshold voltages for different size droplets and varying temperatures.
Electrostatic atomization--Experiment, theory and industrial applications
NASA Astrophysics Data System (ADS)
Okuda, H.; Kelly, Arnold J.
1996-05-01
Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle.
NASA Technical Reports Server (NTRS)
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
NASA Astrophysics Data System (ADS)
Zhang, Liandong; Bai, Xiaofeng; Song, De; Fu, Shencheng; Li, Ye; Duanmu, Qingduo
2015-03-01
Low-light-level night vision technology is magnifying low light level signal large enough to be seen by naked eye, which uses the photons - photoelectron as information carrier. Until the micro-channel plate was invented, it has been possibility for the realization of high performance and miniaturization of low-light-level night vision device. The device is double-proximity focusing low-light-level image intensifier which places a micro-channel plate close to photocathode and phosphor screen. The advantages of proximity focusing low-light-level night vision are small size, light weight, small power consumption, no distortion, fast response speed, wide dynamic range and so on. It is placed parallel to each other for Micro-channel plate (both sides of it with metal electrode), the photocathode and the phosphor screen are placed parallel to each other. The voltage is applied between photocathode and the input of micro-channel plate when image intensifier works. The emission electron excited by photo on the photocathode move towards to micro-channel plate under the electric field in 1st proximity focusing region, and then it is multiplied through the micro-channel. The movement locus of emission electrons can be calculated and simulated when the distributions of electrostatic field equipotential lines are determined in the 1st proximity focusing region. Furthermore the resolution of image tube can be determined. However the distributions of electrostatic fields and equipotential lines are complex due to a lot of micro-channel existing in the micro channel plate. This paper simulates electrostatic distribution of 1st proximity region in double-proximity focusing low-light-level image intensifier with the finite element simulation analysis software Ansoft maxwell 3D. The electrostatic field distributions of 1st proximity region are compared when the micro-channel plates' pore size, spacing and inclination angle ranged. We believe that the electron beam movement trajectory in 1st proximity region will be better simulated when the electronic electrostatic fields are simulated.
Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.
2012-09-01
Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)], 10.1140/epje/i2002-10159-0. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρb ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρb ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ _s^*=√{2ρ _b/(π ℓ _B)}, where ℓB = 7 Å is the Bjerrum length. In the case of weak surface charges σ _s≪ σ _s^* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ _s^*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ _s>σ _s^*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ _s≫ σ _s^*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.
Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.
Buyukdagli, Sahin; Achim, C V; Ala-Nissila, T
2012-09-14
Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)]. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρ(b) ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρ(b) ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ(s)*=√(2ρ(b)/(πl(B)), where l(B) = 7 Å is the Bjerrum length. In the case of weak surface charges σ(s)≪σ(s)* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ(s)*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ(s)>σ(s)*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ(s)≫σ(s)*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.
On the theory of electric double layer with explicit account of a polarizable co-solvent.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2016-05-14
We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On the contrary, a sufficiently large additive of co-solvent shifts the saturation potential to lower surface potentials. We obtain that an increase in the co-solvent polarizability makes the electrostatic potential profile longer-ranged. However, increase in the co-solvent concentration in the bulk leads to non-monotonic behavior of the electrostatic potential profile. An increase in the co-solvent concentration in the bulk at its sufficiently small values makes the electrostatic potential profile longer-ranged. Oppositely, when the co-solvent concentration in the bulk exceeds some threshold value, its further increase leads to decrease in electrostatic potential at all distances from the electrode.
NASA Astrophysics Data System (ADS)
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew
2015-12-01
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew
2015-12-28
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew
2015-01-01
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595
2016-04-01
dioxabicyclo(3:3:0)octan-2-one molecule .............................................1 Fig. 2 Electrostatic potential map of 5,7-dinitro-5,7-diaza-1,3...the impact sensitivities, the electrostatic maps on the 0.001 isosurfaces were generated with the scalar range of the electrostatic surface potential... Electrostatic potential map of 5,7-dinitro-5,7-diaza-1,3-dioxabicyclo(3:3:0)octan-2- one, a) with and b-c) without molecule overlay. Image c) shows the opposite
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
NASA Astrophysics Data System (ADS)
Eydoux, Benoit; Baris, Bulent; Khoussa, Hassan; Guillermet, Olivier; Gauthier, Sébastien; Bouju, Xavier; Martrou, David
2017-10-01
Noncontact atomic force microscopy images show that gold grows on the (2 ×2 )-Nad reconstructed polar (0001) surface of AlN insulating films, in the form of large monatomic islands. High-resolution images and in situ reflection high-energy electron diffraction spectra reveal two moiré patterns from which an atomic model can be built. Density functional theory calculations confirm this model and give insight into the mechanisms that lead to the stabilization of the monolayer. Gold adsorption is accompanied, first, by a global vertical charge transfer from the AlN substrate that fulfills the electrostatic stability criterion for a polar material, and second, by lateral charge transfers that are driven by the local chemical properties of the (2 ×2 )-Nad reconstruction. These results present alternative strategies to grow metal electrodes onto nitride compounds with a better controlled interface, a crucial issue for applications.
Electrical apparatus used in medicine before 1900.
Cambridge, N A
1977-01-01
The Ancients had at their disposal torpedo fish, amber and magnets. It was not until the sixteenth century that ideas on the strange behaviour of amber and magnets were put forward. The eighteenth century saw the application of Newton's theories of matter and the introduction of the electrostatic machine, Galvanism and Volta's battery. In the nineteenth century there was extensive application of electricity in medical practice, with the development of electrocautery apparatus and illuminated cystoscopes, the pioneering of the electrocardiogram and the discovery of X-rays. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Fig 7 Fig 8 Fig 9 Fig 10 Fig 11 Fig 12 PMID:335397
THEORETICAL METHODS FOR COMPUTING ELECTRICAL CONDITIONS IN WIRE-PLATE ELECTROSTATIC PRECIPITATORS
The paper describes a new semi-empirical, approximate theory for predicting electrical conditions. In the approximate theory, analytical expressions are derived for calculating voltage-current characteristics and electric potential, electric field, and space charge density distri...
Versatile Optical Bench for Teaching, Development, and Testing of Electron and Ion Optical Systems
ERIC Educational Resources Information Center
Bhiday, M. R.; And Others
1977-01-01
Describes a versatile apparatus for demonstrating the imaging properties of various types of electrostatic lenses. The apparatus can be used to study the focusing properties of different types of electrostatic electron or ion lenses or their combinations. (MLH)
NASA Astrophysics Data System (ADS)
Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald
2013-06-01
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
Dipole-like electrostatic asymmetry of gold nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji -Young; Han, Myung -Geun; Lien, Miao -Bin
The symmetry of metallic nanocolloids, typically envisaged as simple geometrical shapes, is rarely questioned. However, the symmetry considerations are so essential for understanding their electronic structure, optical properties, and biological effects that it is important to reexamine these foundational assumptions for nanocolloids. Gold nanorods (AuNRs) are generally presumed to have nearly perfect geometry of a cylinder and therefore are centrosymmetric. We show that AuNRs, in fact, have a built-in electrostatic potential gradient on their surface and behave as noncentrosymmetric particles. The electrostatic potential gradient of 0.11 to 0.07 V/nm along the long axes of nanorods is observed by off-axis electronmore » holography. Kelvin probe microscopy, secondary electron imaging, energy-filtered transmission electron microscopy, and plasmon mapping reveal that the axial asymmetry is associated with a consistently unequal number of cetyltrimethylammonium bromide moieties capping the two ends of the AuNRs. Electrostatic field maps simulated for the AuNR surface reproduce the holography images. The dipole-like surface potential gradient explains previously puzzling discrepancies in nonlinear optical effects originating from the noncentrosymmetric nature of AuNRs. Furthermore, similar considerations of symmetry breaking are applicable to other nanoscale structures for which the property-governing symmetry of the organic shell may differ from the apparent symmetry of inorganic core observed in standard electron microscopy images.« less
Dipole-like electrostatic asymmetry of gold nanorods
Kim, Ji -Young; Han, Myung -Geun; Lien, Miao -Bin; ...
2018-02-09
The symmetry of metallic nanocolloids, typically envisaged as simple geometrical shapes, is rarely questioned. However, the symmetry considerations are so essential for understanding their electronic structure, optical properties, and biological effects that it is important to reexamine these foundational assumptions for nanocolloids. Gold nanorods (AuNRs) are generally presumed to have nearly perfect geometry of a cylinder and therefore are centrosymmetric. We show that AuNRs, in fact, have a built-in electrostatic potential gradient on their surface and behave as noncentrosymmetric particles. The electrostatic potential gradient of 0.11 to 0.07 V/nm along the long axes of nanorods is observed by off-axis electronmore » holography. Kelvin probe microscopy, secondary electron imaging, energy-filtered transmission electron microscopy, and plasmon mapping reveal that the axial asymmetry is associated with a consistently unequal number of cetyltrimethylammonium bromide moieties capping the two ends of the AuNRs. Electrostatic field maps simulated for the AuNR surface reproduce the holography images. The dipole-like surface potential gradient explains previously puzzling discrepancies in nonlinear optical effects originating from the noncentrosymmetric nature of AuNRs. Furthermore, similar considerations of symmetry breaking are applicable to other nanoscale structures for which the property-governing symmetry of the organic shell may differ from the apparent symmetry of inorganic core observed in standard electron microscopy images.« less
NASA Astrophysics Data System (ADS)
Tutcuoglu, A.; Majidi, C.
2014-12-01
Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.
A multiscale model for charge inversion in electric double layers
NASA Astrophysics Data System (ADS)
Mashayak, S. Y.; Aluru, N. R.
2018-06-01
Charge inversion is a widely observed phenomenon. It is a result of the rich statistical mechanics of the molecular interactions between ions, solvent, and charged surfaces near electric double layers (EDLs). Electrostatic correlations between ions and hydration interactions between ions and water molecules play a dominant role in determining the distribution of ions in EDLs. Due to highly polar nature of water, near a surface, an inhomogeneous and anisotropic arrangement of water molecules gives rise to pronounced variations in the electrostatic and hydration energies of ions. Classical continuum theories fail to accurately describe electrostatic correlations and molecular effects of water in EDLs. In this work, we present an empirical potential based quasi-continuum theory (EQT) to accurately predict the molecular-level properties of aqueous electrolytes. In EQT, we employ rigorous statistical mechanics tools to incorporate interatomic interactions, long-range electrostatics, correlations, and orientation polarization effects at a continuum-level. Explicit consideration of atomic interactions of water molecules is both theoretically and numerically challenging. We develop a systematic coarse-graining approach to coarse-grain interactions of water molecules and electrolyte ions from a high-resolution atomistic scale to the continuum scale. To demonstrate the ability of EQT to incorporate the water orientation polarization, ion hydration, and electrostatic correlations effects, we simulate confined KCl aqueous electrolyte and show that EQT can accurately predict the distribution of ions in a thin EDL and also predict the complex phenomenon of charge inversion.
The Stiffness Variation of a Micro-Ring Driven by a Traveling Piecewise-Electrode
Li, Yingjie; Yu, Tao; Hu, Yuh-Chung
2014-01-01
In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing. PMID:25230308
The stiffness variation of a micro-ring driven by a traveling piecewise-electrode.
Li, Yingjie; Yu, Tao; Hu, Yuh-Chung
2014-09-16
In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing.
From Graphite to Graphene via Scanning Tunneling Microscopy
NASA Astrophysics Data System (ADS)
Qi, Dejun
The primary objective of this dissertation is to study both graphene on graphite and pristine freestanding grapheme using scanning tunneling microscopy (STM) and density functional theory (DFT) simulation technique. In the experiment part, good quality tungsten metalic tips for experiment were fabricated using our newly developed tip making setup. Then a series of measurements using a technique called electrostatic-manipulation scanning tunneling microscopy (EM-STM) of our own development were performed on a highly oriented pyrolytic graphite (HOPG) surface. The electrostatic interaction between the STM tip and the sample can be tuned to produce both reversible and irreversible large-scale movement of the graphite surface. Under this influence, atomic-resolution STM images reveal that a continuous electronic transition between two distinct patterns can be systematically controlled. DFT calculations reveal that this transition can be related to vertical displacements of the top layer of graphite relative to the bulk. Evidence for horizontal shifts in the top layer of graphite is also presented. Excellent agreement is found between experimental STM images and those simulated using DFT. In addition, the EM-STM technique was also used to controllably and reversibly pull freestanding graphene membranes up to 35 nm from their equilibrium height. Atomic-scale corrugation amplitudes 20 times larger than the STM electronic corrugation for graphene on a substrate were observed. The freestanding graphene membrane responds to a local attractive force created at the STM tip as a highly conductive yet flexible grounding plane with an elastic restoring force.
Collins, Liam; Belianinov, Alex; Proksch, Roger; ...
2016-05-09
We develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Also, 3 G-Mode MFM is implemented and compared to traditional heterodyne based MFM on model systems including domain structures in ferromagnetic Yttrium Iron Garnet (YIG) and electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstratemore » its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode coupling phenomena. Finally we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any AFM platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties as well as their mutual interactions.« less
Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M.
2004-01-01
The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.
Calculation of electrostatic fields in periodic structures of complex shape
NASA Technical Reports Server (NTRS)
Kravchenko, V. F.
1978-01-01
A universal algorithm is presented for calculating electrostatic fields in an infinite periodic structure consisting of electrodes of arbitrary shape which are located in mirror-symmetrical manner along the axis of electron-beam propagation. The method is based on the theory of R-functions, and the differential operators which are derived on the basis of the functions. Numerical results are presented and the accuracy of the results is examined.
NASA Astrophysics Data System (ADS)
Donovan, K. J.; Elliott, J. E.; Jeong, I. S.; Scott, K.; Wilson, E. G.
2000-11-01
The tunneling rate of photocreated charge carriers between layers in Langmuir-Blodgett multilayer structures is measured indirectly using the novel technique of bimolecular recombination quenching. The tunneling rate is demonstrated to be dependent upon the applied electrostatic potential difference between the layers. This dependence is explored in light of the Marcus theory of charge transfer. That theory was developed to describe redox reactions where the driving force is supplied by a chemical potential difference between two chemically different parts of a more complex system. In the current work the electrostatic potential replaces the chemical potential as the driving potential. The field dependence of the exciton dissociation probability is also determined.
Nonlinear Poisson Equation for Heterogeneous Media
Hu, Langhua; Wei, Guo-Wei
2012-01-01
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. PMID:22947937
NASA Astrophysics Data System (ADS)
Zacharegkas, Georgios; Isliker, Heinz; Vlahos, Loukas
2016-11-01
The limitation of the Quasilinear Theory (QLT) to describe the diffusion of electrons and ions in velocity space when interacting with a spectrum of large amplitude electrostatic Langmuir, Upper and Lower hybrid waves, is analyzed. We analytically and numerically estimate the threshold for the amplitude of the waves above which the QLT breaks down, using a test particle code. The evolution of the velocity distribution, the velocity-space diffusion coefficients, the driven current, and the heating of the particles are investigated, for the interaction with small and large amplitude electrostatic waves, that is, in both regimes, where QLT is valid and where it clearly breaks down.
Communication: Nanoscale electrostatic theory of epistructural fields at the protein-water interface
NASA Astrophysics Data System (ADS)
Fernández, Ariel
2012-12-01
Nanoscale solvent confinement at the protein-water interface promotes dipole orientations that are not aligned with the internal electrostatic field of a protein, yielding what we term epistructural polarization. To quantify this effect, an equation is derived from first principles relating epistructural polarization with the magnitude of local distortions in water coordination causative of interfacial tension. The equation defines a nanoscale electrostatic model of water and enables an estimation of protein denaturation free energies and the inference of hot spots for protein associations. The theoretical results are validated vis-à-vis calorimetric data, revealing the destabilizing effect of epistructural polarization and its molecular origin.
Fernández, Ariel
2012-12-21
Nanoscale solvent confinement at the protein-water interface promotes dipole orientations that are not aligned with the internal electrostatic field of a protein, yielding what we term epistructural polarization. To quantify this effect, an equation is derived from first principles relating epistructural polarization with the magnitude of local distortions in water coordination causative of interfacial tension. The equation defines a nanoscale electrostatic model of water and enables an estimation of protein denaturation free energies and the inference of hot spots for protein associations. The theoretical results are validated vis-à-vis calorimetric data, revealing the destabilizing effect of epistructural polarization and its molecular origin.
The dependency of adhesion and friction on electrostatic attraction
NASA Astrophysics Data System (ADS)
Persson, B. N. J.
2018-04-01
I develop a general mean-field theory for the influence of electrostatic attraction between two solids on the contact mechanics. I assume elastic solids with random surface roughness. I consider two cases, namely, with and without an electrically insulating layer between the conducting solids. The former case is important for, e.g., the finger-touch screen interaction. I study how the electrostatic attraction influences the adhesion and friction. For the case of an insulating layer, I find that when the applied nominal contact pressure is relatively small, as the applied voltage increases, there is a sharp increase in the contact area, and hence in the friction, at a critical voltage.
NASA Technical Reports Server (NTRS)
Carpentier, R. P.; Pietrzyk, J. P.; Beyer, R. R.; Kalafut, J. S.
1976-01-01
Computer-designed sensor, consisting of single-stage electrostatically-focused, triode image intensifier, provides high quality imaging characterized by exceptionally low geometric distortion, low shading, and high center-and-corner modulation transfer function.
NASA Astrophysics Data System (ADS)
Zhu, Yichao; Wei, Yihai; Guo, Xu
2017-12-01
In the present paper, the well-established Gurtin-Murdoch theory of surface elasticity (Gurtin and Murdoch, 1975, 1978) is revisited from an orbital-free density functional theory (OFDFT) perspective by taking the boundary layer into consideration. Our analysis indicates that firstly, the quantities introduced in the Gurtin-Murdoch theory of surface elasticity can all find their explicit expressions in the derived OFDFT-based theoretical model. Secondly, the derived expression for surface energy density captures a competition between the surface normal derivatives of the electron density and the electrostatic potential, which well rationalises the onset of signed elastic constants that are observed both experimentally and computationally. Thirdly, the established model naturally yields an inversely linear relationship between the materials surface stiffness and its size, which conforms to relevant findings in literature. Since the proposed OFDFT-based model is established under arbitrarily imposed boundary condition of electron density, electrostatic potential and external load, it also has the potential of being used to investigate the electro-mechanical behaviour of nanoscale materials manifesting surface effect.
DNA packaging in viral capsids with peptide arms.
Cao, Qianqian; Bachmann, Michael
2017-01-18
Strong chain rigidity and electrostatic self-repulsion of packed double-stranded DNA in viruses require a molecular motor to pull the DNA into the capsid. However, what is the role of electrostatic interactions between different charged components in the packaging process? Though various theories and computer simulation models were developed for the understanding of viral assembly and packaging dynamics of the genome, long-range electrostatic interactions and capsid structure have typically been neglected or oversimplified. By means of molecular dynamics simulations, we explore the effects of electrostatic interactions on the packaging dynamics of DNA based on a coarse-grained DNA and capsid model by explicitly including peptide arms (PAs), linked to the inner surface of the capsid, and counterions. Our results indicate that the electrostatic interactions between PAs, DNA, and counterions have a significant influence on the packaging dynamics. We also find that the packed DNA conformations are largely affected by the structure of the PA layer, but the packaging rate is insensitive to the layer structure.
Electromagnetic and electrostatic emissions at the cusp-magnetosphere interface during substorms
NASA Technical Reports Server (NTRS)
Curtis, S. A.; Fairfield, D. H.; Wu, C. S.
1979-01-01
Strongly peaked electrostatic emissions near 10.0 kHz and electromagnetic emissions near 0.56 kHz have been observed by the VLF wave detector on board Imp 6 on crossings from the earth's magnetosphere into the polar cusp during the occurrence of large magnetospheric substorms. The electrostatic emissions were observed to be closely confined to the cusp-magnetosphere interface. The electromagnetic emissions were of somewhat broader spatial extent and were seen on higher-latitude field lines within the cusp. Using these plasma wave observations and additional information provided by plasma, magnetometer and particle measurements made simultaneously on Imp 6, theories are constructed to explain each of the two classes of emission. The electromagnetic waves are modeled as whistlers, and the electrostatic waves as electron-cyclotron harmonics. The resulting growth rates predict power spectra similar to those observed for both emission classes. The electrostatic waves may play a significant role via enhanced diffusion in the relaxation of the sharp substorm time cusp-magnetosphere boundary to a more diffuse quiet time boundary.
Quasi-stationary fluid theory of the hole-boring process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Zhikun; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn; Shi, Yin
We present a quasi-stationary fluid theory to precisely describe the hole-boring process. The corresponding distributions of the electrostatic field and the particle density are theoretically obtained, which give more details than the previous stationary theory. The theoretical result is confirmed by one-dimensional particle-in-cell simulations. Such quasi-stationary fluid theory may help in understanding the basic mechanisms of ion acceleration in the radiation pressure acceleration.
First-principles simulations of electrostatic interactions between dust grains
NASA Astrophysics Data System (ADS)
Itou, H.; Amano, T.; Hoshino, M.
2014-12-01
We investigated the electrostatic interaction between two identical dust grains of an infinite mass immersed in homogeneous plasma by employing first-principles N-body simulations combined with the Ewald method. We specifically tested the possibility of an attractive force due to overlapping Debye spheres (ODSs), as was suggested by Resendes et al. [Phys. Lett. A 239, 181-186 (1998)]. Our simulation results demonstrate that the electrostatic interaction is repulsive and even stronger than the standard Yukawa potential. We showed that the measured electric field acting on the grain is highly consistent with a model electrostatic potential around a single isolated grain that takes into account a correction due to the orbital motion limited theory. Our result is qualitatively consistent with the counterargument suggested by Markes and Williams [Phys. Lett. A 278, 152-158 (2000)], indicating the absence of the ODS attractive force.
Solvation effects on chemical shifts by embedded cluster integral equation theory.
Frach, Roland; Kast, Stefan M
2014-12-11
The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.
Submolecular resolution in scanning probe images of Sn-phthalocyanines on Cu(1 0 0) using metal tips
NASA Astrophysics Data System (ADS)
Buchmann, Kristof; Hauptmann, Nadine; Foster, Adam S.; Berndt, Richard
2017-10-01
Single Sn-phthalocyanine (SnPc) molecules adsorb on Cu(1 0 0) with the Sn ion above (Sn-up) or below (Sn-down) the molecular plane. Here we use a combination of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and first principles calculations to understand the adsorption configuration and origin of observed contrast of molecules in the Sn-down state. AFM with metallic tips images the pyrrole nitrogen atoms in these molecules as attractive features while STM reveals a chirality of the electronic structure of the molecules close to the Fermi level E_F, which is not observed in AFM. Using density functional theory calculations, the origin of the submolecular contrast is analysed and, while the electrostatic forces turn out to be negligible, the van der Waals interaction between the phenyl rings of SnPc and the substrate deform the molecule, push the pyrrole nitrogen atoms away from the substrate and thus induce the observed submolecular contrast. Simulated STM images reproduce the chirality of the electronic structure near E_F.
Munce, Nigel R; Mariampillai, Adrian; Standish, Beau A; Pop, Mihaela; Anderson, Kevan J; Liu, George Y; Luk, Tim; Courtney, Brian K; Wright, Graham A; Vitkin, I Alex; Yang, Victor X D
2008-04-01
A novel flexible scanning optical probe is constructed with a finely etched optical fiber strung through a platinum coil in the lumen of a dissipative polymer. The packaged probe is 2.2 mm in diameter with a rigid length of 6mm when using a ball lens or 12 mm when scanning the fiber proximal to a gradient-index (GRIN) lens. Driven by constant high voltage (1-3 kV) at low current (< 5 microA), the probe oscillates to provide wide forward-viewing angle (13 degrees and 33 degrees with ball and GRIN lens designs, respectively) and high-frame-rate (10-140 fps) operation. Motion of the probe tip is observed with a high-speed camera and compared with theory. Optical coherence tomography (OCT) imaging with the probe is demonstrated with a wavelength-swept source laser. Images of an IR card as well as in vivo Doppler OCT images of a tadpole heart are presented. This optomechanical design offers a simple, inexpensive method to obtain a high-frame-rate forward-viewing scanning probe.
Neves-Petersen, Maria Teresa; Petersen, Steffen B
2003-01-01
The molecular understanding of the initial interaction between a protein and, e.g., its substrate, a surface or an inhibitor is essentially an understanding of the role of electrostatics in intermolecular interactions. When studying biomolecules it is becoming increasingly evident that electrostatic interactions play a role in folding, conformational stability, enzyme activity and binding energies as well as in protein-protein interactions. In this chapter we present the key basic equations of electrostatics necessary to derive the equations used to model electrostatic interactions in biomolecules. We will also address how to solve such equations. This chapter is divided into two major sections. In the first part we will review the basic Maxwell equations of electrostatics equations called the Laws of Electrostatics that combined will result in the Poisson equation. This equation is the starting point of the Poisson-Boltzmann (PB) equation used to model electrostatic interactions in biomolecules. Concepts as electric field lines, equipotential surfaces, electrostatic energy and when can electrostatics be applied to study interactions between charges will be addressed. In the second part we will arrive at the electrostatic equations for dielectric media such as a protein. We will address the theory of dielectrics and arrive at the Poisson equation for dielectric media and at the PB equation, the main equation used to model electrostatic interactions in biomolecules (e.g., proteins, DNA). It will be shown how to compute forces and potentials in a dielectric medium. In order to solve the PB equation we will present the continuum electrostatic models, namely the Tanford-Kirkwood and the modified Tandord-Kirkwood methods. Priority will be given to finding the protonation state of proteins prior to solving the PB equation. We also present some methods that can be used to map and study the electrostatic potential distribution on the molecular surface of proteins. The combination of graphical visualisation of the electrostatic fields combined with knowledge about the location of key residues on the protein surface allows us to envision atomic models for enzyme function. Finally, we exemplify the use of some of these methods on the enzymes of the lipase family.
Diminish electrostatic in piezoresponse force microscopy through longer or ultra-stiff tips
NASA Astrophysics Data System (ADS)
Gomez, A.; Puig, T.; Obradors, X.
2018-05-01
Piezoresponse Force Microscopy is a powerful but delicate nanoscale technique that measures the electromechanical response resulting from the application of a highly localized electric field. Though mechanical response is normally due to piezoelectricity, other physical phenomena, especially electrostatic interaction, can contribute to the signal read. We address this problematic through the use of longer ultra-stiff probes providing state of the art sensitivity, with the lowest electrostatic interaction and avoiding working in high frequency regime. In order to find this solution we develop a theoretical description addressing the effects of electrostatic contributions in the total cantilever vibration and its quantification for different setups. The theory is subsequently tested in a Periodically Poled Lithium Niobate (PPLN) crystal, a sample with well-defined 0° and 180° domains, using different commercial available conductive tips. We employ the theoretical description to compare the electrostatic contribution effects into the total phase recorded. Through experimental data our description is corroborated for each of the tested commercially available probes. We propose that a larger probe length can be a solution to avoid electrostatic forces, so the cantilever-sample electrostatic interaction is reduced. Our proposed solution has great implications into avoiding artifacts while studying soft biological samples, multiferroic oxides, and thin film ferroelectric materials.
Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions
NASA Technical Reports Server (NTRS)
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, weather prediction, earth quake prediction, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides
Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; ...
2014-06-19
Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less
Computational modeling of electrostatic charge and fields produced by hypervelocity impact
Crawford, David A.
2015-05-19
Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less
Electrostatic potential of B-DNA: effect of interionic correlations.
Gavryushov, S; Zielenkiewicz, P
1998-01-01
Modified Poisson-Boltzmann (MPB) equations have been numerically solved to study ionic distributions and mean electrostatic potentials around a macromolecule of arbitrarily complex shape and charge distribution. Results for DNA are compared with those obtained by classical Poisson-Boltzmann (PB) calculations. The comparisons were made for 1:1 and 2:1 electrolytes at ionic strengths up to 1 M. It is found that ion-image charge interactions and interionic correlations, which are neglected by the PB equation, have relatively weak effects on the electrostatic potential at charged groups of the DNA. The PB equation predicts errors in the long-range electrostatic part of the free energy that are only approximately 1.5 kJ/mol per nucleotide even in the case of an asymmetrical electrolyte. In contrast, the spatial correlations between ions drastically affect the electrostatic potential at significant separations from the macromolecule leading to a clearly predicted effect of charge overneutralization. PMID:9826596
Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi
2018-03-15
Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasperse, John R.; Basu, Bamandas; Lund, Eric J.
2010-06-15
Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for themore » ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].« less
Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu; Wen, Tiliang; Diamond, P. H.
2016-08-11
Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux—more » $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ in strong electrostatic turbulence is calculated using the Hasegawa–Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.« less
NASA Astrophysics Data System (ADS)
Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo
2014-04-01
To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.
Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo
2014-04-01
To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.
NASA Astrophysics Data System (ADS)
Sachdeva, Ritika; Soni, Abhinav; Singh, V. P.; Saini, G. S. S.
2018-05-01
Etoricoxib is one of the selective cyclooxygenase inhibitor drug which plays a significant role in the pharmacological management of arthritis and pain. The theoretical investigation of its reactivity is done using Density Functional Theory calculations. Molecular Electrostatic Potential Surface of etoricoxib and its Mulliken atomic charge distribution are used for the prediction of its electrophilic and nucleophilic sites. The detailed analysis of its frontier molecular orbitals is also done.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708
We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less
Fowler, Nicholas J.; Blanford, Christopher F.
2017-01-01
Abstract Blue copper proteins, such as azurin, show dramatic changes in Cu2+/Cu+ reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high‐level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long‐range electrostatic changes and hence can be modeled accurately with continuum electrostatics. PMID:28815759
Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim
2015-08-14
We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.
Nonlinear Poisson equation for heterogeneous media.
Hu, Langhua; Wei, Guo-Wei
2012-08-22
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
High resolution subsurface imaging using resonance-enhanced detection in 2nd-harmonic KPFM.
Cadena, Maria Jose; Reifenberger, Ronald G; Raman, Arvind
2018-06-28
Second harmonic Kelvin probe force microscopy is a robust mechanism for subsurface imaging at the nanoscale. Here we exploit resonance-enhanced detection as a way to boost the subsurface contrast with higher force sensitivity using lower bias voltages, in comparison to the traditional off-resonance case. In this mode, the second harmonic signal of the electrostatic force is acquired at one of the eigenmode frequencies of the microcantilever. As a result, high-resolution subsurface images are obtained in a variety of nanocomposites. To further understand the subsurface imaging detection upon electrostatic forces, we use a finite element model that approximates the geometry of the probe and sample. This allows the investigation of the contrast mechanism, the depth sensitivity and lateral resolution depending on tip-sample properties. © 2018 IOP Publishing Ltd.
Lilliu, S; Maragliano, C; Hampton, M; Elliott, M; Stefancich, M; Chiesa, M; Dahlem, M S; Macdonald, J E
2013-11-27
We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications.
Bardhan, Jaydeep P; Knepley, Matthew G
2011-09-28
We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics
Active damping of capillary oscillations on liquid columns
NASA Astrophysics Data System (ADS)
Thiessen, David B.; Wei, Wei; Marston, Philip L.
2002-05-01
Active control of acoustic radiation pressure and of electrostatic stresses on liquid columns has been demonstrated to overcome the Rayleigh-Plateau instability that normally causes long liquid columns to break [M. J. Marr-Lyon et al., J. Fluid Mech. 351, 345 (1997); Phys. Fluids 12, 986-995 (2000)]. Though originally demonstrated for liquid-liquid systems in plateau tanks, the electrostatic method also works on columns in air in reduced gravity [D. B. Thiessen, M. J. Marr-Lyon, and P. L. Marston, ``Active electrostatic stabilization of liquid bridges in low gravity,'' J. Fluid Mech. (in press)]. In new research, the electrostatic stresses are applied in proportion to the velocity of the surface of the column so as to actively dampen capillary oscillations of the surface. The mode amplitude is optically sensed and the rate-of-change is electronically determined. Plateau tank measurements and theory both show that the change in damping rate is proportional to the feedback gain. The results suggest that either active control of electrostatic stresses or of acoustic radiation stresses can be used to suppress the response of interfaces to vibration. [Work supported by NASA.
On approximate formulas for the electrostatic force between two conducting spheres
NASA Astrophysics Data System (ADS)
Sliško, Josip; Brito-Orta, Raúl A.
1998-04-01
A series expression for the electrostatic force between two charged conducting spheres having equal radii and charges is derived using the method of electrical images. This expression is a special case of that for two spheres with arbitrary charges and radii, found by Maxwell using zonal harmonics. Keeping in mind the use of approximate formulas for the interpretation of classroom measurements of the electrostatic force between spheres, we comment on two incorrect approximate formulas and examine the contribution of the first few non-Coulomb terms of the correct formula by comparing with values obtained using a computational approach.
Alidoosti, Elaheh; Zhao, Hui
2018-05-15
At concentrated electrolytes, the ion-ion electrostatic correlation effect is considered an important factor in electrokinetics. In this paper, we compute, in theory and simulation, the dipole moment for a spherical particle (charged, dielectric) under the action of an alternating electric field using the modified continuum Poisson-Nernst-Planck (PNP) model by Bazant et al. [ Double Layer in Ionic Liquids: Overscreening Versus Crowding . Phys. Rev. Lett. 2011 , 106 , 046102 ] We investigate the dependency of the dipole moment in terms of frequency and its variation with such quantities like ζ-potential, electrostatic correlation length, and double-layer thickness. With thin electric double layers, we develop simple models through performing an asymptotic analysis of the modified PNP model. We also present numerical results for an arbitrary Debye screening length and electrostatic correlation length. From the results, we find a complicated impact of electrostatic correlations on the dipole moment. For instance, with increasing the electrostatic correlation length, the dipole moment decreases and reaches a minimum and then it goes up. This is because of initially decreasing of surface conduction and finally increasing due to the impact of ion-ion electrostatic correlations on ion's convection and migration. Also, we show that in contrast to the standard PNP model, the modified PNP model can qualitatively explain the data from the experimental results in multivalent electrolytes.
Symmetry-adapted perturbation theory interaction energy decomposition for some noble gas complexes
NASA Astrophysics Data System (ADS)
Cukras, Janusz; Sadlej, Joanna
2008-06-01
This Letter contains a study of the interaction energy in HArF⋯N 2 and HArF⋯P 2 complexes. Symmetry-adapted perturbation theory (SAPT) has been applied to analyze the electrostatic, induction, dispersion and exchange contributions to the total interaction energy. The interaction energy has also been obtained by supermolecular method at the MP2, MP4, CCSD, CCSD(T) levels. The interaction energy for the studied complexes results from a partial cancelation of large attractive electrostatic, induction, dispersion terms by a strong repulsive exchange contribution. The induction and dispersion effects proved to be crucial in establishing the preference for the colinear HArF⋯N 2 and HArF⋯P 2 structures and shift direction of νHAr stretching vibrations.
Electrostatics of DNA-Functionalized Nanoparticles
NASA Astrophysics Data System (ADS)
Hoffmann, Kyle; Krishnamoorthy, Kurinji; Kewalramani, Sumit; Bedzyk, Michael; Olvera de La Cruz, Monica
DNA-functionalized nanoparticles have applications in directed self-assembly and targeted cellular delivery of therapeutic proteins. In order to design specific systems, it is necessary to understand their self-assembly properties, of which the long-range electrostatic interactions are a critical component. We iteratively solved equations derived from classical density functional theory in order to predict the distribution of ions around DNA-functionalized Cg Catalase. We then compared estimates of the resonant intensity to those from SAXS measurements to estimate key features of DNA-functionalized proteins, such as the size of the region linking the protein and DNA and the extension of the single-stranded DNA. Using classical density functional theory and coarse-grained simulations, we are able to predict and understand these fundamental properties in order to rationally design new biomaterials.
Hayashi, Tomoyuki; Mukamel, Shaul
2006-11-21
The coherent nonlinear response of the entire amide line shapes of N-methyl acetamide to three infrared pulses is simulated using an electrostatic density functional theory map. Positive and negative cross peaks contain signatures of correlations between the fundamentals and the combination state. The amide I-A and I-III cross-peak line shapes indicate positive correlation and anticorrelation of frequency fluctuations, respectively. These can be ascribed to correlated hydrogen bonding at C[double bond]O and N-H sites. The amide I frequency is negatively correlated with the hydrogen bond on carbonyl C[double bond]O, whereas the amide A and III are negatively and positively correlated, respectively, with the hydrogen bond on amide N-H.
Two-tone nonlinear electrostatic waves in the quantum electron–hole plasma of semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Kitayev, I. N.
2017-01-15
Longitudinal electrostatic waves in the quantum electron–hole plasma of semiconductors are considered taking into account the degeneracy of electrons and holes and the exchange interaction. It is found in the framework of linear theory that the dispersion curve of longitudinal waves has two branches: plasmon and acoustic. An expression for the critical cutoff frequency for plasma oscillations and an expression for the speed of sound for acoustic vibrations are derived. It is shown that the plasma wave always exists in the form of a superposition of two components, characterized by different periods and wavelengths. Two nonlinear solutions are obtained withinmore » nonlinear theory: one in the form of a simple superposition of two tones and the other in the form of beats.« less
Controlled ionic condensation at the surface of a native extremophile membrane
NASA Astrophysics Data System (ADS)
Contera, Sonia Antoranz; Voïtchovsky, Kislon; Ryan, John F.
2010-02-01
At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces.At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces. Electronic supplementary information (ESI) available: Figs. S1 and S2: amplitude- and phase-extension curves used to derive the data presented in Figs. 2 and 4. See DOI: 10.1039/b9nr00248k
Barker, John R; Martinez, Antonio
2018-04-04
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.
NASA Astrophysics Data System (ADS)
Barker, John R.; Martinez, Antonio
2018-04-01
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.
Danov, Krassimir D.; Basheva, Elka S.; Kralchevsky, Peter A.
2016-01-01
Experimental data for the disjoining pressure of foam films stabilized by anionic surfactant in the presence of 1:1, 1:2, 1:3, and 2:2 electrolytes: NaCl, Na2SO4, Na3Citrate, and MgSO4 are reported. The disjoining pressure predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory coincides with the experimental data in the case of a 1:1 electrolyte, but it is considerably greater than the measured pressure in all other cases. The theory is extended to account for the effects of ionic correlations and finite ionic radii. Original analytical expressions are derived for the local activity coefficient, electrostatic disjoining pressure, and asymptotic screening parameter. With the same parameter of counterion binding as for a 1:1 electrolyte, the curves predicted by the extended theory are in perfect agreement with the experimental data for 1:2 and 1:3 electrolytes. In comparison with the DLVO theory, the effect of ionic correlations leads to more effective screening of electrostatic interactions, and lower electric potential and counterion concentrations in the film’s midplane, resulting in lower disjoining pressure, as experimentally observed. The developed theory is applicable to both multivalent coions and multivalent counterions. Its application could remove some discrepancies between theory and experiment observed in studies with liquid films from electrolyte solutions. PMID:28773269
A molecular Debye-Huckel theory of solvation in polar fluids: An extension of the Born model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Tiejun; Song, Xueyu
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated inmore » a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. In conclusion, our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.« less
A molecular Debye-Huckel theory of solvation in polar fluids: An extension of the Born model
Xiao, Tiejun; Song, Xueyu
2017-12-06
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated inmore » a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. In conclusion, our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.« less
A molecular Debye-Hückel theory of solvation in polar fluids: An extension of the Born model
NASA Astrophysics Data System (ADS)
Xiao, Tiejun; Song, Xueyu
2017-12-01
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.
A molecular Debye-Hückel theory of solvation in polar fluids: An extension of the Born model.
Xiao, Tiejun; Song, Xueyu
2017-12-07
A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.
Totton, Tim S; Misquitta, Alston J; Kraft, Markus
2011-11-24
In this work we assess a recently published anisotropic potential for polycyclic aromatic hydrocarbon (PAH) molecules (J. Chem. Theory Comput. 2010, 6, 683-695). Comparison to recent high-level symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) results for coronene (C(24)H(12)) demonstrate the transferability of the potential while highlighting some limitations with simple point charge descriptions of the electrostatic interaction. The potential is also shown to reproduce second virial coefficients of benzene (C(6)H(6)) with high accuracy, and this is enhanced by using a distributed multipole model for the electrostatic interaction. The graphene dimer interaction energy and the exfoliation energy of graphite have been estimated by extrapolation of PAH interaction energies. The contribution of nonlocal fluctuations in the π electron density in graphite have also been estimated which increases the exfoliation energy by 3.0 meV atom(-1) to 47.6 meV atom(-1), which compares well to recent theoretical and experimental results.
Determination of the Influence of Electric Fields upon the Densification of Ionic Ceramics
2017-07-21
and assisting the development of new techniques to expose nanoparticles to non -contacting electrostatic fields at temperatures as high as 900...through TEM imaging, and assisting the development of new techniques to expose nanoparticles to non -contacting electrostatic fields at temperatures as...during flash sintering lead to non -homogeneous microstructures. We expect that therefore physical properties may be inhomogeneous depending local
Ion size effects upon ionic exclusion from dielectric interfaces and slit nanopores
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.
2011-05-01
A previously developed field-theoretic model (Coalson et al 1995 J. Chem. Phys. 102 4584) that treats core collisions and Coulomb interactions on the same footing is investigated in order to understand ion size effects on the partition of neutral and charged particles at planar interfaces and the ionic selectivity of slit nanopores. We introduce a variational scheme that can go beyond the mean-field (MF) regime and couple in a consistent way pore-modified core interactions, steric effects, electrostatic solvation and image-charge forces, and surface charge induced electrostatic potential. Density profiles of neutral particles in contact with a neutral hard wall, obtained from Monte Carlo (MC) simulations are compared with the solutions of mean-field and variational equations. A recently proposed random-phase approximation (RPA) method is tested as well. We show that in the dilute limit, the MF and the variational theories agree well with simulation results, in contrast to the RPA method. The partition of charged Yukawa particles at a neutral dielectric interface (e.g. an air-water or protein-water interface) is investigated. It is shown that as a result of the competition between core collisions that push the ions toward the surface, and repulsive solvation and image forces that exclude them from the interface, a concentration peak of finite size ions sets in close to the dielectric interface. This effect is amplified with increasing ion size and bulk concentration. An integral expression for the surface tension that accounts for excluded volume effects is computed and the decrease of the surface tension with increasing ion size is illustrated. We also characterize the role played by the ion size in the ionic selectivity of neutral slit nanopores. We show that the complex interplay between electrostatic forces, excluded volume effects induced by core collisions and steric effects leads to an unexpected reversal in the ionic selectivity of the pore with varying pore size: while large pores exhibit a higher conductivity for large ions, narrow pores exclude large ions more efficiently than small ones.
Boundary condition for Ginzburg-Landau theory of superconducting layers
NASA Astrophysics Data System (ADS)
Koláček, Jan; Lipavský, Pavel; Morawetz, Klaus; Brandt, Ernst Helmut
2009-05-01
Electrostatic charging changes the critical temperature of superconducting thin layers. To understand the basic mechanism, it is possible to use the Ginzburg-Landau theory with the boundary condition derived by de Gennes from the BCS theory. Here we show that a similar boundary condition can be obtained from the principle of minimum free energy. We compare the two boundary conditions and use the Budd-Vannimenus theorem as a test of approximations.
Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin
2017-02-01
We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.
Fowler, Nicholas J; Blanford, Christopher F; Warwicker, Jim; de Visser, Sam P
2017-11-02
Blue copper proteins, such as azurin, show dramatic changes in Cu 2+ /Cu + reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high-level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long-range electrostatic changes and hence can be modeled accurately with continuum electrostatics. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Simulations of Coulomb systems with slab geometry using an efficient 3D Ewald summation method
NASA Astrophysics Data System (ADS)
dos Santos, Alexandre P.; Girotto, Matheus; Levin, Yan
2016-04-01
We present a new approach to efficiently simulate electrolytes confined between infinite charged walls using a 3d Ewald summation method. The optimal performance is achieved by separating the electrostatic potential produced by the charged walls from the electrostatic potential of electrolyte. The electric field produced by the 3d periodic images of the walls is constant inside the simulation cell, with the field produced by the transverse images of the charged plates canceling out. The non-neutral confined electrolyte in an external potential can be simulated using 3d Ewald summation with a suitable renormalization of the electrostatic energy, to remove a divergence, and a correction that accounts for the conditional convergence of the resulting lattice sum. The new algorithm is at least an order of magnitude more rapid than the usual simulation methods for the slab geometry and can be further sped up by adopting a particle-particle particle-mesh approach.
Fast visible imaging of turbulent plasma in TORPEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iraji, D.; Diallo, A.; Fasoli, A.
2008-10-15
Fast framing cameras constitute an important recent diagnostic development aimed at monitoring light emission from magnetically confined plasmas, and are now commonly used to study turbulence in plasmas. In the TORPEX toroidal device [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], low frequency electrostatic fluctuations associated with drift-interchange waves are routinely measured by means of extensive sets of Langmuir probes. A Photron Ultima APX-RS fast framing camera has recently been acquired to complement Langmuir probe measurements, which allows comparing statistical and spectral properties of visible light and electrostatic fluctuations. A direct imaging system has been developed, which allows viewingmore » the light, emitted from microwave-produced plasmas tangentially and perpendicularly to the toroidal direction. The comparison of the probability density function, power spectral density, and autoconditional average of the camera data to those obtained using a multiple head electrostatic probe covering the plasma cross section shows reasonable agreement in the case of perpendicular view and in the plasma region where interchange modes dominate.« less
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Schmidt, Matthias
2005-06-01
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter—the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.
Contribution of crosstalk to the uncertainty of electrostatic actuator calibrations.
Shams, Qamar A; Soto, Hector L; Zuckerwar, Allan J
2009-09-01
Crosstalk in electrostatic actuator calibrations is defined as the ratio of the microphone response to the actuator excitation voltage at a given frequency with the actuator polarization voltage turned off to the response, at the excitation frequency, with the polarization voltage turned on. It consequently contributes to the uncertainty of electrostatic actuator calibrations. Two sources of crosstalk are analyzed: the first attributed to the stray capacitance between the actuator electrode and the microphone backplate, and the second to the ground resistance appearing as a common element in the actuator excitation and microphone input loops. Measurements conducted on 1/4, 1/2, and 1 in. air condenser microphones reveal that the crosstalk has no frequency dependence up to the membrane resonance frequency and that the level of crosstalk lies at about -60 dB for all three microphones-conclusions that are consistent with theory. The measurements support the stray capacitance model. The contribution of crosstalk to the measurement standard uncertainty of an electrostatic actuator calibration is therewith 0.01 dB.
Importance of elastic finite-size effects: Neutral defects in ionic compounds
NASA Astrophysics Data System (ADS)
Burr, P. A.; Cooper, M. W. D.
2017-09-01
Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.
Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovchanskaya, Irina V.; Kozelov, Boris V.; Chernyshov, Alexander A.
2014-08-15
The excitation of electrostatic turbulence inside space-observed solitary structures is a central topic of this exposition. Three representative solitary structures observed in the topside auroral ionosphere as large-amplitude nonlinear signatures in the electric field and magnetic-field-aligned current on the transverse scales of ∼10{sup 2}–10{sup 3} m are evaluated by the theories of electrostatic wave generation in inhomogeneous background configurations. A quantitative analysis shows that the structures are, in general, effective in destabilizing the inhomogeneous energy-density-driven (IEDD) waves, as well as of the ion acoustic waves modified by a shear in the parallel drift of ions. It is demonstrated that the dominatingmore » branch of the electrostatic turbulence is determined by the interplay of various driving sources inside a particular solitary structure. The sources do not generally act in unison, so that their common effect may be inhibiting for excitation of electrostatic waves of a certain type. In the presence of large magnetic-field-aligned current, which is not correlated to the inhomogeneous electric field inside the structure, the ion-acoustic branch becomes dominating. In other cases, the IEDD instability is more central.« less
NASA Astrophysics Data System (ADS)
Barber, Steven
Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample. First, the acquisition of atomic-scale images of freestanding graphene using the STM and the ability to pull the graphene perpendicular to its plane by applying an electrostatic force with the STM tip are demonstrated. The atomic-scale images contained surprisingly large corrugations due to the electrostatic attractive force varying in registry with the local density of states. Meanwhile, a large range of control over the graphene height at a point was obtained by varying the tip bias voltage, and the application to strain engineering of graphene's so-called pseudomagnetic field is examined. Next, the effect of the tunneling current was investigated. With increasing current, the graphene sample moves away from the tip rather than toward it. It was determined that this must be due to local heating by the electric current, causing the graphene to contract because it has a negative coefficient of thermal expansion. Finally, by imaging a very small area, the STM can monitor the height of one location over long time intervals. Results sometimes exhibit periodic behavior, with a frequency and amplitude that depend on the tunneling current. These fluctuations are interpreted as low-frequency flexural phonon modes within elasticity theory. All of these findings set the foundation for employing a STM in the study of freestanding graphene.
Electrostatic fluctuations in collisional plasmas
NASA Astrophysics Data System (ADS)
Rozmus, W.; Brantov, A.; Fortmann-Grote, C.; Bychenkov, V. Yu.; Glenzer, S.
2017-10-01
We present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S (k ⃗,ω ) , is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S (k ⃗,ω ) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at Te=Ti are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S (k ⃗,ω ) .
Metriplectic Gyrokinetics and Discretization Methods for the Landau Collision Integral
NASA Astrophysics Data System (ADS)
Hirvijoki, Eero; Burby, Joshua W.; Kraus, Michael
2017-10-01
We present two important results for the kinetic theory and numerical simulation of warm plasmas: 1) We provide a metriplectic formulation of collisional electrostatic gyrokinetics that is fully consistent with the First and Second Laws of Thermodynamics. 2) We provide a metriplectic temporal and velocity-space discretization for the particle phase-space Landau collision integral that satisfies the conservation of energy, momentum, and particle densities to machine precision, as well as guarantees the existence of numerical H-theorem. The properties are demonstrated algebraically. These two result have important implications: 1) Numerical methods addressing the Vlasov-Maxwell-Landau system of equations, or its reduced gyrokinetic versions, should start from a metriplectic formulation to preserve the fundamental physical principles also at the discrete level. 2) The plasma physics community should search for a metriplectic reduction theory that would serve a similar purpose as the existing Lagrangian and Hamiltonian reduction theories do in gyrokinetics. The discovery of metriplectic formulation of collisional electrostatic gyrokinetics is strong evidence in favor of such theory and, if uncovered, the theory would be invaluable in constructing reduced plasma models. Supported by U.S. DOE Contract Nos. DE-AC02-09-CH11466 (EH) and DE-AC05-06OR23100 (JWB) and by European Union's Horizon 2020 research and innovation Grant No. 708124 (MK).
Gillespie, Dirk
2014-11-01
Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.
DNA-DNA interaction beyond the ground state
NASA Astrophysics Data System (ADS)
Lee, D. J.; Wynveen, A.; Kornyshev, A. A.
2004-11-01
The electrostatic interaction potential between DNA duplexes in solution is a basis for the statistical mechanics of columnar DNA assemblies. It may also play an important role in recombination of homologous genes. We develop a theory of this interaction that includes thermal torsional fluctuations of DNA using field-theoretical methods and Monte Carlo simulations. The theory extends and rationalizes the earlier suggested variational approach which was developed in the context of a ground state theory of interaction of nonhomologous duplexes. It shows that the heuristic variational theory is equivalent to the Hartree self-consistent field approximation. By comparison of the Hartree approximation with an exact solution based on the QM analogy of path integrals, as well as Monte Carlo simulations, we show that this easily analytically-tractable approximation works very well in most cases. Thermal fluctuations do not remove the ability of DNA molecules to attract each other at favorable azimuthal conformations, neither do they wash out the possibility of electrostatic “snap-shot” recognition of homologous sequences, considered earlier on the basis of ground state calculations. At short distances DNA molecules undergo a “torsional alignment transition,” which is first order for nonhomologous DNA and weaker order for homologous sequences.
Correlation potential of a test ion near a strongly charged plate.
Lu, Bing-Sui; Xing, Xiangjun
2014-03-01
We analytically calculate the correlation potential of a test ion near a strongly charged plate inside a dilute m:-n electrolyte. We do this by calculating the electrostatic Green's function in the presence of a nonlinear background potential, the latter having been obtained using the nonlinear Poisson-Boltzmann theory. We consider the general case where the dielectric constants of the plate and the electrolyte are distinct. The following generic results emerge from our analyses: (1) If the distance to the plate Δz is much larger than a Gouy-Chapman length, the plate surface will behave effectively as an infinitely charged surface, and the dielectric constant of the plate effectively plays no role. (2) If Δz is larger than a Gouy-Chapman length but shorter than a Debye length, the correlation potential can be interpreted in terms of an image charge that is three times larger than the source charge. This behavior is independent of the valences of the ions. (3) The Green's function vanishes inside the plate if the surface charge density is infinitely large; hence the electrostatic potential is constant there. In this respect, a strongly charged plate behaves like a conductor plate. (4) If Δz is smaller than a Gouy-Chapman length, the correlation potential is dominated by the conventional image charge due to the dielectric discontinuity at the interface. (5) If Δz is larger than a Debye length, the leading order behavior of the correlation potential will depend on the valences of the ions in the electrolyte. Furthermore, inside an asymmetric electrolyte, the correlation potential is singly screened, i.e., it undergoes exponential decay with a decay width equal to the Debye length.
Manifold-Based Image Understanding
2010-06-30
3] employs a Texas Instruments digital micromirror device (DMD), which consists of an array of N electrostatically actuated micromirrors . The camera...image x) is reflected off a digital micromirror device (DMD) array whose mirror orientations are modulated in the pseudorandom pattern φm supplied by a
ERIC Educational Resources Information Center
Brookes, R. W.; McFadyen, W. D.
1975-01-01
Discusses the technical aspects of paramagnetism and an electrostatic model called Crystal Field Theory (CFT), very often used in the case of transition metal compounds. Suggests that this discussion be included as an option for college chemistry courses. (MLH)
NASA Astrophysics Data System (ADS)
Cao, Qian; Thawait, Gaurav; Gang, Grace J.; Zbijewski, Wojciech; Reigel, Thomas; Brown, Tyler; Corner, Brian; Demehri, Shadpour; Siewerdsen, Jeffrey H.
2015-02-01
Joint space morphology can be indicative of the risk, presence, progression, and/or treatment response of disease or trauma. We describe a novel methodology of characterizing joint space morphology in high-resolution 3D images (e.g. cone-beam CT (CBCT)) using a model based on elementary electrostatics that overcomes a variety of basic limitations of existing 2D and 3D methods. The method models each surface of a joint as a conductor at fixed electrostatic potential and characterizes the intra-articular space in terms of the electric field lines resulting from the solution of Gauss’ Law and the Laplace equation. As a test case, the method was applied to discrimination of healthy and osteoarthritic subjects (N = 39) in 3D images of the knee acquired on an extremity CBCT system. The method demonstrated improved diagnostic performance (area under the receiver operating characteristic curve, AUC > 0.98) compared to simpler methods of quantitative measurement and qualitative image-based assessment by three expert musculoskeletal radiologists (AUC = 0.87, p-value = 0.007). The method is applicable to simple (e.g. the knee or elbow) or multi-axial joints (e.g. the wrist or ankle) and may provide a useful means of quantitatively assessing a variety of joint pathologies.
Electron-Focus Adjustment for Photo-Optical Imagers
NASA Technical Reports Server (NTRS)
Fowler, Walter B.; Flemming, Keith; Ziegler, Michael M.
1987-01-01
Internal electron focus made independent of optical focus. Procedure enables fine tuning of internal electron-focusing system of photo-optical imager, without complication by imperfections of associated external optics. Applicable to imager in which electrons emitted from photocathode in optical focal plane, then electrostatically and/or magnetically focused to replica of image in second focal plane containing photodiodes, phototransistorss, charge-coupled devices, multiple-anode outputs, or other detectors.
Kinetic Theory of quasi-electrostatic waves in non-gyrotropic plasmas
NASA Astrophysics Data System (ADS)
Arshad, K.; Poedts, S.; Lazar, M.
2017-12-01
The orbital angular momentum (OAM) is a trait of helically phased light or helical (twisted) electric field. Lasers carrying orbital angular momentum (OAM) revolutionized many scientific and technological paradigms like microscopy, imaging and ionospheric radar facility to analyze three dimensional plasma dynamics in ionosphere, ultra-intense twisted laser pulses, twisted gravitational waves and astrophysics. This trend has also been investigated in plasma physics. Laguerre-Gaussian type solutions are predicted for magnetic tornadoes and Alfvénic tornadoes which exhibit spiral, split and ring-like morphologies. The ring shape morphology is ideal to fit the observed solar corona, solar atmosphere and Earth's ionosphere. The orbital angular momentum indicates the mediation of electrostatic and electromagnetic waves in new phenomena like Raman and Brillouin scattering. A few years ago, some new effects have been included in studies of orbital angular momentum in plasma regimes such as wave-particle interaction in the presence of helical electric field. Therefore, kinetic studies are carried out to investigate the Landau damping of the waves and growth of the instabilities in the presence helical electric field carrying orbital angular momentum for the Maxwellian distributed plasmas. Recently, a well suited approach involving a kappa distribution function has been adopted to model the twisted space plasmas. This leads to the development of new theoretical grounds for the study of Lorentzian or kappa distributed twisted Langmuir, ion acoustic, dust ion acoustic and dust acoustic modes. The quasi-electrostatic twisted waves have been studied now for the non-gyrotropic dusty plasmas in the presence of the orbital angular momentum of the helical electric field using Generalized Lorentzian or kappa distribution function. The Laguerre-Gaussian (LG) mode function is employed to decompose the perturbed distribution function and electric field into planar (longitudinal) and non-planar (azimuthal) components. The modified Vlasov and Poisson equations are solved to obtain the dielectric function for quasi-electrostatic twisted modes the non-gyrotropic dusty plasmas. Some numerical and graphical analysis is also illustrated for the better understanding of the twisted non-gyrotropic plasmas.
NASA Astrophysics Data System (ADS)
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2018-04-01
The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.
Covariant electromagnetic field lines
NASA Astrophysics Data System (ADS)
Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.
2017-08-01
Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.
Contemporary NMR Studies of Protein Electrostatics.
Hass, Mathias A S; Mulder, Frans A A
2015-01-01
Electrostatics play an important role in many aspects of protein chemistry. However, the accurate determination of side chain proton affinity in proteins by experiment and theory remains challenging. In recent years the field of nuclear magnetic resonance spectroscopy has advanced the way that protonation states are measured, allowing researchers to examine electrostatic interactions at an unprecedented level of detail and accuracy. Experiments are now in place that follow pH-dependent (13)C and (15)N chemical shifts as spatially close as possible to the sites of protonation, allowing all titratable amino acid side chains to be probed sequence specifically. The strong and telling response of carefully selected reporter nuclei allows individual titration events to be monitored. At the same time, improved frameworks allow researchers to model multiple coupled protonation equilibria and to identify the underlying pH-dependent contributions to the chemical shifts.
NASA Astrophysics Data System (ADS)
Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.
2008-09-01
We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.
Quantum dynamics of charge state in silicon field evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp
2016-08-15
The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less
ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburghmore » #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous material. There was also evidence that the carbon is present at a higher ratio in larger particles than in small particles. An ultraviolet photoelectron counter for use in ambient atmosphere is nearing completion. The counter will be used to measure work functions of different maceral and mineral types in the coal matrix. A Particle Image Analyzer for measuring size and charge of airborne particles is also under contruction and its current status is presented. A charged, monodisperse, droplet generator is also being constructed for calibration of the Particle Image Analyzer and other airborne particle analyzers in our labs.« less
A classical density functional theory for the asymmetric restricted primitive model of ionic liquids
NASA Astrophysics Data System (ADS)
Lu, Hongduo; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan
2018-05-01
A new three-parameter (valency, ion size, and charge asymmetry) model, the asymmetric restricted primitive model (ARPM) of ionic liquids, has recently been proposed. Given that ionic liquids generally are composed of monovalent species, the ARPM effectively reduces to a two-parameter model. Monte Carlo (MC) simulations have demonstrated that the ARPM is able to reproduce key properties of room temperature ionic liquids (RTILs) in bulk and at charged surfaces. The relatively modest complexity of the model raises the possibility, which is explored here, that a classical density functional theory (DFT) could resolve its properties. This is relevant because it might generate great improvements in terms of both numerical efficiency and understanding in the continued research of RTILs and their applications. In this report, a DFT for rod-like molecules is proposed as an approximate theoretical tool for an ARPM fluid. Borrowing data on the ion pair fraction from a single bulk simulation, the ARPM is modelled as a mixture of dissociated ions and connected ion pairs. We have specifically studied an ARPM where the hard-sphere diameter is 5 Å, with the charge located 1 Å from the hard-sphere centre. We focus on fluid structure and electrochemical behaviour of this ARPM fluid, into which a model electrode is immersed. The latter is modelled as a perfect conductor, and surface polarization is handled by the method of image charges. Approximate methods, which were developed in an earlier study, to take image interactions into account, are also incorporated in the DFT. We make direct numerical comparisons between DFT predictions and corresponding simulation data. The DFT theory is implemented both in the normal mean field form with respect to the electrostatic interactions and in a correlated form based on hole formation by both steric repulsions and ion-ion Coulomb interactions. The results clearly show that ion-ion correlations play a very important role in the screening of the charged surfaces by our ARPM ionic liquid. We have studied electrostatic potentials and ion density profiles as well the differential capacitance. The mean-field DFT fails to reproduce these properties, but the inclusion of ion-ion correlation by a simple approximate treatment yields quite reasonable agreement with the corresponding simulation results. An interesting finding is that there appears to be a surface phase transition at relatively low surface charge which is readily explored by DFT, but seen also in the MC simulations at somewhat higher asymmetry.
Plasma forces on microparticles on a surface: an experimental investigation
NASA Astrophysics Data System (ADS)
Heijmans, L. C. J.; Neelis, T. W. C.; van Leuken, D. P. J.; Bouchut, A.; Nijdam, S.
2017-07-01
A plasma causes a force on particles on a surface. We quantitatively measure this force by means of two different setups, which use different methods to balance the forces on these particles: one using vibrations, the other a centrifuge. From this, we deduce both the adhesion that sticks the particles to the surface, and how the application of a plasma affects the adhesion of the particles. We show that the plasma alters the force balance on 100 μ {{m}} diameter particles with a force in the order of micronewtons. We can conclude, from both additional experiments and comparison to theory, that the main plasma effect is not an electrostatic force on a charged particle; its magnitude is orders of magnitude larger than what would be expected from electrostatic theory. The plasma likely has an effect on the particle adhesion, possibly caused by evaporation of water.
The expansion of polarization charge layers into magnetized vacuum - Theory and computer simulations
NASA Technical Reports Server (NTRS)
Galvez, Miguel; Borovsky, Joseph E.
1991-01-01
The formation and evolution of polarization charge layers on cylindrical plasma streams moving in vacuum are investigated using analytic theory and 2D electrostatic particle-in-cell computer simulations. It is shown that the behavior of the electron charge layer goes through three stages. An early time expansion is driven by electrostatic repulsion of electrons in the charge layer. At the intermediate stage, the simulations show that the electron-charge-layer expansion is halted by the positively charged plasma stream. Electrons close to the stream are pulled back to the stream and a second electron expansion follows in time. At the late stage, the expansion of the ion charge layer along the magnetic field lines accompanies the electron expansion to form an ambipolar expansion. It is found that the velocities of these electron-ion expansions greatly exceed the velocities of ambipolar expansions which are driven by plasma temperatures.
Electrostatic fluctuations in collisional plasmas
Rozmus, W.; Brantov, A.; Fortmann-Grote, C.; ...
2017-10-12
Here, we present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S( →k,ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S( →k,ω) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at Tmore » e = T i are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S( →k,ω).« less
Electrostatic fluctuations in collisional plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozmus, W.; Brantov, A.; Fortmann-Grote, C.
Here, we present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S( →k,ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S( →k,ω) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at Tmore » e = T i are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S( →k,ω).« less
Electrostatic fluctuations in collisional plasmas.
Rozmus, W; Brantov, A; Fortmann-Grote, C; Bychenkov, V Yu; Glenzer, S
2017-10-01
We present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S(k[over ⃗],ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S(k[over ⃗],ω) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at T_{e}=T_{i} are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S(k[over ⃗],ω).
Electrostatic theory of the assembly of PAMAM dendrimers and DNA.
Perico, Angelo
2016-05-01
The electrostatic interactions mediated by counterions between a cationic PAMAM dendrimer, modelized as a sphere of radius and cationic surface charge highly increasing with generation, and a DNA, modelized as an anionic elastic line, are analytically calculated in the framework of condensation theory. Under these interactions the DNA is wrapped around the sphere. For excess phosphates relative to dendrimer primary amines, the free energy of the DNA-dendrimer complex displays an absolute minimum when the complex is weakly negatively overcharged. This overcharging opposes gene delivery. For a highly positive dendrimer and a DNA fixed by experimental conditions to a number of phosphates less than the number of dendrimer primary amines, excess amine charges, the dendrimer may at the same time bind stably DNA and interact with negative cell membranes to activate cell transfection in fair agreement with molecular simulations and experiments. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jeong, I. S.; Scott, K.; Donovan, K. J.; Wilson, E. G.
2000-11-01
The tunneling rate of photocreated charge carriers between layers in Langmuir-Blodgett multilayer structures is measured indirectly using the novel technique of bimolecular recombination quenching. The tunneling rate is measured as a function of the applied electrostatic potential difference between the layers as the temperature is varied between 300 and 4 K. This dependence is examined in light of the Marcus theory of charge transfer where the electrostatic potential replaces the chemical potential as the driving potential. The expectations of the Marcus theory are not met and the rate is effectively temperature independent, contrary to expectation. Other mechanisms are explored that may explain the lack of temperature dependence including the role of high frequency vibrations and the role of the zero point energy of those vibrations. The temperature dependence of the exciton dissociation probability is also examined.
Effect of salt entropy on protein solubility and Hofmeister series
NASA Astrophysics Data System (ADS)
Dahal, Yuba; Schmit, Jeremy
We present a theory of salt effects on protein solubility that accounts for salting-in, salting-out, and the Hofmeister series. We represent protein charge by the first order multipole expansion to include attractive and repulsive electrostatic interactions in the model. Our model also includes non-electrostatic protein-ion interactions, and ion-solvent interactions via an effective solvated ion radius. We find that the finite size of the ions has significant effects on the translational entropy of the salt, which accounts for the changes in the protein solubility. At low salt the dominant effect comes from the entropic cost of confining ions within the aggregate. At high concentrations the salt drives a depletion attraction that favors aggregation. Our theory explains the reversal in the Hofmeister series observed in lysozyme cloud point measurements and semi-quantitatively describes the solubility of lysozyme and chymosin crystals.
Electrostatic Debye layer formed at a plasma-liquid interface
NASA Astrophysics Data System (ADS)
Rumbach, Paul; Clarke, Jean Pierre; Go, David B.
2017-05-01
We construct an analytic model for the electrostatic Debye layer formed at a plasma-liquid interface by combining the Gouy-Chapman theory for the liquid with a simple parabolic band model for the plasma sheath. The model predicts a nonlinear scaling between the plasma current density and the solution ionic strength, and we confirmed this behavior with measurements using a liquid-anode plasma. Plots of the measured current density as a function of ionic strength collapse the data and curve fits yield a plasma electron density of ˜1019m-3 and an electric field of ˜104V /m on the liquid side of the interface. Because our theory is based firmly on fundamental physics, we believe it can be widely applied to many emerging technologies involving the interaction of low-temperature, nonequilibrium plasma with aqueous media, including plasma medicine and various plasma chemical synthesis techniques.
Location and analysis of acoustic infrasound pulses in lightning
NASA Astrophysics Data System (ADS)
Arechiga, R.; Stock, M.; Thomas, R.; Erives, H.; Rison, W.; Edens, H.; Lapierre, J.
2014-07-01
Acoustic, VHF, and electrostatic measurements throw new light onto the origin and production mechanism of the thunder infrasound signature (<10 Hz) from lightning. This signature, composed of an initial compression followed by a rarefaction pulse, has been the subject of several unconfirmed theories and models. The observations of two intracloud flashes which each produced multiple infrasound pulses were analyzed for this work. Once the variation of the speed of sound with temperature is taken into account, both the compression and rarefaction portions of the infrasound pulses are found to originate very near lightning channels mapped by the Lightning Mapping Array. We found that none of the currently proposed models can explain infrasound generation by lightning, and thus propose an alternate theory: The infrasound compression pulse is produced by electrostatic interaction of the charge deposited on the channel and in the streamer zone of the lightning channel.
Kinetic theory for electrostatic waves due to transverse velocity shears
NASA Technical Reports Server (NTRS)
Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.
1988-01-01
A kinetic theory in the form of an integral equation is provided to study the electrostatic oscillations in a collisionless plasma immersed in a uniform magnetic field and a nonuniform transverse electric field. In the low temperature limit the dispersion differential equation is recovered for the transverse Kelvin-Helmholtz modes for arbitrary values of K parallel, where K parallel is the component of the wave vector in the direction of the external magnetic field assumed in the z direction. For higher temperatures the ion-cyclotron-like modes described earlier in the literature by Ganguli, Lee and Plamadesso are recovered. In this article, the integral equation is reduced to a second-order differential equation and a study is made of the kinetic Kelvin-Helmholtz and ion-cyclotron-like modes that constitute the two branches of oscillation in a magnetized plasma including a transverse inhomogeneous dc electric field.
Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.
Wang, Weizhou; Hobza, Pavel
2008-05-01
The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.
On the nature of kinetic electrostatic electron nonlinear (KEEN) waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodin, I. Y.; Fisch, N. J.
2014-03-15
An analytical theory is proposed for the kinetic electrostatic electron nonlinear (KEEN) waves originally found in simulations by Afeyan et al. [arXiv:1210.8105]. We suggest that KEEN waves represent saturated states of the negative mass instability (NMI) reported recently by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)]. Due to the NMI, trapped electrons form macroparticles that produce field oscillations at harmonics of the bounce frequency. At large enough amplitudes, these harmonics can phase-lock to the main wave and form stable nonlinear dissipationless structures that are nonstationary but otherwise similar to Bernstein-Greene-Kruskal modes. The theory explains why the formation ofmore » KEEN modes is sensitive to the excitation scenario and yields estimates that agree with the numerical results of Afeyan et al. A new type of KEEN wave may be possible at even larger amplitudes of the driving field than those used in simulations so far.« less
Imaging and Rapid-Scanning Ion Mass Spectrometer (IRM) for the CASSIOPE e-POP Mission
NASA Astrophysics Data System (ADS)
Yau, Andrew W.; Howarth, Andrew; White, Andrew; Enno, Greg; Amerl, Peter
2015-06-01
The imaging and rapid-scanning ion mass spectrometer (IRM) is part of the Enhanced Polar Outflow Probe (e-POP) instrument suite on the Canadian CASSIOPE small satellite. Designed to measure the composition and detailed velocity distributions of ions in the ˜1-100 eV/q range on a non-spinning spacecraft, the IRM sensor consists of a planar entrance aperture, a pair of electrostatic deflectors, a time-of-flight (TOF) gate, a hemispherical electrostatic analyzer, and a micro-channel plate (MCP) detector. The TOF gate measures the transit time of each detected ion inside the sensor. The hemispherical analyzer disperses incident ions by their energy-per-charge and azimuth in the aperture plane onto the detector. The two electrostatic deflectors may be optionally programmed to step through a sequence of deflector voltages, to deflect ions of different incident elevation out of the aperture plane and energy-per-charge into the sensor aperture for sampling. The position and time of arrival of each detected ion at the detector are measured, to produce an image of 2-dimensional (2D), mass-resolved ion velocity distribution up to 100 times per second, or to construct a composite 3D velocity distribution by combining successive images in a deflector voltage sequence. The measured distributions are then used to investigate ion composition, density, drift velocity and temperature in polar ion outflows and related acceleration and transport processes in the topside ionosphere.
Optical to optical interface device
NASA Technical Reports Server (NTRS)
Oliver, D. S.; Vohl, P.; Nisenson, P.
1972-01-01
The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.
Kaiser, V.; Comtet, J.; Niguès, A.; Siria, A.; Coasne, B.; Bocquet, L.
2017-01-01
The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon the approach by [Kornyshev et al. Zh. Eksp. Teor. Fiz., 78(3):1008–1019, 1980] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allow for an estimate of interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. A counterintuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length ℓTF, profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement. PMID:28436506
SAW based micro- and acousto-fluidics in biomedicine
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay K.
2017-04-01
Protein association starts with random collisions of individual proteins. Multiple collisions and rotational diffusion brings the molecules to a state of orientation. Majority of the protein associations are influenced by electrostatic interactions. To introduce: electrostatic rate enhancement, Brownian dynamics and transient complex theory has been traditionally used. Due to the recent advances in interdisciplinary sciences, an array of molecular assembly methods is being studied. Protein nanostructural assembly and macromolecular crowding are derived from the subsets of biochemistry to study protein-protein interactions and protein self-assembly. This paper tries to investigate the issue of enhancing the protein self-association rate, and bridging the gap between the simulations and experimental results. The methods proposed here include: electrostatic rate enhancement, macromolecular crowing, nanostructural protein assembly, microfluidics based approaches and magnetic force based approaches. Despite the suggestions of several methods, microfluidic and magnetic force based approaches seem to serve the need of protein assembly in a wider scale. Congruence of these approaches may also yield better results. Even though, these methods prove to be conceptually strong, to prevent the disagreement of theory and practice, a wide range of experiments is required. This proposal intends to study theoretical and experimental methods to successfully implement the aforementioned assembly strategies, and conclude with an extensive analysis of experimental data to address practical feasibility.
Ma, Manman; Xu, Zhenli
2014-12-28
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A
2015-02-05
As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1). Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Ke; Yu, Yang-Xin; Gao, Guang-Hua
2008-05-14
A density functional theory (DFT) in the framework of cell model is proposed to calculate the structural and thermodynamic properties of aqueous DNA-electrolyte solution with finite DNA concentrations. The hard-sphere contribution to the excess Helmholtz energy functional is derived from the modified fundamental measure theory, and the electrostatic interaction is evaluated through a quadratic functional Taylor expansion around a uniform fluid. The electroneutrality in the cell leads to a variational equation with a constraint. Since the reference fluid is selected to be a bulk phase, the Lagrange multiplier proves to be the potential drop across the cell boundary (Donnan potential). The ion profiles and electrostatic potential profiles in the cell are calculated from the present DFT-cell model. Our DFT-cell model gives better prediction of ion profiles than the Poisson-Boltzmann (PB)- or modified PB-cell models when compared to the molecular simulation data. The effects of polyelectrolyte concentration, ion size, and added-salt concentration on the electrostatic potential difference between the DNA surface and the cell boundary are investigated. The expression of osmotic coefficient is derived from the general formula of grand potential. The osmotic coefficients predicted by the DFT are lower than the PB results and are closer to the simulation results and experimental data.
Electrostatic interactions of colicin E1 with the surface of Escherichia coli total lipid.
Tian, Chunhong; Tétreault, Elaine; Huang, Christopher K; Dahms, Tanya E S
2006-06-01
The surface properties of colicin E1, a 522-amino acid protein, and its interaction with monolayers of Escherichia coli (E. coli) total lipid and 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DOPC) were studied using the Langmuir-Blodgett (LB) technique. Colicin E1 is amphiphilic, forming a protein monolayer at the air/buffer interface. The protein is thought to interact with the E. coli total lipid head groups through electrostatic interactions, followed by its insertion into the lipid monolayers. Supported lipid bilayers (SLBs) of E. coli total lipid and DOPC, deposited onto mica at the cell membrane equivalence pressure for E. coli and incubated with colicin E1, were imaged by contact mode atomic force microscopy (CM-AFM). Colicin E1 formed protein aggregates on DOPC SLBs, while E. coli total lipid SLB was deformed following its incubation with colicin E1. Corresponding lateral force images, along with electrostatic surface potentials for colicin E1 P190, imply a direct interaction of colicin E1 with lipid head groups facilitating their charge neutralization.
Leverentz, Hannah R; Truhlar, Donald G
2009-06-09
This work tests the capability of the electrostatically embedded many-body (EE-MB) method to calculate accurate (relative to conventional calculations carried out at the same level of electronic structure theory and with the same basis set) binding energies of mixed clusters (as large as 9-mers) consisting of water, ammonia, sulfuric acid, and ammonium and bisulfate ions. This work also investigates the dependence of the accuracy of the EE-MB approximation on the type and origin of the charges used for electrostatically embedding these clusters. The conclusions reached are that for all of the clusters and sets of embedding charges studied in this work, the electrostatically embedded three-body (EE-3B) approximation is capable of consistently yielding relative errors of less than 1% and an average relative absolute error of only 0.3%, and that the performance of the EE-MB approximation does not depend strongly on the specific set of embedding charges used. The electrostatically embedded pairwise approximation has errors about an order of magnitude larger than EE-3B. This study also explores the question of why the accuracy of the EE-MB approximation shows such little dependence on the types of embedding charges employed.
NASA Astrophysics Data System (ADS)
Stork, Martina; Tavan, Paul
2007-04-01
In the preceding paper by Stork and Tavan, [J. Chem. Phys. 126, 165105 (2007)], the authors have reformulated an electrostatic theory which treats proteins surrounded by dielectric solvent continua and approximately solves the associated Poisson equation [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)]. The resulting solution comprises analytical expressions for the electrostatic reaction field (RF) and potential, which are generated within the protein by the polarization of the surrounding continuum. Here the field and potential are represented in terms of Gaussian RF dipole densities localized at the protein atoms. Quite like in a polarizable force field, also the RF dipole at a given protein atom is induced by the partial charges and RF dipoles at the other atoms. Based on the reformulated theory, the authors have suggested expressions for the RF forces, which obey Newton's third law. Previous continuum approaches, which were also built on solutions of the Poisson equation, used to violate the reactio principle required by this law, and thus were inapplicable to molecular dynamics (MD) simulations. In this paper, the authors suggest a set of techniques by which one can surmount the few remaining hurdles still hampering the application of the theory to MD simulations of soluble proteins and peptides. These techniques comprise the treatment of the RF dipoles within an extended Lagrangian approach and the optimization of the atomic RF polarizabilities. Using the well-studied conformational dynamics of alanine dipeptide as the simplest example, the authors demonstrate the remarkable accuracy and efficiency of the resulting RF-MD approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirinale, D. G.; Rustan, G. E.; Wilson, S. R.
2015-02-04
High-energy x-ray diffraction measurements of undercooled, electrostatically levitated Ni 50Zr 50 liquid droplets were performed. The observed solidification pathway proceeded through the nucleation and growth of the metastable B2 phase, which persisted for several seconds before the rapid appearance of the stable B33 phase. This sequence is shown to be consistent with predictions from classical nucleation theory using data obtained from molecular dynamics (MD) simulations. A plausible mechanism for the B2–B33 transformation is proposed and investigated through further MD simulations.
A new smoothing function to introduce long-range electrostatic effects in QM/MM calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Dong; Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; Duke, Robert E.
2015-07-28
A new method to account for long range electrostatic contributions is proposed and implemented for quantum mechanics/molecular mechanics long range electrostatic correction (QM/MM-LREC) calculations. This method involves the use of the minimum image convention under periodic boundary conditions and a new smoothing function for energies and forces at the cutoff boundary for the Coulomb interactions. Compared to conventional QM/MM calculations without long-range electrostatic corrections, the new method effectively includes effects on the MM environment in the primary image from its replicas in the neighborhood. QM/MM-LREC offers three useful features including the avoidance of calculations in reciprocal space (k-space), with themore » concomitant avoidance of having to reproduce (analytically or approximately) the QM charge density in k-space, and the straightforward availability of analytical Hessians. The new method is tested and compared with results from smooth particle mesh Ewald (PME) for three systems including a box of neat water, a double proton transfer reaction, and the geometry optimization of the critical point structures for the rate limiting step of the DNA dealkylase AlkB. As with other smoothing or shifting functions, relatively large cutoffs are necessary to achieve comparable accuracy with PME. For the double-proton transfer reaction, the use of a 22 Å cutoff shows a close reaction energy profile and geometries of stationary structures with QM/MM-LREC compared to conventional QM/MM with no truncation. Geometry optimization of stationary structures for the hydrogen abstraction step by AlkB shows some differences between QM/MM-LREC and the conventional QM/MM. These differences underscore the necessity of the inclusion of the long-range electrostatic contribution.« less
Probing lipid membrane electrostatics
NASA Astrophysics Data System (ADS)
Yang, Yi
The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by <2%. One important application of this technique is to estimate the dipole density of lipid membrane. Electrostatic analysis of DOPC lipid bilayers with the AFM reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipid bilayers. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful probe of membrane electrostatics.
Bernstein modes in a non-neutral plasma column
NASA Astrophysics Data System (ADS)
Walsh, Daniel; Dubin, Daniel H. E.
2018-05-01
This paper presents theory and numerical calculations of electrostatic Bernstein modes in an inhomogeneous cylindrical plasma column. These modes rely on finite Larmor radius effects to propagate radially across the column until they are reflected when their frequency matches the upper hybrid frequency. This reflection sets up an internal normal mode on the column and also mode-couples to the electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed using external electrodes). Numerical results predicting the mode spectra, using a novel linear Vlasov code on a cylindrical grid, are presented and compared to an analytical Wentzel Kramers Brillouin (WKB) theory. A previous version of the theory [D. H. E. Dubin, Phys. Plasmas 20(4), 042120 (2013)] expanded the plasma response in powers of 1/B, approximating the local upper hybrid frequency, and consequently, its frequency predictions are spuriously shifted with respect to the numerical results presented here. A new version of the WKB theory avoids this approximation using the exact cold fluid plasma response and does a better job of reproducing the numerical frequency spectrum. The effect of multiple ion species on the mode spectrum is also considered, to make contact with experiments that observe cyclotron modes in a multi-species pure ion plasma [M. Affolter et al., Phys. Plasmas 22(5), 055701 (2015)].
Phase contrast STEM for thin samples: Integrated differential phase contrast.
Lazić, Ivan; Bosch, Eric G T; Lazar, Sorin
2016-01-01
It has been known since the 1970s that the movement of the center of mass (COM) of a convergent beam electron diffraction (CBED) pattern is linearly related to the (projected) electrical field in the sample. We re-derive a contrast transfer function (CTF) for a scanning transmission electron microscopy (STEM) imaging technique based on this movement from the point of view of image formation and continue by performing a two-dimensional integration on the two images based on the two components of the COM movement. The resulting integrated COM (iCOM) STEM technique yields a scalar image that is linear in the phase shift caused by the sample and therefore also in the local (projected) electrostatic potential field of a thin sample. We confirm that the differential phase contrast (DPC) STEM technique using a segmented detector with 4 quadrants (4Q) yields a good approximation for the COM movement. Performing a two-dimensional integration, just as for the COM, we obtain an integrated DPC (iDPC) image which is approximately linear in the phase of the sample. Beside deriving the CTFs of iCOM and iDPC, we clearly point out the objects of the two corresponding imaging techniques, and highlight the differences to objects corresponding to COM-, DPC-, and (HA) ADF-STEM. The theory is validated with simulations and we present first experimental results of the iDPC-STEM technique showing its capability for imaging both light and heavy elements with atomic resolution and a good signal to noise ratio (SNR). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schamel, Hans; Eliasson, Bengt
2016-05-01
Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a ϕ ( x ) 1 / 2 rather than a ϕ ( x ) expansion, where ϕ ( x ) is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of ϕ ( x ) and the nonlinear dispersion relation, which describes their phase velocity.
Investigation of spray dispersion and particulate formation in diesel fuel flames
NASA Technical Reports Server (NTRS)
Back, L. H.; Bankston, C. P.; Kwack, E. Y.; Bellan, J.; Harstad, K.
1988-01-01
An experimental study of electrostatical atomized and dispersed diesel fuel jets was conducted at various back pressures to 40 atm. A new electrostatic injection technique was utilized to generate continuous, stable fuel sprays at charge densities of 1.5 to 2.0 C/m3 of fluid at one atm, and about 1.0 C/m3 at 40 atm. Flowrates were varied from 0.5 to 2.5 ml/s and electric potentials to -18 kV. Visual observations showed that significant enhanced dispersion of charged fuel jets occurred at high back pressures compared to aerodynamic breakup and dispersion. The average drop size was about the same as the spray triode orifice diameter, and was between the Kelly theory and the Rayleigh limit. The ignition tests, done only at one atm, indicated stable combustion of the electrostatically dispersed fuel jets.
NASA Astrophysics Data System (ADS)
Winkler, Christian; Harivyasi, Shashank S.; Zojer, Egbert
2018-07-01
Van der Waals heterostructures based on the heteroassembly of 2D materials represent a recently developed class of materials with promising properties especially for optoelectronic applications. The alignment of electronic energy bands between consecutive layers of these heterostructures crucially determines their functionality. In the present paper, relying on dispersion-corrected density-functional theory calculations, we present electrostatic design as a promising tool for manipulating this band alignment. The latter is achieved by inserting a layer of aligned polar molecules between consecutive transition-metal dichalcogenide (TMD) sheets. As a consequence, collective electrostatic effects induce a shift of as much as 0.3 eV in the band edges of successive TMD layers. Building on that, the proposed approach can be used to design electronically more complex systems, like quantum cascades or quantum wells, or to change the type of band lineup between type II and type I.
Coarse-graining, Electrostatics and pH effects in phospholipid systems
NASA Astrophysics Data System (ADS)
Travesset, Alex; Vangaveti, Sweta
2010-03-01
We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge (``chemical binding''). It is shown that the ``chemical'' model can be appropriately described by an underlying ``physical'' model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The model is applied to the charged phospholipids phosphatidylserine, Phosphatidc acid and Phosphoinositides and implications for different biological processes are discussed.
Origin of translocation barriers for polyelectrolyte chains.
Kumar, Rajeev; Muthukumar, M
2009-11-21
For single-file translocations of a charged macromolecule through a narrow pore, the crucial step of arrival of an end at the pore suffers from free energy barriers, arising from changes in intrachain electrostatic interaction, distribution of ionic clouds and solvent molecules, and conformational entropy of the chain. All contributing factors to the barrier in the initial stage of translocation are evaluated by using the self-consistent field theory for the polyelectrolyte and the coupled Poisson-Boltzmann description for ions without radial symmetry. The barrier is found to be essentially entropic due to conformational changes. For moderate and high salt concentrations, the barriers for the polyelectrolyte chain are quantitatively equivalent to that of uncharged self-avoiding walks. Electrostatic effects are shown to increase the free energy barriers, but only slightly. The degree of ionization, electrostatic interaction strength, decreasing salt concentration, and the solvent quality all result in increases in the barrier.
Beard, D A; Schlick, T
2001-01-01
Much progress has been achieved on quantitative assessment of electrostatic interactions on the all-atom level by molecular mechanics and dynamics, as well as on the macroscopic level by models of continuum solvation. Bridging of the two representations-an area of active research-is necessary for studying integrated functions of large systems of biological importance. Following perspectives of both discrete (N-body) interaction and continuum solvation, we present a new algorithm, DiSCO (Discrete Surface Charge Optimization), for economically describing the electrostatic field predicted by Poisson-Boltzmann theory using a discrete set of Debye-Hückel charges distributed on a virtual surface enclosing the macromolecule. The procedure in DiSCO relies on the linear behavior of the Poisson-Boltzmann equation in the far zone; thus contributions from a number of molecules may be superimposed, and the electrostatic potential, or equivalently the electrostatic field, may be quickly and efficiently approximated by the summation of contributions from the set of charges. The desired accuracy of this approximation is achieved by minimizing the difference between the Poisson-Boltzmann electrostatic field and that produced by the linearized Debye-Hückel approximation using our truncated Newton optimization package. DiSCO is applied here to describe the salt-dependent electrostatic environment of the nucleosome core particle in terms of several hundred surface charges. This representation forms the basis for modeling-by dynamic simulations (or Monte Carlo)-the folding of chromatin. DiSCO can be applied more generally to many macromolecular systems whose size and complexity warrant a model resolution between the all-atom and macroscopic levels. Copyright 2000 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Khasanshin, Rashid; Novikov, Lev
Action of charged particles on low-conductive dielectrics causes formation of areas with a high charge density inside; their fields may give rise to development of electrostatic discharge between the charged area and the surface of the dielectric. Discharge channels are growing due to breakdown of dielectric and formation of a conducting phase. Generation of the channels is a complex stochastic process accompanied by such physical and chemical processes as ionization, gas formation, heating, and so on, which cause formation of conducting phase in a glass. That is why no quantitative theory describing formation of conductive channels has been formulated yet. The study of electrostatic discharges in dielectrics under radiation is essential both from a scientific point of view and for the solution of applied problems. In particular, interaction of a spacecraft with ambient plasma causes accumulation of electric charges on its surface producing, as a consequence, electric potential between the spacecraft surface and the plasma. For example, potentials on the surface of satellites operating on a geostationary orbit reach up to 20 kV. Elec-trostatic discharges caused by such potentials can produce not only the considerable electromag-netic interference, but also lead to the destruction of hardware components and structural ele-ments. Electrostatic charging due to electrons from the Earth’s radiation belts causes degradation of solar arrays as a result of surface and internal electrostatic discharges. In the work, surface of K-208 spacecraft solar array protective coatings irradiated by 20 and 40 keV electrons and protons has studied using by AFM methods. Traces of electrostatic dis-charges at different radiation flux densities were analyzed.
Energy component analysis of π interactions.
Sherrill, C David
2013-04-16
Fundamental features of biomolecules, such as their structure, solvation, and crystal packing and even the docking of drugs, rely on noncovalent interactions. Theory can help elucidate the nature of these interactions, and energy component analysis reveals the contributions from the various intermolecular forces: electrostatics, London dispersion terms, induction (polarization), and short-range exchange-repulsion. Symmetry-adapted perturbation theory (SAPT) provides one method for this type of analysis. In this Account, we show several examples of how SAPT provides insight into the nature of noncovalent π-interactions. In cation-π interactions, the cation strongly polarizes electrons in π-orbitals, leading to substantially attractive induction terms. This polarization is so important that a cation and a benzene attract each other when placed in the same plane, even though a consideration of the electrostatic interactions alone would suggest otherwise. SAPT analysis can also support an understanding of substituent effects in π-π interactions. Trends in face-to-face sandwich benzene dimers cannot be understood solely in terms of electrostatic effects, especially for multiply substituted dimers, but SAPT analysis demonstrates the importance of London dispersion forces. Moreover, detailed SAPT studies also reveal the critical importance of charge penetration effects in π-stacking interactions. These effects arise in cases with substantial orbital overlap, such as in π-stacking in DNA or in crystal structures of π-conjugated materials. These charge penetration effects lead to attractive electrostatic terms where a simpler analysis based on atom-centered charges, electrostatic potential plots, or even distributed multipole analysis would incorrectly predict repulsive electrostatics. SAPT analysis of sandwich benzene, benzene-pyridine, and pyridine dimers indicates that dipole/induced-dipole terms present in benzene-pyridine but not in benzene dimer are relatively unimportant. In general, a nitrogen heteroatom contracts the electron density, reducing the magnitude of both the London dispersion and the exchange-repulsion terms, but with an overall net increase in attraction. Finally, using recent advances in SAPT algorithms, researchers can now perform SAPT computations on systems with 200 atoms or more. We discuss a recent study of the intercalation complex of proflavine with a trinucleotide duplex of DNA. Here, London dispersion forces are the strongest contributors to binding, as is typical for π-π interactions. However, the electrostatic terms are larger than usual on a fractional basis, which likely results from the positive charge on the intercalator and its location between two electron-rich base pairs. These cation-π interactions also increase the induction term beyond those of typical noncovalent π-interactions.
Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P
2017-06-13
We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.
NASA Astrophysics Data System (ADS)
Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil
2010-06-01
The physical processes that determine the self-consistent electric field (E∥) parallel to the magnetic field have been an unresolved problem in magnetospheric physics for over 40 years. Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); Jasperse et al., Phys. Plasmas13, 112902 (2006)]). In the present paper and its companion paper [Jasperse et al., Phys. Plasmas 17, 062903 (2010)], which are intended as sequels to the earlier work, a fundamental model for downward, magnetic field-aligned (Birkeland) currents for quasisteady conditions is presented. The model includes the production of electrostatic ion-cyclotron turbulence in the long-range potential region by an electron, bump-on-tail-driven ion-cyclotron instability. Anomalous momentum transfer (anomalous resistivity) by itself is found to produce a very small contribution to E∥; however, the presence of electrostatic, ion-cyclotron turbulence has a very large effect on the altitude dependence of the entire quasisteady solution. Anomalous energy transfer (anomalous heating and cooling) modifies the density, drift, and temperature altitude profiles and hence the generalized parallel-pressure gradients and mirror forces in the electron and ion momentum-balance equations. As a result, |E∥| is enhanced by nearly a factor of 40 compared to its value when turbulence is absent. The space-averaged potential increase associated with the strong double layer at the bottom of the downward-current sheet is estimated using the FAST satellite data and the multimoment fluid theory.
NASA Astrophysics Data System (ADS)
Krishnan, M.
2017-05-01
We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or rapid, reliable predictions are desired.
Duval, Jérôme F L; Farinha, José Paulo S; Pinheiro, José P
2013-11-12
In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.
The ‘non-Coulombic’ character of classical electrostatic interaction between charges near interfaces
NASA Astrophysics Data System (ADS)
Gabovich, A. M.; Voitenko, A. I.
2018-07-01
The textbook problem of classical electrostatics concerning the charge–charge interaction energy W in a two-layer system is revisited. In particular, the actual dependence of W on the horizontal distance L between the charges located at the same distance x from the interface is shown to substantially differ from the original Coulomb law due to image charges. The deviations are governed by the ratio L/x and the ratio between the dielectric constants of adjacent media. Thus, the dependence W(L) is never conventionally Coulombic (∼L ‑1) and may even be close to a dipole–dipole one (∼L ‑3). Although these results are implicitly contained in the well-known formulas, they are often overlooked while teaching electrostatics. The results are of interest not only from a purely academic viewpoint but are important for modern surface science, where the electrostatic contribution to the ion–ion interaction is often treated as Coulombic without any reservations.
Electrostatics of proteins in dielectric solvent continua. I. Newton's third law marries qE forces
NASA Astrophysics Data System (ADS)
Stork, Martina; Tavan, Paul
2007-04-01
The authors reformulate and revise an electrostatic theory treating proteins surrounded by dielectric solvent continua [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)] to make the resulting reaction field (RF) forces compatible with Newton's third law. Such a compatibility is required for their use in molecular dynamics (MD) simulations, in which the proteins are modeled by all-atom molecular mechanics force fields. According to the original theory the RF forces, which are due to the electric field generated by the solvent polarization and act on the partial charges of a protein, i.e., the so-called qE forces, can be quite accurately computed from Gaussian RF dipoles localized at the protein atoms. Using a slightly different approximation scheme also the RF energies of given protein configurations are obtained. However, because the qE forces do not account for the dielectric boundary pressure exerted by the solvent continuum on the protein, they do not obey the principle that actio equals reactio as required by Newton's third law. Therefore, their use in MD simulations is severely hampered. An analysis of the original theory has led the authors now to a reformulation removing the main difficulties. By considering the RF energy, which represents the dominant electrostatic contribution to the free energy of solvation for a given protein configuration, they show that its negative configurational gradient yields mean RF forces obeying the reactio principle. Because the evaluation of these mean forces is computationally much more demanding than that of the qE forces, they derive a suggestion how the qE forces can be modified to obey Newton's third law. Various properties of the thus established theory, particularly issues of accuracy and of computational efficiency, are discussed. A sample application to a MD simulation of a peptide in solution is described in the following paper [M. Stork and P. Tavan, J. Chem. Phys., 126, 165106 (2007).
Henderson, Douglas; Silvestre-Alcantara, Whasington; Kaja, Monika; ...
2016-08-18
Here, the density functional theory is applied to a study of the structure and differential capacitance of a planar electric double layer formed by a valency asymmetric mixture of charged dimers and monomers. The dimer consists of two tangentially tethered hard spheres of equal diameters of which one is charged and the other is neutral, while the monomer is a charged hard sphere of the same size. The dimer electrolyte is next to a uniformly charged, smooth planar electrode. The electrode-particle singlet distributions, the mean electrostatic potential, and the differential capacitance for the model double layer are evaluated for amore » 2:1/1:2 valency electrolyte at a given concentration. Important consequences of asymmetry in charges and in ion shapes are (i) a finite, non-zero potential of zero charge, and (ii) asymmetric shaped 2:1 and 1:2 capacitance curves which are not mirror images of each other. Comparisons of the density functional results with the corresponding Monte Carlo simulations show the theoretical predictions to be in good agreement with the simulations overall except near zero surface charge.« less
An electromagnetic/electrostatic dual cathode system for electron beam instruments
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Wittry, D. B.; Albee, A. L.
1986-01-01
A method of providing cathode redundancy which consists of two fixed cathodes and uses electromagnetic and/or electrostatic fields to direct the electron beam to the electron optical axis is presented, with application to the cathode system of the Scanning Electron Microscope and Particle Analyzer proposed for NASA's Mariner Mark II Comet Rendezvous/Asteroid Flyby projected for the 1990s. The symmetric double deflection system chosen has the optical property that the image of the effective electron source is formed above the magnet assembly near the apparent position of the effective source, and it makes the transverse positions of the electron sources independent of the electron beam energy. Good performance of the system is found, with the sample imaging resolution being the same as for the single-axis cathode.
Kaiser, V; Comtet, J; Niguès, A; Siria, A; Coasne, B; Bocquet, L
2017-07-01
The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon a previous approach [M. A. Vorotyntsev and A. A. Kornyshev, Zh. Eksp. Teor. Fiz., 1980, 78(3), 1008-1019] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allows for an estimation of the interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. The counter-intuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length l TF , profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement.
Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chun-Yueh; Chang, Wei-Tse; Chen, Yi-Sheng
2016-03-15
In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This workmore » demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.« less
Nonner, W; Eisenberg, B
1998-01-01
L-type Ca channels contain a cluster of four charged glutamate residues (EEEE locus), which seem essential for high Ca specificity. To understand how this highly charged structure might produce the currents and selectivity observed in this channel, a theory is needed that relates charge to current. We use an extended Poisson-Nernst-Planck (PNP2) theory to compute (mean) Coulombic interactions and thus to examine the role of the mean field electrostatic interactions in producing current and selectivity. The pore was modeled as a central cylinder with tapered atria; the cylinder (i.e., "pore proper") contained a uniform volume density of fixed charge equivalent to that of one to four carboxyl groups. The pore proper was assigned ion-specific, but spatially uniform, diffusion coefficients and excess chemical potentials. Thus electrostatic selection by valency was computed self-consistently, and selection by other features was also allowed. The five external parameters needed for a system of four ionic species (Na, Ca, Cl, and H) were determined analytically from published measurements of thre limiting conductances and two critical ion concentrations, while treating the pore as a macroscopic ion-exchange system in equilibrium with a uniform bath solution. The extended PNP equations were solved with these parameters, and the predictions were compared to currents measured in a variety of solutions over a range of transmembrane voltages. The extended PNP theory accurately predicted current-voltage relations, anomalous mole fraction effects in the observed current, saturation effects of varied Ca and Na concentrations, and block by protons. Pore geometry, dielectric permittivity, and the number of carboxyl groups had only weak effects. The successful prediction of Ca fluxes in this paper demonstrates that ad hoc electrostatic parameters, multiple discrete binding sites, and logistic assumptions of single-file movement are all unnecessary for the prediction of permeation in Ca channels over a wide range of conditions. Further work is needed, however, to understand the atomic origin of the fixed charge, excess chemical potentials, and diffusion coefficients of the channel. The Appendix uses PNP2 theory to predict ionic currents for published "barrier-and-well" energy profiles of this channel. PMID:9726931
Nakamura, Issei
2014-05-29
We studied the thermodynamic properties of ion solvation in polymer blends and block copolymer melts and developed a dipolar self-consistent field theory for polymer mixtures. Our theory accounts for the chain connectivity of polymerized monomers, the compressibility of the liquid mixtures under electrostriction, the permanent and induced dipole moments of monomers, and the resultant dielectric contrast among species. In our coarse-grained model, dipoles are attached to the monomers and allowed to rotate freely in response to electrostatic fields. We demonstrate that a strong electrostatic field near an ion reorganizes dipolar monomers, resulting in nonmonotonic changes in the volume fraction profile and the dielectric function of the polymers with respect to those of simple liquid mixtures. For the parameter sets used, the spatial variations near an ion can be in the range of 1 nm or larger, producing significant differences in the solvation energy among simple liquid mixtures, polymer blends, and block copolymers. The solvation energy of an ion depends substantially on the chain length in block copolymers; thus, our theory predicts the preferential solvation of ions arising from differences in chain length.
Solar wind interaction with dusty plasmas produces instabilities and solitary structures
NASA Astrophysics Data System (ADS)
Saleem, H.; Ali, S.
2017-12-01
It is pointed out that the solar wind interaction with dusty magnetospheres of the planets can give rise to purely growing instabilities as well as nonlinear electric field structures. Linear dispersion relation of the low frequency electrostatic ion-acoustic wave (IAW) is modified in the presence of stationary dust and its frequency becomes larger than its frequency in usual electron ion plasma even if ion temperature is equal to the electron temperature. This dust-ion-acoustic wave (DIAW) either becomes a purely growing electrostatic instability or turns out to be the modified dust-ion-acoustic wave (mDIAW) depending upon the magnitude of shear flow scale length and its direction. Growth rate of shear flow-driven electrostatic instability in a plasma having negatively charged stationary dust is larger than the usual D'Angelo instability of electron-ion plasma. It is shown that shear modified dust ion acoustic wave (mDIAW) produces electrostatic solitons in the nonlinear regime. The fluid theory predicts the existence of electrostatic solitons in the dusty plasmas in those regions where the inhomogeneous solar wind flow is parallel to the planetary or cometary magnetic field lines. The amplitude and width of the solitary structure depends upon dust density and magnitude of shear in the flow. This is a general theoretical model which is applied to dusty plasma of Saturn's F-ring for illustration.
Importance of elastic finite-size effects: Neutral defects in ionic compounds
Burr, P. A.; Cooper, M. W. D.
2017-09-15
Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less
Importance of elastic finite-size effects: Neutral defects in ionic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, P. A.; Cooper, M. W. D.
Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less
Steric, Quantum, and Electrostatic Effects on SN2 Reaction Barriers in Gas Phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shubin; Hu, Hao; Pedersen, Lee G.
2010-05-13
Biomolecular nucleophilic substitution reactions, S{sub N}2, are fundamental and commonplace in chemistry. It is the well-documented experimental finding in the literature that vicinal substitution with bulkier groups near the reaction center significantly slows the reaction due to steric hindrance, but theoretical understanding in the quantitative manner about factors dictating the S{sub N}2 reaction barrier height is still controversial. In this work, employing the new quantification approach that we recently proposed for the steric effect from the density functional theory framework, we investigate the relative contribution of three independent effects—steric, electrostatic, and quantum—to the S{sub N}2 barrier heights in gas phasemore » for substituted methyl halide systems, R{sub 1}R{sub 2}R{sub 3}CX, reacting with the fluorine anion, where R{sub 1}, R{sub 2}, and R{sub 3} denote substituting groups and X = F or Cl. We found that in accordance with the experimental finding, for these systems, the steric effect dominates the transition state barrier, contributing positively to barrier heights, but this contribution is largely compensated by the negative, stabilizing contribution from the quantum effect due to the exchange-correlation interactions. Moreover, we find that it is the component from the electrostatic effect that is linearly correlated with the S{sub N}2 barrier height for the systems investigated in the present study. In addition, we compared our approach with the conventional method of energy decomposition in density functional theory as well as examined the steric effect from the wave function theory for these systems via natural bond orbital analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, Alexandre A.; Pinheiro, Mario J.
In this work, the propulsion force developed in an asymmetric capacitor will be calculated for three different diameters of the ground electrode. The used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to provide a physical insight on the force mechanism that acts on the asymmetrical capacitors, and also to understand how to increase the efficiency of propulsion.
NASA Technical Reports Server (NTRS)
Steiner, E.
1973-01-01
The use of the electrostatic Hellmann-Feynman theorem for the calculation of the leading term in the 1/R expansion of the force of interaction between two well-separated hydrogen atoms is discussed. Previous work has suggested that whereas this term is determined wholly by the first-order wavefunction when calculated by perturbation theory, the use of the Hellmann-Feynman theorem apparently requires the wavefunction through second order. It is shown how the two results may be reconciled and that the Hellmann-Feynman theorem may be reformulated in such a way that only the first-order wavefunction is required.
Measurements of electrostatic double layer potentials with atomic force microscopy
NASA Astrophysics Data System (ADS)
Giamberardino, Jason
The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL. This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clears up previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.
Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent
NASA Astrophysics Data System (ADS)
Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu
2011-10-01
A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into "alpha helix" and "beta sheet" structures. The 5-residue polyalanine displays a substantial increase in the "beta strand" fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling.
NASA Astrophysics Data System (ADS)
Verheest, Frank
2008-03-01
After introducing the basic multifluid model equations, this review discusses three different methods to describe nonlinear plasma waves, by giving a rather general overview of the relevant methodology, followed by a specific and recent application. First, reductive perturbation analysis is applicable to waves that are not too strongly nonlinear, if their linear counterparts have an acoustic-like dispersion at low frequencies. It is discussed for electrostatic modes, with a brief application to dusty plasma waves. The typical paradigm for such problems is the well known KdV equation and its siblings. Stationary waves with larger amplitudes can be treated, i.a., via the fluid-dynamic approach pioneered by McKenzie, which focuses on essential insights into the limitations that restrict the range of available solitary electrostatic solutions. As an illustration, novel electrostatic solutions have been found in plasmas with two-temperature electron species that are relevant in understanding certain magnetospheric plasma observations. The older cousin of the large-amplitude technique is the Sagdeev pseudopotential description, to which the newer fluid-dynamic approach is essentially equivalent. Because the Sagdeev analysis has mostly been applied to electrostatic waves, some recent results are given for electromagnetic modes in pair plasmas, to show its versatility.
Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach.
Gan, Hin Hark; Schlick, Tamar
2010-10-20
Characterizing the ionic distribution around chromatin is important for understanding the electrostatic forces governing chromatin structure and function. Here we develop an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin model as a function of conformation, number of nucleosome cores, and ionic strength and species using Poisson-Boltzmann theory. This approach enables us to visualize and measure the complex patterns of counterion condensation around chromatin by examining ionic densities, free energies, shielding charges, and correlations of shielding charges around the nucleosome core and various oligonucleosome conformations. We show that: counterions, especially divalent cations, predominantly condense around the nucleosomal and linker DNA, unburied regions of histone tails, and exposed chromatin surfaces; ionic screening is sensitively influenced by local and global conformations, with a wide ranging net nucleosome core screening charge (56-100e); and screening charge correlations reveal conformational flexibility and interactions among chromatin subunits, especially between the histone tails and parental nucleosome cores. These results provide complementary and detailed views of ionic effects on chromatin structure for modest computational resources. The electrostatic model developed here is applicable to other coarse-grained macromolecular complexes. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Multipolar Ewald methods, 1: theory, accuracy, and performance.
Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M
2015-02-10
The Ewald, Particle Mesh Ewald (PME), and Fast Fourier–Poisson (FFP) methods are developed for systems composed of spherical multipole moment expansions. A unified set of equations is derived that takes advantage of a spherical tensor gradient operator formalism in both real space and reciprocal space to allow extension to arbitrary multipole order. The implementation of these methods into a novel linear-scaling modified “divide-and-conquer” (mDC) quantum mechanical force field is discussed. The evaluation times and relative force errors are compared between the three methods, as a function of multipole expansion order. Timings and errors are also compared within the context of the quantum mechanical force field, which encounters primary errors related to the quality of reproducing electrostatic forces for a given density matrix and secondary errors resulting from the propagation of the approximate electrostatics into the self-consistent field procedure, which yields a converged, variational, but nonetheless approximate density matrix. Condensed-phase simulations of an mDC water model are performed with the multipolar PME method and compared to an electrostatic cutoff method, which is shown to artificially increase the density of water and heat of vaporization relative to full electrostatic treatment.
Image method for induced surface charge from many-body system of dielectric spheres
NASA Astrophysics Data System (ADS)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-01
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.
Design of a laser scanner for a digital mammography system.
Rowlands, J A; Taylor, J E
1996-05-01
We have developed a digital readout system for radiographic images using a scanning laser beam. In this system, electrostatic charge images on amorphous selenium (alpha-Se) plates are read out using photo-induced discharge (PID). We discuss the design requirements of a laser scanner for the PID system and describe its construction from commercially available components. The principles demonstrated can be adapted to a variety of digital imaging systems.
FORCES DICTATING COLLOIDAL INTERACTIONS BETWEEN VIRUSES AND SOIL
The fate and transport of viruses in soil and aquatic environments were studied with respect to the different forces involved in the process of sorption of these viruses on soil particles. In accordance with the classical DLVO theory, we have calculated the repulsive electrostat...
Choe, Seungho; Hecht, Karen A.; Grabe, Michael
2008-01-01
Continuum electrostatic approaches have been extremely successful at describing the charged nature of soluble proteins and how they interact with binding partners. However, it is unclear whether continuum methods can be used to quantitatively understand the energetics of membrane protein insertion and stability. Recent translation experiments suggest that the energy required to insert charged peptides into membranes is much smaller than predicted by present continuum theories. Atomistic simulations have pointed to bilayer inhomogeneity and membrane deformation around buried charged groups as two critical features that are neglected in simpler models. Here, we develop a fully continuum method that circumvents both of these shortcomings by using elasticity theory to determine the shape of the deformed membrane and then subsequently uses this shape to carry out continuum electrostatics calculations. Our method does an excellent job of quantitatively matching results from detailed molecular dynamics simulations at a tiny fraction of the computational cost. We expect that this method will be ideal for studying large membrane protein complexes. PMID:18474636
Li, Hui
2009-11-14
Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.
A theory of Jovian decameter radiation
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Sharma, R. R.; Papadopoulos, K.; Ben-Ari, M.; Eviatar, A.
1983-01-01
A theory of the Jovian decameter radiation is presented based on the assumed existence of beams of energetic electrons in the inner Jovian magnetosphere. Beam-like electron distributions are shown to be unstable to the growth of both upper hybrid and lower hybrid electrostatic waves. The upconversion of these waves to fast extraordinary mode electromagnetic radiation is calculated by using a fluid model. Two possibilities are considered. First, a random phase approximation is made which leads to a very conservative estimate of intensity that can be expected in decameter radiation. The alternative possibility is also considered, viz, that the upconversion process is coherent. A comparison of both processes suggests that an incoherent interaction may be adequate to account for the observed intensity of decametric radiation, except perhaps near the peak of the spectrum (8 MHz). The coherent process is intrinsically more efficient and can easily produce the observed intensity near 8 MHz if only 0.01% of the energy in the beam is converted to electrostatic energy.
Forsberg, Björn; Ulander, Johan; Kjellander, Roland
2005-02-08
The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution. It is found that the variation of these quantities with the degree of size asymmetry depends in a quite intricate manner on the interplay between the electrostatic coupling and excluded volume effects. In most cases the magnitude of the effective charge of the small ion species is larger than that of the large species; the difference increases with increasing size asymmetry. The effective charges of both species are larger (in absolute value) than the bare ionic charge, except for high asymmetry where the effective charge of the large ions can become smaller than the bare charge.
Metal-graphene heterojunction modulation via H{sub 2} interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadore, A. R., E-mail: alissoncadore@gmail.com, E-mail: lccampos@fisica.ufmg.br; Mania, E.; Lacerda, R. G.
2016-07-18
Combining experiment and theory, we investigate how a naturally created heterojunction (pn junction) at a graphene and metallic contact interface is modulated via interaction with molecular hydrogen (H{sub 2}). Due to an electrostatic interaction, metallic electrodes induce pn junctions in graphene, leading to an asymmetrical resistance in electronic transport for electrons and holes. We report that the asymmetry in the resistance can be tuned in a reversible manner by exposing graphene devices to H{sub 2}. The interaction between the H{sub 2} and graphene occurs solely at the graphene-contact pn junction and induces a modification on the electrostatic interaction between graphenemore » and metallic contacts. We explain the experimental data with theory providing information concerning the length of the heterojunction and how it changes as a function of H{sub 2} adsorption. Our results are valuable for understanding the nature of the metal-graphene interfaces and have potential application for selective sensors of molecular hydrogen.« less
Dendritic polyelectrolytes as seen by the Poisson-Boltzmann-Flory theory.
Kłos, J S; Milewski, J
2018-06-20
G3-G9 dendritic polyelectrolytes accompanied by counterions are investigated using the Poisson-Boltzmann-Flory theory. Within this approach we solve numerically the Poisson-Boltzmann equation for the mean electrostatic potential and minimize the Poisson-Boltzmann-Flory free energy with respect to the size of the molecules. Such a scheme enables us to inspect the conformational and electrostatic properties of the dendrimers in equilibrium based on their response to varying the dendrimer generation. The calculations indicate that the G3-G6 dendrimers exist in the polyelectrolyte regime where absorption of counterions into the volume of the molecules is minor. Trapping of ions in the interior region becomes significant for the G7-G9 dendrimers and signals the emergence of the osmotic regime. We find that the behavior of the dendritic polyelectrolytes corresponds with the degree of ion trapping. In particular, in both regimes the polyelectrolytes are swollen as compared to their neutral counterparts and the expansion factor is maximal at the crossover generation G7.
Electric field induced sheeting and breakup of dielectric liquid jets
NASA Astrophysics Data System (ADS)
Khoshnevis, Ahmad; Tsai, Scott S. H.; Esmaeilzadeh, Esmaeil
2014-01-01
We report experimental observations of the controlled deformation of a dielectric liquid jet subjected to a local high-voltage electrostatic field in the direction normal to the jet. The jet deforms to the shape of an elliptic cylinder upon application of a normal electrostatic field. As the applied electric field strength is increased, the elliptic cylindrical jet deforms permanently into a flat sheet, and eventually breaks-up into droplets. We interpret this observation—the stretch of the jet is in the normal direction to the applied electric field—qualitatively using the Taylor-Melcher leaky dielectric theory, and develop a simple scaling model that predicts the critical electric field strength for the jet-to-sheet transition. Our model shows a good agreement with experimental results, and has a form that is consistent with the classical drop deformation criterion in the Taylor-Melcher theory. Finally, we statistically analyze the resultant droplets from sheet breakup, and find that increasing the applied electric field strength improves droplet uniformity and reduces droplet size.
The adsorption of NO, NH3, N2 on carbon surface: a density functional theory study.
Wang, Jiayong; Yang, Mo; Deng, Debing; Qiu, Shuxia
2017-08-11
To explore the adsorption mechanism of NO, NH 3 , N 2 on a carbon surface, and the effect of basic and acidic functional groups, density functional theory was employed to investigate the interactions between these molecules and carbon surfaces. Molecular electrostatic potential, Mulliken population analyses, reduced density gradient, and Mayer bond order analyses were used to clarify the adsorption mechanism. The results indicate that van der Waals interactions are responsible for N 2 physisorption, and N 2 is the least likely to adsorb on a carbon surface. Modification of carbon materials to decorate basic or acidic functional groups could enhance the NH 3 physisorption because of hydrogen bonding or electrostatic interactions, however, NO physisorption on a carbon surface is poor. Zig-zag sites are more reactive than armchair sites when these gas molecules absorb on the edge sites of carbon surface. Graphical abstract NH 3 , N 2 , NO adsortion on carbon surface.
Noncovalent π⋅⋅⋅π interaction between graphene and aromatic molecule: Structure, energy, and nature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weizhou, E-mail: wzw@lynu.edu.cn, E-mail: ybw@gzu.edu.cn; Zhang, Yu; Wang, Yi-Bo, E-mail: wzw@lynu.edu.cn, E-mail: ybw@gzu.edu.cn
2014-03-07
Noncovalent π⋅⋅⋅π interactions between graphene and aromatic molecules have been studied by using density functional theory with empirical dispersion correction (ωB97X-D) combined with zeroth-order symmetry adapted perturbation theory (SAPT0). Excellent agreement of the interaction energies computed by means of ωB97X-D and spin component scaled (SCS) SAPT0 methods, respectively, shows great promise for the two methods in the study of the adsorption of aromatic molecules on graphene. The other important finding in this study is that, according to SCS-SAPT0 analyses, π⋅⋅⋅π interactions between graphene and aromatic molecules are largely dependent on both dispersion and electrostatic type interactions. It is also noticedmore » that π⋅⋅⋅π interactions become stronger and more dispersive (less electrostatic) upon substitution of the very electronegative fluorine atoms onto the aromatic molecules.« less
Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my
The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.
Duval, Jérôme F L; Merlin, Jenny; Narayana, Puranam A L
2011-01-21
We report a steady-state theory for the evaluation of electrostatic interactions between identical or dissimilar spherical soft multi-layered (bio)particles, e.g. microgels or microorganisms. These generally consist of a rigid core surrounded by concentric ion-permeable layers that may differ in thickness, soft material density, chemical composition and degree of dissociation for the ionogenic groups. The formalism allows the account of diffuse interphases where distributions of ionogenic groups from one layer to the other are position-dependent. The model is valid for any number of ion-permeable layers around the core of the interacting soft particles and covers all limiting situations in terms of nature of interacting particles, i.e. homo- and hetero-interactions between hard, soft or entirely porous colloids. The theory is based on a rigorous numerical solution of the non-linearized Poisson-Boltzmann equation including radial and angular distortions of the electric field distribution within and outside the interacting soft particles in approach. The Gibbs energy of electrostatic interaction is obtained from a general expression derived following the method by Verwey and Overbeek based on appropriate electric double layer charging mechanisms. Original analytical solutions are provided here for cases where interaction takes place between soft multi-layered particles whose size and charge density are in line with Deryagin treatment and Debye-Hückel approximation. These situations include interactions between hard and soft particles, hard plate and soft particle or soft plate and soft particle. The flexibility of the formalism is highlighted by the discussion of few situations which clearly illustrate that electrostatic interaction between multi-layered particles may be partly or predominantly governed by potential distribution within the most internal layers. A major consequence is that both amplitude and sign of Gibbs electrostatic interaction energy may dramatically change depending on the interplay between characteristic Debye length, thickness of ion-permeable layers and their respective protolytic features (e.g. location, magnitude and sign of charge density). This formalism extends a recent model by Ohshima which is strictly limited to interaction between soft mono-shell particles within Deryagin and Debye-Hückel approximations under conditions where ionizable sites are completely dissociated.
Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.
Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina
2014-04-22
In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.
Magnetic Interactions and the Method of Images: A Wealth of Educational Suggestions
ERIC Educational Resources Information Center
Bonanno, A.; Camarca, M.; Sapia, P.
2011-01-01
Under some conditions, the method of images (well known in electrostatics) may be implemented in magnetostatic problems too, giving an excellent example of the usefulness of formal analogies in the description of physical systems. In this paper, we develop a quantitative model for the magnetic interactions underlying the so-called Geomag[TM]…
Electrodynamics, Differential Forms and the Method of Images
ERIC Educational Resources Information Center
Low, Robert J.
2011-01-01
This paper gives a brief description of how Maxwell's equations are expressed in the language of differential forms and use this to provide an elegant demonstration of how the method of images (well known in electrostatics) also works for electrodynamics in the presence of an infinite plane conducting boundary. The paper should be accessible to an…
Theory of fiber reinforced materials
NASA Technical Reports Server (NTRS)
Hashin, Z.
1972-01-01
A unified and rational treatment of the theory of fiber reinforced composite materials is presented. Fundamental geometric and elasticity considerations are throughly covered, and detailed derivations of the effective elastic moduli for these materials are presented. Biaxially reinforced materials which take the form of laminates are then discussed. Based on the fundamentals presented in the first portion of this volume, the theory of fiber-reinforced composite materials is extended to include viscoelastic and thermoelastic properties. Thermal and electrical conduction, electrostatics and magnetostatics behavior of these materials are discussed. Finally, a brief statement of the very difficult subject of physical strength is included.
Electrostatic and hydrodynamics effects in a sedimented magnetorheological suspension.
Domínguez-García, P; Pastor, J M; Melle, Sonia; Rubio, Miguel A
2009-08-01
We present experimental results on the equilibrium microstructure of a sedimented magnetorheological suspension, namely, an aqueous suspension of micron-sized superparamagnetic particles. We develop a study of the electrical interactions on the suspension by processing video-microscopy images of the sedimented particles. We calculate the pair distribution function, g(r), which yields the electrostatic pair potential u(r), showing an anomalous attractive interaction for distances on the order of twice the particle diameter, with characteristic parameters whose values show a dependence with the two-dimensional concentration of particles. The repulsive body of the potential is adjusted to a DLVO expression in order to calculate the Debye screening length and the effective surface charge density. Influence of confinement and variations on the Boltzmann sedimentation profile because of the electrostatic interactions appear to be essential for the interpretation of experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Dan; Zhao Wei
2008-07-15
An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less
PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)
NASA Astrophysics Data System (ADS)
Li, Jie
2013-03-01
ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the Faculty of Engineering, McMaster University, Canada), Haitian Scholar of Dalian University of Technology (China), who passed away on 27 February 2011. Professor Chang was active in research fields including the applications of electrostatics, electromagnetic hydrodynamics, plasma environmental pollution control technologies, etc and he contributed much to the development of these fields. Professor Chang was the visiting professor at some Key Universities in China and was the friend of Chinese scholars engaged in electrostatics. Professor Chang was also active in joining and supporting the previous ICAES. We will cherish the memory of Professor Jen-Shih Chang forever. Professor Jie Li Proceedings Editor Dalian, September 2012 Conference photograph
Chen, Xiaojing; Bichoutskaia, Elena; Stace, Anthony J
2013-05-16
A series of five molecular dication clusters, (H2O)n(2+), (NH3)n(2+), (CH3CN)n(2+), (C5H5N)n(2+), and (C6H6)n(2+), have been studied for the purpose of identifying patterns of behavior close to the Rayleigh instability limit where the clusters might be expected to exhibit Coulomb fission. Experiments show that the instability limit for each dication covers a range of sizes and that on a time scale of 10(-4) s ions close to the limit can undergo either Coulomb fission or neutral evaporation. The observed fission pathways exhibit considerable asymmetry in the sizes of the charged fragments, and are associated with kinetic (ejection) energies of ~0.9 eV. Coulomb fission has been modeled using a theory recently formulated to describe how charged particles of dielectric materials interact with one another (Bichoutskaia et al. J. Chem. Phys. 2010, 133, 024105). The calculated electrostatic interaction energy between separating fragments accounts for the observed asymmetric fragmentation and for the magnitudes of the measured ejection energies. The close match between theory and experiment suggests that a significant fraction of excess charge resides on the surfaces of the fragment ions. The experiments provided support for a fundamental step in the electrospray ionization (ESI) mechanism, namely the ejection from droplets of small solvated charge carriers. At the same time, the theory shows how water and acetonitrile may behave slightly differently as ESI solvents. However, the theory also reveals deficiencies in the point-charge image-charge model that has previously been used to quantify Coulomb fission in the electrospray process.
Raudsepp, Allan; A K Williams, Martin; B Hall, Simon
2016-07-01
Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.
Second order kinetic theory of parallel momentum transport in collisionless drift wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang, E-mail: lyang13@mails.tsinghua.edu.cn; Southwestern Institute of Physics, Chengdu 610041; Gao, Zhe
A second order kinetic model for turbulent ion parallel momentum transport is presented. A new nonresonant second order parallel momentum flux term is calculated. The resonant component of the ion parallel electrostatic force is the momentum source, while the nonresonant component of the ion parallel electrostatic force compensates for that of the nonresonant second order parallel momentum flux. The resonant component of the kinetic momentum flux can be divided into three parts, including the pinch term, the diffusive term, and the residual stress. By reassembling the pinch term and the residual stress, the residual stress can be considered as amore » pinch term of parallel wave-particle resonant velocity, and, therefore, may be called as “resonant velocity pinch” term. Considering the resonant component of the ion parallel electrostatic force is the transfer rate between resonant ions and waves (or, equivalently, nonresonant ions), a conservation equation of the parallel momentum of resonant ions and waves is obtained.« less
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
NASA Astrophysics Data System (ADS)
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-02-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression
NASA Astrophysics Data System (ADS)
Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang
2018-05-01
Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.
Surface electrostatics of lipid bilayers by EPR of a pH-sensitive spin-labeled lipid.
Voinov, Maxim A; Rivera-Rivera, Izarys; Smirnov, Alex I
2013-01-08
Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids' polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Surface Electrostatics of Lipid Bilayers by EPR of a pH-Sensitive Spin-Labeled Lipid
Voinov, Maxim A.; Rivera-Rivera, Izarys; Smirnov, Alex I.
2013-01-01
Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids’ polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. PMID:23332063
77 FR 72826 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... energy dispersive spectrometer, and to obtain atomic number contrast, or Z- contrast, images using the... measure electrostatic and magnetic fields in a variety of samples. Justification for Duty-Free Entry...
Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol
Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen
2006-01-01
A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...
NASA Astrophysics Data System (ADS)
Bernhardt, Paul; Selcher, Craig A.
High Power electromagnetic (EM) waves transmitted from the HAARP facility in Alaska can excite low frequency electrostatic waves by several processes including (1) direct magnetized stimulated Brillouin scatter (MSBS) and (2) parametric decay of high frequency electrostatic waves into electron and ion Bernstein waves. Either an ion acoustic (IA) wave with a frequency less than the ion cyclotron frequency (fCI) or an electrostatic ion cyclotron (EIC) wave just above fCI can be produced by MSBS. The coupled equations describing the MSBS instabil-ity show that the production of both IA and EIC waves is strongly influenced by the wave propagation direction relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions (SEE) using the HAARP transmitter in Alaska have confirmed the theoretical predictions that only IA waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The electron temperature in the heated plasma is obtained from the IA spectrum offsets from the pump frequency. The ion composition can be determined from the measured EIC frequency. Near the second harmonic of the electron cyclotron frequency, the EM pump wave is converted into an electron Bernstein (EB) wave that decays into another EB wave and an ion Bernstein (IB) wave. Strong cyclotron resonance with the EB wave leads to acceleration of the electrons. Ground based SEE observations are related to the theory of low-frequency electrostatic wave generation.
Pethica, Brian A
2007-12-21
As indicated by Gibbs and made explicit by Guggenheim, the electrical potential difference between two regions of different chemical composition cannot be measured. The Gibbs-Guggenheim Principle restricts the use of classical electrostatics in electrochemical theories as thermodynamically unsound with some few approximate exceptions, notably for dilute electrolyte solutions and concomitant low potentials where the linear limit for the exponential of the relevant Boltzmann distribution applies. The Principle invalidates the widespread use of forms of the Poisson-Boltzmann equation which do not include the non-electrostatic components of the chemical potentials of the ions. From a thermodynamic analysis of the parallel plate electrical condenser, employing only measurable electrical quantities and taking into account the chemical potentials of the components of the dielectric and their adsorption at the surfaces of the condenser plates, an experimental procedure to provide exceptions to the Principle has been proposed. This procedure is now reconsidered and rejected. No other related experimental procedures circumvent the Principle. Widely-used theoretical descriptions of electrolyte solutions, charged surfaces and colloid dispersions which neglect the Principle are briefly discussed. MD methods avoid the limitations of the Poisson-Bolzmann equation. Theoretical models which include the non-electrostatic components of the inter-ion and ion-surface interactions in solutions and colloid systems assume the additivity of dispersion and electrostatic forces. An experimental procedure to test this assumption is identified from the thermodynamics of condensers at microscopic plate separations. The available experimental data from Kelvin probe studies are preliminary, but tend against additivity. A corollary to the Gibbs-Guggenheim Principle is enunciated, and the Principle is restated that for any charged species, neither the difference in electrostatic potential nor the sum of the differences in the non-electrostatic components of the thermodynamic potential difference between regions of different chemical compositions can be measured.
Electrostatic Fluxes and Plasma Rotation in the Edge Region of EXTRAP-T2R
NASA Astrophysics Data System (ADS)
Serianni, G.; Antoni, V.; Bergsåker, H.; Brunsell, P.; Drake, J. R.; Spolaore, M.; Sätherblom, H. E.; Vianello, N.
2001-10-01
The EXTRAP-T2 reversed field pinch has undergone a significant reconstruction into the new T2R device. This paper reports the first measurements performed with Langmuir probes in the edge region of EXTRAP-T2R. The radial profiles of plasma parameters like electron density and temperature, plasma potential, electrical fields and electrostatic turbulence-driven particle flux are presented. These profiles are interpreted in a momentum balance model where finite Larmor radius losses occur over a distance of about two Larmor radii from the limiter position. The double shear layer of the E×B drift velocity is discussed in terms of the Biglari-Diamond-Terry theory of turbulence decorrelation.
Nonlinear electrostatic solitary waves in electron-positron plasmas
NASA Astrophysics Data System (ADS)
Lazarus, I. J.; Bharuthram, R.; Moolla, S.; Singh, S. V.; Lakhina, G. S.
2016-02-01
The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a magnetized four component two-temperature electron-positron plasma. Fluid theory is used to derive a set of nonlinear equations for the ESWs, which propagate obliquely to an external magnetic field. The electric field structures are examined for various plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms. It is found that an increase in the densities of the electrons and positrons strengthen the nonlinearity while the periodicity and nonlinearity of the wave increases as the cool-to-hot temperature ratio increases. Our results could be useful in understanding nonlinear propagation of waves in astrophysical environments and related laboratory experiments.
Origin of attraction in p-benzoquinone complexes with benzene and p-hydroquinone.
Tsuzuki, Seiji; Uchimaru, Tadafumi; Ono, Taizo
2017-08-30
The origin of the attraction in charge-transfer complexes (a p-hydroquinone-p-benzoquinone complex and benzene complexes with benzoquinone, tetracyanoethylene and Br 2 ) was analyzed using distributed multipole analysis and symmetry-adapted perturbation theory. Both methods show that the dispersion interactions are the primary source of the attraction in these charge-transfer complexes followed by the electrostatic interactions. The natures of the intermolecular interactions in these complexes are close to the π/π interactions of neutral aromatic molecules. The electrostatic interactions play important roles in determining the magnitude of the attraction. The contribution of charge-transfer interactions to the attraction is not large compared with the dispersion interactions in these complexes.
NASA Astrophysics Data System (ADS)
Sugimura, Natsuhiko; Igarashi, Yoko; Aoyama, Reiko; Shibue, Toshimichi
2017-09-01
The physical origins of the interactions in the acetophenone cation adducts [M+Na]+, [M+NH4]+, and [M+H]+ were explored by localized molecular orbital-energy decomposition analysis and density functional theory. The analyses highlighted the differences in the interactions in the three adduct ions. Electrostatic energy was important in [M+Na]+ and there was little change in the acetophenone orbital shape. Both electrostatic and polarization energy were important in [M+NH4]+, and a considerable change in the orbital shape occurred to maximize the strength of the hydrogen bond. Polarization energy was the major attractive force in [M+H]+.
Electrostatic Ion-Cyclotron Waves in Magnetospheric Plasmas: Non-Local Aspects.
1983-10-14
moving observer will see a Doppler shifted frequency --- S where is the velocity vector of the observer (satellite) and k is the wave vector. Since k...direction) will not see any Doppler -shift, irrespective of the size of ky . Such a statement could not be made in the purely local theory, since there...a local theory, a wide range of Doppler shifts would be produced, from -kivs to +kivs, since the maximum value of kx is k1. Some of the observations
Deng, Shaozhong; Xue, Changfeng; Baumketner, Andriy; Jacobs, Donald; Cai, Wei
2013-01-01
This paper extends the image charge solvation model (ICSM) [J. Chem. Phys. 131, 154103 (2009)], a hybrid explicit/implicit method to treat electrostatic interactions in computer simulations of biomolecules formulated for spherical cavities, to prolate spheroidal and triaxial ellipsoidal cavities, designed to better accommodate non-spherical solutes in molecular dynamics (MD) simulations. In addition to the utilization of a general truncated octahedron as the MD simulation box, central to the proposed extension is an image approximation method to compute the reaction field for a point charge placed inside such a non-spherical cavity by using a single image charge located outside the cavity. The resulting generalized image charge solvation model (GICSM) is tested in simulations of liquid water, and the results are analyzed in comparison with those obtained from the ICSM simulations as a reference. We find that, for improved computational efficiency due to smaller simulation cells and consequently a less number of explicit solvent molecules, the generalized model can still faithfully reproduce known static and dynamic properties of liquid water at least for systems considered in the present paper, indicating its great potential to become an accurate but more efficient alternative to the ICSM when bio-macromolecules of irregular shapes are to be simulated. PMID:23913979
Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo
2013-01-01
Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson’s equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both of the mean-field theory and MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling. PMID:22680474
Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo
2012-04-01
Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.
Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank
2013-01-07
Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
Modeling electrostatic and heterogeneity effects on proton dissociation from humic substances
Tipping, E.; Reddy, M.M.; Hurley, M.A.
1990-01-01
The apparent acid dissociation constant of humic substances increases by 2-4 pK units as ionization of the humic carboxylate groups proceeds. This change in apparent acid strength is due in part to the increase in electrical charge on the humic molecules as protons are shed. In addition, proton dissociation reactions are complicated because humic substances are heterogeneous with respect to proton dissociating groups and molecular size. In this paper, we use the Debye-Hu??ckel theory to describe the effects of electrostatic interactions on proton dissociation of humic substances. Simulations show that, for a size-heterogeneous system of molecules, the weight-average molecular weight is preferable to the number-average value for averaging the effects of electrostatic interactions. Analysis of published data on the proton dissociation of fulvic acid from the Suwannee River shows that the electrostatic interactions can be satisfactorily described by a hypothetical homogeneous compound having a molecular weight of 1000 (similar to the experimentally determined weight-average value). Titration data at three ionic strengths, for several fulvic acid concentrations, and in the pH range from 2.9 to 6.4 can be fitted with three adjustable parameters (pK??int values), given information on molecular size and carboxylate group content. ?? 1990 American Chemical Society.
Force Field for Water Based on Neural Network.
Wang, Hao; Yang, Weitao
2018-05-18
We developed a novel neural network based force field for water based on training with high level ab initio theory. The force field was built based on electrostatically embedded many-body expansion method truncated at binary interactions. Many-body expansion method is a common strategy to partition the total Hamiltonian of large systems into a hierarchy of few-body terms. Neural networks were trained to represent electrostatically embedded one-body and two-body interactions, which require as input only one and two water molecule calculations at the level of ab initio electronic structure method CCSD/aug-cc-pVDZ embedded in the molecular mechanics water environment, making it efficient as a general force field construction approach. Structural and dynamic properties of liquid water calculated with our force field show good agreement with experimental results. We constructed two sets of neural network based force fields: non-polarizable and polarizable force fields. Simulation results show that the non-polarizable force field using fixed TIP3P charges has already behaved well, since polarization effects and many-body effects are implicitly included due to the electrostatic embedding scheme. Our results demonstrate that the electrostatically embedded many-body expansion combined with neural network provides a promising and systematic way to build the next generation force fields at high accuracy and low computational costs, especially for large systems.
NASA Astrophysics Data System (ADS)
Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.
2018-03-01
It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.
Cyclophilin A catalyzes proline isomerization by an electrostatic handle mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camilloni, Carlo; Sahakyan, Aleksander B.; Holliday, Michael
2014-07-15
Proline isomerization is a ubiquitous process that plays a key role in the folding of proteins and in the regulation of their functions1-3. Different families of enzymes, known as peptidyl-prolyl isomerases (PPIases), catalyse this reaction, which involves the interconversion between the cis and trans isomers of the Nterminal amide bond of the amino acid proline2,3. A complete description of the mechanisms by which these enzymes function, however, has remained elusive. Here, we show that cyclophilin A, one of the most common PPIases4, provides a catalytic environment that acts on the substrate through an electrostatic lever mechanism. In this mechanism, themore » electrostatic field in the catalytic site turns the electric dipole associated with the carboxylic group of the amino acid preceding the proline in the substrate, thus causing the rotation of the peptide bond between the two residues. This mechanism resulted from the analysis of an ensemble of conformations populated by cyclophilin A during the enzymatic reaction using a combination of NMR measurements, molecular dynamics simulations and density functional theory calculations. We anticipate that this approach will be helpful in elucidating whether the electrostatic lever mechanism that we describe is common to other PPIases, and more generally to characterise other enzymatic processes.« less
Cyclophilin A catalyzes proline isomerization by an electrostatic handle mechanism
Camilloni, Carlo; Sahakyan, Aleksandr B.; Holliday, Michael J.; Isern, Nancy G.; Zhang, Fengli; Eisenmesser, Elan Z.; Vendruscolo, Michele
2014-01-01
Proline isomerization is a ubiquitous process that plays a key role in the folding of proteins and in the regulation of their functions. Different families of enzymes, known as “peptidyl-prolyl isomerases” (PPIases), catalyze this reaction, which involves the interconversion between the cis and trans isomers of the N-terminal amide bond of the amino acid proline. However, complete descriptions of the mechanisms by which these enzymes function have remained elusive. We show here that cyclophilin A, one of the most common PPIases, provides a catalytic environment that acts on the substrate through an electrostatic handle mechanism. In this mechanism, the electrostatic field in the catalytic site turns the electric dipole associated with the carbonyl group of the amino acid preceding the proline in the substrate, thus causing the rotation of the peptide bond between the two residues. We identified this mechanism using a combination of NMR measurements, molecular dynamics simulations, and density functional theory calculations to simultaneously determine the cis-bound and trans-bound conformations of cyclophilin A and its substrate as the enzymatic reaction takes place. We anticipate that this approach will be helpful in elucidating whether the electrostatic handle mechanism that we describe here is common to other PPIases and, more generally, in characterizing other enzymatic processes. PMID:24982184
Cyclophilin A catalyzes proline isomerization by an electrostatic handle mechanism.
Camilloni, Carlo; Sahakyan, Aleksandr B; Holliday, Michael J; Isern, Nancy G; Zhang, Fengli; Eisenmesser, Elan Z; Vendruscolo, Michele
2014-07-15
Proline isomerization is a ubiquitous process that plays a key role in the folding of proteins and in the regulation of their functions. Different families of enzymes, known as "peptidyl-prolyl isomerases" (PPIases), catalyze this reaction, which involves the interconversion between the cis and trans isomers of the N-terminal amide bond of the amino acid proline. However, complete descriptions of the mechanisms by which these enzymes function have remained elusive. We show here that cyclophilin A, one of the most common PPIases, provides a catalytic environment that acts on the substrate through an electrostatic handle mechanism. In this mechanism, the electrostatic field in the catalytic site turns the electric dipole associated with the carbonyl group of the amino acid preceding the proline in the substrate, thus causing the rotation of the peptide bond between the two residues. We identified this mechanism using a combination of NMR measurements, molecular dynamics simulations, and density functional theory calculations to simultaneously determine the cis-bound and trans-bound conformations of cyclophilin A and its substrate as the enzymatic reaction takes place. We anticipate that this approach will be helpful in elucidating whether the electrostatic handle mechanism that we describe here is common to other PPIases and, more generally, in characterizing other enzymatic processes.
Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent
Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu
2011-01-01
A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into “alpha helix” and “beta sheet” structures. The 5-residue polyalanine displays a substantial increase in the “beta strand” fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling. PMID:22029338
Isik, Nimet
2016-04-01
Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.
Ultrafast collisional ion heating by electrostatic shocks.
Turrell, A E; Sherlock, M; Rose, S J
2015-11-13
High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory.
An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes.
Chilton, Nicholas F; Collison, David; McInnes, Eric J L; Winpenny, Richard E P; Soncini, Alessandro
2013-01-01
Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane
In this work, the A - and B -site cation migration pathways involving defect complexes in bulk La 1-xSr xMnO 3±δ (LSM) at x = 0.0-0.25 are investigated based on density-functional-theory modeling for solid-oxide fuel-cell (SOFC) cathode applications. We propose a dominant A -site cation migration mechanism which involves an A -site cation (e.g., Lamore » $$x\\atop{A}$$) V A"' of a V A"' -V B"' cluster, where La$$x\\atop{A}$$, V A"' and V B"' are La 3+, A-site vacancy, and B-site vacancy in bulk LSM, respectively, and V A"' -V B"' is the first nearest-neighbor V A"' and V B"' pair. This hop exhibits an approximately 1.6-eV migration barrier as compared to approximately 2.9 eV of the La$$x\\atop{A}$$ hop into a V A"'. This decrease in the cation migration barrier is attributed to the presence of the V B"' relieving the electrostatic repulsion and steric constraints to the migrating A-site cations in the transition-state image configurations.« less
Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; ...
2017-10-04
In this work, the A - and B -site cation migration pathways involving defect complexes in bulk La 1-xSr xMnO 3±δ (LSM) at x = 0.0-0.25 are investigated based on density-functional-theory modeling for solid-oxide fuel-cell (SOFC) cathode applications. We propose a dominant A -site cation migration mechanism which involves an A -site cation (e.g., Lamore » $$x\\atop{A}$$) V A"' of a V A"' -V B"' cluster, where La$$x\\atop{A}$$, V A"' and V B"' are La 3+, A-site vacancy, and B-site vacancy in bulk LSM, respectively, and V A"' -V B"' is the first nearest-neighbor V A"' and V B"' pair. This hop exhibits an approximately 1.6-eV migration barrier as compared to approximately 2.9 eV of the La$$x\\atop{A}$$ hop into a V A"'. This decrease in the cation migration barrier is attributed to the presence of the V B"' relieving the electrostatic repulsion and steric constraints to the migrating A-site cations in the transition-state image configurations.« less
NASA Astrophysics Data System (ADS)
Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis
2015-02-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.
Imaging carbon nanotube interactions, diffusion, and stability in nanopores.
Eichmann, Shannon L; Smith, Billy; Meric, Gulsum; Fairbrother, D Howard; Bevan, Michael A
2011-07-26
We report optical microscopy measurements of three-dimensional trajectories of individual multiwalled carbon nanotubes (MWCNTs) in nanoscale silica slit pores. Trajectories are analyzed to nonintrusively measure MWCNT interactions, diffusion, and stability as a function of pH and ionic strength. Evanescent wave scattering is used to track MWCNT positions normal to pore walls with nanometer-scale resolution, and video microscopy is used to track lateral positions with spatial resolution comparable to the diffraction limit. Analysis of MWCNT excursions normal to pore walls yields particle-wall potentials that agree with theoretical electrostatic and van der Waals potentials assuming a rotationally averaged potential of mean force. MWCNT lateral mean square displacements are used to quantify translational diffusivities, which are comparable to predictions based on the best available theories. Finally, measured MWCNT pH and ionic strength dependent stabilities are in excellent agreement with predictions. Our findings demonstrate novel measurement and modeling tools to understand the behavior of confined MWCNTs relevant to a broad range of applications.
Generation of nonthermal continuum radiation in the magnetosphere
NASA Technical Reports Server (NTRS)
Okuda, H.; Chance, M. S.; Ashour-Abdalla, M.; Kurth, W. S.
1982-01-01
Generation of electromagnetic continuum radiation from electrostatic fluctuations near the upper hybrid resonance frequency has been calculated by using cold plasma theory in an inhomogeneous plasma near the plasmapause. It is shown that both the polarization and the amplitude of electromagnetic radiation are in good quantitative agreement with spacecraft observations for nonthermal continuum radiation.
Fundamental Studies Connected with Electrochemical Energy Storage
NASA Technical Reports Server (NTRS)
Buck, E.; Sen, R.
1974-01-01
Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.
2004-09-01
Serway , Raymond A. Physics for Scientists and Engineers . New York: Saunders College Publishing, 1986. 141. Sharvin, Y.V. Sov. Phys. JETP , 21 :655 (1965...III. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Micro-Switch Physical Description . . . . . . . . . . . 17 3.2 MEMS...Insertion Loss . . . . . . . . . . . . . . . . . . . . . . . . 56 IMD Intermodulation Distortion . . . . . . . . . . . . . . . . 56 PVD Physical Vapor
Quintas, Pedro O; Cepeda, Andreia P; Borges, Nuno; Catarino, Teresa; Turner, David L
2013-06-01
Multihaem cytochromes are essential to the energetics of organisms capable of bioremediation and energy production. The haems in several of these cytochromes have been discriminated thermodynamically and their individual rates of reduction by small electron donors were characterized. The kinetic characterization of individual haems used the Marcus theory of electron transfer and assumed that the rates of reduction of each haem by sodium dithionite depend only on the driving force, while electrostatic interactions were neglected. To determine the relative importance of these factors in controlling the rates, we studied the effect of ionic strength on the redox potential and the rate of reduction by dithionite of native Methylophilus methylotrophus cytochrome c″ and three mutants at different pH values. We found that the main factor determining the rate is the driving force and that Marcus theory describes this satisfactorily. This validates the method of the simultaneous fitting of kinetic and thermodynamic data in multihaem cytochromes and opens the way for further investigation into the mechanisms of these proteins. Copyright © 2013 Elsevier B.V. All rights reserved.
Langner, Karol M; Kedzierski, Pawel; Sokalski, W Andrzej; Leszczynski, Jerzy
2006-05-18
On the basis of the crystallographic structures of three nucleic acid intercalation complexes involving ethidium and proflavine, we have analyzed the interaction energies between intercalator chromophores and their four nearest bases, using a hybrid variation-perturbation method at the second-order Møller-Plesset theory level (MP2) with a 6-31G(d,p) basis set. A total MP2 interaction energy minimum precisely reproduces the crystallographic position of the ethidium chromophore in the intercalation plane between UA/AU bases. The electrostatic component constitutes the same fraction of the total energy for all three studied structures. The multipole electrostatic interaction energy, calculated from cumulative atomic multipole moments (CAMMs), was found to converge only after including components above the fifth order. CAMM interaction surfaces, calculated on grids in the intercalation planes of these structures, reasonably reproduce the alignment of intercalators in crystal structures; they exhibit additional minima in the direction of the DNA grooves, however, which also need to be examined at higher theory levels if no crystallographic data are given.
ERIC Educational Resources Information Center
School Science Review, 1977
1977-01-01
Includes methods for using harmonographs in demonstrating motion of pendulums, constructing an electrostatic "bell," inverting mirror images, demonstrating the corrosion rate of steel, demonstrating expansion, studying rate of reaction between magnesium and hydrochloric acid, using matchboxes in science for containers, problem boxes, building…
Rowlands, J A; Hunter, D M; Araj, N
1991-01-01
A new digital image readout method for electrostatic charge images on photoconductive plates is described. The method can be used to read out images on selenium plates similar to those used in xeromammography. The readout method, called the air-gap photoinduced discharge method (PID), discharges the latent image pixel by pixel and measures the charge. The PID readout method, like electrometer methods, is linear. However, the PID method permits much better resolution than scanning electrometers while maintaining quantum limited performance at high radiation exposure levels. Thus the air-gap PID method appears to be uniquely superior for high-resolution digital imaging tasks such as mammography.
NASA Astrophysics Data System (ADS)
Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian
2016-03-01
The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin; Xu, Bingqian, E-mail: bxu@engr.uga.edu; Lou, Zhichao
2016-03-21
The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobicmore » β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.« less
Electrostatic attraction between neutral microdroplets by ion fluctuations
NASA Astrophysics Data System (ADS)
Sheng, Yu-Jane; Tsao, Heng-Kwong
2004-06-01
The interaction between two aqueous droplets containing ions is investigated. The ion-fluctuation correlation gives rise to attraction between two neutral microdroplets, similar to the van der Waals interaction between neutral atoms. Electrostatic attraction consists of contributions from various induced multipole-multipole interactions, including dipole-dipole < P2z >2 r-6 , dipole-quadrupole < P2z > < Q 2zz > r-8 , dipole-octupole < P2z > < O 2zzz > r-10 , and quadrupole-quadrupole interactions < Q 2zz >2 r-10 . The mean-square multipole moments are determined analytically by linear response theory. The fluctuation-driven attraction is so strong at short distance that it may dominate over the Coulomb repulsion between like-charged droplets. These theoretical results are confirmed by Monte Carlo simulations.
Electrostatic attraction between neutral microdroplets by ion fluctuations.
Sheng, Yu-Jane; Tsao, Heng-Kwong
2004-06-01
The interaction between two aqueous droplets containing ions is investigated. The ion-fluctuation correlation gives rise to attraction between two neutral microdroplets, similar to the van der Waals interaction between neutral atoms. Electrostatic attraction consists of contributions from various induced multipole-multipole interactions, including dipole-dipole < P(2)(z) >(2) r(-6), dipole-quadrupole < P(2)(z) > < Q (2)(zz ) > r(-8), dipole-octupole < P(2)(z) > < O (2)(zzz ) > r(-10), and quadrupole-quadrupole interactions < Q (2)(zz ) >(2) r(-10). The mean-square multipole moments are determined analytically by linear response theory. The fluctuation-driven attraction is so strong at short distance that it may dominate over the Coulomb repulsion between like-charged droplets. These theoretical results are confirmed by Monte Carlo simulations.
Beam-return current systems in solar flares
NASA Technical Reports Server (NTRS)
Spicer, D. S.; Sudan, R. N.
1984-01-01
It is demonstrated that the common assumption made in solar flare beam transport theory that the beam-accompanied return current is purely electrostatically driven is incorrect, and that the return current is both electrostatically and inductively driven, in accordance with Lenz's law, with the inductive effects dominating for times greater than a few plasma periods. In addition, it is shown that a beam can only exist in a solar plasma for a finite time which is much smaller than the inductive return current dissipation time. The importance of accounting for the role of the acceleration mechanism in forming the beam is discussed. In addition, the role of return current driven anomalous resistivity and its subsequent anomalous Joule heating during the flare process is elucidated.
Multiscale Multiphysics and Multidomain Models I: Basic Theory
Wei, Guo-Wei
2013-01-01
This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field. PMID:25382892
Multiscale Multiphysics and Multidomain Models I: Basic Theory.
Wei, Guo-Wei
2013-12-01
This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field.
Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei
Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equationsmore » such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.« less
Modified cantilevers to probe unambiguously out-of-plane piezoresponse
NASA Astrophysics Data System (ADS)
Alyabyeva, Natalia; Ouvrard, Aimeric; Lindfors-Vrejoiu, Ionela; Kolomiytsev, Alexey; Solodovnik, Maxim; Ageev, Oleg; McGrouther, Damien
2018-06-01
We demonstrate and investigate the coupling of contributions from both in-plane (IP) polarization and out-of-plane (OP) components in BiFeO3 (BFO) thin-film polarization probed by piezoresponse force microscopy (PFM). Such coupling leads to image artifacts which prevent the correct determination of OP polarization vector directions and the corresponding piezoelectric coefficient d33. Using material strength theory with a one-dimensional modeling of the cantilever oscillation amplitude under electrostatic and elastic forces as a function of the tip length, we have evidenced the impact of IP piezoresponse to the OP signal for tip length longer than 4 μm. The IP polarization vector induces a significant longitudinal bending of the cantilever, due to the small spring constant of long tips, which provokes a normal deviation superimposed to the OP piezoresponse. These artifacts can be reduced by increasing the longitudinal spring constant of the cantilever by shortening the tip length. Standard cantilevers with 15-μm-long tips were modified to reach the desired tip length, using focused ion-beam techniques and tested using PFM on the same BFO thin film. Tip length shortening has strongly reduced IP artifacts as expected, while the impact of nonlocal electrostatic forces, becoming predominant for tips shorter than 1 μm, has led to a non-negligible deflection offset. For shorter tips, a strong electric field from a cantilever beam can induce polarization switching as observed for a 0.5-μm-long tip. Tip length ranging from 1 to 4 μm allowed minimizing both artifacts to probe unambiguously OP piezoresponse and quantify the d33 piezoelectric coefficient.
Upstream ionization instability associated with a current-free double layer.
Aanesland, A; Charles, C; Lieberman, M A; Boswell, R W
2006-08-18
A low frequency instability has been observed using various electrostatic probes in a low-pressure expanding helicon plasma. The instability is associated with the presence of a current-free double layer (DL). The frequency of the instability increases linearly with the potential drop of the DL, and simultaneous measurements show their coexistence. A theory for an upstream ionization instability has been developed, which shows that electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results.
University Physics, Study Guide, Revised Edition
NASA Astrophysics Data System (ADS)
Benson, Harris
1996-01-01
Partial table of contents: Vectors. One-Dimensional Kinematics. Particle Dynamics II. Work and Energy. Linear Momentum. Systems of Particles. Angular Momentum and Statics. Gravitation. Solids and Fluids. Oscillations. Mechanical Waves. Sound. First Law of Thermodynamics. Kinetic Theory. Entropy and the Second Law of Thermodynamics. Electrostatics. The Electric Field. Gauss's Law. Electric Potential. Current and Resistance. The Magnetic Field. Sources of the Magnetic Field. Electromagnetic Induction. Light: Reflection and Refraction. Lenses and Optical Instruments. Wave Optics I. Special Relativity. Early Quantum Theory. Nuclear Physics. Appendices. Answers to Odd-Numbered Exercises and Problems. Index.
Yourdkhani, Sirous; Korona, Tatiana; Hadipour, Nasser L
2015-12-15
Intermolecular ternary complexes composed of: (1) the centrally placed trifluoroacetonitrile or its higher analogs with central carbon exchanged by silicon or germanium (M = C, Si, Ge), (2) the benzonitrile molecule or its para derivatives on one side, and (3) the boron trifluoride of trichloride molecule (X = F, Cl) on the opposite side as well as the corresponding intermolecular tetrel- and triel-bonded binary complexes, were investigated by symmetry-adapted perturbation theory (SAPT) and the supermolecular Møller-Plesset method (MP2) at the complete basis set limit for optimized geometries. A character of interactions was studied by quantum theory of atoms-in-molecules (QTAIM). A comparison of interaction energies and QTAIM bond descriptors for dimers and trimers reveals that tetrel and triel bonds increase in their strength if present together in the trimer. For the triel-bonded complex, this growth leads to a change of the bond character from closed-shell to partly covalent for Si or Ge tetrel atoms, so the resulting bonding scheme corresponds to a preliminary stage of the SN2 reaction. Limitations of the Lewis theory of acids and bases were shown by its failure in predicting the stability order of the triel complexes. The necessity of including interaction energy terms beyond the electrostatic component for an elucidation of the nature of σ- and π-holes was presented by a SAPT energy decomposition and by a study of differences in monomer electrostatic potentials obtained either from isolated monomer densities, or from densities resulting from a perturbation with the effective field of another monomer. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Waddell, J.; Ou, R.; Capozzi, C. J.; Gupta, S.; Parker, C. A.; Gerhardt, R. A.; Seal, K.; Kalinin, S. V.; Baddorf, A. P.
2009-12-01
Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.
A model for chorus associated electrostatic bursts
NASA Technical Reports Server (NTRS)
Grabbe, C. L.
1984-01-01
The linear theory of the generation of electrostatic bursts of noise by electrons trapped in chorus wave packets is developed for a finite temperature electron beam and a Maxwellian elecron and ion background. The growth rates determined qualitatively in good agreement with those obtained by previous authors from a more idealized model. Two connected instability mechanisms seem to be occurring: a beam plasma (electron-ion two-stream) instability commonly associated with intensification of the chorus power levels, and a transitional or borderline resistive medium instability commonly associated with chorus hooks. The physical reasons for the two mechanisms is discussed. In the second case electron beams are difficult to identify in the particle data. An expression is obtained for the maximum growth rate in terms of the ratios of the beam and electron thermal velocities to the beam velocity, and of the beam density to plasma density. It is anticipated that this may allow the observed peak in the electrostatic noise spectrum to be used as a diagnostic for the beam characteristics. Previously announced in STAR as N84-12832
NASA Astrophysics Data System (ADS)
Hagiwara, Yohsuke; Ohta, Takehiro; Tateno, Masaru
2009-02-01
An interface program connecting a quantum mechanics (QM) calculation engine, GAMESS, and a molecular mechanics (MM) calculation engine, AMBER, has been developed for QM/MM hybrid calculations. A protein-DNA complex is used as a test system to investigate the following two types of QM/MM schemes. In a 'subtractive' scheme, electrostatic interactions between QM/MM regions are truncated in QM calculations; in an 'additive' scheme, long-range electrostatic interactions within a cut-off distance from QM regions are introduced into one-electron integration terms of a QM Hamiltonian. In these calculations, 338 atoms are assigned as QM atoms using Hartree-Fock (HF)/density functional theory (DFT) hybrid all-electron calculations. By comparing the results of the additive and subtractive schemes, it is found that electronic structures are perturbed significantly by the introduction of MM partial charges surrounding QM regions, suggesting that biological processes occurring in functional sites are modulated by the surrounding structures. This also indicates that the effects of long-range electrostatic interactions involved in the QM Hamiltonian are crucial for accurate descriptions of electronic structures of biological macromolecules.
NASA Astrophysics Data System (ADS)
Tonmunphean, Somsak; Kokpol, Sirirat; Parasuk, Vudhichai; Wolschann, Peter; Winger, Rudolf H.; Liedl, Klaus R.; Rode, Bernd M.
1998-07-01
Based on the belief that structural optimization methods, producing structures more closely to the experimental ones, should give better, i.e. more relevant, steric fields and hence more predictive CoMFA models, comparative molecular field analyses of artemisinin derivatives were performed based on semiempirical AM1 and HF/3-21G optimized geometries. Using these optimized geometries, the CoMFA results derived from the HF/3-21G method are found to be usually but not drastically better than those from AM1. Additional calculations were performed to investigate the electrostatic field difference using the Gasteiger and Marsili charges, the electrostatic potential fit charges at the AM1 level, and the natural population analysis charges at the HF/3-21G level of theory. For the HF/3-21G optimized structures no difference in predictability was observed, whereas for AM1 optimized structures such differences were found. Interestingly, if ionic compounds are omitted, differences between the various HF/3-21G optimized structure models using these electrostatic fields were found.
NASA Astrophysics Data System (ADS)
Leś, Andrzej; Adamowicz, Ludwik
1991-06-01
The molecular electrostatic potential and molecular electric field have been estimated by means of the expectation values of the respective one-electron operators. We used the molecular density matrix that includes the electron correlation effects up to the second-order of the many body perturbation theory. The results show that around the 2(1H)-pyrimidone molecule one may distinguish the electrophilic and nucleophilic regions, the latter characterized by two potential minima of -2.9 V. In the tautomeric form, 2-hydroxypyrimidine, a third potential minimum of -2.1 V appears close to the N1 nitrogen atom. For both molecules strong orientational forces acting on polar solvents are predicted in the vicinity of oxygen (O7) and nitrogen (N3) atoms. The electron correlation effects do not significantly alter the SCF values of the electrostatic potential and electric field at the distances within the van der Waals envelope of the pyrimidine bases. At larger distances, however, the correlation correction is significant, particularly in the direction facing the proton transfer path.
Esrafili, Mehdi D; Behzadi, Hadi
2013-06-01
A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.
Electrostatic stabilization in sperm whale and harbor seal myoglobins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurd, F.R.N.; Friend, S.H.; Rothgeb, T.M.
1980-10-01
The compact, largely helical structure of sperm whale and harbor seal myoglobins undergoes an abrupt one-step transition between pH 4.5 and 3.5 as monitored by changes in either the heme Soret band absorbance or circular dichroism probes of secondary structure, for which a modified Tanford-Kirkwood theory provides identification of certain dominant electrostatic interactions responsible for the loss of stability. A similar treatment permits identification of the electrostatic interactions primarily responsible for a process in which the anchoring of the A helix to other parts of the molecule is weakened. This process is detected with both myoglobins, in a pH rangemore » approx. 1 unit higher than the onset of the overall unfolding process, through changes in the circular dichroic spectra near 295 nm which correspond to the L/sub a/O-O band of the only two tryptophan residues in these proteins, residues 7 and 14. In each case protonation of certain sites in neighboring parts of the molecule can be identified as producing destabilizing interactions with components of the A helix, particularly with lysine 16.« less
Sugihara-Seki, Masako; Akinaga, Takeshi; O-Tani, Hideyuki
2012-01-01
A fluid mechanical and electrostatic model for the transport of solute molecules across the vascular endothelial surface glycocalyx layer (EGL) was developed to study the charge effect on the diffusive and convective transport of the solutes. The solute was assumed to be a spherical particle with a constant surface charge density, and the EGL was represented as an array of periodically arranged circular cylinders of like charge, with a constant surface charge density. By combining the fluid mechanical analyses for the flow around a solute suspended in an electrolyte solution and the electrostatic analyses for the free energy of the interaction between the solute and cylinders based on a mean field theory, we estimated the transport coefficients of the solute across the EGL. Both of diffusive and convective transports are reduced compared to those for an uncharged system, due to the stronger exclusion of the solute that results from the repulsive electrostatic interaction. The model prediction for the reflection coefficient for serum albumin agreed well with experimental observations if the charge density in the EGL is ranged from approximately -10 to -30 mEq/l.
Electrostatic correlations at the Stern layer: Physics or chemistry?
NASA Astrophysics Data System (ADS)
Travesset, A.; Vangaveti, S.
2009-11-01
We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge ("chemical binding"). It is shown that the "chemical" model can be appropriately described by an underlying "physical" model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The charged phospholipid phosphatidylserine is analyzed as a concrete example with good agreement with experimental results. We conclude with a detailed discussion on the limitations of chemical or physical models for describing the rich phenomenology of charged interfaces in aqueous media and its relevance to different systems with a particular emphasis on phospholipids.
Mass and Magnetic Field Dependence of Electrostatic Particle Transport and Turbulence in LAPD-U
NASA Astrophysics Data System (ADS)
Crocker, N. A.; Gilmore, M.; Peebles, W. A.; Will, S.; Nguyen, X. V.; Carter, T. A.
2003-10-01
The scaling of particle transport with ion mass and magnetic field strength remains an open question in plasma research. Direct comparison of experiment with theory is often complicated by inability to significantly vary critical parameters such as ion mass, pressure gradient, ion gyro-radius, etc. The LAPD-U magnetized, linear plasma at UCLA provides the ideal platform for such studies, allowing large parameter variation. The magnetic field in LAPD-U can be varied over a range of 500 - 1500 G, while ion species can be varied to change mass by a factor of at least 10. In addition, ion gyro-radii are small compared to the plasma diameter ( 1 m). Cross-field transport in LAPD-U is thought to be caused by electrostatic turbulence, also a leading candidate for transport in fusion plasmas. It is planned, therefore, to investigate turbulence and transport characteristics as a function of parameter space. In particular, measurement of the mass and magnetic field dependence of electrostatic particle transport and turbulence characteristics in LAPD-U will be presented.
Turbulent resistivity, diffusion and heating
NASA Technical Reports Server (NTRS)
Fried, B. D.; Kennel, C. F.; Mackenzie, K.; Coroniti, F. V.; Kindel, J. M.; Stenzel, R.; Taylor, R. J.; White, R.; Wong, A. Y.; Bernstein, W.
1971-01-01
Experimental and theoretical studies are reported on ion acoustic and ion cyclotron turbulence and their roles in anomalous resistivity, viscosity, diffusion and heating and in the structure of collisionless electrostatic shocks. Resistance due to ion acoustic turbulence has been observed in experiments with a streaming cesium plasma in which electron current, potential rise due to turbulent resistivity, spectrum of unstable ion acoustic waves, and associated electron heating were all measured directly. Kinetic theory calculations for an expanding, unstable plasma, give results in agreement with the experiment. In a strong magnetic field, with T sub e/T sub i approximately 1 and current densities typical for present Tokomaks, the plasma is stable to ion acoustic but unstable to current driven electrostatic ion cyclotron waves. Relevant characteristics of these waves are calculated and it is shown that for ion, beta greater than m sub e/m sub i, the electromagnetic ion cyclotron wave has a lower instability threshold than the electrostatic one. However, when ion acoustic turbulence is present experiments with double plasma devices show rapid anomalous heating of an ion beam streaming through a plasma.
Dynamics of Oscillating and Rotating Liquid Drop using Electrostatic Levitator
NASA Astrophysics Data System (ADS)
Matsumoto, Satoshi; Awazu, Shigeru; Abe, Yutaka; Watanabe, Tadashi; Nishinari, Katsuhiro; Yoda, Shinichi
2006-11-01
In order to understand the nonlinear behavior of liquid drop with oscillatory and/or rotational motions, an experimental study was performed. The electrostatic levitator was employed to achieve liquid drop formation on ground. A liquid drop with about 3 mm in diameter was levitated. The oscillation of mode n=2 along the vertical axis was induced by an external electrostatic force. The oscillatory motions were observed to clarify the nonlinearities of oscillatory behavior. A relationship between amplitude and frequency shift was made clear and the effect of frequency shift on amplitude agreed well with the theory. The frequency shift became larger with increasing the amplitude of oscillation. To confirm the nonlinear effects, we modeled the oscillation by employing the mass-spring-damper system included the nonlinear term. The result indicates that the large-amplitude oscillation includes the effect of nonlinear oscillation. The sound pressure was imposed to rotate the liquid drop along a vertical axis by using a pair of acoustic transducers. The drop transited to the two lobed shape due to centrifugal force when nondimensional angular velocity exceeded to 0.58.
Sim, Adelene Y L
2016-06-01
Nucleic acids are biopolymers that carry genetic information and are also involved in various gene regulation functions such as gene silencing and protein translation. Because of their negatively charged backbones, nucleic acids are polyelectrolytes. To adequately understand nucleic acid folding and function, we need to properly describe its i) polymer/polyelectrolyte properties and ii) associating ion atmosphere. While various theories and simulation models have been developed to describe nucleic acids and the ions around them, many of these theories/simulations have not been well evaluated due to complexities in comparison with experiment. In this review, I discuss some recent experiments that have been strategically designed for straightforward comparison with theories and simulation models. Such data serve as excellent benchmarks to identify limitations in prevailing theories and simulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guowei; Baker, Nathan A.
2016-11-11
This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In thesemore » approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.« less
Born-Infeld corrections to Coulombian interactions.
Ferraro, Rafael; Lipchak, María Evangelina
2008-04-01
Two-dimensional Born-Infeld electrostatic fields behaving as the superposition of two pointlike charges in the linearized (Maxwellian) limit are investigated by means of a nonholomorphic mapping of the complex plane. The changes in the Coulombian interaction between two charges in Born-Infeld theory are computed. Remarkably, the force between equal charges goes to zero as they approach each other.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course described in this pamphlet completes the theory of black and white television and introduces the student to basic color. Course content includes goals, specific block objectives, the cathode-ray tube (electrostatic and electromagnetic control), video IF amplifiers and detectors, sound IF amplifiers and audio detectors, colorimetry,…
Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.
1987-01-01
Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.
Modeling of Stability of Electrostatic and Magnetostatic Systems
2017-06-01
unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Electromagnetic systems undergo a variety of different instabilities. A broad class of those...15. SUBJECT TERMS electromagnetism , morphological instabilities, computational algorithm, gradient minimization, morphology patterns, motion by mean...Nordmark AB. Magnetic field and current are zero inside ideal conductors. Prog Electromagn Res B. 2011(27):187–212. 4. Stratton JA. Electromagnetic theory
Bolel, Priyanka; Datta, Shubhashis; Mahapatra, Niharendu; Halder, Mintu
2012-08-30
Formation of ion pair between charged molecule and protein can lead to interesting biochemical phenomena. We report the evolution of thermodynamics of the binding of tartrazine, a negatively charged azo colorant, and serum albumins with salt. The dye binds predominantly electrostatically in low buffer strengths; however, on increasing salt concentration, affinity decreases considerably. The calculated thermodynamic parameters in high salt indicate manifestation of nonelectrostatic interactions, namely, van der Waals force and hydrogen bonding. Site-marker competitive binding studies and docking simulations indicate that the dye binds with HSA in the warfarin site and with BSA at the interface of warfarin and ibuprofen binding sites. The docked poses indicate nearby amino acid positive side chains, which are possibly responsible for electrostatic interaction. Using the Debye-Hückel interionic attraction theory for binding equilibria, it is shown that, for electrostatic binding the calculated free energy change increases linearly with square root of ionic strength. Also UV-vis, fluorescence, CD data indicate a decrease of interaction with salt concentration. This study quantitatively relates how ionic strength modulates the strength of the protein-ligand electrostatic interaction. The binding enthalpy and entropy have been found to compensate one another. The enthalpy-entropy compensation (EEC), general property of weak intermolecular interactions, has been discussed.
Watkins, Herschel M.; Vallée-Bélisle, Alexis; Ricci, Francesco; Makarov, Dmitrii E.; Plaxco, Kevin W.
2012-01-01
Surface-tethered biomolecules play key roles in many biological processes and biotechnologies. However, while the physical consequences of such surface attachment have seen significant theoretical study, to date this issue has seen relatively little experimental investigation. In response we present here a quantitative experimental and theoretical study of the extent to which attachment to a charged –but otherwise apparently inert– surface alters the folding free energy of a simple biomolecule. Specifically, we have measured the folding free energy of a DNA stem loop both in solution and when site-specifically attached to a negatively charged, hydroxyl-alkane-coated gold surface. We find that, whereas surface attachment is destabilizing at low ionic strength it becomes stabilizing at ionic strengths above ~130 mM. This behavior presumably reflects two competing mechanisms: excluded volume effects, which stabilize the folded conformation by reducing the entropy of the unfolded state, and electrostatics, which, at lower ionic strengths, destabilizes the more compact folded state via repulsion from the negatively charged surface. To test this hypothesis we have employed existing theories of the electrostatics of surface-bound polyelectrolytes and the entropy of surface-bound polymers to model both effects. Despite lacking any fitted parameters, these theoretical models quantitatively fit our experimental results, suggesting that, for this system, current knowledge of both surface electrostatics and excluded volume effects is reasonably complete and accurate. PMID:22239220
Terahertz absorption of lysozyme in solution
NASA Astrophysics Data System (ADS)
Martin, Daniel R.; Matyushov, Dmitry V.
2017-08-01
Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.
A theory of the inverse magnetoelectric effect in layered magnetostrictive-piezoelectric structures
NASA Astrophysics Data System (ADS)
Filippov, D. A.; Radchenko, G. S.; Firsova, T. O.; Galkina, T. A.
2017-05-01
A theory of the inverse magnetoelectric effect in layered structures has been presented. The theory is based on solving the equations of elastodynamics and electrostatics separately for the magnetostrictive and piezoelectric phases, taking into account the conditions at the interface between the phases. Expressions for the coefficient of inverse magnetoelectric conversion through the parameters characterizing the magnetostrictive and piezoelectric phases have been obtained. Theoretical dependences of the inverse magnetoelectric conversion coefficient on the frequency of the alternating-current electric field for the three-layer PZT-Ni-PZT structure and the two-layer terfenol- D-PZT structure have been calculated. The results of the calculations are in good agreement with the experimental data.
Imaging of turbulent structures and tomographic reconstruction of TORPEX plasma emissivity
NASA Astrophysics Data System (ADS)
Iraji, D.; Furno, I.; Fasoli, A.; Theiler, C.
2010-12-01
In the TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], a simple magnetized plasma device, low frequency electrostatic fluctuations associated with interchange waves, are routinely measured by means of extensive sets of Langmuir probes. To complement the electrostatic probe measurements of plasma turbulence and study of plasma structures smaller than the spatial resolution of probes array, a nonperturbative direct imaging system has been developed on TORPEX, including a fast framing Photron-APX-RS camera and an image intensifier unit. From the line-integrated camera images, we compute the poloidal emissivity profile of the plasma by applying a tomographic reconstruction technique using a pixel method and solving an overdetermined set of equations by singular value decomposition. This allows comparing statistical, spectral, and spatial properties of visible light radiation with electrostatic fluctuations. The shape and position of the time-averaged reconstructed plasma emissivity are observed to be similar to those of the ion saturation current profile. In the core plasma, excluding the electron cyclotron and upper hybrid resonant layers, the mean value of the plasma emissivity is observed to vary with (Te)α(ne)β, in which α =0.25-0.7 and β =0.8-1.4, in agreement with collisional radiative model. The tomographic reconstruction is applied to the fast camera movie acquired with 50 kframes/s rate and 2 μs of exposure time to obtain the temporal evolutions of the emissivity fluctuations. Conditional average sampling is also applied to visualize and measure sizes of structures associated with the interchange mode. The ω-time and the two-dimensional k-space Fourier analysis of the reconstructed emissivity fluctuations show the same interchange mode that is detected in the ω and k spectra of the ion saturation current fluctuations measured by probes. Small scale turbulent plasma structures can be detected and tracked in the reconstructed emissivity movies with the spatial resolution down to 2 cm, well beyond the spatial resolution of the probe array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Emily B.; Williams, Angela; Heidel, Eric
Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, theremore » are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as therapeutics for the treatment of amyloid diseases.« less
NASA Astrophysics Data System (ADS)
Wan, Meng; Liu, Feng; Fang, Zhi; Zhang, Bo; Wan, Hui
2017-09-01
Atmospheric Pressure Plasma Jet arrays can greatly enhance the treatment area to fulfill the need for large-scale surface processing, while the spatial uniformity of the plasma jet array is closely related to the interactions of the adjacent jets. In this paper, a three-tube one-dimensional (1D) He plasma jet array with a cross-field needle-ring electrode structure is used to investigate the influences of the gas flow rate and applied voltage on the interactions of the adjacent jets through electrical, optical, and fluid measurements. The repulsion of the adjacent plume channels is observed using an intensified charge-coupled device (ICCD) and the influence of the gas flow rate and applied voltage on the electrostatic repulsion force, Coulomb force, is discussed. It is found that electrical coupling, mainly electrostatic repulsion force, exists among the jets in the array, which causes both the divergence of the lateral plumes and the nonlinear changes of the discharge power and the transport charge. The deflection angle of the lateral plumes with respect to the central plume in the optical images increases with the increase of applied voltage and decreases with the increase of gas flow rate. The deflection angle of the lateral plumes in the optical images is obviously larger than that of the lateral gas streams in the Schlieren images under the same experimental conditions, and the unconformity of the deflection angles is mainly attributed to the electrostatic repulsion force in adjacent plasma plume channels. The experimental results can help understand the interaction mechanisms of jets in the array and design controllable and scalable plasma jet arrays.
NASA Astrophysics Data System (ADS)
Mathias, Gerald; Egwolf, Bernhard; Nonella, Marco; Tavan, Paul
2003-06-01
We present a combination of the structure adapted multipole method with a reaction field (RF) correction for the efficient evaluation of electrostatic interactions in molecular dynamics simulations under periodic boundary conditions. The algorithm switches from an explicit electrostatics evaluation to a continuum description at the maximal distance that is consistent with the minimum image convention, and, thus, avoids the use of a periodic electrostatic potential. A physically motivated switching function enables charge clusters interacting with a given charge to smoothly move into the solvent continuum by passing through the spherical dielectric boundary surrounding this charge. This transition is complete as soon as the cluster has reached the so-called truncation radius Rc. The algorithm is used to examine the dependence of thermodynamic properties and correlation functions on Rc in the three point transferable intermolecular potential water model. Our test simulations on pure liquid water used either the RF correction or a straight cutoff and values of Rc ranging from 14 Å to 40 Å. In the RF setting, the thermodynamic properties and the correlation functions show convergence for Rc increasing towards 40 Å. In the straight cutoff case no such convergence is found. Here, in particular, the dipole-dipole correlation functions become completely artificial. The RF description of the long-range electrostatics is verified by comparison with the results of a particle-mesh Ewald simulation at identical conditions.
Li, Jia; Gao, Bei; Xu, Zhenming
2014-05-06
New recycling technologies have been developed lately to enhance the value of the fiberglass powder-resin powder fraction (FRP) from waste printed circuit boards. The definite aim of the present paper is to present some novel methods that use the image forces for the separation of the resin powder and fiberglass powder generated from FRP during the corona electrostatic separating process. The particle shape charactization and particle trajectory simulation were performed on samples of mixed non-metallic particles. The simulation results pointed out that particles of resin powder and particles of fiberglass powder had different detach trajectories at the conditions of the same size and certain device parameters. An experiment carried out using a corona electrostatic separator validated the possibility of sorting these particles based on the differences in their shape characteristics. The differences in the physical properties of the different types of particles provided the technical basis for the development of electrostatic separation technologies for the recycling industry.
NASA Astrophysics Data System (ADS)
Oh, Y. J.; Jo, W.; Kim, S.; Park, S.; Kim, Y. S.
2008-09-01
A protein patterned surface using micro-contact printing methods has been investigated by scanning force microscopy. Electrostatic force microscopy (EFM) was utilized for imaging the topography and detecting the electrical properties such as the local bound charge distribution of the patterned proteins. It was found that the patterned IgG proteins are arranged down to 1 µm, and the 90° rotation of patterned anti-IgG proteins was successfully undertaken. Through the estimation of the effective areas, it was possible to determine the local bound charges of patterned proteins which have opposite electrostatic force behaviors. Moreover, we studied the binding probability between IgG and anti-IgG in a 1 µm2 MIMIC system by topographic and electrostatic signals for applicable label-free detections. We showed that the patterned proteins can be used for immunoassay of proteins on the functional substrate, and that they can also be used for bioelectronics device application, indicating distinct advantages with regard to accuracy and a label-free detection.
Ionic Structure at Dielectric Interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics(MD) simulations and compared it with liquid state theory result. We explore the effects of high electrolyte concentrations, multivalent ions, and dielectric contrasts on the ionic distributions. We observe the presence of non-monotonous ionic density profiles leading to structure deformation in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of effective interaction between two interfaces. We show that, in concentrated electrolytes with confinement, it is imperative to take into account the finite-size of the ions as well as proper description of electrostatic interactions in heterogeneous media, which is not fully fulfilled by Poisson-Boltzmann based approaches. The effect of electric field at interface between two immiscible electrolyte solutions is studied as well. The classical Poisson-Boltzmann theory has been widely used to describe the corresponding ionic distribution, even though it neglects the polarization and ion correlations typical of these charged systems. Using Monte Carlo simulations, we provide an enhanced description of an oil-water interface in the presence of an electric field without needing any adjustable parameter, including realistic ionic sizes, ion correlations, and image charges. Our data agree with experimental measurements of excess surface tension for a wide range of electrolyte concentrations of LiCl and TBATPB (tetrabutylammonium-tetraphenylborate), contrasting with the result of the classical non-linear Poisson-Boltzmann theory. More importantly, we show that the size-asymmetry between small Li+ and large Cl- ions can significantly increase the electric field near the liquid interface, or can even reverse it locally, at high salt concentrations in the aqueous phase. These observations suggest a novel trapping/release mechanism of charged nanoparticles at oil-water interfaces in the vicinity of the point of zero charge. In addition, we study the effects of size asymmetry and charge asymmetry on ion distribution at a dielectric interface using coarse-grained MD based on an energy variational principle. The goal is to explore charge amplification with exact consideration of surface polarization. We find that both size asymmetry and charge asymmetry lead to charge separation at the interfaces. In addition, charge separation is enhanced by interface polarization. We are currently extending the research to charged interfaces that has broad applications such as batteries and supercapacitors for energy storage.
Electrostatic interaction between dissimilar colloids at fluid interfaces
NASA Astrophysics Data System (ADS)
Majee, Arghya; Schmetzer, Timo; Bier, Markus
2018-04-01
The electrostatic interaction between two nonidentical, moderately charged colloids situated in close proximity of each other at a fluid interface is studied. By resorting to a well-justified model system, this problem is analytically solved within the framework of linearized Poisson-Boltzmann density functional theory. The resulting interaction comprises a surface and a line part, both of which, as functions of the interparticle separation, show a rich behavior including monotonic as well as nonmonotonic variations. In almost all cases, these variations cannot be captured correctly by using the superposition approximation. Moreover, expressions for the surface tensions, the line tensions and the fluid-fluid interfacial tension, which are all independent of the interparticle separation, are obtained. Our results are expected to be particularly useful for emulsions stabilized by oppositely charged particles.
A theoretical study on 3-(4-methoxyphenyl)-1-(pyridin-2-Yl) prop-2-en-1-one
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öner, Nazmiye, E-mail: fizikcinaz@gmail.com; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avci, Davut, E-mail: davcir@sakarya.edu.tr
This study reports the geometric parameters, vibration frequencies, {sup 13}C and {sup 1}H NMR chemical shifts of 3-(4-Methoxyphenyl)-1-(pyridin-2-yl) prop-2-en-1-one (MPP) molecule calculated by B3LYP level of density functional theory (DFT) with 6-311++G(d,p) basis set. {sup 13}C and {sup 1}H NMR chemical shifts were calculated within GIAO approach which is one of the most common approaches. Additionally, 3D molecular surfaces such as molecular electrostatic potential (MEP) and electrostatic potential (ESP), were simulated by the same level. As a result, obtained theoretical results were found to be consistent with experimental ones. All of calculations were carried out Gaussian 09 package program.
Diffusion of Charged Species in Liquids
NASA Astrophysics Data System (ADS)
Del Río, J. A.; Whitaker, S.
2016-11-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Diffusion of Charged Species in Liquids.
Del Río, J A; Whitaker, S
2016-11-04
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Diffusion of Charged Species in Liquids
del Río, J. A.; Whitaker, S.
2016-01-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases. PMID:27811959
Electrical stress and strain in lunar regolith simulants
NASA Astrophysics Data System (ADS)
Marshall, J.; Richard, D.; Davis, S.
2011-11-01
Experiments to entrain dust with electrostatic and fluid-dynamic forces result in particulate clouds of aggregates rather than individual dust grains. This is explained within the framework of Griffith-flaw theory regarding the comminution/breakage of weak solids. Physical and electrical inhomogeneities in powders are equivalent to microcracks in solids insofar as they facilitate failure at stress risers. Electrical charging of powders induces bulk sample stresses similar to mechanical stresses experienced by strong solids, depending on the nature of the charging. A powder mass therefore "breaks" into clumps rather than separating into individual dust particles. This contrasts with the expectation that electrical forces on the Moon will eject a submicron population of dust from the regolith into the exosphere. A lunar regolith will contain physical and electrostatic inhomogeneities similar to those in most charged powders.
On the theory of Carriers's Electrostatic Interaction near an Interface
NASA Astrophysics Data System (ADS)
Waters, Michael; Hashemi, Hossein; Kieffer, John
2015-03-01
Heterojunction interfaces are common in non-traditional photovoltaic device designs, such as those based small molecules, polymers, and perovskites. We have examined a number of the effects of the heterojunction interface region on carrier/exciton energetics using a mixture of both semi-classical and quantum electrostatic methods, ab initio methods, and statistical mechanics. Our theoretical analysis has yielded several useful relationships and numerical recipes that should be considered in device design regardless of the particular materials system. As a demonstration, we highlight these formalisms as applied to carriers and polaron pairs near a C60/subphthalocyanine interface. On the regularly ordered areas of the heterojunction, the effect of the interface is a significant set of corrections to the carrier energies, which in turn directly affects device performance.
Electrostatic attraction between overall neutral surfaces.
Adar, Ram M; Andelman, David; Diamant, Haim
2016-08-01
Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.
IImage method for induced surface charge from many-body system of dielectric spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-28
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less
Takae, Kyohei; Onuki, Akira
2013-09-28
We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.
An ionic-chemical-mechanical model for muscle contraction.
Manning, Gerald S
2016-12-01
The dynamic process underlying muscle contraction is the parallel sliding of thin actin filaments along an immobile thick myosin fiber powered by oar-like movements of protruding myosin cross bridges (myosin heads). The free energy for functioning of the myosin nanomotor comes from the hydrolysis of ATP bound to the myosin heads. The unit step of translational movement is based on a mechanical-chemical cycle involving ATP binding to myosin, hydrolysis of the bound ATP with ultimate release of the hydrolysis products, stress-generating conformational changes in the myosin cross bridge, and relief of built-up stress in the myosin power stroke. The cycle is regulated by a transition between weak and strong actin-myosin binding affinities. The dissociation of the weakly bound complex by addition of salt indicates the electrostatic basis for the weak affinity, while structural studies demonstrate that electrostatic interactions among negatively charged amino acid residues of actin and positively charged residues of myosin are involved in the strong binding interface. We therefore conjecture that intermediate states of increasing actin-myosin engagement during the weak-to-strong binding transition also involve electrostatic interactions. Methods of polymer solution physics have shown that the thin actin filament can be regarded in some of its aspects as a net negatively charged polyelectrolyte. Here we employ polyelectrolyte theory to suggest how actin-myosin electrostatic interactions might be of significance in the intermediate stages of binding, ensuring an engaged power stroke of the myosin motor that transmits force to the actin filament, and preventing the motor from getting stuck in a metastable pre-power stroke state. We provide electrostatic force estimates that are in the pN range known to operate in the cycle. © 2016 Wiley Periodicals, Inc.
Neoclassical quasilinear theory in the superbanana plateau regime and banana kinetics in tokamaks
NASA Astrophysics Data System (ADS)
Shaing, K. C.
2017-12-01
Neoclassical quasilinear transport theory, which is part of a more general theory that unifies neoclassical and quasilinear theories, is extended to the superbanana plateau regime for low frequency (of the order of the drift frequency) electrostatic fluctuations. The physics mechanism that is responsible for the transport losses in this regime is the superbanana plateau resonance. Besides the usual magnetic drifts, Doppler shifted mode frequency also contributes to the resonance condition. Because the characteristic frequency involved in the resonance is of the order of the drift frequency, which is lower than either the bounce or the transit frequency of the particles, the transport losses are higher than the losses calculated in the conventional quasilinear theory. The important effects of the finite banana width, i.e., banana kinetics, are included and are found to reduce the transport losses for short wavelength modes. The implications on the energetic alpha particle energy loss are discussed.
Electromechanical instability in soft materials: Theory, experiments and applications
NASA Astrophysics Data System (ADS)
Suo, Zhigang
2013-03-01
Subject to a voltage, a membrane of a dielectric elastomer reduces thickness and expands area, possibly straining over 100%. The phenomenon is being developed as transducers for broad applications, including soft robots, adaptive optics, Braille displays, and electric generators. The behavior of dielectric elastomers is closely tied to electromechanical instability. This instability may limit the performance of devices, and may also be used to achieve giant actuation strains. This talk reviews the theory of dielectric elastomers, coupling large deformation and electric potential. The theory is developed within the framework of continuum mechanics and thermodynamics. The theory attempts to answer commonly asked questions. How do mechanics and electrostatics work together to generate large deformation? How efficiently can a material convert energy from one form to another? How do molecular processes affect macroscopic behavior? The theory is used to describe electromechanical instability, and is related to recent experiments.
Chaotic neoclassical separatrix dissipation in parametric drift-wave decay.
Kabantsev, A A; Tsidulko, Yu A; Driscoll, C F
2014-02-07
Experiments and theory characterize a parametric decay instability between plasma drift waves when the nonlinear coupling is modified by an electrostatic barrier. Novel mode coupling terms representing enhanced dissipation and mode phase shifts are caused by chaotic separatrix crossings on the wave-ruffled separatrix. Experimental determination of these coupling terms is in broad agreement with new chaotic neoclassical transport analyses.
Chaotic transport and damping from θ-ruffled separatrices.
Kabantsev, A A; Dubin, Daniel H E; Driscoll, C F; Tsidulko, Yu A
2010-11-12
Variations in magnetic or electrostatic confinement fields give rise to trapping separatrices, and neoclassical transport theory analyzes effects from collision-induced separatrix crossings. Experiments on pure electron plasmas now quantitatively characterize a broad range of transport and wave damping effects due to "chaotic" separatrix crossings, which occur due to equilibrium plasma rotation across θ-ruffled separatrices, and due to wave-induced separatrix fluctuations.
NASA Astrophysics Data System (ADS)
Panda, Maheswar
2018-05-01
In this manuscript, the dielectric behavior of a variety of ferroelectric polymer dielectrics (FPD), which may bethe materials for future electrostatic energy storage application shave been discussed. The variety of polymer dielectrics, comprising of ferroelectric polymer[polyvinylidene fluoride (PVDF)]/non-polarpolymer [low density polyethylene (LDPE)] and different sizes of metal particles (Ni, quasicrystal of Al-Cu-Fe) as filler, were prepared through different process conditions (cold press/hot press) and are investigated experimentally. Very high values of effective dielectric constants (ɛeff) with low loss tangent (Tan δ) were observed forall the prepared FPD at their respective percolation thresholds (fc). The enhancement of ɛeff and Tan δ at the insulator to metal transition (IMT) is explained through the boundary layer capacitor effect and the percolation theory respectively. The non-universal fc/critical exponents across the IMT have been explained through percolation theory andis attributed to the fillerparticle size& shape, interaction between the components, method of their preparation, adhesiveness, connectivity and homogeneity, etc. of the samples. Recent results on developed FPD with high ɛeff and low Tan δ prepared through cold press have proven themselves to be the better candidates for low frequency and static dielectric applications.
Biomimetic micromechanical adaptive flow-sensor arrays
NASA Astrophysics Data System (ADS)
Krijnen, Gijs; Floris, Arjan; Dijkstra, Marcel; Lammerink, Theo; Wiegerink, Remco
2007-05-01
We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of sacrificial poly-silicon technology, to form silicon-nitride suspended membranes, and SU8 polymer processing for fabrication of hairs with diameters of about 50 μm and up to 1 mm length. The membranes have thin chromium electrodes on top forming variable capacitors with the substrate that allow for capacitive read-out. Previously these sensors have been shown to exhibit acoustic sensitivity. Like for the crickets, the MEMS hair-sensors are positioned on elongated structures, resembling the cercus of crickets. In this work we present optical measurements on acoustically and electrostatically excited hair-sensors. We present adaptive control of flow-sensitivity and resonance frequency by electrostatic spring stiffness softening. Experimental data and simple analytical models derived from transduction theory are shown to exhibit good correspondence, both confirming theory and the applicability of the presented approach towards adaptation.
NASA Astrophysics Data System (ADS)
Kwang-Hua, Chu Rainer
2016-11-01
We make some crucial remarks about the recent presentation by Fredlund et al (2015 Eur. J. Phys. 36 055002) considering the tutorial problem raised therein. After working out the velocity of the electron (we also included the role of image charges or induced charges) as it strikes the (conducting) metal sphere, we found the velocity value is already near the relativistic regime. The latter then encounters the open issue; to obtain a classical equation of motion of a point charge for which Yaghjian (2008 Phys. Rev. E 78 046606) has mentioned the following difficulty: the electrostatic energy of formation and thus the electrostatic mass of a point charge is infinite.
Design of an electrostatic phase shifting device for biological transmission electron microscopy.
Koeck, Philip J B
2018-04-01
I suggest an electrostatic phase plate designed to broaden the contrast transfer function of a transmission electron microscope operated close to Scherzer defocus primarily in the low resolution direction. At higher defocus the low frequency behavior is equal to that close to Scherzer defocus, but CTF-correction becomes necessary to extend image interpretation to higher resolution. One simple realization of the phase plate consists of two ring shaped electrodes symmetrically surrounding the central beam. Since no physical components come into contact with the central beam and charge on the electrodes is controlled by an external voltage supply, problems with uncontrolled charging are expected to be reduced. Copyright © 2018 Elsevier B.V. All rights reserved.
Multipolar electrostatics based on the Kriging machine learning method: an application to serine.
Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A
2014-04-01
A multipolar, polarizable electrostatic method for future use in a novel force field is described. Quantum Chemical Topology (QCT) is used to partition the electron density of a chemical system into atoms, then the machine learning method Kriging is used to build models that relate the multipole moments of the atoms to the positions of their surrounding nuclei. The pilot system serine is used to study both the influence of the level of theory and the set of data generator methods used. The latter consists of: (i) sampling of protein structures deposited in the Protein Data Bank (PDB), or (ii) normal mode distortion along either (a) Cartesian coordinates, or (b) redundant internal coordinates. Wavefunctions for the sampled geometries were obtained at the HF/6-31G(d,p), B3LYP/apc-1, and MP2/cc-pVDZ levels of theory, prior to calculation of the atomic multipole moments by volume integration. The average absolute error (over an independent test set of conformations) in the total atom-atom electrostatic interaction energy of serine, using Kriging models built with the three data generator methods is 11.3 kJ mol⁻¹ (PDB), 8.2 kJ mol⁻¹ (Cartesian distortion), and 10.1 kJ mol⁻¹ (redundant internal distortion) at the HF/6-31G(d,p) level. At the B3LYP/apc-1 level, the respective errors are 7.7 kJ mol⁻¹, 6.7 kJ mol⁻¹, and 4.9 kJ mol⁻¹, while at the MP2/cc-pVDZ level they are 6.5 kJ mol⁻¹, 5.3 kJ mol⁻¹, and 4.0 kJ mol⁻¹. The ranges of geometries generated by the redundant internal coordinate distortion and by extraction from the PDB are much wider than the range generated by Cartesian distortion. The atomic multipole moment and electrostatic interaction energy predictions for the B3LYP/apc-1 and MP2/cc-pVDZ levels are similar, and both are better than the corresponding predictions at the HF/6-31G(d,p) level.
Bardhan, Jaydeep P
2011-09-14
We study the energetics of burying charges, ion pairs, and ionizable groups in a simple protein model using nonlocal continuum electrostatics. Our primary finding is that the nonlocal response leads to markedly reduced solvent screening, comparable to the use of application-specific protein dielectric constants. Employing the same parameters as used in other nonlocal studies, we find that for a sphere of radius 13.4 Å containing a single +1e charge, the nonlocal solvation free energy varies less than 18 kcal/mol as the charge moves from the surface to the center, whereas the difference in the local Poisson model is ∼35 kcal/mol. Because an ion pair (salt bridge) generates a comparatively more rapidly varying Coulomb potential, energetics for salt bridges are even more significantly reduced in the nonlocal model. By varying the central parameter in nonlocal theory, which is an effective length scale associated with correlations between solvent molecules, nonlocal-model energetics can be varied from the standard local results to essentially zero; however, the existence of the reduction in charge-burial penalties is quite robust to variations in the protein dielectric constant and the correlation length. Finally, as a simple exploratory test of the implications of nonlocal response, we calculate glutamate pK(a) shifts and find that using standard protein parameters (ε(protein) = 2-4), nonlocal results match local-model predictions with much higher dielectric constants. Nonlocality may, therefore, be one factor in resolving discrepancies between measured protein dielectric constants and the model parameters often used to match titration experiments. Nonlocal models may hold significant promise to deepen our understanding of macromolecular electrostatics without substantially increasing computational complexity. © 2011 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xue B.; Dacres, J E.; Yang, Xin
2003-11-11
Negative ion photoelectron spectra resulting from the decarboxylation of nine zwitterionic pyridinium dicarboxylates (D(x,y)) are reported. Structural assignments are made on the basis of analogy to the spectra of related species, labeling experiments with C-13- or H-2-containing substrates, independent syntheses, and comparison to density functional theory and ab initio (B3LYP and CCSD(T), respectively) results. In some cases, an acid-catalyzed isomerization of the D(xy)-CO2 ions was found to take place. Adiabatic detachment energies of the resulting zwitterionic ions were measured and are well reproduced by theory. The relative stabilities of the D(x,Y)- CO2 decarboxylation products are largely determined by their intramolecularmore » electrostatic interactions, which are directly probed by the photoelectron spectra and were analyzed in terms of the resulting Coulombic forces. Expulsion of carbon dioxide from the D(x,y) ions was also used as an electrostatic model to probe the mechanism of the enzyme-catalyzed conversion of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP). It was found that the loss of CO2 from these zwitterions; and from oxygen-protonated OMP is retarded by the presence of an additional anionic group. This suggests that the formation of a zwitterion intermediate in the enzyme-catalyzed transformation of OMP to UMP may have less of an energetic impact than commonly thought and could be a''red herring''. If so, the electrostatic stress mechanism proposed by Larsen et al. and Pai, Guo, and co-workers maybe followed.« less
Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.
Ubbink, Job; Khokhlov, Alexei R
2004-03-15
A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.
Real-Space Multiple-Scattering Theory and Its Applications at Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenbach, Markus; Wang, Yang
In recent decades, the ab initio methods based on density functional theory (DFT) (Hohenberg and Kohn 1964, Kohn and Sham 1965) have become a widely used tool in computational materials science, which allows theoretical prediction of physical properties of materials from the first principles and theoretical interpretation of new physical phenomena found in experiments. In the framework of DFT, the original problem that requires solving a quantum mechanical equation for a many-electron system is reduced to a one-electron problem that involves an electron moving in an effective field, while the effective field potential is made up of an electrostatic potential,more » also known as Hartree potential, arising from the electronic and ion charge distribution in space and an exchange–correlation potential, which is a function of the electron density and encapsulates the exchange and correlation effects of the many-electron system. Even though the exact functional form of the exchange-correlation potential is formally unknown, a local density approximation (LDA) or a generalized gradient approximation (GGA) is usually applied so that the calculation of the exchange–correlation potential, as well as the exchange–correlation energy, becomes tractable while a required accuracy is retained. Based on DFT, ab initio electronic structure calculations for a material generally involve a self-consistent process that iterates between two computational tasks: (1) solving an one-electron Schrödinger equation, also known as Kohn–Sham equation, to obtain the electron density and, if needed, the magnetic moment density, and (2) solving the Poisson equation to obtain the electrostatic potential corresponding to the electron density and constructing the effective potential by adding the exchange–correlation potential to the electrostatic potential. This self-consistent process proceeds until a convergence criteria is reached.« less
Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas
NASA Astrophysics Data System (ADS)
Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team
2017-10-01
In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.
Hadt, Ryan G.; Sun, Ning; Marshall, Nicholas M.; Hodgson, Keith O.; Hedman, Britt; Lu, Yi; Solomon, Edward I.
2012-01-01
The reduction potentials (E0) of type 1 (T1) or blue copper (BC) sites in proteins and enzymes with identical first coordination spheres around the redox active copper ion can vary by ~400 mV. Here, we use a combination of low temperature electronic absorption and magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and S K-edge X-ray absorption spectroscopies to investigate a series of second sphere variants—F114P, N47S, and F114N in Pseudomonas aeruginosa azurin (Az)—which modulate hydrogen bonding to and protein derived dipoles nearby the Cu-S(Cys) bond. Density functional theory (DFT) calculations correlated to the experimental data allow for the fractionation of the contributions to tuning E0 into covalent and non-local electrostatic components. These are found to be significant, comparable in magnitude, and additive for active H-bonds, while passive H-bonds are mostly non-local electrostatic in nature. For dipoles, these terms can be additive to or oppose one another. This study provides a methodology for uncoupling covalency from non-local electrostatics, which, when coupled to X-ray crystallographic data, distinguishes specific local interactions from more long range protein/active interactions, while affording further insight into the second sphere mechanisms available to the protein to tune the E0 of electron transfer sites in biology. PMID:22985400
Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.
Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi
2014-07-01
A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Chung, S. K.; Rhim, W. K.
1997-01-01
The specific volumes and viscosities of the Ni-Zr liquid alloys as a function of temperature are determined by employing a digitizing technique and numeric analysis methods applied to the optical images of the electrostatically levitated liquid alloys.
A Survey of Display Hardware and Software.
ERIC Educational Resources Information Center
Poore, Jesse H., Jr.; And Others
Reported are two papers which deal with the fundamentals of display hardware and software in computer systems. The first report presents the basic principles of display hardware in terms of image generation from buffers presumed to be loaded and controlled by a digital computer. The concepts surrounding the electrostatic tube, the electromagnetic…
Nonpolar Solvation Free Energy from Proximal Distribution Functions
Ou, Shu-Ching; Drake, Justin A.; Pettitt, B. Montgomery
2017-01-01
Using precomputed near neighbor or proximal distribution functions (pDFs) that approximate solvent density about atoms in a chemically bonded context one can estimate the solvation structures around complex solutes and the corresponding solute–solvent energetics. In this contribution, we extend this technique to calculate the solvation free energies (ΔG) of a variety of solutes. In particular we use pDFs computed for small peptide molecules to estimate ΔG for larger peptide systems. We separately compute the non polar (ΔGvdW) and electrostatic (ΔGelec) components of the underlying potential model. Here we show how the former can be estimated by thermodynamic integration using pDF-reconstructed solute–solvent interaction energy. The electrostatic component can be approximated with Linear Response theory as half of the electrostatic solute–solvent interaction energy. We test the method by calculating the solvation free energies of butane, propanol, polyalanine, and polyglycine and by comparing with traditional free energy simulations. Results indicate that the pDF-reconstruction algorithm approximately reproduces ΔGvdW calculated by benchmark free energy simulations to within ~ kcal/mol accuracy. The use of transferable pDFs for each solute atom allows for a rapid estimation of ΔG for arbitrary molecular systems. PMID:27992228
Lokar, Marusa; Urbanija, Jasna; Frank, Mojca; Hägerstrand, Henry; Rozman, Blaz; Bobrowska-Hägerstrand, Malgorzata; Iglic, Ales; Kralj-Iglic, Veronika
2008-08-01
Plasma protein-mediated attractive interaction between membranes of red blood cells (RBCs) and phospholipid vesicles was studied. It is shown that beta(2)-glycoprotein I (beta(2)-GPI) may induce RBC discocyte-echinocyte-spherocyte shape transformation and subsequent agglutination of RBCs. Based on the observed beta(2)-GPI-induced RBC cell shape transformation it is proposed that the hydrophobic portion of beta(2)-GPI molecule protrudes into the outer lipid layer of the RBC membrane and increases the area of this layer. It is also suggested that the observed agglutination of RBCs is at least partially driven by an attractive force which is of electrostatic origin and depends on the specific molecular shape and internal charge distribution of membrane-bound beta(2)-GPI molecules. The suggested beta(2)-GPI-induced attractive electrostatic interaction between like-charged RBC membrane surfaces is qualitatively explained by using a simple mathematical model within the functional density theory of the electric double layer, where the electrostatic attraction between the positively charged part of the first domains of bound beta(2)-GPI molecules and negatively charged glycocalyx of the adjacent RBC membrane is taken into account.
On the Electrostatic Born-Infeld Equation with Extended Charges
NASA Astrophysics Data System (ADS)
Bonheure, Denis; d'Avenia, Pietro; Pomponio, Alessio
2016-09-01
In this paper, we deal with the electrostatic Born-Infeld equation -operatorname{div} (nablaφ/√{1-|nabla φ|^2} )= ρ quad{in} {R}^N, lim_{|x|to ∞} φ(x)= 0,. quad quad quad quad ({{BI}}) where {ρ} is an assigned extended charge density. We are interested in the existence and uniqueness of the potential {φ} and finiteness of the energy of the electrostatic field {-nabla φ}. We first relax the problem and treat it with the direct method of the Calculus of Variations for a broad class of charge densities. Assuming {ρ} is radially distributed, we recover the weak formulation of {({{BI}})} and the regularity of the solution of the Poisson equation (under the same smoothness assumptions). In the case of a locally bounded charge, we also recover the weak formulation without assuming any symmetry. The solution is even classical if {ρ} is smooth. Then we analyze the case where the density {ρ} is a superposition of point charges and discuss the results in (Kiessling, Commun Math Phys 314:509-523, 2012). Other models are discussed, as for instance a system arising from the coupling of the nonlinear Klein-Gordon equation with the Born-Infeld theory.
A novel electrostatic precipitator
NASA Astrophysics Data System (ADS)
Tang, Minkang; Wang, Liqian; Lin, Zhigui
2013-03-01
ESP (Electrostatic Precipitation) has been widely used in the mining, building materials, metallurgy and power industries. Dust particles or other harmful particles from the airstream can be precipitated by ESP with great collecting efficiency. Because of its' large size, high cost and energy consumption, the scope of application of ESP has been limited to a certain extent. By means of the theory of electrostatics and fluid dynamics, a corona assembly with a self-cleaning function and a threshold voltage automatic tracking technology has been developed and used in ESP. It is indicated that compared with conventional ESP, the electric field length has been reduced to 1/10 of the original, the current density on the collecting electrode increased 3-5 times at the maximum, the approach speed of dust particles in the electric field towards the collecting electrode is 4 times that in conventional ESP and the electric field wind speed may be enhanced by 2-3 times the original. Under the premise of ESP having a high efficiency of dust removal, equipment volume may be actually reduced to 1/5 to 1/10 of the original volume and energy consumption may be reduced by more than 50%.
Highly excited electronic image states of metallic nanorings
Fey, Christian; Jabusch, Henrik; Knörzer, Johannes; Schmelcher, Peter
2017-01-01
We study electronic image states around a metallic nanoring and show that the interplay between the attractive polarization force and a repulsive centrifugal force gives rise to Rydberg-like image states trapped several nanometers away from the surface. The nanoring is modeled as a perfectly conducting isolated torus whose classical electrostatic image potential is derived analytically. The image states are computed via a two-dimensional finite-difference scheme as solutions of the effective Schrödinger equation describing the outer electron subject to this image potential. These findings demonstrate not only the existence of detached image states around nanorings but allow us also to provide general criteria on the ring geometry, i.e., the aspect ratio of the torus, that need to be fulfilled in order to support such states. PMID:28527466
The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy.
Satzinger, Kevin J; Brown, Keith A; Westervelt, Robert M
2012-09-15
A realistic interpretation of the measured contact potential difference (CPD) in Kelvin probe force microscopy (KPFM) is crucial in order to extract meaningful information about the sample. Central to this interpretation is a method to include contributions from the macroscopic cantilever arm, as well as the cone and sharp tip of a KPFM probe. Here, three models of the electrostatic interaction between a KPFM probe and a sample are tested through an electrostatic simulation and compared with experiment. In contrast with previous studies that treat the KPFM cantilever as a rigid object, we allow the cantilever to bend and rotate; accounting for cantilever bending provides the closest agreement between theory and experiment. We demonstrate that cantilever dynamics play a major role in CPD measurements and provide a simulation technique to explore this phenomenon.
New results on the generation of broadband electrostatic waves in the magnetotail
NASA Technical Reports Server (NTRS)
Grabbe, C. L.
1985-01-01
The theory of the generation of broadband electrostatic noise (BEN) in the magnetotail is extended through numerical solution of the dispersion relation under conditions that exist in the plasma sheet boundary layer. It is found that the low-frequency portion of the spectrum has a broad angular spectrum but a fairly sharp peak near 75 deg with respect to the magnetic field, while the high-frequency portion has a narrower angular spectrum that is strongly concentrated along the magnetic field line. These results are in excellent agreement with observations of the broadband wave spectrum and a recent measurement of the propagation direction. The effect of a second cold component of electrons is analyzed, and it is found that it can increase the upper cutoff frequency of BEN to the observed value at about the plasma frequency.
Aggregate Size Dependence of Amyloid Adsorption onto Charged Interfaces
2017-01-01
Amyloid aggregates are associated with a range of human neurodegenerative disorders, and it has been shown that neurotoxicity is dependent on aggregate size. Combining molecular simulation with analytical theory, a predictive model is proposed for the adsorption of amyloid aggregates onto oppositely charged surfaces, where the interaction is governed by an interplay between electrostatic attraction and entropic repulsion. Predictions are experimentally validated against quartz crystal microbalance–dissipation experiments of amyloid beta peptides and fragmented fibrils in the presence of a supported lipid bilayer. Assuming amyloids as rigid, elongated particles, we observe nonmonotonic trends for the extent of adsorption with respect to aggregate size and preferential adsorption of smaller aggregates over larger ones. Our findings describe a general phenomenon with implications for stiff polyions and rodlike particles that are electrostatically attracted to a surface. PMID:29284092
NASA Astrophysics Data System (ADS)
Aittala, Pekka J.; Cramariuc, Oana; Hukka, Terttu I.
2011-01-01
The potential energy curves (PECs) of the Q, B, and the lowest charge transfer (CT) states of a porphine-2,5-dimethyl-1,4-benzoquinone (PQ) complex have been studied by using the time-dependent density functional theory (TDDFT) with the CAM-B3LYP functional without and with the presence of an external electrostatic field. The PECs calculated using CAM-B3LYP with the original parameters α = 0.19, β = 0.65, and μ = 0.33 a0-1 are practically identical with those obtained using BH&HLYP. Applying of CAM-B3LYP with parameters α = 0.19, β = 0.81, and μ = 0.25 a0-1 yields PECs of the excited states that agree well with the PECs calculated previously using the CC2 method.
Molecular Dynamic Studies of Particle Wake Potentials in Plasmas
NASA Astrophysics Data System (ADS)
Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren
2010-11-01
Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (P^3M) code ddcMD to perform these simulations. As a starting point in our study, we examined the wake of a particle passing through a plasma. In this poster, we compare the wake observed in 3D ddcMD simulations with that predicted by Vlasov theory and those observed in the electrostatic PIC code BEPS where the cell size was reduced to .03λD.
Heteroaromatic π-Stacking Energy Landscapes
2014-01-01
In this study we investigate π-stacking interactions of a variety of aromatic heterocycles with benzene using dispersion corrected density functional theory. We calculate extensive potential energy surfaces for parallel-displaced interaction geometries. We find that dispersion contributes significantly to the interaction energy and is complemented by a varying degree of electrostatic interactions. We identify geometric preferences and minimum interaction energies for a set of 13 5- and 6-membered aromatic heterocycles frequently encountered in small drug-like molecules. We demonstrate that the electrostatic properties of these systems are a key determinant for their orientational preferences. The results of this study can be applied in lead optimization for the improvement of stacking interactions, as it provides detailed energy landscapes for a wide range of coplanar heteroaromatic geometries. These energy landscapes can serve as a guide for ring replacement in structure-based drug design. PMID:24773380
Spectral broadening of VLF transmitter signals observed on DE 1 - A quasi-electrostatic phenomenon?
NASA Technical Reports Server (NTRS)
Inan, U. S.; Bell, T. F.
1985-01-01
Spectrally broadened VLF transmitter signals are observed on the DE 1 satellite using alternatively both electric and magnetic field sensors. It is found that at times when the electric field component undergoes significant bandwidth expansion (up to about 110 Hz) the magnetic field component has a bandwidth of less than 10 Hz. The results support the theory that the off-carrier components are quasi-electrostatic in nature. Measurement of the absolute E and B field magnitudes of the broadened signals are used to determine the wave Poynting vector. It is found that the observed power levels can be understood without invoking any strong amplification process that operates in conjunction with the spectral broadening. The implications of this finding in distinguishing among the various possible mechanisms for spectral broadening are discussed.
Ion strength limit of computed excess functions based on the linearized Poisson-Boltzmann equation.
Fraenkel, Dan
2015-12-05
The linearized Poisson-Boltzmann (L-PB) equation is examined for its κ-range of validity (κ, Debye reciprocal length). This is done for the Debye-Hückel (DH) theory, i.e., using a single ion size, and for the SiS treatment (D. Fraenkel, Mol. Phys. 2010, 108, 1435), which extends the DH theory to the case of ion-size dissimilarity (therefore dubbed DH-SiS). The linearization of the PB equation has been claimed responsible for the DH theory's failure to fit with experiment at > 0.1 m; but DH-SiS fits with data of the mean ionic activity coefficient, γ± (molal), against m, even at m > 1 (κ > 0.33 Å(-1) ). The SiS expressions combine the overall extra-electrostatic potential energy of the smaller ion, as central ion-Ψa>b (κ), with that of the larger ion, as central ion-Ψb>a (κ); a and b are, respectively, the counterion and co-ion distances of closest approach. Ψa>b and Ψb>a are derived from the L-PB equation, which appears to conflict with their being effective up to moderate electrolyte concentrations (≈1 m). However, the L-PB equation can be valid up to κ ≥ 1.3 Å(-1) if one abandons the 1/κ criterion for its effectiveness and, instead, use, as criterion, the mean-field electrostatic interaction potential of the central ion with its ion cloud, at a radial distance dividing the cloud charge into two equal parts. The DH theory's failure is, thus, not because of using the L-PB equation; the lethal approximation is assigning a single size to the positive and negative ions. © 2015 Wiley Periodicals, Inc.
Electrostatics in Stueckelberg-Horwitz electrodynamics
NASA Astrophysics Data System (ADS)
Land, Martin
2013-04-01
In this paper, we study fundamental aspects of electrostatics as a special case in Stueckelberg-Horwitz electromagnetic theory. In this theory, spacetime events xμ(τ) evolve in an unconstrained 8-dimensional phase space, interacting through five τ-dependent gauge fields induced by the current densities associated with their evolutions. The chronological time τ was introduced as an independent evolution parameter in order to free the laboratory clock x0 to evolve alternately 'forward' and 'backward' in time according to the sign of the energy, thus providing a classical implementation of the Feynman-Stueckelberg interpretation of pair creation/annihilation. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. After a brief review of Stueckelberg-Horwitz electrodynamics, we obtain the field produced by an event in uniform motion and verify that it satisfies the field equations. We study this field in the rest frame of the event, where it depends explicitly on coordinate time x0 and the parameter τ, as well as spatial distance R. Calculating with this generalized Coulomb field, we demonstrate how Gauss's theorem and Stoke's theorem apply in 4D spacetime, and obtain the fields associated with a charged line and a charged sheet. Finally, we use the field of the charged sheet to study a static event in the vicinity of a potential barrier. In all of these cases, we observe a small transfer of mass from the field to the particle. It is seen that for an event in the field of an oppositely charged sheet of sufficient density, the event can reverse time direction, providing a specific model for pair phenomena.
Electrical Measurements and Nanomechanics Using Scanning Probe Microscopy
NASA Astrophysics Data System (ADS)
Chang, Yong
2002-10-01
In the early 1980s, G. Binnig et al. invented the Scanning Tunneling Microscopy (STM) [1], making it possible to obtain atomic resolution images of conducting surfaces. After that, many different types of Scanning Probe Microscopy (SPM) were invented and some of the most useful representatives are Atomic Force Microscopy (AFM) [2], Electrostatic Force Microscopy (EFM) [3] and Kelvin Probe Force Microscopy (KPFM) [4,5]. In 1985, G. Binnig et al. [2] invented the AFM, which now is used as a fundamental tool in many fields of research. Developed from AFM, Y. Martin et al. [3] invented EFM in 1987. The development of AC mode AFM allows the detection of weak long-range forces. EFM has also been used to study other systems and phenomena, such as thin liquid films on solid surfaces [6], electrically stressed gold nanowires [7], and spatial charge distribution in quantum wires [8]. In 1991, M. Nonnenmacher et al. [5] invented Kelvin Probe Force Microscopy. KPFM is used to study any property that affects the tip-surface Contact Potential Difference (CPD), such as voltage signals in integrated circuits (IC) [9], charged grain boundaries in polycrystalline silicon [10] and surface potential variations in multilayer semiconductor devices [11]. The aim of this poster is to discuss the application of SPM to electrical measurements. The theory of SPM was presented. The AFM was firstly introduced as it was developed before the other two. The design and theory were discussed. The force-distance curve was introduced. After this EFM was presented. EFM was developed from AC mode AFM. The technique was achieved by applying a DC voltage between the tip and the sample. The design, theory and features of it were surveyed. KPFM was also discussed. KPFM was developed from EFM. The central part of this technique is to measure the CPD. Experimental measurements of SPM were described after theory part. Research work using AFM was presented. The newest technique of AFM, UHV-AFM has been used in investigating the nano-mechanical properties of different materials. Normally common AFM has shortcomings as it has either strict limit resolution or difficulties in interpreting the data from the measurements. In order to solve these problems, Ultra High Vacuum (UHV) conditions were applied to acquire quantitative results. A typical UHV-AFM uses a cantilever whose spring constant is relatively high (>100 N/m) to obtain high-resolution image. Experimental measurements using KPFM was presented after AFM. Researchers are using KPFM to acquire the topography and measuring the CPD of semiconductor or metal surfaces. Similarly as in AFM, KPFM works best in UHV environment. A typical UHV-KPFM also uses a cantilever whose spring constant is relatively high. A UHV-KPFM may be able to achieve a high resolution in CPD images. In the past 20 years many different kinds of SPM were invented and used. AFM, EFM, and KPFM are representatives of them. Researchers are still developing new techniques. However, in recent years, they pay more attention in improving the measurement accuracy instead of trying to invent new SPM. These three SPM continue to be frequently used. The current capabilities of SPM do not satisfy us completely. We still cant measure the Electrical field directly. We actually measure the capacitance gradient. There are also some other questions. This is because the electrostatic force depends very strongly on the geometry of the probe at all length scales, so any model is subject to two big problems. First, the geometry is not known with complete accuracy; and second, the tip shape can change during an experiment due to wear. In the future, maybe the problems could be overcome by using a tip with a very well defined shape, such as a carbon nanotube, for which a realistic geometrical model could be more easily constructed, and the wear could be avoided or reduced.
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
NASA Astrophysics Data System (ADS)
Li, Bin; Fontecchio, Adam K.; Visell, Yon
2016-01-01
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Liam; Belianinov, Alex; Proksch, Roger
We develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Also, 3 G-Mode MFM is implemented and compared to traditional heterodyne based MFM on model systems including domain structures in ferromagnetic Yttrium Iron Garnet (YIG) and electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstratemore » its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode coupling phenomena. Finally we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any AFM platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties as well as their mutual interactions.« less
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Fontecchio, Adam K.; Visell, Yon
2016-01-04
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arraysmore » of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.« less
Molecular Modeling of Lipid Aggregates: Theory and Application
NASA Astrophysics Data System (ADS)
Fenner, Joel Stewart
The ability of cell membranes to perform a wide variety of biological functions stems from the organization and composition of its molecular constituents. There are many engineering applications, such as liposome drug delivery carriers, whose functionality takes advantage of the structure to function relationship of lipid membranes. The fundamental understanding of the relationship between the thermodynamic behavior and structure of lipid membranes and the molecular properties of their lipid constituents is crucial to the successful design of lipid related applications. However, information about how the local microscopic composition of lipid membranes responds to the presence of proteins and nanomaterials is challenging given the intrinsic experimental and theoretical difficulties of studying such small-scale systems. The present work generalizes a self consistent mean field theory for the study of the thermodynamic and structural behavior of lipid bilayers as a function of its molecular composition and physicochemical environments. This novel molecular theory provides with the ability of performing systematic thermodynamic calculations at relatively low computational costs while considering a detailed molecular description of the system under study. The competition of all relevant molecular interactions, such as electrostatics, vdW and chemical equilibria, in the membrane system is described. The developed molecular theory is applied to study how the protonation state of pH-sensitive amphiphiles in a membrane system affects the membrane's morphology. The molecular theory results demonstrate that the protonation state of ionizable groups within amphiphilic membranes shows a highly complex non-monotonic dependence on bulk salt concentration and pH strength. This result suggests that information about the pKa of the molecules is not sufficient to predict the protonation state of the ionizable groups in the membrane system. The molecular theory is also applied to study how the presence of proteins or functionalized nanoparticles near a multicomponent membrane surface leads to changes in its local membrane composition. The results support an electrostatic dependent recruitment mechanism of oncogenic RhoA proteins to the cell membrane. Finally, the molecular theory results describe how nanoparticle functionality and/or membrane molecular composition can be tuned to enhance or suppress nanoparticle adsorption on to phospholipid membranes.
Laser fluorescence bronchoscope for localization of occult lung tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Profio, A.E.; Doiron, D.R.; King, E.G.
1979-11-01
A system for imaging occult bronchogenic carcinoma by the fluorescence of previously-injected, tumor-specific compound hematoporphyrin-derivative has been assembled and successfully used to locate a tumor l mm thick. The violet excitation source is a krypton ion laser coupled to fused quartz fiber light conductor. An electrostatic image intensifier attached to a standard flexible fiberoptic bronchoscope provides a bright image even at relatively low irradiance. A red secondary filter rejects most reflected background and autofluorescence. Sensitivity and contrast capability of the system should permit detection of a tumor less than 0.1 mm thick.
Kumar, Kiran; Woo, Shin M.; Siu, Thomas; Cortopassi, Wilian A.
2018-01-01
We have studied the cation–π interactions of neutral aromatic ligands with the cationic amino acid residues arginine, histidine and lysine using ab initio calculations, symmetry adapted perturbation theory (SAPT), and a systematic meta-analysis of all available Protein Data Bank (PDB) X-ray structures. Quantum chemical potential energy surfaces (PES) for these interactions were obtained at the DLPNO-CCSD(T) level of theory and compared against the empirical distribution of 2012 unique protein–ligand cation–π interactions found in X-ray crystal structures. We created a workflow to extract these structures from the PDB, filtering by interaction type and residue pKa. The gas phase cation–π interaction of lysine is the strongest by more than 10 kcal mol–1, but the empirical distribution of 582 X-ray structures lies away from the minimum on the interaction PES. In contrast, 1381 structures involving arginine match the underlying calculated PES with good agreement. SAPT analysis revealed that underlying differences in the balance of electrostatic and dispersion contributions are responsible for this behavior in the context of the protein environment. The lysine–arene interaction, dominated by electrostatics, is greatly weakened by a surrounding dielectric medium and causes it to become essentially negligible in strength and without a well-defined equilibrium separation. The arginine–arene interaction involves a near equal mix of dispersion and electrostatic attraction, which is weakened to a much smaller degree by the surrounding medium. Our results account for the paucity of cation–π interactions involving lysine, even though this is a more common residue than arginine. Aromatic ligands are most likely to interact with cationic arginine residues as this interaction is stronger than for lysine in higher polarity surroundings. PMID:29719674
Chromatic Modulator for High Resolution CCD or APS Devices
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)
2003-01-01
A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.
Practical aspects of monochromators developed for transmission electron microscopy
Kimoto, Koji
2014-01-01
A few practical aspects of monochromators recently developed for transmission electron microscopy are briefly reviewed. The basic structures and properties of four monochromators, a single Wien filter monochromator, a double Wien filter monochromator, an omega-shaped electrostatic monochromator and an alpha-shaped magnetic monochromator, are outlined. The advantages and side effects of these monochromators in spectroscopy and imaging are pointed out. A few properties of the monochromators in imaging, such as spatial or angular chromaticity, are also discussed. PMID:25125333
2012-12-01
c) image, and unfolding arti- facts (d). (e), (f), (g). Susceptibility artifacts with geometric distortion before (e), (f) and after (g) correction...either using an electrostatic repul- sion scheme [45] or through various geometric polyhe- dral schemes [59]. 2.1.2.3. Signal-to-Noise (SNR) The...inhomogeneity (∆B), causes signal loss due to a shift of the maximal signal away from the theoretical echo time, leading to geometric distortion due to suscep
Varchi, Greta; Benfenati, Valentina; Pistone, Assunta; Ballestri, Marco; Sotgiu, Giovanna; Guerrini, Andrea; Dambruoso, Paolo; Liscio, Andrea; Ventura, Barbara
2013-05-01
Among the medical applications of nanoparticles, their usage as photosensitizer (PS) carriers for photodynamic therapy (PDT) has attracted increasing attention. In the present study we explored the morphological and photophysical properties of core-shell PMMA nanoparticles (PMMA-NPs) electrostatically post-loaded with the synthetic, water soluble 5,10,15,20-tetrakis(4-sulphonatophenyl)-porphyrin (TPPS4). pH response and singlet oxygen analyses of differently loaded samples proved the high capability of the PMMA-NPs to shield the PS from the environment, while retaining the PS singlet oxygen production capability. Preliminary in vitro imaging and phototoxicity experiments on HepG2 cells demonstrated the efficacy of the system to trigger photoinduced cell death in the culture.
Property measurements and solidification studies by electrostatic levitation.
Paradis, Paul-François; Yu, Jianding; Ishikawa, Takehiko; Yoda, Shinichi
2004-11-01
The National Space Development Agency of Japan has recently developed several electrostatic levitation furnaces and implemented new techniques and procedures for property measurement, solidification studies, and atomic structure research. In addition to the contamination-free environment for undercooled and liquid metals and semiconductors, the newly developed facilities possess the unique capabilities of handling ceramics and high vapor pressure materials, reducing processing time, and imaging high luminosity samples. These are exemplified in this paper with the successful processing of BaTiO(3). This allowed measurement of the density of high temperature solid, liquid, and undercooled phases. Furthermore, the material resulting from containerless solidification consisted of micrometer-size particles and a glass-like phase exhibiting a giant dielectric constant exceeding 100,000.
Gao, Na; Yang, Wen; Nie, Hailiang; Gong, Yunqian; Jing, Jing; Gao, Loujun; Zhang, Xiaoling
2017-10-15
This paper reports a turn-on theranostic fluorescent nanoprobe P-CDs/HA-Dox obtained by electrostatic assembly of polyethylenimine (PEI)-modified carbon dots (P-CDs) and Hyaluronic acid (HA)-conjugated doxorubicin (Dox) for hyaluronidase (HAase) detection, self-targeted imaging and drug delivery. P-CDs/HA-Dox show weak emission in a physiological environment. By utilizing the high affinity of HA to CD44 receptors overexpressed on many cancer cells, P-CDs/HA-Dox are capable of targeting and penetrating into cancer cells, where they are activated by HAase. As a result, HA-Dox can be digested into small fragments, causing the release of Dox and thereby restoring the fluorescence of P-CDs. The theranostic fluorescent nanoprobe can effectively distinguish cancer cells from normal cells. The as-prepared nanoprobe achieves a sensitive assay of HAase with a detection limit of 0.65UmL -1 . Furthermore, upon Dox release, the Dox could efficiently induce apoptosis in HeLa cells, as confirmed by MTT assay. The design of such a turn-on theranostic fluorescent probe provides a new strategy for self-targeted and image-guided chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2017-11-01
By using the charge modulated reflectance (CMR) imaging technique, charge distribution in the pentacene organic field-effect transistor (OFET) with a ferroelectric gate insulator [P(VDF-TrFE)] was investigated in terms of polarization reversal of the P(VDF-TrFE) layer. We studied the polarization reversal process and the carrier spreading process in the OFET channel. The I-V measurement showed a hysteresis behavior caused by the spontaneous polarization of P(VDF-TrFE), but the hysteresis I-V curve changes depending on the applied drain bias, possibly due to the gradual shift of the polarization reversal position in the OFET channel. CMR imaging visualized the gradual shift of the polarization reversal position and showed that the electrostatic field formed by the polarization of P(VDF-TrFE) contributes to hole and electron injection into the pentacene layer and the carrier distribution is significantly dependent on the direction of the polarization. The polarization reversal position in the channel region is governed by the electrostatic potential, and it happens where the potential reaches the coercive voltage of P(VDF-TrFE). The transmission line model developed on the basis of the Maxwell-Wagner effect element analysis well accounts for this polarization reversal process in the OFET channel.
Observation of FeGe skyrmions by electron phase microscopy with hole-free phase plate
NASA Astrophysics Data System (ADS)
Kotani, Atsuhiro; Harada, Ken; Malac, Marek; Salomons, Mark; Hayashida, Misa; Mori, Shigeo
2018-05-01
We report application of hole-free phase plate (HFPP) to imaging of magnetic skyrmion lattices. Using HFPP imaging, we observed skyrmions in FeGe, and succeeded in obtaining phase contrast images that reflect the sample magnetization distribution. According to the Aharonov-Bohm effect, the electron phase is shifted by the magnetic flux due to sample magnetization. The differential processing of the intensity in a HFPP image allows us to successfully reconstruct the magnetization map of the skyrmion lattice. Furthermore, the calculated phase shift due to the magnetization of the thin film was consistent with that measured by electron holography experiment, which demonstrates that HFPP imaging can be utilized for analysis of magnetic fields and electrostatic potential distribution at the nanoscale.
Qi, Helena W; Leverentz, Hannah R; Truhlar, Donald G
2013-05-30
This work presents a new fragment method, the electrostatically embedded many-body expansion of the nonlocal energy (EE-MB-NE), and shows that it, along with the previously proposed electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), produces accurate results for large systems at the level of CCSD(T) coupled cluster theory. We primarily study water 16-mers, but we also test the EE-MB-CE method on water hexamers. We analyze the distributions of two-body and three-body terms to show why the many-body expansion of the electrostatically embedded correlation energy converges faster than the many-body expansion of the entire electrostatically embedded interaction potential. The average magnitude of the dimer contributions to the pairwise additive (PA) term of the correlation energy (which neglects cooperative effects) is only one-half of that of the average dimer contribution to the PA term of the expansion of the total energy; this explains why the mean unsigned error (MUE) of the EE-PA-CE approximation is only one-half of that of the EE-PA approximation. Similarly, the average magnitude of the trimer contributions to the three-body (3B) term of the EE-3B-CE approximation is only one-fourth of that of the EE-3B approximation, and the MUE of the EE-3B-CE approximation is one-fourth that of the EE-3B approximation. Finally, we test the efficacy of two- and three-body density functional corrections. One such density functional correction method, the new EE-PA-NE method, with the OLYP or the OHLYP density functional (where the OHLYP functional is the OptX exchange functional combined with the LYP correlation functional multiplied by 0.5), has the best performance-to-price ratio of any method whose computational cost scales as the third power of the number of monomers and is competitive in accuracy in the tests presented here with even the electrostatically embedded three-body approximation.
Electrostatic coupling of ion pumps.
Nieto-Frausto, J; Lüger, P; Apell, H J
1992-01-01
In this paper the electrostatic interactions between membrane-embedded ion-pumps and their consequences for the kinetics of pump-mediated transport processes have been examined. We show that the time course of an intrinsically monomolecular transport reaction can become distinctly nonexponential, if the reaction is associated with charge translocation and takes place in an aggregate of pump molecules. First we consider the electrostatic coupling of a single dimer of ion-pumps embedded in the membrane. Then we apply the treatment to the kinetic analysis of light-driven proton transport by bacteriorhodopsin which forms two-dimensional hexagonal lattices. Finally, for the case of nonordered molecules, we also consider a model in which the pumps are randomly distributed over the nodes of a lattice. Here the average distance is equal to that deduced experimentally and the elemental size of the lattice is the effective diameter of one single pump. This latter model is applied to an aggregate of membrane-embedded Na, K- and Ca-pumps. In all these cases the electrostatic potential considered is the exact solution calculated from the method of electrical images for a plane membrane of finite thickness immersed in an infinite aqueous solution environment. The distributions of charges (ions or charged binding sites) are considered homogeneous or discrete in the membrane and/or in the external solution. In the case of discrete distributions we compare the results from a mean field approximation and a stochastic simulation.
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy.
Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M Baris; Kravchenko, Ivan I; Kalinin, Sergei V; Tselev, Alexander
2017-01-04
Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm -1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.
Imaging using cross-hole seismoelectric tomography
Araji, A.H.; Revil, A.; Jardani, A.; Minsley, B.
2011-01-01
We propose a new cross-hole imaging approach based on seismoelectric conversions associated with the transmission of seismic waves from seismic sources located in a borehole to receivers electrodes located in a second borehole. The seismoelectric seismic-to-electric problem is solved using Biot theory coupled with a generalized Ohm's law with an electrokinetic coupling term. The components of the displacement of the solid phase, the fluid pressure, and the electrical potential are solved using a finite element approach with PML boundary conditions for the seismic waves and boundary conditions mimicking an infinite material for the electrostatic problem. We have developed an inversion algorithm using the electrical disturbances recorded in the second borehole to localize the position of the heterogeneities responsible for the seismoelectric conversions. Because of the ill-posed nature of the inverse problem, regularization is used to constrain the solution at each time in the seismoelectric time window comprised between the time of the seismic shot and the time of the first arrival of the seismic waves in the second borehole. All the inverted volumetric current source densities are stacked to produce an image of the position of the heterogeneities between the two boreholes. Two simple synthetic case studies are presented to test this concept. The first case study corresponds to a vertical discontinuity between two homogeneous sub-domains. The second case study corresponds to a poroelastic inclusion embedded into an homogenous poroelastic formation. In both cases, the position of the heterogeneity is fairly well-recovered using only the electrical disturbances associated with the seismoelectric conversions. ?? 2011 Society of Exploration Geophysicists.
Xiao, Tiejun; Song, Xueyu
2017-03-28
We developed a molecular Debye-Hückel theory for electrolyte solutions with size asymmetry, where the dielectric response of an electrolyte solution is described by a linear combination of Debye-Hückel-like response modes. Furthermore, as the size asymmetry of an electrolyte solution leads to a charge imbalanced border zone around a solute, the dielectric response to the solute is characterized by two types of charge sources, namely, a bare solute charge and a charge distribution due to size asymmetry. These two kinds of charge sources are screened by the solvent differently, our theory presents a method to calculate the mean electric potential asmore » well as the electrostatic contributions to thermodynamic properties. Finally, the theory was successfully applied to binary as well as multi-component primitive models of electrolyte solutions.« less
NASA Astrophysics Data System (ADS)
Cao, Siqin; Zhu, Lizhe; Huang, Xuhui
2018-04-01
The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.
NASA Astrophysics Data System (ADS)
Yoosefian, Mehdi; Etminan, Nazanin
2016-07-01
In order to explore a new novel L-amino acid/transition metal doped single walled carbon nanotube based biosensor, density functional theory calculations were studied. These hybrid structures of organic-inorganic nanobiosensors are able to detect the smallest amino acid building block of proteins. The configurations of amine and carbonyl group coordination of tryptophan aromatic amino acid adsorbed on Pd/doped single walled carbon nanotube were compared. The frontier molecular orbital theory, quantum theory atom in molecule and natural bond orbital analysis were performed. The molecular electrostatic potential and the electron density surfaces were constructed. The calculations indicated that the Pd/SWCNT was sensitive to tryptophan suggesting the importance of interaction with biological molecule and potential detecting application. The proposed nanobiosensor represents a highly sensitive detection of protein at ultra-low concentration in diagnosis applications.
Electrical double layers and differential capacitance in molten salts from density functional theory
Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.
2014-08-05
Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less
Ion radial diffusion in an electrostatic impulse model for stormtime ring current formation
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.; Gorney, David J.
1992-01-01
Two refinements to the quasi-linear theory of ion radial diffusion are proposed and examined analytically with simulations of particle trajectories. The resonance-broadening correction by Dungey (1965) is applied to the quasi-linear diffusion theory by Faelthammar (1965) for an individual model storm. Quasi-linear theory is then applied to the mean diffusion coefficients resulting from simulations of particle trajectories in 20 model storms. The correction for drift-resonance broadening results in quasi-linear diffusion coefficients with discrepancies from the corresponding simulated values that are reduced by a factor of about 3. Further reductions in the discrepancies are noted following the averaging of the quasi-linear diffusion coefficients, the simulated coefficients, and the resonance-broadened coefficients for the 20 storms. Quasi-linear theory provides good descriptions of particle transport for a single storm but performs even better in conjunction with the present ensemble-averaging.
Imaging of turbulent structures and tomographic reconstruction of TORPEX plasma emissivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iraji, D.; Furno, I.; Fasoli, A.
In the TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], a simple magnetized plasma device, low frequency electrostatic fluctuations associated with interchange waves, are routinely measured by means of extensive sets of Langmuir probes. To complement the electrostatic probe measurements of plasma turbulence and study of plasma structures smaller than the spatial resolution of probes array, a nonperturbative direct imaging system has been developed on TORPEX, including a fast framing Photron-APX-RS camera and an image intensifier unit. From the line-integrated camera images, we compute the poloidal emissivity profile of the plasma by applying a tomographic reconstruction technique usingmore » a pixel method and solving an overdetermined set of equations by singular value decomposition. This allows comparing statistical, spectral, and spatial properties of visible light radiation with electrostatic fluctuations. The shape and position of the time-averaged reconstructed plasma emissivity are observed to be similar to those of the ion saturation current profile. In the core plasma, excluding the electron cyclotron and upper hybrid resonant layers, the mean value of the plasma emissivity is observed to vary with (T{sub e}){sup {alpha}}(n{sub e}){sup {beta}}, in which {alpha}=0.25-0.7 and {beta}=0.8-1.4, in agreement with collisional radiative model. The tomographic reconstruction is applied to the fast camera movie acquired with 50 kframes/s rate and 2 {mu}s of exposure time to obtain the temporal evolutions of the emissivity fluctuations. Conditional average sampling is also applied to visualize and measure sizes of structures associated with the interchange mode. The {omega}-time and the two-dimensional k-space Fourier analysis of the reconstructed emissivity fluctuations show the same interchange mode that is detected in the {omega} and k spectra of the ion saturation current fluctuations measured by probes. Small scale turbulent plasma structures can be detected and tracked in the reconstructed emissivity movies with the spatial resolution down to 2 cm, well beyond the spatial resolution of the probe array.« less
Imaging thermal plasma mass and velocity analyzer
NASA Astrophysics Data System (ADS)
Yau, Andrew W.; Howarth, Andrew
2016-07-01
We present the design and principle of operation of the imaging ion mass and velocity analyzer on the Enhanced Polar Outflow Probe (e-POP), which measures low-energy (1-90 eV/e) ion mass composition (1-40 AMU/e) and velocity distributions using a hemispherical electrostatic analyzer (HEA), a time-of-flight (TOF) gate, and a pair of toroidal electrostatic deflectors (TED). The HEA and TOF gate measure the energy-per-charge and azimuth of each detected ion and the ion transit time inside the analyzer, respectively, providing the 2-D velocity distribution of each major ionospheric ion species and resolving the minor ion species under favorable conditions. The TED are in front of the TOF gate and optionally sample ions at different elevation angles up to ±60°, for measurement of 3-D velocity distribution. We present examples of observation data to illustrate the measurement capability of the analyzer, and show the occurrence of enhanced densities of heavy "minor" O++, N+, and molecular ions and intermittent, high-velocity (a few km/s) upward and downward flowing H+ ions in localized regions of the quiet time topside high-latitude ionosphere.
Surface potential extraction from electrostatic and Kelvin-probe force microscopy images
NASA Astrophysics Data System (ADS)
Xu, Jie; Chen, Deyuan; Li, Wei; Xu, Jun
2018-05-01
A comprehensive comparison study of electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) is conducted in this manuscript. First, it is theoretically demonstrated that for metallic or semiconductor samples, both the EFM and KPFM signals are a convolution of the sample surface potential with their respective transfer functions. Then, an equivalent point-mass model describing cantilever deflection under distributed loads is developed to reevaluate the cantilever influence on detection signals, and it is shown that the cantilever has no influence on the EFM signal, while it will affect the KPFM signal intensity but not change the resolution. Finally, EFM and KPFM experiments are carried out, and the surface potential is extracted from the EFM and KPFM images by deconvolution processing, respectively. The extracted potential intensity is well consistent with each other and the detection resolution also complies with the theoretical analysis. Our work is helpful to perform a quantitative analysis of EFM and KPFM signals, and the developed point-mass model can also be used for other cantilever beam deflection problems.
NASA Astrophysics Data System (ADS)
Lamsal, B. S.; Dubey, M.; Swaminathan, V.; Huh, Y.; Galipeau, D.; Qiao, Q.; Fan, Q. H.
2014-11-01
This work studied the electronic characteristics of the grains and grain boundaries of indium tin oxide (ITO) thin films using electrostatic and Kelvin probe force microscopy. Two types of ITO films were compared, deposited using radiofrequency magnetron sputtering in pure argon or 99% argon + 1% oxygen, respectively. The average grain size and surface roughness increased with substrate temperature for the films deposited in pure argon. With the addition of 1% oxygen, the increase in the grain size was inhibited above 150°C, which was suggested to be due to passivation of the grains by the excess oxygen. Electrostatic force microscopy and Kelvin probe force microscopy (KPFM) images confirmed that the grain growth was defect mediated and occurred at defective interfaces at high temperatures. Films deposited at room temperature with 1% oxygen showed crystalline nature, while films deposited with pure argon at room temperature were amorphous as observed from KPFM images. The potential drop across the grain and grain boundary was determined by taking surface potential line profiles to evaluate the electronic properties.
NASA Astrophysics Data System (ADS)
Lin, Yuchun; Baumketner, Andrij; Deng, Shaozhong; Xu, Zhenli; Jacobs, Donald; Cai, Wei
2009-10-01
In this paper, a new solvation model is proposed for simulations of biomolecules in aqueous solutions that combines the strengths of explicit and implicit solvent representations. Solute molecules are placed in a spherical cavity filled with explicit water, thus providing microscopic detail where it is most needed. Solvent outside of the cavity is modeled as a dielectric continuum whose effect on the solute is treated through the reaction field corrections. With this explicit/implicit model, the electrostatic potential represents a solute molecule in an infinite bath of solvent, thus avoiding unphysical interactions between periodic images of the solute commonly used in the lattice-sum explicit solvent simulations. For improved computational efficiency, our model employs an accurate and efficient multiple-image charge method to compute reaction fields together with the fast multipole method for the direct Coulomb interactions. To minimize the surface effects, periodic boundary conditions are employed for nonelectrostatic interactions. The proposed model is applied to study liquid water. The effect of model parameters, which include the size of the cavity, the number of image charges used to compute reaction field, and the thickness of the buffer layer, is investigated in comparison with the particle-mesh Ewald simulations as a reference. An optimal set of parameters is obtained that allows for a faithful representation of many structural, dielectric, and dynamic properties of the simulated water, while maintaining manageable computational cost. With controlled and adjustable accuracy of the multiple-image charge representation of the reaction field, it is concluded that the employed model achieves convergence with only one image charge in the case of pure water. Future applications to pKa calculations, conformational sampling of solvated biomolecules and electrolyte solutions are briefly discussed.
From the Biochemistry of Tubulin to the Biophysics of Microtubules
NASA Astrophysics Data System (ADS)
Brown, J. A.; Tuszyński, J. A.
2001-09-01
Mirotubules (MTs) are protein polymers of the cytoskeleton that once fully understood will provide a deeper understanding of many cell functions. Assembly dynamics with the characteristic dynamic instability phenomenon has been intensively investigated over the past two decades and several models have been developed which adequately describe this phenomenon. Since the tubulin structure was imaged by Nogales and Downing, the dipole has been calculated and also the charge distribution on the surface of the protein together with a hydrophobicity plot. However, it still remains to be seen how the dipole changes upon the conformational change due to GTP hydrolysis. Furthermore, the contribution of the carboxyl terminus to the dipolar and electrostatic properties has not been accounted for. Using the crystallographic data of Nogales and Downing, some properties of the new structure of tubulin were examined. The so called multi-tubulin hypothesis seems to be explained by the differences in the electrostatic potentials produced by various tubulin isotypes produced by only several amino-acid substitutions. Such small changes in the tubulin structure may render the MTs less susceptible to naturally occurring agents which would otherwise bind them and impair their function. The hypothesis of electrostatic binding between protofilaments seems to be well founded. The MT structure has been compared with the previous work, to comment on models of motor protein movement and to consider how isotype changes affect the electrostatic potential surrounding the MT. The nature of binding between the MT and motor proteins also seems to be electrostatic and can be used to explain the stepping of these motors along the MT surface. The overall picture emerging from these studies is that the tubulin's molecular structure and the ensuing microtubular architecture can provide a microscopic-level understanding of the biological function in the cell.
2013-04-01
atoms labeled. ......................................................................................25 Figure A-15. Picric acid with atoms labeled...217 Table A-47. DATB atom specific Politzer parameters using PBE/6-31G**..............................218 Table A-48. Picric acid atom specific...weighted atom specific Politzer parameters using PBE/6-31G**. .....272 Table A-96. Picric acid area weighted atom specific Politzer parameters using PBE
Status of the Electroforming Shield Design (ESD) project
NASA Technical Reports Server (NTRS)
Fletcher, R. E.
1977-01-01
The utilization of a digital computer to augment electrodeposition/electroforming processes in which nonconducting shielding controls local cathodic current distribution is reported. The primary underlying philosophy of the physics of electrodeposition was presented. The technical approach taken to analytically simulate electrolytic tank variables was also included. A FORTRAN computer program has been developed and implemented. The program utilized finite element techniques and electrostatic theory to simulate electropotential fields and ionic transport.
Students' Visualization of Metallic Bonding and the Malleability of Metals
NASA Astrophysics Data System (ADS)
Cheng, Maurice M. W.; Gilbert, John K.
2014-05-01
This study investigated the mental representations of metallic bonding and the malleability of metals held by three male students aged 14-15 (Year 10) who were attending a Hong Kong school. One student was selected by their chemistry teacher as representing each of the highest, the medium, and the lowest level of attainment in chemistry in a school that admitted students of average general attainment. The students were interviewed and their understandings probed through their provision of drawings and their interpretation of the diagrams that had been previously used by their teacher. Dual coding theory was used to interpret the relative significance of visual and verbal input and the interaction between the two for their understanding. There was evidence that students relied on verbal recall in providing their initial understandings and showed an appreciation of the nature of the structural components of the electron-sea model of metallic bonding. However, they varied in terms of their appreciation of the electrostatic force which was responsible for the malleability of metals. The study suggests that a clearer understanding of the electrostatic force involved can be attained when students experience visual and verbal representations simultaneously, a conclusion supported by dual coding theory. Principles for good practice in using diagrams in teaching are discussed.
NASA Astrophysics Data System (ADS)
Mokhtari, J.; Farrokhabadi, A.; Rach, R.; Abadyan, M.
2015-04-01
The presence of the quantum vacuum fluctuations, i.e. the Casimir attraction, can strongly affect the performance of ultra-small actuators. The strength of the Casimir force is significantly influenced by the geometries of interacting bodies. Previous research has exclusively studied the impact of the vacuum fluctuations on the instability of nanoactuators with planar geometries. However, no work has yet considered this phenomenon in actuators fabricated from nanowires/nanotubes with cylindrical geometries. In our present work, the influence of the Casimir attraction on the electrostatic stability of nanoactuators fabricated from cylindrical conductive nanowire/nanotube is investigated. The Dirichlet mode is considered and an asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The size-dependent modified couple stress theory is employed to derive the constitutive equation of the actuator. The governing nonlinear equations are solved by two different approaches, i.e. the finite difference method and modified Adomian-Padé method. Various aspects of the problem, i.e. comparison with the van der Waals force regime, the variation of instability parameters, effect of geometry and coupling between the Casimir force and size dependency are discussed. This work is beneficial to determine the impact of Casimir force on nanowire/nanotube-fabricated actuators.
First-principles study of low Miller index Ni3S2 surfaces in hydrotreating conditions.
Aray, Yosslen; Vega, David; Rodriguez, Jesus; Vidal, Alba B; Grillo, Maria Elena; Coll, Santiago
2009-03-12
Density functional theory (DFT) calculations combined with surface thermodynamic arguments and the Gibbs-Curie-Wulff equilibrium morphology formalism have been employed to explore the effect of the reaction conditions, temperature (T), and gas-phase partial pressures (PH2 and PH2S) on the stability of nickel sulfide (Ni3S2) surfaces. Furthermore, the strength and nature of chemical bonds for selected Ni3S2 surface cuts were investigated with the quantum theory of atoms in molecules methodology. A particular analysis of the electrostatic potential within this theoretical framework is performed to study the potential activity of nickel sulfide nanoparticles as hydrodesulfurization (HDS) catalysts. The calculated thermodynamic surface stabilities and the resulting equilibrium morphology model suggest that unsupported Ni3S2 nanoparticles mainly expose (111) and (111) type surface faces in HDS conditions. Analysis of the electrostatic potential mapped onto a selected electron density isocontour (0.001 au) on those expose surface reveals a poor potential reactivity toward electron-donating reagents (i.e., low Lewis acidity). Consequently, a very low attraction between coordinatively unsaturated active sites (Lewis sites) exposed at the catalytic particles and the S atoms coming from reagent polluting molecules does inactive these kinds of particles for HDS.
Electron collection theory for a D-region subsonic blunt electrostatic probe
NASA Technical Reports Server (NTRS)
Wai-Kwong Lai, T.
1974-01-01
Blunt probe theory for subsonic flow in a weakly ionized and collisional gas is reviewed, and an electron collection theory for the relatively unexplored case, Deybye length approximately 1, which occurs in the lower ionosphere (D-region), is developed. It is found that the dimensionless Debye length is no longer an electric field screening parameter, and the space charge field effect can be negelected. For ion collection, Hoult-Sonin theory is recognized as a correct description of the thin, ion density-perturbed layer adjacent the blunt probe surface. The large volume with electron density perturbed by a positively biased probe renders the usual thin boundary layer analysis inapplicable. Theories relating free stream conditions to the electron collection rate for both stationary and moving blunt probes are obtained. A model based on experimental nonlinear electron drift velocity data is proposed. For a subsonically moving probe, it is found that the perturbed region can be divided into four regions with distinct collection mechanisms.
Patra, Chandra N
2014-11-14
A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.
Ionic Adsorption and Desorption of CNT Nanoropes
Shang, Jun-Jun; Yang, Qing-Sheng; Yan, Xiao-Hui; He, Xiao-Qiao; Liew, Kim-Meow
2016-01-01
A nanorope is comprised of several carbon nanotubes (CNTs) with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment. PMID:28335306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Chester J
FORTRAN90 codes for inversion of electrostatic geophysical data in terms of three subsurface parameters in a single-well, oilfield environment: the linear charge density of the steel well casing (L), the point charge associated with an induced fracture filled with a conductive contrast agent (Q) and the location of said fracture (s). Theory is described in detail in Weiss et al. (Geophysics, 2016). Inversion strategy is to loop over candidate fracture locations, and at each one minimize the squared Cartesian norm of the data misfit to arrive at L and Q. Solution method is to construct the 2x2 linear system ofmore » normal equations and compute L and Q algebraically. Practical Application: Oilfield environments where observed electrostatic geophysical data can reasonably be assumed by a simple L-Q-s model. This may include hydrofracking operations, as postulated in Weiss et al. (2016), but no field validation examples have so far been provided.« less
Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; ...
2015-10-22
Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholinemore » catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.« less
Nonlinear evolution of energetic-particles-driven waves in collisionless plasmas
NASA Astrophysics Data System (ADS)
Li, Shuhan; Liu, Jinyuan; Wang, Feng; Shen, Wei; Li, Dong
2018-06-01
A one-dimensional electrostatic collisionless particle-in-cell code has been developed to study the nonlinear interaction between electrostatic waves and energetic particles (EPs). For a single wave, the results are clear and agree well with the existing theories. For coexisting two waves, although the mode nonlinear coupling between two wave fields is ignored, the second-order phase space islands can still exist between first-order islands generated by the two waves. However, the second-order phase islands are not formed by the superposed wave fields and the perturbed motions of EPs induced by the combined effect of two main resonances make these structures in phase space. Owing to these second-order islands, energy can be transferred between waves, even if the overlap of two main resonances never occurs. Depending on the distance between the main resonance islands in velocity space, the second-order island can affect the nonlinear dynamics and saturations of waves.
Elasticity in Physically Cross-Linked Amyloid Fibril Networks.
Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele
2018-04-13
We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β-lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G∼c^{2.2} and G∼c^{2.5} for semiflexible and rigid fibrils, respectively) and ionic strength (G∼I^{4.4} and G∼I^{3.8} for β-lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.
Studies of particle wake potentials in plasmas
NASA Astrophysics Data System (ADS)
Ellis, Ian N.; Graziani, Frank R.; Glosli, James N.; Strozzi, David J.; Surh, Michael P.; Richards, David F.; Decyk, Viktor K.; Mori, Warren B.
2011-09-01
A detailed understanding of electron stopping and scattering in plasmas with variable values for the number of particles within a Debye sphere is still not at hand. Presently, there is some disagreement in the literature concerning the proper description of these processes. Theoretical models assume electrostatic (Coulomb force) interactions between particles and neglect magnetic effects. Developing and validating proper descriptions requires studying the processes using first-principle plasma simulations. We are using the particle-particle particle-mesh (PPPM) code ddcMD and the particle-in-cell (PIC) code BEPS to perform these simulations. As a starting point in our study, we examine the wake of a particle passing through a plasma in 3D electrostatic simulations performed with ddcMD and BEPS. In this paper, we compare the wakes observed in these simulations with each other and predictions from collisionless kinetic theory. The relevance of the work to Fast Ignition is discussed.
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.
Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L
2015-12-09
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment.
Elasticity in Physically Cross-Linked Amyloid Fibril Networks
NASA Astrophysics Data System (ADS)
Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele
2018-04-01
We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β -lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G ˜c2.2 and G ˜c2.5 for semiflexible and rigid fibrils, respectively) and ionic strength (G ˜I4.4 and G ˜I3.8 for β -lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.
Electronic reconstruction of doped Mott insulator heterojunctions
NASA Astrophysics Data System (ADS)
Charlebois, M.; Hassan, S. R.; Karan, R.; Dion, M.; Senechal, D.; Tremblay, A.-M. S.
2012-02-01
Correlated electron heterostructures became a possible alternative when thin-film deposition techniques achieved structures with a sharp interface transition [1]. Soon thereafter, Okamoto & Millis introduced the concept of ``electronic reconstruction'' [2]. We study here the electronic reconstruction of doped Mott insulator heterostructures based on a Cluster Dynamical Mean Field Theory (CDMFT) calculations of the Hubbard model in the limit where electrostatic energy dominates over the kinetic energy associated with transport across layers. The grand potential of individual layers is first computed within CDMFT and then the electrostatic potential energy is taken into account in the Hartree approximation. The charge reconstruction in an ensemble of stacked planes of different nature can lead to a distribution of electron charge and to transport properties that are unique to doped-Mott insulators.[4pt] [1] J. Mannhart, D. G. Schlom, Science 327, 1607 (2010).[0pt] [2] S. Okamoto and A. J. Millis, Nature 428, 630 (2004).
Dynamics of electrostatic fluctuations in the edge plasma in the U-3M torsatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olshansky, V. V.; Stepanov, K. N.; Tarasov, M. I.
2010-10-15
Results are presented from experimental and theoretical investigations of oscillatory and wave phenomena observed in the edge region in the U-3M torsatron during plasma creation and heating by an RF discharge in the ICR frequency range, accompanied by a transition to improved confinement. The main results are reported of diagnostic measurements of the spectral composition of oscillations, as well as of how the phase and amplitude relationships depend on time and on the RF power during its injection into the plasma. The measurements were carried out with electrostatic probes positioned at the edge of the plasma confinement region. The experimentalmore » results are interpreted using the kinetic theory of the electron-ion parametric instability of a plasma in the ion cyclotron frequency range and are compared with the results of numerical simulations.« less
Ionic Adsorption and Desorption of CNT Nanoropes.
Shang, Jun-Jun; Yang, Qing-Sheng; Yan, Xiao-Hui; He, Xiao-Qiao; Liew, Kim-Meow
2016-09-28
A nanorope is comprised of several carbon nanotubes (CNTs) with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.
NASA Astrophysics Data System (ADS)
Nicasio-Collazo, Luz Adriana; Delgado-González, Alexandra; Hernández-Lemus, Enrique; Castañeda-Priego, Ramón
2017-04-01
The study of the effects associated with the electrostatic properties of DNA is of fundamental importance to understand both its molecular properties at the single molecule level, like the rigidity of the chain, and its interaction with other charged bio-molecules, including other DNA molecules; such interactions are crucial to maintain the thermodynamic stability of the intra-cellular medium. In the present work, we combine the Poisson-Boltzmann mean-field theory with an irreversible thermodynamic approximation to analyze the effects of counterion accumulation inside DNA on both the denaturation profile of the chain and the equation of state of the suspension. To this end, we model the DNA molecule as a porous charged cylinder immersed in an aqueous solution. These thermo-electrostatic effects are explicitly studied in the particular case of some genes for which damage in their sequence is associated with diffuse large B-cell lymphoma.
NASA Astrophysics Data System (ADS)
Mascali, D.; Celona, L.; Gammino, S.; Miracoli, R.; Castro, G.; Gambino, N.; Ciavola, G.
2011-10-01
A plasma reactor operates at the Laboratori Nazionali del Sud of INFN, Catania, and it has been used as a test-bench for the investigation of innovative mechanisms of plasma ignition based on electrostatic waves (ES-W), obtained via the inner plasma EM-to-ES wave conversion. Evidences of Bernstein wave (BW) generation will be shown. The Langmuir probe measurements have revealed a strong increase of the ion saturation current, where the BW are generated or absorbed, this being a signature of possible high energy ion flows. The results are interpreted through the Bernstein wave heating theory, which predicts the formation of high speed rotating layers of the plasma (a dense plasma ring is in fact observed). High intensity inner plasma self-generated electric fields (on the order of several tens of kV/cm) come out by our calculations.
Regimes of electrostatic collapse of a highly charged polyelectrolyte in a poor solvent.
Tom, Anvy Moly; Vemparala, Satyavani; Rajesh, R; Brilliantov, Nikolai V
2017-03-01
We perform extensive molecular dynamics simulations of a highly charged, collapsed, flexible polyelectrolyte chain in a poor solvent for the case when the electrostatic interactions, characterized by the reduced Bjerrum length l B , are strong. We find the existence of several sub-regimes in the dependence of the gyration radius of the chain R g on l B characterized by R g ∼ l. In contrast to a good solvent, the exponent γ for a poor solvent crucially depends on the size and valency of the counterions. To explain the different sub-regimes, we generalize the existing counterion fluctuation theory by including a more complete account of all possible volume interactions in the free energy of the polyelectrolyte chain. We also show that the presence of condensed counterions modifies the effective attraction among the chain monomers and modulates the sign of the second virial coefficient under poor solvent conditions.
Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani
2017-12-01
Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.
Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doktorova, Milka; Heberle, Frederick A.; Kingston, Richard L.
Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein’s matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here in this paper, using a broad set of in vitro and in silico techniques we addressed molecularmore » mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins.« less
Chen, Guang; Das, Siddhartha
2017-03-01
In this paper, we study the thermodynamics, electrostatics, and an external electric field driven ionic current in a pH-responsive, end-charged polyelectrolyte (PE) brush grafted nanochannel. By employing a mean field theory, we unravel a highly nonintuitive interplay of pH and electrolyte salt concentration in dictating the height of the end-charged PE brush. Larger pH or weak hydrogen ion concentration leads to maximum ionization of the charge-producing group-as a consequence, the resulting the electric double layer (EDL) energy get maximized causing a maximum deviation of the brush height from the value (d 0 ) of the uncharged brush. This deviation may result in enhancement or lowering of the brush height as compared to d 0 depending on whether the PE end locates lower or higher than h/2 (h is the nanochannel half height) and the salt concentration. Subsequently, we use this combined PE-brush-configuration-EDL-electrostatics framework to compute the ionic current in the nanochannel. We witness that the ionic current for smaller pH is much larger despite the corresponding magnitude of the EDL electrostatic potential being much smaller-this stems from the presence of a much larger concentration of H+ ions at small pH and the fact that H+ ions have very large mobilities. In fact, this ionic current shows a steep variation with pH that can be useful in exploring new designs for applications involving quantification and characterization of ionic current in PE-brush-grafted nanochannels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties
Doktorova, Milka; Heberle, Frederick A.; Kingston, Richard L.; ...
2017-11-07
Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein’s matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here in this paper, using a broad set of in vitro and in silico techniques we addressed molecularmore » mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins.« less
Howard, E I; Guillot, B; Blakeley, M P; Haertlein, M; Moulin, M; Mitschler, A; Cousido-Siah, A; Fadel, F; Valsecchi, W M; Tomizaki, Takashi; Petrova, T; Claudot, J; Podjarny, A
2016-03-01
Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA) binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H⋯H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium) positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.
Diffuse-charge dynamics of ionic liquids in electrochemical systems.
Zhao, Hui
2011-11-01
We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.
Härtel, Steffen; Fanani, María Laura; Maggio, Bruno
2005-01-01
Sphingomyelinases (SMases) hydrolyze the membrane constituent sphingomyelin (SM) to phosphocholine and ceramide (Cer). Growing evidence supports that SMase-induced SM→Cer conversion leads to the formation of lateral Cer-enriched domains which drive structural reorganization in lipid membranes. We previously provided visual evidence in real-time for the formation of Cer-enriched domains in SM monolayers through the action of the neutral Bacillus cereus SMase. In this work, we disclose a succession of discrete morphologic transitions and lateral organization of Cer-enriched domains that underlay the SMase-generated surface topography. We further reveal how these structural parameters couple to the generation of two-dimensional electrostatic fields, based upon the specific orientation of the lipid dipole moments in the Cer-enriched domains. Advanced image processing routines in combination with time-resolved epifluorescence microscopy on Langmuir monolayers revealed: 1), spontaneous nucleation and circular growth of Cer-enriched domains after injection of SMase into the subphase of the SM monolayer; 2), domain-intrinsic discrete transitions from circular to periodically undulating shapes followed by a second transition toward increasingly branched morphologies; 3), lateral superstructure organization into predominantly hexagonal domain lattices; 4), formation of super-superstructures by the hexagonal lattices; and 5), rotationally and laterally coupled domain movement before domain border contact. All patterns proved to be specific for the SMase-driven system since they could not be observed with Cer-enriched domains generated by defined mixtures of SM/Cer in enzyme-free monolayers at the same surface pressure (Π = 10 mN/m). Following the theories of lateral shape transitions, dipolar electrostatic interactions of lipid domains, and direct determinations of the monolayer dipole potential, our data show that SMase induces a domain-specific packing and orientation of the molecular dipole moments perpendicular to the air/water interface. In consequence, protein-driven generation of specific out-of-equilibrium states, an accepted concept for maintenance of transmembrane lipid asymmetry, must also be considered on the lateral level. Lateral enzyme-specific out-of-equilibrium organization of lipid domains represents a new level of signal transduction from local (nm) to long-range (μm) scales. The cross-talk between lateral domain structures and dipolar electrostatic fields adds new perspectives to the mechanisms of SMase-mediated signal transduction in biological membranes. PMID:15489298
Duval, Jérôme F L
2016-04-14
A mechanistic understanding of the processes governing metal toxicity to microorganisms (bacteria, algae) calls for an adequate formulation of metal partitioning at biointerfaces during cell exposure. This includes the account of metal transport dynamics from bulk solution to biomembrane and the kinetics of metal internalisation, both potentially controlling the intracellular and surface metal fractions that originate cell growth inhibition. A theoretical rationale is developed here for such coupled toxicodynamics and interfacial metal partitioning dynamics under non-complexing medium conditions with integration of the defining cell electrostatic properties. The formalism explicitly considers intertwined metal adsorption at the biointerface, intracellular metal excretion, cell growth and metal depletion from bulk solution. The theory is derived under relevant steady-state metal transport conditions on the basis of coupled Nernst-Planck equation and continuous logistic equation modified to include metal-induced cell growth inhibition and cell size changes. Computational examples are discussed to identify limitations of the classical Biotic Ligand Model (BLM) in evaluating metal toxicity over time. In particular, BLM is shown to severely underestimate metal toxicity depending on cell exposure time, metal internalisation kinetics, cell surface electrostatics and initial cell density. Analytical expressions are provided for the interfacial metal concentration profiles in the limit where cell-growth is completely inhibited. A rigorous relationship between time-dependent cell density and metal concentrations at the biosurface and in bulk solution is further provided, which unifies previous equations formulated by Best and Duval under constant cell density and cell size conditions. The theory is sufficiently flexible to adapt to toxicity scenarios with involved cell survival-death processes.
Alvarez, O; Brodwick, M; Latorre, R; McLaughlin, A; McLaughlin, S; Szabo, G
1983-01-01
A simple extension of the Gouy-Chapman theory predicts that the ability of a divalent cation to screen charges at a membrane-solution interface decreases significantly if the distance between the charges on the cation is comparable with the Debye length. We tested this prediction by investigating the effect of hexamethonium on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes. The distance between the two charges of an extended hexamethonium molecule is approximately 1 nm, which is the Debye length in the 0.1 M monovalent salt solutions used in these experiments. Six different experimental approaches were utilized. We measured the electrophoretic mobility of multilamellar vesicles to determine the zeta potential, the line width of the 31P nuclear magnetic resonance (NMR) signal from sonicated vesicles to calculate the change in potential at the phosphodiester moiety of the lipid, and the conductance of planar bilayer membranes exposed to either carriers (nonactin) or pore formers (gramicidin) to estimate the change in potential within the membrane. We also measured directly the effect of hexamethonium on the potential above a monolayer formed from negative lipids, and attempted to calculate the change in the surface potential of a bilayer membrane from capacitance measurements. With the exception of the capacitance calculations, each of the techniques gave comparable results: hexamethonium exerts a smaller effect on the potential than that predicted by the classic screening theory. The results are consistent with the predictions of the extended Gouy-Chapman theory and are relevant to the interpretation of physiological and pharmacological experiments that utilize hexamethonium and other large divalent cations. PMID:6198001
Electrostatics Control Actin Filament Nucleation and Elongation Kinetics*
Crevenna, Alvaro H.; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L.; Lamb, Don C.; Wedlich-Söldner, Roland
2013-01-01
The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment. PMID:23486468
Gong, Haipeng; Freed, Karl F.
2010-01-01
Abstract Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is grossly in error. Our calculations also suggest that a salt bridge on the protein's surface can be stabilizing when the charge separation is ≤4 Å. PMID:20141761
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad; Kourakis, Ioannis
2017-03-01
The dynamical characteristics of large amplitude ion-acoustic waves are investigated in a magnetized plasma comprising ions presenting space asymmetry in the equation of state and non-Maxwellian electrons. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low theory. An excess in the superthermal component of the electron population is assumed, in agreement with long-tailed (energetic electron) distribution observations in space plasmas; this is modeled via a kappa-type distribution function. Large electrostatic excitations are assumed to propagate in a direction oblique to the external magnetic field. In the linear (small amplitude) regime, two electrostatic modes are shown to exist. The properties of arbitrary amplitude (nonlinear) obliquely propagating ion-acoustic solitary excitations are thus investigated via a pseudomechanical energy balance analogy, by adopting a Sagdeev potential approach. The combined effect of the ion pressure anisotropy and excess superthermal electrons is shown to alter the parameter region where solitary waves can exist. An excess in the suprathermal particles is thus shown to be associated with solitary waves, which are narrower, faster, and of larger amplitude. Ion pressure anisotropy, on the other hand, affects the amplitude of the solitary waves, which become weaker (in strength), wider (in spatial extension), and thus slower in comparison with the cold ion case.
Predicting Electrostatic Forces in RNA Folding
Tan, Zhi-Jie; Chen, Shi-Jie
2016-01-01
Metal ion-mediated electrostatic interactions are critical to RNA folding. Although considerable progress has been made in mechanistic studies, the problem of accurate predictions for the ion effects in RNA folding remains unsolved, mainly due to the complexity of several potentially important issues such as ion correlation and dehydration effects. In this chapter, after giving a brief overview of the experimental findings and theoretical approaches, we focus on a recently developed new model, the tightly bound ion (TBI) model, for ion electrostatics in RNA folding. The model is unique because it can treat ion correlation and fluctuation effects for realistic RNA 3D structures. For monovalent ion (such as Na+) solutions, where ion correlation is weak, TBI and the Poisson–Boltzmann (PB) theory give the same results and the results agree with the experimental data. For multivalent ion (such as Mg2+) solutions, where ion correlation can be strong, however, TBI gives much improved predictions than the PB. Moreover, the model suggests an ion correlation- induced mechanism for the unusual efficiency of Mg2+ ions in the stabilization of RNA tertiary folds. In this chapter, after introducing the theoretical framework of the TBI model, we will describe how to apply the model to predict ion-binding properties and ion-dependent folding stabilities. PMID:20946803
NASA Astrophysics Data System (ADS)
Mishonov, Todor M.; Varonov, Albert M.; Maksimovski, Dejan D.; Manolev, Stojan G.; Gourev, Vassil N.; Yordanov, Vasil G.
2017-03-01
An experimental set-up for electrostatic measurement of {\\varepsilon }0, separate magnetostatic measurement of {μ }0 and determination of the speed of light c=1/\\sqrt{{\\varepsilon }0{μ }0} according to Maxwell’s theory with percent accuracy is described. No forces are measured with the experimental set-up, therefore there is no need for a scale, and the experiment cost of less than £20 is mainly due to the batteries used. Multiplied 137 times, this experimental set-up was given at the Fourth Open International Experimental Physics Olympiad (EPO4) and a dozen high school students performed successful experiments. The experimental set-up actually contains two different pendula for electric and magnetic measurements. In the magnetic experiment the pendulum is constituted by a magnetic coil attracted to a fixed one. In the electrostatic pendulum when the distance between the plates becomes shorter than a critical value the suspended plate catastrophically sticks to the fixed one, while in the magnetic pendulum the same occurs when the current in the coils becomes greater than a certain critical value. The basic idea of the methodology is to use the loss of stability as a tool for the determination of fundamental constants.
Zhao, Ju-Dong; Liu, Zhi-An; Zhao, Er-Jun
2014-01-01
Research on scale inhibition is of importance to improve the heat transfer efficiency of heat exchangers. The combined effect of high voltage electrostatic and variable frequency pulsed electromagnetic fields on calcium carbonate precipitation was investigated, both theoretically and experimentally. Using energy dispersive spectrum analysis, the predominant phase was found to be CaCO(3). The formed crystal phases mainly consist of calcite and aragonite, which is, in part, verified by theory. The results indicate that the setting of water flow velocity, and high voltage electrostatic and variable frequency pulsed electromagnetic fields is very important. Favorable values of these parameters can have a significant anti-scaling effect, with 68.95% of anti-scaling ratio for scale sample 13, while unfavorable values do not affect scale inhibition, but rather promoted fouling, such as scale sample 6. By using scanning electron microscopy analysis, when the anti-scaling ratio is positive, the particle size of scale was found to become smaller than that of untreated sample and the morphology became loose. The X-ray diffraction results verify that the good combined effect favors the appearance and growth of aragonite and restrains its transition to calcite. The mechanism for scale reduction is discussed.
Electromagnetic theory of the nuclear interaction. Application to the deuteron {sup 2}H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, Bernard
2012-06-20
Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. The electrostatic and magnetic interactions are completely neglected except for a mean Coulomb repulsion. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the neutron, the positive charges are repelled and the negative charges attracted by a nearbymore » proton. There is a net attraction explaining quantitatively the so-called strong force as it is shown in this paper. In the deuteron, the magnetic repulsion equilibrates the electrostatically induced neutron-proton attraction. The experimental value (- 2.2 MeV) is surrounded by - 1.6 MeV and - 2.5 MeV, depending on the calculation method. No arbitrary fitting parameter is used, only physical constants: it is a true ab initio calculation. The theoretical ratio between nuclear and chemical energies has been found to be (m{sub p}/m{sub e}{alpha}), proving that the usual assumption that the electromagnetic interaction is too feeble to predict the nuclear interaction is incorrect.« less
Electrostatics at the oil–water interface, stability, and order in emulsions and colloids
Leunissen, Mirjam E.; van Blaaderen, Alfons; Hollingsworth, Andrew D.; Sullivan, Matthew T.; Chaikin, Paul M.
2007-01-01
Oil–water mixtures are ubiquitous in nature and are particularly important in biology and industry. Usually additives are used to prevent the liquid droplets from coalescing. Here, we show that stabilization can also be obtained from electrostatics, because of the well known remarkable properties of water. Preferential ion uptake leads to a tunable droplet charge and surprisingly stable, additive-free, water-in-oil emulsions that can crystallize. For particle-stabilized (“Pickering”) emulsions we find that even extremely hydrophobic, nonwetting particles can be strongly bound to (like-charged) oil–water interfaces because of image charge effects. These basic insights are important for emulsion production, encapsulation, and (self-)assembly, as we demonstrate by fabricating a diversity of structures in bulk, on surfaces, and in confined geometries. PMID:17307876
Mechanically latchable tiltable platform for forming micromirrors and micromirror arrays
Garcia, Ernest J [Albuquerque, NM; Polosky, Marc A [Tijeras, NM; Sleefe, Gerard E [Cedar Crest, NM
2006-12-12
A microelectromechanical (MEM) apparatus is disclosed which includes a platform that can be electrostatically tilted from being parallel to a substrate on which the platform to being tilted at an angle of 1 20 degrees with respect to the substrate. Once the platform has been tilted to a maximum angle of tilt, the platform can be locked in position using an electrostatically-operable latching mechanism which engages a tab protruding below the platform. The platform has a light-reflective upper surface which can be optionally coated to provide an enhanced reflectivity and form a micromirror. An array of such micromirrors can be formed on a common substrate for applications including optical switching (e.g. for fiber optic communications), optical information processing, image projection displays or non-volatile optical memories.
Electromagnetic Remote Sensing. Low Frequency Electromagnetics
1989-01-01
biased superconducting point - contact quantum devices", J.Appl.Phys. 41, p.1572, 1970. [40] A.Yariv and H.Winsor, "Proposal for detection of magnetic ... magnetics , electromagnetic induc- tion, electrostatics) 2. Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging) 3...Detection of submarines from aircraft or ships ( magnetics , electromagnetic induction) 4. Detection of land vehicles using buried sensors ( magnetics
Protonation states and pH titration in the photocycle of photoactive yellow protein.
Demchuk, E; Genick, U K; Woo, T T; Getzoff, E D; Bashford, D
2000-02-08
Photoactive yellow protein (PYP) undergoes a light-driven cycle of color and protonation states that is part of a mechanism of bacterial phototaxis. This article concerns functionally important protonation states of PYP and the interactions that stabilize them, and changes in the protonation state during the photocycle. In particular, the chromophore pK(a) is known to be shifted down so that the chromophore is negatively charged in the ground state (dark state) even though it is buried in the protein, while nearby Glu46 has an unusually high pK(a). The photocycle involves changes of one or both of these protonation states. Calculations of pK(a) values and protonation states using a semi-macroscopic electrostatic model are presented for the wild-type and three mutants, in both the ground state and the bleached (I(2)) intermediate state. Calculations allowing multiple H-bonding arrangements around the chromophore also have been carried out. In addition, ground-state pK(a) values of the chromophore have been measured by UV-visible spectroscopy for the wild-type and the same three mutants. Because of the unusual protonation states and strong electrostatic interactions, PYP represents a severe test of the ability of theoretical models to yield correct calculations of electrostatic interactions in proteins. Good agreement between experiment and theory can be obtained for the ground state provided the protein interior is assumed to have a relatively low dielectric constant, but only partial agreement between theory and experiment is obtained for the bleached state. We also present a reinterpretation of previously published data on the pH-dependence of the recovery of the ground state from the bleached state. The new analysis implies a pK(a) value of 6.37 for Glu46 in the bleached state, which is consistent with other available experimental data, including data that only became available after this analysis. The new analysis suggests that signal transduction is modulated by the titration properties of the bleached state, which are in turn determined by electrostatic interactions. Overall, the results of this study provide a quantitative picture of the interactions responsible for the unusual protonation states of the chromophore and Glu46, and of protonation changes upon bleaching.
DFT study of the effect of substitution on the molecular structure of copper phthalocyanine
NASA Astrophysics Data System (ADS)
Kaur, Prabhjot; Sachdeva, Ritika; Singh, Sukhwinder; Saini, G. S. S.
2016-05-01
To study the effect of sulfonic acid group as substituent on the molecular structure of an organic compound copper Phthalocyanine, the optimized geometry, mulliken charges, energies and dipole momemts of copper phthalocyanine and copper phthalocyaninetetrasulfonic acid tetra sodium salt have been investigated using density functional theory. Also to predict the change in reactive sites after substitution, molecular electrostatic potential maps for both the molecules have been calculated.
Introduction to Plasma Physics
NASA Astrophysics Data System (ADS)
Gurnett, Donald A.; Bhattacharjee, Amitava
2017-03-01
Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.
Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions.
Bartlett, Michael D; Fassler, Andrew; Kazem, Navid; Markvicka, Eric J; Mandal, Pratiti; Majidi, Carmel
2016-05-01
An all-soft-matter composite with exceptional electro-elasto properties is demonstrated by embedding liquid-metal inclusions in an elastomer matrix. This material exhibits a unique combination of high dielectric constant, low stiffness, and large strain limit (ca. 600% strain). The elasticity, electrostatics, and electromechanical coupling of the composite are investigated, and strong agreement with predictions from effective medium theory is found. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Chaney, William S.
1961-01-01
A theoretical study has been made of molybdenum dioxide and molybdenum trioxide in order to extend the knowledge of factors Involved in the oxidation of molybdenum. New methods were developed for calculating the lattice energies based on electrostatic valence theory, and the coulombic, polarization, Van der Waals, and repulsion energie's were calculated. The crystal structure was examined and structure details were correlated with lattice energy.
cDF Theory Software for mesoscopic modeling of equilibrium and transport phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-12-01
The approach is based on classical Density Functional Theory ((cDFT) coupled with the Poisson-Nernst-Planck (PNP) transport kinetics model and quantum mechanical description of short-range interaction and elementary transport processes. The model we proposed and implemented is fully atomistic, taking into account pairwise short-range and manybody long-range interactions. But in contrast to standard molecular dynamics (MD) simulations, where long-range manybody interactions are evaluated as a sum of pair-wise atom-atom contributions, we include them analytically based on wellestablished theories of electrostatic and excluded volume interactions in multicomponent systems. This feature of the PNP/cDFT approach allows us to reach well beyond the length-scalesmore » accessible to MD simulations, while retaining the essential physics of interatomic interactions from first principles and in a parameter-free fashion.« less
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina Wisinger; Jesse, Stephen; Carmichael, Ben D.
Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less
Quantification of In-Contact Probe-Sample Electrostatic Forces with Dynamic Atomic Force Microscopy.
Balke, Nina; Jesse, Stephen; Carmichael, Ben; Okatan, M; Kravchenko, Ivan; Kalinin, Sergei; Tselev, Alexander
2016-12-13
Atomic Force Microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V/nm at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids. Copyright 2016 IOP Publishing Ltd.
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
Balke, Nina Wisinger; Jesse, Stephen; Carmichael, Ben D.; ...
2017-01-04
Here, atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. Inmore » combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm –1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.« less
Density functional theory study of the conformational space of an infinitely long polypeptide chain
NASA Astrophysics Data System (ADS)
Ireta, Joel; Scheffler, Matthias
2009-08-01
The backbone conformational space of infinitely long polyalanine is investigated with density-functional theory and mapping the potential energy surface in terms of (L, θ) cylindrical coordinates. A comparison of the obtained (L, θ) Ramachandran-like plot with results from an extended set of protein structures shows excellent conformity, with the exception of the polyproline II region. It is demonstrated the usefulness of infinitely long polypeptide models for investigating the influence of hydrogen bonding and its cooperative effect on the backbone conformations. The results imply that hydrogen bonding together with long-range electrostatics is the main actuator for most of the structures assumed by protein residues.
NASA Astrophysics Data System (ADS)
Cao, Xiaofang; Liu, Shaoqian; Rong, Chunying; Lu, Tian; Liu, Shubin
2017-11-01
The nature and origin of the generalized anomeric effect is investigated with energy components and information-theoretic quantities from density functional reactivity theory. Forty-five systems with the general formula of R1-X-CH2-Y-R2 were examined, where R1 and R2 are functional groups and X and Y as electronegative heteroatoms. Our results show that in most cases the effect is valid, and the dominant contribution for the validity of the effect is from the electrostatic interaction. Other contributions such as steric and hyperconjugation play minor but indispensable roles. Its relationship with the conventional anomeric effect is compared and discussed.
Molecular Theory for Electrokinetic Transport in pH-Regulated Nanochannels.
Kong, Xian; Jiang, Jian; Lu, Diannan; Liu, Zheng; Wu, Jianzhong
2014-09-04
Ion transport through nanochannels depends on various external driving forces as well as the structural and hydrodynamic inhomogeneity of the confined fluid inside of the pore. Conventional models of electrokinetic transport neglect the discrete nature of ionic species and electrostatic correlations important at the boundary and often lead to inconsistent predictions of the surface potential and the surface charge density. Here, we demonstrate that the electrokinetic phenomena can be successfully described by the classical density functional theory in conjunction with the Navier-Stokes equation for the fluid flow. The new theoretical procedure predicts ion conductivity in various pH-regulated nanochannels under different driving forces, in excellent agreement with experimental data.
Kinetics of polyelectrolyte adsorption
NASA Astrophysics Data System (ADS)
Cohen Stuart, M. A.; Hoogendam, C. W.; de Keizer, A.
1997-09-01
The kinetics of polyelectrolyte adsorption has been investigated theoretically. In analogy with Kramers' rate theory for chemical reactions we present a model which is based on the assumption that a polyelectrolyte encounters a barrier in its motion towards an adsorbing surface. The height of the barrier, which is of electrostatic origin, is calculated with a self-consistent-field (SCF) model. The salt concentration strongly affects the height of the barrier. At moderate salt concentrations (0953-8984/9/37/009/img1) equilibrium in the adsorption is attained; at low salt concentration (0953-8984/9/37/009/img2) equilibrium is not reached on the time scale of experiments. The attachment process shows resemblances to the classical DLVO theory.
Capillarity theory for the fly-casting mechanism
Trizac, Emmanuel; Levy, Yaakov; Wolynes, Peter G.
2010-01-01
Biomolecular folding and function are often coupled. During molecular recognition events, one of the binding partners may transiently or partially unfold, allowing more rapid access to a binding site. We describe a simple model for this fly-casting mechanism based on the capillarity approximation and polymer chain statistics. The model shows that fly casting is most effective when the protein unfolding barrier is small and the part of the chain which extends toward the target is relatively rigid. These features are often seen in known examples of fly casting in protein–DNA binding. Simulations of protein–DNA binding based on well-funneled native-topology models with electrostatic forces confirm the trends of the analytical theory. PMID:20133683
NASA Astrophysics Data System (ADS)
Sharma, Abhiraj; Suryanarayana, Phanish
2018-05-01
We present an accurate and efficient real-space Density Functional Theory (DFT) framework for the ab initio study of non-orthogonal crystal systems. Specifically, employing a local reformulation of the electrostatics, we develop a novel Kronecker product formulation of the real-space kinetic energy operator that significantly reduces the number of operations associated with the Laplacian-vector multiplication, the dominant cost in practical computations. In particular, we reduce the scaling with respect to finite-difference order from quadratic to linear, thereby significantly bridging the gap in computational cost between non-orthogonal and orthogonal systems. We verify the accuracy and efficiency of the proposed methodology through selected examples.
Pierson, Jason; Fernández, José Jesús; Bos, Erik; Amini, Shoaib; Gnaegi, Helmut; Vos, Matthijn; Bel, Bennie; Adolfsen, Freek; Carrascosa, José L; Peters, Peter J
2010-02-01
Cryo-electron tomography of vitreous cryo-sections is the most suitable method for exploring the 3D organization of biological samples that are too large to be imaged in an intact state. Producing good quality vitreous cryo-sections, however, is challenging. Here, we focused on the major obstacles to success: contamination in and around the microtome, and attachment of the ribbon of sections to an electron microscopic grid support film. The conventional method for attaching sections to the grid has involved mechanical force generated by a crude stamping or pressing device, but this disrupts the integrity of vitreous cryo-sections. Furthermore, attachment is poor, and parts of the ribbon of sections are often far from the support film. This results in specimen instability during image acquisition and subsequent difficulty with aligning projection images. Here, we have implemented a protective glove box surrounding the cryo-ultramicrotome that reduces the humidity around and within the microtome during sectioning. We also introduce a novel way to attach vitreous cryo-sections to an EM grid support film using electrostatic charging. The ribbon of vitreous cryo-sections remains in place during transfer and storage and is devoid of stamping related artefacts. We illustrate these improvements by exploring the structure of putative cellular 80S ribosomes within 50nm, vitreous cryo-sections of Saccharomyces cerevisiae.
NASA Astrophysics Data System (ADS)
Abedi, M.; Farrokhpour, H.; Farnia, S.; Chermahini, A. Najafi
2015-08-01
In this work, a systematic theoretical study was performed on the dissociation, absorption and ionization of several important sulfur oxoanions (S2On2- (n = 2, 3, 4, 6, 7 and 8)). ΔEelec (thermal corrected energy), ΔH° and ΔG° of the dissociation reactions of the oxoanions to their radical monoanions were calculated using combined computational levels of theories such as Gaussian-3 (G3) and a new version of complete basis set method (CBS-4M) in different environments including gas phase, microhydrated in gas phase and different solvents. Calculations showed S2O72- is the most stable anion against the dissociation to its radical monoanions (SO4-rad + SO3-rad). It was also found that S2O42- has more tendency to dissociate to its radical anions (SO2-rad + SO2-rad) compared to the other anions. The absorption spectra of the anions were also calculated using the time-dependent density functional theory (TD-DFT) employing M062X functional. The effect of microhydration and electrostatic field of solvent on the different aspects (intensity, energy shift and assignment) of the absorption spectra of these anions were also discussed. It was observed that both hydrogen bonding and electrostatic effect of water increases the intensity of the absorption spectrum compared to the gas phase. Effect of microhydration in shifting the spectra to the shorter wavelength is considerably higher than the effect of electrostatic field of water. Finally, several gas phase ionization energies of the anions were calculated using the symmetry-adapted cluster-configuration interaction methodology (SAC-CI) and found that the first electron detachment energies of S2O22-, S2O32- and S2O42- are negative. Natural bonding orbital (NBO) calculations were also performed to assign the electron detachment bands of the anions.
Theory of a cylindrical probe in a collisionless magnetoplasma
NASA Technical Reports Server (NTRS)
Laframboise, J. G.; Rubinstein, J.
1976-01-01
A theory is presented for a cylindrical electrostatic probe in a collisionless plasma in the case where the probe axis is inclined at an angle to a uniform magnetic field. The theory is applicable to electron collection, and under more restrictive conditions, to ion collection. For a probe at space potential, the theory is exact in the limit where probe radius is much less than Debye length. At attracting probe potentials, the theory yields an upper bound and an adiabatic limit for current collection. At repelling probe potentials, it provides a lower bound. The theory is valid if the ratios of probe radius to Debye length and probe radius to mean gyroradius are not simultaneously large enough to produce extrema in the probe sheath potential. The numerical current calculations are based on the approximation that particle orbits are helices near the probe, together with the use of kinetic theory to relate velocity distributions near the probe to those far from it. Probe characteristics are presented for inclination angles from 0 to 90 deg and for probe-radius mean-gyroradius ratios from 0.1 to infinity. For an angle of 0 deg, the end-effect current is calculated separately.
NASA Astrophysics Data System (ADS)
Kekenes-Huskey, P. M.; Gillette, A. K.; McCammon, J. A.
2014-05-01
The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute "obstacles" and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as "buffers" that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events occurring in crowded cellular environments.
Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.
Doktorova, Milka; Heberle, Frederick A; Kingston, Richard L; Khelashvili, George; Cuendet, Michel A; Wen, Yi; Katsaras, John; Feigenson, Gerald W; Vogt, Volker M; Dick, Robert A
2017-11-07
Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Infra-sound Signature of Lightning
NASA Astrophysics Data System (ADS)
Arechiga, R. O.; Badillo, E.; Johnson, J.; Edens, H. E.; Rison, W.; Thomas, R. J.
2012-12-01
We have analyzed thunder from over 200 lightning flashes to determine which part of thunder comes from the gas dynamic expansion of portions of the rapidly heated lightning channel and which from electrostatic field changes. Thunder signals were recorded by a ~1500 m network of 3 to 4 4-element microphone deployed in the Magdalena mountains of New Mexico in the summers of 2011 and 2012. The higher frequency infra-sound and audio-range portion of thunder is thought to come from the gas dynamic expansion, and the electrostatic mechanism gives rise to a signature infra-sound pulse peaked at a few Hz. More than 50 signature infra-sound pulses were observed in different portions of the thunder signal, with no preference towards the beginning or the end of the signal. Detection of the signature pulse occurs sometimes only for one array and sometimes for several arrays, which agrees with the theory that the pulse is highly directional (i.e., the recordings have to be in a specific position with respect to the cloud generating the pulse to be able to detect it). The detection of these pulses under quiet wind conditions by different acoustic arrays corroborates the electrostatic mechanism originally proposed by Wilson [1920], further studied by Dessler [1973] and Few [1985], observed by Bohannon [1983] and Balachandran [1979, 1983], and recently analyzed by Pasko [2009]. Pasko employed a model to explain the electrostatic-to-acoustic energy conversion and the initial compression waves in observed infrasonic pulses, which agrees with the observations we have made. We present thunder samples that exhibit signature infra-sound pulses at different times and acoustic source reconstruction to demonstrate the beaming effect.
Ye, Fengbin; Baldursdottir, Stefania; Hvidt, Søren; Jensen, Henrik; Larsen, Susan W; Yaghmur, Anan; Larsen, Claus; Østergaard, Jesper
2016-03-07
In the field of drug delivery to the articular cartilage, it is advantageous to apply artificial tissue models as surrogates of cartilage for investigating drug transport and release properties. In this study, artificial cartilage models consisting of 0.5% (w/v) agarose gel containing 0.5% (w/v) chondroitin sulfate or 0.5% (w/v) hyaluronic acid were developed, and their rheological and morphological properties were characterized. UV imaging was utilized to quantify the transport properties of the following four model compounds in the agarose gel and in the developed artificial cartilage models: H-Ala-β-naphthylamide, H-Lys-Lys-β-naphthylamide, lysozyme, and α-lactalbumin. The obtained results showed that the incorporation of the polyelectrolytes chondroitin sulfate or hyaluronic acid into agarose gel induced a significant reduction in the apparent diffusivities of the cationic model compounds as compared to the pure agarose gel. The decrease in apparent diffusivity of the cationic compounds was not caused by a change in the gel structure since a similar reduction in apparent diffusivity was not observed for the net negatively charged protein α-lactalbumin. The apparent diffusivity of the cationic compounds in the negatively charged hydrogels was highly dependent on the ionic strength, pointing out the importance of electrostatic interactions between the diffusant and the polyelectrolytes. Solution based affinity studies between the model compounds and the two investigated polyelectrolytes further confirmed the electrostatic nature of their interactions. The results obtained from the UV imaging diffusion studies are important for understanding the effect of drug physicochemical properties on the transport in articular cartilage. The extracted information may be useful in the development of hydrogels for in vitro release testing having features resembling the articular cartilage.
Imaging with cross-hole seismoelectric tomography
Araji, A.H.; Revil, A.; Jardani, A.; Minsley, Burke J.; Karaoulis, M.
2012-01-01
We propose a cross-hole imaging approach based on seismoelectric conversions (SC) associated with the transmission of seismic waves from seismic sources located in a borehole to receivers (electrodes) located in a second borehole. The seismoelectric (seismic-to-electric) problem is solved using Biot theory coupled with a generalized Ohm's law with an electrokinetic streaming current contribution. The components of the displacement of the solid phase, the fluid pressure, and the electrical potential are solved using a finite element approach with Perfect Match Layer (PML) boundary conditions for the seismic waves and boundary conditions mimicking an infinite material for the electrostatic problem. We develop an inversion algorithm using the electrical disturbances recorded in the second borehole to localize the position of the heterogeneities responsible for the SC. Because of the ill-posed nature of the inverse problem (inherent to all potential-field problems), regularization is used to constrain the solution at each time in the SC-time window comprised between the time of the seismic shot and the time of the first arrival of the seismic waves in the second borehole. All the inverted volumetric current source densities are aggregated together to produce an image of the position of the heterogeneities between the two boreholes. Two simple synthetic case studies are presented to test this concept. The first case study corresponds to a vertical discontinuity between two homogeneous sub-domains. The second case study corresponds to a poroelastic inclusion (partially saturated by oil) embedded into an homogenous poroelastic formation. In both cases, the position of the heterogeneity is recovered using only the electrical disturbances associated with the SC. That said, a joint inversion of the seismic and seismoelectric data could improve these results.
Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ida; Chung, Eunhyea; Kweon, Hyojin
2012-01-01
The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relativemore » humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.« less
Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.
Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong
2016-05-05
Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hao; Lee, H. S.; Sarahan, M. C.
Grain boundaries (GBs) in complex oxides such as perovskites have been shown to readily accommodate nonstoichiometry changing the electrostatic potential at the boundary plane and effectively controlling material properties such as capacitance, magnetoresistance and superconductivity. Understanding and quantifying exactly how variations in atomic scale nonstoichiometry at the boundary plane extend to the practical mesoscale operating length of the system is therefore critical for improving the overall properties. Bicrystals of SrTiO 3 were fabricated to provide the model GB model structures that are analysed in this paper. We show that statistical analysis of aberration-corrected scanning transmission electron microscope images acquired frommore » a large area of GB is an effective routine to understanding the variation in boundary structure that occurs to accommodate nonstoichiometry. In the case of the SrTiO 3 22.6° Σ13 (510)/[100] GB analysed here, the symmetric atomic structures observed from a micron-long GB can be categorized as two different competing structural arrangements, with and without a rigid-body translation along the boundary plane. How this quantified experimental approach can provide direct insights into the GB energetics is further confirmed from the first principles density functional theory, and the effect of nonstoichiometry in determining the GB energies is quantified.« less
Ghorbani, Fereshte Mohammad; Kaffashi, Babak; Shokrollahi, Parvin; Akhlaghi, Shahin; Hedenqvist, Mikael S
2016-02-01
The effect of hydroxyapatite nano-particles (nHA) on morphology, and rheological and thermal properties of PCL/chitosan blends was investigated. The tendency of nHA to reside in the submicron-dispersed chitosan phase is determined using SEM and AFM images. The presence of electrostatic interaction between amide sites of chitosan and ionic groups on the nHA surface was proved by FTIR. It is shown that the chitosan phase is thermodynamically more favorable for the nano-particles to reside than the PCL phase. Lack of implementation of Cox-Merz theory for this system shows that the polymer-nano-particle network is destructed by the flow. Results from dynamic rheological measurements and Zener fractional model show that the presence of nHA increases the shear moduli and relaxation time of the PCL/chitosan blends. DSC measurements showed that nHA nano-particles are responsible for the increase in melting and crystallization characteristics of the PCL/chitosan blends. Based on thermogravimetric analysis, the PCL/chitosan/nHA nano-composites exhibited a greater thermal stability compared to the nHA-free blends. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Liam; Belianinov, Alex; Kalinin, Sergei V.
In this work, we develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector, captured at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Here, G-Mode MFM is implemented and compared to the traditional heterodyne-based MFM on model systems, including domain structures in ferromagnetic Yttrium Iron Garnet and the electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFMmore » data and demonstrate its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode-coupling phenomena. Finally, we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any atomic force microscopy platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties, as well as their mutual interactions.« less
The effect of dust charge variation, due to ion flow and electron depletion, on dust levitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, Victor; Douglass, Angela; Qiao Ke
2011-11-29
Using a fluid model, the plasma densities, electron temperature and ion Mach number in front of a powered electrode in different plasma discharges is computed. The dust charge is computed using OML theory for Maxwellian electrons and ions distributed according to a shifted-Maxwellian. By assuming force balance between gravity and the electrostatic force, the dust levitation height is obtained. The importance of the dust charge variation is investigated.
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S
1995-03-01
We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain < 11% acidic lipid, the -25 mV equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.; Ayers, P.W.; Zhang, Y.
2009-10-28
The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these twomore » terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.« less
Mean-Field Description of Ionic Size Effects with Non-Uniform Ionic Sizes: A Numerical Approach
Zhou, Shenggao; Wang, Zhongming; Li, Bo
2013-01-01
Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, i.e., there is no explicit, Boltzmann type distributions. This work begins with a variational formulation of the continuum electrostatics of an ionic solution with such non-uniform ionic sizes as well as multiple ionic valences. An augmented Lagrange multiplier method is then developed and implemented to numerically solve the underlying constrained optimization problem. The method is shown to be accurate and efficient, and is applied to ionic systems with non-uniform ionic sizes such as the sodium chloride solution. Extensive numerical tests demonstrate that the mean-field model and numerical method capture qualitatively some significant ionic size effects, particularly those for multivalent ionic solutions, such as the stratification of multivalent counterions near a charged surface. The ionic valence-to-volume ratio is found to be the key physical parameter in the stratification of concentrations. All these are not well described by the classical Poisson–Boltzmann theory, or the generalized Poisson–Boltzmann theory that treats uniform ionic sizes. Finally, various issues such as the close packing, limitation of the continuum model, and generalization of this work to molecular solvation are discussed. PMID:21929014
Mikulecky, Peter J.; Feig, Andrew L.
2004-01-01
In proteins, empirical correlations have shown that changes in heat capacity (ΔCP) scale linearly with the hydrophobic surface area buried upon folding. The influence of ΔCP on RNA folding has been widely overlooked and is poorly understood. In addition to considerations of solvent reorganization, electrostatic effects might contribute to ΔCPs of folding in polyanionic species such as RNAs. Here, we employ a perturbation method based on electrostatic theory to probe the hot and cold denaturation behavior of the hammerhead ribozyme. This treatment avoids much of the error associated with imposing two-state folding models on non-two-state systems. Ribozyme stability is perturbed across a matrix of solvent conditions by varying the concentration of NaCl and methanol co-solvent. Temperature-dependent unfolding is then monitored by circular dichroism spectroscopy. The resulting array of unfolding transitions can be used to calculate a ΔCP of folding that accurately predicts the observed cold denaturation temperature. We confirm the accuracy of the calculated ΔCP by using isothermal titration calorimetry, and also demonstrate a methanol-dependence of the ΔCP. We weigh the strengths and limitations of this method for determining ΔCP values. Finally, we discuss the data in light of the physical origins of the ΔCPs for RNA folding and consider their impact on biological function. PMID:15282329
NASA Astrophysics Data System (ADS)
Cox, Phillip Alexander
With power conversion efficiencies on the rise, organic photovoltaics (OPVs) hold promise as a next-generation thin-film solar technology. However, both device performance and stability are inextricably linked to local film structure. Methods capable of probing nanoscale electronic properties as a function of film structure are thus a crucial component of the rational design of efficient and robust devices. This dissertation describes the use of three scanning probe methods for studying local charge generation and photodegradation in polymer/fullerene solar cells. First, we show that time-resolved electrostatic force microscopy (trEFM) is capable of resolving local photocurrent from sub-bandgap excitation down to attoampere level currents, a result unattainable by traditional contact-mode methods. We find that the local charging rates measured with trEFM are proportional to external quantum efficiency (EQE) measurements made on completed devices, making trEFM images equivalent to local EQE maps across the entire solar spectrum. For both phase-segregated and well-mixed MDMO-PPV:PCBM film morphologies, we show that the local distribution of photocurrent is invariant to excitation wavelength, providing local evidence for the controversial result that the probability of generating separated charge carriers does not depend on whether excitons are formed at the singlet state or charge transfer state. Next, we describe how local dissipation imaging can be performed with commercially-available frequency-modulated electrostatic force microscopy (FM-EFM) and show that dissipation maps are highly sensitive to photo-oxidative effects in organic semiconductors. We show that photo-oxidation induced changes in cantilever energy dissipation are proportional to device performance losses. We further develop dissipation imaging by implementing ringdown imaging, which directly measures the quality factor of the cantilever, enabling quantitative dissipation mapping. Using organic photovoltaic materials as a testbed, we study macroscopic device degradation as a function of photooxidation for three different film morphologies. According to EQE measurements, we find that the stability of the macroscopic devices is very sensitive to processing conditions, with films processed with the solvent additive 1,8-diiodooctane being the most stable. At the microscopic level, we compare the evolution of cantilever power dissipation as a function of photochemical degradation for three different polymer/fullerene blend morphologies, and show that the evolution of local power dissipation correlates with device stability. Lastly, we show that cantilever power dissipation increases more rapidly over large fullerene aggregates than in well-mixed polymer/fullerene regions, suggesting that local photochemistry on the fullerene contributes strongly to the dissipation signal.
A Simplified Theory of Coupled Oscillator Array Phase Control
NASA Technical Reports Server (NTRS)
Pogorzelski, R. J.; York, R. A.
1997-01-01
Linear and planar arrays of coupled oscillators have been proposed as means of achieving high power rf sources through coherent spatial power combining. In such - applications, a uniform phase distribution over the aperture is desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Notable among these are linear phase distributions resulting in steering of the output rf beam away from the broadside direction. The theory describing the operation of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. This has made it difficult to develop an intuitive understanding of the impact of oscillator tuning on phase control and has thus impeded practical application. In this work a simpl!fied theory is developed which facilitates intuitive understanding by establishing an analog of the phase control problem in terms of electrostatics.
Density functional theory study on the ionic liquid pyridinium hydrogen sulfate
NASA Astrophysics Data System (ADS)
Tankov, Ivaylo; Yankova, Rumyana; Genieva, Svetlana; Mitkova, Magdalena; Stratiev, Dicho
2017-07-01
The geometry, electronic structure and chemical reactivity of a pyridinium-based ionic liquid, pyridinium hydrogen sulfate ([H-Pyr]+[HSO4]-), have been discussed on the basis of quantum chemical density functional theory calculations using B3LYP/6-311+G(d,p) and B3LYP/6-311++G(2d,2p) approaches. The calculations indicated that [H-Pyr]+[HSO4]- exists in the form of an ion pair. A large electropositive potential was found on the pyridinium ring, while the regions of a negative electrostatic potential is linked with the lone pair of electronegative oxygen atoms in hydrogen sulfate anion ([HSO4]-). Electron transfer both within the anion, and between the anion and cation of an ion pair were described using natural bond orbital theory. The energy values of -7.1375 and -2.8801 eV were related to HOMO and LUMO orbitals, respectively.
Poromechanics of compressible charged porous media using the theory of mixtures.
Huyghe, J M; Molenaar, M M; Baajens, F P T
2007-10-01
Osmotic, electrostatic, and/or hydrational swellings are essential mechanisms in the deformation behavior of porous media, such as biological tissues, synthetic hydrogels, and clay-rich rocks. Present theories are restricted to incompressible constituents. This assumption typically fails for bone, in which electrokinetic effects are closely coupled to deformation. An electrochemomechanical formulation of quasistatic finite deformation of compressible charged porous media is derived from the theory of mixtures. The model consists of a compressible charged porous solid saturated with a compressible ionic solution. Four constituents following different kinematic paths are identified: a charged solid and three streaming constituents carrying either a positive, negative, or no electrical charge, which are the cations, anions, and fluid, respectively. The finite deformation model is reduced to infinitesimal theory. In the limiting case without ionic effects, the presented model is consistent with Blot's theory. Viscous drag compression is computed under closed circuit and open circuit conditions. Viscous drag compression is shown to be independent of the storage modulus. A compressible version of the electrochemomechanical theory is formulated. Using material parameter values for bone, the theory predicts a substantial influence of density changes on a viscous drag compression simulation. In the context of quasistatic deformations, conflicts between poromechanics and mixture theory are only semantic in nature.
Bauzá, Antonio; Seth, Saikat Kumar; Frontera, Antonio
2018-04-05
Using ab initio calculations, we analyze the interplay between π-hole interactions involving the nitro group of 1,4-dinitrobenzene and lone pair···π (lp···π), C-H···π or metal(M)···π noncovalent interactions. Moreover, we have also used 1,4-phenylenebis(phosphine dioxide) for comparison purposes. Interesting cooperativity effects are found when π-hole (F···N,P) and lp···π/C-H···π/M···π interactions coexist in the same supramolecular assembly. These effects are studied theoretically in terms of energetic and geometric features of the complexes, which are computed by ab initio methods (RI-MP2/def2-TZVP). A charge density analysis using the Bader's theory of "atoms in molecules" is carried out to characterize the interactions and to analyze their strengthening or weakening depending on the variation of charge density at critical points. The importance of electrostatic effects on the mutual influence of the interaction is studied by means of molecular electrostatic potential calculations. By taking advantage of these computational tools, the present study examines interplay of these interactions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Electrostatically frequency tunable micro-beam-based piezoelectric fluid flow energy harvester
NASA Astrophysics Data System (ADS)
Rezaee, Mousa; Sharafkhani, Naser
2017-07-01
This research investigates the dynamic behavior of a sandwich micro-beam based piezoelectric energy harvester with electrostatically adjustable resonance frequency. The system consists of a cantilever micro-beam immersed in a fluid domain and is subjected to the simultaneous action of cross fluid flow and nonlinear electrostatic force. Two parallel piezoelectric laminates are extended along the length of the micro-beam and connected to an external electric circuit which generates an output power as a result of the micro-beam oscillations. The fluid-coupled structure is modeled using Euler-Bernoulli beam theory and the equivalent force terms for the fluid flow. Fluid induced forces comprise the added inertia force which is evaluated using equivalent added mass and the drag and lift forces which are evaluated using relative velocity and Van der Pol equation. In addition to flow velocity and fluid density, the influence of several design parameters such as external electrical resistance, piezo layer position, and dc voltage on the generated power are investigated by using Galerkin and step by step linearization method. It is shown that for given flowing fluid parameters, i.e., density and velocity, one can adjust the applied dc voltage to tune resonance frequency so that the lock-in phenomenon with steady large amplitude oscillations happens, also by adjusting the harvester parameters including the mechanical and electrical ones, the maximal output power of the harvester becomes possible.
NASA Astrophysics Data System (ADS)
Tajaddodianfar, Farid; Hairi Yazdi, Mohammad Reza; Pishkenari, Hossein Nejat
Motivated by specific applications, electrostatically actuated bistable arch shaped micro-nano resonators have attracted growing attention in the research community in recent years. Nevertheless, some issues relating to their nonlinear dynamics, including the possibility of chaos, are still not well known. In this paper, we investigate the chaotic vibrations of a bistable resonator comprised of a double clamped initially curved microbeam under combined harmonic AC and static DC distributed electrostatic actuation. A reduced order equation obtained by the application of the Galerkin method to the nonlinear partial differential equation of motion, given in the framework of Euler-Bernoulli beam theory, is used for the investigation in this paper. We numerically integrate the obtained equation to study the chaotic vibrations of the proposed system. Moreover, we investigate the effects of various parameters including the arch curvature, the actuation parameters and the quality factor of the resonator, which are effective in the formation of both static and dynamic behaviors of the system. Using appropriate numerical tools, including Poincaré maps, bifurcation diagrams, Fourier spectrum and Lyapunov exponents we scrutinize the effects of various parameters on the formation of chaotic regions in the parametric space of the resonator. Results of this work provide better insight into the problem of nonlinear dynamics of the investigated family of bistable micro/nano resonators, and facilitate the design of arch resonators for applications such as filters.
Forest, Valérie; Pourchez, Jérémie
2017-01-01
The internalization of nanoparticles by cells (and more broadly the nanoparticle/cell interaction) is a crucial issue both for biomedical applications (for the design of nanocarriers with enhanced cellular uptake to reach their intracellular therapeutic targets) and in a nanosafety context (as the internalized dose is one of the key factors in cytotoxicity). Many parameters can influence the nanoparticle/cell interaction, among them, the nanoparticle physico-chemical features, and especially the surface charge. It is generally admitted that positive nanoparticles are more uptaken by cells than neutral or negative nanoparticles. It is supposedly due to favorable electrostatic interactions with negatively charged cell membrane. However, this theory seems too simplistic as it does not consider a fundamental element: the nanoparticle protein corona. Indeed, once introduced in a biological medium nanoparticles adsorb proteins at their surface, forming a new interface defining the nanoparticle "biological identity". This adds a new level of complexity in the interactions with biological systems that cannot be any more limited to electrostatic binding. These interactions will then influence cell behavior. Based on a literature review and on an example of our own experience the parameters involved in the nanoparticle protein corona formation as well as in the nanoparticle/cell interactions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Interface effects on calculated defect levels for oxide defects
NASA Astrophysics Data System (ADS)
Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew
2014-03-01
Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. This finding suggestsmore » that large cyclones with natural or augmented electrostatic forces employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. This is of special importance since the use of many small cyclones in parallel, or multicyclones, commonly suffers from fouling and this approach is not recommended in the CFCC application. The original objective of this investigation was to assess the relative merits of the Aerodyne cyclone separator. It was found from both the cold flow and the hot flow tests that its separative efficiencies are disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones.« less
Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy
NASA Technical Reports Server (NTRS)
Moseley, Samuel; Kutyrev, Alexander; Brown, Ari; Li, Mary
2012-01-01
A next-generation microshutter array, LArge Microshutter Array (LAMA), was developed as a multi-object field selector. LAMA consists of small-scaled microshutter arrays that can be combined to form large-scale microshutter array mosaics. Microshutter actuation is accomplished via electrostatic attraction between the shutter and a counter electrode, and 2D addressing can be accomplished by applying an electrostatic potential between a row of shutters and a column, orthogonal to the row, of counter electrodes. Microelectromechanical system (MEMS) technology is used to fabricate the microshutter arrays. The main feature of the microshutter device is to use a set of standard surface micromachining processes for device fabrication. Electrostatic actuation is used to eliminate the need for macromechanical magnet actuating components. A simplified electrostatic actuation with no macro components (e.g. moving magnets) required for actuation and latching of the shutters will make the microshutter arrays robust and less prone to mechanical failure. Smaller-size individual arrays will help to increase the yield and thus reduce the cost and improve robustness of the fabrication process. Reducing the size of the individual shutter array to about one square inch and building the large-scale mosaics by tiling these smaller-size arrays would further help to reduce the cost of the device due to the higher yield of smaller devices. The LAMA development is based on prior experience acquired while developing microshutter arrays for the James Webb Space Telescope (JWST), but it will have different features. The LAMA modular design permits large-format mosaicking to cover a field of view at least 50 times larger than JWST MSA. The LAMA electrostatic, instead of magnetic, actuation enables operation cycles at least 100 times faster and a mass significantly smaller compared to JWST MSA. Also, standard surface micromachining technology will simplify the fabrication process, increasing yield and reducing cost.
Imaging indicator for ESD safety testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whinnery, LeRoy L.,; Nissen, April; Keifer, Patrick N.
2013-05-01
This report describes the development of a new detection method for electrostatic discharge (ESD) testing of explosives, using a single-lens reflex (SLR) digital camera and a 200-mm macro lens. This method has demonstrated several distinct advantages to other current ESD detection methods, including the creation of a permanent record, an enlarged image for real-time viewing as well as extended periods of review, and ability to combine with most other Go/No-Go sensors. This report includes details of the method, including camera settings and position, and results with wellcharacterized explosives PETN and RDX, and two ESD-sensitive aluminum powders.
PCE: web tools to compute protein continuum electrostatics
Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.
2005-01-01
PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492