Sample records for electrostatic precipitator working

  1. 5. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. 5 (Martin Stupich) - U.S. Steel Homestead Works, Open Hearth Steelmaking Plant, Along Monongahela River, Homestead, Allegheny County, PA

  2. 4. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. 5 (Martin Stupich) - U.S. Steel Homestead Works, Open Hearth Steelmaking Plant, Along Monongahela River, Homestead, Allegheny County, PA

  3. HIGH RESISTIVITY BEHAVIOR OF HOT-SIDE ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The report gives results of experiments to explain the high resistivity behavior of hot-side electrostatic precipitators (ESPs) collecting fly ash. The working hypothesis is that the behavior is the result of the buildup of a thin layer of sodium-ion-depleted fly ash which has a ...

  4. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    In their Swamp Works laboratory at NASA's Kennedy Space Center, Dr. Carlos Calle and Jay Phillips are testing an electrostatic precipitator using dust that closely approximates the make-up of that on Mars. They upgraded their electrostatic precipitator to fully simulate Martian atmosphere by designing and constructing a dust aerosolization pre-chamber. The agency's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  5. Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Srinivaas, A.; Sathian, Samanyu; Ramesh, Arjun

    2018-02-01

    The principle of an industrially used emission reduction technique is employed in automotive diesel exhaust to reduce the diesel particulate emission. As the Emission regulation are becoming more stringent legislations have been formulated, due to the hazardous increase in the air quality index in major cities. Initially electrostatic precipitation principle and working was investigated. The High voltage requirement in an Electrostatic precipitator is obtained by designing an appropriate circuit in MATLAB -SIMULINK. Mechanical structural design of the new model after treatment device for the specific diesel exhaust was done. Fluid flow analysis of the ESP model was carried out using ANSYS CFX for optimized fluid with a reduced back pressure. Design reconsideration was done in accordance with fluid flow analysis. Accordingly, a new design is developed by considering diesel particulate filter and catalytic converter design to ESP model.

  6. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    New Electrostatic Precipitator in a flow-through system. The precipitator system is being developed to remove dust from the atmospheric intakes of the MARS ISRU chambers. It uses electrostatic forces for the dust removal.

  7. 40 CFR 60.5175 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...

  8. 40 CFR 60.5175 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...

  9. 40 CFR 60.5175 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...

  10. 40 CFR 60.5175 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...

  11. Investigation of the biofuel flue and producer gases cleaning efficiency using ESP

    NASA Astrophysics Data System (ADS)

    Poškas, Robertas; Sirvydas, Arūnas; Poškas, Povilas; Striūgas, Nerijus; Pedišius, Nerijus; Valinčius, Vitas

    2017-11-01

    The use of biofuel has been increasing in Europe over the last years, and the reason for that is acceptable cost and the least negative impact on the environment. However, NOx and emissions of fine particulates are important, and biofuel is still a disadvantage compared to oil and natural gas fired systems. Usually, flue gas is filtered in multicyclones or fibre filters before discharge into the atmosphere. Yet, in the case of fine particulates, the filters of such type do not show high effectiveness, thus electrostatic precipitators are used. In this comparative study on biofuel (wood pellets), the collection efficiency of solid particles from a class 3 boiler (50 kW) and from a gasification unit (100 kW) was investigated. Although releases of solid particles from modern boilers are low, a combination of such a boiler with an electrostatic precipitator may reduce the releases of particles to the minimum, and the collection efficiency of the electrostatic precipitator obtained during the investigation was 98-99%. There is a big difference in particle concentrations comparing the systems with flue gas and producer gas. As the working conditions in the test section with producer gas were harder, it led to lower efficiency of the electrostatic precipitator ( 75%).

  12. Improved Electronic Control for Electrostatic Precipitators

    NASA Technical Reports Server (NTRS)

    Johnston, D. F.

    1986-01-01

    Electrostatic precipitators remove particulate matter from smoke created by burning refuse. Smoke exposed to electrostatic field, and particles become electrically charged and migrate to electrically charged collecting surfaces. New microprocessor-based electronic control maintains precipitator power at maximum particulate-collection level. Control automatically senses changes in smoke composition due to variations in fuel or combustion and adjusts precipitator voltage and current accordingly. Also, sensitive yet stable fault detection provided.

  13. AN ELECTROSTATIC PRECIPITATOR BACKUP FOR SAMPLING SYSTEMS

    EPA Science Inventory

    The report describes a program carried out to design and evaluate the performance of an electrostatic collector to be used as an alternative to filters as a fine particle collector. Potential advantages of an electrostatic precipitator are low pressure drop and high capacity. Pot...

  14. ESPVI 4.0 ELECTROSTATIS PRECIPITATOR V-1 AND PERFORMANCE MODEL: USER'S MANUAL

    EPA Science Inventory

    The manual is the companion document for the microcomputer program ESPVI 4.0, Electrostatic Precipitation VI and Performance Model. The program was developed to provide a user- friendly interface to an advanced model of electrostatic precipitation (ESP) performance. The program i...

  15. Resistivity Problems in Electrostatic Precipitation

    ERIC Educational Resources Information Center

    White, Harry J.

    1974-01-01

    The process of electrostatic precipitation has ever-increasing application in more efficient collection of fine particles from industrial air emissions. This article details a large number of new developments in the field. The emphasis is on high resistivity particles which are a common cause of poor precipitator performance. (LS)

  16. Method to Remove Particulate Matter from Dusty Gases at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Clements, J. Sid

    2012-01-01

    Future human exploration of Mars will rely on local Martian resources to reduce the mass, cost, and risk of space exploration launched from Earth. NASA's In Situ Resource Utilization (ISRU) Project seeks to produce mission consumables from local Martian resources, such as atmospheric gas. The Martian atmosphere, however, contains dust particles in the 2-to-10 -micrometer range. These dust particles must be removed before the Martian atmospheric gas can be processed. The low pressure of the Martian atmosphere, at 5 to 10 mbars, prevents the development of large voltages required for a standard electrostatic precipitator. If the voltage is increased too much, the corona transitions into a glow/streamer discharge unsuitable for the operation of a precipitator. If the voltage is not large enough, the dust particles are not sufficiently charged and the field is not strong enough to drive the particles to the collector. A method using electrostatic fields has been developed to collect dust from gaseous environments at low pressures, specifically carbon dioxide at pressures around 5 to 10 mbars. This method, commonly known as electrostatic precipitation, is a mature technology in air at one atmosphere. In this case, the high voltages required for the method to work can easily be achieved. However, in carbon dioxide at low pressures, such as those found on Mars, large voltages are not possible. The innovation reported here consists of two concentric cylindrical electrodes set at specific potential difference that generate an electric field that produces a corona capable of imparting an electrostatic charge to the incoming dust particles. The strength of the field is carefully balanced so as to produce a stable charging corona at 5 to 10 mbars, and is also capable of imparting a force to the particles that drives them to the collecting electrode. There are only two possible ways that dust can be removed from Martian atmospheric gas intakes: with this electrostatic precipitator design, and with the use of filters. However, filters require upstream compression of the gas to be treated because the atmospheric pressure on Mars is too close to vacuum to use a vacuum pump downstream to the filter to draw the gas through the filter. The electrostatic precipitator is the best and more efficient solution for this environment. No other precipitator designs have been developed for the environment of Mars due to the challenges of the low atmospheric pressure. Dust particles are charged using corona generation around the high-voltage discharge electrode, which ionizes gas molecules. Since the atmospheric gas intakes for the ISRU processing chambers will likely be cylindrical, cylindrical precipitator geometry was chosen. The electrostatic precipitator design presented here removes simulated Martian dust particles in the required range in a simulated Martian atmospheric environment. The current-voltage (I-V) characteristic curves taken for the nine precipitator configurations at 9 mbars of pressure showed that a cylindrical collecting electrode 7.0 cm in diameter with a concentric positive high voltage electrode 100 m thick provides the best range of voltage and charging corona current. This precipitator design is effective for the size of the dust particles expected in the Martian atmosphere. Mass determination, as well as microscopic images and particle size distributions of dust collected on a silicon wafer placed directly below the precipitator with the field on and off, showed excellent initial results.

  17. Monitoring by Control Technique - Electrostatic Precipitators

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about electrostatic precipitator control techniques used to reduce pollutant emissions.

  18. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  19. SURFACE PLASMA ELECTRODE FOR ELECTROSTATIC PRECIPITATORS - PHASE I

    EPA Science Inventory

    Electrostatic precipitators are widely used for the removal of particulate matter from boiler exhaust gases. The U.S. Environmental Protection Agency (EPA) promulgation of National Emissions Standards for Hazardous Air Pollutants (NESHAP) from Industrial, Commercial, and Insti...

  20. PLASMA DISCHARGE ELECTRODE FOR ELECTROSTATIC PRECIPITATORS - PHASE II

    EPA Science Inventory

    Electrostatic precipitators are widely used for removal of particulate matter form boiler exhaust gases. The EPA promulgation of National emission Standards for Hazardous Air Pollutants (NESHAP) from Industrial, Commercial and Institutional Boilers and Process Heater will req...

  1. PARTICULATE CONTROL HIGHLIGHTS: RESEARCH ON ELECTROSTATIC PRECIPITATOR TECHNOLOGY

    EPA Science Inventory

    The report gives highlights of a major EPA research program on electrostatic precipitator (ESP) technology, directed toward improving the performance of ESPs in controlling industrial particulate emissions, notably fly ash from coal combustion in electric power plants. Relationsh...

  2. SR-52 PROGRAMMABLE CALCULATOR PROGRAMS FOR VENTURI SCRUBBERS AND ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The report provides useful tools for estimating particulate removal by venturi scrubbers and electrostatic precipitators. Detailed descriptions are given for programs to predict the penetration (one minus efficiency) for each device. These programs are written specifically for th...

  3. OPERATION AND MAINTENANCE MANUAL FOR ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The manual focuses on the operation and maintenance (O/M) of typical electrostatic precipitators (ESPs). It summarizes available information on theory and design in sufficient detail to provide a basic background O/M portions of the manual. Although O/M-related air pollution prob...

  4. DEVELOPMENT OF A HIGH-TEMPERATURE/HIGH-PRESSURE ELECTROSTATIC PRECIPITATOR

    EPA Science Inventory

    The report gives results of a laboratory test demonstrating the feasibility of electrostatic precipitation at high temperatures (to 1366 K) and pressures (to 3550 kPa): corona currents were stable at all temperatures. Detailed current/voltage characteristics under negative and po...

  5. CHARGE MEASUREMENTS OF PARTICLES EXITING ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The report gives results of an investigation of particle charging in positive and negative corona discharge as a function of temperature from 38 to 343C in order to establish, especially at hot-side electrostatic precipitator (ESP) temperatures, the relative effectiveness of the ...

  6. A MATHEMATICAL MODEL OF ELECTROSTATIC PRECIPITATION. (REVISION 1): VOLUME I. MODELING AND PROGRAMMING

    EPA Science Inventory

    The report briefly describes the fundamental mechanisms and limiting factors involved in the electrostatic precipitation process. It discusses theories and procedures used in the computer model to describe the physical mechanisms, and generally describes the major operations perf...

  7. A MATHEMATICAL MODEL FOR CALCULATING ELECTRICAL CONDITIONS IN WIRE-DUCT ELECTROSTATIC PRECIPITATION DEVICES

    EPA Science Inventory

    The article reports the development of a new method of calculating electrical conditions in wire-duct electrostatic precipitation devices. The method, based on a numerical solution to the governing differential equations under a suitable choice of boundary conditions, accounts fo...

  8. Martian Atmospheric Dust Mitigation for ISRU Intakes via Electrostatic Precipitation

    NASA Technical Reports Server (NTRS)

    Phillips, James R., III; Pollard, Jacob R. S.; Johansen, Michael R.; Mackey, Paul J.; Clements, Sid; Calle, Carlos I.

    2016-01-01

    This document is the presentation to be given at the 2016 American Society of Civil Engineers Earth and Space Conference to examine the concept of using electrostatic precipitation for Martian atmospheric dust mitigation of the intakes of in-situ resource utilization reactors.

  9. PERFORMANCE AND ECONOMIC EVALUATION OF A HOT-SIDE ELECTROSTATIC PRECIPITATOR

    EPA Science Inventory

    The report gives results of measurements--to determine the overall mass and fractional collection efficiency of a hot-side electrostatic precipitator (ESP)--across 1 chamber of a 16-chambered ESP. Measurements of fractional efficiency were conducted across the entire ESP. In situ...

  10. Electrostatic Precipitator (ESP) TRAINING MANUAL

    EPA Science Inventory

    The manual assists engineers in using a computer program, the ESPVI 4.0W, that models all elements of an electrostatic precipitator (ESP). The program is a product of the Electric Power Research Institute and runs in the Windows environment. Once an ESP is accurately modeled, the...

  11. An Electrostatic Precipitator System for the Martian Environment

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; Phillips, J. R., III; Clements, J. S.

    2012-01-01

    Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Keywords: Space applications, electrostatic precipitator, particle control, particle charging

  12. EFFECTS ON ELECTROSTATIC PRECIPITATION OF CHANGES IN GRAIN LOADING, SIZE DISTRIBUTION, RESISTIVITY, AND TEMPERATURE

    EPA Science Inventory

    The paper discusses the simulation of the effects of changes to particle loading, particle size distribution, and electrostatic precipitator (ESP) operating temperatures using ESP models. It also illustrates the usefulness of modern ESP models for this type of analysis. Increasin...

  13. MATHEMATICAL MODEL OF ELECTROSTATIC PRECIPITATION FOR THE TEXAS INSTRUMENTS PROGRAMMABLE 59 CALCULATOR

    EPA Science Inventory

    The report describes a version of EPA's electrostatic precipitator (ESP) model suitable for use on a Texas Instruments Programmable 59 (TI-59) hand-held calculator. This version of the model allows the calculation of ESP collection efficiency, including corrections for non-ideal ...

  14. 40 CFR 63.9590 - What emission limitations must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) For each dry electrostatic precipitator applied to meet any particulate matter emission limit in Table... voltage and daily average secondary current for each field at or above the minimum levels established during the initial performance test. (4) For each wet electrostatic precipitator applied to meet any...

  15. 40 CFR 63.9590 - What emission limitations must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) For each dry electrostatic precipitator applied to meet any particulate matter emission limit in Table... voltage and daily average secondary current for each field at or above the minimum levels established during the initial performance test. (4) For each wet electrostatic precipitator applied to meet any...

  16. 40 CFR 60.2115 - What if I do not use a wet scrubber to comply with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., activated carbon injection, selective noncatalytic reduction, or an electrostatic precipitator to comply..., activated carbon injection, selective noncatalytic reduction, fabric filter, or an electrostatic precipitator or limit emissions in some other manner, including material balances, to comply with the emission...

  17. 40 CFR 60.2115 - What if I do not use a wet scrubber to comply with the emission limitations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., activated carbon injection, selective noncatalytic reduction, or an electrostatic precipitator to comply..., activated carbon injection, selective noncatalytic reduction, fabric filter, or an electrostatic precipitator or limit emissions in some other manner, including material balances, to comply with the emission...

  18. 40 CFR 60.2680 - What if I do not use a wet scrubber to comply with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., activated carbon injection, selective noncatalytic reduction, or an electrostatic precipitator to comply..., activated carbon injection, selective noncatalytic reduction, fabric filter, or an electrostatic precipitator or limit emissions in some other manner, including mass balances, to comply with the emission...

  19. COMPARATIVE U.S./USSR TESTS OF A HOT-SIDE ELECTROSTATIC PRECIPITATOR

    EPA Science Inventory

    The report describes a U.S./USSR cooperative test program to quantify and characterize particulate emissions from a U.S. coal-burning power plant boiler, equipped with a hot-side electrostatic precipitator, at Duke Power Co.'s Allen Steam Station in March 1976. U.S. and Soviet eq...

  20. INTERACTIVE COMPUTER MODEL FOR CALCULATING V-I CURVES IN ESPS (ELECTROSTATIC PRECIPITATORS) VERSION 1.0

    EPA Science Inventory

    The manual describes two microcomputer programs written to estimate the performance of electrostatic precipitators (ESPs): the first, to estimate the electrical conditions for round discharge electrodes in the ESP; and the second, a modification of the EPA/SRI ESP model, to estim...

  1. TI-59 PROGRAMMABLE CALCULATOR PROGRAMS FOR IN-STACK OPACITY, VENTURI SCRUBBERS, AND ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The report explains the basic concepts of in-stack opacity as measured by in-stack opacity monitors. Also included are calculator programs that model the performance of venturi scrubbers and electrostatic precipitators. The effect of particulate control devices on in-stack opacit...

  2. ENVIRONMENTAL RESEARCH BRIEF: DEVELOPMENT OF GAS CLEANING TECHNOLOGY: DEMONSTRATION OF ADVANCED ELECTROSTATIC PRECIPITATOR TECHNOLOGY (INDIA ESP TRAINING)

    EPA Science Inventory

    The Brief discusses a demonstration of advanced electrostatic precipitator (ESP) diagnostics and technologies in India. Six Indian ESP specialists were selected by Southern Research Institute and their consultants, with the concurrence of EPA's project officer, to attend a course...

  3. Control system adds to precipitator efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurrole, G.

    1978-02-01

    An electrostatic precipitator in use at Lion Oil Co., Martinez, Calif., in a fluid catalytic cracking and CO boiler application, was upgraded by mechanical sectionalization of the gas passage and a new electronic control system. The electrostatic precipitator is installed upstream of the CO boiler to handle gas flow up to 4.77 ft/sec, and pressure to 4.5 psi. The independent gas chambers in the electrostatic precipitator were divided by installing gas-tight partition walls to form a total of four electrostatic fields. The precipitator was also equipped with adjustable inlet gas flow-control baffles for even gas distribution. Rows of grounded collectingmore » electrodes are parallel with the flow of gas. The emitting electrode system, powered by separate high-energy transformers for each collecting field, uses silicon-controlled rectifiers and analog electronic networks for rapid response to changing gas and dust conditions. Regulatory requirements call for efficient collection of catalyst fines with no more than 40 lb/hr escaping through the boiler stack. Currently, stack losses average about 38 lb/hr. The installation of two additional control systems with transformers and rectifiers should reduce stack losses to 34 lb/hr.« less

  4. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    Dr. Carlos Calle, lead scientist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Jay Phillips, a research physicist, are modifying an electrostatic precipitator to help remove dust from simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  5. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    Dr. Carlos Calle, lead scientist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Jay Phillips, a research physicist, are modifying an electrostatic precipitator to help remove dust from a simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  6. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    Jay Phillips, a research physicist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Dr. Carlos Calle, lead scientist in the lab, are modifying an electrostatic precipitator to help remove dust from simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  7. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigo, H.G.; Chandler, A.J.

    Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  8. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and Laboratory Reports, Part 1 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigo, H.G.; Chandler, A.J.

    1996-04-01

    Volume II (part 1 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the documentation and raw data, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  9. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J.

    1999-01-01

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements.

  10. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, S.J.

    1999-08-17

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between each row of filter elements is a grounded plate. Between the grounded plates and the filter elements are electrode grids for creating electrostatic precipitation zones between each row of filter elements. In this way, when the filter elements are cleaned by pulsing air in a reverse direction, the dust removed from the bags will collect in the electrostatic precipitation zones rather than on adjacent filter elements. 12 figs.

  11. Application Potential of Energy Systems at Navy Sites. Volume I. Methodology and Results.

    DTIC Science & Technology

    1980-01-01

    see Table 5-4). Flue gas desulfurization (FGD), electrostatic precipitators (ESP), and staged combustion (SC) were selected to control SOX...energy sources are required to meet proposed Federal Stationary Source Standards. Flue gas desulfurization (FGD), electrostatic precipitators (ESP...pollution control equipment follows: * FGD -- Flue gas from the furnace is passed counter-currently through a limestone (CaCO3) slurry which reacts with

  12. Electrostatic Precipitation of Dust in the Martian Atmosphere: Implications for the Utilization of Resources During Future Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Clements, Judson S.; Thompson, Samuel M.; Cox, Nathan D.; Hogue, Michael D.; Johansen, Michael R.; Williams, Blakeley S.

    2011-01-01

    Future human missions to Mars will require the utilization of local resources for oxygen, fuel. and water. The In Situ Resource Utilization (ISRU) project is an active research endeavor at NASA to develop technologies that can enable cost effective ways to live off the land. The extraction of oxygen from the Martian atmosphere. composed primarily of carbon dioxide, is one of the most important goals of the Mars ISRU project. The main obstacle is the relatively large amount of dust present in the Martian atmosphere. This dust must be efficiently removed from atmospheric gas intakes for ISRU processing chambers. A common technique to achieve this removal on earth is by electrostatic precipitation, where large electrostatic fields are established in a localized region to precipitate and collect previously charged dust particles. This technique is difficult to adapt to the Martian environment, with an atmospheric pressure of about one-hundredth of the terrestrial atmosphere. At these low pressures. the corona discharges required to implant an electrostatic charge to the particles to be collected is extremely difficult to sustain and the corona easily becomes biopolar. which is unsuitable for particle charging. In this paper, we report on our successful efforts to establish a stable corona under Martian simulated conditions. We also present results on dust collecting efficiencies with an electrostatic precipitator prototype that could be effectively used on a future mission to the red planet

  13. Auroral-particle precipitation and trapping caused by electrostatic double layers in the ionosphere.

    PubMed

    Albert, R D; Lindstrom, P J

    1970-12-25

    Interpretation of high-resolution angular distribution measurements of the primary auroral electron flux detected by a rocket probe launched into a visible aurora from Fort Churchill in the fall of 1966 leads to the following conclusions. The auroral electron flux is nearly monoenergetic and has a quasi-trapped as well as a precipitating component. The quasi-trapped flux appears to be limited to a region defined by magnetic-mirror points and multiple electrostatic double layers in the ionosphere. The electrostatic field of the double-layer distribution enhances the aurora by lowering the magnetic-mirror points and supplying energy to the primary auroral electrons.

  14. 40 CFR Table 2 to Subpart Rrrrr of... - Applicability of General Provisions to Subpart RRRRR of Part 63

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Definitions Yes. § 63.3 Units and Abbreviations Yes. § 63.4 Prohibited Activities Yes. § 63.5 Construction...) requirements in § 63.8(c)(5) and (6) apply only to COMS for dry electrostatic precipitators. § 63.8(a)(4... for dry electrostatic precipitators. § 63.10(a), (b)(1)-(2)(xii), (b)(2)(xiv), (b)(3), (c)(1)-(6), (c...

  15. Two-stage electrostatic precipitator using induction charging

    NASA Astrophysics Data System (ADS)

    Takashima, Kazunori; Kohno, Hiromu; Katatani, Atsushi; Kurita, Hirofumi; Mizuno, Akira

    2018-05-01

    An electrostatic precipitator (ESP) without using corona discharge was investigated herein. The ESP employed a two-stage configuration, consisting of an induction charging-based particle charger and a parallel plate type particle collector. By applying a high voltage of several kV, under which no corona discharge was generated in the charger, particles were charged by induction due to contact with charger electrodes. The amount of charge on the charged particles increased with the applied voltage and turbulent air flow in the charger. Performance of the ESP equipped with the induction charger was investigated using ambient air. The removal efficiency for particles ranging 0.3 µm to 5 µm in diameter increased with applied voltage and turbulence intensity of gas flow in the charger when the applied voltage was sufficiently low not to generate corona discharge. This suggests that induction charging can be used for electrostatic precipitation, which can reduce ozone generation and power consumption significantly.

  16. 40 CFR 60.4855 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...

  17. 40 CFR 60.4855 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...

  18. 40 CFR 60.4855 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...

  19. 40 CFR 60.4855 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, or activated carbon... I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic... emission limits? If you use an air pollution control device other than a wet scrubber, fabric filter...

  20. NEW TECHNOLOGY FOR THE CONTROL OF AEROSOLS FROM STATIONARY SOURCES

    EPA Science Inventory

    The paper discusses an EPA program to develop new technologies for controlling particulate matter from stationary sources, including both electrostatically augmented fabric filtration (ESFF) and electrostatic precipitators (ESPs). The first generation ESFF system, using an electr...

  1. Elemental mercury oxidation in an electrostatic precipitator enhanced with in situ soft X-ray irradiation.

    PubMed

    Jing, He; Wang, Xiaofei; Wang, Wei-Ning; Biswas, Pratim

    2015-04-01

    Corona discharge based techniques are promising approaches for oxidizing elemental mercury (Hg0) in flue gas from coal combustion. In this study, in-situ soft X-rays were coupled to a DC (direct current) corona-based electrostatic precipitator (ESP). The soft X-rays significantly enhanced Hg0 oxidation, due to generation of electrons from photoionization of gas molecules and the ESP electrodes. This coupling technique worked better in the positive corona discharge mode because more electrons were in the high energy region near the electrode. Detailed mechanisms of Hg0 oxidation are proposed and discussed based on ozone generation measurements and Hg0 oxidation behavior observations in single gas environments (O2, N2, and CO2). The effect of O2 concentration in flue gas, as well as the effects of particles (SiO2, TiO2, and KI) was also evaluated. In addition, the performance of a soft X-rays coupled ESP in Hg0 oxidations was investigated in a lab-scale coal combustion system. With the ESP voltage at +10 kV, soft X-ray enhancement, and KI addition, mercury oxidation was maximized. Mercury is a significant-impact atmospheric pollutant due to its toxicity. Coal-fired power plants are the primary emission sources of anthropogenic releases of mercury; hence, mercury emission control from coal-fired power plant is important. This study provides an alternative mercury control technology for coal-fired power plants. The proposed electrostatic precipitator with in situ soft X-rays has high efficiency on elemental mercury conversion. Effects of flue gas conditions (gas compositions, particles, etc.) on performance of this technology were also evaluated, which provided guidance on the application of the technology for coal-fired power plant mercury control.

  2. Studies of corona and back discharges in carbon dioxide

    NASA Astrophysics Data System (ADS)

    Czech, Tadeusz; Sobczyk, Arkadiusz Tomasz; Jaworek, Anatol; Krupa, Andrzej; Rajch, Eryk

    2013-01-01

    Results of spectroscopic investigations and current-voltage characteristics of corona and back discharges generated in point-plane electrode geometry in CO2 at atmospheric pressure for positive and negative polarity of the discharge electrode are presented in the paper. Three forms of back discharge, for both polarities, were investigated: glow, streamer and low-current back-arc. To generate the back-discharges for the conditions similar to electrostatic precipitator, the plate electrode was covered with fly ash layer. In order to characterize back discharge processes, the emission spectra were measured and compared with those obtained for normal discharge, generated in the same electrode configuration but without the fly ash layer on the plate electrode. The measurements have shown that optical emission spectral lines of atoms and molecules, excited or ionised in back discharge, depend on the forms of the discharge, the discharge current, and are different in the zones close to needle electrode and fly ash layer. From the comparison of spectral lines of back and normal discharges, an effect of fly ash layer on discharge characteristics and morphology has been determined. In normal corona, the emission spectra are mainly predetermined by the working gas components, but in the case of back discharge, the atomic and molecular lines, resulting from chemical composition of fly ash, are also identified. Differences in the spectra of back discharge for positive and negative polarities of the needle electrode have been explained by considering the kind of ions generated in the crater in fly ash layer. For back arc, the emission of spectral lines of atoms and molecules from fly ash layer can be recorded in the crater zone, but in the needle zone, only the emission lines of CO2 and its decomposition products (CO and C2) can be noticed. The studies of back discharge in CO2, as one of the main components of flue gases, were undertaken because this type of discharge, after unwanted inception, decreases the energy and collection efficiencies of electrostatic precipitator. The second reason behind these studies is that CO2 is the main component of flue gas leaving oxyfuel boiler that re-circulates in the combustion-precipitation cycle. It was shown that discharges in CO2 lead to contamination of discharge electrode with carbonaceous products that can cause severe maintenance problems of electrostatic precipitator. The recognition of the characteristics of electrostatic precipitator operating in the oxyfuel system is, therefore, of crucial importance for exhaust gas cleaning in modern combustion systems.

  3. Positive direct current corona discharges in single wire-duct electrostatic precipitators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yehia, Ashraf, E-mail: yehia30161@yahoo.com; Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Arab Republic of Egypt; Abdel-Fattah, E.

    This paper is aimed to study the characteristics of the positive dc corona discharges in single wire-duct electrostatic precipitators. Therefore, the corona discharges were formed inside dry air fed single wire-duct reactor under positive dc voltage at the normal atmospheric conditions. The corona current-voltage characteristics curves have been measured in parallel with the ozone concentration generated inside the reactor under different discharge conditions. The corona current-voltage characteristics curves have agreed with a semi empirical equation derived from the previous studies. The experimental results of the ozone concentration generated inside the reactor were formulated in the form of an empirical equationmore » included the different parameters that were studied experimentally. The obtained equations are valid to expect both the current-voltage characteristics curves and the corresponding ozone concentration that generates with the positive dc corona discharges inside single wire-duct electrostatic precipitators under any operating conditions in the same range of the present study.« less

  4. Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide.

    PubMed

    Owczarz, Marta; Casalini, Tommaso; Motta, Anna C; Morbidelli, Massimo; Arosio, Paolo

    2015-12-14

    In this work we quantified the role of electrostatic interactions in the self-assembly of a model amphiphilic peptide (RADA 16-I) into fibrillar structures by a combination of size exclusion chromatography and molecular simulations. For the peptide under investigation, it is found that a net charge of +0.75 represents the ideal condition to promote the formation of regular amyloid fibrils. Lower net charges favor the formation of amorphous precipitates, while larger net charges destabilize the fibrillar aggregates and promote a reversible dissociation of monomers from the ends of the fibrils. By quantifying the dependence of the equilibrium constant of this reversible reaction on the pH value and the peptide net charge, we show that electrostatic interactions contribute largely to the free energy of fibril formation. The addition of both salt and a charged destabilizer (guanidinium hydrochloride) at moderate concentration (0.3-1 M) shifts the monomer-fibril equilibrium toward the fibrillar state. Whereas the first effect can be explained by charge screening of electrostatic repulsion only, the promotion of fibril formation in the presence of guanidinium hydrochloride is also attributed to modifications of the peptide conformation. The results of this work indicate that the global peptide net charge is a key property that correlates well with the fibril stability, although the peptide conformation and the surface charge distribution also contribute to the aggregation propensity.

  5. Calculation of ionized fields in DC electrostatic precipitators in the presence of dust and electric wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristina, S.; Feliziani, M.

    1995-11-01

    This paper describes a new procedure for the numerical computation of the electric field and current density distributions in a dc electrostatic precipitator in the presence of dust, taking into account the particle-size distribution. Poisson`s and continuity equations are numerically solved by supposing that the coronating conductors satisfy Kaptzov`s assumption on the emitter surfaces. Two iterative numerical procedures, both based on the finite element method (FEM), are implemented for evaluating, respectively, the unknown ionic charge density and the particle charge density distributions. The V-I characteristic and the precipitation efficiencies for the individual particle-size classes, calculated with reference to the pilotmore » precipitator installed by ENEL (Italian Electricity Board) at its Marghera (Venice) coal-fired power station, are found to be very close to those measured experimentally.« less

  6. Research of vibration controlling based on programmable logic controller for electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing

    2013-03-01

    In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations <= 50 mg m-3, providing a new method for vibration controlling of ESP.

  7. Portable liquid collection electrostatic precipitator

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.

    2005-10-18

    A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.

  8. 40 CFR 60.2115 - What if I do not use a wet scrubber, fabric filter, activated carbon injection, selective...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., fabric filter, activated carbon injection, selective noncatalytic reduction, an electrostatic... filter, activated carbon injection, selective noncatalytic reduction, an electrostatic precipitator, or a... than a wet scrubber, activated carbon injection, selective noncatalytic reduction, fabric filter, an...

  9. Soft-X-Ray-Enhanced Electrostatic Precipitation for Protection against Inhalable Allergens, Ultrafine Particles, and Microbial Infections

    PubMed Central

    Kettleson, Eric M.; Schriewer, Jill M.; Buller, R. Mark L.

    2013-01-01

    Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems. PMID:23263945

  10. Soft-X-ray-enhanced electrostatic precipitation for protection against inhalable allergens, ultrafine particles, and microbial infections.

    PubMed

    Kettleson, Eric M; Schriewer, Jill M; Buller, R Mark L; Biswas, Pratim

    2013-02-01

    Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems.

  11. Reduction of airborne radioactive dust by means of a charged water spray.

    PubMed

    Bigu, J; Grenier, M G

    1989-07-01

    An electrostatic precipitator based on charged water spray technology has been used in an underground uranium mine to control long-lived radioactive dust and short-lived aerosol concentration in a mine gallery where dust from a rock breaking/ore transportation operation was discharged. Two main sampling stations were established: one upstream of the dust precipitator and one downstream. In addition, dust samplers were placed at different locations between the dust discharge and the end of the mine gallery. Long-lived radioactive dust was measured using cascade impactors and nylon cyclone dust samplers, and measurement of the radioactivity on the samples was carried out by conventional methods. Radon and thoron progeny were estimated using standard techniques. Experiments were conducted under a variety of airflow conditions. A maximum radioactive dust reduction of about 40% (approximately 20% caused by gravitational settling) at a ventilation rate of 0.61 m3/sec was obtained as a result of the combined action of water scrubbing and electrostatic precipitation by the charged water spray electrostatic precipitator. This represents the optimum efficiency attained within the range of ventilation rates investigated. The dust reduction efficiency of the charged water spray decreased with increasing ventilation rate, i.e., decreasing air residence time, and hence, reduced dust cloud/charged water droplets mixing time.

  12. 40 CFR 60.2680 - What if I do not use a wet scrubber, fabric filter, activated carbon injection, selective...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., fabric filter, activated carbon injection, selective noncatalytic reduction, an electrostatic... use a wet scrubber, fabric filter, activated carbon injection, selective noncatalytic reduction, an... reduction, fabric filter, an electrostatic precipitator, or a dry scrubber or limit emissions in some other...

  13. 40 CFR 60.2680 - What if I do not use a wet scrubber, fabric filter, activated carbon injection, selective...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., fabric filter, activated carbon injection, selective noncatalytic reduction, an electrostatic... use a wet scrubber, fabric filter, activated carbon injection, selective noncatalytic reduction, an... reduction, fabric filter, an electrostatic precipitator, or a dry scrubber or limit emissions in some other...

  14. Evaluation of electrostatic precipitator during SRC combustion tests. Final task report Apr--Aug 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, G.B.; Barrett, W.J.

    1978-07-01

    The report deals with the evaluation of an electrostatic precipitator (ESP) and associated environmental factors during the burning of solvent refined coal (SRC) in a boiler at Plant Mitchell of the Georgia Power Company. The effort was part of an overall study of the use of SRC in a full-scale electric power plant. Results of a performance evaluation of the ESP are reported and interpreted. Samples of stack emissions were collected with a Source Assessment Sampling System (SASS) train for chemical analysis: results of the analysis are to be reported later.

  15. Economic comparison of fabric filters and electrostatic precipitators for particulate control on coal-fired utility boilers

    NASA Technical Reports Server (NTRS)

    Cukor, P. M.; Chapman, R. A.

    1978-01-01

    The uncertainties and associated costs involved in selecting and designing a particulate control device to meet California's air emission regulations are considered. The basic operating principles of electrostatic precipitators and fabric filters are discussed, and design parameters are identified. The size and resulting cost of the control device as a function of design parameters is illustrated by a case study for an 800 MW coal-fired fired utility boiler burning a typical southwestern subbituminous coal. The cost of selecting an undersized particulate control device is compared with the cost of selecting an oversized device.

  16. Investigating Electrostatic Precipitator Design Parameters for Efficient Control of Particulate Matter in Thermal Power Plant: A Case Study

    NASA Astrophysics Data System (ADS)

    Rai, P.; Gautam, N.; Chandra, H.

    2018-06-01

    This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.

  17. Investigating Electrostatic Precipitator Design Parameters for Efficient Control of Particulate Matter in Thermal Power Plant: A Case Study

    NASA Astrophysics Data System (ADS)

    Rai, P.; Gautam, N.; Chandra, H.

    2018-02-01

    This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.

  18. Removal of Particulate Matter in a Tubular Wet Electrostatic Precipitator Using a Water Collection Electrode

    PubMed Central

    Kim, Jong-Ho; Yoo, Hee-Jung; Hwang, You-Seong; Kim, Hyeok-Gyu

    2012-01-01

    As one of the effective control devices of air pollutants, the wet electrostatic precipitator (ESP) is an effective technique to eliminate acid mist and fine particles that are re-entrained in a collection electrode. However, its collection efficiency can deteriorate, as its operation is subject to water-induced corrosion of the collection electrode. To overcome this drawback, we modified the wet ESP system with the installation of a PVC dust precipitator wherein water is supplied as a replacement of the collection electrode. With this modification, we were able to construct a compact wet ESP with a small specific collection area (SCA, 0.83 m2/(m3/min)) that can acquire a high collection efficiency of fine particles (99.7%). PMID:22577353

  19. 40 CFR 60.2115 - What if I do not use a wet scrubber, fabric filter, activated carbon injection, selective...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., fabric filter, activated carbon injection, selective noncatalytic reduction, or an electrostatic... Limitations and Operating Limits § 60.2115 What if I do not use a wet scrubber, fabric filter, activated... carbon injection, selective noncatalytic reduction, fabric filter, or an electrostatic precipitator or...

  20. CHARGE MEASUREMENTS ON INDIVIDUAL PARTICLES EXITING LABORATORY PRECIPITATORS WITH POSITIVE AND NEGATIVE CORONA AT VARIOUS TEMPERATURES

    EPA Science Inventory

    The paper reports measurements of charge values on individual particles exiting three different laboratory electrostatic precipitators (ESPs) in an experimental apparatus containing a Millikan cell. Dioctylphthalate (DOP) droplets and fly ash particles were measured at temperatur...

  1. Pilot scale-SO{sub 2} control by dry sodium bicarbonate injection and an electrostatic precipitator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pliat, M.J.; Wilder, J.M.

    2007-10-15

    A 500 actual cubic feet gas per minute (acfm) pilot-scale SO{sub 2} control study was undertaken to investigate flue gas desulfurization (FGD) by dry sodium sorbents in 400{sup o}F (204.5{sup o}C) flue gases emitted from a coal fired boiler with flue gas concentrations between 350 and 2500 ppm SO{sub 2}. Powdered sodium alkaline reagents were injected into the hot flue gas downstream of the air preheater and the spent reagents were collected using an electrostatic precipitator. Three different sorbents were used: processed sodium bicarbonate of two particle sizes; solution mined sodium bicarbonate, and processed sodium sesquicarbonate. SO{sub 2} concentrations weremore » measured upstream of the reagent injection, 25-ft (7.62 m) downstream of the injection point, and downstream of the electrostatic precipitator. SO{sub 2} collection efficiencies ranged from 40 to 80% using sodium bicarbonate stoichiometric ratios from 0.5 to 3.0. Much of the in-duct SO{sub 2} removal occurred during the first second of reagent reaction time, indicating that the sulfur dioxide-sodium reaction rates may be faster than have been measured for fixed bed measurements reported in the literature.« less

  2. A novel electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Tang, Minkang; Wang, Liqian; Lin, Zhigui

    2013-03-01

    ESP (Electrostatic Precipitation) has been widely used in the mining, building materials, metallurgy and power industries. Dust particles or other harmful particles from the airstream can be precipitated by ESP with great collecting efficiency. Because of its' large size, high cost and energy consumption, the scope of application of ESP has been limited to a certain extent. By means of the theory of electrostatics and fluid dynamics, a corona assembly with a self-cleaning function and a threshold voltage automatic tracking technology has been developed and used in ESP. It is indicated that compared with conventional ESP, the electric field length has been reduced to 1/10 of the original, the current density on the collecting electrode increased 3-5 times at the maximum, the approach speed of dust particles in the electric field towards the collecting electrode is 4 times that in conventional ESP and the electric field wind speed may be enhanced by 2-3 times the original. Under the premise of ESP having a high efficiency of dust removal, equipment volume may be actually reduced to 1/5 to 1/10 of the original volume and energy consumption may be reduced by more than 50%.

  3. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J [Grand Forks, ND; Zhuang, Ye [Grand Forks, ND; Almlie, Jay C [East Grand Forks, MN

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  4. Dust Mitigation for Martian Exploration

    NASA Technical Reports Server (NTRS)

    Williams, Blakeley Shay

    2011-01-01

    One of the efforts of the In-Situ Resource Utilization project is to extract oxygen, fuel, and water from the Martian air. However, the surface of Mars is covered in a layer of dust, which is uploaded into the atmosphere by dust devils and dust storms. This atmospheric dust would be collected along with the air during the conversion process. Thus, it is essential to extract the dust from the air prior to commencing the conversion. An electrostatic precipitator is a commonly used dust removal technology on earth. Using this technology, dust particles that pass through receive an electrostatic charge by means of a corona discharge. The particles are then driven to a collector in a region of high electric field at the center of the precipitator. Experiments were conducted to develop a precipitator that will function properly in the Martian atmosphere, which has a very low pressure and is made up . of primarily carbon dioxide.

  5. Particle collection by a pilot plant venturi scrubber downstream from a pilot plant electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Sparks, L. E.; Ramsey, G. H.; Daniel, B. E.

    The results of pilot plant experiments of particulate collection by a venturi scrubber downstream from an electrostatic precipitator (ESP) are presented. The data, which cover a range of scrubber operating conditions and ESP efficiencies, show that particle collection by the venturi scrubber is not affected by the upstream ESP; i.e., for a given scrubber pressure drop, particle collection efficiency as a function of particle diameter is the same for both ESP on and ESP off. The experimental results are in excellent agreement with theoretical predictions. Order of magnitude cost estimates indicate that particle collection by ESP scrubber systems may be economically attractive when scrubbers must be used for SO x control.

  6. Detection and treatment of chemical weapons and/or biological pathogens

    DOEpatents

    Mariella Jr., Raymond P.

    2004-09-07

    A system for detection and treatment of chemical weapons and/or biological pathogens uses a detector system, an electrostatic precipitator or scrubber, a circulation system, and a control. The precipitator or scrubber is activated in response to a signal from the detector upon the detection of chemical weapons and/or biological pathogens.

  7. Advanced hybrid particulate collector and method of operation

    DOEpatents

    Miller, Stanley J [Grand Forks, ND

    2003-04-08

    A device and method for controlling particulate air pollutants of the present invention combines filtration and electrostatic collection devices. The invention includes a chamber housing a plurality of rows of filter elements. Between the rows of filter elements are rows of high voltage discharge electrodes. Between the rows of discharge electrodes and the rows of filter elements are grounded perforated plates for creating electrostatic precipitation zones.

  8. A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: A case study of an institutional boiler in Syracuse, New York.

    PubMed

    Levy, Jonathan I; Biton, Leiran; Hopke, Philip K; Zhang, K Max; Rector, Lisa

    2017-07-01

    Biomass facilities have received increasing attention as a strategy to increase the use of renewable fuels and decrease greenhouse gas emissions from the electric generation and heating sectors, but these facilities can potentially increase local air pollution and associated health effects. Comparing the economic costs and public health benefits of alternative biomass fuel, heating technology, and pollution control technology options provides decision-makers with the necessary information to make optimal choices in a given location. For a case study of a combined heat and power biomass facility in Syracuse, New York, we used stack testing to estimate emissions of fine particulate matter (PM 2.5 ) for both the deployed technology (staged combustion pellet boiler with an electrostatic precipitator) and a conventional alternative (wood chip stoker boiler with a multicyclone). We used the atmospheric dispersion model AERMOD to calculate the contribution of either fuel-technology configuration to ambient primary PM 2.5 in a 10km×10km region surrounding the facility, and we quantified the incremental contribution to population mortality and morbidity. We assigned economic values to health outcomes and compared the health benefits of the lower-emitting technology with the incremental costs. In total, the incremental annualized cost of the lower-emitting pellet boiler was $190,000 greater, driven by a greater cost of the pellet fuel and pollution control technology, offset in part by reduced fuel storage costs. PM 2.5 emissions were a factor of 23 lower with the pellet boiler with electrostatic precipitator, with corresponding differences in contributions to ambient primary PM 2.5 concentrations. The monetary value of the public health benefits of selecting the pellet-fired boiler technology with electrostatic precipitator was $1.7 million annually, greatly exceeding the differential costs even when accounting for uncertainties. Our analyses also showed complex spatial patterns of health benefits given non-uniform age distributions and air pollution levels. The incremental investment in a lower-emitting staged combustion pellet boiler with an electrostatic precipitator was well justified by the population health improvements over the conventional wood chip technology with a multicyclone, even given the focus on only primary PM 2.5 within a small spatial domain. Our analytical framework could be generalized to other settings to inform optimal strategies for proposed new facilities or populations. Copyright © 2017. Published by Elsevier Inc.

  9. 38. VIEW OF COTTRELL MAGNETIC IMPULSE GENERATOR ADJACENT TO SIX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. VIEW OF COTTRELL MAGNETIC IMPULSE GENERATOR ADJACENT TO SIX GAP ROTARY RECTIFIER. THIS UNIT GENERATED A MAGNETIC PULSE WHICH WAS TRANSMITTED TO THE COLLECTION PLATES IN THE ELECTROSTATIC PRECIPITATOR CHAMBER. THESE PERIODIC PULSES VIBRATE THE PLATES AND CAUSE PRECIPITATED ARTICLES OF SMOKE AND FLY ASH TO FALL TO THE BOTTOM OF THE PRECIPITATOR CHAMBER. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  10. Proceedings of the 1979 Chemical System Laboratory Scientific Conference on Obscuration and Aerosol Research.

    DTIC Science & Technology

    1980-12-01

    size data has been obtained with diffusion batteries, electrostatic precipitators , and cascade im- pactors. There is a strong (5 to 1) seasonal variation...dimensional Eddington approximation to derive microwave radiances emerging from finite clouds of precipitation , it was noted that the Eddington...condensation nuclei. They can then accrete water and grow by condensation, and fall as rain, collecting water droplets after they have grown to precipitation

  11. The use of shale ash in dry mix construction materials

    NASA Astrophysics Data System (ADS)

    Gulbe, L.; Setina, J.; Juhnevica, I.

    2017-10-01

    The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.

  12. Dependence of field-aligned electron precipitation on season, altitude and pitch angle

    NASA Technical Reports Server (NTRS)

    Berko, F. W.; Hoffman, R. A.

    1973-01-01

    The occurrence of field-aligned 2.3 keV electron precipitation was examined by using data from more than 7500 orbits of the polar-orbiting satellite, OGO-4. The frequency of occurrence of field aligned precipitation was highest at actual pitch angles between 7 and 10 deg, being highest in the winter months, at highest satellite altitudes. Acceleration by a localized parallel electric field established by electrostatic charge layers is proposed to explain particle observations.

  13. Cigarette Smoke Cadmium Breakthrough from Traditional Filters: Implications for Exposure

    PubMed Central

    Pappas, R. Steven; Fresquez, Mark R.; Watson, Clifford H.

    2015-01-01

    Cadmium, a carcinogenic metal, is highly toxic to renal, skeletal, nervous, respiratory, and cardiovascular systems. Accurate and precise quantification of mainstream smoke cadmium levels in cigarette smoke is important because of exposure concerns. The two most common trapping techniques for collecting mainstream tobacco smoke particulate for analysis are glass fiber filters and electrostatic precipitators. We observed that a significant portion of total cadmium passed through standard glass fiber filters that are used to trap particulate matter. We therefore developed platinum traps to collect the cadmium that passed through the filters and tested a variety of cigarettes with different physical parameters for quantities of cadmium that passed though the filters. We found less than 1% cadmium passed through electrostatic precipitators. In contrast, cadmium that passed through 92 mm glass fiber filters on a rotary smoking machine was significantly higher, ranging from 3.5% to 22.9% of total smoke cadmium deliveries. Cadmium passed through 44 mm filters typically used on linear smoking machines to an even greater degree, ranging from 13.6% to 30.4% of the total smoke cadmium deliveries. Differences in the cadmium that passed through from the glass fiber filters and electrostatic precipitator could be explained in part if cadmium resides in the smaller mainstream smoke aerosol particle sizes. Differences in particle size distribution could have toxicological implications and could help explain the pulmonary and cardiovascular cadmium uptake in smokers. PMID:25313385

  14. Determination of auroral electrostatic potentials using high- and low-altitude particle distributions

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Collin, H. L.; Craven, J. D.; Burch, J. L.; Winningham, J. D.

    1988-01-01

    The auroral electrostatic potential differences were determined from the particle distribution functions obtained nearly simultaneously above and below the auroral acceleration region by DE-1 at altitudes 9000-15,000 km and DE-2 at 400-800 km. Three independent techniques were used: (1) the peak energies of precipitating electrons observed by DE-2, (2) the widening of loss cones for upward traveling electrons observed by DE-1, and (3) the energies of upgoing ions observed by DE-1. The assumed parallel electrostatic potential difference calculated by the three methods was nearly the same. The results confirmed the hypothesis that parallel electrostatic fields of 1-10 kV potential drop at 1-2 earth radii altitude are an important source for auroral particle acceleration.

  15. Studies of Low-Current Back-Discharge in Point-Plane Geometry with Dielectric Layer

    NASA Astrophysics Data System (ADS)

    Jaworek, Anatol; Rajch, Eryk; Krupa, Andrzej; Czech, Tadeusz; Lackowski, Marcin

    2006-01-01

    The paper presents results of spectroscopic investigations of back-discharges generated in the point-plane electrode geometry in ambient air at atmospheric pressure, with the plane electrode covered with a dielectric layer. Fly ash from an electrostatic precipitator of a coal-fired power plant was used as the dielectric layer in these investigations. The discharges for positive and negative polarities of the needle electrode were studied by measuring optical emission spectra at two regions of the discharge: near the needle electrode and dielectric layer surface. The visual forms of the discharge were recorded and correlated with the current-voltage characteristics and optical emission spectra. The back-arc discharge was of particular interest in these studies due to its detrimental effects it causes in electrostatic precipitators.

  16. Electrostatic Radionuclide Separation: A New Version of Rutherford's "Thorium Cow".

    ERIC Educational Resources Information Center

    Eiswirth, Marcus; And Others

    1982-01-01

    Describes three experiments (also useful as demonstrations) using a "thorium cow," a device which concentrates the daughter products from thorium compounds by precipitation on a charged electrode. (JN)

  17. Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja

    NASA Technical Reports Server (NTRS)

    Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.

    2000-01-01

    Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.

  18. 40 CFR 60.683 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... uses a wet electrostatic precipitator control device to comply with the mass emission standard shall... current (amperes) and voltage in each electrical field and the inlet water flow rate. In addition, the...

  19. 40 CFR 61.126 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The owner or operator of any source subject to this subpart using an electrostatic precipitator... measurement and recording of the primary and secondary current and the voltage in each electric field. These...

  20. 40 CFR 61.126 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The owner or operator of any source subject to this subpart using an electrostatic precipitator... measurement and recording of the primary and secondary current and the voltage in each electric field. These...

  1. 40 CFR 60.683 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uses a wet electrostatic precipitator control device to comply with the mass emission standard shall... current (amperes) and voltage in each electrical field and the inlet water flow rate. In addition, the...

  2. PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)

    NASA Astrophysics Data System (ADS)

    Li, Jie

    2013-03-01

    ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the Faculty of Engineering, McMaster University, Canada), Haitian Scholar of Dalian University of Technology (China), who passed away on 27 February 2011. Professor Chang was active in research fields including the applications of electrostatics, electromagnetic hydrodynamics, plasma environmental pollution control technologies, etc and he contributed much to the development of these fields. Professor Chang was the visiting professor at some Key Universities in China and was the friend of Chinese scholars engaged in electrostatics. Professor Chang was also active in joining and supporting the previous ICAES. We will cherish the memory of Professor Jen-Shih Chang forever. Professor Jie Li Proceedings Editor Dalian, September 2012 Conference photograph

  3. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.

    PubMed

    Clack, Herek L

    2017-08-01

    Among the technologies available for reducing mercury emissions from coal-fired electric utilities is the injection of a powdered sorbent, often some form of activated carbon, into the flue gas upstream of the particulate control device, most commonly an electrostatic precipitator (ESP). Detailed measurements of mercury removal within ESPs are lacking due to the hazardous environment they pose, increasing the importance of analysis and numerical simulation in understanding the mechanisms involved. Our previous analyses revealed that mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are not additive removal mechanisms but rather are competitive. The present study expands on this counterintuitive finding. Presented are results from numerical simulations reflecting the complete range of possible mass transfer boundary conditions representing mercury adsorption by the accumulated dust cake covering internal ESP collection electrodes. Using the two mercury removal mechanisms operating concurrently and interdependently always underperforms the sum of the two mechanisms' individual contributions. The dual use of electrostatic precipitators (ESPs) for particulate removal and adsorption of trace gaseous pollutants such as mercury is increasing as mercury regulations become more widespread. Under such circumstances, mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are competitive. Together, the two mercury removal mechanisms always underperform the sum of their two independent contributions. These findings can inform strategies sought by electric utilities for reducing the usage costs of mercury sorbents.

  4. Electrospray Collection of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Dziekan, Michael

    2012-01-01

    A report describes ElectroSpray Ionization based Electrostatic Precipitation (ESIEP) for collecting lunar dust particles. While some HEPA filtration processes may remove a higher fraction (>99.9 percent) of the particles, the high efficiency may not be appropriate from an overall system standpoint, especially in light of the relatively large power requirement that such systems demand. The new electrospray particle capture technology is described as a variant of electrostatic precipitation that eliminates the current drawbacks of electrostatic precipitation. The new approach replaces corona prone field with a mist of highly charged micro-droplets generated by electrospray ionization (ESI) as the mechanism by which incoming particles are attracted and captured. In electrospray, a miniscule flow rate (microliters/minute) of liquid (typically water and a small amount of salt to enhance conductivity) is fed from the tip of a needle held at a high voltage potential relative to an opposite counter electrode. At sufficient field strength, a sharp liquid meniscus forms , which emits a jet of highly charged droplets that drift through the surrounding gas and are collected on the walls of a conductive tube. Particles in the gas have a high probability of contact with the droplets either by adhering to the droplets or otherwise acquiring a high level of charge, causing them to be captured on the collecting electrode as well. The spray acts as a filtration material that is continuously introduced and removed from the gas flow, and thus can never become clogged.

  5. Predictive Model for Jet Engine Test Cell Opacity

    DTIC Science & Technology

    1981-09-30

    precipitators or venturi scrubbers to treat the exhaust emissions. These predictions indicate that control devices larger than the test cells would have...made to see under what conditions electrostatic precipitators or venturi scrubbers might satisfy opacity regu- lations. 3 SECTION I I SMOKE NUMBER j...high energy venturi scrubber . As with the ESP model, this also required an empirical factor (f) to make the model agree approximately with actual data

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, M.D.

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of {le} 10 {mu}m dia.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, M.D.

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of [le] 10 [mu]m dia.

  8. Formation of copper precipitates in silicon

    NASA Astrophysics Data System (ADS)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  9. H2S-Modified Fe-Ti Spinel: A Recyclable Magnetic Sorbent for Recovering Gaseous Elemental Mercury from Flue Gas as a Co-Benefit of Wet Electrostatic Precipitators.

    PubMed

    Zou, Sijie; Liao, Yong; Xiong, Shangchao; Huang, Nan; Geng, Yang; Yang, Shijian

    2017-03-21

    The nonrecyclability of the sorbents used to capture Hg 0 from flue gas causes a high operation cost and the potential risk of exposure to Hg. The installation of wet electrostatic precipitators (WESPs) in coal-fired plants makes possible the recovery of spent sorbents for recycling and the centralized control of Hg pollution. In this work, a H 2 S-modified Fe-Ti spinel was developed as a recyclable magnetic sorbent to recover Hg 0 from flue gas as a co-benefit of the WESP. Although the Fe-Ti spinel exhibited poor Hg 0 capture activity in the temperature range of flue gas downstream of flue gas desulfurization, the H 2 S-modified Fe-Ti spinel exhibited excellent Hg 0 capture performance with an average adsorption rate of 1.92 μg g -1 min -1 at 60 °C and a capacity of 0.69 mg g -1 (5% of the breakthrough threshold) due to the presence of S 2 2- on its surface. The five cycles of Hg 0 capture, Hg 0 recovery, and sorbent regeneration demonstrated that the ability of the modified Fe-Ti spinel to capture Hg 0 did not degrade remarkably. Meanwhile, the ultralow concentration of Hg 0 in flue gas was increased to a high concentration of Hg 0 , which facilitated the centralized control of Hg pollution.

  10. PARAMETER MONITORING FOR REAL-TIME ELECTROSTATIC PRECIPITATOR TROUBLESHOOTING

    EPA Science Inventory

    The paper discusses detailed numerical calculations of particle charge and extinction coefficient performed using current models. The results suggest that information about rapping reentrainment, back corona, and, possibly, sulfuric acid condensation can be gained from simultaneo...

  11. Development of a new portable air sampler based on electrostatic precipitation.

    PubMed

    Roux, J M; Sarda-Estève, R; Delapierre, G; Nadal, M H; Bossuet, C; Olmedo, L

    2016-05-01

    Airborne particles are known to cause illness and to influence meteorological phenomena. It is therefore important to monitor their concentrations and to identify them. A challenge is to collect micro and nanoparticles, microorganisms as well as toxic molecules with a device as simple and small as possible to be used easily and everywhere. Electrostatic precipitation is an efficient method to collect all kinds of airborne particles. Furthermore, this method can be miniaturized. A portable, silent, and autonomous air sampler based on this technology is therefore being developed with the final objective to collect very efficiently airborne pathogens such as supermicron bacteria but also submicron viruses. Particles are collected on a dry surface so they may be concentrated afterwards in a small amount of liquid medium to be analyzed. It is shown that nearly 98 % of airborne particles from 10 nm to 3 μm are collected.

  12. Influence of the operating parameters of the needle-plate electrostatic precipitator on the size distribution of aerosol particles

    NASA Astrophysics Data System (ADS)

    Arsenov, P. V.; Efimov, A. A.; Protas, N. V.; Ivanov, V. V.

    2018-03-01

    The influence of the operating parameters (voltage and aerosol flow rate) of the needle-plate electrostatic precipitator (NP-ESP) on the size distribution of aerosol particles has been studied. The NP-ESP consists of a needle and a plate located in the plastic tube used as aerosol transport duct. Alumina (Al2O3) particles were synthesized by a spark discharge and used as a test aerosol with a size range from 25 to 500 nm. It was found that the average particle size decreases with increasing voltage and aerosol flow rate through the NP-ESP. It was also found that the average particle size can be reduced more than in 2 times in comparison with the initial size distribution at a voltage and aerosol flow rate through the NP-ESP are equal to 16 kV and 250 l/min, respectively.

  13. Innovation for Pollution Control

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Kinetic Controls Inc.'s refuse-fired steam generating facility led to the development of an air pollution equipment control device. The device is currently marketed by two NASA/Langley Research Center employees. It automatically senses and compensates for the changes in smoke composition when refuse is used as a fuel by adjusting the precipitator's voltage and current to permit maximum collection of electrically charged dust particles. The control adapts to any electrostatic precipitator and should have extensive commercial applications.

  14. Development of an Electrostatic Precipitator to Remove Martian Atmospheric Dust from ISRU Gas Intakes During Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Clements, J. Sidney; Thompson, Samuel M.; Cox, Nathan D.; Johansen, Michael R.; Williams, Blakeley S.; Hogue, Michael D.; Lowder, M. Loraine; Calle, Carlos I.

    2011-01-01

    Manned exploration missions to Mars will need dependable in situ resource utilization (ISRU) for the production of oxygen and other commodities. One of these resources is the Martian atmosphere itself, which is composed of carbon dioxide (95.3%), nitrogen (2.7%), argon (1.6%), oxygen (0.13%), carbon monoxide (0.07%), and water vapor (0.03%), as well as other trace gases. However, the Martian atmosphere also contains relatively large amounts of dust, uploaded by frequent dust devils and high Winds. To make this gas usable for oxygen extraction in specialized chambers requires the removal of most of the dust. An electrostatic precipitator (ESP) system is an obvious choice. But with an atmospheric pressure just one-hundredth of Earth's, electrical breakdown at low voltages makes the implementation of the electrostatic precipitator technology very challenging. Ion mobility, drag forces, dust particle charging, and migration velocity are also affected because the low gas pressure results in molecular mean free paths that are approximately one hundred times longer than those at Earth .atmospheric pressure. We report here on our efforts to develop this technology at the Kennedy Space Center, using gases with approximately the same composition as the Martian atmosphere in a vacuum chamber at 9 mbars, the atmospheric pressure on Mars. We also present I-V curves and large particle charging data for various versions of wire-cylinder and rod-cylinder geometry ESPs. Preliminary results suggest that use of an ESP for dust collection on Mars may be feasible, but further testing with Martian dust simulant is required.

  15. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Wet Electrostatic Precipitator Control Device

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  16. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Electrostatic Precipitator Control Device

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  17. LABORATORY ANALYSES OF CORONA DISCHARGES

    EPA Science Inventory

    The paper discusses an experimental research program to characterize corona generation from different electrode geometries in a range of conditions comparable to those found in electrostatic precipitators (ESPs). A wire-parallel plate device and a wire-cylinder device were used t...

  18. LABORATORY ANALYSIS OF BACK-CORONA DISCHARGE

    EPA Science Inventory

    The paper discusses an experimental research program to characterize back-corona generation and behavior in a range of environments and geometries common to electrostatic precipitators (ESPs). A wire-parallel plate device was used to monitor the intensity and distribution of back...

  19. THEORETICAL METHODS FOR COMPUTING ELECTRICAL CONDITIONS IN WIRE-PLATE ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The paper describes a new semi-empirical, approximate theory for predicting electrical conditions. In the approximate theory, analytical expressions are derived for calculating voltage-current characteristics and electric potential, electric field, and space charge density distri...

  20. Magnetospheric electrons

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Thorne, R. M.

    1972-01-01

    Coupling of source, transport, and sink processes produces a fairly accurate model for the macroscopic structure and dynamics of magnetospheric electrons. Auroral electrons are controlled by convective transport from a plasma sheet source coupled with a precipitation loss due to whistler and electrostatic plasma turbulence. Outer and inner zone electrons are governed by radial diffusion transport from convection and acceleration sources external to the plasmapause and by parasitic precipitation losses arising from cyclotron and Landau interactions with whistler and ion cyclotron turbulence.

  1. MODELING PARTICULATE CHARGING IN ESPS

    EPA Science Inventory

    In electrostatic precipitators there is a strong interaction between the particulate space charge and the operating voltage and current of an electrical section. Calculating either the space charge or the operating point when the other is fixed is not difficult, but calculating b...

  2. A SELF-CONSISTENT DEUTSCHIAN ESP MODEL

    EPA Science Inventory

    The report presents a new version of the EPA I Southern Research Institute electrostatic precipitator (ESP) model. The primary difference between this and the standard (Revision 3) versions is in the treatment of the particulate space charge. Both models apply the Deutsch equatio...

  3. IMPROVED TEST METHODS FOR ELECTRONIC AIR CLEANERS

    EPA Science Inventory

    The objective of this project was to develop a fractional filtration efficiency test protocol for residential electrostatic precipitators (ESPs) that avoids the limitations of the ASHRAE 52.2 method. Specifically, the objectives were to a) determine the change in efficiency that ...

  4. 40 CFR 60.471 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  5. 40 CFR 60.471 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  6. 40 CFR 60.471 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  7. 40 CFR 60.471 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  8. 40 CFR 60.471 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Electrostatic precipitator (ESP) means an air pollution control device in which solid or liquid particulates in... suface. High velocity air filter (HVAF) means an air pollution control filtration device for the removal... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovanni, D.V.; Carr, R.C.; Landham, E.C.

    Two products of coal quality research at the Electric Power Research Institute TM (EPRI) are available for field evaluation: Coal Quality Impact Model (CQIM and Fireside Testing Guidelines (FIG). The CQIM is a computer program that may be tailored to simulate the performance characteristics of a coal-fired power plant. The FIG is a technical report that guides utilities in conducting field tests to gather performance data and quantify the technical and economic impacts of different coals. Moreover, the results from field tests may be utilized to validate and assess the applicability of the CQIM. Field tests were conducted at Mississippimore » Power Company`s Watson Unit 4 to evaluate the coal quality impacts of coal switching on boiler performance and emissions. Watson Unit 4 is a 255 MW (gross), opposed-wall, pulverized-coal-fired boiler manufactured by Riley Stoker Corporation and rated at 1,779,000 lb/hr steam flow at 1000{degrees}F superheat steam temperature and 2,500 psig. The unit is equipped with a cold-side electrostatic precipitator for particulate matter control. Comprehensive tests were conducted on all major equipment components, including the pulverizers, fans, combustion equipment, boiler heat transfer surfaces, air preheater, and electrostatic precipitator, for two coals. The CQIN4 was configured to predict the performance of the unit when burning each coal. The work was sponsored by EPRI, and Mississippi Power Company (MPC) was the host utility company. This report summarizes results from the field test program, including potential heat rate improvements that were identified, and the differences in unit operations and performance for the two coals. The results from the CQIM validation effort are also presented.« less

  10. DIFFUSE AURORA ON GANYMEDE DRIVEN BY ELECTROSTATIC WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, R. P.; Tripathi, A. K.; Halder, S.

    The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earliermore » works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50–70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.« less

  11. FUNDAMENTAL PROCESSES INVOLVED IN SO2 CAPTURE BY CALCIUM-BASED ADSORBENTS

    EPA Science Inventory

    The paper discusses the fundamental processes in sulfur dioxide (SO2) capture by calcium-based adsorbents for upper furnace, duct, and electrostatic precipitator (ESP) reaction sites. It examines the reactions in light of controlling mechanisms, effect of sorbent physical propert...

  12. EFFECTS OF TURBULENCE AND ELECTROHYDRODYAMICS ON THE PERFORMANCE OF ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    Numerical simulations of the turbulent diffusion equation coupled with the electrohydrodynamics (EHD) are carried out for the plate-plate and wire-plate ESPs. The local particle concentration profiles and fractional collection efficiencies have been evaluated as a function of thr...

  13. Flotation of Heterocoagulated Particulates in Ulexite/SDS/Electrolyte System.

    PubMed

    Celik; Yasar; El-Shall

    1998-07-15

    Salt-type minerals can be usually floated with either anionic or cationic collectors. In a number of systems, flotation has been reported to remarkably increase above the concentrations where precipitation of the collector salt is initiated. Some studies attribute this phenomenon to heterocoagulation of oppositely charged colloidal precipitate and mineral particles. In this study, ulexite, a semisoluble boron mineral, in the presence of various multivalent ions, i.e. Ba2+, Mg2+, Ca2+, and Al3+, was found to exhibit excellent flotation even when particles, colloidal precipitates, and bubbles acquire a similar charge, which indicates that attractive structural forces exceed the forces of electrostatic repulsion. Copyright 1998 Academic Press.

  14. Turbulent particulate transportation during electrostatic precipitation

    NASA Astrophysics Data System (ADS)

    Choi, Bum Seog

    The generation of secondary flows and turbulence by a corona discharge influences particle transport in an electrostatic precipitator (ESP), and is known to play an important role in the particle collection process. However, it is difficult to characterise theoretically and experimentally the ``turbulent'' fluctuations of the gas flow produced by negative tuft corona. Because of this difficulty, only limited studies have been undertaken previously to understand the structure of corona-induced turbulence and its influence on particle transport in ESPs. The present study is aimed at modelling electrohydrodynamic turbulent flows and particle transport, and at establishing an unproved understanding of them. For a multiply interactive coupling of electrostatics, fluid dynamics and particle dynamics, a strongly coupled system of the governing equations has been solved. The present computer model has considered the most important interaction mechanisms including an ionic wind, corona- induced turbulence and the particle space charge effect. Numerical simulations have been performed for the extensive validation of the numerical and physical models. To account for electrically excited turbulence associated with the inhomogeneous and unsteady characteristics of negative corona discharges, a new turbulence model (called the electrostatic turbulence model) has been developed. In this, an additional production or destruction term is included into the turbulent kinetic energy and dissipation rate equations. It employs a gradient type model of the current density and an electrostatic diffusivity concept. The results of the computation show that the electrostatic turbulence model gives much better agreement with the experimental data than the conventional RNG k-ɛ turbulence model when predicting turbulent gas flows and particle distributions in an ESP. Computations of turbulent particulate two-phase flows for both mono-dispersed and poly-dispersed particles have been performed. The effects of coriona-induced turbulence and the particle space charge on particle transport and the collection process have been investigated. The calculated results for the poly-dispersed particulate flow were compared with those of the mono-dispersed particulate flow, and significant differences were demonstrated. It is established that effective particle- particle interaction occurs, due to the influence of the particle space charge, even for dilute gas-particle flows that occur in ESPs.

  15. A new quasi-thermal trap model for solar flare hard X-ray bursts - An electrostatic trap model

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Emslie, A. G.

    1988-01-01

    A new quasi-thermal trap model of solar flare hard X-ray bursts is presented. The new model utilizes the trapping ability of a magnetic mirror and a magnetic field-aligned electrostatic potential produced by differences in anisotropies of the electron and ion distribution function. It is demonstrated that this potential can, together with the magnetic mirror itself, effectively confine electrons in a trap, thereby enhancing their bremsstrahlung yield per electron. This analysis makes even more untenable models involving precipitation of the bremsstrahlung-producing electrons onto a cold target.

  16. OZONE GENERATION IN DC-ENERGIZED ELECTROSTATIC PRECIPATORS

    EPA Science Inventory

    Ozone emissions from a short wire-plate precipitator and three commercial electronic air cleaners were measured. Ozone generation was most strongly affected by the corona current and polarity of the discharge electrode. To a lesser extent, the type of corona (i.e. whether tuft or...

  17. PROCEEDINGS: PARTICULATE COLLECTION PROBLEMS USING ESP'S IN THE METALLURGICAL INDUSTRY

    EPA Science Inventory

    The proceedings contain 13 papers on topics selected to present to the metals industry the most recent developments in electrostatic precipitator (ESP) technology. Subjects include the application of ESP's to the collection of fumes from operations in the iron and steel industry:...

  18. Martian Atmospheric Dust Mitigation for ISRU Intakes via Electrostatic Precipitation

    NASA Technical Reports Server (NTRS)

    Phillips, James R., III; Pollard, Jacob R. S.; Johansen, Michael R.; Mackey, Paul J.; Clements, J. Sid; Calle, Carlos I.

    2016-01-01

    The Mars 2020 and Mars Sample Return missions expected to fly to Mars within the next ten years will each include an In Situ Resource Utilization (ISRU) system. They convert carbon dioxide in the Martian atmosphere into consumable oxygen at 1% and 20% of the rate required by a full scale human exploration Mars mission, respectively. The ISRU systems will need to draw in the surrounding atmosphere at a rate of 110L/min and 550L/min, respectively, in order to meet their oxygen production goals. Over the duration of each respective mission, a total atmospheric dust mass of 4.86g and 243g will be drawn into each system, respectively. Ingestion of large quantities of dust may interfere with ISRU operations, so a dust mitigation device will be required. The atmospheric volume and dust mass flow rates above will be utilized to simulate Martian environmental conditions in a laboratory electrostatic precipitator being developed to provide active dust mitigation support for atmospheric ISRU systems such as these.

  19. Apparatus and method for improving electrostatic precipitator performance by plasma reactor conversion of SO.sub.2 to SO.sub.3

    DOEpatents

    Huang, Hann-Sheng; Gorski, Anthony J.

    1999-01-01

    An apparatus and process that utilize a low temperature nonequilibrium plasma reactor, for improving the particulate removal efficiency of an electrostatic precipitator (ESP) are disclosed. A portion of the flue gas, that contains a low level of SO.sub.2 O.sub.2 H.sub.2 O, and particulate matter, is passed through a low temperature plasma reactor, which defines a plasma volume, thereby oxidizing a portion of the SO.sub.2 present in the flue gas into SO.sub.3. An SO.sub.2 rich flue gas is thereby generated. The SO.sub.3 rich flue gas is then returned to the primary flow of the flue gas in the exhaust treatment system prior to the ESP. This allows the SO.sub.3 to react with water to form H.sub.2 SO.sub.4 that is in turn is absorbed by fly ash in the gas stream in order to improve the removal efficiency of the EPS.

  20. Critical Evaluation of Air-Liquid Interface Cell Exposure Systems for in Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    We compared various in vitro exposure systems for their ability to expose cells to particles and gases. The systems tested use different mechanisms to deliver multi-pollutants to the cells: diffusion, sedimentation, thermophoresis (THP) and electrostatic precipitation (ESP). Vari...

  1. PROCEEDINGS: EIGHTH SYMPOSIUM ON THE TRANSFER AND UTILIZATION OF PARTICULATE CONTROL TECHNOLOGY - VOLUME 1. ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The two-volume proceedings describe the latest research and development efforts to improve particulate control devices, while treating traditional concerns of operational cost and compliance. Overall, particulate control remains a key issue in the cost and applicability of furnac...

  2. 76 FR 2832 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... operated and is not dominant in its field. After considering the economic impact of this direct final rule... electrostatic precipitator) during the D/F performance test is 400 [deg]F or less, this limit is changed to 0.4...

  3. TECHNICAL NOTE: PERFORMANCE OF A PERSONAL ELECTROSTATIC PRECIPITATOR PARTICLE SAMPLER

    EPA Science Inventory

    Filter-based methods used to measure aerosols with semi-volatile constituents are subject to biases from adsorption and volatilization that may occur during sampling (McDow et al., 1990, Turpin et al., 1994, Volckens et al., 1999; Tolocka et al. 2001). The development and eval...

  4. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    EPA Science Inventory

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  5. Keplerate cluster (Mo-132) mediated electrostatic assembly of nanoparticles.

    PubMed

    Gooch, Jonathan; Jalan, Abhishek A; Jones, Stephanie; Hine, Corey R; Alam, Rabeka; Garai, Somenath; Maye, Mathew M; Müller, Achim; Zubieta, Jon

    2014-10-15

    The electrostatic assembly between a series of differently charged Mo-132-type Keplerates present in the compounds (NH4)42[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(CH3COO)}30].ca. {300 H2O+10 CH3COONH4} (Mo-132a), (NH4)72-n[{(H2O)81-n+(NH4)n} {(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(SO4)}30].ca. 200 H2O (Mo-132b), and Na10(NH4)62[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(HPO4)}30]. ca. {300H2O+2Na(+)+2NH4(+)+4H2PO4(-)} (Mo-132c) with cationic gold nanoparticles (AuNPs) was investigated for the first time. The rapid electrostatic assembly from nanoscopic entities to micron scale aggregates was observed upon precipitation, which closely matched the point of aggregate electroneutrality. Successful assembly was demonstrated using UV-vis, DLS, TEM, and zeta-potential analysis. Results indicate that the point at which precipitation occurs is related to charge balance or electroneutrality, and that counterions at both the Mo-132 and AuNP play a significant role in assembly. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. 40 CFR 63.7790 - What emission limitations must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) For each venturi scrubber applied to meet any particulate emission limit in Table 1 to this subpart, you must maintain the hourly average pressure drop and scrubber water flow rate at or above the... other than a baghouse, venturi scrubber, or electrostatic precipitator must submit a description of the...

  7. ELECTROSTATIC PRECIPITATION AN AN ALTERNATIVE METHOD FOR /IN VITRO/ EXPOSURES TO MIXTURES OF GASES AND PARTICLES

    EPA Science Inventory

    There is an increasing interest in examining complex urban air pollution mixtures that include both particulate and gaseous components. Conventional methodologies are unable to expose lung cells in vitro simultaneously to both particulate and gaseous pollutants that are being for...

  8. 40 CFR 60.683 - Monitoring of operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... provisions of this subpart who uses a wet scrubbing control device to comply with the mass emission standard... be certified by its manufacturer to be accurate within ±250 pascals (±1 inch water gauge) over its... uses a wet electrostatic precipitator control device to comply with the mass emission standard shall...

  9. 40 CFR 60.683 - Monitoring of operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... provisions of this subpart who uses a wet scrubbing control device to comply with the mass emission standard... be certified by its manufacturer to be accurate within ±250 pascals (±1 inch water gauge) over its... uses a wet electrostatic precipitator control device to comply with the mass emission standard shall...

  10. 40 CFR 60.683 - Monitoring of operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... provisions of this subpart who uses a wet scrubbing control device to comply with the mass emission standard... be certified by its manufacturer to be accurate within ±250 pascals (±1 inch water gauge) over its... uses a wet electrostatic precipitator control device to comply with the mass emission standard shall...

  11. US/USSR SYMPOSIUM ON PARTICULATE CONTROL (SECOND) HELD AT RESEARCH TRIANGLE PARK, NORTH CAROLINA ON MAY 25-28, 1977

    EPA Science Inventory

    Papers were presented by Soviet specialists from research design institutes and industry, and by representatives of US government agencies and the private sector. Topics included: electrostatic precipitator (ESP) research and application, ESP gas flow modeling, ESP rapping and re...

  12. MODELING WAVE FORM EFFECTS IN ESPS: THE ALGORITHM IN ESPM AND ESPVI

    EPA Science Inventory

    The paper details the ways in which waveform effects in electrostatic precipitators (ESPs) are modeled. he effects of waveforms on particle charging, space charge corona suppression, and sparking are examined. he paper shows how the models extend these results to the case of inte...

  13. INITIAL TEST RESULTS OF THE LIMESTONE INJECTION MULTISTAGE BURNER (LIMB) DEMONSTRATION PROJECT

    EPA Science Inventory

    The paper discusses SO2 removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO2 remov...

  14. EMISSION TEST REPORT- FIELD TEST OF CARBON INJECTION FOR MERCURY CONTROL, CAMDEN COUNTY MUNICIPAL WASTE COMBUSTOR

    EPA Science Inventory

    The report gives results of parametric test to evaluate the injection powdered activated carbon to control volatile pollutants in municipal waste combustor (MWC) flue gas. he tests were conducted at a spray dryer absorber/electrostatic precipitator (SD/ESP)-equipped MWC in Camden...

  15. 40 CFR 63.9631 - What are my monitoring requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... inspections, vibration detectors, or equivalent means. (b) Except as provided in paragraph (c) of this section... average opacity of emissions exiting each control device stack according to the requirements in § 63.9633... pollution control device other than a baghouse, wet scrubber, dry electrostatic precipitator, or wet...

  16. 40 CFR 63.9631 - What are my monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inspections, vibration detectors, or equivalent means. (b) Except as provided in paragraph (c) of this section... average opacity of emissions exiting each control device stack according to the requirements in § 63.9633... pollution control device other than a baghouse, wet scrubber, dry electrostatic precipitator, or wet...

  17. 40 CFR 63.9631 - What are my monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inspections, vibration detectors, or equivalent means. (b) Except as provided in paragraph (c) of this section... average opacity of emissions exiting each control device stack according to the requirements in § 63.9633... pollution control device other than a baghouse, wet scrubber, dry electrostatic precipitator, or wet...

  18. 40 CFR 63.7790 - What emission limitations must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) For each venturi scrubber applied to meet any particulate emission limit in Table 1 to this subpart, you must maintain the hourly average pressure drop and scrubber water flow rate at or above the... other than a baghouse, venturi scrubber, or electrostatic precipitator must submit a description of the...

  19. Modeled Effectiveness of Ventilation with Contaminant Control Devices on Indoor Air Quality in a Swine Farrowing Facility

    PubMed Central

    Anthony, T. Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5°C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s−1 (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures. PMID:24433305

  20. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility.

    PubMed

    Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2014-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.

  1. A rocket-borne electrostatic analyzer for measurement of energetic particle flux

    NASA Technical Reports Server (NTRS)

    Pozzi, M. A.; Smith, L. G.; Voss, H. D.

    1979-01-01

    A rocket-borne electrostatic analyzer experiment is described. It is used to measure energetic particle flux (0.9 to 14 keV) in the nighttime midlatitude E region. Energetic particle precipitation is believed to be a significant nighttime ionization source, particularly during times of high geomagnetic activity. The experiment was designed for use in the payload of a Nike Apache sounding rocket. The electrostatic analyzer employs two cylindrical parallel plates subtending a central angle of 90 deg. The voltage waveform supplied to the plates is a series of steps synchronized to the spin of the payload during flight. Both positive and negative voltages are provided, extending the detection capabilities of the instrument to both electrons and protons (and positive ions). The development, construction and operation of the instrument is described together with a preliminary evaluation of its performance in a rocket flight.

  2. Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Rulison of Space System LORAl working with the Electrostatic Levitation (ESL) prior to the donation. Space System/LORAL donated the electrostatic containerless processing system to NASA's Marshall Space Flight Center (MSFC). The official hand over took place in July 1998.

  3. Electron precipitation in the post midnight sector of the auroral zones. [on the Explorer 40 satellite

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Saflekos, N. A.; Ackerson, K. L.

    1975-01-01

    Comprehensive measurements of the angular distributions and energy spectra of electron intensities with electrostatic analyzer arrays on board the low-altitude satellite Injun 5 are reported. These are for the post-midnight sector of the auroral zones during the high-intensity events accompanying magnetic substorms. Precipitation features on closed terrestrial field lines well equatorward of the trapping boundary for energetic electrons with E greater than 45 keV were examined. No evidences of maxima in the differential energy spectra or of strongly field-aligned currents which are indicative of quasi-static electric fields aligned parallel to the geomagnetic field were found. Precipitation of low-energy electron intensities fluctuated on time scales greater than 2 seconds as viewed at the satellite position. This precipitation was characterized by isotropy for all pitch angles outside the atmospheric backscatter cone.

  4. Stochastic three-wave interaction in flaring solar loops

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Sharma, R. R.; Papadopoulos, K.

    1983-01-01

    A model is proposed for the dynamic structure of high-frequency microwave bursts. The dynamic component is attributed to beams of precipitating electrons which generate electrostatic waves in the upper hybrid branch. Coherent upconversion of the electrostatic waves to electromagnetic waves produces an intrinsically stochastic emission component which is superposed on the gyrosynchrotron continuum generated by stably trapped electron fluxes. The role of the density and temperature of the ambient plasma in the wave growth and the transition of the three wave upconversion to stochastic, despite the stationarity of the energy source, are discussed in detail. The model appears to reproduce the observational features for reasonable parameters of the solar flare plasma.

  5. Electrostatic energy of transfer and macrobond analyses of intermolecular interactions and hydration effects in protein crystals in a low ionic environment

    NASA Astrophysics Data System (ADS)

    Sugawara, Yoko; Hirano, Yuji; Yamamura, Shigefumi; Endo, Shigeru; Ootaki, Masanori; Matsumoto, Naoki; Takahashi, Takuya

    2017-06-01

    We developed an electrostatic energy of transfer (EET) analysis applicable to periodic boundary condition, including a nonrectangular unit cell. It was applied to monoclinic ribonuclease A crystallized with ethanol as a precipitant. Macrobond analysis was also carried out. Owing to the low ionic strength of the solvent region, atomic EET values were non-negligible even at long-distance points. Most of the molecular EET values-defined as the individual contribution of each surrounding molecule-were positive. The inclusion of the molecular EET values of hydration water molecules reduced the repulsive force, and the evaluation of hydration effects in protein crystals was found to be imperative.

  6. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...

  7. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...

  8. 40 CFR 49.5513 - Federal Implementation Plan Provisions for Navajo Generating Station, Navajo Nation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...

  9. 40 CFR 49.5513 - Federal Implementation Plan Provisions for Navajo Generating Station, Navajo Nation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...

  10. 40 CFR 49.5513 - Federal Implementation Plan Provisions for Navajo Generating Station, Navajo Nation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...

  11. Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    USGS Publications Warehouse

    Ravichandran, M.; Aiken, G.R.; Ryan, J.N.; Reddy, M.M.

    1999-01-01

    Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (??? x 10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5 x 10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5 x 10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moleties was preferentially removed with the solid. Hydrophobic organic acids (humic and fulvic acids) inhibited aggregation better than hydrophilic organic acids. The presence of chloride, acetate, salicylate, EDTA, and cysteine did not inhibit the precipitation or aggregation of metacinnabar. Calcium enhanced metacinnabar aggregation even in the presence of DOM, but the magnitude of the effect was dependent on the concentrations of DOM, Hg, and Ca. Inhibition of metacinnabar precipitation appears to be a result of strong DOM-Hg binding. Prevention of aggregation of colloidal particles appears to be caused by adsorption of DOM and electrostatic repulsion.Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (???5??10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5??10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5??10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moieties was preferentially removed with the solid. Hydrophobic organic acids (humic and fulvic acids) inhibited aggregation better than hydrophilic organic acids. The presence of chloride, acetate, salicylate, EDTA, and cysteine did not inhibit the precipitation or aggregation of metacinnabar. Calcium enhanced metacinnabar aggregation even in the presence of DOM, but the magnitude of the effect was dependent on the concentrations of DOM, Hg, and Ca. Inhibition of metacinnabar precipitation appears to be a result of strong DOM-Hg binding. Prevention of aggregation of colloidal particles appears to be caused by adsorption of DOM and electrostatic repulsion.

  12. U.S./U.S.S.R. SYMPOSIUM ON PARTICULATE CONTROL (3RD) HELD AT SUZDAL, U.S.S.R. ON SEPTEMBER 10-12, 1979

    EPA Science Inventory

    The proceedings document the Third U.S./U.S.S.R. Symposium on Particulate Control, September 10-12, 1979, in Suzdal, U.S.S.R. Papers covered such topics as: predicting back-corona formation and fly ash resistivity, improved electrostatic precipitator (ESP) mathematical modeling, ...

  13. 40 CFR 60.5170 - What operating limits and requirements must I meet and by when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wet scrubber, fabric filter, electrostatic precipitator, or activated carbon injection are listed in... pollution control device. (c) If you use a fabric filter to comply with the emission limits, you must install the bag leak detection system specified in §§ 60.5200(b) and 60.5225(b)(3)(i) and operate the bag...

  14. 40 CFR 60.4850 - What operating limits and requirements must I meet and by when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) If you use a fabric filter to comply with the emission limits, you must install the bag leak detection system specified in §§ 60.4880(b) and 60.4905(b)(3)(i) and operate the bag leak detection system... filter, electrostatic precipitator, or activated carbon injection are listed in Table 3 to this subpart...

  15. Gas stream cleaning system and method

    DOEpatents

    Kunchal, S. Kumar; Erck, Louis J.; Harris, Harry A.

    1979-04-13

    An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

  16. A PERSONALIZED HISTORY OF EPA'S PARTICULATE TECHNOLOGY RESEARCH PROGRAM FROM 1970-1985 WITH EMPHASIS ON ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    When I first became involved in particulate control research, there were always a few guys with gray hair,.white beards, and big cigars nodding and mumbling, "We knew that 20 years ago." Now, 30 years later, the only things that have changed are the cigars are gone, and I'm one o...

  17. A multi-method analysis of the interaction between humic acids and heavy metal ions.

    PubMed

    Ke, Tao; Li, Lu; Rajavel, Krishnamoorthy; Wang, Zhenyu; Lin, Daohui

    2018-03-08

    Understanding of the interaction between humic acids (HAs) and heavy metal ions (HMIs) is essential for the assessment of environmental and health risks of HMIs. Multiple analyses, including fluorescence quenching of HAs; solution pH, zeta potential, and hydrodynamic size changes; and coprecipitation of HAs and HMIs, were carried out to investigate the interaction between two HAs and four HMIs (Ag + , Pb 2+ , Cd 2+ , and Cr 3+ ). The HA-HMI interaction mainly included chemical complexation, H + -HMI exchange, electrostatic attraction, and flocculation. The chemical complexation between HAs and HMIs revealed by the Stern-Volmer quenching constant was ordered as Ag < Cd < Pb < Cr. HMIs replaced protons in the acidic functional groups of HAs and thus lowered the pH of the solution. The electrostatic interaction between the negatively charged HAs and HMIs reduced the electronegativity of HAs. Interaction with HMIs, especially the high-valent ions, induced aggregation of HAs, causing precipitation of both HAs and HMIs in the sorptive solution. Cr 3+ flocculated and precipitated HAs, but at high concentrations, it reversed the surface charge of HAs and resuspended them. The HA-HMI interaction increased as the HA acidity and solution pH increased.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurten Vardar; Zehra Yumurtaci

    The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology ismore » used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.« less

  19. Power matching between plasma generation and electrostatic acceleration in helicon electrostatic thruster

    NASA Astrophysics Data System (ADS)

    Ichihara, D.; Nakagawa, Y.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.

    2017-10-01

    The effects of a radio-frequency (RF) power on the ion generation and electrostatic acceleration in a helicon electrostatic thruster were investigated with a constant discharge voltage of 300 V using argon as the working gas at a flow rate either of 0.5 Aeq (Ampere equivalent) or 1.0 Aeq. A RF power that was even smaller than a direct-current (DC) discharge power enhanced the ionization of the working gas, thereby both the ion beam current and energy were increased. However, an excessively high RF power input resulted in their saturation, leading to an unfavorable increase in an ionization cost with doubly charged ion production being accompanied. From the tradeoff between the ion production by the RF power and the electrostatic acceleration made by the direct current discharge power, the thrust efficiency has a maximum value at an optimal RF to DC discharge power ratio of 0.6 - 1.0.

  20. Electrostatic complementarity between proteins and ligands. 1. Charge disposition, dielectric and interface effects

    NASA Astrophysics Data System (ADS)

    Chau, P.-L.; Dean, P. M.

    1994-10-01

    Electrostatic interactions have always been considered an important factor governing ligand-receptor interactions. Previous work in this field has established the existence of electrostatic complementarity between the ligand and its receptor site. However, this property has not been treated rigorously, and the description remains largely qualitative. In this work, 34 data sets of high quality were chosen from the Brookhaven Protein Databank. The electrostatic complementarity has been calculated between the surface potentials; complementarity is absent between adjacent or neighbouring atoms of the ligand and the receptor. There is little difference between complementarities on the total ligand surface and the interfacial region. Altering the homogeneous dielectric to distance-dependent dielectrics reduces the complementarity slightly, but does not affect the pattern of complementarity.

  1. Electrostatic complementarity between proteins and ligands. 1. Charge disposition, dielectric and interface effects.

    PubMed

    Chau, P L; Dean, P M

    1994-10-01

    Electrostatic interactions have always been considered an important factor governing ligand-receptor interactions. Previous work in this field has established the existence of electrostatic complementarity between the ligand and its receptor site. However, this property has not been treated rigorously, and the description remains largely qualitative. In this work, 34 data sets of high quality were chosen from the Brookhaven Protein Databank. The electrostatic complementary has been calculated between the surface potentials; complementarity is absent between adjacent or neighbouring atoms of the ligand and the receptor. There is little difference between complementarities on the total ligand surface and the interfacial region. Altering the homogeneous dielectric to distance-dependent dielectrics reduces the complementarity slightly, but does not affect the pattern of complementarity.

  2. 37. VIEW OF SIX GAP ROTARY RECTIFIER FOR MAINTAINING CORONA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. VIEW OF SIX GAP ROTARY RECTIFIER FOR MAINTAINING CORONA DISCHARGE IN THE COTTRELL ELECTROSTATIC GENERATORS. THE SYSTEM WAS CAPABLE OF PROVIDING 88,000 VOLTS TO THE ELECTRODES WITHIN THE PRECIPITATOR CHAMBER THE UNIT WAS LOCATED TO THE REAR OF BOILER 904 IN AN ENCLOSED ROOM. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  3. Advanced Filter Technology For Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  4. Assessment of control strategies for reducing volatile organic compound emissions from the polyvinyl chloride wallpaper production industry in Taiwan.

    PubMed

    Chang, Chang-Tang; Chiou, Chyow-Shan

    2006-05-01

    This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.

  5. Pulse energization; A precipitator performance upgrade technology following low sulfur coal switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, K.S.; Feldman, P.L.; Jacobus, P.L.

    1992-01-01

    Madison Gas and Electric operates two 50 MWe pulverized coal fired boilers at its Blount station. This paper reports that these two units have been designed to operate with gas or coalfiring in combination with refuse derived fuel. Both these units are fitted with electrostatic precipitators for particulate control. Historically, these units have utilized Midwestern and Appalachian coals varying in sulfur contents between 2 and 5 %, with the SO{sub 2} emission level in the 3.5 pounds per million Btu range. Wisconsin's acid rain control law goes into effect in 1993 requiring utilities to control sulfur dioxide emissions below 1.2more » pounds per million Btu.« less

  6. Apparatus for preventing particle deposition from process streams on optical access windows

    DOEpatents

    Logan, Ronald G.; Grimm, Ulrich

    1993-01-01

    An electrostatic precipitator is disposed inside and around the periphery of the window of a viewing port communicating with a housing through which a particle-laden gas stream is being passed. The precipitator includes a pair of electrodes around the periphery of the window, spaced apart and connected to a unidirectional voltage source. Application of high voltage from the source to the electrodes causes air molecules in the gas stream to become ionized, attaching to solid particles and causing them to be deposited on a collector electrode. This prevents the particles from being deposited on the window and keeps the window clean for viewing and making optical measurements.

  7. Review on the Modeling of Electrostatic MEMS

    PubMed Central

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  8. Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study

    NASA Astrophysics Data System (ADS)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Dominguez-Vera, Jose M.; Garcia-Ruiz, Juan M.

    2003-05-01

    Several mechanisms have been proposed to explain the interactions between proteins and mineral surfaces, among them a combination of electrostatic, stereochemical interactions and molecular recognition between the protein and the crystal surface. To identify the mechanisms of interaction in the lysozyme-calcium carbonate model system, the effect of this protein on the precipitation kinetics and morphology of calcite crystals was examined. The solution chemistry and morphology of the solid were monitored over time in a set of time-series free-drift experiments in which CaCO 3 was precipitated from solution in a closed system at 25°C and 1 atm total pressure, in the presence and absence of lysozyme. The precipitation of calcite was preceded by the precipitation of a metastable phase that later dissolved and gave rise to calcite as the sole phase. With increasing lysozyme concentration, the nucleation of both the metastable phase and calcite occurred at lower Ω calcite, indicating that lysozyme favored the nucleation of both phases. Calcite growth rate was not affected by the presence of lysozyme, at least at protein concentrations ranging from 0 mg/mL to 10 mg/mL. Lysozyme modified the habit of calcite crystals. The degree of habit modification changed with protein concentration. At lower concentrations of lysozyme, the typical rhombohedral habit of calcite crystals was modified by the expression of {110} faces, which resulted from the preferential adsorption of protein on these faces. With increasing lysozyme concentration, the growth of {110}, {100}, and finally {001} faces was sequentially inhibited. This adsorption sequence may be explained by an electrostatic interaction between lysozyme and calcite, in which the inhibition of the growth of {110}, {100}, and {001} faces could be explained by a combined effect of the density of carbonate groups in the calcite face and the specific orientation (perpendicular) of these carbonate groups with respect to the calcite surface. Overgrowth of calcite in the presence of lysozyme demonstrated that the protein favored and controlled the nucleation on the calcite substrate. Overgrowth crystals nucleated epitaxially in lines which run diagonal to rhombohedral {104} faces.

  9. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid

    PubMed Central

    Tavafoghi, M.; Brodusch, N.; Gauvin, R.; Cerruti, M.

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca2+ and PO43− ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca2+ and PO43− ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca2+ and PO43− ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. PMID:26791001

  10. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.

    PubMed

    Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. © 2016 The Author(s).

  11. Resource Recovery Technology Application Document.

    DTIC Science & Technology

    1982-06-01

    B-6 Electrostatic Precipitator (APC-C) ......................B-1O Venturi Scrubber (APC D) B-15 C Combustion Equipment (CE) C-1 Modular... Scrubber APC-D P. 1 of 4 CONTROLIII COMPONENT DESCRIPTION Types Available - Competing Components Type a. Venturi e. Moving bed Venturi b. Flooded disc f...Clean Gas to Demister (Used Separate Liquid from Gas Stream) / F C Scrubber Wall Liquid Inlet D Scrubber Liquid at Venturi Throat Inlet B E Venturi

  12. Flue gas desulfurization

    DOEpatents

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  13. Electrostatically Embedded Many-Body Approximation for Systems of Water, Ammonia, and Sulfuric Acid and the Dependence of Its Performance on Embedding Charges.

    PubMed

    Leverentz, Hannah R; Truhlar, Donald G

    2009-06-09

    This work tests the capability of the electrostatically embedded many-body (EE-MB) method to calculate accurate (relative to conventional calculations carried out at the same level of electronic structure theory and with the same basis set) binding energies of mixed clusters (as large as 9-mers) consisting of water, ammonia, sulfuric acid, and ammonium and bisulfate ions. This work also investigates the dependence of the accuracy of the EE-MB approximation on the type and origin of the charges used for electrostatically embedding these clusters. The conclusions reached are that for all of the clusters and sets of embedding charges studied in this work, the electrostatically embedded three-body (EE-3B) approximation is capable of consistently yielding relative errors of less than 1% and an average relative absolute error of only 0.3%, and that the performance of the EE-MB approximation does not depend strongly on the specific set of embedding charges used. The electrostatically embedded pairwise approximation has errors about an order of magnitude larger than EE-3B. This study also explores the question of why the accuracy of the EE-MB approximation shows such little dependence on the types of embedding charges employed.

  14. Electrostatics of a Point Charge between Intersecting Planes: Exact Solutions and Method of Images

    ERIC Educational Resources Information Center

    Mei, W. N.; Holloway, A.

    2005-01-01

    In this work, the authors present a commonly used example in electrostatics that could be solved exactly in a conventional manner, yet expressed in a compact form, and simultaneously work out special cases using the method of images. Then, by plotting the potentials and electric fields obtained from these two methods, the authors demonstrate that…

  15. Microgravity

    NASA Image and Video Library

    1998-09-30

    Dr. Rulison of Space System LORAl working with the Electrostatic Levitation (ESL) prior to the donation. Space System/LORAL donated the electrostatic containerless processing system to NASA's Marshall Space Flight Center (MSFC). The official hand over took place in July 1998.

  16. Numerically simulated two-dimensional auroral double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1983-01-01

    A magnetized 2 1/2-dimensional particle-in-cell system which is periodic in one direction and bounded by reservoirs of Maxwellian plasma in the other is used to numerically simulate electrostatic plasma double layers. For the cases of both oblique and two-dimensional double layers, the present results indicate periodic instability, Debye length rather than gyroradii scaling, and low frequency electrostatic turbulence together with electron beam-excited electrostatatic electron-cyclotron waves. Estimates are given for the thickness of auroral doule layers, as well as the separations within multiple auroral arcs. Attention is given to the temporal modulation of accelerated beams, and the possibilities for ion precipitation and ion conic production by the double layer are hypothesized. Simulations which include the atmospheric backscattering of electrons imply the action of an ionospheric sheath which accelerates ionospheric ions upward.

  17. Active damping of capillary oscillations on liquid columns

    NASA Astrophysics Data System (ADS)

    Thiessen, David B.; Wei, Wei; Marston, Philip L.

    2002-05-01

    Active control of acoustic radiation pressure and of electrostatic stresses on liquid columns has been demonstrated to overcome the Rayleigh-Plateau instability that normally causes long liquid columns to break [M. J. Marr-Lyon et al., J. Fluid Mech. 351, 345 (1997); Phys. Fluids 12, 986-995 (2000)]. Though originally demonstrated for liquid-liquid systems in plateau tanks, the electrostatic method also works on columns in air in reduced gravity [D. B. Thiessen, M. J. Marr-Lyon, and P. L. Marston, ``Active electrostatic stabilization of liquid bridges in low gravity,'' J. Fluid Mech. (in press)]. In new research, the electrostatic stresses are applied in proportion to the velocity of the surface of the column so as to actively dampen capillary oscillations of the surface. The mode amplitude is optically sensed and the rate-of-change is electronically determined. Plateau tank measurements and theory both show that the change in damping rate is proportional to the feedback gain. The results suggest that either active control of electrostatic stresses or of acoustic radiation stresses can be used to suppress the response of interfaces to vibration. [Work supported by NASA.

  18. An Analytical and Experimental Analysis of Factors Affecting Exhaust System Performance in Sea Level Static Jet Engine Test Facilities.

    DTIC Science & Technology

    1972-12-01

    include filtering devices, venturi scrubbers , and electrostatic precipitators. These have been evaluated as unsatisfactory from considerations of...Early studies of pollution abatement systems have resulted in the selection and development of a nucleation scrubber [Ref. 47]. Other devices analyzed...the venturi system is its inability to operate efficiently over greater than a 10 percent interval away from its design point, which is an

  19. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-02-01

    The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

  20. Electrostatic and structural similarity of classical and non-classical lactam compounds

    NASA Astrophysics Data System (ADS)

    Coll, Miguel; Frau, Juan; Vilanova, Bartolomé; Donoso, Josefa; Muñoz, Francisco

    2001-09-01

    Various electrostatic and structural parameters for a series of classical and non-classical β-lactams were determined and compared in order to ascertain whether some specific β-lactams possess antibacterial or β-lactamase inhibitory properties. The electrostatic parameters obtained, based on the Distributed Multipole Analysis (DMA) of high-quality wavefunctions for the studied structures, suggest that some non-classical β-lactams effectively inhibit the action of β-lactamases. As shown in this work, such electrostatic parameters provide much more reliable information about the antibacterial and inhibitory properties of β-lactams than do structural parameters.

  1. The insulation of copper wire by the electrostatic coating process

    NASA Astrophysics Data System (ADS)

    Wells, M. G. H.

    1983-06-01

    A review of the fluidized bed electrostatic coating process and materials available for application to flat copper conductor has been made. Lengths of wire were rolled and electrostatically coated with two epoxy insulations. Electrical tests were made in air on coated samples at room and elevated temperatures. Compatibility tests in the cooling/lubricating turbine oil at temperatures up to 220 deg. C were also made. Recommendations for additional work are provided.

  2. Rocket measurements of energetic particles in the midlatitude precipitation zone

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  3. Auroral magnetosphere-ionosphere coupling: A brief topical review

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Schulz, M.; Cornwall, J. M.

    1979-01-01

    Auroral arcs result from the acceleration and precipitation of magnetospheric plasma in narrow regions characterized by strong electric fields both perpendicular and parallel to the earth's magnetic field. The various mechanisms that were proposed for the origin of such strong electric fields are often complementary Such mechanisms include: (1) electrostatic double layers; (2) double reverse shock; (3) anomalous resistivity; (4) magnetic mirroring of hot plasma; and (5) mapping of the magnetospheric-convection electric field through an auroral discontinuity.

  4. VOCs elimination and health risk reduction in e-waste dismantling workshop using integrated techniques of electrostatic precipitation with advanced oxidation technologies.

    PubMed

    Chen, Jiangyao; Huang, Yong; Li, Guiying; An, Taicheng; Hu, Yunkun; Li, Yunlu

    2016-01-25

    Volatile organic compounds (VOCs) emitted during the electronic waste dismantling process (EWDP) were treated at a pilot scale, using integrated electrostatic precipitation (EP)-advanced oxidation technologies (AOTs, subsequent photocatalysis (PC) and ozonation). Although no obvious alteration was seen in VOC concentration and composition, EP technology removed 47.2% of total suspended particles, greatly reducing the negative effect of particles on subsequent AOTs. After the AOT treatment, average removal efficiencies of 95.7%, 95.4%, 87.4%, and 97.5% were achieved for aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, as well as nitrogen- and oxygen-containing compounds, respectively, over 60-day treatment period. Furthermore, high elimination capacities were also seen using hybrid technique of PC with ozonation; this was due to the PC unit's high loading rates and excellent pre-treatment abilities, and the ozonation unit's high elimination capacity. In addition, the non-cancer and cancer risks, as well as the occupational exposure cancer risk, for workers exposed to emitted VOCs in workshop were reduced dramatically after the integrated technique treatment. Results demonstrated that the integrated technique led to highly efficient and stable VOC removal from EWDP emissions at a pilot scale. This study points to an efficient approach for atmospheric purification and improving human health in e-waste recycling regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Prediction of delivery of organic aerosols onto air-liquid interface cells in vitro using an electrostatic precipitator.

    PubMed

    Yu, Zechen; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E; Jiang, Huanhuan

    2017-08-01

    To better characterize biological responses to atmospheric organic aerosols, the efficient delivery of aerosol to in vitro lung cells is necessary. In this study, chamber generated secondary organic aerosol (SOA) entered the commercialized exposure chamber (CULTEX® Radial Flow System Compact) where it interfaced with an electrostatic precipitator (ESP) (CULTEX® Electrical Deposition Device) and then deposited on a particle collection plate. This plate contained human lung cells (BEAS-2B) that were cultured on a membrane insert to produce an air-liquid interface (ALI). To augment in vitro assessment using the ESP exposure device, the particle dose was predicted for various sampling parameters such as particle size, ESP deposition voltage, and sampling flowrate. The dose model was evaluated against the experimental measured mass of collected airborne particles. The high flowrate used in this study increased aerosol dose but failed to achieve cell stability. For example, RNA in the ALI BEAS-2B cells in vitro was stable at 0.15L/minute but decayed at high flowrates. The ESP device and the resulting model were applied to in vitro studies (i.e., viability and IL-8 expression) of toluene SOA using ALI BEAS-2B cells with a flowrate of 0.15L/minute, and no cellular RNA decay occurred. Copyright © 2017. Published by Elsevier Ltd.

  6. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  7. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.

    PubMed

    Clack, Herek L

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies.

  8. Mercury in coals and fly ashes from Republika and Bobov dol thermoelectric power plants

    USGS Publications Warehouse

    Kostova, I.; Vassileva, C.; Hower, J.; Mastalerz, Maria; Vassilev, S.; Nikolova, N.

    2011-01-01

    Feed coal and y ash samples were collected at Republika and Bobov Dol thermoelectric power plants (TPPs). The y ashes (FAs) were collected fromthree rows of the hot-side electrostatic precipitators (ESPs) array. Each sam- ple was wet-screened at 100, 200, 325 and 500 mesh. The coals and y ashes were characterized with regard to their petrological and chemical composition (including mercury content) and to their surface area properties. The calculated enrichment factor (EF) shows that the Hg concentrations in the bulk coal samples from Republika and Bobov Dol TPPs are 2.19 and 1.41, respectively. In some coal size fractions the EF can be up to 4 times higher than the Clarke value. The calculated EF for fly ashes shows that the Hg concentrations in the bulk samples studied are lower (between 0.03 and 0.32) than the Clarke value. The most enriched in Hg are the fly ashes from the 3rd ESP row of Republika TPP. The Hg distribution in bulk FAs taken from dierent rows of the electrostatic precipitators of both TPPs studied shows well established tendency of gradual increase in the Hg content from the 1st to the 2nd and 3rd ESP rows. The correlation between Hg content and surface area, mesopore and micropore volume of y ashes was also done in the present investigation.

  9. Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James C. Hower; Uschi M. Graham; Alan Dozier

    2008-11-15

    A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated themore » presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.« less

  10. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Daniela B.; Stawski, Tomasz M.; Tobler, Dominique J.; Wirth, Richard; Peacock, Caroline L.; Benning, Liane G.

    2018-04-01

    Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material.

  11. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  12. REDUCING ENERGY AND SPACE REQUIREMENTS BY ELECTROSTATIC AUGMENTATION OF A PULSE-JET FABRIC FILTER

    EPA Science Inventory

    In work performed several years ago by EPA's research lab then known as Air and Energy Engineering Research Laboratory (EPA/AEERL), small-scale testing and modeling of electrostatically stimulated fabric filtration (ESFF) has indicated than substantial performance benefits could ...

  13. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai

    2009-03-14

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  14. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Anitescu, Mihai

    2009-03-01

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  15. The removal of sulfur dioxide from flue gases

    PubMed Central

    Kettner, Helmut

    1965-01-01

    The growth of industrialization makes it imperative to reduce the amounts of sulfur dioxide emitted into the atmosphere. This article describes various processes for cleaning flue gases, and gives details of new methods being investigated. Wet scrubbing with water, though widely practised, has many disadvantages. Scrubbing with zinc oxide, feasible in zinc works, is more satisfactory. Dry methods use a solid absorbent; they have the advantage of a high emission temperature. Other methods are based on the addition to the fuel or the flue gases of substances such as activated metal oxides, which react with the sulfur to form compounds less harmful than sulfur dioxide. Also being investigated are a two-stage combustion system, in which the sulfur dioxide is removed in the first stage, and the injection of activated powdered dolomite into burning fuel; the resulting sulfates being removed by electrostatic precipitation. A wet catalysis process has recently been developed. Most of the cleaning processes are not yet technically mature, but first results show good efficiency and relatively low cost. PMID:14315714

  16. Greener corona discharge for enhanced wind generation with a simple dip-coated carbon nanotube decoration

    NASA Astrophysics Data System (ADS)

    Wu, Yishan; Li, Jun; Ye, Jianchun; Chen, Xiaohong; Li, Huili; Huang, Sumei; Zhao, Ran; Ou-Yang, Wei

    2017-10-01

    Corona discharge-induced wind (CDIW) has been widely utilized in production lines in the food and semiconductor industries and in indoor devices such as electrostatic precipitators. Some ozone is inevitably emitted, posing serious health risks to respiratory system and lung function of a human being. In this work, a greener corona discharge with enhanced wind generation for a needle-to-cylinder discharge structure is demonstrated using a simple dip-coating method to attach carbon nanotubes (CNTs) to the discharge electrode of a stainless steel needle. Compared with a conventional discharge electrode without CNT decoration, the velocity of the CDIW is greatly enhanced, the onset voltage is lowered, the energy conversion efficiency is greatly improved and the concentration of generated ozone is much reduced, making this easy method of CNT decoration a promising candidate for greener corona discharge systems. In addition, several impact factors for improved performance are discussed mathematically and phenomenologically, providing an insight into the corona discharge and wind generation.

  17. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  18. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Quarterly report for the period of February, March and April 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-02-01

    The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

  19. Geometric and electrostatic modeling using molecular rigidity functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Xia, Kelin; Wei, Guowei

    Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less

  20. Geometric and electrostatic modeling using molecular rigidity functions

    DOE PAGES

    Mu, Lin; Xia, Kelin; Wei, Guowei

    2017-03-01

    Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less

  1. Combined effect of constant high voltage electrostatic field and variable frequency pulsed electromagnetic field on the morphology of calcium carbonate scale in circulating cooling water systems.

    PubMed

    Zhao, Ju-Dong; Liu, Zhi-An; Zhao, Er-Jun

    2014-01-01

    Research on scale inhibition is of importance to improve the heat transfer efficiency of heat exchangers. The combined effect of high voltage electrostatic and variable frequency pulsed electromagnetic fields on calcium carbonate precipitation was investigated, both theoretically and experimentally. Using energy dispersive spectrum analysis, the predominant phase was found to be CaCO(3). The formed crystal phases mainly consist of calcite and aragonite, which is, in part, verified by theory. The results indicate that the setting of water flow velocity, and high voltage electrostatic and variable frequency pulsed electromagnetic fields is very important. Favorable values of these parameters can have a significant anti-scaling effect, with 68.95% of anti-scaling ratio for scale sample 13, while unfavorable values do not affect scale inhibition, but rather promoted fouling, such as scale sample 6. By using scanning electron microscopy analysis, when the anti-scaling ratio is positive, the particle size of scale was found to become smaller than that of untreated sample and the morphology became loose. The X-ray diffraction results verify that the good combined effect favors the appearance and growth of aragonite and restrains its transition to calcite. The mechanism for scale reduction is discussed.

  2. Complexation between sodium dodecyl sulfate and amphoteric polyurethane nanoparticles.

    PubMed

    Qiao, Yong; Zhang, Shifeng; Lin, Ouya; Deng, Liandong; Dong, Anjie

    2007-09-27

    The complexation between negatively charged sodium dodecyl sulfate (SDS) and positively charged amphoteric polyurethane (APU) self-assembled nanoparticles (NPs) containing nonionic hydrophobic segments is studied by dynamic light scattering, pyrene fluorescent probing, zeta-potential, and transmission electron microscopy (TEM) in the present paper. With increasing the mol ratio of SDS to the positive charges on the surface of APU NPs, the aqueous solution of APU NPs presents precipitation at pH 2, around stoichiometric SDS concentration, and then the precipitate dissociates with excess SDS to form more stable nanoparticles of ionomer complexes. Three stages of the complexation process are clearly shown by the pyrene I1/I3 variation of the complex systems, which only depends on the ratio of SDS/APU, and demonstrate that the process is dominated by electrostatic attraction and hydrophobic aggregation.

  3. Use of modified diatomaceous earth for removal and recovery of viruses in water.

    PubMed Central

    Farrah, S R; Preston, D R; Toranzos, G A; Girard, M; Erdos, G A; Vasuhdivan, V

    1991-01-01

    Diatomaceous earth was modified by in situ precipitation of metallic hydroxides. Modification decreased the negative charge on the diatomaceous earth and increased its ability to adsorb viruses in water. Electrostatic interactions were more important than hydrophobic interactions in virus adsorption to modified diatomaceous earth. Filters containing diatomaceous earth modified by in situ precipitation of a combination of ferric chloride and aluminum chloride adsorbed greater than 80% of enteroviruses (poliovirus 1, echovirus 5, and coxsackievirus B5) and coliphage MS2 present in tap water at ambient pH (7.8 to 8.3), even after filtration of 100 liters of tap water. Viruses adsorbed to the filters could be recovered by mixing the modified diatomaceous earth with 3% beef extract plus 1 M NaCl (pH 9). Images PMID:1768124

  4. Protonmotive force: development of electrostatic drivers for synthetic molecular motors.

    PubMed

    Crowley, James D; Steele, Ian M; Bosnich, Brice

    2006-12-04

    Ferrocene has been investigated as a platform for developing protonmotive electrostatic drivers for molecular motors. When two 3-pyridine groups are substituted to the (rapidly rotating) cyclopentadienyl (Cp) rings of ferrocene, one on each Cp, it is shown that the (Cp) eclipsed, pi-stacked rotameric conformation is preferred both in solution and in the solid state. Upon quaternization of both of the pyridines substituents, either by protonation or by alkylation, it is shown that the preferred rotameric conformation is one where the pyridinium groups are rotated away from the fully pi-stacked conformation. Electrostatic calculations indicate that the rotation is caused by the electrostatic repulsion between the charges. Consistently, when the pi-stacking energy is increased pi-stacked population increases, and conversely when the electrostatic repulsion is increased pi-stacked population is decreased. This work serves to provide an approximate estimate of the amount of torque that the electrostatically driven ferrocene platform can generate when incorporated into a molecular motor. The overall conclusion is that the electrostatic interaction energy between dicationic ferrocene dipyridyl systems is similar to the pi-stacking interaction energy and, consequently, at least tricationic systems are required to fully uncouple the pi-stacked pyridine substituents.

  5. Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.

    PubMed

    Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari

    2006-01-15

    Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.

  6. Laboratory evaluation of electrostatic spray wet scrubber to control particulate matter emissions from poultry facilities

    USDA-ARS?s Scientific Manuscript database

    Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...

  7. Subtleties in Energy Calculations in the Image Method

    ERIC Educational Resources Information Center

    Taddei, M. M.; Mendes, T. N. C.; Farina, C.

    2009-01-01

    In this pedagogical work, we point out a subtle mistake that can be made by undergraduate or graduate students in the computation of the electrostatic energy of a system containing charges and perfect conductors if they naively use the image method. Specifically, we show that naive expressions for the electrostatic energy for these systems…

  8. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    NASA Astrophysics Data System (ADS)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  9. Dual salt precipitation for the recovery of a recombinant protein from Escherichia coli.

    PubMed

    Balasundaram, Bangaru; Sachdeva, Soam; Bracewell, Daniel G

    2011-01-01

    When considering worldwide demand for biopharmaceuticals, it becomes necessary to consider alternative process strategies to improve the economics of manufacturing such molecules. To address this issue, the current study investigates precipitation to selectively isolate the product or remove contaminants and thus assist the initial purification of a intracellular protein. The hypothesis tested was that the combination of two or more precipitating agents will alter the solubility profile of the product through synergistic or antagonistic effects. This principle was investigated through several combinations of ammonium sulfate and sodium citrate at different ratios. A synergistic effect mediated by a known electrostatic interaction of citrate ions with Fab' in addition to the typical salting-out effects was observed. On the basis of the results of the solubility studies, a two step primary recovery route was investigated. In the first step termed conditioning, post-homogenization and before clarification, addition of 0.8 M ammonium sulfate extracted 30% additional product. Clarification performance measured using a scale-down disc stack centrifugation mimic determined a four-fold reduction in centrifuge size requirements. Dual salt precipitation in the second step resulted in >98% recovery of Fab' while removing 36% of the contaminant proteins simultaneously. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  10. The Dartmouth Elephant plasma facility

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.

    2017-12-01

    The Elephant facility in the Dartmouth Dept of Physics and Astronomyis a 1m by 2m chamber with a microwave-resonant plasma source togetherwith a higher energy electron/ion electrostatic gun. In this chamber weaim to re-create features of the auroral ionosphere including both thethermal plasma background, and the precipitating energetic auroral beam.We can manipulate the position and attitude of various sensors withinthe chamber and monitor their response to the various sources. Recentefforts have focussed on the sheath environment near and around thermalion RPA sensors and the small payloads which carry them into theionosphere.

  11. Study on brush of moving electrode type electrostatic precipitator (MEEP)

    NASA Astrophysics Data System (ADS)

    Zhao, Haibao; He, Yuzhong; Yao, Yuping

    2018-02-01

    MEEP was an efficient particle removal technology for coal plant and sintering machine. As the stability of brush in MEEP was relatively poor, the experiments was designed for the brush which was made by 0Cr18Ni9 stainless steel wire to find the failure mode and cause. Combining the results of the experiments, the failure models of brushes were different under different conditions and the brushes were suitable for being used in the condition of small diameter particles. And the life span of brushes can be more than 6 years.

  12. Engineering Ultra-Low Work Function of Graphene.

    PubMed

    Yuan, Hongyuan; Chang, Shuai; Bargatin, Igor; Wang, Ning C; Riley, Daniel C; Wang, Haotian; Schwede, Jared W; Provine, J; Pop, Eric; Shen, Zhi-Xun; Pianetta, Piero A; Melosh, Nicholas A; Howe, Roger T

    2015-10-14

    Low work function materials are critical for energy conversion and electron emission applications. Here, we demonstrate for the first time that an ultralow work function graphene is achieved by combining electrostatic gating with a Cs/O surface coating. A simple device is built from large-area monolayer graphene grown by chemical vapor deposition, transferred onto 20 nm HfO2 on Si, enabling high electric fields capacitive charge accumulation in the graphene. We first observed over 0.7 eV work function change due to electrostatic gating as measured by scanning Kelvin probe force microscopy and confirmed by conductivity measurements. The deposition of Cs/O further reduced the work function, as measured by photoemission in an ultrahigh vacuum environment, which reaches nearly 1 eV, the lowest reported to date for a conductive, nondiamond material.

  13. Evaluation of performance of footwear and flooring systems in combination with personnel using voltage probability analysis

    NASA Astrophysics Data System (ADS)

    Smallwood, Jeremy; Swenson, David E.

    2011-06-01

    Evaluation of electrostatic performance of footwear and flooring in combination is necessary in applications such as electrostatic discharge (ESD) control in electronics manufacture, evaluation of equipment for avoidance of factory process electrostatic ignition risks and avoidance of electrostatic shocks to personnel in working environments. Typical standards use a walking test in which the voltage produced on a subject is evaluated by identification and measurement of the magnitude of the 5 highest "peaks" and "valleys" of the recorded voltage waveform. This method does not lend itself to effective analysis of the risk that the voltage will exceed a hazard threshold. This paper shows the advantages of voltage probability analysis and recommends that the method is adopted for use in future standards.

  14. Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal.

    PubMed

    Peng, Cong; Chai, Liyuan; Tang, Chongjian; Min, Xiaobo; Song, Yuxia; Duan, Chengshan; Yu, Cheng

    2017-01-01

    Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process. Copyright © 2016. Published by Elsevier B.V.

  15. Diminish electrostatic in piezoresponse force microscopy through longer or ultra-stiff tips

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Puig, T.; Obradors, X.

    2018-05-01

    Piezoresponse Force Microscopy is a powerful but delicate nanoscale technique that measures the electromechanical response resulting from the application of a highly localized electric field. Though mechanical response is normally due to piezoelectricity, other physical phenomena, especially electrostatic interaction, can contribute to the signal read. We address this problematic through the use of longer ultra-stiff probes providing state of the art sensitivity, with the lowest electrostatic interaction and avoiding working in high frequency regime. In order to find this solution we develop a theoretical description addressing the effects of electrostatic contributions in the total cantilever vibration and its quantification for different setups. The theory is subsequently tested in a Periodically Poled Lithium Niobate (PPLN) crystal, a sample with well-defined 0° and 180° domains, using different commercial available conductive tips. We employ the theoretical description to compare the electrostatic contribution effects into the total phase recorded. Through experimental data our description is corroborated for each of the tested commercially available probes. We propose that a larger probe length can be a solution to avoid electrostatic forces, so the cantilever-sample electrostatic interaction is reduced. Our proposed solution has great implications into avoiding artifacts while studying soft biological samples, multiferroic oxides, and thin film ferroelectric materials.

  16. Electrostatic ``bounce'' instability in a magnetotail configuration

    NASA Astrophysics Data System (ADS)

    Fruit, G.; Louarn, P.; Tur, A.

    2013-02-01

    To understand the possible destabilization of two-dimensional current sheets, a kinetic model is proposed to describe the resonant interaction between electrostatic modes and trapped particles that bounce within the sheet. This work follows the initial investigation by Tur et al. [Phys. Plasmas 17, 102905 (2010)] that is revised and extended. Using a quasi-parabolic equilibrium state, the linearized gyro-kinetic Vlasov equation is solved for electrostatic fluctuations with period of the order of the electron bounce period. Using an appropriated Fourier expansion of the particle motion along the magnetic field, the complete time integration of the non-local perturbed distribution functions is performed. The dispersion relation for electrostatic modes is then obtained through the quasineutrality condition. It is found that strongly unstable electrostatic modes may develop provided that the current sheet is moderately stretched and, more important, that the proportion of passing particle remains small (less than typically 10%). This strong but finely tuned instability may offer opportunities to explain features of magnetospheric substorms.

  17. The role of electrostatics in TrxR electron transfer mechanism: A computational approach.

    PubMed

    Teixeira, Vitor H; Capacho, Ana Sofia C; Machuqueiro, Miguel

    2016-12-01

    Thioredoxin reductase (TrxR) is an important enzyme in the control of the intracellular reduced redox environment. It transfers electrons from NADPH to several molecules, including its natural partner, thioredoxin. Although there is a generally accepted model describing how the electrons are transferred along TrxR, which involves a flexible arm working as a "shuttle," the molecular details of such mechanism are not completely understood. In this work, we use molecular dynamics simulations with Poisson-Boltzmann/Monte Carlo pKa calculations to investigate the role of electrostatics in the electron transfer mechanism. We observed that the combination of redox/protonation states of the N-terminal (FAD and Cys59/64) and C-terminal (Cys497/Selenocysteine498) redox centers defines the preferred relative positions and allows for the flexible arm to work as the desired "shuttle." Changing the redox/ionization states of those key players, leads to electrostatic triggers pushing the arm into the pocket when oxidized, and pulling it out, once it has been reduced. The calculated pKa values for Cys497 and Selenocysteine498 are 9.7 and 5.8, respectively, confirming that the selenocysteine is indeed deprotonated at physiological pH. This can be an important advantage in terms of reactivity (thiolate/selenolate are more nucleophilic than thiol/selenol) and ability to work as an electrostatic trigger (the "shuttle" mechanism) and may be the reason why TrxR uses selenium instead of sulfur. Proteins 2016; 84:1836-1843. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Confusing Aspects in the Calculation of the Electrostatic Potential of an Infinite Line of Charge

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Roa-Neri, J. A. E.

    2012-01-01

    In this work we discuss the trick of eliminating infinite potential of reference arguing that it corresponds to a constant of integration, in the problem of determining the electrostatic potential of an infinite line of charge with uniform density, and show how the problem must be tackled properly. The usual procedure is confusing for most…

  19. Low-Cost Options for Moderate Levels of Mercury Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon Sjostrom

    2006-03-31

    On March 15, 2005, EPA issued the Clean Air Mercury Rule, requiring phased-in reductions of mercury emissions from electric power generators. ADA-ES, Inc., with support from DOE/NETL and industry partners, is conducting evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. DOE/NETL targets for total mercury removal are {ge}55% (lignite), {ge}65% (subbituminous), and {ge}80% (bituminous). Based on work done to date at various scales, meeting the removal targets appears feasible. However, work needs to progressmore » to more thoroughly document and test these promising technologies at full scale. This is the final site report for tests conducted at MidAmerican's Louisa Station, one of three sites evaluated in this DOE/NETL program. The other two sites in the program are MidAmerican's Council Bluff Station and Entergy's Independence Station. MidAmerican's Louisa Station burns Powder River Basin (PRB) coal and employs hot-side electrostatic precipitators with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal.« less

  20. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive

    PubMed Central

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-01-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392

  1. Effects of conformational ordering on protein/polyelectrolyte electrostatic complexation: ionic binding and chain stiffening

    PubMed Central

    Cao, Yiping; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O.

    2016-01-01

    Coupling of electrostatic complexation with conformational transition is rather general in protein/polyelectrolyte interaction and has important implications in many biological processes and practical applications. This work studied the electrostatic complexation between κ-carrageenan (κ-car) and type B gelatin, and analyzed the effects of the conformational ordering of κ-car induced upon cooling in the presence of potassium chloride (KCl) or tetramethylammonium iodide (Me4NI). Experimental results showed that the effects of conformational ordering on protein/polyelectrolyte electrostatic complexation can be decomposed into ionic binding and chain stiffening. At the initial stage of conformational ordering, electrostatic complexation can be either suppressed or enhanced due to the ionic bindings of K+ and I− ions, which significantly alter the charge density of κ-car or occupy the binding sites of gelatin. Beyond a certain stage of conformational ordering, i.e., helix content θ > 0.30, the effect of chain stiffening, accompanied with a rapid increase in helix length ζ, becomes dominant and tends to dissociate the electrostatic complexation. The effect of chain stiffening can be theoretically interpreted in terms of double helix association. PMID:27030165

  2. Effect of coal ash on growth and metal uptake by some selected ectomycorrhizal fungi in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.; Reddy, U.G.; Lapeyrie, F.

    2005-07-01

    Six isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1290), Pisolithus tinctorius (EM-1293), Scleroderma verucosurn (EM-1283), and Scleroderma cepa (EM-1233), were grown on three variants of coal ash, namely electrostatically precipitated (ESP) ash, pond ash, and bottom ash moistened with Modified Melin-Norkans (MMN) medium in vitro. The colony diameter reflected the growth of the isolates on the coal ash. Metal accumulation in the mycelia was assayed by atomic absorption spectrophotometry. Six metals, namely aluminum, cadmium, chromium, iron, lead, and nickel were selected on the basis of their abundance in coal ash and toxicity potential formore » the present work. Growth of vegetative mycelium on fly ash variants and metal accumulation data indicated that Pisolithus tinctorius (EM-1290) was the most tolerant among the isolates tested for most of the metals. Since this isolate is known to be mycorrhizal with Eucalyptus, it could be used for the reclamation of coal ash over burdened sites.« less

  3. Combined use of an electrostatic precipitator and a high-efficiency particulate air filter in building ventilation systems: Effects on cardiorespiratory health indicators in healthy adults.

    PubMed

    Day, D B; Xiang, J; Mo, J; Clyde, M A; Weschler, C J; Li, F; Gong, J; Chung, M; Zhang, Y; Zhang, J

    2018-05-01

    High-efficiency particulate air (HEPA) filtration in combination with an electrostatic precipitator (ESP) can be a cost-effective approach to reducing indoor particulate exposure, but ESPs produce ozone. The health effect of combined ESP-HEPA filtration has not been examined. We conducted an intervention study in 89 volunteers. At baseline, the air-handling units of offices and residences for all subjects were comprised of coarse, ESP, and HEPA filtration. During the 5-week long intervention, the subjects were split into 2 groups, 1 with just the ESP removed and the other with both the ESP and HEPA removed. Each subject was measured for cardiopulmonary risk indicators once at baseline, twice during the intervention, and once 2 weeks after baseline conditions were restored. Measured indoor and outdoor PM 2.5 and ozone concentrations, coupled with time-activity data, were used to calculate exposures. Removal of HEPA filters increased 24-hour mean PM 2.5 exposure by 38 (95% CI: 31, 45) μg/m 3 . Removal of ESPs decreased 24-hour mean ozone exposure by 2.2 (2.0, 2.5) ppb. No biomarkers were significantly associated with HEPA filter removal. In contrast, ESP removal was associated with a -16.1% (-21.5%, -10.4%) change in plasma-soluble P-selectin and a -3.0% (-5.1%, -0.8%) change in systolic blood pressure, suggesting reduced cardiovascular risks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    PubMed

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-08-10

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.

  5. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle

    PubMed Central

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  6. Electromagnetic Compatibility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2004-01-01

    This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

  7. Electrostatic Evaluation of the Propellant Handlers Ensemble

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos I.; Buhler, Charles

    2006-01-01

    The Self-Contained Atmospheric Protective Ensemble (SCAPE) used in propellant handling at NASA's Kennedy Space Center (KSC) has recently completed a series of tests to determine its electrostatic properties of the coverall fabric used in the Propellant Handlers Ensemble (PHE). Understanding these electrostatic properties are fundamental to ensuring safe operations when working with flammable rocket propellants such as hydrazine, methyl hydrazine, and unsymmetrical dimethyl hydrazine. These tests include surface resistivity, charge decay, triboelectric charging, and flame incendivity. In this presentation, we will discuss the results of these tests on the current PHE as well as new fabrics and materials being evaluated for the next generation of PHE.

  8. Experimental Results of an Electrostatic Injector

    DTIC Science & Technology

    2014-10-01

    is important especially in the realm of biofuels . In the long term, the United States Department of Defense (DOD) is interested in converting many...of their vehicles to biofuels . Both the U.S. Army and Navy have invested substantially into research pertaining to converting existing fleets to... biofuel compatibility. The recent work of Owkes and Desjardins has investigated the effects of electrostatic spray with biofuels [11]. They

  9. Onset of phase separation in the double perovskite oxide La2MnNiO6

    NASA Astrophysics Data System (ADS)

    Spurgeon, Steven R.; Sushko, Peter V.; Devaraj, Arun; Du, Yingge; Droubay, Timothy; Chambers, Scott A.

    2018-04-01

    Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La2MnNiO6 (LMNO) thin films supported on SrTiO3 (STO) proceeds up to 1-5 nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged x-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. Ab initio simulations suggest that the electrostatic potential build-up associated with the polarity mismatch at the film-substrate interface promotes the formation of oxygen vacancies with increasing thickness. In turn, oxygen deficiency promotes the formation of Ni-rich regions, which points to the built-in potential as an additional factor that contributes to the NiO precipitation mechanisms. These results suggest that the precipitate-free region could be extended further by either incorporating dopants that suppress the built-in potential or by increasing the oxygen fugacity in order to suppress the formation of oxygen vacancies.

  10. Interaction between calcium and phosphate adsorption on goethite.

    PubMed

    Rietra, R P; Hiemstra, T; van Riemsdijk, W H

    2001-08-15

    Quantitatively, little is known about the ion interaction processes that are responsible for the binding of phosphate in soil, water, and sediment, which determine the bioavailability and mobility of phosphate. Studies have shown that metal hydroxides are often responsible for the binding of PO4 in soils and sediments, but the binding behavior of PO4 in these systems often differs significantly from adsorption studies on metal hydroxides in laboratory. The interaction between PO4 and Ca adsorption was studied on goethite because Ca can influence the PO4 adsorption equilibria. Since adsorption interactions are very difficult to discriminate from precipitation reactions, conditions were chosen to prevent precipitation of Ca-PO4 solids. Adsorption experiments of PO4 and Ca, individually and in combination, show a strong interaction between adsorbed Ca and PO4 on goethite for conditions below the saturation index of apatite. It is shown that it is possible to predict the adsorption and interaction of PO4 and Ca on electrostatic arguments using the model parameter values derived from the single-ion systems and without invoking ternary complex formation or precipitation. The model enables the prediction of the Ca-PO4 interaction for environmentally relevant calcium and phosphate concentrations.

  11. Method for treatment of tar-bearing fuel gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frauen, L.L.; Kasper, S.

    1986-01-07

    A process is described of producing a fuel gas which contains condensable tar vapor when it leaves a gasifier, the improvement wherein the tar-bearing gases are treated to remove tar therefrom. The process consists of: (a) continuously conducting hot fuel gas from a gasifier to and discharging it into a spray chamber where the hot tar-bearing gas is contacted with a fine spray of water thereby cooling the tar vapor and evaporating the water to produce a fog-like dispersion of tar in an atmosphere of fuel gas with the temperature in the spray chamber maintained above the dew point ofmore » water; (b) continuously transferring the fuel gas and the dispersion of tar and water to an electrostatic precipitator and precipitating therein at least most of the condensed tar as a liquid; (c) removing the liquid tar so precipitated and conducting at least most of it to a tar burner; (d) burning the tar with no more than the stoichiometric supply of oxygen provided by air to produce oxygen-free and tar-free hot combustion gases; (e) conducting the hot combustion gases directly into a mixer into which the fuel gas and water vapor flows from the precipitator, thereby adding to the fuel gas the sensible heat of the combustion gases; and (f) conducting the mixture so produced to a place of use as a hot fuel gas mixture.« less

  12. Interactions of GRF(1-29)NH2 with plasma proteins and their effects on the release of the peptide from a PLAGA matrix.

    PubMed

    Mariette, B; Coudane, J; Vert, M

    2005-09-02

    The administration of the GRF(1-29)NH2 Growth Hormone Releasing Hormone analog is known as relevant of the concept of drug delivery system using a bioresorbable matrix. However, the release of this peptide from poly(dl-lactic acid-co-glycolic acid) matrices is affected by its insolubility at neutral in salted media and in plasma as well. In order to investigate the origin and the nature of the insolubility in these media in more details, the precipitates collected when the peptide was set in contact with saline, isotonic pH=7.4 phosphate buffer and plasma were analyzed by various techniques, namely weighting, gel chromatography, 1D- and 2D-immunoelectrophoresis, and dialysis to discern the soluble from the insoluble or aggregated fractions. It is shown that precipitation in protein-free salted media is due to a salting out phenomenon complemented by the neutralization of the solubilizing electrostatic charges in the isotonic buffer. In contrast, the precipitation in plasma is due to inter polyelectrolyte-type complexation that involved polyanionic proteins having a rather low isoelectric point like albumin, transferin, haptoglobulin and IgG immunoglobulins. When a rather large quantity of GRF(1-29)NH2 was entrapped in bioresorbable pellets working at a percolating regime after subcutaneous implantation in rats, the peptide was slowly released despite the complexation with plasma proteins. However only a very small part of the peptide was found in blood, this small part being still large enough to cause a detectable increase of the circulating growth hormone concentration. Attempts made to increase the solubility of the peptide in plasma were successful when the peptide was combined with arginine, an amino acid known to promote the poor hormonal activity of injected GRF(1-29)NH2 solutions under clinical conditions.

  13. The Effect of Solution Chemistry on Nucleation of Nesquehonite

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zhu, C.; Wang, Z.

    2016-12-01

    The interfaces between minerals and aqueous solutions are key to important Earth surface processes, including chemical weathering, mineral dissolution/precipitation, and pollutant absorption/release. Mineral surface properties, such as the surface structure and the surface energy, determine the outcomes of many geochemical reactions. Several factors could affect surface energy, but the effect of solution chemistry, particularly the solution stoichiometry, on the surface energy and nucleation process is poorly understood. The goal of this study is to understand the effect of solution chemistry on the nucleation of nesquehonite. Nesquehonite nucleation experiments were conducted in aqueous solutions having similar Mg2+/ CO32- activity ratios, but different saturation states and solution pH. The experimental results show that induction-time estimates from our precipitation experiments with similar Mg2+/CO32- activity ratios are consistent with classical nucleation theory (CNT), while the surface energy derived from CNT varies with Mg2+/CO32- activity ratios. Our observations can be explained by the different absorption behaviors of Mg2+ and CO32- and and/or reduced Gibbs free energies through better screening of the electric double layer. A surface energy model involving solution composition is developed that combines surface complexation with electrostatic models. The new model takes into account how surface charge may affect surface energy. It implies that the highest surface energy may occur around the point of zero charge (p.z.c), where the nucleation is fastest (or conversely, where the induction time is shortest) under low saturation states, but not under high saturation states. An accelerated attachment rate of monomers at the p.z.c. is consistent with high surface energy, since it represents higher reactivity of surface ions and less work needed to break the solvated water molecules. This study provides deeper insights into mechanisms of nesquehonite nucleation in nature, and guidelines for accelerating the precipitation rates of nesquehonite.

  14. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R.

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken intomore » account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.« less

  15. Electro-osmosis over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions

    NASA Astrophysics Data System (ADS)

    Ghosh, Uddipta; Chakraborty, Suman

    2016-06-01

    In this study, we attempt to bring out a generalized formulation for electro-osmotic flows over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. To this end, we start with modified electro-chemical potential of the individual species and subsequently use it to derive modified Nernst-Planck equation accounting for the ionic fluxes generated because of the presence of non-electrostatic potential. We establish what we refer to as the Poisson-Helmholtz-Nernst-Planck equations, coupled with the Navier-Stokes equations, to describe the complete transport process. Our analysis shows that the presence of non-electrostatic interactions between the ions results in an excess body force on the fluid, and modifies the osmotic pressure as well, which has hitherto remained unexplored. We further apply our analysis to a simple geometry, in an effort to work out the Smoluchowski slip velocity for thin electrical double layer limits. To this end, we employ singular perturbation and develop a general framework for the asymptotic analysis. Our calculations reveal that the final expression for slip velocity remains the same as that without accounting for non-electrostatic interactions. However, the presence of non-electrostatic interactions along with ion specificity can significantly change the quantitative behavior of Smoluchowski slip velocity. We subsequently demonstrate that the presence of non-electrostatic interactions may significantly alter the effective interfacial potential, also termed as the "Zeta potential." Our analysis can potentially act as a guide towards the prediction and possibly quantitative determination of the implications associated with the existence of non-electrostatic potential, in an electrokinetic transport process.

  16. The Third General Scientific Assembly of the International Association of Geomagnetism and Aeronomy - Special sessions of auroral processes

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1978-01-01

    Methods of timing magnetic substorms, the rapid fluctuations of aurorae, electromagnetic and electrostatic instabilities observed on the field lines of aurorae, the auroral microstructure, and the relationship of currents, electric field and particle precipitation to auroral form are discussed. Attention is given to such topics as D-perturbations as an indicator of substorm onset, the role of the magnetotail in substorms, spectral information derived from imaging data on aurorae, terrestrial kilometric radiation, and the importance of the mirror force in self-consistent models of particle fluxes, currents and potentials on auroral field lines.

  17. Technology could deliver 90% Hg reduction from coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maize, K.

    2009-07-15

    Reducing mercury emissions at coal-fired power plants by 90% has been considered the holy grail of mercury control. A new technology promises to get used there, but at a price. This is a mixture of chemical approaches, including activated carbon injection into the gases coming off the combustor along with injection of trona or calcium carbonate to reduce sulfur trioxide in the exhaust gases. The trick according to Babcock and Wilcox's manager Sam Kumar, to 'capture the mercury as a particulate on the carbon and then capture the particulate' in an electrostatic precipitator or a fabric filter baghouse. 2 figs.

  18. Physical factors affecting the mutagenicity of fly ash from a coal-fired power plant.

    PubMed

    Fisher, G L; Chrisp, C E; Raabe, O G

    1979-05-25

    The two finest, most respirable coal fly ash fractions collected from the smokestack of a power plant were more mutagenic than two coarser fractions. Mutagenicity was evaluated in the histidine-requiring bacterial strains TA 1538, TA 98, and TA 100 of Salmonella typhimurium. Ash samples collected from the hoppers of an electrostatic precipitator in the plant were not mutagenic. The mutagens in coal fly ash were resistant to x-ray or ultraviolet irradiation, possibly as a result of stabilization by fly ash surfaces. All mutagenic activity is lost with heating to 350 degrees C.

  19. Operation of electrothermal and electrostatic MUMPs microactuators underwater

    NASA Astrophysics Data System (ADS)

    Sameoto, Dan; Hubbard, Ted; Kujath, Marek

    2004-10-01

    Surface-micromachined actuators made in multi-user MEMS processes (MUMPs) have been operated underwater without modifying the manufacturing process. Such actuators have generally been either electro-thermally or electro-statically actuated and both actuator styles are tested here for suitability underwater. This is believed to be the first time that thermal and electrostatic actuators have been compared for deflection underwater relative to air performance. A high-frequency ac square wave is used to replicate a dc-driven actuator output without the associated problem of electrolysis in water. This method of ac activation, with frequencies far above the mechanical resonance frequencies of the MEMS actuators, has been termed root mean square (RMS) operation. Both thermal and electrostatic actuators have been tested and proved to work using RMS control. Underwater performance has been evaluated by using in-air operation of these actuators as a benchmark. When comparing deflection per volt applied, thermal actuators operate between 5 and 9% of in-air deflection and electrostatic actuators show an improvement in force per volt applied of upwards of 6000%. These results agree with predictions based on the physical properties of the surrounding medium.

  20. The impact of electrostatic correlations on Dielectrophoresis of Non-conducting Particles

    NASA Astrophysics Data System (ADS)

    Alidoosti, Elaheh; Zhao, Hui

    2017-11-01

    The dipole moment of a charged, dielectric, spherical particle under the influence of a uniform alternating electric field is computed theoretically and numerically by solving the modified continuum Poisson-Nernst-Planck (PNP) equations accounting for ion-ion electrostatic correlations that is important at concentrated electrolytes (Phys. Rev. Lett. 106, 2011). The dependence on the frequency, zeta potential, electrostatic correlation lengths, and double layer thickness is thoroughly investigated. In the limit of thin double layers, we carry out asymptotic analysis to develop simple models which are in good agreement with the modified PNP model. Our results suggest that the electrostatic correlations have a complicated impact on the dipole moment. As the electrostatic correlations length increases, the dipole moment decreases, initially, reach a minimum, and then increases since the surface conduction first decreases and then increases due to the ion-ion correlations. The modified PNP model can improve the theoretical predictions particularly at low frequencies where the simple model can't qualitatively predict the dipole moment. This work was supported, in part, by NIH R15GM116039.

  1. Nonlinear saturation of the Weibel instability

    DOE PAGES

    Cagas, P.; Hakim, A.; Scales, W.; ...

    2017-11-21

    The growth and saturation of magnetic fields due to the Weibel instability (WI) have important implications for laboratory and astrophysical plasmas, and this has drawn significant interest recently. Since the WI can generate a large magnetic field from no initial field, the maximum magnitudes achieved can have significant consequences for a number of applications. Hence, an understanding of the detailed dynamics driving the nonlinear saturation of the WI is important. This work considers the nonlinear saturation of the WI when counter-streaming populations of initially unmagnetized electrons are perturbed by a magnetic field oriented perpendicular to the direction of streaming. Previousmore » works have found magnetic trapping to be important and connected electron skin depth spatial scales to the nonlinear saturation of the WI. The results presented in this work are consistent with these findings for a high-temperature case. However, using a high-order continuum kinetic simulation tool, this work demonstrates that when the electron populations are colder, a significant electrostatic potential develops that works with the magnetic field to create potential wells. The electrostatic field develops due to transverse flows induced by the WI and in some cases is strengthened by a secondary instability. This field plays a key role in saturation of the WI for colder populations. In conclusion, the role of the electrostatic potential in Weibel instability saturation has not been studied in detail previously.« less

  2. Nonlinear saturation of the Weibel instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cagas, P.; Hakim, A.; Scales, W.

    The growth and saturation of magnetic fields due to the Weibel instability (WI) have important implications for laboratory and astrophysical plasmas, and this has drawn significant interest recently. Since the WI can generate a large magnetic field from no initial field, the maximum magnitudes achieved can have significant consequences for a number of applications. Hence, an understanding of the detailed dynamics driving the nonlinear saturation of the WI is important. This work considers the nonlinear saturation of the WI when counter-streaming populations of initially unmagnetized electrons are perturbed by a magnetic field oriented perpendicular to the direction of streaming. Previousmore » works have found magnetic trapping to be important and connected electron skin depth spatial scales to the nonlinear saturation of the WI. The results presented in this work are consistent with these findings for a high-temperature case. However, using a high-order continuum kinetic simulation tool, this work demonstrates that when the electron populations are colder, a significant electrostatic potential develops that works with the magnetic field to create potential wells. The electrostatic field develops due to transverse flows induced by the WI and in some cases is strengthened by a secondary instability. This field plays a key role in saturation of the WI for colder populations. In conclusion, the role of the electrostatic potential in Weibel instability saturation has not been studied in detail previously.« less

  3. Electric Field Imaging Project

    NASA Technical Reports Server (NTRS)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  4. Influences of Mutations on the Electrostatic Binding Free Energies of Chloride Ions in Escherichia Coli ClC

    PubMed Central

    Yu, Tao; Wang, Xiao-Qing; Sang, Jian-Ping; Pan, Chun-Xu; Zou, Xian-Wu; Chen, Tsung-Yu; Zou, Xiaoqin

    2012-01-01

    Mutations in ClC channel proteins may cause serious functional changes and even diseases. The function of ClC proteins mainly manifests as Cl− transport, which is related to the binding free energies of chloride ions. Therefore, the influence of a mutation on ClC function can be studied by investigating the mutational effect on the binding free energies of chloride ions. The present study provides quantitative and systematic investigations on the influences of residue mutations on the electrostatic binding free energies in Escherichia coli ClC (EcClC) proteins, using all-atom molecular dynamics simulations. It was found that the change of the electrostatic binding free energy decreases linearly with the increase of the residue-chloride ion distance for a mutation. This work reveals how changes in the charge of a mutated residue and in the distance between the mutated residue and the binding site govern the variations in the electrostatic binding free energies, and therefore influence the transport of chloride ions and conduction in EcClC. This work would facilitate our understanding of the mutational effects on transport of chloride ions and functions of ClC proteins, and provide a guideline to estimate which residue mutations will have great influences on ClC functions. PMID:22612693

  5. Electrostatics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, John

    2004-01-01

    The purpose of the research was to continue developing an understanding of electrostatic phenomena in preparation for any future flight opportunities of the EGM experiment, originally slated for a 2004 Space Station deployment. Work would be based on theoretical assessments, ground-based lab experiments, and reduced-gravity experiments. The ability to examine dipoles in the lab proved to be elusive, and thus, effort was concentrated on monopoles -how materials become charged, the fate of the charge, the role of material type, and so forth. Several significant milestones were achieved in this regard. In regard of the dipoles, experiments were designed in collaboration with the University of Chicago school district who had access to reduced gravity on the KC-135 aircraft. Two experiments were slated to fly last year but were cancelled after the Columbia accident. One of the experiments has been given a second life and will fly sometime in 2005 if the Shuttle flights resume. There remains active interest in the question of electrostatic dipoles within the educational community, and experiments using magnetic dipoles as a substitute are to be examined. The KC-135 experiments will also examine dispersion methods for particles as a verification of possible future techniques in microgravity. Both laboratory and theoretical work established a number of breakthroughs in our understanding of electrostatic phenomena. These breakthroughs are listed in this paper.

  6. Mechanochemical Preparation of Stable Sub-100 nm γ-Cyclodextrin:Buckminsterfullerene (C60) Nanoparticles by Electrostatic or Steric Stabilization.

    PubMed

    Van Guyse, Joachim F R; de la Rosa, Victor R; Hoogenboom, Richard

    2018-02-21

    Buckminster fullerene (C 60 )'s main hurdle to enter the field of biomedicine is its low bioavailability, which results from its extremely low water solubility. A well-known approach to increase the water solubility of C 60 is by complexation with γ-cyclodextrins. However, the formed complexes are not stable in time as they rapidly aggregate and eventually precipitate due to attractive intermolecular forces, a common problem in inclusion complexes of cyclodextrins. In this study we attempt to overcome the attractive intermolecular forces between the complexes by designing custom γ-cyclodextrin (γCD)-based supramolecular hosts for C 60 that inhibit the aggregation found in native γCD-C 60 complexes. The approach entails the introduction of either repulsive electrostatic forces or increased steric hindrance to prevent aggregation, thus enhancing the biomedical application potential of C 60 . These modifications have led to new sub-100 nm nanostructures that show long-term stability in solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A New Insight of Graphene oxide-Fe(III) Complex Photochemical Behaviors under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Renlan; Zhu, Xiaoying; Chen, Baoliang

    2017-01-01

    Graphene oxide (GO) contains not only aromatic carbon lattice but also carboxyl groups which enhanced the aqueous solubility of GO. To study the transformation of GO nanosheets in natural environments, GO aqueous dispersion was mixed with Fe3+ ions to form photoactive complex. Under visible light irradiation, Fe(III) of the complex would be reduced to Fe(II) which could subsequently reduce highly toxic Cr(VI) to Cr3+. The electron of the reduction was contributed by the decarboxylation of carboxyl groups on GO and iron was acting as a catalyst during the photoreduction. On the other hand, the consumption of carboxyl groups may convert GO to rGO which are tend to aggregate since the decreased electrostatic repulsion and the increased π-π attraction. The formed Cr3+ may be electrostatically adsorbed by the rGO sheets and simultaneously precipitated with the aggregated rGO sheets, resulting the effective removal of chromium and GO nanosheets from the aqueous environment. This study may shed a light on understanding the environmental transformation of GO and guide the treatment of Cr(VI).

  8. A view on thermodynamics of concentrated electrolytes: Modification necessity for electrostatic contribution of osmotic coefficient

    NASA Astrophysics Data System (ADS)

    Sahu, Jyoti; Juvekar, Vinay A.

    2018-05-01

    Prediction of the osmotic coefficient of concentrated electrolytes is needed in a wide variety of industrial applications. There is a need to correctly segregate the electrostatic contribution to osmotic coefficient from nonelectrostatic contribution. This is achieved in a rational way in this work. Using the Robinson-Stokes-Glueckauf hydrated ion model to predict non-electrostatic contribution to the osmotic coefficient, it is shown that hydration number should be independent of concentration so that the observed linear dependence of osmotic coefficient on electrolyte concentration in high concentration range could be predicted. The hydration number of several electrolytes (LiCl, NaCl, KCl, MgCl2, and MgSO4) has been estimated by this method. The hydration number predicted by this model shows correct dependence on temperature. It is also shown that the electrostatic contribution to osmotic coefficient is underpredicted by the Debye-Hückel theory at concentration beyond 0.1 m. The Debye-Hückel theory is modified by introducing a concentration dependent hydrated ionic size. Using the present analysis, it is possible to correctly estimate the electrostatic contribution to the osmotic coefficient, beyond the range of validation of the D-H theory. This would allow development of a more fundamental model for electrostatic interaction at high electrolyte concentrations.

  9. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate.

    PubMed

    Kim, Taegeon; Canlier, Ali; Kim, Geun Hong; Choi, Jaeho; Park, Minkyu; Han, Seung Min

    2013-02-01

    In this work, a modified polyol synthesis by adding KBr and by replacing the AgCl with NaCl seed was used to obtain high quality silver nanowires with long aspect ratios with an average length of 13.5 μm in length and 62.5 nm in diameter. The Ag nanowires suspended in methanol solution after removing any unwanted particles using a glass filter system were then deposited on a flexible polycarbonate substrate using an electrostatic spray system. Transmittance of 92.1% at wavelength of 550 nm with sheet resistance of 20 Ω/sq and haze of 4.9% were measured for the electrostatic sprayed Ag nanowire transparent electrode.

  10. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  11. Data-driven local-scale modeling of ionospheric responses to auroral forcing using incoherent scatter radar and ground-based imaging measurements

    NASA Astrophysics Data System (ADS)

    Grubbs, G. A., II; Zettergren, M. D.; Samara, M.; Michell, R.; Hampton, D. L.; Lynch, K. A.; Varney, R. H.; Reimer, A.; Burleigh, M.

    2017-12-01

    The aurora encapsulates a wide range of spatial and temporal scale sizes, particularly during active events such as those that exist during substorm expansion. Of interest to the present work are ionospheric responses to magnetospheric forcing at relatively small scales (0.5-20 km), including formation of structured auroral arc current systems, ion frictional heating, upflow, and density cavity formation among other processes. Even for carefully arranged experiments, it is often difficult to fully assess physical details (time evolution, causality, unobservable parameters) associated with these types of responses, thus highlighting the general need for high-resolution modeling efforts to support the observations. In this work, we develop and test a local-scale model to describe effects of precipitating electrons and electric fields on the ionospheric plasma responses using available remote sensing data (e.g. from ISRs and filtered cameras). Our model is based on a 3D multi-fluid/electrostatic ionospheric model, GEMINI (Zettergren et al., 2015), coupled a two-stream electron transport code which produces auroral intensities, impact ionization, and thermal electron heating GLobal airglOW (GLOW; Solomon, 2017). GEMINI-GLOW thus describes both thermal and suprathermal effects on the ionosphere and is driven by boundary conditions consisting of topside ionospheric field-aligned currents and suprathermal electrons. These boundary conditions are constrained using time and space-dependent electric field and precipitation estimates from recent sounding rocket campaigns, ISINGLASS (02 March 2017) and GREECE (03 March 2014), derived from the Poker Flat incoherent scatter radar (PFISR) drifts and filtered EMCCD cameras respectively. Results from these data-driven case studies are compared to plasma parameter responses (i.e. density and temperature) independently estimated by PFISR and from the sounding rockets. These studies are intended as a first step towards a local-scale assimilative modeling approach where data-derived information will be fed back into the model to update the system state.

  12. Electrostatic precipitation is a novel way of maintaining visual field clarity during laparoscopic surgery: a prospective double-blind randomized controlled pilot study.

    PubMed

    Ansell, James; Warren, Neil; Wall, Pete; Cocks, Kim; Goddard, Stuart; Whiston, Richard; Stechman, Michael; Scott-Coombes, David; Torkington, Jared

    2014-07-01

    Ultravision™ is a new device that utilizes electrostatic precipitation to clear surgical smoke. The aim was to evaluate its performance during laparoscopic cholecystectomy. Patients undergoing laparoscopic cholecystectomy were randomized into "active (device on)" or "control (device off)." Three operating surgeons scored the percentage effective visibility and three reviewers scored the percentage of the procedure where smoke was present. All assessors also used a 5-point scale (1 = imperceptible/excellent and 5 = very annoying/bad) to rate visual impairment. Secondary outcomes were the number of smoke-related pauses, camera cleaning, and pneumoperitoneum reductions. Mean results are presented with 95% confidence intervals (CI). In 30 patients (active 13, control 17), the effective visibility was 89.2% (83.3-95.0) for active cases and 71.2% (65.7-76.7) for controls. The proportion of the procedure where smoke was present was 41.1% (33.8-48.3) for active cases and 61.5% (49.0-74.1) for controls. Operating surgeons rated the visual impairment as 2.2 (1.7-2.6) for active cases and 3.2 (2.8-3.5) for controls. Reviewers rated the visual impairment as 2.3 (2.0-2.5) for active cases and 3.2 (2.8-3.7) for controls. In the active group, 23% of procedures were paused to allow smoke clearance compared to 94% of control cases. Camera cleaning was not needed in 85% of active procedures and 35% of controls. The pneumoperitoneum was reduced in 0% of active cases and 88% of controls. Ultravision™ improves visibility during laparoscopic surgery and reduces delays in surgery for smoke clearance and camera cleaning.

  13. Removal kinetics for gaseous NO and SO2 by an aqueous NaClO2 solution mist in a wet electrostatic precipitator.

    PubMed

    Park, Hyun-Woo; Park, Dong-Wha

    2017-04-01

    Removal kinetics for NO and SO 2 by NaClO 2 solution mist were investigated in a wet electrostatic precipitator. By varying the molar concentrations of NO, SO 2 , and NaClO 2 , the removal rates of NO and SO 2 confirmed to range from 34.8 to 72.9 mmol/m 3  s and 36.6 to 84.7 mmol/m 3  s, respectively, at a fixed gas residence time of 0.25 s. The rate coefficients of NO and SO 2 were calculated to be 0.679 (mmol/m 3 ) -0.33  s -1 and 1.401 (mmol/m 3 ) -0.1  s -1 based on the rates of the individual removal of NO and SO 2 . Simultaneous removal of NO and SO 2 investigated after the evaluation of removal rates for their individual treatment was performed. At a short gas residence time, SO 2 gas removed more quickly by a mist of NaClO 2 solution than NO gas in simultaneous removal experiments. This is because SO 2 gas, which has a relatively high solubility in solution, was absorbed more rapidly at the gas-liquid interface than NO gas. NO and SO 2 gases were absorbed as nitrite [Formula: see text] and sulfite [Formula: see text] ions, respectively, by the NaClO 2 solution mist at the gas-liquid interface. Then, [Formula: see text] and [Formula: see text] were oxidized to nitrate [Formula: see text] and sulfate [Formula: see text], respectively, by reactions with [Formula: see text], ClO 2 , HClO, and ClO in the liquid phase.

  14. Polycyclic aromatic hydrocarbon emission profiles and removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettore Guerriero; Antonina Lutri; Rosanna Mabilia

    2008-11-15

    A monitoring campaign of polychlorinated dibenzo-p-dioxins and dibenzofurans, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyl was carried out in an Italian iron ore sintering plant by sampling the combustion gases at the electrostatic precipitator (ESP) outlet, at the Wetfine scrubber (WS) outlet, and by collecting the ESP dust. Few data are available on these micropollutants produced in iron ore sintering plants, particularly from Italian plants. This study investigates the PAH emission profiles and the removal efficiency of ESPs and WS. PAHs were determined at the stack, ESP outlet flue gases, and in ESP dust to characterize the emission profiles and themore » performance of the ESP and the WS for reducing PAH emission. The 11 PAHs monitored are listed in the Italian legislative decree 152/2006. The mean total PAH sum concentration in the stack flue gases is 3.96 {mu}g/N m{sup 3}, in ESP outlet flue gases is 9.73 {mu}g/N m{sup 3}, and in ESP dust is 0.53 {mu}g/g. Regarding the emission profiles, the most abundant compound is benzo(b)fluoranthene, which has a relative low BaP toxic equivalency factors (TEF) value, followed by dibenzo(a,l)pyrene, which has a very high BaP(TEF) value. The emission profiles in ESP dust and in the flue gases after the ESP show some changes, whereas the fingerprint in ESP and stack flue gases is very similar. The removal efficiency of the ESP and of WS on the total PAH concentration is 5.2 and 59.5%, respectively. 2 figs., 5 tabs.« less

  15. Heat exchanger life extension via in-situ reconditioning

    DOEpatents

    Holcomb, David E.; Muralidharan, Govindarajan

    2016-06-28

    A method of in-situ reconditioning a heat exchanger includes the steps of: providing an in-service heat exchanger comprising a precipitate-strengthened alloy wherein at least one mechanical property of the heat exchanger is degraded by coarsening of the precipitate, the in-service heat exchanger containing a molten salt working heat exchange fluid; deactivating the heat exchanger from service in-situ; in a solution-annealing step, in-situ heating the heat exchanger and molten salt working heat exchange fluid contained therein to a temperature and for a time period sufficient to dissolve the coarsened precipitate; in a quenching step, flowing the molten salt working heat-exchange fluid through the heat exchanger in-situ to cool the alloy and retain a supersaturated solid solution while preventing formation of large precipitates; and in an aging step, further varying the temperature of the flowing molten salt working heat-exchange fluid to re-precipitate the dissolved precipitate.

  16. Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size.

    PubMed

    Laaksonen, Timo; Ahonen, Päivi; Johans, Christoffer; Kontturi, Kyösti

    2006-10-13

    The solubility of charged nanoparticles is critically dependent on pH. However, the concentration range available with bases such as NaOH is quite narrow, since the particles precipitate due to compression of the electric double layer when the ionic strength is increased. The stability of mercaptoundecanoic acid-capped Au nanoparticles is studied at a set pH using the hydroxide as base and different cations of various sizes. The counterions used are sodium (Na(+)), tetramethylammonium (TMA(+)), tetraethylammonium (TEA(+)), and tetrabutylammonium (TBA(+)). The particles precipitate in the 70-90 mM range with Na(+) as the counterion, but with quaternary ammonium hydroxides the particles are stable even in concentrations exceeding 1 M. The change in solubility is linked to a strongly adsorbed layer on the surface of the ligand shell of the nanoparticles. The increased concentration range obtained with TEAOH is further used to facilitate thiol exchange which occurs at a greater extent than would be achieved in NaOH solution.

  17. KSC-2013-3906

    NASA Image and Video Library

    2013-11-07

    CAPE CANAVERAL, Fla. -- Preparations are underway to conduct a dust particle experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities. CAPE CANAVERAL, Fla. -- Preparations are underway to conduct a dust particle experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities.

  18. Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach.

    PubMed

    Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon

    2016-10-14

    The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.

  19. Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, Alexander I.; Sabirianov, Renat F.; Namavar, Fereydoon

    2016-10-01

    The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ˜80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.

  20. Status and perspectives for the electron beam technology for flue gases treatment

    NASA Astrophysics Data System (ADS)

    Frank, Norman W.

    The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.

  1. Evaluation of the influence of the internal aqueous solvent structure on electrostatic interactions at the protein-solvent interface by nonlocal continuum electrostatic approach.

    PubMed

    Rubinstein, Alexander; Sherman, Simon

    The dielectric properties of the polar solvent on the protein-solvent interface at small intercharge distances are still poorly explored. To deconvolute this problem and to evaluate the pair-wise electrostatic interaction (PEI) energies of the point charges located at the protein-solvent interface we used a nonlocal (NL) electrostatic approach along with a static NL dielectric response function of water. The influence of the aqueous solvent microstructure (determined by a strong nonelectrostatic correlation effect between water dipoles within the orientational Debye polarization mode) on electrostatic interactions at the interface was studied in our work. It was shown that the PEI energies can be significantly higher than the energies evaluated by the classical (local) consideration, treating water molecules as belonging to the bulk solvent with a high dielectric constant. Our analysis points to the existence of a rather extended, effective low-dielectric interfacial water shell on the protein surface. The main dielectric properties of this shell (effective thickness together with distance- and orientation-dependent dielectric permittivity function) were evaluated. The dramatic role of this shell was demonstrated when estimating the protein association rate constants.

  2. Effect of electrostatic interactions on the ultrafiltration behavior of charged bacterial capsular polysaccharides.

    PubMed

    Hadidi, Mahsa; Buckley, John J; Zydney, Andrew L

    2016-11-01

    Charged polysaccharides are used in the food industry, as cosmetics, and as vaccines. The viscosity, thermodynamics, and hydrodynamic properties of these charged polysaccharides are known to be strongly dependent on the solution ionic strength because of both inter- and intramolecular electrostatic interactions. The goal of this work was to quantitatively describe the effect of these electrostatic interactions on the ultrafiltration behavior of several charged capsular polysaccharides obtained from Streptococcus pneumoniae and used in the production of Pneumococcus vaccines. Ultrafiltration data were obtained using various Biomax™ polyethersulfone membranes with different nominal molecular weight cutoffs. Polysaccharide transmission decreased with decreasing ionic strength primarily because of the expansion of the charged polysaccharide associated with intramolecular electrostatic repulsion. Data were in good agreement with a simple theoretical model based on solute partitioning in porous membranes, with the effective size of the different polysaccharide serotypes evaluated using size exclusion chromatography at the same ionic conditions. These results provide fundamental insights and practical guidelines for exploiting the effects of electrostatic interactions during the ultrafiltration of charged polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1531-1538, 2016. © 2016 American Institute of Chemical Engineers.

  3. Multipolar electrostatics.

    PubMed

    Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A

    2014-06-14

    Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

  4. Electrostatic drift instability in a magnetotail configuration: The role of bouncing electrons

    NASA Astrophysics Data System (ADS)

    Fruit, G.; Louarn, P.; Tur, A.

    2017-03-01

    To understand the possible destabilization of two-dimensional current sheets, a kinetic model is proposed to describe the resonant interaction between electrostatic modes and trapped electrons that bounce within the sheet. This work follows the initial investigation by Tur, Louarn, and Yanovsky [Phys. Plasmas 17, 102905 (2010)] and Fruit, Louarn, and Tur [Phys. Plasmas 20, 022113 (2013)] that is revised and extended. Using a quasi-dipolar equilibrium state, the linearized gyro-kinetic Vlasov equation is solved for electrostatic fluctuations with a period of the order of the electron bounce period. Using an appropriated Fourier expansion of the particle motion along the magnetic field, the complete time integration of the non-local perturbed distribution functions is performed. The dispersion relation for electrostatic modes is then obtained through the quasineutrality condition. It is found that for a mildly stretched configuration ( L ˜8 ), strongly unstable electrostatic modes may develop in the current sheet with the growth rate of the order of a few seconds provided that the background density gradient responsible for the diamagnetic drift effects is sharp enough: typical length scale over one Earth radius or less. However, when this condition in the density gradient is not met, these electrostatic modes grow too slowly to be accountable for a rapid destabilization of the magnetic structure. This strong but finely tuned instability may offer opportunities to explain features in magnetospheric substorms.

  5. Continuous development of schemes for parallel computing of the electrostatics in biological systems: implementation in DelPhi.

    PubMed

    Li, Chuan; Petukh, Marharyta; Li, Lin; Alexov, Emil

    2013-08-15

    Due to the enormous importance of electrostatics in molecular biology, calculating the electrostatic potential and corresponding energies has become a standard computational approach for the study of biomolecules and nano-objects immersed in water and salt phase or other media. However, the electrostatics of large macromolecules and macromolecular complexes, including nano-objects, may not be obtainable via explicit methods and even the standard continuum electrostatics methods may not be applicable due to high computational time and memory requirements. Here, we report further development of the parallelization scheme reported in our previous work (Li, et al., J. Comput. Chem. 2012, 33, 1960) to include parallelization of the molecular surface and energy calculations components of the algorithm. The parallelization scheme utilizes different approaches such as space domain parallelization, algorithmic parallelization, multithreading, and task scheduling, depending on the quantity being calculated. This allows for efficient use of the computing resources of the corresponding computer cluster. The parallelization scheme is implemented in the popular software DelPhi and results in speedup of several folds. As a demonstration of the efficiency and capability of this methodology, the electrostatic potential, and electric field distributions are calculated for the bovine mitochondrial supercomplex illustrating their complex topology, which cannot be obtained by modeling the supercomplex components alone. Copyright © 2013 Wiley Periodicals, Inc.

  6. Electrostatic Unfolding and Interactions of Albumin Driven by pH Changes: A Molecular Dynamics Study

    PubMed Central

    2015-01-01

    A better understanding of protein aggregation is bound to translate into critical advances in several areas, including the treatment of misfolded protein disorders and the development of self-assembling biomaterials for novel commercial applications. Because of its ubiquity and clinical potential, albumin is one of the best-characterized models in protein aggregation research; but its properties in different conditions are not completely understood. Here, we carried out all-atom molecular dynamics simulations of albumin to understand how electrostatics can affect the conformation of a single albumin molecule just prior to self-assembly. We then analyzed the tertiary structure and solvent accessible surface area of albumin after electrostatically triggered partial denaturation. The data obtained from these single protein simulations allowed us to investigate the effect of electrostatic interactions between two proteins. The results of these simulations suggested that hydrophobic attractions and counterion binding may be strong enough to effectively overcome the electrostatic repulsions between the highly charged monomers. This work contributes to our general understanding of protein aggregation mechanisms, the importance of explicit consideration of free ions in protein solutions, provides critical new insights about the equilibrium conformation of albumin in its partially denatured state at low pH, and may spur significant progress in our efforts to develop biocompatible protein hydrogels driven by electrostatic partial denaturation. PMID:24393011

  7. Dielectric Boundary Force in Molecular Solvation with the Poisson–Boltzmann Free Energy: A Shape Derivative Approach

    PubMed Central

    Li, Bo; Cheng, Xiaoliang; Zhang, Zhengfang

    2013-01-01

    In an implicit-solvent description of molecular solvation, the electrostatic free energy is given through the electrostatic potential. This potential solves a boundary-value problem of the Poisson–Boltzmann equation in which the dielectric coefficient changes across the solute-solvent interface—the dielectric boundary. The dielectric boundary force acting on such a boundary is the negative first variation of the electrostatic free energy with respect to the location change of the boundary. In this work, the concept of shape derivative is used to define such variations and formulas of the dielectric boundary force are derived. It is shown that such a force is always in the direction toward the charged solute molecules. PMID:24058212

  8. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, S.; Mitsubishi Heavy Industry ltd., 16-5 Konan 2-chome, Minato-ku, Tokyo 108-8215; Baba, T.

    2014-11-10

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in themore » field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.« less

  9. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory

    PubMed Central

    Fowler, Nicholas J.; Blanford, Christopher F.

    2017-01-01

    Abstract Blue copper proteins, such as azurin, show dramatic changes in Cu2+/Cu+ reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high‐level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long‐range electrostatic changes and hence can be modeled accurately with continuum electrostatics. PMID:28815759

  10. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    NASA Astrophysics Data System (ADS)

    Harada, S.; Baba, T.; Uchigashima, A.; Yokota, S.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.; Shimizu, H.

    2014-11-01

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  11. Ferroelectric-like hysteresis loop originated from non-ferroelectric effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bora; Seol, Daehee; Lee, Shinbuhm

    Piezoresponse force microscopy (PFM) has provided advanced nanoscale understanding and analysis of ferroelectric and piezoelectric properties. In PFM-based studies, electromechanical strain induced by the converse piezoelectric effect is probed and analyzed as a PFM response. However, electromechanical strain can also arise from several non-piezoelectric origins that may lead to a misinterpretation of the observed response. Among them, electrostatic interaction can significantly affect the PFM response. Nonetheless, previous studies explored solely the influence of electrostatic interaction on the PFM response under the situation accompanied with polarization switching. Here, we show the influence of the electrostatic interaction in the absence of polarizationmore » switching by using unipolar voltage sweep. The obtained results reveal that the electromechanical neutralization between piezoresponse of polarization and electrostatic interaction plays a crucial role in the observed ferroelectric-like hysteresis loop despite the absence of polarization switching. Furthermore, our work can provide a basic guideline for the correct interpretation of the hysteresis loop in PFM-based studies.« less

  12. Ferroelectric-like hysteresis loop originated from non-ferroelectric effects

    DOE PAGES

    Kim, Bora; Seol, Daehee; Lee, Shinbuhm; ...

    2016-09-06

    Piezoresponse force microscopy (PFM) has provided advanced nanoscale understanding and analysis of ferroelectric and piezoelectric properties. In PFM-based studies, electromechanical strain induced by the converse piezoelectric effect is probed and analyzed as a PFM response. However, electromechanical strain can also arise from several non-piezoelectric origins that may lead to a misinterpretation of the observed response. Among them, electrostatic interaction can significantly affect the PFM response. Nonetheless, previous studies explored solely the influence of electrostatic interaction on the PFM response under the situation accompanied with polarization switching. Here, we show the influence of the electrostatic interaction in the absence of polarizationmore » switching by using unipolar voltage sweep. The obtained results reveal that the electromechanical neutralization between piezoresponse of polarization and electrostatic interaction plays a crucial role in the observed ferroelectric-like hysteresis loop despite the absence of polarization switching. Furthermore, our work can provide a basic guideline for the correct interpretation of the hysteresis loop in PFM-based studies.« less

  13. Effect of externally applied electrostatic fields on the surface topography of ceramide-enriched domains in mixed monolayers with sphingomyelin.

    PubMed

    Wilke, Natalia; Maggio, Bruno

    2006-06-20

    Lipid and protein molecules anisotropically oriented at a hydrocarbon-aqueous interface configure a dynamic array of self-organized molecular dipoles. Electrostatic fields applied to lipid monolayers have been shown to induce in-plane migration of domains or phase separation in a homogeneous system. In this work, we have investigated the effect of externally applied electrostatic fields on the distribution of the condensed ceramide-enriched domains in mixed monolayers with sphingomyelin. In these monolayers, the lipids segregate in different phases at all pressures. This allows analyzing by epifluorescence microscopy the effect of the electrostatic field at all lateral pressure because coexistence of lipid domains in condensed state are always present. Our observations indicate that a positive potential applied to an electrode placed over the monolayer promotes a repulsion of the ceramide-enriched domains which is rather insensitive to the film composition, depends inversely on the lateral pressure and exhibits threshold dependence on the in-plane elasticity.

  14. Bacterially mediated mineralization of vaterite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Navarro, Carlos; Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Gonzalez-Muñoz, Maria Teresa; Rodriguez-Gallego, Manuel

    2007-03-01

    Myxococcus xanthus, a common soil bacterium, plays an active role in the formation of spheroidal vaterite. Bacterial production of CO 2 and NH 3 and the transformation of the NH 3 to NH4+ and OH -, thus increasing solution pH and carbonate alkalinity, set the physicochemical conditions (high supersaturation) leading to vaterite precipitation in the microenvironment around cells, and directly onto the surface of bacterial cells. In the latter case, fossilization of bacteria occurs. Vaterite crystals formed by aggregation of oriented nanocrystals with c-axis normal to the bacterial cell-wall, or to the core of the spherulite when bacteria were not encapsulated. While preferred orientation of vaterite c-axis appears to be determined by electrostatic affinity (ionotropic effect) between vaterite crystal (0001) planes and the negatively charged functional groups of organic molecules on the bacterium cell-wall or on extracellular polymeric substances (EPS), analysis of the changes in the culture medium chemistry as well as high resolution transmission electron microscopy (HRTEM) observations point to polymorph selection by physicochemical (kinetic) factors (high supersaturation) and stabilization by organics, both connected with bacterial activity. The latter is in agreement with inorganic precipitation of vaterite induced by NH 3 and CO 2 addition in the protein-rich sterile culture medium. Our results as well as recent studies on vaterite precipitation in the presence of different types of bacteria suggest that bacterially mediated vaterite precipitation is not strain-specific, and could be more common than previously thought.

  15. Liquid additives for particulate emissions control

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  16. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    DOEpatents

    Nelson, Sidney [Hudson, OH

    2011-02-15

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  17. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Shoji; Namba, Hideki; Tokunaga, Okihiro

    1995-06-01

    Construction of a pilot plant of the treatment capacity of 12,000 m{sup 3}N/h flue gas was completed in November, 1992 in the Shin-Nagoya Thermal Power Station, Nagoya for electron beam purification of flue-gas from coal combustion boiler and the operation had been continued during one year. The results obtained In the tests shows that the target removal efficiency for SO{sub 2} (94 %) and for NO{sub x} (80 %) was achieved with appropriate operation conditions (electron beam dose, temperature, amount of ammonia etc.). The effective collection of powdery by-products was performed by an electrostatic precipitator.

  18. Biological removal of cationic fission products from nuclear wastewater.

    PubMed

    Ngwenya, N; Chirwa, E M N

    2011-01-01

    Nuclear energy is becoming a preferred energy source amidst rising concerns over the impacts of fossil fuel based energy on global warming and climate change. However, the radioactive waste generated during nuclear power generation contains harmful long-lived fission products such as strontium (Sr). In this study, cationic strontium uptake from solution by microbial cultures obtained from mine wastewater is evaluated. A high strontium removal capacity (q(max)) with maximum loading of 444 mg/g biomass was achieved by a mixed sulphate reducing bacteria (SRB) culture. Sr removal in SRB was facilitated by cell surface based electrostatic interactions with the formation of weak ionic bonds, as 68% of the adsorbed Sr(2+) was easily desorbed from the biomass in an ion exchange reaction with MgCl₂. To a lesser extent, precipitation reactions were also found to account for the removal of Sr from aqueous solution as about 3% of the sorbed Sr was precipitated due to the presence of chemical ligands while the remainder occurred as an immobile fraction. Further analysis of the Sr-loaded SRB biomass by scanning electron microscopy (SEM) coupled to energy dispersive X-ray (EDX) confirmed extracellular Sr(2+) precipitation as a result of chemical interaction. In summary, the obtained results demonstrate the prospects of using biological technologies for the remediation of industrial wastewaters contaminated by fission products.

  19. Onset of phase separation in the double perovskite oxide La 2 MnNiO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spurgeon, Steven R.; Sushko, Peter V.; Devaraj, Arun

    2018-04-01

    Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La2MnNiO6 (LMNO) thin films supported on SrTiO3 (STO) proceeds up to 1–5 nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged x-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. Ab initio simulations suggest that the electrostatic potential build-up associated with the polarity mismatch atmore » the film-substrate interface promotes the formation of oxygen vacancies with increasing thickness. In turn, oxygen deficiency promotes the formation of Ni-rich regions, which points to the built-in potential as an additional factor that contributes to the NiO precipitation mechanisms. These results suggest that the precipitate-free region could be extended further by either incorporating dopants that suppress the built-in potential or by increasing the oxygen fugacity in order to suppress the formation of oxygen vacancies.« less

  20. Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu; Wen, Tiliang; Diamond, P. H.

    2016-08-11

    Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux—more » $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux $$\\langle {{\\tilde{v}}_{r}}\\tilde{n}{{\\tilde{v}}_{\\theta}}\\rangle $$ in strong electrostatic turbulence is calculated using the Hasegawa–Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.« less

  1. Electrostatics effects in granular materials

    NASA Astrophysics Data System (ADS)

    Sarkar, Saurabh; Chaudhuri, Bodhisattwa

    2013-06-01

    This purpose of this study is to investigate the role of physiochemical properties and operational conditions in determining the electrostatic interactions between two species on a surface under typical industrial conditions. The variables considered for the study were particle type, particle size and shape, loading mass, surface type, angle of inclination of chute, nature and concentration of additive. Triboelectrification of simple and binary mixtures in a simple hopper and chute geometry was observed to be strongly linked to work function and moisture content of the powdered material.

  2. The Interactions Between Three Typical PPCPs and LDH

    PubMed Central

    Li, Erwei; Liao, Libing; Lv, Guocheng; Li, Zhaohui; Yang, Chengxue; Lu, Yanan

    2018-01-01

    With a layered structure, layered double hydroxide (LDH) has potential applications in remediation of anionic contaminants, which has been a hot topic for recent years. In this study, a Cl type Mg-Al hydrotalcite (Cl-LDH) was prepared by a co-precipitation method. The adsorption process of three pharmaceuticals and personal care products (PPCPs) [tetracycline (TC), diclofenac sodium (DF), chloramphenicol (CAP)] by Cl-LDH was investigated by X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), BET, Fourier transform infrared (FTIR) spectroscopy, and molecular dynamics simulation. The results showed that the adsorption equilibrium of TC and DF could be reached in 120 min, and the maximum adsorption capacity of the TC and DF were 1.85 and 0.95 mmol/g, respectively. The isothermal adsorption model of TC was fitted with the Freundlich adsorption model, and the isothermal adsorption model of DF was fitted with the Langmuir adsorption model. The adsorption dynamics of TC and DF followed the pseudo-second-order model. The adsorption mechanisms of the three PPCPs into Cl-LDH were different based on the experimental results and molecular dynamics simulation. The TC adsorption on Cl-LDH was accompanied by the electrostatic interactions between the negative charge of TC and the positive charge of Cl-LDH. The uptake of DF was attributed to anion exchange and electrostatic interaction. Cl-LDH does not adsorb CAP due to no electrostatic interaction. The molecular dynamic simulation further confirmed different configurations of three selected PPCPs, which were ultimately responsible for the uptake of PPCPs on Cl-LDH. PMID:29556493

  3. Drift dust acoustic soliton in the presence of field-aligned sheared flow and nonextensivity effects

    NASA Astrophysics Data System (ADS)

    Shah, AttaUllah; Mushtaq, A.; Farooq, M.; Khan, Aurangzeb; Aman-ur-Rehman

    2018-05-01

    Low frequency electrostatic dust drift acoustic (DDA) waves are studied in an inhomogeneous dust magnetoplasma comprised of dust components of opposite polarity, Boltzmannian ions, and nonextensive distributed electrons. The magnetic-field-aligned dust sheared flow drives the electrostatic drift waves in the presence of ions and electrons. The sheared flow decreases or increases the frequency of the DDA wave, mostly depending on its polarity. The conditions of instability for this mode, with nonextensivity and dust streaming effects, are discussed. The nonlinear dynamics is then investigated for the DDA wave by deriving the Koeteweg-deVries (KdV) nonlinear equation. The KdV equation yields an electrostatic structure in the form of a DDA soliton. The relevancy of the work to laboratory four component dusty plasmas is illustrated.

  4. Development of a Tunnel Diode Resonator technique for magnetic measurements in Electrostatic Levitation chamber

    NASA Astrophysics Data System (ADS)

    Spyrison, N. S.; Prommapan, P.; Kim, H.; Maloney, J.; Rustan, G. E.; Kreyssig, A.; Goldman, A. I.; Prozorov, R.

    2011-03-01

    The incorporation of the Tunnel Diode Resonator (TDR) technique into an ElectroStatic Levitation (ESL) apparatus was explored. The TDR technique is known to operate and behave well at low temperatures with careful attention to coil-sample positioning in a dark, shielded environment. With these specifications a frequency resolution of 10-9 in a few seconds counting time can be achieved. Complications arise when this technique is applied in the ESL chamber where a sample of molten metal is levitating less then 10 mm from the coil in a large electrostatic field. We have tested a variety of coils unconventional to TDR; including Helmholtz pairs and Archimedean spiral coils. Work was supported by the Nation Science Foundation under grant DMR-08-17157

  5. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria.

    PubMed

    Teemu, Halttunen; Seppo, Salminen; Jussi, Meriluoto; Raija, Tahvonen; Kalle, Lertola

    2008-07-15

    Extensive cadmium and lead contamination of water has been reported to occur locally as a result of human activities. Lactic acid bacteria have been reported to remove cadmium and lead from water. The aim of this work was to clarify the mechanisms of cadmium and lead removal from water. In addition, the effect of other metals, reversibility of binding and recyclability of the biomass was assessed. Based on our earlier data, the two most promising lactic acid bacteria, Lactobacillus fermentum ME3 and Bifidobacterium longum 46, were selected for these experiments. The results showed that the presence of other cationic metals and blocking of carboxyl and phosphoryl groups reduced cadmium and lead removal. These results suggest involvement of electrostatic interactions in cadmium and lead removal, and support our earlier findings. Transmission electron micrographs showed large deposits of lead on the bacterial surface suggesting formation of metallic lead precipitates. Both cadmium and lead removal were reversible processes established by full recovery of removed metal after desorption with dilute solutions of EDTA and HNO(3). Resorption capacity of both biomasses tested was reduced after regeneration with 10 mM EDTA and 15 mM HNO(3). Taken together, the results suggest involvement of several reversible mechanisms such as ion exchange and precipitation in cadmium and lead binding by lactic acid bacteria. The results show that specific lactic acid bacteria have the potential for removal of cadmium and lead from water although reduction in resorption capacity after regeneration of the biomass may form a problem. Since the studies so far have mainly focused on removal of single metals from pure water, metal removal in conditions of natural waters should be assessed in further experiments.

  6. Trigger, an active release experiment that stimulated auroral particle precipitation and wave emissions

    NASA Technical Reports Server (NTRS)

    Holmgren, G.; Bostroem, R.; Kelley, M. C.; Kintner, P. M.; Lundin, R.; Fahleson, U. V.; Bering, E. A.; Sheldon, W. R.

    1979-01-01

    The experiment design, including a description of the diagnostic and chemical release payload, and the general results are given for an auroral process simulation experiment. A drastic increase of the field aligned charged particle flux was observed over the approximate energy range 10 eV to more than 300 keV, starting about 150 ms after the release and lasting about one second. The is evidence of a second particle burst, starting one second after the release and lasting for tens of seconds, and evidence for a periodic train of particle bursts occurring with a 7.7 second period from 40 to 130 seconds after the release. A transient electric field pulse of 200 mv/m appeared just before the particle flux increase started. Electrostatic wave emissions around 2 kHz, as well as a delayed perturbation of the E-region below the plasma cloud were also observed. Some of the particle observations are interpreted in terms of field aligned electrostatic acceleration a few hundred kilometers above the injected plasma cloud. It is suggested that the acceleration electric field was created by an instability driven by field aligned currents originating in the plasma cloud.

  7. Sampling and analysis of aircraft engine cold start particles and demonstration of an electrostatic personal particle sampler.

    PubMed

    Armendariz, Alfredo; Leith, David; Boundy, Maryanne; Goodman, Randall; Smith, Les; Carlton, Gary

    2003-01-01

    Aircraft engines emit an aerosol plume during startup in extremely cold weather that can drift into areas occupied by flightline ground crews. This study tested a personal sampler used to assess exposure to particles in the plume under challenging field conditions. Area and personal samples were taken at two U.S. Air Force (USAF) flightlines during the winter months. Small tube-and-wire electrostatic precipitators (ESPs) were mounted on a stationary stand positioned behind the engines to sample the exhaust. Other ESPs were worn by ground crews to sample breathing zone concentrations. In addition, an aerodynamic particle sizer 3320 (APS) was used to determine the size distribution of the particles. Samples collected with the ESP were solvent extracted and analyzed with gas chromatography-mass spectrometry. Results indicated that the plume consisted of up to 75 mg/m(3) of unburned jet fuel particles. The APS showed that nearly the entire particle mass was respirable, because the plumes had mass median diameters less than 2 micro m. These tests demonstrated that the ESP could be used at cold USAF flightlines to perform exposure assessments to the cold start particles.

  8. Experimental study of electrostatic discharges of spacecraft solar array protective coatings under radiation

    NASA Astrophysics Data System (ADS)

    Khasanshin, Rashid; Novikov, Lev

    Action of charged particles on low-conductive dielectrics causes formation of areas with a high charge density inside; their fields may give rise to development of electrostatic discharge between the charged area and the surface of the dielectric. Discharge channels are growing due to breakdown of dielectric and formation of a conducting phase. Generation of the channels is a complex stochastic process accompanied by such physical and chemical processes as ionization, gas formation, heating, and so on, which cause formation of conducting phase in a glass. That is why no quantitative theory describing formation of conductive channels has been formulated yet. The study of electrostatic discharges in dielectrics under radiation is essential both from a scientific point of view and for the solution of applied problems. In particular, interaction of a spacecraft with ambient plasma causes accumulation of electric charges on its surface producing, as a consequence, electric potential between the spacecraft surface and the plasma. For example, potentials on the surface of satellites operating on a geostationary orbit reach up to 20 kV. Elec-trostatic discharges caused by such potentials can produce not only the considerable electromag-netic interference, but also lead to the destruction of hardware components and structural ele-ments. Electrostatic charging due to electrons from the Earth’s radiation belts causes degradation of solar arrays as a result of surface and internal electrostatic discharges. In the work, surface of K-208 spacecraft solar array protective coatings irradiated by 20 and 40 keV electrons and protons has studied using by AFM methods. Traces of electrostatic dis-charges at different radiation flux densities were analyzed.

  9. Compressive sensing-based electrostatic sensor array signal processing and exhausted abnormal debris detecting

    NASA Astrophysics Data System (ADS)

    Tang, Xin; Chen, Zhongsheng; Li, Yue; Yang, Yongmin

    2018-05-01

    When faults happen at gas path components of gas turbines, some sparsely-distributed and charged debris will be generated and released into the exhaust gas. The debris is called abnormal debris. Electrostatic sensors can detect the debris online and further indicate the faults. It is generally considered that, under a specific working condition, a more serious fault generates more and larger debris, and a piece of larger debris carries more charge. Therefore, the amount and charge of the abnormal debris are important indicators of the fault severity. However, because an electrostatic sensor can only detect the superposed effect on the electrostatic field of all the debris, it can hardly identify the amount and position of the debris. Moreover, because signals of electrostatic sensors depend on not only charge but also position of debris, and the position information is difficult to acquire, measuring debris charge accurately using the electrostatic detecting method is still a technical difficulty. To solve these problems, a hemisphere-shaped electrostatic sensors' circular array (HSESCA) is used, and an array signal processing method based on compressive sensing (CS) is proposed in this paper. To research in a theoretical framework of CS, the measurement model of the HSESCA is discretized into a sparse representation form by meshing. In this way, the amount and charge of the abnormal debris are described as a sparse vector. It is further reconstructed by constraining l1-norm when solving an underdetermined equation. In addition, a pre-processing method based on singular value decomposition and a result calibration method based on weighted-centroid algorithm are applied to ensure the accuracy of the reconstruction. The proposed method is validated by both numerical simulations and experiments. Reconstruction errors, characteristics of the results and some related factors are discussed.

  10. Application of Glow Discharge Plasma to Alter Surface Properties of Materials

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Buhler, Charles R.; Calle, Carlos I.

    2005-01-01

    Some polymer materials that are considered important for spaceport operations are rendered noncompliant when subjected to the Kennedy Space Center (KSC) Standard electrostatic testing. These materials operate in stringent environmental conditions, such as high humidity. Treating materials that fail electrostatic testing and altering their surface properties so that they become compliant would result in considerable cost savings. Significant improvement in electrostatic dissipation of Saf-T-Vu PVC after treatment with air Atmospheric Plasma Glow Discharge (APGD) was observed and the material now passed the KSC electrostatic test. The O:C ratio on the surface, as monitored by X-ray Photoelectron Spectroscopy, increased from 0.165 tO 0.275 indicating enhanced oxidation, and surface contact angle measurements decreased from 107.5 to 72.6 showing increased hydrophilicity that accounted for the increased conductivity. Monitoring of the aging showed that the materials hydrophobic recovery resulted in it failing the electrostatic test 30 hours after treatment. This was probably due to the out-diffusion of the added Zn, Ba, and Cd salt stabilizers detected on the surface and/or diffusion of low molecular weight oligomers. On going work includes improving the long term hydrophilicity by optimizing the APGD process with different gas mixtures. Treatment of other spaceport materials is also presented.

  11. The electrostatic characteristics of G·U wobble base pairs

    PubMed Central

    Xu, Darui; Landon, Theresa; Greenbaum, Nancy L.; Fenley, Marcia O.

    2007-01-01

    G·U wobble base pairs are the most common and highly conserved non-Watson–Crick base pairs in RNA. Previous surface maps imply uniformly negative electrostatic potential at the major groove of G·U wobble base pairs embedded in RNA helices, suitable for entrapment of cationic ligands. In this work, we have used a Poisson–Boltzmann approach to gain a more detailed and accurate characterization of the electrostatic profile. We found that the major groove edge of an isolated G·U wobble displays distinctly enhanced negativity compared with standard GC or AU base pairs; however, in the context of different helical motifs, the electrostatic pattern varies. G·U wobbles with distinct widening have similar major groove electrostatic potentials to their canonical counterparts, whereas those with minimal widening exhibit significantly enhanced electronegativity, ranging from 0.8 to 2.5 kT/e, depending upon structural features. We propose that the negativity at the major groove of G·U wobble base pairs is determined by the combined effect of the base atoms and the sugar-phosphate backbone, which is impacted by stacking pattern and groove width as a result of base sequence. These findings are significant in that they provide predictive power with respect to which G·U sites in RNA are most likely to bind cationic ligands. PMID:17526525

  12. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory.

    PubMed

    Fowler, Nicholas J; Blanford, Christopher F; Warwicker, Jim; de Visser, Sam P

    2017-11-02

    Blue copper proteins, such as azurin, show dramatic changes in Cu 2+ /Cu + reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high-level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long-range electrostatic changes and hence can be modeled accurately with continuum electrostatics. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Electrostatic Interactions Govern "Odd/Even" Effects in Water-Induced Gemini Surfactant Self-Assembly.

    PubMed

    Mantha, Sriteja; McDaniel, Jesse G; Perroni, Dominic V; Mahanthappa, Mahesh K; Yethiraj, Arun

    2017-01-26

    Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water-concentration-dependent lyotropic liquid crystal morphologies that are sensitive to surfactant molecular structure and the nature of the headgroups and counterions. Recently, an interesting dependence of the aqueous-phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker surfactants. In this work, we investigate this "odd/even effect" using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, seven nonterminal carbon atoms in the tails, and either three, four, five, or six carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76, respectively). We find that the relative electrostatic repulsion between headgroups in the different morphologies is correlated with the qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup orientations of Na-74 and Na-76 compared to those of Na-73 and Na-75 surfactants lead to differences in linker-linker packing and long-range headgroup-headgroup electrostatic repulsion, which affects the delicate electrostatic balance between the hexagonal and gyroid phases. Much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.

  14. KSC-2013-3908

    NASA Image and Video Library

    2013-11-07

    CAPE CANAVERAL, Fla. -- Dust particles scatter during an experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The fabricated material is designed to mimic the dust on the lunar surface. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities. CAPE CANAVERAL, Fla. -- Preparations are underway to conduct a dust particle experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities.

  15. KSC-2013-3907

    NASA Image and Video Library

    2013-11-07

    CAPE CANAVERAL, Fla. -- Dust particles are readied for an experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The fabricated material is designed to mimic the dust on the lunar surface. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities. CAPE CANAVERAL, Fla. -- Preparations are underway to conduct a dust particle experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities.

  16. Role of out-of-plane dielectric thickness in the electrostatic simulation of atomically thin lateral junctions

    NASA Astrophysics Data System (ADS)

    Nipane, Ankur; Zhang, Yefei; Teherani, James T.

    2018-06-01

    Two-dimensional materials enable novel electronic and optoelectronic devices due to their unique properties. Device modeling plays a fundamental role in developing these novel devices by providing insights into the underlying physics. In this work, we present the dramatic impact of the simulated out-of-plane dielectric thickness on the electrostatics of lateral junctions formed from atomically thin materials. We show that unlike bulk junctions, the boundary conditions on the edges of the simulation region significantly affect the electrostatics of two-dimensional (2D) lateral junctions by modifying the out-of-plane electric field. We also present an intuitive understanding of the Neumann boundary conditions imposed on the boundaries of the simulation region. The Neumann boundary conditions alter the intended simulation by generating reflections of the device across the boundaries. Finally, we derive a minimal dielectric thickness for a symmetrically doped 2D lateral p-n junction, above which the out-of-plane simulation region boundaries minimally affect the simulated electric field, electrostatic potential, and depletion width of the junction.

  17. Multilayer out-of-plane overlap electrostatic energy harvesting structure actuated by blood pressure for powering intra-cardiac implants

    NASA Astrophysics Data System (ADS)

    Deterre, M.; Risquez, S.; Bouthaud, B.; Dal Molin, R.; Woytasik, M.; Lefeuvre, E.

    2013-12-01

    We present an innovative multilayer out-of-plane electrostatic energy harvesting device conceived in view of scavenging energy from regular blood pressure in the heart. This concept involves the use of a deformable packaging for the implant in order to transmit the blood pressure to the electrostatic transducer. As shown in previous work, this is possible by using thin metal micro-bellows structure, providing long term hermeticity and high flexibility. The design of the electrostatic device has overcome several challenges such as the very low frequency of the mechanical excitation (1 to 2 Hz) and the small available room in the medical implant. Analytical and numerical models have been used to maximize the capacitance variation, and hence to optimize the energy conversion. We have theoretically shown that a 25-layer transducer with 6-mm diameter and 1-mm thickness could harvest at least 20 mJ per heart beat in the left ventricle under a maximum voltage of 75 V. These results show that the proposed concept is promising and could power the next generation of leadless pacemakers.

  18. A numerical study on liquid charging inside electrostatic atomizers

    NASA Astrophysics Data System (ADS)

    Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad

    2016-11-01

    The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.

  19. A retrospective of the career of Ray Herb

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Ferry, J. A.; Daniel, R. E.; Klody, G. M.

    1999-04-01

    Ray Herb's career in the development of electrostatic accelerators spans 65 years. He began in 1933 by pressurizing a Van de Graaff generator, for the first time. Over the next six years, the group at the University of Wisconsin, under his direction, developed the fundamentals of equipotential rings, potential grading, corona triode control, and other basic mechanisms for the practical use of electrostatic accelerators while making fundamental contributions to experimental nuclear physics. This group held the world's record in sustaining potential difference of 4.5 MV. During World War II, he worked on radar at the Radiation Laboratory. After the war, Herb resumed his career with further fundamental contributions including metal/ceramic bonding, ultrahigh vacuum pumping, negative ion source development and metal charge carriers. The company, National Electrostatics, under his direction manufactured the accelerator which still holds the world's record for the highest sustained potential difference of 32±1.5 MV. Throughout his career he led teams which made the electrostatic accelerator a valuable tool for applications in a wide variety of scientific fields, well beyond nuclear physics.

  20. PREFACE: Electrostatics 2015

    NASA Astrophysics Data System (ADS)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical presentation related to their work. Chilworth Technology and Infolytica both took advantage of this opportunity. David Firth from Chilworth Technology delivered some case studies related to process safety and Chris Emson from Infolytica compared the different types of modelling software used in industry and academia. For two days of the conference, an exhibition was held for delegates to meet and discuss their work with interested companies. Sessions on Modelling and Simulation and on Measurement and Instrumentation were included. Recent successful IOP meetings on Electrospinning and Electrospray prove that this is an important topic, and were the subject of a session in the conference, including an invited talk by Dr Horst von Recum on Electrospun materials for affinity based drug delivery. The conference finished with a session on Environmental and Space Applications. The Southampton Yacht Club provided a fitting venue for the conference dinner on the Wednesday evening. Meal times, and conference dinners in particular, are always a great opportunity to meet with other workers in related fields, and there were many conversations started in question and answer sessions that continued over a plate of food. Within the conference dinner, prizes were awarded for the best student work. Ladislav Konopka's talk in the modelling and simulation session discussed how different particle sizes can be shown to transfer charge in a modelled system. Matthias Perez's poster presented early work on the use of a small-scale wind turbine to generate wind power. The discussions both within the lecture theatre and the ongoing discussions that occur over coffee and tea in between sessions are often a place where new ideas are shared. In fact, the presentation submitted by Dr Atsushi Ohsawa, Charge neutralisation from the side surface of an insulating plate, acknowledged an inspiration from a question raised at a previous Electrostatics conference in Budapest in 2013. In these proceedings the conference committee took the decision to transcribe the questions and answers to leave a lasting record of the conversations that took place after each oral presentation and they are included in the printed proceedings. I am very grateful to Keith Davies and the conference committee, and Joanne Hemstock and other IOP staff, who provided advice and assistance throughout the whole process. A peer reviewed proceedings is not possible without willing expert reviewers who are able to provide reviews on abstracts and submitted papers. I am grateful to all who undertook reviews throughout the process. I hope to see many of this year's delegates in four years time for Electrostatics 2019.

  1. Electric Fields and Enzyme Catalysis

    PubMed Central

    Fried, Stephen D.; Boxer, Steven G.

    2017-01-01

    What happens inside an enzyme’s active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists’ attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme’s active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site. PMID:28375745

  2. Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Kennedy Space Center (KSC) Electrostatics and Surface Physics Laboratory is participating in an Innovative Partnership Program (IPP) project with an industry partner to modify a commercial off-the-shelf simulation software product to treat the electrodynamics of particulate systems. Discrete element modeling (DEM) is a numerical technique that can track the dynamics of particle systems. This technique, which was introduced in 1979 for analysis of rock mechanics, was recently refined to include the contact force interaction of particles with arbitrary surfaces and moving machinery. In our work, we endeavor to incorporate electrostatic forces into the DEM calculations to enhance the fidelity of the software and its applicability to (1) particle processes, such as electrophotography, that are greatly affected by electrostatic forces, (2) grain and dust transport, and (3) the study of lunar and Martian regoliths.

  3. Survey of flue gas desulfurization systems: Dickerson Station, Potomac Electric Power Co. Final report, Feb--Aug 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, G.A.

    1975-09-01

    Results are given of a survey of a flue gas desulfurization system, utilizing the Chemico/Basic MgO-SO2 removal/recovery process, that has been retrofitted to handle approximately half of the exhaust gas from the 190 MW unit 3 at Potomac Electric Power Company's Dickerson Station. The system was installed at a cost of SO.5 million. The boiler burns 2% sulfur coal and is equipped with a 94% efficient electrostatic precipitator. A single two-stage scrubber/absorber is used. The liquor streams for the two stages are separate, both operating in a closed-loop mode. Magnesium oxide (MgO) is regenerated off-site. (GRA)

  4. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  5. Liquid additives for particulate emissions control

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1999-01-05

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  6. Method and apparatus for decreased undesired particle emissions in gas streams

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Bustard, C.J.

    1999-04-13

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 5 figs.

  7. Method and apparatus for decreased undesired particle emissions in gas streams

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Bustard, Cynthia Jean

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  8. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1998-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  9. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  10. Update on specified European R and D efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    Information was collected for DOE on various European research programs of interest: Shell-Koppers coal gasification demonstration plant, fluidized-bed combustion pilot plant, a boiler super heat system, energy conservation on ships, waste heat utilization from large diesel engines and nuclear power plants and uranium enrichment plants, coal-water slurries with additive (CARBOGEL), electrostatic precipitators, radial inflow turbines, carbonization, heat pumps, heat exchangers, gas turbines, and research on heat resisting alloys and corrosion protection of these alloys. A number of organizations expressed a desire for creation of a formal interchange with DOE on specific subjects of mutual interest (one organization is unhappy aboutmore » furnishing information to DOE). (LTN)« less

  11. Superthermal Electron Magnetosphere-Ionosphere Coupling in the Diffuse Aurora in the Presence of ECH Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Tripathi, A. K.; Singhal, R. P.; Himwich, Elizabeth; Glocer, A.; Sibeck, D. G.

    2015-01-01

    There are two main theories for the origin of the diffuse auroral electron precipitation: first, pitch angle scattering by electrostatic electron cyclotron harmonic (ECH) waves, and second, by whistler mode waves. Precipitating electrons initially injected from the plasma sheet to the loss cone via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These secondary electrons can escape back to the magnetosphere, become trapped on closed magnetic field lines, and deposit their energy back to the inner magnetosphere. ECH and whistler mode waves can also move electrons in the opposite direction, from the loss cone into the trap zone, if the source of such electrons exists in conjugate ionospheres located at the same field lines as the trapped magnetospheric electron population. Such a situation exists in the simulation scenario of superthermal electron energy interplay in the region of diffuse aurora presented and discussed by Khazanov et al. (2014) and will be quantified in this paper by taking into account the interaction of secondary electrons with ECH waves.

  12. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation.

    PubMed

    Dai, Lei; Sun, Cuixia; Li, Ruirui; Mao, Like; Liu, Fuguo; Gao, Yanxiang

    2017-12-15

    Curcumin (Cur) exhibits a range of bioactive properties, but its application is restrained due to its poor water solubility and sensitivity to environmental stresses. In this study, zein-lecithin composite nanoparticles were fabricated by antisolvent co-precipitation technique for delivery of Cur. The result showed that the encapsulation efficiency of Cur was significantly enhanced from 42.03% in zein nanoparticles to 99.83% in zein-lecithin composite nanoparticles. The Cur entrapped in the nanoparticles was in an amorphous state confirmed by differential scanning calorimetry and X-ray diffraction. Fourier transform infrared analysis revealed that hydrogen bonding, electrostatic interaction and hydrophobic attraction were the main interactions among zein, lecithin, and Cur. Compared with single zein and lecithin nanoparticles, zein-lecithin composite nanoparticles significantly improved the stability of Cur against thermal treatment, UV irradiation and high ionic strength. Therefore, zein-lecithin composite nanoparticles could be a potential delivery system for water-insoluble bioactive compounds with enhanced encapsulation efficiency and chemical stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Five years of full-scale utility demonstration of pulsed energization of electric precipitators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, S.A.; Jacobus, P.L.; Casey, P.J.

    1996-11-01

    In a conventional electrostatic precipitator (ESP) the applied dc voltage fulfills three functions: (1) generation of negative ions, (2) charging of particles, and (3) transport of the charged particles to the collecting plates. In the case of high resistivity fly-ash (often associated with the burning of low sulfur coal) the dc voltage is limited by repeated electrical discharges and in extreme cases by back-corona. Lowering the applied dc voltage reduces sparking and back-corona, but also reduces the field on the discharge wires and leads to poorly distributed ion generation as well as reduced charging and particle transport forces. Pulsed energization,more » which consists of superimposing high voltage pulses of short duration onto the existing base dc voltage, offers an attractive way to improve the collection efficiency of ESPs suffering from poor energization. The superimposed pulses become responsible for uniform ion generation while the underlying dc field continues to fulfill the function of particle charging and transport. This paper describes the five-year test of the ESP at Madison Gas and Electric`s Blount Station.« less

  14. Passive radon/thoron personal dosimeter using an electrostatic collector and a diffused-junction detector

    NASA Astrophysics Data System (ADS)

    Bigu, J.; Raz, R.

    1985-01-01

    A solid-state alpha dosimeter has been designed and tested suitable for personal and environmental radon/thoron monitoring. The dosimeter basically consists of an electrostatic collector and an alpha-particle counting system with spectroscopy capabilities. The sensitive volume (˜20 cm3) of the electrostatic collector consists of a cylindrically shaped metal wire screen and a diffused-junction silicon alpha-detector covered with a thin aluminized Mylar sheet. A dc voltage (˜500 V) is applied between the wire screen and the Mylar sheet, with the latter held at negative potential relative to the former. Data can be retrieved during or after sampling by means of a microcomputer (Epson HX20) via a RS-232 communication interface unit. The dosimeter has been calibrated in a large (26 m3) radon/thoron test facility. A linear relationship was found between the dosimeter's alpha-count and both radon gas concentration and radon daughter working level. The dosimeter is mounted on top of an ordinary miner's cap lamp battery and is ideally suited for personal monitoring in underground uranium mines and other working areas. The dosimeter presented here is a considerably improved version of an earlier prototype.

  15. Microscopic models for bridging electrostatics and currents

    NASA Astrophysics Data System (ADS)

    Borghi, L.; DeAmbrosis, A.; Mascheretti, P.

    2007-03-01

    A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.

  16. Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology

    NASA Astrophysics Data System (ADS)

    Cui, Feng; Chen, Wenyuan; Su, Yufeng; Zhang, Weiping; Zhao, Xiaolin

    2004-12-01

    The prevailing micromachined vibratory gyroscope typically has a proof mass connected to the substrate by a mechanical suspension system, which makes it face a tough challenge to achieve tactical or inertial grade performance levels. With a levitated rotor as the proof mass, a micromachined rotational gyroscope will potentially have higher performance than vibratory gyroscope. Besides working as a moment rebalance dual-axis gyroscope, the micromachined rotational gyroscope based on a levitated rotor can simultaneously work as a force balance tri-axis accelerometer. Micromachined rotational gyroscope based on an electrostatically levitated silicon micromachined rotor has been notably developed. In this paper, factors in designing a rotational gyro/accelerometer based on an electrostatically levitated disc-like rotor, including gyroscopic action of micro rotor, methods of stable levitation, micro displacement detection and control, rotation drive and speed control, vacuum packaging and microfabrication, are comprehensively considered. Hence a design of rotational gyro/accelerometer with an electroforming nickel rotor employing low cost UV-LIGA technology is presented. In this design, a wheel-like flat rotor is proposed and its basic dimensions, diameter and thickness, are estimated according to the required loading capability. Finally, its micromachining methods based on UV-LIGA technology and assembly technology are discussed.

  17. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    NASA Astrophysics Data System (ADS)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  18. Effect of Natural Aging and Cold Working on Microstructures and Mechanical Properties of Al-4.6Cu-0.5Mg-0.5Ag alloy

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Te; Lee, Sheng-Long; Bor, Hui-Yun; Lin, Jing-Chie

    2013-06-01

    This research investigates the effects of natural aging and cold working prior to artificial aging on microstructures and mechanical properties of Al-4.6Cu-0.5Mg-0.5Ag alloy. Mechanical properties relative to microstructure variations were elucidated by the observations of the optical microscope (OM), differential scanning calorimeter (DSC), electrical conductivity meter (pct IACS), and transmission electron microscopy (TEM). The results showed that natural aging treatment has little noticeable benefit on the quantity of precipitation strengthening phases and mechanical properties, but it increases the precipitation strengthening rate at the initial stage of artificial aging. Cold working brings more lattice defects which suppress Al-Cu (GP zone) and Mg-Ag clustering, and therefore the precipitation of Ω phase decreases. Furthermore, more dislocations are formed, leading to precipitate the more heterogeneous nucleation of θ' phase. The above-mentioned precipitation phenomena and strain hardening effect are more obvious with higher degrees of cold working.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In this quarterly technical progress report, UTSI reports on progress on a multitask contract to develop the necessary technology for the steam bottoming plant of the MHD Steam Combined Cycle power plant. A Proof-Of-Concept (POC) test was conducted during the quarter and the results are reported. This POC test was terminated after 88 hours of operation due to the failure of the coal pulverizer main shaft. Preparations for the test and post-test activities are summarized. Modifications made to the dry electrostatic precipitator (ESP) are described and measurements of its performance are reported. The baghouse performance is summarized, together with actionsmore » being taken to improve bag cleaning using reverse air. Data on the wet ESP performance is included at two operating conditions, including verification that it met State of Tennessee permit conditions for opacity with all the flow through it. The results of experiments to determine the effect of potassium seed on NO{sub x} emissions and secondary combustion are reported. The status of efforts to quantify the detailed mass balance for all POC testing is summarized. The work to develop a predictive ash deposition model is discussed and results compared with deposition actually encountered during the test. Plans to measure the kinetics of potassium and sulfur on flames like the secondary combustor, are included. Advanced diagnostic work by both UTSI and MSU is reported. Efforts to develop the technology for a high temperature air heater using ceramic tubes are summarized.« less

  20. Does Electrostatic Shielding Work Both Ways?

    ERIC Educational Resources Information Center

    Geller, Zvi; Bagno, Esther

    1994-01-01

    Describes an experiment designed to disprove the belief that an electrical field originating from a point inside a closed conducting surface cannot produce an electric field outside this surface. (ZWH)

  1. pH-responsive drug delivery system based on AIE luminogen functionalized layered zirconium phosphate nano-platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongdong, E-mail: lidongdong@jlu.edu.cn; Zhang, Yuping; Zhou, Bingbing

    2015-05-15

    Aggregation-induced emission (AIE) luminogen, quaternary tetraphenylethene cation (TPEN), was successfully incorporated into layered α-zirconium phosphate (α-ZrP) by using co-precipitation method to form inorganic–organic hybrid materials. The obtained materials show the characteristic hexagonal platelet shape with the interlayer distance did not reveal significant difference compared with pure α-ZrP. In addition, the obtained hybrid materials emit strong blue emission centered at 476 nm in aqueous media due to the electrostatic interactions of TPEN with the anionic framework of α-ZrP, which largely restrict their intramolecular rotation. More importantly, the materials provide a pH dependent release of doxorubicin (DOX), suggesting that AIE luminogen functionalizedmore » α-ZrP may be used as an imaging guided and pH-responsive delivery system for targeting therapy. - Graphical abstract: AIE luminogen was successfully incorporated into layered α-zirconium phosphate by a co-precipitation method to form inorganic–organic hybrid materials, showing a pH dependent release of DOX. - Highlights: • AIE luminogen cation was incorporated into layered α-ZrP by co-precipitation method. • The obtained material emits strong blue emission upon UV irradiation. • The material exhibits pH dependent release of DOX. • The AIE functionalized α-ZrP has potential applications in imaging guided therapy.« less

  2. Experimental study on detection of electrostatic discharges generated by polymer granules inside a metal silo

    NASA Astrophysics Data System (ADS)

    Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo

    2014-04-01

    To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.

  3. Experimental study on detection of electrostatic discharges generated by polymer granules inside a metal silo.

    PubMed

    Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo

    2014-04-01

    To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.

  4. Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant pH.

    PubMed

    Wallace, Jason A; Shen, Jana K

    2012-11-14

    Recent development of constant pH molecular dynamics (CpHMD) methods has offered promise for adding pH-stat in molecular dynamics simulations. However, until now the working pH molecular dynamics (pHMD) implementations are dependent in part or whole on implicit-solvent models. Here we show that proper treatment of long-range electrostatics and maintaining charge neutrality of the system are critical for extending the continuous pHMD framework to the all-atom representation. The former is achieved here by adding forces to titration coordinates due to long-range electrostatics based on the generalized reaction field method, while the latter is made possible by a charge-leveling technique that couples proton titration with simultaneous ionization or neutralization of a co-ion in solution. We test the new method using the pH-replica-exchange CpHMD simulations of a series of aliphatic dicarboxylic acids with varying carbon chain length. The average absolute deviation from the experimental pK(a) values is merely 0.18 units. The results show that accounting for the forces due to extended electrostatics removes the large random noise in propagating titration coordinates, while maintaining charge neutrality of the system improves the accuracy in the calculated electrostatic interaction between ionizable sites. Thus, we believe that the way is paved for realizing pH-controlled all-atom molecular dynamics in the near future.

  5. Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant pH

    PubMed Central

    Wallace, Jason A.; Shen, Jana K.

    2012-01-01

    Recent development of constant pH molecular dynamics (CpHMD) methods has offered promise for adding pH-stat in molecular dynamics simulations. However, until now the working pH molecular dynamics (pHMD) implementations are dependent in part or whole on implicit-solvent models. Here we show that proper treatment of long-range electrostatics and maintaining charge neutrality of the system are critical for extending the continuous pHMD framework to the all-atom representation. The former is achieved here by adding forces to titration coordinates due to long-range electrostatics based on the generalized reaction field method, while the latter is made possible by a charge-leveling technique that couples proton titration with simultaneous ionization or neutralization of a co-ion in solution. We test the new method using the pH-replica-exchange CpHMD simulations of a series of aliphatic dicarboxylic acids with varying carbon chain length. The average absolute deviation from the experimental pKa values is merely 0.18 units. The results show that accounting for the forces due to extended electrostatics removes the large random noise in propagating titration coordinates, while maintaining charge neutrality of the system improves the accuracy in the calculated electrostatic interaction between ionizable sites. Thus, we believe that the way is paved for realizing pH-controlled all-atom molecular dynamics in the near future. PMID:23163362

  6. Some physicochemical aspects of water-soluble mineral flotation.

    PubMed

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The interactions between three typical PPCPs and LDH

    NASA Astrophysics Data System (ADS)

    Li, Erwei; Liao, Libing; Lv, Guocheng; Li, Zhaohui; Yang, Chengxue; Lu, Yanan

    2018-03-01

    With a positively charged layered structure, layered double hydroxide has potential applications in remediation of anionic contaminants, which has been a hot topic for recent years. In this study, a Cl type Mg-Al hydrotalcite (Cl-LDH) was prepared by a co-precipitation method. The adsorption process of three pharmaceuticals and personal care products (PPCPs) (tetracycline (TC), diclofenac sodium (DF), chloramphenicol (CAP)) by Cl-LDH was investigated by X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), BET, FT-IR spectroscopy and molecular dynamics simulation. The results showed that the adsorption equilibrium of TC and DF could be reached in 120 min, and the maximum adsorption capacity of the Cl-LDH for TC and DF were 1.85 mmol/g and 0.95 mmol/g, respectively. The adsorption isothermal of TC was fitted with the Freundlich adsorption model, and the adsorption isothermal of DF was fitted with the Langmuir adsorption model. The adsorption dynamics of TC and DF followed the pseudo-second-order model. The adsorption mechanisms of the three PPCPs onto Cl-LDH were different based on the experimental results and molecular dynamics simulation. The TC adsorption on Cl-LDH was mainly driven by the electrostatic interactions between the negative charge of TC and the positive charge of Cl-LDH. The uptake of anionic DF was attributed both to ion exchange of DF for Cl- and the electrostatic interaction between the negatively charged DF and the positively charged structure layer of Cl-LDH. Cl-LDH does not adsorb the neutral CAP due to no electrostatic interaction. The molecular dynamic simulation further confirmed different configurations of the three selected PPCPs in the interlayer of Cl-LDH, which were responsible for the different uptake process of PPCPs on Cl-LDH.

  8. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.

    PubMed

    Ye, Aiqian; Flanagan, John; Singh, Harjinder

    2006-06-05

    The formation of electrostatic complexes between sodium caseinate and gum arabic (GA) was studied as a function of pH (2.0-7.0), using slow acidification in situ with glucono-delta-lactone (GDL) or titration with HCl. The colloidal behavior of the complexes under specific conditions was investigated using absorbance measurements (at 515 or 810 nm) and dynamic light scattering (DLS). In contrast to the sudden increase in absorbance and subsequent precipitation of sodium caseinate solutions at pH < 5.4, the absorbance values of mixtures of sodium caseinate and GA increased to a level that was dependent on GA concentration at pH 5.4 (pH(c)). The absorbance values remained constant with further decreases in pH until a sudden increase in absorbance was observed (at pH(phi)). The pH(phi) was also dependent upon the GA concentration. Dynamic light scattering (DLS) data showed that the sizes of the particles formed by the complexation of sodium caseinate and GA between pH(c) and pH(phi) were between 100 and 150 nm and these nanoparticles were visualized using negative staining transmission electron microscopy (TEM). Below pH(phi), the nanoparticles associated to form larger particles, causing phase separation. zeta-Potential measurements of the nanoparticles and chemical analysis after phase separation showed that phase separation was a consequence of charge neutralization. The formation of complexes between sodium caseinate and GA was inhibited at high ionic strength (>50 mM NaCl). It is postulated that the structure of the nanoparticles comprises an aggregated caseinate core, protected from further aggregation by steric repulsion of one, or more, electrostatically attached GA molecules. Copyright 2005 Wiley Periodicals, Inc.

  9. Electrostatic Interactions Govern “Odd/Even” Effects in Water-Induced Gemini Surfactant Self-Assembly

    DOE PAGES

    Mantha, Sriteja; McDaniel, Jesse G.; Perroni, Dominic V.; ...

    2016-12-27

    Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water concentration-dependent lyotropic liquid crystal (LLC) morphologies that are sensitive to surfactant molecular structure, and na- ture of the headgroups and counterions. Recently, an interesting dependence of the aqueous phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker sur- factants. In this work, we investigate this “odd/even effect” using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, 7 non-terminal carbon atomsmore » in the tails, and either 3, 4, 5, or 6 carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76 respectively). We find that the relative electrostatic repulsion be- tween headgroups in the different morphologies is correlated with qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup ori- entations of Na-74 and Na-76 compared to Na-73 and Na-75 surfactants lead to differences in linker-linker packing, and long-range headgroup/headgroup electrostatic repulsion, which affects the delicate electrostatic balance between hexagonal and gyroid phases. Finally, much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.« less

  10. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.

    PubMed

    Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong

    2017-10-01

    Hazardous trace elements (HTEs), especially mercury, emitted from coal-fired power plants had caused widespread concern worldwide. Field test on mercury emissions at three different loads (100%, 85%, 68% output) using different types of coal was conducted in a 350 MW pulverized coal combustion power plant equipped with selective catalytic reduction (SCR), electrostatic precipitator and fabric filter (ESP + FF), and wet flue gas desulfurization (WFGD). The Ontario Hydro Method was used for simultaneous flue gas mercury sampling for mercury at the inlet and outlet of each of the air pollutant control device (APCD). Results showed that mercury mass balance rates of the system or each APCD were in the range of 70%-130%. Mercury was mainly distributed in the flue gas, followed by ESP + FF ash, WFGD wastewater, and slag. Oxidized mercury (Hg 2+ ) was the main form of mercury form in the flue gas emitted to the atmosphere, which accounted for 57.64%-61.87% of total mercury. SCR was favorable for elemental mercury (Hg 0 ) removal, with oxidation efficiency of 50.13%-67.68%. ESP + FF had high particle-bound mercury (Hg p ) capture efficiency, at 99.95%-99.97%. Overall removal efficiency of mercury by the existing APCDs was 58.78%-73.32%. Addition of halogens or oxidants for Hg 0 conversion, and inhibitors for Hg 0 re-emission, plus the installation of a wet electrostatic precipitator (WESP) was a good way to improve the overall removal efficiency of mercury in the power plants. Mercury emission factor determined in this study was from 0.92 to 1.17 g/10 12 J. Mercury concentration in the emitted flue gas was much less than the regulatory limit of 30 μg/m 3 . Contamination of mercury in desulfurization wastewater should be given enough focus. Copyright © 2017. Published by Elsevier Ltd.

  11. Integration of a nonmetallic electrostatic precipitator and a wet scrubber for improved removal of particles and corrosive gas cleaning in semiconductor manufacturing industries.

    PubMed

    Kim, Hak-Joon; Han, Bangwoo; Kim, Yong-Jin; Yoa, Seok-Jun; Oda, Tetsuji

    2012-08-01

    To remove particles in corrosive gases generated by semiconductor industries, we have developed a novel non-metallic, two-stage electrostatic precipitator (ESP). Carbon brush electrodes and grounded carbon fiber-reinforced polymer (CFRP) form the ionization stage, and polyvinyl chloride collection plates are used in the collection stage of the ESP The collection performance of the ESP downstream of a wet scrubber was evaluated with KC1, silica, and mist particles (0.01-10 pm), changing design and operation parameters such as the ESP length, voltage, and flow rate. A long-term and regeneration performance (12-hr) test was conducted at the maximum operation conditions of the scrubber and ESP and the performance was then demonstrated for 1 month with exhaust gases from wet scrubbers at the rooftop of a semiconductor manufacturing plant in Korea. The results showed that the electrical and collection performance of the ESP (16 channels, 400x400 mm2) was maintained with different grounded plate materials (stainless steel and CFRP) and different lengths of the ionization stage. The collection efficiency of the ESP at high air velocity was enhanced with increases in applied voltages and collection plate lengths. The ESP (16 channels with 100 mm length, 400x400 mm2x540 mm with a 10-mm gap) removed more than 90% of silica and mistparticles with 10 and 12 kV applied to the ESPat the air velocity of 2 m/s and liquid-to-gas ratio of 3.6 L/m3. Decreased performance after 13 hours ofcontinuous operation was recovered to the initial performance level by 5 min of water washing. Moreover during the 1-month operation at the demonstration site, the ESP showed average collection efficiencies of 97% based on particle number and 92% based on total particle mass, which were achieved with a much smaller specific corona power of 0.28 W/m3/hr compared with conventional ESPs.

  12. Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package

    NASA Astrophysics Data System (ADS)

    Blandón, J. S.; Grisales, J. P.; Riascos, H.

    2017-06-01

    Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed.

  13. Advanced understanding on electronic structure of molecular semiconductors and their interfaces

    NASA Astrophysics Data System (ADS)

    Akaike, Kouki

    2018-03-01

    Understanding the electronic structure of organic semiconductors and their interfaces is critical to optimizing functionalities for electronics applications, by rational chemical design and appropriate combination of device constituents. The unique electronic structure of a molecular solid is characterized as (i) anisotropic electrostatic fields that originate from molecular quadrupoles, (ii) interfacial energy-level lineup governed by simple electrostatics, and (iii) weak intermolecular interactions that make not only structural order but also energy distributions of the frontier orbitals sensitive to atmosphere and interface growth. This article shows an overview on these features with reference to the improved understanding of the orientation-dependent electronic structure, comprehensive mechanisms of molecular doping, and energy-level alignment. Furthermore, the engineering of ionization energy by the control of the electrostatic fields and work function of practical electrodes by contact-induced doping is briefly described for the purpose of highlighting how the electronic structure impacts the performance of organic devices.

  14. Accurate, robust and reliable calculations of Poisson-Boltzmann binding energies

    PubMed Central

    Nguyen, Duc D.; Wang, Bao

    2017-01-01

    Poisson-Boltzmann (PB) model is one of the most popular implicit solvent models in biophysical modeling and computation. The ability of providing accurate and reliable PB estimation of electrostatic solvation free energy, ΔGel, and binding free energy, ΔΔGel, is important to computational biophysics and biochemistry. In this work, we investigate the grid dependence of our PB solver (MIBPB) with SESs for estimating both electrostatic solvation free energies and electrostatic binding free energies. It is found that the relative absolute error of ΔGel obtained at the grid spacing of 1.0 Å compared to ΔGel at 0.2 Å averaged over 153 molecules is less than 0.2%. Our results indicate that the use of grid spacing 0.6 Å ensures accuracy and reliability in ΔΔGel calculation. In fact, the grid spacing of 1.1 Å appears to deliver adequate accuracy for high throughput screening. PMID:28211071

  15. Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator.

    PubMed

    Richard, Gontran; Touhami, Seddik; Zeghloul, Thami; Dascalescu, Lucien

    2017-02-01

    Plate-type electrostatic separators are commonly employed for the selective sorting of conductive and non-conductive granular materials. The aim of this work is to identify the optimal operating conditions of such equipment, when employed for separating copper and plastics from either flexible or rigid electric wire wastes. The experiments are performed according to the response surface methodology, on samples composed of either "calibrated" particles, obtained by manually cutting of electric wires at a predefined length (4mm), or actual machine-grinded scraps, characterized by a relatively-wide size distribution (1-4mm). The results point out the effect of particle size and shape on the effectiveness of the electrostatic separation. Different optimal operating conditions are found for flexible and rigid wires. A separate processing of the two classes of wire wastes is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.

    The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10 –7 dpa/s and 390 °C) and thenmore » use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10 –8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni 3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.« less

  17. Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation

    DOE PAGES

    Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.; ...

    2017-03-11

    The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10 –7 dpa/s and 390 °C) and thenmore » use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10 –8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni 3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.« less

  18. Multi-Scale Structure of Coacervates formed by Oppositely Charged Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Rubinstein, Michael

    We develop a scaling model of coacervates formed by oppositely charged polyelectrolytes and demonstrate that they self-organize into multi-scale structures. The intramolecular electrostatic interactions in dilute polyanion or polycation solutions are characterized by the electrostatic blobs with size D- and D+ respectively, that repel neighboring blobs on the same chains with electrostatic energy on the order of thermal energy kT . After mixing, electrostatic intramolecular repulsion of polyelectrolytes with higher charged density, say polyanions, keeps these polyanions in coacervates aligned into stretched arrays of electrostatic blobs of size D-

  19. A structure adapted multipole method for electrostatic interactions in protein dynamics

    NASA Astrophysics Data System (ADS)

    Niedermeier, Christoph; Tavan, Paul

    1994-07-01

    We present an algorithm for rapid approximate evaluation of electrostatic interactions in molecular dynamics simulations of proteins. Traditional algorithms require computational work of the order O(N2) for a system of N particles. Truncation methods which try to avoid that effort entail untolerably large errors in forces, energies and other observables. Hierarchical multipole expansion algorithms, which can account for the electrostatics to numerical accuracy, scale with O(N log N) or even with O(N) if they become augmented by a sophisticated scheme for summing up forces. To further reduce the computational effort we propose an algorithm that also uses a hierarchical multipole scheme but considers only the first two multipole moments (i.e., charges and dipoles). Our strategy is based on the consideration that numerical accuracy may not be necessary to reproduce protein dynamics with sufficient correctness. As opposed to previous methods, our scheme for hierarchical decomposition is adjusted to structural and dynamical features of the particular protein considered rather than chosen rigidly as a cubic grid. As compared to truncation methods we manage to reduce errors in the computation of electrostatic forces by a factor of 10 with only marginal additional effort.

  20. DelPhi webserver: Comprehensive suite for electrostatic calculations of biological macromolecules and their complexes

    NASA Astrophysics Data System (ADS)

    Witham, Shawn; Boylen, Brett; Owesen, Barr; Rocchia, Walter; Alexov, Emil

    2011-03-01

    Electrostatic forces and energies are two of the major components that contribute to the stability, function and interaction of biological macromolecules. The calculations of the electrostatic potential distribution in such systems, which are comprised of irregularly shaped objects immersed in a water phase, is not a trivial task. In addition, an accurate model requires any missing hydrogen atoms of the corresponding structural files (Protein Data Bank, or, PDB files) to be generated in silico and, if necessary, missing atoms or residues to be predicted as well. Here we report a comprehensive suite, an academic DelPhi webserver, which allows the users to upload their structural file, calculate the components of the electrostatic energy, generate the corresponding potential (and/or concentration/dielectric constant) distribution map, and choose the appropriate force field. The webserver utilizes modern technology to take user input and construct an algorithm that suits the users specific needs. The webserver uses Clemson University's Palmetto Supercomputer Cluster to handle the DelPhi calculations, which can range anywhere from small and short computation times, to extensive and computationally demanding runtimes. The work was supported by a grant from NIGMS, NIH, grant number 1R01GM093937-01.

  1. Electrostatic solitary waves generated by beam injection in LAPD

    NASA Astrophysics Data System (ADS)

    Chen, L.; Gekelman, W. N.; Lefebvre, B.; Kintner, P. M.; Pickett, J. S.; Pribyl, P.; Vincena, S. T.

    2011-12-01

    Spacecraft data have revealed that electrostatic solitary waves are ubiquitous in non-equilibrium collisionless space plasmas. These solitary waves are often the main constituents of the observed electrostatic turbulence. The ubiquitous presence of these solitary waves in space motivated laboratory studies on their generation and evolution in the Large Plasma Device (LAPD) at UCLA. In order to observe these structures, microprobes with scale sizes of order of the Debye length (30 microns) had to be built using Mems technology. A suprathermal electron beam was injected into the afterglow plasma, and solitary waves as well as nonlinear wave packets were measured. The solitary waves are interpreted as BGK electron holes based on their width, amplitude, and velocity characteristics. The ensuing turbulence, including the solitary waves and wave packets, exhibits a band dispersion relation with its central line consistent with the electrostatic whistler mode. One surprise brought by the laboratory experiments is that the electron holes were not generated through resonant two-stream instabilities, but likely through an instability due to parallel currents. The characteristics of the LAPD electron holes and those observed in space will be compared to motivate further theoretical, simulation, and experimental work.

  2. Molecular dynamics simulation of hepatitis C virus IRES IIId domain: structural behavior, electrostatic and energetic analysis.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Di-Giorgio, Audrey; Condom, Roger; Cabrol-Bass, Daniel

    2004-02-01

    The dynamic behavior of the HCV IRES IIId domain is analyzed by means of a 2.6-ns molecular dynamics simulation, starting from an NMR structure. The simulation is carried out in explicit water with Na+ counterions, and particle-mesh Ewald summation is used for the electrostatic interactions. In this work, we analyze selected patterns of the helix that are crucial for IRES activity and that could be considered as targets for the intervention of inhibitors, such as the hexanucleotide terminal loop (more particularly its three consecutive guanines) and the loop-E motif. The simulation has allowed us to analyze the dynamics of the loop substructure and has revealed a behavior among the guanine bases that might explain the different role of the third guanine of the GGG triplet upon molecular recognition. The accessibility of the loop-E motif and the loop major and minor groove is also examined, as well as the effect of Na+ or Mg2+ counterion within the simulation. The electrostatic analysis reveals several ion pockets, not discussed in the experimental structure. The positions of these ions are useful for locating specific electrostatic recognition sites for potential inhibitor binding.

  3. Biosensors Fabricated through Electrostatic Assembly of Enzymes/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuehe; Liu, Guodong; Wang, Jun

    2006-06-01

    Carbon nanotubes (CNTs) have emerged as new class of nanomaterials that is receiving considerable interest because of their unique structure, mechanical, and electronic properties. One promising application of CNTs is to fabricate highly sensitive chemo/biosensors.1-4 For construction of these CNT-based sensors, the CNTs first have to be modified with some molecules specific to the interests. Generally, covalent binding, affinity, and electrostatic interaction have been utilized for the modification of CNTs. Among them, the electrostatic method is attractive due to its simplicity and high efficiency. In present work, we have developed highly sensitively amperometric biosensors for glucose, choline, organophosphate pesticide (OPP)more » and nerve agents (NAs) based on electrostatically assembling enzymes on the surface of CNTs. All these biosensors were fabricated by immobilization of enzymes on the negatively charged CNTs surface through alternately assembling a cationic poly(diallydimethylammonium chloride) (PDDA) layer and an enzyme layer. Using this layer-by-layer (LBL) technique, a bioactive nanocomposite film was fabricated on the electrode surface. Owing to the electrocatalytic effect of CNTs, an amplified electrochemical signal was achieved, which leads to low detections limits for glucose, choline, and OPP and NAs.« less

  4. Corrosion Protection of Nd-Fe Magnets via Phophatization, Silanization and Electrostatic Spraying with Organic Resin Composite Coatings

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Li, Jingjie; Li, Musen; Ge, Shengsong; Wang, Xiuchun; Ding, Kaihong; Cui, Shengli; Sun, Yongcong

    2014-09-01

    Nd-Fe-B permanent magnets possess excellent properties. However, they are highly sensitive to the attack of corrosive environment. The aim of this work is to improve the corrosion resistance of the magnets by phosphatization, silanization, and electrostatic spraying with organic resin composite coatings. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectrometer (EDS) tests showed that uniform phosphate conversion coatings and spray layers were formed on the surface of the Nd-Fe-B magnets. Neutral salt spray tests exhibited that, after treated by either phosphating, silanization or electrostatic spraying, the protectiveness of Nd-Fe-B alloys was apparently increased. And corrosion performance of magnets treated with silane only was slightly inferior to those of phosphatized ones. However, significant improvement in corrosion protection was achieved after two-step treatments, i.e. by top-coating spray layer with phosphate or silane films underneath. Grid test indicated that the phosphate and silane coating were strongly attached to the substrate while silane film was slightly weaker than the phosphate-treated ones. Magnetic property analysis revealed phosphatization, silanization, and electrostatic spraying caused decrease in magnetism, but silanization had the relatively smaller effect.

  5. Acute pulmonary and hematological effects of two types of particle surrogates are influenced by their elemental composition.

    PubMed

    Medeiros, N; Rivero, D H R F; Kasahara, D I; Saiki, M; Godleski, J J; Koutrakis, P; Capelozzi, V L; Saldiva, P H N; Antonangelo, L

    2004-05-01

    Several epidemiological studies have consistently demonstrated significant associations between ambient levels of particulate matter and lung injury and cardiovascular events with increased morbidity and mortality. Particle surrogates (PS), such as residual oil fly ash (ROFA), have been widely used in experimental studies aimed at characterizing the mechanisms of particle toxicity. Since PS composition varies depending on its source, studies with different types of PS may provide clues about the relative toxicity of the components generated by high-temperature combustion process. In this work, we have studied the effects of nasal instillation of increasing doses of different PS in mice: saline, carbon, and two types of particle surrogates. PS type A (PSA) was the ROFA collected from the waste incinerator of our university hospital; PS type B (PSB) was collected from the electrostatic precipitator of a large steel company and thus had an elevated metal content. After 24h, we analyzed hematological parameters, fibrinogen, bronchoalveolar lavage, bone marrow, and pulmonary histology. Nasal instillation of the two types of PS-induced leucopenia. PSB elicited a greater elevation of plasma fibrinogen levels. Bone marrow and pulmonary inflammatory changes were more intense for PSA. We concluded that the PS composition modulates acute inflammatory changes more significantly than the mass for these two types of PS.

  6. Selenium in pollen gathered by bees foraging on fly ash-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Jong, D.; Morse, R.A.; Gutenmann, W.H.

    1977-10-01

    Fly ash is the material collected in the stacks of coal burning electric power-generating plants by electrostatic precipitators. About 26 million metric tons of fly ash was estimated to have been produced in 1975 (BRACKETT, 1970). Aside from a small percentage of the material which is used as a base material for roads and in concrete, the bulk of it is deposited in landfills. It was first reported by Gutenmann et al. (1976) that sweet clover, found voluntarily growing on a fly ash landfill site, contained up to 200 ppM of selenium. Fly ashes from 21 states were found tomore » contain the element. Cabbage grown on each of these fly ashes added (7 percent w/w) to soil was shown to absorb selenium in proportion to its concentration in the particular ash (GUTENMANN et al., 1976). The percentage of fly ash in soil was also shown to dictate the extent of selenium absorption by a variety of plants (FURR et al., 1976). In the work reported, pollen collected by honey bees foraging on plants growing on a fly ash landfill was analyzed for selenium and compared with that collected by bees from the same plants growing on soil.« less

  7. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    PubMed

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  8. Solar Wind Monitoring with SWIM-SARA Onboard Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Barabash, S.; Sridharan, R.; Wieser, M.; Dhanya, M. B.; Futaana, Y.; Asamura, K.; Kazama, Y.; McCann, D.; Varier, S.; Vijayakumar, E.; Mohankumar, S. V.; Raghavendra, K. V.; Kurian, T.; Thampi, R. S.; Andersson, H.; Svensson, J.; Karlsson, S.; Fischer, J.; Holmstrom, M.; Wurz, P.; Lundin, R.

    The SARA experiment aboard the Indian lunar mission Chandrayaan-1 consists of two instruments: Chandrayaan-1 Energetic Neutral Analyzer (CENA) and the SolarWind Monitor (SWIM). CENA will provide measurements of low energy neutral atoms sputtered from lunar surface in the 0.01-3.3 keV energy range by the impact of solar wind ions. SWIM will monitor the solar wind flux precipitating onto the lunar surface and in the vicinity of moon. SWIM is basically an ion-mass analyzer providing energy-per-charge and number density of solar wind ions in the energy range 0.01-15 keV. It has sufficient mass resolution to resolve H+ , He++, He+, O++, O+, and >20 amu, with energy resolution 7% and angular resolution 4:5° × 22:5. The viewing angle of the instrument is 9° × 180°.Mechanically, SWIM consists of a sensor and an electronic board that includes high voltage supply and sensor electronics. The sensor part consists of an electrostatic deflector to analyze the arrival angle of the ions, cylindrical electrostatic analyzer for energy analysis, and the time-of-flight system for particle velocity determination. The total size of SWIM is slightly larger than a credit card and has a mass of 500 g.

  9. Nanomaterial disposal by incineration.

    PubMed

    Holder, Amara L; Vejerano, Eric P; Zhou, Xinzhe; Marr, Linsey C

    2013-09-01

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas.

  10. Dust Removal Technolgy for a Mars In Situ Resource Utilization System

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Johansen, M. R.; Williams, B. S.; Hogue, M. D.; Mackey, P. J.; Clements, J. S.

    2011-01-01

    Several In Situ Resource Utilization (lSRU) systems being considered to enable future manned exploration of Mars require capture of Martian atmospheric gas to extract oxygen and other commodities. However, the Martian atmosphere contains relatively large amounts of dust which must be removed in tbe collection systems of the ISRU chambers. The amount of atmospheric dust varies largely with the presence of daily dust devils and the less frequent but much more powerful global dust storms. A common and mature dust removal technology for terrestrial systems is the electrostatic precipitator. With this technology, dust particles being captured are imparted an electrostatic charge by means of a corona discharge. Charged dust particles are then driven to a region of high electric field which forces the particles onto a collector for capture. Several difficulties appear when this technology is adapted to the Martian atmospheric environment At the low atmospheric pressure of Mars, electrical breakdown occurs at much lower voltages than on Earth and corona discharge is difficult to sustain. In this paper, we report on our efforts to obtain a steady corona/glow discharge in a simulated Martian atmosphere of carbon dioxide at 9 millibars of pressure. We also present results on the design of a dust capture system under these atmospheric conditions.

  11. A new model to study the phase transition from microstructures to nanostructures in ionic/ionic surfactants mixture.

    PubMed

    Sohrabi, Beheshteh; Gharibi, Hussein; Javadian, Soheila; Hashemianzadeh, Majid

    2007-08-30

    The phase behavior and aggregate structures of mixtures of the oppositely charged surfactants cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) are explored at high dilution by pulsed field gradient stimulated echo (PFG-STE) NMR. The aggregation numbers and hydrodynamic radii of vesicles and mixed micelles were determined by a combination of viscosity and self-diffusion coefficient measurements. The average size of the mixed micelles was larger than that of micelles containing uniformly charged head groups. Analysis of the variations of the self-diffusion coefficient and viscosity with changing concentration of CTAB or SDS in the cationic-rich and anionic-rich regions revealed a phase transition from vesicles to mixed micelles. Differences in the lengths of the CTAB and SDS hydrophobic chains stabilize vesicles relative to other microstructures (e.g., liquid crystalline and precipitate phase), and vesicles form spontaneously over a wide range of compositions in both cationic-rich and anionic-rich solutions. The results obtained from conductometry measurements confirmed this transition. Finally, according to the capacitor model, a new model was developed for estimating the surface potentials and electrostatic free energy (g(elec)). Then we investigated the variations of electrostatic and transfer free energy in phase transition between mixed micelle and vesicle.

  12. Harvesting Vibrational Energy Using Material Work Functions

    PubMed Central

    Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-01-01

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications. PMID:25348004

  13. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    NASA Astrophysics Data System (ADS)

    Lyons, Shawn M.; Harrison, Mark A.; Law, S. Edward

    2011-06-01

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic-nozzle sprays.

  14. The barrier for proton transport in aquaporins as a challenge for electrostatic models: the role of protein relaxation in mutational calculations.

    PubMed

    Kato, Mitsunori; Pisliakov, Andrei V; Warshel, Arieh

    2006-09-01

    The origin of the barrier for proton transport through the aquaporin channel is a problem of general interest. It is becoming increasingly clear that this barrier is not attributable to the orientation of the water molecules across the channel but rather to the electrostatic penalty for moving the proton charge to the center of the channel. However, the reason for the high electrostatic barrier is still rather controversial. It has been argued by some workers that the barrier is due to the so-called NPA motif and/or to the helix macrodipole or to other specific elements. However, our works indicated that the main reason for the high barrier is the loss of the generalized solvation upon moving the proton charge from the bulk to the center of the channel and that this does not reflect a specific repulsive electrostatic interaction but the absence of sufficient electrostatic stabilization. At this stage it seems that the elucidation and clarification of the origin of the electrostatic barrier can serve as an instructive test case for electrostatic models. Thus, we reexamine the free-energy surface for proton transport in aquaporins using the microscopic free-energy perturbation/umbrella sampling (FEP/US) and the empirical valence bond/umbrella sampling (EVB/US) methods as well as the semimacroscopic protein dipole Langevin dipole model in its linear response approximation version (the PDLD/S-LRA). These extensive studies help to clarify the nature of the barrier and to establish the "reduced solvation effect" as the primary source of this barrier. That is, it is found that the barrier is associated with the loss of the generalized solvation energy (which includes of course all electrostatic effects) upon moving the proton charge from the bulk solvent to the center of the channel. It is also demonstrated that the residues in the NPA region and the helix dipole cannot be considered as the main reasons for the electrostatic barrier. Furthermore, our microscopic and semimacroscopic studies clarify the problems with incomplete alternative calculations, illustrating that the effects of various electrostatic elements are drastically overestimated by macroscopic calculations that use a low dielectric constant and do not consider the protein reorganization. Similarly, it is pointed out that microscopic potential of mean force calculations that do not evaluate the electrostatic barrier relative to the bulk water cannot be used to establish the origin of the electrostatic barrier. The relationship between the present study and calculations of pK(a)s in protein interiors is clarified, pointing out that approaches that are applied to study the aquaporin barrier should be validated by pK(a)s calculations. Such calculations also help to clarify the crucial role of solvation energies in establishing the barrier in aquaporins. (c) 2006 Wiley-Liss, Inc.

  15. Dielectric particle injector for material processing

    NASA Technical Reports Server (NTRS)

    Leung, Philip L. (Inventor)

    1992-01-01

    A device for use as an electrostatic particle or droplet injector is disclosed which is capable of injecting dielectric particles or droplets. The device operates by first charging the dielectric particles or droplets using ultraviolet light induced photoelectrons from a low work function material plate supporting the dielectric particles or droplets, and then ejecting the charged particles or droplets from the plate by utilizing an electrostatic force. The ejected particles or droplets are mostly negatively charged in the preferred embodiment; however, in an alternate embodiment, an ion source is used instead of ultraviolet light to eject positively charged dielectric particles or droplets.

  16. Drive electrostatic plasma oscillations in a closed electron drift accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, A.I.; Nevrovskii, V.A.; Smirnov, V.A.

    1973-09-01

    The present work describes and experimental investigation of the perturbations created in the plasma of a closed electron drift accelerator (CEDA) by a time-varying potential applied to an electrode in the plasma. In particular, the driven electrostatic oscillations are in phase over the entire volume of the channel and the attenuation of the signal amplitude is sensitive to the direction of the electron flux in the accelerator. Certain aspects of the propagation of the harmonic signals and pulses in the plasma are established. A substantial drop in signal amplitude occurs between the electrode and the plasma. (auth)

  17. Modified jeans instability for dust grains in a plasma.

    PubMed

    Delzanno, G L; Lapenta, G

    2005-05-06

    An investigation of the properties of linear stability is conducted for a system consisting of particles having mass m and charge q, interacting through the gravitational and electrostatic force (Jeans instability). However, in light of recent works showing that dust particles in a plasma can have a Lennard-Jones-like shielding potential, a new set of equations has been derived, where the electrostatic interaction among the dust particles is Lennard-Jones-like instead of Coulomb-like. A new condition for the gravitational instability is derived, showing a broader spectrum of unstable modes with faster growth rates.

  18. Numerical Study of Electrostatic Field Distortion on LPTPC End-Plates based on Bulk Micromegas Modules

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Purba; Bhattacharya, Deb Sankar; Mukhopadhyay, Supratik; Majumdar, Nayana; Bhattacharya, Sudeb; Colas, Paul; Attié, David

    2018-02-01

    The R&D activities for the linear collider TPC (LC-TPC) are currently working on the adoption of the micro pattern devices for the gaseous amplification stage. Several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. We worked on a large prototype TPC with an end-plate that was built, for the first time, using seven resistive bulk Micromegas modules. During experiments, reduced signal sensitivity was observed at the boundary of these modules. Electrostatic field distortion near the module boundaries was considered to be the possible major reason behind these observations. In the present work, we will explore this hypothesis through numerical simulation. Our aim has been to understand the origin of distortions observed close to the edges of the test beam modules and to explore the possibility of using the Garfield simulation framework for investigating a phenomenon as complex as distortion.

  19. Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim

    2018-05-01

    NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.

  20. Martian Environment Electrostatic Precipitator

    NASA Technical Reports Server (NTRS)

    McDougall, Michael Owen

    2016-01-01

    As part of the planned manned mission to Mars, NASA has noticed that shipping oxygen as a part of life support to keep the astronauts alive continuously is overly expensive, and impractical. As such, noting that the Martian atmosphere is 95.37% CO2, NASA chemists noted that one could obtain oxygen from the Martian atmosphere. The plan, as part of a larger ISRU (in-situ resource utilization) initiative, would extract water from the regolith, or the Martian soil which can be electrolyzed by solar panel produced voltage into hydrogen and oxygen. The hydrogen can then be used in the Sabatier reaction with carbon dioxide to produce methane and water producing a net reaction that does not lose water and outputs methane and oxygen for use as rocket fuel and breathing.

  1. Covalent bonding: the fundamental role of the kinetic energy.

    PubMed

    Bacskay, George B; Nordholm, Sture

    2013-08-22

    This work addresses the continuing disagreement between two prevalent schools of thought concerning the mechanism of covalent bonding. According to Hellmann, Ruedenberg, and Kutzelnigg, a lowering of the kinetic energy associated with electron delocalization is the key stabilization mechanism. The opposing view of Slater, Feynman, and Bader has maintained that the source of stabilization is electrostatic potential energy lowering due to electron density redistribution to binding regions between nuclei. Despite the large body of accurate quantum chemical work on a range of molecules, the debate concerning the origin of bonding continues unabated, even for H2(+), the simplest of covalently bound molecules. We therefore present here a detailed study of H2(+), including its formation, that uses a sequence of computational methods designed to reveal the relevant contributing mechanisms as well as the spatial density distributions of the kinetic and potential energy contributions. We find that the electrostatic mechanism fails to provide real insight or explanation of bonding, while the kinetic energy mechanism is sound and accurate but complex or even paradoxical to those preferring the apparent simplicity of the electrostatic model. We further argue that the underlying mechanism of bonding is in fact of dynamical character, and analyses that focus on energy do not reveal the origin of covalent bonding in full clarity.

  2. A new approach to implement absorbing boundary condition in biomolecular electrostatics.

    PubMed

    Goni, Md Osman

    2013-01-01

    This paper discusses a novel approach to employ the absorbing boundary condition in conjunction with the finite-element method (FEM) in biomolecular electrostatics. The introduction of Bayliss-Turkel absorbing boundary operators in electromagnetic scattering problem has been incorporated by few researchers. However, in the area of biomolecular electrostatics, this boundary condition has not been investigated yet. The objective of this paper is twofold. First, to solve nonlinear Poisson-Boltzmann equation using Newton's method and second, to find an efficient and acceptable solution with minimum number of unknowns. In this work, a Galerkin finite-element formulation is used along with a Bayliss-Turkel absorbing boundary operator that explicitly accounts for the open field problem by mapping the Sommerfeld radiation condition from the far field to near field. While the Bayliss-Turkel condition works well when the artificial boundary is far from the scatterer, an acceptable tolerance of error can be achieved with the second order operator. Numerical results on test case with simple sphere show that the treatment is able to reach the same level of accuracy achieved by the analytical method while using a lower grid density. Bayliss-Turkel absorbing boundary condition (BTABC) combined with the FEM converges to the exact solution of scattering problems to within discretization error.

  3. Polarizable continuum model associated with the self-consistent-reaction field for molecular adsorbates at the interface.

    PubMed

    Wang, Jing-Bo; Ma, Jian-Yi; Li, Xiang-Yuan

    2010-01-07

    In this work, a new procedure has been developed in order to realize the self-consistent-reaction field computation for interfacial molecules. Based on the extension of the dielectric polarizable continuum model, the quantum-continuum calculations for interfacial molecules have been carried out. This work presents an investigation into how the molecular structure influences the adsorbate-solvent interaction and consequently alters the orientation angle at the air/water interface. Taking both electrostatic and non-electrostatic energies into account, we investigate the orientation behavior of three interfacial molecules, 2,6-dimethyl-4-hydroxy-benzonitrile, 3,5-dimethyl-4-hydroxy-benzonitrile and p-cyanophenol, at the air/water interface. The results show that the hydrophilic hydroxyl groups in 2,6-dimethyl-4-hydroxy-benzonitrile and in p-cyanophenol point from the air to the water side, but the hydroxyl group in 3,5-dimethyl-4-hydroxy-benzonitrile takes the opposite direction. Our detailed analysis reveals that the opposite orientation of 3,5-dimethyl-4-hydroxy-benzonitrile results mainly from the cavitation energy. The different orientations of the hydrophilic hydroxyl group indicate the competition of electrostatic and cavitation energies. The theoretical prediction gives a satisfied explanation of the most recent sum frequency generation measurement for these molecules at the interface.

  4. Electrodynamic Dust Shield for Surface Exploration Activities on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Immer, C. D.; Clements, J. S.; Chen, A.; Buhler, C. R.; Lundeen, P.; Mantovani, J. G.; Starnes, J. W.; Michalenko, M.; Mazumder, M. K.

    2006-01-01

    The Apollo missions to the moon showed that lunar dust can hamper astronaut surface activities due to its ability to cling to most surfaces. NASA's Mars exploration landers and rovers have also shown that the problem is equally hard if not harder on Mars. In this paper, we report on our efforts to develop and electrodynamic dust shield to prevent the accumulation of dust on surfaces and to remove dust already adhering to those surfaces. The parent technology for the electrodynamic dust shield, developed in the 1970s, has been shown to lift and transport charged and uncharged particles using electrostatic and dielectrophoretic forces. This technology has never been applied for space applications on Mars or the moon due to electrostatic breakdown concerns. In this paper, we show that an appropriate design can prevent the electrostatic breakdown at the low Martian atmospheric pressures. We are also able to show that uncharged dust can be lifted and removed from surfaces under simulated Martian environmental conditions. This technology has many potential benefits for removing dust from visors, viewports and many other surfaces as well as from solar arrays. We have also been able to develop a version of the electrodynamic dust shield working under. hard vacuum conditions. This version should work well on the moon.

  5. A multiscale model for charge inversion in electric double layers

    NASA Astrophysics Data System (ADS)

    Mashayak, S. Y.; Aluru, N. R.

    2018-06-01

    Charge inversion is a widely observed phenomenon. It is a result of the rich statistical mechanics of the molecular interactions between ions, solvent, and charged surfaces near electric double layers (EDLs). Electrostatic correlations between ions and hydration interactions between ions and water molecules play a dominant role in determining the distribution of ions in EDLs. Due to highly polar nature of water, near a surface, an inhomogeneous and anisotropic arrangement of water molecules gives rise to pronounced variations in the electrostatic and hydration energies of ions. Classical continuum theories fail to accurately describe electrostatic correlations and molecular effects of water in EDLs. In this work, we present an empirical potential based quasi-continuum theory (EQT) to accurately predict the molecular-level properties of aqueous electrolytes. In EQT, we employ rigorous statistical mechanics tools to incorporate interatomic interactions, long-range electrostatics, correlations, and orientation polarization effects at a continuum-level. Explicit consideration of atomic interactions of water molecules is both theoretically and numerically challenging. We develop a systematic coarse-graining approach to coarse-grain interactions of water molecules and electrolyte ions from a high-resolution atomistic scale to the continuum scale. To demonstrate the ability of EQT to incorporate the water orientation polarization, ion hydration, and electrostatic correlations effects, we simulate confined KCl aqueous electrolyte and show that EQT can accurately predict the distribution of ions in a thin EDL and also predict the complex phenomenon of charge inversion.

  6. Interplay between morphological and shielding effects in field emission via Schwarz-Christoffel transformation

    NASA Astrophysics Data System (ADS)

    Marcelino, Edgar; de Assis, Thiago A.; de Castilho, Caio M. C.

    2018-03-01

    It is well known that sufficiently strong electrostatic fields are able to change the morphology of Large Area Field Emitters (LAFEs). This phenomenon affects the electrostatic interactions between adjacent sites on a LAFE during field emission and may lead to several consequences, such as: the emitter's degradation, diffusion of absorbed particles on the emitter's surface, deflection due to electrostatic forces, and mechanical stress. These consequences are undesirable for technological applications, since they may significantly affect the macroscopic current density on the LAFE. Despite the technological importance, these processes are not completely understood yet. Moreover, the electrostatic effects due to the proximity between emitters on a LAFE may compete with the morphological ones. The balance between these effects may lead to a non trivial behavior in the apex-Field Enhancement Factor (FEF). The present work intends to study the interplay between proximity and morphological effects by studying a model amenable for an analytical treatment. In order to do that, a conducting system under an external electrostatic field, with a profile limited by two mirror-reflected triangular protrusions on an infinite line, is considered. The FEF near the apex of each emitter is obtained as a function of their shape and the distance between them via a Schwarz-Christoffel transformation. Our results suggest that a tradeoff between morphological and proximity effects on a LAFE may provide an explanation for the observed reduction of the local FEF and its variation at small distances between the emitter sites.

  7. Self-Complementarity within Proteins: Bridging the Gap between Binding and Folding

    PubMed Central

    Basu, Sankar; Bhattacharyya, Dhananjay; Banerjee, Rahul

    2012-01-01

    Complementarity, in terms of both shape and electrostatic potential, has been quantitatively estimated at protein-protein interfaces and used extensively to predict the specific geometry of association between interacting proteins. In this work, we attempted to place both binding and folding on a common conceptual platform based on complementarity. To that end, we estimated (for the first time to our knowledge) electrostatic complementarity (Em) for residues buried within proteins. Em measures the correlation of surface electrostatic potential at protein interiors. The results show fairly uniform and significant values for all amino acids. Interestingly, hydrophobic side chains also attain appreciable complementarity primarily due to the trajectory of the main chain. Previous work from our laboratory characterized the surface (or shape) complementarity (Sm) of interior residues, and both of these measures have now been combined to derive two scoring functions to identify the native fold amid a set of decoys. These scoring functions are somewhat similar to functions that discriminate among multiple solutions in a protein-protein docking exercise. The performances of both of these functions on state-of-the-art databases were comparable if not better than most currently available scoring functions. Thus, analogously to interfacial residues of protein chains associated (docked) with specific geometry, amino acids found in the native interior have to satisfy fairly stringent constraints in terms of both Sm and Em. The functions were also found to be useful for correctly identifying the same fold for two sequences with low sequence identity. Finally, inspired by the Ramachandran plot, we developed a plot of Sm versus Em (referred to as the complementarity plot) that identifies residues with suboptimal packing and electrostatics which appear to be correlated to coordinate errors. PMID:22713576

  8. Self-complementarity within proteins: bridging the gap between binding and folding.

    PubMed

    Basu, Sankar; Bhattacharyya, Dhananjay; Banerjee, Rahul

    2012-06-06

    Complementarity, in terms of both shape and electrostatic potential, has been quantitatively estimated at protein-protein interfaces and used extensively to predict the specific geometry of association between interacting proteins. In this work, we attempted to place both binding and folding on a common conceptual platform based on complementarity. To that end, we estimated (for the first time to our knowledge) electrostatic complementarity (Em) for residues buried within proteins. Em measures the correlation of surface electrostatic potential at protein interiors. The results show fairly uniform and significant values for all amino acids. Interestingly, hydrophobic side chains also attain appreciable complementarity primarily due to the trajectory of the main chain. Previous work from our laboratory characterized the surface (or shape) complementarity (Sm) of interior residues, and both of these measures have now been combined to derive two scoring functions to identify the native fold amid a set of decoys. These scoring functions are somewhat similar to functions that discriminate among multiple solutions in a protein-protein docking exercise. The performances of both of these functions on state-of-the-art databases were comparable if not better than most currently available scoring functions. Thus, analogously to interfacial residues of protein chains associated (docked) with specific geometry, amino acids found in the native interior have to satisfy fairly stringent constraints in terms of both Sm and Em. The functions were also found to be useful for correctly identifying the same fold for two sequences with low sequence identity. Finally, inspired by the Ramachandran plot, we developed a plot of Sm versus Em (referred to as the complementarity plot) that identifies residues with suboptimal packing and electrostatics which appear to be correlated to coordinate errors. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Calcite phase determination of CaCO3 nanoparticles synthesized by one step drying method

    NASA Astrophysics Data System (ADS)

    Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    Calcium Carbonate (CaCO3) is a type of carbonic salt. It exist naturally as white odourless solid and may also be synthesized by chemical reactions. This work studies one-step precipitation of CaCO3 that was prepared by novel method of one-step precipitation method. The method was then proceeded by different types of drying. The first type is by normal drying in oven whereas the second type is with the presence of hydrothermal influence. From the results, precipitated CaCO3 dried by normal drying method produces CaCO3 with two polymorphs present; calcite and vaterite. Normal drying at 500°C has no vaterite phase left. Drying by hydrothermal precipitated CaCO3 has Nitrogen (N) left on the surfaces of the precipitated CaCO3. This work successfully identified calcite phase in the precipitated CaCO3.

  10. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide.

    PubMed

    Lyu, Honghong; Gong, Yanyan; Tang, Jingcshun; Huang, Yao; Wang, Qilin

    2016-07-01

    Electroplating sludge (ES) containing large quantities of heavy metals is regarded as a hazardous waste in China. This paper introduced a simple method of treating ES using environmentally friendly fixatives biochar (BC) and iron sulfide (FeS), respectively. After 3 days of treatment with FeS at a FeS-to-ES mass ratio of 1:5, the toxicity characteristic leaching procedure (TCLP)-based leachability of total Cr (TCr), Cu(II), Ni(II), Pb(II), and Zn(II) was decreased by 59.6, 100, 63.8, 73.5, and 90.5 %, respectively. After 5 days of treatment with BC at a BC-to-ES mass ratio of 1:2, the TCLP-based leachability was declined by 35.1, 30.6, 22.3, 23.1, and 22.4 %, respectively. Pseudo first-order kinetic model adequately simulated the sorption kinetic data. Structure and morphology analysis showed that adsorption, electrostatic attraction, surface complexation, and chemical precipitation were dominant mechanisms for heavy metals immobilization by BC, and that chemical precipitation (formation of metal sulfide and hydroxide precipitates), iron exchange (formation of CuFeS2), and surface complexation were mainly responsible for heavy metals removal by FeS. Economic costs of BC and FeS were 500 and 768 CNY/t, lower than that of Na2S (940 CNY/t). The results suggest that BC and FeS are effective, economic, and environmentally friendly fixatives for immobilization of heavy metals in ES before landfill disposal.

  11. Sorption mechanism of Cd(II) from water solution onto chicken eggshell

    NASA Astrophysics Data System (ADS)

    Flores-Cano, Jose Valente; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa María; Aragón-Piña, Antonio; Labrada-Delgado, Gladis Judith

    2013-07-01

    The mechanism and capacity of eggshell for sorbing Cd(II) from aqueous solution was examined in detail. The eggshell was characterized by several techniques. The eggshell was mainly composed of Calcite (CaCO3). The surface charge distribution was determined by acid-base titration and the point of zero charge (PZC) of the eggshell was found to be 11.4. The sorption equilibrium data were obtained in a batch adsorber, and the adsorption isotherm of Langmuir fitted the data quite well. The sorption capacity of eggshell increased while raising the pH from 4 to 6, this tendency was attributed to the electrostatic interaction between the Cd2+ in solution and the surface of the eggshell. Furthermore, the sorption capacity was augmented by increasing the temperature from 15 to 35 °C because the sorption was endothermic. The sorption of Cd(II) occurred mainly onto the calcareous layer of the eggshell, but slightly on the membrane layer. It was demonstrated that the sorption of Cd(II) was not reversible, and the main sorption mechanisms were precipitation and ion exchange. The precipitation of (Cd,Ca)CO3 on the surface of the eggshell was corroborated by SEM and XRD analysis.

  12. Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials.

    PubMed

    Wang, Ting; Sun, Hongwen; Ren, Xinhao; Li, Bing; Mao, Hongjun

    2018-02-01

    Two kinds of biochars, one derived from corn straw (CBC) and one from pig manure (PBC), were used as the carriers of a bacterium (B38) to adsorb heavy metals in solution. CBC exhibited high affinity to Hg(II), while PBC showed large adsorption capacity of Pb(II). After loading with B38, the sorption capacity of the co-sorbents were enhanced for Pb(II), but weakened for Hg(II). In a binary system, the overall adsorption capacity to Hg-Pb (CBC+B38, 136.7mg/g; PBC+B38, 181.3mg/g) on co-sorbents was equal to the sum of the single-component values for Hg(II) and Pb(II). Electrostatic interactions and precipitation are the major mechanisms in the adsorption of Hg(II). In contrast, cation-π interactions and precipitation were involved in the sorption process of Pb(II). Moreover, the sorption sites of Hg(II) and Pb(II) partially overlapped on the biochar surface, but were different on co-sorbents. Hence, the co-sorbents have an advantage over the biochar alone in the removal of heavy metal mixtures. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The converse magnetoelectric coupling in asymmetric granule/matrix composite film with Ni/PZT component

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Su, Ning-Ning; Cui, Wen-Li; Yan, Shi-Nong

    2018-04-01

    In this work, a type of asymmetric granule/matrix composite film is designed, where the Ni granule is dispersed in PZT matrix, meanwhile the top and bottom electrode is constituted by Au and SRO respectively. Predicted through the electrostatic screening model and mean field approximation, considerable electrostatic charge is induced on Ni granule surface by ferroelectric PZT polarization. Predicted through the spin splitting model and spherical shell approximation, both the magnetization and magnetic anisotropy of Ni granule are modulated by ferroelectric PZT polarization. As the volume fraction of Ni granule is increased, the electric modulation of magnetization and magnetic anisotropy is reduced and enhanced respectively. As the dimension of granule/matrix composite is varied, such modulation is retained. Due to the large area-volume ratio of nano-granule, this work benefits to realize the converse magnetoelectric coupling in nanoscale.

  14. Use of an electric field in an electrostatic liquid film radiator.

    PubMed

    Bankoff, S G; Griffing, E M; Schluter, R A

    2002-10-01

    Experimental and numerical work was performed to further the understanding of an electrostatic liquid film radiator (ELFR) that was originally proposed by Kim et al.(1) The ELFR design utilizes an electric field that exerts a normal force on the interface of a flowing film. The field lowers the pressure under the film in a space radiator and, thereby, prevents leakage through a puncture in the radiator wall. The flowing film is subject to the Taylor cone instability, whereby a cone of fluid forms underneath an electrode and sharpens until a jet of fluid is pulled toward the electrode and disintegrates into droplets. The critical potential for the instability is shown to be as much as an order of magnitude higher than that used in previous designs.(2) Furthermore, leak stoppage experiments indicate that the critical field is adequate to stop leaks in a working radiator.

  15. Precipitation Organization in a Warmer Climate

    NASA Astrophysics Data System (ADS)

    Rickenbach, T. M.; Nieto Ferreira, R.; Nissenbaum, M.

    2014-12-01

    This study will investigate changes in precipitation organization in a warmer climate using the Weather Research and Forecasting (WRF) model and CMIP-5 ensemble climate simulations. This work builds from an existing four-year NEXRAD radar-based precipitation climatology over the southeastern U.S. that uses a simple two-category framework of precipitation organization based on instantaneous precipitating feature size. The first category - mesoscale precipitation features (MPF) - dominates winter precipitation and is linked to the more predictable large-scale forcing provided by the extratropical cyclones. In contrast, the second category - isolated precipitation - dominates the summer season precipitation in the southern coastal and inland regions but is linked to less predictable mesoscale circulations and to local thermodynamics more crudely represented in climate models. Most climate modeling studies suggest that an accelerated water cycle in a warmer world will lead to an overall increase in precipitation, but few studies have addressed how precipitation organization may change regionally. To address this, WRF will simulate representative wintertime and summertime precipitation events in the Southeast US under the current and future climate. These events will be simulated in an environment resembling the future climate of the 2090s using the pseudo-global warming (PGW) approach based on an ensemble of temperature projections. The working hypothesis is that the higher water vapor content in the future simulation will result in an increase in the number of isolated convective systems, while MPFs will be more intense and longer-lasting. In the context of the seasonal climatology of MPF and isolated precipitation, these results have implications for assessing the predictability of future regional precipitation in the southeastern U.S.

  16. A new method for achieving enhanced dielectric response over a wide temperature range

    DOE PAGES

    Maurya, Deepam; Sun, Fu -Chang; Pamir Alpay, S.; ...

    2015-10-19

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors.

  17. On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, Alexandre A.; Pinheiro, Mario J.

    In this work, the propulsion force developed in an asymmetric capacitor will be calculated for three different diameters of the ground electrode. The used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to provide a physical insight on the force mechanism that acts on the asymmetrical capacitors, and also to understand how to increase the efficiency of propulsion.

  18. Electrostatic Hellmann-Feynman theorem applied to long-range interatomic forces - The hydrogen molecule.

    NASA Technical Reports Server (NTRS)

    Steiner, E.

    1973-01-01

    The use of the electrostatic Hellmann-Feynman theorem for the calculation of the leading term in the 1/R expansion of the force of interaction between two well-separated hydrogen atoms is discussed. Previous work has suggested that whereas this term is determined wholly by the first-order wavefunction when calculated by perturbation theory, the use of the Hellmann-Feynman theorem apparently requires the wavefunction through second order. It is shown how the two results may be reconciled and that the Hellmann-Feynman theorem may be reformulated in such a way that only the first-order wavefunction is required.

  19. A new method for achieving enhanced dielectric response over a wide temperature range

    PubMed Central

    Maurya, Deepam; Sun, Fu-Chang; Pamir Alpay, S.; Priya, Shashank

    2015-01-01

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors. PMID:26477391

  20. Microwave Interferometric Density Measurements of a Pulsed Helicon Source

    NASA Astrophysics Data System (ADS)

    Scime, Ethan; Scime, Earl; Thompson, Derek

    2017-10-01

    The intense rf environment of a helicon plasma source is problematic for electrostatic probe measurements of plasma density, particularly at low neutral pressures. Here we present measurements of the line-integrated plasma density in a helicon plasma source using a multi-frequency (20-40 GHz) microwave interferometer. The design of the diagnostic and the data acquisition system are presented, as well as a comparison to density profiles obtained with a moveable electrostatic probe. A parametric fit to the probe profile measurements is used to determine the peak density from the microwave density measurements. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.

  1. Continuum limit of electrostatic gyrokinetic absolute equilibrium

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Zhou

    2012-06-01

    Electrostatic gyrokinetic absolute equilibria with continuum velocity field are obtained through the partition function and through the Green function of the functional integral. The new results justify and explain the prescription for quantization/discretization or taking the continuum limit of velocity. The mistakes in the Appendix D of our earlier work [J.-Z. Zhu and G. W. Hammett, Phys. Plasmas 17, 122307 (2010)] are explained and corrected. If the lattice spacing for discretizing velocity is big enough, all the invariants could concentrate at the lowest Fourier modes in a negative-temperature state, which might indicate a possible variation of the dual cascade picture in 2D plasma turbulence.

  2. Role of electrostatic interactions in determining the G-quadruplex structures

    NASA Astrophysics Data System (ADS)

    Lee, Jinkeong; Im, Haeri; Chong, Song-Ho; Ham, Sihyun

    2018-02-01

    We investigate the energetics of the antiparallel, hybrid and parallel type G-quadruplex structures of the human telomere DNA sequence. We find that both the conformational energy and solvation free energy of these structures are roughly inversely proportional to their radii of gyration. We rationalize this finding in terms of the dominance of the electrostatic contributions. We also show that the solvation free energy is more significant than the conformational energy in determining the G-quadruplex structures, which is in contrast to the canonical B-DNA structures. Our work will contribute to an understanding of the molecular mechanisms dictating various G-quadruplex topologies.

  3. The influence of Ag+Mg additions on the nucleation of strengthening precipitates in a non-cold-worked Al-Cu-Li alloy

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Aluminum-copper-lithium alloys generally require cold work to attain their highest strengths in artificially aged tempers. These alloys are usually strengthened by a combination of the metastable delta prime (Al3Li) and theta prime (Al2Cu) phases and the equilibrium T sub 1 (Al2CuLi) phase, and where the T sub 1 phase is a more potent strengthener than the delta prime. Various investigators have shown that the high strengths obtained after artificial aging associated with cold work result from the heterogeneous precipitation of T sub 1 on matrix dislocations. The objective here is to elucidate the mechanism by which the Ag+Mg additions stimulate the precipitation of T sub 1 type precipitates without cold work. To accomplish this, the microstructure of an Al-6.3Cu-1.3Li-0.14Zr model alloy was evaluated in a T6 type temper with and without the Ag+Mg addition.

  4. Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding

    PubMed Central

    Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.

    2013-01-01

    We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561

  5. TEMPO Monolayers on Si(100) Electrodes: Electrostatic Effects by the Electrolyte and Semiconductor Space-Charge on the Electroactivity of a Persistent Radical.

    PubMed

    Zhang, Long; Vogel, Yan Boris; Noble, Benjamin B; Gonçales, Vinicius R; Darwish, Nadim; Brun, Anton Le; Gooding, J Justin; Wallace, Gordon G; Coote, Michelle L; Ciampi, Simone

    2016-08-03

    This work demonstrates the effect of electrostatic interactions on the electroactivity of a persistent organic free radical. This was achieved by chemisorption of molecules of 4-azido-2,2,6,6-tetramethyl-1-piperdinyloxy (4-azido-TEMPO) onto monolayer-modified Si(100) electrodes using a two-step chemical procedure to preserve the open-shell state and hence the electroactivity of the nitroxide radical. Kinetic and thermodynamic parameters for the surface electrochemical reaction are investigated experimentally and analyzed with the aid of electrochemical digital simulations and quantum-chemical calculations of a theoretical model of the tethered TEMPO system. Interactions between the electrolyte anions and the TEMPO grafted on highly doped, i.e., metallic, electrodes can be tuned to predictably manipulate the oxidizing power of surface nitroxide/oxoammonium redox couple, hence showing the practical importance of the electrostatics on the electrolyte side of the radical monolayer. Conversely, for monolayers prepared on the poorly doped electrodes, the electrostatic interactions between the tethered TEMPO units and the semiconductor-side, i.e., space-charge, become dominant and result in drastic kinetic changes to the electroactivity of the radical monolayer as well as electrochemical nonidealities that can be explained as an increase in the self-interaction "a" parameter that leads to the Frumkin isotherm.

  6. Coupled molecular dynamics and continuum electrostatic method to compute the ionization pKa's of proteins as a function of pH. Test on a large set of proteins.

    PubMed

    Vorobjev, Yury N; Scheraga, Harold A; Vila, Jorge A

    2018-02-01

    A computational method, to predict the pKa values of the ionizable residues Asp, Glu, His, Tyr, and Lys of proteins, is presented here. Calculation of the electrostatic free-energy of the proteins is based on an efficient version of a continuum dielectric electrostatic model. The conformational flexibility of the protein is taken into account by carrying out molecular dynamics simulations of 10 ns in implicit water. The accuracy of the proposed method of calculation of pKa values is estimated from a test set of experimental pKa data for 297 ionizable residues from 34 proteins. The pKa-prediction test shows that, on average, 57, 86, and 95% of all predictions have an error lower than 0.5, 1.0, and 1.5 pKa units, respectively. This work contributes to our general understanding of the importance of protein flexibility for an accurate computation of pKa, providing critical insight about the significance of the multiple neutral states of acid and histidine residues for pKa-prediction, and may spur significant progress in our effort to develop a fast and accurate electrostatic-based method for pKa-predictions of proteins as a function of pH.

  7. An Overview of the Materials Science Research at the Marshall Space Flight Center Electrostatic Levitator Facility and Recent CDDF Efforts

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Containerless processing is an important tool for materials research. The freedom from a crucible allows processing of liquid materials in a metastable undercooled state, as well as allowing processing of high temperature and highly reactive melts. Electrostatic levitation (ESL) is a containerless method which provides a number of unique advantages, including the ability to process non-conducting materials, the ability to operate in ultra-high vacuum or at moderate gas pressure (approx. = 5 atm), and the decoupling of positioning force from sample heating. ESL also has the potential to reduce internal flow velocities below those possible with electromagnetic, acoustic, or aero-acoustic techniques. In electrostatic levitation, the acceleration of gravity (or residual acceleration in reduced gravity) is opposed by the action of an applied electric field on a charged sample. Microgravity allows electrostatic levitation to work even more effectively. The ESL facility at NASA s Marshall Space Flight Center is in use for materials research and thermophysical property measurement by a number of different internal and external investigators. Results from the recent CDDF studies on the high energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory will be presented. The Microgravity Research Program supports the facility.

  8. Uncertainty quantification analysis of the dynamics of an electrostatically actuated microelectromechanical switch model

    NASA Astrophysics Data System (ADS)

    Snow, Michael G.; Bajaj, Anil K.

    2015-08-01

    This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.

  9. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburghmore » #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous material. There was also evidence that the carbon is present at a higher ratio in larger particles than in small particles. An ultraviolet photoelectron counter for use in ambient atmosphere is nearing completion. The counter will be used to measure work functions of different maceral and mineral types in the coal matrix. A Particle Image Analyzer for measuring size and charge of airborne particles is also under contruction and its current status is presented. A charged, monodisperse, droplet generator is also being constructed for calibration of the Particle Image Analyzer and other airborne particle analyzers in our labs.« less

  10. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies.

    PubMed

    Kamerlin, Shina C L; Haranczyk, Maciej; Warshel, Arieh

    2009-02-05

    Hybrid quantum mechanical/molecular mechanical (QM/MM) approaches have been used to provide a general scheme for chemical reactions in proteins. However, such approaches still present a major challenge to computational chemists, not only because of the need for very large computer time in order to evaluate the QM energy but also because of the need for proper computational sampling. This review focuses on the sampling issue in QM/MM evaluations of electrostatic energies in proteins. We chose this example since electrostatic energies play a major role in controlling the function of proteins and are key to the structure-function correlation of biological molecules. Thus, the correct treatment of electrostatics is essential for the accurate simulation of biological systems. Although we will be presenting different types of QM/MM calculations of electrostatic energies (and related properties) here, our focus will be on pKa calculations. This reflects the fact that pKa's of ionizable groups in proteins provide one of the most direct benchmarks for the accuracy of electrostatic models of macromolecules. While pKa calculations by semimacroscopic models have given reasonable results in many cases, existing attempts to perform pKa calculations using QM/MM-FEP have led to discrepancies between calculated and experimental values. In this work, we accelerate our QM/MM calculations using an updated mean charge distribution and a classical reference potential. We examine both a surface residue (Asp3) of the bovine pancreatic trypsin inhibitor and a residue buried in a hydrophobic pocket (Lys102) of the T4-lysozyme mutant. We demonstrate that, by using this approach, we are able to reproduce the relevant side chain pKa's with an accuracy of 3 kcal/mol. This is well within the 7 kcal/mol energy difference observed in studies of enzymatic catalysis, and is thus sufficient accuracy to determine the main contributions to the catalytic energies of enzymes. We also provide an overall perspective of the potential of QM/MM calculations in general evaluations of electrostatic free energies, pointing out that our approach should provide a very powerful and accurate tool to predict the electrostatics of not only solution but also enzymatic reactions, as well as the solvation free energies of even larger systems, such as nucleic acid bases incorporated into DNA.

  11. Solution electrostatic levitator for measuring surface properties and bulk structures of an extremely supersaturated solution drop above metastable zone width limit.

    PubMed

    Lee, Sooheyong; Jo, Wonhyuk; Cho, Yong Chan; Lee, Hyun Hwi; Lee, Geun Woo

    2017-05-01

    We report on the first integrated apparatus for measuring surface and thermophysical properties and bulk structures of a highly supersaturated solution by combining electrostatic levitation with real-time laser/x-ray scattering. Even today, a proper characterization of supersaturated solutions far above their solubility limits is extremely challenging because heterogeneous nucleation sites such as container walls or impurities readily initiate crystallization before the measurements can be performed. In this work, we demonstrate simultaneous measurements of drying kinetics and surface tension of a potassium dihydrogen phosphate (KH 2 PO 4 ) aqueous solution droplet and its bulk structural evolution beyond the metastable zone width limit. Our experimental finding shows that the noticeable changes of the surface properties are accompanied by polymerizations of hydrated monomer clusters. The novel electrostatic levitation apparatus presented here provides an effective means for studying a wide range of highly concentrated solutions and liquids in deep metastable states.

  12. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    NASA Astrophysics Data System (ADS)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-12-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter.

  13. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    PubMed

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  14. Charles Augustin Coulomb and the fundamental law of electrostatics

    NASA Astrophysics Data System (ADS)

    Falconer, Isobel

    2004-10-01

    In his famous experiment on the inverse square law of electrostatics, Coulomb neither defined electric charge nor gave reliable measurements of the force-distance relation. Yet the experiment has often been viewed as the basis of the fundamental law of electrostatics. This paper discusses Coulomb's life, showing the context within which he was working, how he arrived at the experiment, and the use he made of it. Physics in France in the late 18th century was undergoing a transformation from a science of holistic observation and explanations to one of universal laws and exact measurement. Coulomb was both a subject of, and an important contributor to, this change, and these two aspects are evident in his approach to the experiment and to the later uptake of his results. The reaction in the rest of Europe was initially less favourable, and the ultimate fame of Coulomb's experiment was dependent on the triumph of French mathematical physics in the 19th century.

  15. Electrostatic nanolithography in polymer materials: an alternative technique for nanostructures formation

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei F.; Paramonov, Pavel B.; Sigalov, Grigori; Vaia, Richard A.; Juhl, Shane; Sancaktar, Erol

    2003-10-01

    The combination of localized softening attolitres (10^2 -10^4) of polymer film by Jule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single step technique using conventional atomic force microscopy (AFM), establishes a new paradigm for nanolithography in a broad class of polymer materials allowing rapid (order of milliseconds) creation of raised and depressed nanostructures without external heating of a polymer film of AFM tip-film contact [1]. In this work we present recent studies of AFM-assisted electrostatic nanolithography (AFMEN) such as amplitude-modulated AFMEN, and the humidity influence on nanostructures formation during contact mode AFMEN. It has been shown that the aspect ratio of nanostructures grows on the order of magnitude (0.2), while the lateral dimensions of nanodots decreases down to 10-15 nm. [1] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, "Electrostatic nanolithography in polymers using atomic force microscopy," Nature Materials 2, 468-472 (2003)

  16. Characterizing the Performance of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, M. R.; Mackey, P. J.; Holbert, E.; Clements, J. S.; Calle, C. I.

    2013-01-01

    A Wheel Electrostatic Spectrometer has been developed as a surveying tool to be incorporated into a Martian rover design. Electrostatic sensors with various protruding cover insulators are embedded into a prototype rover wheel. When these insulators come into contact with a surface, a charge develops on the cover insulator through tribocharging. A charge spectrum is created by analyzing the accumulated charge on each of the dissimilar cover insulators. This charge spectrum can be used to determine differences in Martian regolith properties. In this study, we analyzed the repeatability of the measurements for this sensor package and found that the sensor repeatability lies within one standard deviation of the noise in the signal. In addition, we tested the need for neutralizing the surface charge on the cover insulators and discovered a need to discharge the sensor cover insulators after each revolution. Future work includes an electronics redesign to reduce noise and a Martian pressure static elimination tool that can be used to neutralize the charge on the sensor cover insulators after each wheel revolution.

  17. Characterization of Dielectric Nanocomposites with Electrostatic Force Microscopy

    PubMed Central

    El Khoury, D.; Fedorenko, V.; Castellon, J.; Laurentie, J.-C.; Fréchette, M.; Ramonda, M.

    2017-01-01

    Nanocomposites physical properties unexplainable by general mixture laws are usually supposed to be related to interphases, highly present at the nanoscale. The intrinsic dielectric constant of the interphase and its volume need to be considered in the prediction of the effective permittivity of nanodielectrics, for example. The electrostatic force microscope (EFM) constitutes a promising technique to probe interphases locally. This work reports theoretical finite-elements simulations and experimental measurements to interpret EFM signals in front of nanocomposites with the aim of detecting and characterizing interphases. According to simulations, we designed and synthesized appropriate samples to verify experimentally the ability of EFM to characterize a nanoshell covering nanoparticles, for different shell thicknesses. This type of samples constitutes a simplified electrostatic model of a nanodielectric. Experiments were conducted using either DC or AC-EFM polarization, with force gradient detection method. A comparison between our numerical model and experimental results was performed in order to validate our predictions for general EFM-interphase interactions. PMID:29109811

  18. Design evaluation of graphene nanoribbon nanoelectromechanical devices

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Tak; Stephen Leo, Marie; Lee, Chengkuo; Liang, Gengchiau

    2011-07-01

    Computational studies on nanoelectromechanical switches based on bilayer graphene nanoribbons (BGNRs) with different designs are presented in this work. By varying the interlayer distance via electrostatic means, the conductance of the BGNR can be changed in order to achieve ON-states and OFF-states, thereby mimicking the function of a switch. Two actuator designs based on the modified capacitive parallel plate (CPP) model and the electrostatic repulsive force (ERF) model are discussed for different applications. Although the CPP design provides a simple electrostatic approach to changing the interlayer distance of the BGNR, their switching gate bias VTH strongly depends on the gate area, which poses a limitation on the size of the device. In addition, there exists a risk of device failure due to static fraction between the mobile and fixed electrodes. In contrast, the ERF design can circumvent both issues with a more complex structure. Finally, optimizations of the devices are carried out in order to provide insights into the design considerations of these nanoelectromechanical switches.

  19. Sorption of poly(hexamethylenebiguanide) on cellulose: mechanism of binding and molecular recognition.

    PubMed

    Blackburn, Richard S; Harvey, Anna; Kettle, Lorna L; Payne, John D; Russell, Stephen J

    2006-06-20

    Antimicrobial agents such as poly(hexamethylene biguanide) (PHMB) find application in medical, apparel, and household textile sectors; although it is understood that certain concentrations need to be applied to achieve suitable performance, there has been very little work published concerning the interactions of the polymer and its adsorption mechanism on cellulose. In this paper, such physical chemistry parameters are examined and related to computational chemistry studies. Adsorption isotherms were constructed: at low concentrations, these were typical Langmuir isotherms; at higher concentrations, they were more indicative of Freundlich isotherms, attributed to a combination of electrostatic and hydrogen-bonding forces, which endorsed computational chemistry proposals. At lower concentrations, electrostatic interactions between PHMB and carboxylic acid groups in the cellulose dominate with a contribution to binding through hydrogen bonding; as the concentration of PHMB increases, hydrogen bonding with cellulose becomes increasingly dominant. At high PHMB concentrations, observations of increasing PHMB adsorption are attributed to monolayer aggregation and multilayer stacking of PHMB through electrostatic interactions with counterions and hydrogen bonding of biguanide groups.

  20. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification

    PubMed Central

    Vernick, Sefi; Trocchia, Scott M.; Warren, Steven B.; Young, Erik F.; Bouilly, Delphine; Gonzalez, Ruben L.; Nuckolls, Colin; Shepard, Kenneth L.

    2017-01-01

    The study of biomolecular interactions at the single-molecule level holds great potential for both basic science and biotechnology applications. Single-molecule studies often rely on fluorescence-based reporting, with signal levels limited by photon emission from single optical reporters. The point-functionalized carbon nanotube transistor, known as the single-molecule field-effect transistor, is a bioelectronics alternative based on intrinsic molecular charge that offers significantly higher signal levels for detection. Such devices are effective for characterizing DNA hybridization kinetics and thermodynamics and enabling emerging applications in genomic identification. In this work, we show that hybridization kinetics can be directly controlled by electrostatic bias applied between the device and the surrounding electrolyte. We perform the first single-molecule experiments demonstrating the use of electrostatics to control molecular binding. Using bias as a proxy for temperature, we demonstrate the feasibility of detecting various concentrations of 20-nt target sequences from the Ebolavirus nucleoprotein gene in a constant-temperature environment. PMID:28516911

  1. Extending the Precipitation Map Offshore Using Daily and 3-Hourly Combined Precipitation Estimates

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Curtis, Scott; Einaudi, Franco (Technical Monitor)

    2001-01-01

    One of the difficulties in studying landfalling extratropical cyclones along the Pacific Coast is the lack of antecedent data over the ocean, including precipitation. Recent research on combining various satellite-based precipitation estimates opens the possibility of realistic precipitation estimates on a global 1 deg. x 1 deg. latitude-longitude grid at the daily or even 3-hourly interval. The goal in this work is to provide quantitative precipitation estimates that correctly represent the precipitation- related variables in the hydrological cycle: surface accumulations (fresh-water flux into oceans), frequency and duration statistics, net latent heating, etc.

  2. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  3. PCE: web tools to compute protein continuum electrostatics

    PubMed Central

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  4. Infrared Atmospheric Emission. I.

    DTIC Science & Technology

    1982-03-01

    work efitrely in the I-i coupling scheme. Since the electrostatic energies are usually given in a coupling scheme resulting in total orbital angular...For heteronuclear diatomic molecules, the case either molecule or atom. The energy lor sufered IR emission does not necessitate the electronic...apparently to work sufficiently pood in many cases, they are not ccurate enough . .. . . .. . . . . . .... . .1 6 S for the computation of the

  5. Effective solutions for monitoring the electrostatic separation of metal and plastic granular waste from electric and electronic equipment.

    PubMed

    Senouci, Khouira; Medles, Karim; Dascalescu, Lucian

    2013-02-01

    The variability of the quantity and purity of the recovered materials is a serious drawback for the application of electrostatic separation technologies to the recycling of granular wastes. In a series of previous articles we have pointed out how capability and classic control chart concepts could be employed for better mastering the outcome of such processes. In the present work, the multiple exponentially weighted moving average (MEWMA) control chart is introduced and shown to be more effective than the Hotelling T2 chart for monitoring slow varying changes in the electrostatic separation of granular mixtures originating from electric and electronic equipment waste. The operation of the industrial process was simulated by using a laboratory roll-type electrostatic separator and granular samples resulting from shredded electric cable wastes. The 25 tests carried out during the observation phase enabled the calculation of the upper and lower control limits for the two control charts considered in the present study. The 11 additional tests that simulated the monitoring phase pointed out that the MEWMA chart is more effective than Hotelling's T(2) chart in detecting slow varying changes in the outcome of a process. As the reverse is true in the case of abrupt alterations of monitored process performances, simultaneous usage of the two control charts is strongly recommended. While this study focused on a specific electrostatic separation process, using the MEWMA chart together with the well known Hotelling's T(2) chart should be applicable to the statistical control of other complex processes in the field of waste processing.

  6. Ferrocene Containing Copolymers with Improved Electrostatic Dissipation Properties for Advanced Applications

    NASA Technical Reports Server (NTRS)

    Smith, T. M.; Nelson, G. L.

    2005-01-01

    Electrostatic dissipative polymers are used for a variety of functions. Typical methods utilized to transform electrically insulating polymers into either charge dissipative or conductive materials involve incorporating a conductive filler, conductive polymer, oxidizing the surface using plasma, or incorporating surfactants that act as surface wetting agents. Another approach is to synthesize a block copolymer that is expected to result in better electrical properties with minimal impacts to physical, fire, and thermal properties. One such block that can be added into the main chain of polymers is a diol terminated ferrocene oligomer, which is expected to impart electrostatic dissipative properties into the host polymer while concurrently improving the overall fire properties. Previous work with polyurethanes incorporating a ferrocene oligomer into the main chain resulted in much improved fire retardancy. In dealing with electrostatic dissipative materials the important questions are: how easily does the material charge and how quickly can the charge move to ground. One normally describes the materials conductivity, but conductivity only measures the fastest path for an electron not the slowest path. The slowest path is the one of interest, since it is left on the surface and thus can cause discharges. In order to assess ease of charging and decay times corona charge dissipation measurements can accurately assess these properties by introducing a charge on the surface of the material then measuring the surface voltage and the amount of charge deposited. The charge decay curve then will give an indication of a materials electrostatic dissipation properties. Normally, triboelectric testing can be performed, but results vary. Corona charge dissipation results are more repeatable.

  7. The effect of carbide precipitation on the hydrogen-enhanced fracture behavior of alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Symons, D.M.

    1998-04-01

    Alloy 690 is susceptible to hydrogen embrittlement where hydrogen reduces the ductility and causes the fracture morphology to change to predominantly intergranular. The role of carbide precipitation in the embrittlement behavior is not well defined. The objective of this work is to understand the effect of intergranular carbide precipitation on the hydrogen embrittlement of alloy 690. The work reported herein used tensile and compact-tension specimens in both the solution-annealed condition (minimal grain-boundary carbide precipitation) and in the solution-annealed condition followed by an aging treatment to precipitate grain-boundary carbides. By performing the mechanical tests on materials in both uncharged and hydrogen-chargedmore » conditions, it was possible to evaluate the degree of embrittlement as a function of the carbide precipitation. It is shown that the embrittlement due to hydrogen increased as the material was aged to allow grain-boundary carbide precipitation. It is proposed that the increase in embrittlement was caused by increased hydrogen at the carbide/matrix interface due to the trapping and increased stresses at the precipitate interface, which developed from strain incompatibility of the precipitate with the matrix. It is further shown that increasing the hydrostatic stress increased the tendency for intergranular fracture, as is consistent with other nickel-base alloys.« less

  8. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, L.

    2012-06-06

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity tomore » collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).« less

  9. An electromechanical model of myosin molecular motors.

    PubMed

    Masuda, Tadashi

    2003-12-21

    There is a long-running debate on the working mechanism of myosin molecular motors, which, by interacting with actin filaments, convert the chemical energy of ATP into a variety of mechanical work. After the development of technologies for observing and manipulating individual working molecules, experimental results negating the widely accepted 'lever-arm hypothesis' have been reported. In this paper, based on the experimental results so far accumulated, an alternative hypothesis is proposed, in which motor molecules are modelled as electromechanical components that interact with each other through electrostatic force. Electrostatic attractive force between myosin and actin is assumed to cause a conformational change in the myosin head during the attachment process. An elastic energy resulting from the conformational change then produces the power stroke. The energy released at the ATP hydrolysis is mainly used to detach the myosin head from actin filaments. The mechanism presented in this paper is compatible with the experimental results contradictory to the previous theories. It also explains the behavior of myosins V and VI, which are engaged in cellular transport and move processively along actin filaments.

  10. Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures.

    PubMed

    Zhang, Qiang; Chen, Yuxuan; Zhang, Chendong; Pan, Chi-Ruei; Chou, Mei-Yin; Zeng, Changgan; Shih, Chih-Kang

    2016-12-14

    The van der Waals interaction in vertical heterostructures made of two-dimensional (2D) materials relaxes the requirement of lattice matching, therefore enabling great design flexibility to tailor novel 2D electronic systems. Here we report the successful growth of MoSe 2 on single-layer hexagonal boron nitride (hBN) on the Ru(0001) substrate using molecular beam epitaxy. Using scanning tunnelling microscopy and spectroscopy, we found that the quasi-particle bandgap of MoSe 2 on hBN/Ru is about 0.25 eV smaller than those on graphene or graphite substrates. We attribute this result to the strong interaction between hBN/Ru, which causes residual metallic screening from the substrate. In addition, the electronic structure and the work function of MoSe 2 are modulated electrostatically with an amplitude of ∼0.13 eV. Most interestingly, this electrostatic modulation is spatially in phase with the Moiré pattern of hBN on Ru(0001) whose surface also exhibits a work function modulation of the same amplitude.

  11. The charge spectrum of positive ions in a hydrogen aurora

    NASA Technical Reports Server (NTRS)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  12. Portable air cleaners should be at the forefront of the public health response to landscape fire smoke.

    PubMed

    Barn, Prabjit K; Elliott, Catherine T; Allen, Ryan W; Kosatsky, Tom; Rideout, Karen; Henderson, Sarah B

    2016-11-25

    Landscape fires can produce large quantities of smoke that degrade air quality in both remote and urban communities. Smoke from these fires is a complex mixture of fine particulate matter and gases, exposure to which is associated with increased respiratory and cardiovascular morbidity and mortality. The public health response to short-lived smoke events typically advises people to remain indoors with windows and doors closed, but does not emphasize the use of portable air cleaners (PAC) to create private or public clean air shelters. High efficiency particulate air filters and electrostatic precipitators can lower indoor concentrations of fine particulate matter and improve respiratory and cardiovascular outcomes. We argue that PACs should be at the forefront of the public health response to landscape fire smoke events.

  13. Speciation of Cr and its leachability in coal by-products from spanish coal combustion plants.

    PubMed

    López-Antón, M Antonia; Díaz-Somoano, Mercedes; Cuesta, Aida Fuente; Riesco, Aida Rubio; Martínez-Tarazona, M Rosa

    2008-06-01

    This study evaluates the behaviour of total Cr and Cr (VI) during coal combustion in two Spanish power stations. The content and distribution of Cr in the feed coal and combustion wastes was determined and the Cr contents were normalized using enrichment factor indexes. The speciation of Cr in the fly ash fractions from the different hoppers of the electrostatic precipitators was established and the possibility that the Cr (VI) might lixiviate when ashes are disposed of at landfill sites was assessed. Differences in the distribution and behavior of Cr in the two power stations were observed. According to European directive 1999/31/CEE, soluble Cr(VI) in the fly ashes studied would be unlikely to pose an environmental or health risk when the ash is disposed of.

  14. PREFACE: 13th International Conference on Electrostatics

    NASA Astrophysics Data System (ADS)

    Taylor, D. Martin

    2011-06-01

    Electrostatics 2011 was held in the city of Bangor which is located in North West Wales in an area of outstanding natural beauty close to the Snowdonia mountain range and bordering the Irish Sea. The history of the area goes back into the mists of times, but a continuous technological thread can be traced from the stone- and bronze-age craftsmen, who inhabited the area several thousand years ago, via the civil engineering and fortifications of the Romans and Edward I of England, through Marconi's long-wave trans-Atlantic transmitter near Caernarfon to the conference host. The School of Electronic Engineering at Bangor University has contributed much to the discipline of Electrostatics not only in teaching and research but also in supporting industry. It was a great pleasure for me, therefore, to have the pleasure of welcoming the world's experts in Electrostatics to Bangor in April 2011. In my preface to the Proceedings of Electrostatics 1999, I reported that almost 90 papers were presented. Interestingly, a similar number were presented in 2011 testifying to the importance and endurance of the subject. The all-embracing nature of electrostatics is captured in the pictorial depiction used for the conference logo: a hand-held plasma ball with its close link to gaseous discharges and the superimposed Antarctic aurora highlighting the featured conference themes of atmospheric, planetary and environmental electrostatics. Leading these themes were three invited contributions, the first by Giles Harrison who delivered the Bill Bright Memorial Lecture 'Fair weather atmospheric electricity', Carlos Calle on 'The electrostatic environments of Mars and the Moon' and Istvan Berta on 'Lightning protection - challenges, solutions and questionable steps in the 21st century'. Leading other key sessions were invited papers by Atsushi Ohsawa on 'Statistical analysis of fires and explosions attributed to static electricity over the last 50 years in Japanese industry' and Antonio Ramos on 'Electrohydrodynamic pumping in microsystems'. Of the papers submitted for publication 69 passed through the thorough review process and I take this opportunity to warmly thank the reviewers for their constructive criticism and rapid turnaround which has allowed the Proceedings to be delivered to the publisher on time. It is a pleasure also to thank members of the International Advisory Panel, and the Organizing and Programme Committees for their guidance and suggestions and especially Claire Garland and her team at the Institute of Physics for their support, all of which ensured a successful and enjoyable conference. Special thanks are due to Jeremy Smallwood for organising the pre-conference workshop, to Tom Jones, Martin Glor and Dave Swenson for their highly informative and educational contributions at the workshop, to CST for organising the simulation workshop, and to CST and JCI Chilworth for their much appreciated sponsorship of the conference. I am sure you will enjoy reading this record of Electrostatics 2011, covering as it does the wide range of subjects upon which static electricity impinges. Especially important is the development of electrostatic-based methods for reducing atmospheric pollution. In this context it is interesting to see how Masuda's work on the surface-discharge-based Boxer charger, first reported over 30 years ago, has now developed into dielectric barrier discharge (DBD) systems for the removal of noxious molecules from industrial and vehicle exhaust gases. Thanks to our hard working conference chairman, Paul Holdstock, the conference retained its now well-established reputation for providing a friendly, sociable atmosphere for discussing the newest developments in this important scientific area. Finally, my sincere thanks go to all the presenters and to all those who attended and contributed to another successful conference. Professor D. Martin TaylorProceedings EditorBangor, May 2011

  15. Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

    PubMed Central

    Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce

    2009-01-01

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods. PMID:18567005

  16. Theoretical studies of the mechanism of the action of the neurohypophyseal hormones. I. Molecular electrostatic potential (MEP) and molecular electrostatic field (MEF) maps of some vasopressin analogues

    NASA Astrophysics Data System (ADS)

    Liwo, Adam; Tempczyk, Anna; Grzonka, Zbigniew

    1989-09-01

    Continuing our theoretical studies of the oxytocin and vasopressin analogues, we have analysed the molecular electrostatic potential (MEP) and the norm of the molecular electrostatic field (MEF) of [1- β-mercaptopropionic acid]-arginine-vasopressin ([Mpa1]-AVP), [1-( β-mercapto- β,β-cyclopentamethylene)propionic acid]-arginine-vasopressin ([Cpp']-AVP), and [1-thiosalicylic acid]-arginine-vasopressin ([Ths']-AVP) whose low-energy conformations were calculated in our previous work. These compounds are known from experiment to exhibit different biological activity. The scalar fields mentioned determine the energy of interaction with either charged (MEP) or polar (MEF) species, the energy being in the second case either optimal or Boltzmann-averaged over all the possible orientations of the dipole moment versus the electrostatic field. The electrostatic interactions slowly vanish with distance and can therefore be considered to be the factor determining the molecular shape at greater distances, which can help in both predicting the interactions with the receptor at the stage of remote recognition and in finding the preferred directions of solvation by a polar solvent. In the analysis of the fields three techniques have been used: (i) the construction of maps in certain planes; (ii) the construction of maps on spheres centered in the charge center of the molecule under study and of poles chosen according to the main axes of the quadrupole moment; and (iii) the construction of surfaces corresponding to a given value of potential. The results obtained show that the shapes of both MEP and MEF are similar in the case of [Mpa1]-AVP and [Cpp1-AVP (biologically active), while some differences emerge when comparing these compounds with [Ths1]-AVP (inactive). It has also been found that both MEP and MEF depend even more strongly on conformation.

  17. TRIANGLE-SHAPED DC CORONA DISCHARGE DEVICE FOR MOLECULAR DECOMPOSITION

    EPA Science Inventory

    The paper discusses the evaluation of electrostatic DC corona discharge devices for the application of molecular decomposition. A point-to-plane geometry corona device with a rectangular cross section demonstrated low decomposition efficiencies in earlier experimental work. The n...

  18. Coagulation-flocculation mechanisms in wastewater treatment plants through zeta potential measurements.

    PubMed

    López-Maldonado, E A; Oropeza-Guzman, M T; Jurado-Baizaval, J L; Ochoa-Terán, A

    2014-08-30

    Based on the polyelectrolyte-contaminant physical and chemical interactions at the molecular level, this article analyzed and discussed the coagulation-flocculation and chemical precipitation processes in order to improve their efficiency. Bench experiments indicate that water pH, polyelectrolyte (PE) dosing strategy and cationic polyelectrolyte addition are key parameters for the stability of metal-PE complexes. The coagulation-flocculation mechanism is proposed based on zeta potential (ζ) measurement as the criteria to define the electrostatic interaction between pollutants and coagulant-flocculant agents. Polyelectrolyte and wastewater dispersions are exposed to an electrophoretic effect to determine ζ. Finally, zeta potential values are compared at pH 9, suggesting the optimum coagulant dose at 162mg/L polydadmac and 67mg/L of flocculant, since a complete removal of TSS and turbidity is achieved. Based on the concentration of heavy metals (0.931mg/L Sn, 0.7mg/L Fe and 0.63mg/L Pb), treated water met the Mexican maximum permissible limits. In addition, the treated water has 45mg O2/L chemical oxygen demand (COD) and 45mg C/L total organic carbon (TOC). The coagulation-flocculation mechanism is proposed taking into account both: zeta potential (ζ)-pH measurement and chemical affinity, as the criteria to define the electrostatic and chemical interaction between pollutants and polyelectrolytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models.

    PubMed

    Booth, James F; Naud, Catherine M; Willison, Jeff

    2018-03-01

    The representation of extratropical cyclones (ETCs) precipitation in general circulation models (GCMs) and a weather research and forecasting (WRF) model is analyzed. This work considers the link between ETC precipitation and dynamical strength and tests if parameterized convection affects this link for ETCs in the North Atlantic Basin. Lagrangian cyclone tracks of ETCs in ERA-Interim reanalysis (ERAI), the GISS and GFDL CMIP5 models, and WRF with two horizontal resolutions are utilized in a compositing analysis. The 20-km resolution WRF model generates stronger ETCs based on surface wind speed and cyclone precipitation. The GCMs and ERAI generate similar composite means and distributions for cyclone precipitation rates, but GCMs generate weaker cyclone surface winds than ERAI. The amount of cyclone precipitation generated by the convection scheme differs significantly across the datasets, with GISS generating the most, followed by ERAI and then GFDL. The models and reanalysis generate relatively more parameterized convective precipitation when the total cyclone-averaged precipitation is smaller. This is partially due to the contribution of parameterized convective precipitation occurring more often late in the ETC life cycle. For reanalysis and models, precipitation increases with both cyclone moisture and surface wind speed, and this is true if the contribution from the parameterized convection scheme is larger or not. This work shows that these different models generate similar total ETC precipitation despite large differences in the parameterized convection, and these differences do not cause unexpected behavior in ETC precipitation sensitivity to cyclone moisture or surface wind speed.

  20. Electrification of particulate entrained fluid flows-Mechanisms, applications, and numerical methodology

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Gu, Zhaolin

    2015-10-01

    Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.

  1. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian

    2018-04-01

    We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.

  2. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  3. Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Tigelaar, D. M.; Watson, K. A.; Smith, J. G., Jr.; Lillehei, P. T.; Connell, J. W.

    2004-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge build-up have been under investigation as part of a materials development activity. In the work described herein, single-walled carbon nanotubes (SWNT) solutions were dispersed in solutions of a novel ionomer in N,N-dimethylacetamide resulting in homogenous suspensions or quasi-solutions. The ionomer was used to aid in the dispersal of SWNTs in to a soluble, low color space environmentally durable polyimide. The use of the ionomer as a dispersant enabled the nanotubes to be dispersed at loading levels up to 3 weight % in a polyimide solution without visual agglomeration. The films were further characterized for their electrical and mechanical properties.

  4. Comment on ‘Towards addressing transient learning challenges in undergraduate physics: an example from electrostatics’

    NASA Astrophysics Data System (ADS)

    Kwang-Hua, Chu Rainer

    2016-11-01

    We make some crucial remarks about the recent presentation by Fredlund et al (2015 Eur. J. Phys. 36 055002) considering the tutorial problem raised therein. After working out the velocity of the electron (we also included the role of image charges or induced charges) as it strikes the (conducting) metal sphere, we found the velocity value is already near the relativistic regime. The latter then encounters the open issue; to obtain a classical equation of motion of a point charge for which Yaghjian (2008 Phys. Rev. E 78 046606) has mentioned the following difficulty: the electrostatic energy of formation and thus the electrostatic mass of a point charge is infinite.

  5. Influence of electric field on interwell tunneling rate in quasi two dimensional organic quantum wells

    NASA Astrophysics Data System (ADS)

    Donovan, K. J.; Elliott, J. E.; Jeong, I. S.; Scott, K.; Wilson, E. G.

    2000-11-01

    The tunneling rate of photocreated charge carriers between layers in Langmuir-Blodgett multilayer structures is measured indirectly using the novel technique of bimolecular recombination quenching. The tunneling rate is demonstrated to be dependent upon the applied electrostatic potential difference between the layers. This dependence is explored in light of the Marcus theory of charge transfer. That theory was developed to describe redox reactions where the driving force is supplied by a chemical potential difference between two chemically different parts of a more complex system. In the current work the electrostatic potential replaces the chemical potential as the driving potential. The field dependence of the exciton dissociation probability is also determined.

  6. Design and Simulation of Bistable Microsystem with Frequency-up conversion effect for Electrostatic Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Vysotskyi, Bogdan; Parrain, Fabien; Lefeuvre, Elie; Leroux, Xavier; Aubry, Denis; Gaucher, Philippe

    2016-10-01

    This work is dedicated for the study of energy harvesters implemented in form of microelectromechanical systems (MEMS) used to harvest ambient vibrations for powering standalone electronic devices. The previewed application is to power a leadless pacemaker with mechanical energy of the heartbeat, which requires the amount of power typically more than 1μW. The target of the presented article is to combine the effect of bistability and nonlinear coupling by electrostatic effect in order to achieve the high value of bandwidth at the low frequency under the low accelerations. Such system is expected to bring high power density performance. This study is performed mostly by numerical simulation.

  7. Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1995-01-01

    DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.

  8. Beyond the Electrostatic Ionosphere: Dynamic Coupling of the Magnetosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Lysak, R. L.; Song, Y.

    2017-12-01

    Many models of magnetospheric dynamics treat the ionosphere as a height-integrated slab in which the electric fields are electrostatic. However, in dynamic situations, the coupling between magnetosphere and ionosphere is achieved by the propagation of shear Alfvén waves. Hall effects lead to a coupling of shear Alfvén and fast mode waves, resulting in an inductive electric field and a compressional component of the magnetic field. It is in fact this compressional magnetic field that is largely responsible for the magnetic fields seen on the ground. A fully inductive ionosphere model is required to describe this situation. The shear Alfvén waves are affected by the strong gradient in the Alfvén speed above the ionosphere, setting up the ionospheric Alfvén resonator with wave periods in the 1-10 second range. These waves develop a parallel electric field on small scales that can produce a broadband acceleration of auroral electrons, which form the Alfvénic aurora. Since these electrons are relatively low in energy (hundreds of eV to a few keV), they produce auroral emissions as well as ionization at higher altitudes. Therefore, they can produce localized columns of ionization that lead to structuring in the auroral currents due to phase mixing or feedback interactions. This implies that the height-integrated description of the ionosphere is not appropriate in these situations. These considerations suggest that the Alfvénic aurora may, at least in some cases, act as a precursor to the development of a quasi-static auroral arc. The acceleration of electrons and ions produces a density cavity at higher altitudes that favors the formation of parallel electric fields. Furthermore, the precipitating electrons will produce secondary and backscattered electrons that provide a necessary population for the formation of double layers. These interactions strongly suggest that the simple electrostatic boundary condition often assumed is inadequate to describe auroral arc formation.

  9. Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Chen, Yu; Yao, Ying; Tong, Zong-Rui; Li, Pu-Wang; Yang, Zi-Ming; Jin, Shao-Hua

    2018-02-01

    Hydrogels have drawn many attentions as the solid-state electrolytes in flexible solid-state supercapacitors (SCs) recently. Among them, the polyelectrolyte complex hydrogel (PECH) electrolytes of natural polymers are more competitive because of their environmentally friendly property and low cost. However, while mixing two biopolymer solutions with opposite charges, the strong electrostatic interactions between the cationic and anionic biopolymers may result in precipitates instead of hydrogels. Here we report a novel method, semi-dissolution acidification sol-gel transition (SD-A-SGT), for the preparation of the PECH of chitosan (CTS) and sodium alginate (SA), with the controllable sol-gel transition and uniform composition and successfully apply it as the hydrogel electrolyte of solid-state supercapacitors (SCs). The CTS-SA PECH exhibits an extremely high ionic conductivity of 0.051 S·cm-1 and reasonable mechanical properties with a tensile strength of 0.29 MPa and elongation at break of 109.5%. The solid-state SC fabricated with the CTS-SA PECH and conventional polyaniline (PANI) nanowire electrodes provided a high specific capacitance of 234.6 F·g-1 at 5 mV·s-1 and exhibited excellent cycling stability with 95.3% capacitance retention after 1000 cycles. Our work may pave a novel avenue to the preparation of biodegradable PECHs of full natural polymers, and promote the development of environmentally friendly electronic devices.

  10. Ice nucleating particles measured during the laboratory and field intercomparisons FIN-2 and FIN-3 by the diffusion chamber FRIDGE

    NASA Astrophysics Data System (ADS)

    Weber, Daniel; Schrod, Jann; Curtius, Joachim; Haunold, Werner; Thomson, Erik; Bingemer, Heinz

    2016-04-01

    The measurement of atmospheric ice nucleating particles (INP) is still challenging. In the absence of easily applicable INP standards the intercomparison of different methods during collaborative laboratory and field workshops is a valuable tool that can shine light on the performance of individual methods for the measurement of INP [1]. FIN-2 was conducted in March 2015 at the AIDA facility in Karlsruhe as an intercomparison of mobile instruments for measuring INP [2]. FIN-3 was a field campaign at the Desert Research Institutes Storm Peak Laboratory in Colorado in September 2015 [3]. The FRankfurt Ice nucleation Deposition freezinG Experiment (FRIDGE) participated in both experiments. FRIDGE measures ice nucleating particles by electrostatic precipitation of aerosol particles onto Si-wafers in a collection unit, followed by activation, growth, and optical detection of ice crystals on the substrate in an isostatic diffusion chamber [4,5]. We will present and discuss results of our measurements of deposition/condensation INP and of immersion INP with FRIDGE during FIN-2 and FIN-3. Acknowledgements: The valuable contributions of the FIN organizers and their institutions, and of the FIN Workshop Science team are gratefully acknowledged. Our work was supported by Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT) and the EU FP7-ENV- 2013 BACCHUS project under Grant Agreement 603445.

  11. Long-Term INP Measurements within the BACCHUS project

    NASA Astrophysics Data System (ADS)

    Schrod, Jann; Bingemer, Heinz; Curtius, Joachim

    2016-04-01

    The European research project BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) studies the interactions between aerosols, clouds and the climate system, and tries to reconstruct pre-industrial aerosol and cloud conditions from data collected in pristine environments. The number concentration of Ice Nucleating Particles (INP) is an important, yet scarcely known parameter. As a partner of Work package 1 of BACCHUS we began in September 2014 to operate a globally spanned network of four INP sampling stations, which is the first of its kind. The stations are located at the ATTO observatory in the Brazilian Rainforest, the Caribbean Sea (Martinique), the Zeppelin Observatory at Svalbard in the Arctic, and in central Europe (Germany). Samples are collected routinely every day or every few days by electrostatic precipitation of aerosol particles onto Si substrates. The samples are stored in petri-slides, and shipped to our laboratory in Frankfurt, Germany. The number of ice nucleating particles on the substrate is analyzed in the isothermal static diffusion chamber FRIDGE by growing ice on the INP and photographing and counting the crystals. The measurements in the temperature range from -20°C to -30°C and relative humidities of 100-135% (with respect to ice) address primarily the deposition/condensation nucleation modes. Here we present INP and supporting aerosol data from this novel INP network for the first time.

  12. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Macé, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A.; Dirscherl, K.; Hodoroaba, V.-D.; Popov, I.; Popov, O.; Kuselman, I.; Takahata, K.; Ehara, K.; Ausset, P.; Maillé, M.; Michielsen, N.; Bondiguel, S.; Gensdarmes, F.; Morawska, L.; Johnson, G. R.; Faghihi, E. M.; Kim, C. S.; Kim, Y. H.; Chu, M. C.; Guardado, J. A.; Salas, A.; Capannelli, G.; Costa, C.; Bostrom, T.; Jämting, Å. K.; Lawn, M. A.; Adlem, L.; Vaslin-Reimann, S.

    2013-10-01

    Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—"Properties of Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 "Techniques for characterizing size distribution of airborne nanoparticles". Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2-46.6 nm and 80.2-89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.

  13. Characterization of mixing of suspension in a mechanically stirred precipitation system

    NASA Astrophysics Data System (ADS)

    Farkas, B.; Blickle, T.; Ulbert, Zs.; Hasznos-Nezdei, M.

    1996-09-01

    In the case of precipitational crystallization, the particle size distribution of the resulting product is greatly influenced by the mixing rate of the system. We have worked out a method of characterizing the mixing of precipitated suspensions by applying a function of mean residence time and particle size distribution. For the experiments a precipitated suspension of β-lactam-type antibiotic has been used in a mechanically stirred tank.

  14. a Study of Ion Acceleration at Rocket Altitudes and Development and Calibration of Pitch Angle Imaging Charged Particle Detectors.

    NASA Astrophysics Data System (ADS)

    Garbe, Gregory Paul

    1990-01-01

    Data obtained from the January 1988 flight of the Topaz 2 sounding rocket will be presented. It has been found that four types of ion populations were observed during this flight. During the early portions of the upleg and late portions of the downleg numerical fits of the plasma will be compared with in-situ data to show the Maxwellian behavior and derived plasma parameters. Throughout the middle portion of the flight superthermal tails (ion conics) were observed and are modeled using a bi-Maxwellian distribution function from which T_{rm perp } and T_{rm par} can be derived. Two other ion populations were observed in the most intense auroral arcs. Transverse accelerated ions (TAI) were observed continuously in these arcs. The individual TAI events were found to have spatial/temporal scales on the order of the analyzer resolution ( ~1 sec). The characteristic perpendicular energy of the TAI reached as high as 7 eV compared to 1 eV during non-TAI times. High-energy tails have also been observed during TAI events and have perpendicular temperatures in the hundreds of eV. The second ion population found in the arcs of high energy electron precipitation is a cold downflowing population. The typical streaming velocity for this population is 2 km/s. A correlation between the high energy auroral electron precipitation, observed electrostatic oxygen cyclotron waves, cold down flowing ions and the TAI will be presented. Preparation and calibration of the instruments for NASA flight 35.020 will also be presented. As part of NASA flight 35.020, an upgrade of the calibration facility was performed. The calibration facility project included the designing and implementation of a photoelectric electron gun and an electron impact ion gun. The characteristics of these two particle sources will be discussed. A procedure for the coating of electrostatic charged particle analyzers with metal blacks were devised and will be presented. Finally, the results of the calibration tests of the instruments flown on flight 35.020 will be shown.

  15. Control of diesel gaseous and particulate emissions with a tube-type wet electrostatic precipitator.

    PubMed

    Saiyasitpanich, Phirun; Keener, Tim C; Lu, Mingming; Liang, Fuyan; Khang, Soon-Jai

    2008-10-01

    In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67-86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.

  16. JV Task 107- Pilot-Scale Emission Control Technology Testing for Constellation Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Jones; Brandon Pavlish; Stephen Sollom

    2007-06-30

    An Indonesian, Colombian, and Russian coal were tested in the Energy & Environmental Research Center's combustion test facility for their performance and an evaluation of mercury release and capture with selected additives in both electrostatic precipitator and baghouse configurations. Sorbents included the carbon-based materials NORIT DARCO Hg, Sorbent Technologies B-PAC and B-PAC LC, STI Rejects provided by Constellation Energy, and Envergex e-Sorb, along with ChemMod's high-temperature additive. Each coal was evaluated over several days and compared. Ash-fouling tests were conducted, and mercury levels were monitored using continuous mercury monitors (CMMs). The Ontario Hydro mercury sampling method was also utilized. Themore » Indonesian coal had the lowest ash content, lowest sulfur content, and lowest energy content of the three coals tested. The Colombian coal had the highest mercury content and did contain a significant level of selenium which can interfere with the ability of a CMM to monitor mercury in the gas stream. All sorbents displayed very favorable results. In most cases, mercury removal greater than 86% could be obtained. The Indonesian coal displayed the best mercury removal with sorbent addition. A maximum removal of 97% was measured with this coal using Envergex's carbon-based sorbent at a rate of 4 lb/Macf across an electrostatic precipitator. The high ash and selenium content of the Colombian coal caused it to be a problematic fuel, and ash plugging of the test furnace was a real concern. Problems with the baghouse module led to limited testing. Results indicated that native capture across the baghouse for each coal type was significant enough not to warrant sorbent addition necessary. The fouling potential was the lowest for the Indonesian coal. Low sulfur content contributes to the poor potential for fouling, as witnessed by the lack of deposits during testing. The Russian and Colombian coals had a much higher potential for fouling primarily because of their high ash contents, but the potential was highest for the Colombian coal. Of the three coals tested, the Colombian would be the least desirable.« less

  17. Sodium dodecyl sulfate-ethoxylated polyethylenimine adsorption at the air-water interface: how the nature of ethoxylation affects the pattern of adsorption.

    PubMed

    Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K

    2014-08-19

    The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.

  18. Removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) from wastewaters by zero-valent iron (ZVI): predominant removal mechanism for effective SDBS removal.

    PubMed

    Takayanagi, Akari; Kobayashi, Maki; Kawase, Yoshinori

    2017-03-01

    Mechanisms for removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in wastewaters by zero-valent iron (ZVI) were systematically examined. The contributions of four removal mechanisms, i.e., reductive degradation, oxidative degradation, adsorption, and precipitation, changed significantly with solution pH were quantified and the effective removal of SDBS by ZVI was found to be attributed to the adsorption capability of iron oxides/hydroxides on ZVI surface at nearly neutral pH instead of the degradation at acidic condition. The fastest SDBS removal rate and the maximum TOC (total organic carbon) removal efficiency were obtained at pH 6.0. The maximum TOC removal at pH 6.0 was 77.8%, and the contributions of degradation, precipitation, and adsorption to TOC removal were 4.6, 14.9, and 58.3%, respectively. At pH 3.0, which is an optimal pH for oxidative degradation by the Fenton reaction, the TOC removal was only 9.8% and the contributions of degradation, precipitation, and adsorption to TOC removal were 2.3, 4.6, and 2.9%, respectively. The electrostatic attraction between dodecyl benzene sulfate anion and the iron oxide/hydroxide layer controlled the TOC removal of SDBS. The kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach could successfully describe the experimental results for SDBS removal by ZVI with the averaged correlation coefficient of 0.994. ZVI was found to be an efficient material toward the removal of anionic surfactant at nearly neutral pH under the oxic condition.

  19. Electrostatic interactions between ions near Thomas-Fermi substrates and the surface energy of ionic crystal at imperfect metals

    PubMed Central

    Kaiser, V.; Comtet, J.; Niguès, A.; Siria, A.; Coasne, B.; Bocquet, L.

    2017-01-01

    The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon the approach by [Kornyshev et al. Zh. Eksp. Teor. Fiz., 78(3):1008–1019, 1980] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allow for an estimate of interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. A counterintuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length ℓTF, profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement. PMID:28436506

  20. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase

    NASA Astrophysics Data System (ADS)

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.

    2015-11-01

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  1. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase.

    PubMed

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L

    2015-11-07

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  2. Global electrostatic potential structures of merging flux tubes in TS-U torus plasma merging experiment

    NASA Astrophysics Data System (ADS)

    Sawada, Asuka; Hatano, Hironori; Akimitsu, Moe; Cao, Qinghong; Yamasaki, Kotaro; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team

    2017-10-01

    We have been investigating 2D potential profile of global merging tokamaks to solve high-power heating of magnetic reconnection in TS-3 and TS-3U (ST, FRC:R =0.2m, 1985-, 2017-) and TS-4 (ST, FRC:R =0.5m, 2000-), UTST (ST:R =0.45m, 2008-) and MAST (ST:R = 0.9m, 2000-) devices. These experiments made clear that the electrostatic potential well is formed not only in the downstream area of magnetic reconnection but also in the whole common (reconnected) flux area of two merging flux tubes: tokamak plasmas. This fact suggests that the ion acceleration/heating occurs in much wider region than the reconnection downstream. We studied how the potential structure depends on key reconnection parameters:guide toroidal field and plasma collisionality. We found the polarity of the guide toroidal field determines those of potential hills and wells, indicating their formation is affected by the Hall effect. The peak value of the electrostatic potential well decreased with gas pressure increasing, suggesting plasma collisionality suppresses the Hall effect. The relationship between the electrostatic potential structure and anomalous ion heating is being studied as a possible cause for the high-power heating of fast magnetic reconnection. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  3. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    NASA Technical Reports Server (NTRS)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  4. The principle of minimal episteric distortion of the water matrix and its steering role in protein folding

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2013-08-01

    A significant episteric ("around a solid") distortion of the hydrogen-bond structure of water is promoted by solutes with nanoscale surface detail and physico-chemical complexity, such as soluble natural proteins. These structural distortions defy analysis because the discrete nature of the solvent at the interface is not upheld by the continuous laws of electrostatics. This work derives and validates an electrostatic equation that governs the episteric distortions of the hydrogen-bond matrix. The equation correlates distortions from bulk-like structural patterns with anomalous polarization components that do not align with the electrostatic field of the solute. The result implies that the interfacial energy stored in the orthogonal polarization correlates with the distortion of the water hydrogen-bond network. The result is validated vis-à-vis experimental data on protein interfacial thermodynamics and is interpreted in terms of the interaction energy between the electrostatic field of the solute and the dipole moment induced by the anomalous polarization of interfacial water. Finally, we consider solutes capable of changing their interface through conformational transitions and introduce a principle of minimal episteric distortion (MED) of the water matrix. We assess the importance of the MED principle in the context of protein folding, concluding that the native fold may be identified topologically with the conformation that minimizes the interfacial tension or disruption of the water matrix.

  5. Phenylboronate chromatography selectively separates glycoproteins through the manipulation of electrostatic, charge transfer, and cis-diol interactions.

    PubMed

    Carvalho, Rimenys J; Woo, James; Aires-Barros, M Raquel; Cramer, Steven M; Azevedo, Ana M

    2014-10-01

    Phenylboronate chromatography (PBC) has been applied for several years, however details regarding the mechanisms of interactions between the ligand and biomolecules are still scarce. The goal of this work is to investigate the various chemical interactions between proteins and their ligands, using a protein library containing both glycosylated and nonglycosylated proteins. Differences in the adsorption of these proteins over a pH range from 4 to 9 were related to two main properties: charge and presence of glycans. Acidic or neutral proteins were strongly adsorbed below pH 8 although the uncharged trigonal form of phenylboronate (PB) is less susceptible to forming electrostatic and cis-diol interactions with proteins. The glycosylated proteins were only adsorbed above pH 8 when the electrostatic repulsion between the boronate anion and the protein surface was mitigated (at 200 mM NaCl). All basic proteins were highly adsorbed above pH 8 with PB also acting as a cation-exchanger with binding occurring through electrostatic interactions. Batch adsorption performed at acidic conditions in the presence of Lewis base showed that charge-transfer interactions are critical for protein retention. This study demonstrates the multimodal interaction of PBC, which can be a selective tool for separation of different classes of proteins. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Charged Substrate and Product Together Contribute Like a Nonreactive Species to the Overall Electrostatic Steering in Diffusion-Reaction Processes.

    PubMed

    Xu, Jingjie; Xie, Yan; Lu, Benzhuo; Zhang, Linbo

    2016-08-25

    The Debye-Hückel limiting law is used to study the binding kinetics of substrate-enzyme system as well as to estimate the reaction rate of a electrostatically steered diffusion-controlled reaction process. It is based on a linearized Poisson-Boltzmann model and known for its accurate predictions in dilute solutions. However, the substrate and product particles are in nonequilibrium states and are possibly charged, and their contributions to the total electrostatic field cannot be explicitly studied in the Poisson-Boltzmann model. Hence the influences of substrate and product on reaction rate coefficient were not known. In this work, we consider all the charged species, including the charged substrate, product, and mobile salt ions in a Poisson-Nernst-Planck model, and then compare the results with previous work. The results indicate that both the charged substrate and product can significantly influence the reaction rate coefficient with different behaviors under different setups of computational conditions. It is interesting to find that when substrate and product are both considered, under an overall neutral boundary condition for all the bulk charged species, the computed reaction rate kinetics recovers a similar Debye-Hückel limiting law again. This phenomenon implies that the charged product counteracts the influence of charged substrate on reaction rate coefficient. Our analysis discloses the fact that the total charge concentration of substrate and product, though in a nonequilibrium state individually, obeys an equilibrium Boltzmann distribution, and therefore contributes as a normal charged ion species to ionic strength. This explains why the Debye-Hückel limiting law still works in a considerable range of conditions even though the effects of charged substrate and product particles are not specifically and explicitly considered in the theory.

  7. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.

    PubMed

    Hallez, Yannick; Meireles, Martine

    2016-10-11

    Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.

  8. From the Biochemistry of Tubulin to the Biophysics of Microtubules

    NASA Astrophysics Data System (ADS)

    Brown, J. A.; Tuszyński, J. A.

    2001-09-01

    Mirotubules (MTs) are protein polymers of the cytoskeleton that once fully understood will provide a deeper understanding of many cell functions. Assembly dynamics with the characteristic dynamic instability phenomenon has been intensively investigated over the past two decades and several models have been developed which adequately describe this phenomenon. Since the tubulin structure was imaged by Nogales and Downing, the dipole has been calculated and also the charge distribution on the surface of the protein together with a hydrophobicity plot. However, it still remains to be seen how the dipole changes upon the conformational change due to GTP hydrolysis. Furthermore, the contribution of the carboxyl terminus to the dipolar and electrostatic properties has not been accounted for. Using the crystallographic data of Nogales and Downing, some properties of the new structure of tubulin were examined. The so called multi-tubulin hypothesis seems to be explained by the differences in the electrostatic potentials produced by various tubulin isotypes produced by only several amino-acid substitutions. Such small changes in the tubulin structure may render the MTs less susceptible to naturally occurring agents which would otherwise bind them and impair their function. The hypothesis of electrostatic binding between protofilaments seems to be well founded. The MT structure has been compared with the previous work, to comment on models of motor protein movement and to consider how isotype changes affect the electrostatic potential surrounding the MT. The nature of binding between the MT and motor proteins also seems to be electrostatic and can be used to explain the stepping of these motors along the MT surface. The overall picture emerging from these studies is that the tubulin's molecular structure and the ensuing microtubular architecture can provide a microscopic-level understanding of the biological function in the cell.

  9. CFD-ACE+: a CAD system for simulation and modeling of MEMS

    NASA Astrophysics Data System (ADS)

    Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha

    1999-03-01

    Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.

  10. Progresses in Ab Initio QM/MM Free Energy Simulations of Electrostatic Energies in Proteins: Accelerated QM/MM Studies of pKa, Redox Reactions and Solvation Free Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh

    2009-03-01

    Hybrid quantum mechanical / molecular mechanical (QM/MM) approaches have been used to provide a general scheme for chemical reactions in proteins. However, such approaches still present a major challenge to computational chemists, not only because of the need for very large computer time in order to evaluate the QM energy but also because of the need for propercomputational sampling. This review focuses on the sampling issue in QM/MM evaluations of electrostatic energies in proteins. We chose this example since electrostatic energies play a major role in controlling the function of proteins and are key to the structure-function correlation of biologicalmore » molecules. Thus, the correct treatment of electrostatics is essential for the accurate simulation of biological systems. Although we will be presenting here different types of QM/MM calculations of electrostatic energies (and related properties), our focus will be on pKa calculations. This reflects the fact that pKa of ionizable groups in proteins provide one of the most direct benchmarks for the accuracy of electrostatic models of macromolecules. While pKa calculations by semimacroscopic models have given reasonable results in many cases, existing attempts to perform pKa calculations using QM/MM-FEP have led to large discrepancies between calculated and experimental values. In this work, we accelerate our QM/MM calculations using an updated mean charge distribution and a classical reference potential. We examine both a surface residue (Asp3) of the bovine pancreatic trypsin inhibitor, as well as a residue buried in a hydrophobic pocket (Lys102) of the T4-lysozyme mutant. We demonstrate that by using this approach, we are able to reproduce the relevant sidechain pKas with an accuracy of 3 kcal/mol. This is well within the 7 kcal/mol energy difference observed in studies of enzymatic catalysis, and is thus sufficient accuracy to determine the main contributions to the catalytic energies of enzymes. We also provide an overall perspective of the potential of QM/MM calculations in general evaluations of electrostatic free energies, pointing out that our approach should provide a very powerful and accurate tool to predict the electrostatics of not only solution but also enzymatic reactions, as well as the solvation free energies of even larger systems, such as nucleic acid bases incorporated into DNA.« less

  11. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  12. Spacecraft Electrostatic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  13. The effect of macromolecular crowding on the electrostatic component of barnase-barstar binding: a computational, implicit solvent-based study.

    PubMed

    Qi, Helena W; Nakka, Priyanka; Chen, Connie; Radhakrishnan, Mala L

    2014-01-01

    Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder-protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein-protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase-barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders), this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered "effective" solvent dielectric to account for crowding, although the "best" effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the electrostatic component of protein binding, and it provides an initial framework for future analyses.

  14. The Effect of Macromolecular Crowding on the Electrostatic Component of Barnase–Barstar Binding: A Computational, Implicit Solvent-Based Study

    PubMed Central

    Qi, Helena W.; Nakka, Priyanka; Chen, Connie; Radhakrishnan, Mala L.

    2014-01-01

    Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder–protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein–protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase–barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders), this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered “effective” solvent dielectric to account for crowding, although the “best” effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the electrostatic component of protein binding, and it provides an initial framework for future analyses. PMID:24915485

  15. Binding interactions of halogenated bisphenol A with mouse PPARα: In vitro investigation and molecular dynamics simulation.

    PubMed

    Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Guan, Tianzhu; Yu, Hansong; Li, Zhuolin; Wang, Yongzhi; Wang, Yongjun; Zhang, Tiehua

    2018-02-01

    The binding of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to mouse peroxisome proliferator-activated receptor α ligand binding domain (mPPARα-LBD) was examined by a combination of in vitro investigation and in silico simulation. Fluorescence polarization (FP) assay showed that halogenated BPAs could bind to mPPARα-LBD* as the affinity ligands. The calculated electrostatic potential (ESP) illustrated the different charge distributions of halogenated BPAs with altered halogenation patterns. As electron-attracting substituents, halogens decrease the positive electrostatic potential and thereby have a significant influence on the electrostatic interactions of halogenated BPAs with mPPARα-LBD*. The docking results elucidated that hydrophobic and hydrogen-bonding interactions may also contribute to stabilize the binding of the halogenated BPAs to their receptor molecule. Comparison of the calculated binding energies with the experimentally determined affinities yielded a good correlation (R 2 =0.6659) that could provide a rational basis for designing environmentally benign chemicals with reduced toxicities. This work can potentially be used for preliminary screening of halogenated BPAs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Energy conversion in polyelectrolyte hydrogels

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  17. A simple derivation for amplitude and time period of charged particles in an electrostatic bathtub potential

    NASA Astrophysics Data System (ADS)

    Prathap Reddy, K.

    2016-11-01

    An ‘electrostatic bathtub potential’ is defined and analytical expressions for the time period and amplitude of charged particles in this potential are obtained and compared with simulations. These kinds of potentials are encountered in linear electrostatic ion traps, where the potential along the axis appears like a bathtub. Ion traps are used in basic physics research and mass spectrometry to store ions; these stored ions make oscillatory motion within the confined volume of the trap. Usually these traps are designed and studied using ion optical software, but in this work the bathtub potential is reproduced by making two simple modifications to the harmonic oscillator potential. The addition of a linear ‘k 1|x|’ potential makes the simple harmonic potential curve steeper with a sharper turn at the origin, while the introduction of a finite-length zero potential region at the centre reproduces the flat region of the bathtub curve. This whole exercise of modelling a practical experimental situation in terms of a well-known simple physics problem may generate interest among readers.

  18. Magnetometry of micro-magnets with electrostatically defined Hall bars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lachance-Quirion, Dany; Camirand Lemyre, Julien; Bergeron, Laurent

    2015-11-30

    Micro-magnets are key components for quantum information processing with individual spins, enabling arbitrary rotations and addressability. In this work, characterization of sub-micrometer sized CoFe ferromagnets is performed with Hall bars electrostatically defined in a two-dimensional electron gas. Due to the ballistic nature of electron transport in the cross junction of the Hall bar, anomalies such as the quenched Hall effect appear near zero external magnetic field, thus hindering the sensitivity of the magnetometer to small magnetic fields. However, it is shown that the sensitivity of the diffusive limit can be almost completely restored at low temperatures using a large currentmore » density in the Hall bar of about 10 A/m. Overcoming the size limitation of conventional etched Hall bars with electrostatic gating enables the measurement of magnetization curves of 440 nm wide micro-magnets with a signal-to-noise ratio above 10{sup 3}. Furthermore, the inhomogeneity of the stray magnetic field created by the micro-magnets is directly measured using the gate-voltage-dependent width of the sensitive area of the Hall bar.« less

  19. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  20. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predictingmore » acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.« less

  1. Empirical simulations of materials

    NASA Astrophysics Data System (ADS)

    Jogireddy, Vasantha

    2011-12-01

    Molecular dynamics is a specialized discipline of molecular modelling and computer techniques. In this work, first we presented simulation results from a study carried out on silicon nanowires. In the second part of the work, we presented an electrostatic screened coulomb potential developed for studying metal alloys and metal oxides. In particular, we have studied aluminum-copper alloys, aluminum oxides and copper oxides. Parameter optimization for the potential is done using multiobjective optimization algorithms.

  2. On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts

    NASA Technical Reports Server (NTRS)

    Osmane, Adnane; Wilson, Lynn B., III; Blum, Lauren; Pulkkinen, Tuija I.

    2016-01-01

    Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave-particle interactions. We show that wave parameters, consistent with large amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (greater than 1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles Theta (sub k)B greater than 50 degrees and phase-speeds v(sub phi) greater than or equal to c/9. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons (E greater than or equal to 100 keV) on kinetic timescales, which is much faster than previously inferred.

  3. Surface Charging in the Auroral Zone on the DMSP Spacecraft in LEO

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip C.

    1998-11-01

    A recent anomaly on the DMSP F13 spacecraft was attributed to an electrical malfunction caused by an electrostatic discharge on the vehicle associated with surface charging. It occurred during an intense energetic electron precipitation event (an auroral arc) within a region of very low plasma density in the auroral zone. A study of 1.5 year's worth of DMSP data from three satellites acquired during the recent minimum in the solar cycle has shown that such charging was a common occurrence with 704 charging events found. This is the result of significantly reduced background plasma densities associated with the solar minimum; smaller than ever previously experienced by the DMSP spacecraft. At times, the spacecraft charged for periods of 10s of seconds as they skimmed along an auroral arc instead of cutting across it. We show examples of the observed plasma density and the precipitating electron and ion spectra associated with the charging, and the MLT distribution and the seasonal distribution of the events. The preponderance of events occurred in the premidnight and morning sectors with two types of electron spectra being observed: a sharply peaked distribution indicative of field-aligned acceleration in the premidnight sector and a very hard distribution in the morning sector.

  4. Inward electrostatic precipitation of interplanetary particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.

    1993-01-01

    An inward precipitator collects particles initially dispersed in a gas throughout either a cylindrical or spherical chamber onto a small central planchet. The instrument is effective for particle diameters greater than about 1 micron. One use is the collection of interplanetary dust particles (IDPs) which are stopped in a noble gas (xenon) by drag and ablation after perforating the wall of a thin-walled spacecraft-mounted chamber. First, the particles are positively charged for several seconds by the corona production of positive xenon ions from inward facing needles placed on the chamber wall. Then an electric field causes the particles to migrate toward the center of the instrument and onto the planchet. The collection time (on the order of hours for a 1 m radius spherical chamber) is greatly reduced by the use of optimally located screens which reapportion the electric field. Some of the electric field lines terminate on the wires of the screens so a fraction of the total number of particles in the chamber is lost. The operation of the instrument is demonstrated by experiments which show the migration of carbon soot particles with radius of approximately 1 micron in a 5 cm diameter cylindrical chamber with a single field enhancing screen toward a 3.2 mm central collection rod.

  5. Electrostatic precipitator rapping with sonic horns at Atlantic Electric`s B.L. England Generating Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maziarz, M.; Gallo, F.

    1995-12-31

    B.L. England Generating Station (BLE) is located in Beesleys Point, NJ. Beesleys Point is on Great Egg Bay, which is 20 minutes south of Atlantic City and one hour east of Philadelphia. BLE has three generating units: No. 1 is a 120 Megawatt (MW) B&W cyclone boiler; No. 2 is a 160 MW B&W cyclone boiler; & No. 3 is a tangential fired Combustion Engineering boiler. Units 1 & 2 burn medium sulfur eastern bituminous coal. Unit 3 burns No. 6 oil. Units 1&2 are equipped with precipitators (ESPs). The two ESPs were manufactured by Environmental Elements Corp. (EEC) andmore » were placed in service in 1980. Units are dual chamber with each having four mechanical fields and eight electrical fields. Each field has two Transformer/Rectifier (T/R) sets for a total of sixteen per ESP. The ESPs are rigid frame design (Rigitrode by EEC) with hammer & anvil rapping. Ash reinjection systems permit direct or cross reinjection of fly ash. Both ESPs have perforated plates for inlet & outlet gas flow distribution. There are three inlet plates and one outlet plate. The first inlet plates and the outlets are cleaned via electric reciprocating vibrators. There was no means of cleaning the remaining plates provided.« less

  6. Inferring Spatio-temporal Variations in the Risk of Extreme Precipitation in the Western United States from Tree-ring Chronologies

    NASA Astrophysics Data System (ADS)

    Steinschneider, S.; Ho, M.; Cook, E. R.; Lall, U.

    2017-12-01

    This work explores how extreme cold-season precipitation dynamics along the west coast of the United States have varied in the past under natural climate variability through an analysis of the moisture anomalies recorded by tree-ring chronologies across the coast and interior of the western U.S. Winters with high total precipitation amounts in the coastal regions are marked by a small number of extreme storms that exhibit distinct spatial patterns of precipitation across the coast and further inland. Building from this observation, this work develops a novel application of dendroclimatic evidence to explore the following questions: a) how is extreme precipitation variability expressed in a network of tree-ring chronologies; b) can this information provide insight on the space-time variability of storm tracks that cause these extreme events; and c) how can the joint variability of extreme precipitation and storm tracks be modeled to develop consistent, multi-centennial reconstructions of both? We use gridded, tree-ring based reconstructions of the summer Palmer Drought Severity Index (PDSI) extending back 500 years within the western U.S. to build and test a novel statistical framework for reconstructing the space-time variability of coastal extreme precipitation and the associated wintertime storm tracks. Within this framework, we (1) identify joint modes of variability of extreme precipitation fields and tree-ring based PDSI reconstructions; (2) relate these modes to previously identified, unique storm track patterns associated with atmospheric rivers (ARs), which are the dominant type of storm that is responsible for extreme precipitation in the region; and (3) determine latitudinal variations of landfalling ARs across the west coast and their relationship to the these joint modes. To our knowledge, this work is the first attempt to leverage information on storm track patterns stored in a network of paleoclimate proxies to improve reconstruction fidelity.

  7. Inferring Spatio-temporal Variations in the Risk of Extreme Precipitation in the Western United States from Tree-ring Chronologies

    NASA Astrophysics Data System (ADS)

    Steinschneider, S.; Ho, M.; Cook, E. R.; Lall, U.

    2016-12-01

    This work explores how extreme cold-season precipitation dynamics along the west coast of the United States have varied in the past under natural climate variability through an analysis of the moisture anomalies recorded by tree-ring chronologies across the coast and interior of the western U.S. Winters with high total precipitation amounts in the coastal regions are marked by a small number of extreme storms that exhibit distinct spatial patterns of precipitation across the coast and further inland. Building from this observation, this work develops a novel application of dendroclimatic evidence to explore the following questions: a) how is extreme precipitation variability expressed in a network of tree-ring chronologies; b) can this information provide insight on the space-time variability of storm tracks that cause these extreme events; and c) how can the joint variability of extreme precipitation and storm tracks be modeled to develop consistent, multi-centennial reconstructions of both? We use gridded, tree-ring based reconstructions of the summer Palmer Drought Severity Index (PDSI) extending back 500 years within the western U.S. to build and test a novel statistical framework for reconstructing the space-time variability of coastal extreme precipitation and the associated wintertime storm tracks. Within this framework, we (1) identify joint modes of variability of extreme precipitation fields and tree-ring based PDSI reconstructions; (2) relate these modes to previously identified, unique storm track patterns associated with atmospheric rivers (ARs), which are the dominant type of storm that is responsible for extreme precipitation in the region; and (3) determine latitudinal variations of landfalling ARs across the west coast and their relationship to the these joint modes. To our knowledge, this work is the first attempt to leverage information on storm track patterns stored in a network of paleoclimate proxies to improve reconstruction fidelity.

  8. Electrostatically screened, voltage-controlled electrostatic chuck

    DOEpatents

    Klebanoff, Leonard Elliott

    2001-01-01

    Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.

  9. Tracing the hydrological cycle by water stable isotopes on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Tian, L.; Yao, T.; Yu, W.

    2013-05-01

    A network of precipitation, river, lake water, ice core and atmospheric vapor sampling was set up on the Tibetan Plateau to trance the moisture origins supplied to the plateau, the inland hydrological cycle process and land surface evaporation processes. This work shows different moisture from Indian Ocean monsoon and the westerlies dominate the precipitation δ18O in the south and north of the plateau respectively, which can cause a difference in precipitation δ18O of about 5‰ in average. Precipitation δ18O bears "temperature effect" in the northern Tibetan Plateau, whereas the seasonal precipitation δ18O shows precipitation "amount effect" in the south. This relation is also held in the ice core records on the plateau. An instance is the δ18O record from shallow ice cores in Muztagata Glacier, Dunde ice cap and Naimona'Nyi Glacier. The ice core δ18O record from monsoon region in south Tibet, such as Dasuopu glacier in Xixiabangma, shows a precipitation "amount effect" at least in the annual scale. Further isotope enrichment can be found in the land surface evaporation processes. A simple case is in the close lake system in Yamdruk-tso catchment, southern part of Tibetan Plateau. Both observation and simulation work shows the enrichment of heavy isotope in lake water can be over 10‰ for δ18O, which is much linked to the local climatic condition. Simulation work also shows that atmospheric vapor isotope is also very important to capture the lake water δD value. However, vapor isotopes data are usually less available on the plateau.

  10. Influence of surface topology and electrostatic potential on water/electrode systems

    NASA Astrophysics Data System (ADS)

    Siepmann, J. Ilja; Sprik, Michiel

    1995-01-01

    We have used the classical molecular dynamics technique to simulate the ordering of a water film adsorbed on an atomic model of a tip of a scanning tunneling microscope approaching a planar metal surface. For this purpose, we have developed a classical model for the water-substrate interactions that solely depends on the coordinates of the particles and does not require the definition of geometrically smooth boundary surfaces or image planes. The model includes both an electrostatic induction for the metal atoms (determined by means of an extended Lagrangian technique) and a site-specific treatment of the water-metal chemisorption. As a validation of the model we have investigated the structure of water monolayers on metal substrates of various topology [the (111), (110), and (100) crystallographic faces] and composition (Pt, Ag, Cu, and Ni), and compared the results to experiments. The modeling of the electrostatic induction is compatible with a finite external potential imposed on the metal. This feature is used to investigate the structural rearrangements of the water bilayer between the pair of scanning tunneling microscope electrodes in response to an applied external voltage difference. We find significant asymmetry in the dependence on the sign of the applied voltage. Another result of the calculation is an estimate of the perturbation to the work function caused by the wetting film. For the conditions typical for operation of a scanning tunneling microscope probe, the change in the work function is found to be comparable to the applied voltage (a few hundred millivolts).

  11. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  12. Material handling systems for the fluidized-bed combustion boiler at Rivesville, West Virginia

    NASA Technical Reports Server (NTRS)

    Branam, J. G.; Rosborough, W. W.

    1977-01-01

    The 300,000 lbs/hr steam capacity multicell fluidized-bed boiler (MFB) utilizes complex material handling systems. The material handling systems can be divided into the following areas: (1) coal preparation; transfer and delivery, (2) limestone handling system, (3) fly-ash removal and (4) bed material handling system. Each of the above systems are described in detail and some of the potential problem areas are discussed. A major potential problem that exists is the coal drying system. The coal dryer is designed to use 600 F preheated combustion air as drying medium and the dryer effluent is designed to enter a hot electrostatic precipitator (730 F) after passage through a cyclone. Other problem areas to be discussed include the steam generator coal and limestone feed system which may have operating difficulties with wet coal and/or coal fines.

  13. Partitioning coefficients of polycyclic aromatic hydrocarbons in stack gas from a municipal incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.M.G.; Chen, J.C.

    1995-12-31

    In this study, solid-gas partitioning coefficients of PAHs on fly ash in stack gas from a municipal incinerator were determined according to elution analysis with gas-solid chromatography. The fly ash from the electrostatic precipitator was sieved and packed into a 1/4 inch (6.3 mm) pyrex column. Elution analysis with gas-solid chromatography was conducted for three PAEs, Napthalene, Anthracene, and Pyrene. The temperature for elution analysis was in the range of 100{degrees}C to 300{degrees}C. Vg, specific retention volume obtained from elution analysis, and S, specific surface area of fly ash measured by a surface area measurement instrument were used to estimatemore » the solid-gas partitioning coefficient KR. In addition, the relationships between KR and temperature and KR and PAH concentrations were investigated.« less

  14. Flue gas conditioning for improved particle collection in electrostatic precipitators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, M.D.

    1992-04-27

    The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfmmore » bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.« less

  15. Microdynamic Devices Fabricated on Silicon-On-Sapphire Substrates.

    DTIC Science & Technology

    Silicon-on-sapphire substrates are provided for the fabrication of micromechanical devices, such as micromotors . The high voltage stand-off...a consequence, the electrostatically driven devices, micromotors , can be incorporated in the integrated circuits and yet be powered at elevated voltages to increase their work potential.

  16. Generalization of the van der Pauw relationship derived from electrostatics

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan D.

    2011-08-01

    In an earlier paper, this author, along with two others Weiss et al. (2008) [1], demonstrated that the original van der Pauw relationship could be derived from three-dimensional electrostatics, as opposed to van der Pauw's use of conformal mapping. The earlier derivation was done for a conducting material of rectangular cross section with contacts placed at the corners. Presented here is a generalization of the previous work involving a square sample and a square array of electrodes that are not confined to the corners, since this measurement configuration could be a more convenient one. As in the previous work, the effects of non-zero sample thickness and contact size have been investigated. Buehler and Thurber derived a similar relationship using an infinite series of current images on a large and thin conducting sheet to satisfy the conditions at the boundary of the sample. The results presented here agree with theirs numerically, but analytic agreement could not be shown using any of the perused mathematical literature. By simply equating the two solutions, it appears that, as a byproduct of this work, a new mathematical relationship has been uncovered. Finally, the application of this methodology to the Hall Effect is discussed.

  17. aCORN Beta Spectrometer and Electrostatic Mirror

    NASA Astrophysics Data System (ADS)

    Hassan, Md; aCORN Collaboration

    2013-10-01

    aCORN uses a high efficiency backscatter suppressed beta spectrometer to measure the electron-antineutrino correlation in neutron beta decay. We measure the correlation by counting protons and beta electrons in coincidence with precisely determined electron energy. There are 19 photomultiplier tubes arranged in a hexagonal array coupled to a single phosphor doped polystyrene scintillator. The magnetic field is shaped so that electrons that backscatter without depositing their full energy strike a tulip-shaped array of scintillator paddles and these events are vetoed. The detailed construction, performance and calibration of this beta spectrometer will be presented. I will also present the simulation, construction, and features of our novel electrostatic mirror. This work was supported by the National Science Foundation and the NIST Center for Neutron Research.

  18. Quasi-Static Electric Field Generator

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  19. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  20. Mars Dust: Characterization of Particle Size and Electrostatic Charge Distribution

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Saini, D.; Biris, A. S.; Sriama, P. K.; Calle, C.; Buhler, C.

    2004-01-01

    Some of the latest pictures of Mars surface sent by NASA's Spirit rover in early January, 2004, show very cohesive, "mud-like" dust layers. Significant amounts of dust clouds are present in the atmosphere of Mars [1-4]. NASA spacecraft missions to Mars confirmed hypotheses from telescopic work that changes observed in the planet's surface markings are caused by wind-driven redistribution of dust. In these dust storms, particles with a wide range of diameters (less than 1 micrometer to 50 micrometers) are a serious problem to solar cells, spacecraft, and spacesuits. Dust storms may cover the entire planet for an extended period of time [5]. It is highly probable that the particles are charged electrostatically by triboelectrification and by UV irradiation.

Top