The Self-Assembly of Nanogold for Optical Metamaterials
NASA Astrophysics Data System (ADS)
Nidetz, Robert A.
2011-12-01
Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger nanoparticles and larger poly(styrene) ligands resulted in larger and smaller assemblies, respectively. Stirring the solution resulted in a wider size distribution of microbead assemblies due to the stirring's shear forces. Two undeveloped methods to self-assemble nanogold were investigated. One method used block-copolymer thin films as chemical templates to direct the electrostatic self-assembly of nanogold. Another method used gold nanorods that are passivated with different ligands on different faces. The stability of an alkanethiol ligand in different acids and bases was investigated to determine which materials could be used to produce Janus nanorods.
Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai
2010-12-07
We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.
SAW based micro- and acousto-fluidics in biomedicine
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay K.
2017-04-01
Protein association starts with random collisions of individual proteins. Multiple collisions and rotational diffusion brings the molecules to a state of orientation. Majority of the protein associations are influenced by electrostatic interactions. To introduce: electrostatic rate enhancement, Brownian dynamics and transient complex theory has been traditionally used. Due to the recent advances in interdisciplinary sciences, an array of molecular assembly methods is being studied. Protein nanostructural assembly and macromolecular crowding are derived from the subsets of biochemistry to study protein-protein interactions and protein self-assembly. This paper tries to investigate the issue of enhancing the protein self-association rate, and bridging the gap between the simulations and experimental results. The methods proposed here include: electrostatic rate enhancement, macromolecular crowing, nanostructural protein assembly, microfluidics based approaches and magnetic force based approaches. Despite the suggestions of several methods, microfluidic and magnetic force based approaches seem to serve the need of protein assembly in a wider scale. Congruence of these approaches may also yield better results. Even though, these methods prove to be conceptually strong, to prevent the disagreement of theory and practice, a wide range of experiments is required. This proposal intends to study theoretical and experimental methods to successfully implement the aforementioned assembly strategies, and conclude with an extensive analysis of experimental data to address practical feasibility.
2014-01-01
We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701
Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides
Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; ...
2014-06-19
Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less
Guided molecular self-assembly: a review of recent efforts
NASA Astrophysics Data System (ADS)
Huie, Jiyun C.
2003-04-01
This paper serves as an introductory review of significant and novel successes achieved in the fields of nanotechnology, particularly in the formation of nanostructures using guided molecular self-assembly methods. Self-assembly is a spontaneous process by which molecules and nanophase entities may materialize into organized aggregates or networks. Through various interactive mechanisms of self-assembly, such as electrostatics, chemistry, surface properties, and via other mediating agents, the technique proves indispensable to recent functional materials and device realizations. The discussion will extend to spontaneous and Langmuir-Blodgett formation of self-assembled monolayers on various substrates, and a number of different categories of self-assembly techniques based on the type of interaction exploited. Combinatorial techniques, known as soft lithography, of micro-contact printing and dip-pen nanolithography, which can be effectively used to up-size nanostructured molecular assemblies to submicrometer and micrometer scale patterns, will also be mentioned.
Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli
2015-08-01
Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Role of proton balance in formation of self-assembled chitosan nanoparticles.
Dey, Anomitra; Kamat, Aditya; Nayak, Sonal; Danino, Dganit; Kesselman, Ellina; Dandekar, Prajakta; Jain, Ratnesh
2018-06-01
Researchers have explored the ability of chitosan to form nanoparticles, to suit varying applications, ranging from wound-healing to gene delivery. Ionic gelation is a widely used method for formulating chitosan nanoparticles, where self-assembly plays a crucial role. This self-assembly is initially promoted by hydrophilic-hydrophobic parity amongst individual chitosan residues, along with electrostatic and Van der Waals interactions with the cross-linker. However, until now the intrinsic ability of chitosan to self-assemble is not widely studied; hence, we investigate the self-assembly of chitosan, based on proton balance between its protonated and deprotonated residues, to promote facile nanoparticle synthesis. This is one of the first reports that highlights subtle but critical influence of proton balance in the chitosan polymer on the formation of chitosan nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.
Electrostatic Interactions and Self-Assembly in Polymeric Systems
NASA Astrophysics Data System (ADS)
Dobrynin, Andrey
Electrostatic interactions between macroions play an important role in different areas ranging from materials science to biophysics. They are main driving forces behind layer-by-layer assembly technique that allows self-assembly of multilayer films from synthetic polyelectrolytes, DNA, proteins and nanoparticles. They are responsible for complexation and reversible gelation between polyelectrolytes and proteins. In this talk, using results of the molecular dynamics simulations and analytical calculations, I will demonstrate what effect electrostatic interactions, counterion condensation and polymer solvent affinity have on a collapse of polyelectrolyte chain in a poor solvent conditions for the polymer backbone, on complexations and reversible gelation between polyelectrolytes and polyamholytes (unstructured proteins), on microphase separation transitions in spherical and planar charged brushes, and on a layer-by-layer assembly of charged nanoparticles and linear polyelectrolytes on charged surfaces. NSF DMR-1004576 DMR-1409710.
Directed self-assembly of nanogold using a chemically modified nanopatterned surface
NASA Astrophysics Data System (ADS)
Nidetz, Robert; Kim, Jinsang
2012-02-01
Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces.
Mao, Xu; Zhang, Jia-Ning; Gao, Li-Hua; Su, Yu; Chen, Peng-Xia; Wang, Ke-Zhi
2016-04-01
An electrostatically self-assembled multilayer thin film consisting of alternating layers of Keggin polyoxometalate of Zn-substituted tungstoborate (BW11Zn) and Rhodamine B (RhB) has successfully been prepared on a quartz and indium-tin oxide (ITO) glass substrate. The ultraviolet-visible (UV-vis) absorption spectra demonstrated that the electrostatically self-assembled film of (BW11Zn/RhB)n was uniformly deposited layer by layer, and the RhB molecules in the film formed the J-aggregation. The photoelectrochemical investigations showed that the films generated stable cathodic photocurrents that originated from RhB, and the maximal cathodic photocurrent density generated by an eight-layer film was 4.9 µA/cm2 while the film was irradiated with 100 mW/cm2 polychromatic light of 730 nm > λ > 325 nm at an applied potential of 0 V versus a saturated calomel electrode.
Woehl, Taylor J.; Prozorov, Tanya
2015-08-20
The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less
Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs
NASA Astrophysics Data System (ADS)
Reis, Tiago C.; Correia, Ilídio J.; Aguiar-Ricardo, Ana
2013-07-01
The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design.The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01668d
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ugur, Sule S., E-mail: sule@mmf.sdu.edu.tr; Sariisik, Merih; Aktas, A. Hakan
Highlights: {yields} Cationic charges were created on the cotton fibre surfaces with 2,3-epoxypropyltrimethylammonium chloride. {yields} Al{sub 2}O{sub 3} nanoparticles were deposited on the cotton fabrics by layer-by-layer deposition. {yields} The fabrics deposited with the Al{sub 2}O{sub 3} nanoparticles exhibit better UV-protection and significant flame retardancy properties. {yields} The mechanical properties were improved after surface film deposition. -- Abstract: Al{sub 2}O{sub 3} nanoparticles were used for fabrication of multilayer nanocomposite film deposition on cationic cotton fabrics by electrostatic self-assembly to improve the mechanical, UV-protection and flame retardancy properties of cotton fabrics. Cotton fabric surface was modified with a chemical reaction tomore » build-up cationic charge known as cationization. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy were used to verify the presence of deposited nanolayers. Air permeability, whiteness value, tensile strength, UV-transmittance and Limited Oxygen Index properties of cotton fabrics were analyzed before and after the treatment of Al{sub 2}O{sub 3} nanoparticles by electrostatic self-assemblies. It was proved that the flame retardancy, tensile strength and UV-transmittance of cotton fabrics can be improved by Al{sub 2}O{sub 3} nanoparticle additive through electrostatic self-assembly process.« less
Interactions regulating the head-to-tail directed assembly of biological Janus rods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, A. C.; Bachand, M.; Gomez, A.
We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.
Interactions regulating the head-to-tail directed assembly of biological Janus rods
Greene, A. C.; Bachand, M.; Gomez, A.; ...
2017-03-31
We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.
Coassembly of Lysozyme and Amphiphilic Biomolecules Driven by Unimer-Aggregate Equilibrium.
Tao, Yuanyuan; Ma, Xiaoteng; Cai, Yaqian; Liu, Li; Zhao, Hanying
2018-04-12
Synthesis and self-assembly of bioconjugates composed of proteins and synthetic molecules have been widely studied because of the potential applications in medicine, biotechnology, and nanotechnology. One of the challenging research studies in this area is to develop organic solvent-free approaches to the synthesis and self-assembly of amphiphilic bioconjugates. In this research, dialysis-assisted approach, a method based on unimer-aggregate equilibrium, was applied in the coassembly of lysozyme and conjugate of cholesterol and glutathione (Ch-GSH). In phosphate buffer solution, amphiphilic Ch-GSH conjugate self-assembles into vesicles, and the vesicle solution is dialyzed against lysozyme solution. Negatively charged Ch-GSH unimers produced in the unimer-vesicle exchange equilibrium, diffuse across the dialysis membrane and have electrostatic interaction with positively charged lysozyme, resulting in the formation of Ch-GSH-lysozyme bioconjugate. Above a critical concentration, the three-component bioconjugate molecules self-assemble into bioactive vesicles.
Li, Weikun; Kanyo, Istvan; Kuo, Chung-Hao; Thanneeru, Srinivas; He, Jie
2015-01-21
We report a general strategy to conceptualize a new design for the pH-programmable self-assembly of plasmonic gold nanoparticles (AuNPs) tethered by random copolymers of poly(styrene-co-acrylic acid) (P(St-co-AA)). It is based on using pH as an external stimulus to reversibly change the surface charge of polymer tethers and to control the delicate balance of interparticle attractive and repulsive interactions. By incorporating -COOH moieties locally within PSt hydrophobic segments, the change in the ionization degree of -COOH moieties can dramatically disrupt the hydrophobic attraction within a close distance. pH acts as a key parameter to control the deprotonation of -COOH moieties and "programs" the assembled nanostructures of plasmonic nanoparticles in a stepwise manner. At a higher solution pH where -COOH groups of polymer tethers became highly deprotonated, electrostatic repulsion dominated the self-assembly and favored the formation of end-to-end, anisotropic assemblies, e.g. 1-D single-line chains. At a lower pH, the less deprotonated -COOH groups led to the decrease of electrostatic repulsion and the side-to-side aggregates, e.g. clusters and multi-line chains of AuNPs, became favorable. The pH-programmable self-assembly allowed us to engineer a "manual" program for a sequential self-assembly by changing the pH of the solution. We demonstrated that the two-step pH-programmable assembly could generate more sophisticated "multi-block" chains using two differently sized AuNPs. Our strategy offers a general means for the programmable design of plasmonic nanoparticles into the specific pre-ordained nanostructures that are potentially useful for the precise control over their plasmon coupling.
Self-assemblies of luminescent rare earth compounds in capsules and multilayers.
Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth
2014-05-01
This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.
Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows.
Abe, Yu; Zhang, Bo; Gordillo, Leonardo; Karim, Alireza Mohammad; Francis, Lorraine F; Cheng, Xiang
2017-02-22
Colloidal particles can self-assemble into various ordered structures in fluid flows that have potential applications in biomedicine, materials synthesis and encryption. These dynamic processes are also of fundamental interest for probing the general principles of self-assembly under non-equilibrium conditions. Here, we report a simple microfluidic experiment, where charged colloidal particles self-assemble into flow-aligned 1D strings with regular particle spacing near a solid boundary. Using high-speed confocal microscopy, we systematically investigate the influence of flow rates, electrostatics and particle polydispersity on the observed string structures. By studying the detailed dynamics of stable flow-driven particle pairs, we quantitatively characterize interparticle interactions. Based on the results, we construct a simple model that explains the intriguing non-equilibrium self-assembly process. Our study shows that the colloidal strings arise from a delicate balance between attractive hydrodynamic coupling and repulsive electrostatic interaction between particles. Finally, we demonstrate that, with the assistance of transverse electric fields, a similar mechanism also leads to the formation of 2D colloidal walls.
Colloid electrostatic self-assembly synthesis of SnO2/graphene nanocomposite for supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Yankun; Liu, Yushan; Zhang, Jianmin
2015-10-01
In this paper, a simple and fast colloid electrostatic self-assembly method was adopted to prepare the SnO2/graphene nanocomposite (SGNC). The crystal structure, chemical composition, and porous property of composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman microscopy, X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption experiments. The morphology analyses showed that the SnO2 nanoparticles about 5 nm were distributed homogenously on the reduced graphene oxide (rGO) sheets surface. The electrochemical performance measurements exhibited that SGNC possessed the specific capacitance of 347.3 F g-1 at a scan rate of 5 mV s-1 in 1 M Na2SO4 electrolyte solution. Furthermore, this material also showed excellent cycling stability, and the specific capacitance still retained 90 % after 3000 cycles. These results indicate that the SGNC is a promising electrode material for high-performance supercapacitors.
Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules
Parker, Richard M; Zhang, Jing; Zheng, Yu; Coulston, Roger J; Smith, Clive A; Salmon, Andrew R; Yu, Ziyi; Scherman, Oren A; Abell, Chris
2015-01-01
Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules—where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core–shell microcapsules, gives access to a new generation of innovative self-assembled constructs. PMID:26213532
Dynamic simulations of many-body electrostatic self-assembly
NASA Astrophysics Data System (ADS)
Lindgren, Eric B.; Stamm, Benjamin; Maday, Yvon; Besley, Elena; Stace, A. J.
2018-03-01
Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process. This article is part of the theme issue `Modern theoretical chemistry'.
Fu, Iris W; Markegard, Cade B; Chu, Brian K; Nguyen, Hung D
2013-10-01
Smart biomaterials that are self-assembled from peptide amphiphiles (PA) are known to undergo morphological transitions in response to specific physiological stimuli. The design of such customizable hydrogels is of significant interest due to their potential applications in tissue engineering, biomedical imaging, and drug delivery. Using a novel coarse-grained peptide/polymer model, which has been validated by comparison of equilibrium conformations from atomistic simulations, large-scale molecular dynamics simulations are performed to examine the spontaneous self-assembly process. Starting from initial random configurations, these simulations result in the formation of nanostructures of various sizes and shapes as a function of the electrostatics and temperature. At optimal conditions, the self-assembly mechanism for the formation of cylindrical nanofibers is deciphered involving a series of steps: (1) PA molecules quickly undergo micellization whose driving force is the hydrophobic interactions between alkyl tails; (2) neighboring peptide residues within a micelle engage in a slow ordering process that leads to the formation of β-sheets exposing the hydrophobic core; (3) spherical micelles merge together through an end-to-end mechanism to form cylindrical nanofibers that exhibit high structural fidelity to the proposed structure based on experimental data. As the temperature and electrostatics vary, PA molecules undergo alternative kinetic mechanisms, resulting in the formation of a wide spectrum of nanostructures. A phase diagram in the electrostatics-temperature plane is constructed delineating regions of morphological transitions in response to external stimuli. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computational studies of sequence-specific driving forces in peptide self-assembly
NASA Astrophysics Data System (ADS)
Jeon, Joohyun
Peptides are biopolymers made from various sequences of twenty different types of amino acids, connected by peptide bonds. There are practically an infinite number of possible sequences and tremendous possible combinations of peptide-peptide interactions. Recently, an increasing number of studies have shown a stark variety of peptide self-assembled nanomaterials whose detailed structures depend on their sequences and environmental factors; these have end uses in medical and bio-electronic applications, for example. To understand the underlying physics of complex peptide self-assembly processes and to delineate sequence specific effects, in this study, I use various simulation tools spanning all-atom molecular dynamics to simple lattice models and quantify the balance of interactions in the peptide self-assembly processes. In contrast to the existing view that peptides' aggregation propensities are proportional to the net sequence hydrophobicity and inversely proportional to the net charge, I show the more nuanced effects of electrostatic interactions, including the cooperative effects between hydrophobic and electrostatic interactions. Notably, I suggest rather unexpected, yet important roles of entropies in the small scale oligomerization processes. Overall, this study broadens our understanding of the role of thermodynamic driving forces in peptide self-assembly.
Electrostatic Effects in Filamentous Protein Aggregation
Buell, Alexander K.; Hung, Peter; Salvatella, Xavier; Welland, Mark E.; Dobson, Christopher M.; Knowles, Tuomas P.J.
2013-01-01
Electrostatic forces play a key role in mediating interactions between proteins. However, gaining quantitative insights into the complex effects of electrostatics on protein behavior has proved challenging, due to the wide palette of scenarios through which both cations and anions can interact with polypeptide molecules in a specific manner or can result in screening in solution. In this article, we have used a variety of biophysical methods to probe the steady-state kinetics of fibrillar protein self-assembly in a highly quantitative manner to detect how it is modulated by changes in solution ionic strength. Due to the exponential modulation of the reaction rate by electrostatic forces, this reaction represents an exquisitely sensitive probe of these effects in protein-protein interactions. Our approach, which involves a combination of experimental kinetic measurements and theoretical analysis, reveals a hierarchy of electrostatic effects that control protein aggregation. Furthermore, our results provide a highly sensitive method for the estimation of the magnitude of binding of a variety of ions to protein molecules. PMID:23473495
Dochter, Alexandre; Garnier, Tony; Pardieu, Elodie; Chau, Nguyet Trang Thanh; Maerten, Clément; Senger, Bernard; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia
2015-09-22
The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.
Fu, Xiuli; Chen, Lingxin; Li, Jinhua
2012-08-21
A novel colorimetric method was developed for ultrasensitive detection of heparin based on self-assembly of gold nanoparticles (AuNPs) onto the surface of graphene oxide (GO). Polycationic protamine was used as a medium for inducing the self-assembly of citrate-capped AuNPs on GO through electrostatic interaction, resulting in a shift in the surface plasmon resonance (SPR) absorption of AuNPs and exhibiting a blue color. Addition of polyanionic heparin disturbed the self-assemble of AuNPs due to its strong affinity to protamine. With the increase of heparin concentration, the amounts of self-assembly AuNPs decreased and the color changed from blue to red in solution. Therefore, a "blue-to-red" colorimetric sensing strategy based on self-assembly of AuNPs could be established for heparin detection. Compared with the commonly reported aggregation-based methods ("red-to-blue"), the color change from blue to red was more eye-sensitive, especially in low concentration of target. Moreover, stronger interaction between protamine and heparin led to distinguish heparin from its analogues as well as various potentially coexistent physiological species. The strategy was simply achieved by the self-assembly nature of AuNPs and the application of two types of polyionic media, showing it to be label-free, simple, rapid and visual. This method could selectively detect heparin with a detection limit of 3.0 ng mL(-1) in standard aqueous solution and good linearity was obtained over the range 0.06-0.36 μg mL(-1) (R = 0.9936). It was successfully applied to determination of heparin in fetal bovine serum samples as low as 1.7 ng mL(-1) with a linear range of 0-0.8 μg mL(-1).
Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles
NASA Astrophysics Data System (ADS)
Xia, Yunsheng; Nguyen, Trung Dac; Yang, Ming; Lee, Byeongdu; Santos, Aaron; Podsiadlo, Paul; Tang, Zhiyong; Glotzer, Sharon C.; Kotov, Nicholas A.
2011-09-01
Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.
Tao, Kai; Wang, Jiqian; Zhou, Peng; Wang, Chengdong; Xu, Hai; Zhao, Xiubo; Lu, Jian R
2011-03-15
We report the characterization of self-assembly of two short β-amyloid (Aβ) peptides (16-22), KLVFFAE and Ac-KLVFFAE-NH2, focusing on examining the effect of terminal capping. At pH 2.0, TEM and AFM imaging revealed that the uncapped peptide self-assembled into long, straight, and unbranched nanofibrils with a diameter of 3.8 ± 1.0 nm while the capped one formed nanotapes with a width of 70.0 ± 25.0 nm. CD analysis indicated the formation of β-sheet structures in both aggregated systems, but the characteristic CD peaks were less intense and less red-shifted for the uncapped than the capped one, indicative of weaker hydrogen bonding and weaker π-π stacking. Fluorescence and rheological measurements also confirmed stronger intermolecular attraction associated with the capped nanotapes. At acidic pH 2, each uncapped KLVFFAE molecule carries two positive charges at the N-terminus, and the strong electrostatic repulsion favors interfacial curving and twisting within the β-sheet, causing weakening of hydrogen bonds and π-π stacking. In contrast, capping reduces the charge by half, and intermolecular electrostatic repulsion is drastically reduced. As a result, the lateral attraction of β-sheets favors stronger lamellar structuring, leading to the formation of rather flat nanotapes. Flat tapes with similar morphological structure were also formed by the capped peptide at pH 12.0 where the charge on the capping end was reversed. This study has thus demonstrated how self-assembled nanostructures of small peptides can be manipulated through simple molecular structure design and tuning of electrostatic interaction.
Tailoring the vapor-liquid-solid growth toward the self-assembly of GaAs nanowire junctions.
Dai, Xing; Dayeh, Shadi A; Veeramuthu, Vaithianathan; Larrue, Alexandre; Wang, Jian; Su, Haibin; Soci, Cesare
2011-11-09
New insights into understanding and controlling the intriguing phenomena of spontaneous merging (kissing) and the self-assembly of monolithic Y- and T-junctions is demonstrated in the metal-organic chemical vapor deposition growth of GaAs nanowires. High-resolution transmission electron microscopy for determining polar facets was coupled to electrostatic-mechanical modeling and position-controlled synthesis to identify nanowire diameter, length, and pitch, leading to junction formation. When nanowire patterns are designed so that the electrostatic energy resulting from the interaction of polar surfaces exceeds the mechanical energy required to bend the nanowires to the point of contact, their fusion can lead to the self-assembly of monolithic junctions. Understanding and controlling this phenomenon is a great asset for the realization of dense arrays of vertical nanowire devices and opens up new ways toward the large scale integration of nanowire quantum junctions or nanowire intracellular probes.
Ferhan, Abdul Rahim; Guo, Longhua; Kim, Dong-Hwan
2010-07-20
The effect of ionic strength as well as surfactant concentration on the surface assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (GNRs) has been studied. Glass substrates were modified to yield a net negative charge through electrostatic coating of polystyrenesulfonate (PSS) over a self-assembled monolayer (SAM) of positively charged aminopropyltriethoxysilane (APTS). The substrates were then fully immersed in GNR solutions at different CTAB concentrations and ionic strengths. Under slightly excess CTAB concentrations, it was observed that the density of GNRs immobilized on a substrate was predictably tunable through the adjustment of NaCl concentration over a wide range. Motivated by the experimental observation, we hypothesize that electrostatic shielding of charges around the GNRs affects the density of GNR immobilization. This model ultimately explains that at moderate to high CTAB concentrations a second electrostatic shielding effect contributed by excess CTAB molecules occurs, resulting in a parabolic trend of nanorod surface density when ionic strength is continually increased. In contrast, at a low CTAB concentration, the effect of ionic strength becomes much less significant due to insufficient CTAB molecules to provide for the second electrostatic shielding effect. The tunability of electrostatic-based surface assembly of GNRs enables the attainment of a dense surface assembly of nanorods without significant removal of CTAB or any other substituted stabilizing agent, both of which could compromise the stability and morphology of GNRs in solution. An additional study performed to investigate the robustness of such electrostatic-based surface assembly also proved its reliability to be used as biosensing platforms.
Yoshikawa, Taro; Reusch, Markus; Zuerbig, Verena; Cimalla, Volker; Lee, Kee-Han; Kurzyp, Magdalena; Arnault, Jean-Charles; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim
2016-11-17
Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c -axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions.
Zhang, Qian; He, Lipeng; Wang, Hui; Zhang, Cheng; Liu, Weisheng; Bu, Weifeng
2012-07-18
The electrostatic combination of a Keplerate cluster, [Mo(132)O(372)(CH(3)COO)(30)(H(2)O)(72)](42-) with cationic terminated poly(styrene) yields polyoxometalate-based supramolecular star polymers, which can further self-assemble into vesicular aggregates in CHCl(3)-MeOH mixed solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tianfu; Ma, Zhuang; Li, Guoping
Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles was improved significantly, which was the key characteristic ofmore » high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe{sub 2}O{sub 3} nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This strategy can be applied into other nanostructured energetic material systems.« less
NASA Astrophysics Data System (ADS)
Arregui, Francisco J.; Matías, Ignacio R.; Claus, Richard O.
2007-07-01
The Layer-by-Layer Electrostatic Self-Assembly (ESA) method has been successfully used for the design and fabrication of nanostructured materials. More specifically, this technique has been applied for the deposition of thin films on optical fibers with the purpose of fabricating different types of optical fiber sensors. In fact, optical fiber sensors for measuring humidity, temperature, pH, hydrogen peroxide, glucose, volatile organic compounds or even gluten have been already experimentally demonstrated. The versatility of this technique allows the deposition of these sensing coatings on flat substrates and complex geometries as well. For instance, nanoFabry-Perots and microgratings have been formed on cleaved ends of optical fibers (flat surfaces) and also sensing coatings have been built onto long period gratings (cylindrical shape), tapered fiber ends (conical shape), biconically tapered fibers or even the internal side of hollow core fibers. Among the different materials used for the construction of these sensing nanostructured coatings, diverse types such as polymers, inorganic semiconductors, colorimetric indicators, fluorescent dyes, quantum dots or even biological elements as enzymes can be found. This technique opens the door to the fabrication of new types of optical fiber sensors.
Cavity-Free, Matrix-Addressable Quantum Dot Architecture for On-Chip Optical Switching
2013-04-01
or photo-induced bleaching. Given their intrinsically low IEP (~3, close to that of SiO2) they are ideal candidates for our electrostatic self...are currently investigating usage of our method on substrates with high IEPs such as Al2O3, Si3N4, and ITO. By using nanoparticle emitters with...intrinsically high IEPs , such as MgO nanocubes and ZnO nanocrystals, we can expand the range of applicability of our self-assembly technique. Personnel
NASA Astrophysics Data System (ADS)
Zeng, Bin; Chen, Xiaohua; Ning, Xutao; Chen, Chuansheng; Deng, Weina; Huang, Qun; Zhong, Wenbin
2013-07-01
Carbon nanotubes/reduced graphene oxides (CNTs/rGO) implanting cuprous oxide (Cu2O) composite spheres have been successfully prepared via an electrostatic self-assemble with microwave-assisted. Scanning electron microscopy and transmission electron microscopy observations confirmed that the hybrid of CNTs and rGO was implanted into Cu2O matrix and formed a three-dimensional embedded micrometer sphere structure. The possible formation mechanism of this architecture was also proposed. The photocatalytic properties were further investigated by evaluating on photo-degradation of a pollutant methyl orange (MO). The experimental results indicated that this novel architecture enhanced photocatalytic performance with 99.8% decomposition of MO after 40 min in the presence of H2O2 under visible light irradiation, which was much higher than that of pure Cu2O powders (67.9%). This study provides a convenient method for assembling various CNTs/rGO-semiconductor composites in the future applications of water purification as well as optoelectronic fields at a large scale.
Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays.
Gopinath, Ashwin; Rothemund, Paul W K
2014-12-23
Artificial DNA nanostructures, such as DNA origami, have great potential as templates for the bottom-up fabrication of both biological and nonbiological nanodevices at a resolution unachievable by conventional top-down approaches. However, because origami are synthesized in solution, origami-templated devices cannot easily be studied or integrated into larger on-chip architectures. Electrostatic self-assembly of origami onto lithographically defined binding sites on Si/SiO2 substrates has been achieved, but conditions for optimal assembly have not been characterized, and the method requires high Mg2+ concentrations at which most devices aggregate. We present a quantitative study of parameters affecting origami placement, reproducibly achieving single-origami binding at 94±4% of sites, with 90% of these origami having an orientation within ±10° of their target orientation. Further, we introduce two techniques for converting electrostatic DNA-surface bonds to covalent bonds, allowing origami arrays to be used under a wide variety of Mg2+-free solution conditions.
Peptide Conjugates of Benzene Carboxylic Acids as Agonists and Antagonists of Amylin Aggregation.
Profit, Adam A; Vedad, Jayson; Desamero, Ruel Z B
2017-02-15
Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells. Recent findings suggest that soluble hIAPP oligomers are the cytotoxic species responsible for β-cell loss whereas amyloid fibrils themselves may indeed be innocuous. Potential avenues of therapeutic intervention include the development of compounds that prevent hIAPP self-assembly as well as those that reduce or eliminate lag time and rapidly accelerate the formation of amyloid fibrils. Both of these approaches minimize temporal exposure to soluble cytotoxic hIAPP oligomers. Toward this end our laboratory has pursued an electrostatic repulsion approach to the development of potential inhibitors and modulators of hIAPP self-assembly. Peptide conjugates were constructed in which benzene carboxylic acids of varying charge were employed as electrostatic disrupting elements and appended to the N-terminal of the hIAPP 22-29 (NFGAILSS) self-recognition sequence. The self-assembly kinetics of conjugates were characterized by turbidity measurements and the structure of aggregates probed by Raman and CD spectroscopy while the morphology was assessed using transmission electron microscopy. Several benzene carboxylic acid peptide conjugates failed to self-assemble and some were found to inhibit the aggregation of full-length amylin while others served to enhance the rate of amyloid formation and/or increase the yield of amyloid produced. Studies reveal that the geometric display of free carboxylates on the benzene ring of the conjugates plays an important role in the activity of conjugates. In addition, a number of free benzene carboxylic acids were found to modulate amylin self-assembly on their own. The results of these investigations confirm the viability of the electrostatic repulsion approach to the modulation of amyloid formation and may aid the design and development of potential therapeutic agents.
Fabrication of artificial toroid nanostructures by modified β-sheet peptides.
Li, Wen; Li, Jingfang; Lee, Myongsoo
2013-09-25
Facial peptide P1 carrying repeating hydrophobic and hydrophilic residues as well as lysine terminals self-assemble into uniform toroid structures. The sensitive balance between the hydrophobic interactions and electrostatic repulsion dominates the formation of highly curved assemblies.
Yoshikawa, Taro; Reusch, Markus; Zuerbig, Verena; Cimalla, Volker; Lee, Kee-Han; Kurzyp, Magdalena; Arnault, Jean-Charles; Nebel, Christoph E.; Ambacher, Oliver; Lebedev, Vadim
2016-01-01
Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c-axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions. PMID:28335345
Bohn, Justin J.; Ben-Moshe, Matti; Tikhonov, Alexander; Qu, Dan; Lamont, Daniel N.
2010-01-01
We developed a straightforward method to form non close-packed highly ordered fcc direct and inverse opal silica photonic crystals. We utilize an electrostatically self assembled crystalline colloidal array (CCA) template formed by monodisperse, highly charged polystyrene particles. We then polymerize a hydrogel around the CCA (PCCA) and condense the silica to form a highly ordered silica impregnated (siPCCA) photonic crystal. Heating at 450 °C removes the organic polymer leaving a silica inverse opal structure. By altering the colloidal particle concentration we independently control the particle spacing and the wall thickness of the inverse opal photonic crystals. This allows us to control the optical dielectric constant modulation in order to optimize the diffraction; the dielectric constant modulation is controlled independently of the photonic crystal periodicity. These fcc photonic crystals are better ordered than typical close-packed photonic crystals because their self assembly utilizes soft electrostatic repulsive potentials. We show that colloidal particle size and charge polydispersity has modest impact on ordering, in contrast to that for close-packed crystals. PMID:20163800
Molecular Structure of a Helical ribbon in a Peptide Self-Assembly
NASA Astrophysics Data System (ADS)
Hwang, Wonmuk; Marini, Davide; Kamm, Roger D.; Zhang, Shuguang
2002-03-01
We have studied the molecular structure of nanometer scale helical ribbons observed during self-assembly of the peptide KFE8 (amino acid sequence: FKFEFKFE) (NanoLetters (2002, in press)). By analyzing the hydrogen bonding patterns between neighboring peptide backbones, we constructed a number of possible β-sheets. Using all possible combinations of these, we built helical ribbons with dimensions close to those found experimentally and performed molecular dynamics simulations to identify the most stable structure. Solvation effects were implemented by the analytic continuum electrostatics (ACE) model developed by Schaefer and Karplus (J. Phys. Chem. 100, 1578 (1996)). By applying electrostatic double layer theory, we incorporated the effect of pH by scaling the amount of charge on the sidechains. Our results suggest that the helical ribbon is comprised of a double β-sheet where the inner and the outer helices have distinct hydrogen bonding patterns. Our approach has general applicability to the study of helices formed by the self-assembly of β-sheet forming peptides with various amino acid sequences.
NASA Astrophysics Data System (ADS)
Zou, Da-Wei; Tie, Zuo-Xiu; Qin, Meng; Lu, Chun-Mei; Wang, Wei
2009-08-01
The ionic-complementary peptide EMK16-II is used to investigate the effects of hydrophobic and electrostatic interactions on the self-assembling process by atomic force microscopy and circular dichroism spectra. It is found that the increase of hydrophobicity of the peptides promotes the aggregation of fibrils in pure water. The effects of phosphate with different concentrations on electrostatic interactions are also investigated. It is found that the self-assembling process is enhanced at a low concentration of phosphate and more ordered fibrillar aggregates are formed. When the concentration of phosphate increases to a certain value (9 mM), only a few fibrils are found to be formed. No fibrils but amorphous aggregates exist when the concentration further increases. A physical interpretation is presented such that one divalent anion can interact with two positively charged residual groups in different peptide molecules like a “bridge" which destroys the ionic-complementary feature and largely inhibits the formation of ordered fibrils.
NASA Astrophysics Data System (ADS)
Yu, Xu; Cheng, Gong; Zheng, Si-Yang
2016-05-01
In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min-1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability.
Yoshikawa, Taro; Zuerbig, Verena; Gao, Fang; Hoffmann, René; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim
2015-05-19
Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained.
Liu, Yanfei; Zhang, Ling; Wei, Wei
2017-01-01
Peptide self-assembly is one of the promising bottom-up approaches for creating synthetic supermolecular architectures. Noncovalent interactions such as hydrophobic packing, electrostatic interaction, and polypeptide chain entropy (ΔSC) are the most relevant factors that affect the folding and self-assembly of peptides and the stability of supermolecular structures. The GVGV tetrapeptide is an abundant repeat in elastin, an extracellular matrix protein. In this study, four GVGV-containing peptides were designed with the aim of understanding the effects of these weak interactions on peptide self-assembly. Transmission electron microscopy, circular dichroism spectroscopy, dynamic light scattering measurements, and rheometry assays were used to study the structural features of the peptides. Because self-assembling peptides with different amino acid sequences may significantly affect protein release, basic fibroblast growth factor (bFGF) was used as a model molecule and encapsulated within the P2 (RLDLGVGVRLDLGVGV) hydrogel to study the release kinetics. The results showed that the balance among hydrophobic effects, electrostatic interactions, and chain entropy determined the molecular state and self-assembly of the peptide. Moreover, encapsulation of bFGF within the P2 hydrogel allowed its sustained release without causing changes in the secondary structure. The release profiles could be tuned by adjusting the P2 hydrogel concentration. Cell Counting Kit-8 and Western blot assays demonstrated that the encapsulated and released bFGFs were biologically active and capable of promoting the proliferation of murine fibroblast NIH-3T3 cells, most likely due to the activation of downstream signaling pathways. PMID:28176898
NASA Astrophysics Data System (ADS)
Leung, Cheuk Yui Curtis
Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.
Buettner, C J; Wallace, A J; Ok, S; Manos, A A; Nicholl, M J; Ghosh, A; Tweedle, M F; Goldberger, J E
2017-06-21
While the influence of alkyl chain length and headgroup size on self-assembly behaviour has been well-established for simple surfactants, the rational control over the pH- and concentration-dependent self-assembly behaviour in stimuli responsive peptides remains an elusive goal. Here, we show that different amphiphilic peptides can have similar self-assembly phase diagrams, providing the relative strengths of the attractive and repulsive forces are balanced. Using palmitoyl-YYAAEEEEK(DO3A:Gd)-NH 2 and palmitoyl-YAAEEEEK(DO3A:Gd)-NH 2 as controls, we show that reducing hydrophobic attractive forces through fewer methylene groups in the alkyl chain will lead to a similar self-assembly phase diagram as increasing the electrostatic repulsive forces via the addition of a glutamic acid residue. These changes allow creation of self-assembled MRI vehicles with slightly different micelle and nanofiber diameters but with minimal changes in the spin-lattice T 1 relaxivity. These findings reveal a powerful strategy to design self-assembled vehicles with different sizes but with similar self-assembly profiles.
Chiral recognition and selection during the self-assembly process of protein-mimic macroanions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Panchao; Zhang, Zhi-Ming; Lv, Hongjin
The research on chiral recognition and chiral selection is not only fundamental in resolving the puzzle of homochirality, but also instructive in chiral separation and stereoselective catalysis. Here we report the chiral recognition and chiral selection during the self-assembly process of two enantiomeric wheel-shaped macroanions, [Fe28(μ3-O)8(Tart)16(HCOO)24]20- (Tart=D- or L-tartaric acid tetra-anion). The enantiomers are observed to remain self-sorted and self-assemble into their individual assemblies in their racemic mixture solution. The addition of chiral co-anions can selectively suppress the self-assembly process of the enantiomeric macroanions, which is further used to separate the two enantiomers from their mixtures on the basis ofmore » the size difference between the monomers and the assemblies. We believe that delicate long-range electrostatic interactions could be responsible for such high-level chiral recognition and selection.« less
Electrostatic assembly of binary nanoparticle superlattices using protein cages
NASA Astrophysics Data System (ADS)
Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo
2013-01-01
Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.
Electrostatic Assembly of Nanomaterials for Hybrid Electrodes and Supercapacitors
NASA Astrophysics Data System (ADS)
Hammond, Paula
2015-03-01
Electrostatic assembly methods have been used to generate a range of new materials systems of interest for electrochemical energy and storage applications. Over the past several years, it has been demonstrated that carbon nanotubes, metals, metal oxides, polymeric nanomaterials, and biotemplated materials systems can be incorporated into ultrathin films to generate supercapacitors and battery electrodes that illustrate significant energy density and power. The unique ability to control the incorporation of such a broad range of materials at the nanometer length scale allows tailoring of the final properties of these unique composite systems, as well as the capability of creating complex micron-scale to nanoporous morphologies based on the scale of the nanomaterial that is absorbed within the structure, or the conditions of self-assembly. Recently we have expanded these capabilities to achieve new electrodes that are templated atop electrospun polmer fiber scaffolds, in which the polymer can be selectively removed to achieve highly porous materials. Spray-layer-by-layer and filtration methods of functionalized multiwall carbon nanotubes and polyaniline nanofibers enable the generation of electrode systems with unusually high surface. Incorporation of psuedocapacitive nanoparticles can enhance capacitive properties, and other catalytic or metallic nanoparticles can be implemented to enhance electrochemical or catalytic function.
Electrostatically self-assembled polyoxometalates on molecular-dye-functionalized diamond.
Zhong, Yu Lin; Ng, Wibowo; Yang, Jia-Xiang; Loh, Kian Ping
2009-12-30
We have successfully immobilized phosphotungstic acid (PTA), a polyoxometalate, on the surface of boron-doped diamond (BDD) surface through electrostatic self-assembly of PTA on pyridinium dye-functionalized-BDD. The inorganic/organic bilayer structure on BDD is found to exhibit fast surface-confined reversible electron transfer. The molecular dye-grafted BDD can undergo controllable electrical stripping and regeneration of PTA which can be useful for electronics or sensing applications. Furthermore, we have demonstrated the use of PTA as a molecular switch in which the direction of photocurrent from diamond to methyl viologen is reversed by the surface bound PTA. Robust photocurrent converter based on such molecular system-diamond platform can operate in corrosive medium which is not tolerated by indium tin oxide electrodes.
Electrostatic Unfolding and Interactions of Albumin Driven by pH Changes: A Molecular Dynamics Study
2015-01-01
A better understanding of protein aggregation is bound to translate into critical advances in several areas, including the treatment of misfolded protein disorders and the development of self-assembling biomaterials for novel commercial applications. Because of its ubiquity and clinical potential, albumin is one of the best-characterized models in protein aggregation research; but its properties in different conditions are not completely understood. Here, we carried out all-atom molecular dynamics simulations of albumin to understand how electrostatics can affect the conformation of a single albumin molecule just prior to self-assembly. We then analyzed the tertiary structure and solvent accessible surface area of albumin after electrostatically triggered partial denaturation. The data obtained from these single protein simulations allowed us to investigate the effect of electrostatic interactions between two proteins. The results of these simulations suggested that hydrophobic attractions and counterion binding may be strong enough to effectively overcome the electrostatic repulsions between the highly charged monomers. This work contributes to our general understanding of protein aggregation mechanisms, the importance of explicit consideration of free ions in protein solutions, provides critical new insights about the equilibrium conformation of albumin in its partially denatured state at low pH, and may spur significant progress in our efforts to develop biocompatible protein hydrogels driven by electrostatic partial denaturation. PMID:24393011
Mahmoudi, Najet; Gaillard, Cédric; Boué, François; Axelos, Monique A V; Riaublanc, Alain
2010-05-01
We investigated the structure of heat-induced assemblies of whey globular proteins using small angle neutron scattering (SANS), static and dynamic light scattering (SLS and DLS), and cryogenic transmission electron microscopy (Cryo-TEM). Whey protein molecules self-assemble in fractal aggregates with a structure density depending on the electrostatic interactions. We determined the static and dynamic properties of interfacial layer formed by the protein assemblies, upon adsorption and spreading at the air-water interface using surface film balance and interfacial dilatational rheology. Upon spreading, all whey protein systems show a power-law scaling behavior of the surface pressure versus concentration in the semi-dilute surface concentration regime, with an exponent ranging from 5.5 to 9 depending on the electrostatic interactions and the aggregation state. The dilatational modulus derived from surface pressure isotherms shows a main peak at 6-8 mN/m, generally considered to be the onset of a conformational change in the monolayer, and a second peak or a shoulder at 15 mN/m. Long-time adsorption kinetics give similar results for both the native whey proteins and the corresponding self-similar assemblies, with a systematic effect of the ionic strength. Copyright 2010 Elsevier Inc. All rights reserved.
Martins, Jéssica G; de Oliveira, Ariel C; Garcia, Patrícia S; Kipper, Matt J; Martins, Alessandro F
2018-05-15
Processing water-soluble polysaccharides, like pectin (PT), into materials with desirable stability and mechanical properties has been challenging. Here we report a new method to create water stable and mechanical resistant polyelectrolyte complex (PEC) membranes from PT and chitosan (CS) assemblies, without covalent crosslinking. This new method overcomes challenges of obtaining stable and durable complexes, by performing the complexation at low pH, enabling complex formation even when using an excess of PT, and when using PT with high degree of O-methoxylation. By performing the complexation at low pH, the complexes form with a high degree of intermolecular association, instead of forming by electrostatic complexation. This method avoids precipitation, and overcomes the aqueous instability typical of PT/CS complexes. After neutralization, the PEC membranes display features characteristic of a high degree of intermolecular association because of the self-assembling of polymer chains. The PT/CS ratio can be tuned to enhance the mechanical strength (σ = 39 MPa) of the membranes. These polysaccharide-based materials can demonstrate advantages over synthetic materials for technological applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Competing Hydrophobic and Screened-Coulomb Interactions in Hepatitis B Virus Capsid Assembly
Kegel, Willem K.; Schoot, Paul van der
2004-01-01
Recent experiments show that, in the range from ∼15 to 45°C, an increase in the temperature promotes the spontaneous assembly into capsids of the Escherichia coli-expressed coat proteins of hepatitis B virus. Within that temperature interval, an increase in ionic strength up to five times that of standard physiological conditions also acts to promote capsid assembly. To explain both observations we propose an interaction of mean force between the protein subunits that is the sum of an attractive hydrophobic interaction, driving the self-assembly, and a repulsive electrostatic interaction, opposing the self-assembly. We find that the binding strength of the capsid subunits increases with temperature virtually independently of the ionic strength, and that, at fixed temperature, the binding strength increases with the square root of ionic strength. Both predictions are in quantitative agreement with experiment. We point out the similarities of capsid assembly in general and the micellization of surfactants. Finally we make plausible that electrostatic repulsion between the native core subunits of a large class of virus suppresses the formation in vivo of empty virus capsids, that is, without the presence of the charge-neutralizing nucleic acid. PMID:15189887
NASA Astrophysics Data System (ADS)
Groehn, Franziska
2015-03-01
With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.
Seki, Takakazu; So, Christopher R; Page, Tamon R; Starkebaum, David; Hayamizu, Yuhei; Sarikaya, Mehmet
2018-02-06
The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.
Xie, Yong; Guo, Shengming; Ji, Yinglu; Guo, Chuanfei; Liu, Xinfeng; Chen, Ziyu; Wu, Xiaochun; Liu, Qian
2011-09-20
The self-assembly of anisotropic gold nanorods (GNRs) into ordered phases remains a challenge. Herein, we demonstrated the fabrication of symmetric circular- or semicircular-like self-assembled superlattices composed of multilayers of standing GNRs by fine-tuning the repulsive interactions among GNRs. The repulsive force is tailored from electrostatic interaction to steric force by replacing the surface coating of cetyltrimethylammonium bromide (CTAB) (ζ potential of 20-50 mV) with an OH-terminated hexa(ethylene glycol) alkanethiol (here termed as EG(6)OH, ζ potential of -10 mV). The assembly mechanism is discussed via theoretical analyses of the major interactions, and an effective balance between the repulsive steric and attractive depletion interactions is the main driving force for the self-assembly. The real-time observations of solution assembly (UV-vis-NIR absorption spectroscopy) supports the mechanism that we suggested. The superlattices obtained here not only enrich the categories of the self-assembled structures but more importantly deepen the insight of the self-assembly process and pave the way for various potential applications. © 2011 American Chemical Society
Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Endo, Masayuki; Sugiyama, Hiroshi
2015-08-01
Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed `lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space.
Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures
Endo, Masayuki; Sugiyama, Hiroshi
2015-01-01
Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed ‘lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space. PMID:26310995
Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P
2018-08-01
The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Electrostatics of DNA-Functionalized Nanoparticles
NASA Astrophysics Data System (ADS)
Hoffmann, Kyle; Krishnamoorthy, Kurinji; Kewalramani, Sumit; Bedzyk, Michael; Olvera de La Cruz, Monica
DNA-functionalized nanoparticles have applications in directed self-assembly and targeted cellular delivery of therapeutic proteins. In order to design specific systems, it is necessary to understand their self-assembly properties, of which the long-range electrostatic interactions are a critical component. We iteratively solved equations derived from classical density functional theory in order to predict the distribution of ions around DNA-functionalized Cg Catalase. We then compared estimates of the resonant intensity to those from SAXS measurements to estimate key features of DNA-functionalized proteins, such as the size of the region linking the protein and DNA and the extension of the single-stranded DNA. Using classical density functional theory and coarse-grained simulations, we are able to predict and understand these fundamental properties in order to rationally design new biomaterials.
Electrostatic self-assembly of polyions on charged substrates
NASA Astrophysics Data System (ADS)
Campbell, A.; Adams, W. W.; Bunning, T. J.; Visser, D.; Bliznyuk, V. N.; Tsukruk, V. V.
1997-03-01
The kinetics of formation of self-assembled monolayers is studied for polystyrene sulfonate(PSS) adsorbed on oppositely charged surfaces of amine terminated self-assembled monolayers(SAM) and polyallylamine(PAA). During the early stages of deposition in both cases, an inhomogeneous deposition is noted as measured by atomic force and friction force microscopy. Island formation of unperturbed PSS coils on defect sites is observed during the initial stage of deposition. Longer deposition times result in an equilibration of the polymer layers into highly flattened macromolecular chains. AFM and FFM measurements are combined with ellipsometer and X-ray reflectivity results to quantitate the layer thicknesses and roughness with time.
Preparation of graphene foam with high performance by modified self-assembly method
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Sun, Youyi; Liu, Tantan; Li, Diansen; Hou, Chunlin; Gao, Li; Liu, Yaqing
2016-03-01
Recently, self-assembly method was applied for preparation of graphene foam. However, it is still a great challenge to obtain a three-dimensional graphene network with high performance (e.g., low density, high mechanical strength and high conductivity together) for the self-assembly method. Herein, a modified self-assembly method applied for preparation of graphene foam was investigated, in which, L-ascorbic acid and HI were firstly chosen as the reducing agent, and further reduced by hydrazine hydrate. The results demonstrated that the graphene foam showed high compressive strength (ca. 320 kPa), high electrical conductivity (20.6 S/m) and low density (14.7 mg/cm-1). Especially, the obtained compressive strength (ca. 320 kPa) is the highest value compared to the data of graphene foam reported in previous works. This phenomenon may be due to following three reasons: (1) the reaction between hydrazine hydrate and graphene brought some covalent bonds among graphene sheets; (2) graphene foam was achieved by high hydrophobicity and electrostatic repulsion which inhibit the restacking of graphene sheets; (3) the removal of the oxygen groups by hydrazine hydrate efficiently restores conjugation of sp2 regions and the π-π interaction in the cross-linking sites, which tightly bonds the sheets together. The obtained graphene foam not only had good porous structure and mechanical strength, but also showed excellent satisfactory double-layer capacitive behavior with good electrochemical cyclic stability and high specific capacitance of 171.0 F/g for application in electrode of supercapacitors and absorption capacities for the removal of various oils and dyes from water.
Structure and assembly of scalable porous protein cages
NASA Astrophysics Data System (ADS)
Sasaki, Eita; Böhringer, Daniel; van de Waterbeemd, Michiel; Leibundgut, Marc; Zschoche, Reinhard; Heck, Albert J. R.; Ban, Nenad; Hilvert, Donald
2017-03-01
Proteins that self-assemble into regular shell-like polyhedra are useful, both in nature and in the laboratory, as molecular containers. Here we describe cryo-electron microscopy (EM) structures of two versatile encapsulation systems that exploit engineered electrostatic interactions for cargo loading. We show that increasing the number of negative charges on the lumenal surface of lumazine synthase, a protein that naturally assembles into a ~1-MDa dodecahedron composed of 12 pentamers, induces stepwise expansion of the native protein shell, giving rise to thermostable ~3-MDa and ~6-MDa assemblies containing 180 and 360 subunits, respectively. Remarkably, these expanded particles assume unprecedented tetrahedrally and icosahedrally symmetric structures constructed entirely from pentameric units. Large keyhole-shaped pores in the shell, not present in the wild-type capsid, enable diffusion-limited encapsulation of complementarily charged guests. The structures of these supercharged assemblies demonstrate how programmed electrostatic effects can be effectively harnessed to tailor the architecture and properties of protein cages.
Abioye, Amos Olusegun; Kola-Mustapha, Adeola
2015-06-01
The direct effect of electrostatic interaction between ibuprofen and cationic dextran on the system-specific physicochemical parameters and intrinsic dissolution characteristics of ibuprofen was evaluated in order to develop drug-polymer nanoconjugate as a delivery strategy for poorly soluble drugs. Amorphous ibuprofen-DEAE dextran (Ddex) nanoconjugate was prepared using a low energy, controlled amphiphile-polyelectrolyte electrostatic self-assembly technique optimized by ibuprofen critical solubility and Ddex charge screening. Physicochemical characteristics of the nanoconjugates were evaluated using FTIR, DSC, TGA, NMR and SEM relative to pure ibuprofen. The in vitro release profiles and mechanism of ibuprofen release were determined using mathematical models including zero and first order kinetics; Higuchi; Hixson-Crowell and Korsmeyer-Peppas. Electrostatic interaction between ibuprofen and Ddex was confirmed with FT-IR, (1)H NMR and (13)C NMR spectroscopy. The broad and diffused DSC peaks of the nanoconjugate as well as the disappearance of ibuprofen melting peak provided evidence for their highly amorphous state. Low concentrations of Ddex up to 1.0 × 10(-6) g/dm(3) enhanced dissolution of ibuprofen to a maximum of 81.32% beyond which retardation occurred steadily. Multiple release mechanisms including diffusion; discrete drug dissolution; anomalous transport and super case II transport were noted. Controlled assembly of ibuprofen and Ddex produced a novel formulation with potential extended drug release dictated by Ddex concentration.
NASA Astrophysics Data System (ADS)
Nabok, A. V.; Tsargorodskaya, A.; Hassan, A. K.; Starodub, N. F.
2005-06-01
The environmental toxins, such as herbicides simazine and atrazine, and T2 mycotoxin were registered with the optical methods of surface plasmon resonance (SPR) and recently developed total internal reflection ellipsometry (TIRE). The immune assay approach was exploited for in situ registration of the above low molecular weight toxins with specific antibodies immobilised onto the gold surface via (poly)allylamine hydrochloride layer using electrostatic self-assembly (ESA) technique. The comparison of two methods of SPR and TIRE shows a higher sensitivity of the latter.
Synthesis and applications of electrically conducting polymer nanocomposites
NASA Astrophysics Data System (ADS)
Ku, Bon-Cheol
This research focuses on the synthesis and applications of electrically conducting polymer nanocomposites through molecular self-assembly. Two different classes of polymers, polyaniline (PANI) and polyacetylenes have been synthesized by biomimetic catalysis and spontaneous polymerization method. For gas barrier materials, commercially available polymers, poly(allylamine hydrochloride) (PAH) and poly (acrylic acid) (PAA), have also been used and thermally cross-linked. The morphological, optical and electrical properties of amphiphilic polyacetylenes have been studied. Furthermore, barrier properties, permselectivity, pervaporation properties of polyacetylenes/aluminosilicate nanocomposites have been investigated. For processability and electrical properties of carbon nanotube and conducting polymers, substituted ionic polyacetylenes (SIPA) have been covalently incorporated onto single-walled carbon nanotubes (SWNT) using the "grafting-from" technique. In the first study, a nanocomposite film catalyst has been prepared by electrostatic layer-by-layer (ELBL) self-assembly of a polyelectrolyte and a biomimetic catalyst for synthesis of polyaniline. Poly(dimethyl diallylammonium chloride) (PDAC) and hematin have been used as polycation and counter anions, respectively. The absorption spectra by UV-vis-NIR spectroscopy showed that conductive form polyaniline was formed not only as a coating on the surface of the ELBL composites but was also formed in solution. Furthermore, it was found that the reaction rate was affected by pH and concentration of hematin in the multilayers. The feasibility of controlled desorption of hematin molecules from the LBL assembly was explored and demonstrated by changing the pH and hematin concentration. The polymerization rate of aniline in solution was enhanced with decreasing pH of the solutions due to increased desorption of hematin nanoparticles from the multilayers. These ELBL hematin assemblies demonstrated both a way to functionalize surfaces with conductive polyaniline and a potential method of reusability of the catalyst for improved cost effectiveness. For fabrication of multifunctional nanocomposite membranes, (P2EPy-R/Saponite) n on NafionRTM substrate was demonstrated by electrostatic layer-by layer assembly technique. (Abstract shortened by UMI.)
Development of a Coarse-grained Model of Polypeptoids for Studying Self-assembly in Solution
NASA Astrophysics Data System (ADS)
Du, Pu; Rick, Steven; Kumar, Revati
Polypeptoid, a class of highly tunable biomimetic analogues of peptides, are used as a prototypical model system to study self-assembly. The focus of this work is to glean insight into the effect of electrostatic and other non-covalent secondary interactions on the self-assembly of sequence-defined polypeptoids, with different charged and uncharged side groups, in solution that will complement experiments. Atomistic (AA) molecular dynamics simulation can provide a complete description of self-assembly of polypeptoid systems. However, the long simulation length and time scales needed for these processes require the development of a computationally cheaper alternative, namely coarse-grained (CG) models. A CG model for studying polypeptoid micellar interactions is being developed, parameterized on atomistic simulations, using a hybridized approach involving the OPLS-UA force filed and the Stillinger-Weber (SW) potential form. The development of the model as well as the results from the simulations on the self-assembly as function of polypeptoid chemical structure and sequences will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I.; Sheppard, C. J.
2016-04-14
Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.
NASA Astrophysics Data System (ADS)
Gao, Wenli; Feng, Bo; Ni, Yuxiang; Yang, Yongli; Lu, Xiong; Weng, Jie
2010-11-01
Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.
Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings.
Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques
2013-01-24
A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength shifts and transmission changes in the spectrum of the TFBG. The peak amplitude of the dominant spectral fringes over a certain window of the transmission spectrum, obtained by FFT analysis, has a near-linear pH sensitivity of 117 arbitrary unit (a.u.)/pH unit and an accuracy of ±1 a.u. (in the range of pH 4.66 to pH 6.02). The thickness and surface morphology of the sensing multilayer film were characterized to investigate their effects on the sensor's performance. The dynamic response of the sensor also has been studied (10 s rise time and 18 s fall time for a sensor with six bilayers of PDDA/PAA).
NASA Astrophysics Data System (ADS)
Liljeström, Ville; Mikkilä, Joona; Kostiainen, Mauri A.
2014-07-01
Multicomponent crystals and nanoparticle superlattices are a powerful approach to integrate different materials into ordered nanostructures. Well-developed, especially DNA-based, methods for their preparation exist, yet most techniques concentrate on molecular and synthetic nanoparticle systems in non-biocompatible environment. Here we describe the self-assembly and characterization of binary solids that consist of crystalline arrays of native biomacromolecules. We electrostatically assembled cowpea chlorotic mottle virus particles and avidin proteins into heterogeneous crystals, where the virus particles adopt a non-close-packed body-centred cubic arrangement held together by avidin. Importantly, the whole preparation process takes place at room temperature in a mild aqueous medium allowing the processing of delicate biological building blocks into ordered structures with lattice constants in the nanometre range. Furthermore, the use of avidin-biotin interaction allows highly selective pre- or post-functionalization of the protein crystals in a modular way with different types of functional units, such as fluorescent dyes, enzymes and plasmonic nanoparticles.
Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly
Shi, Quan; Qian, Zhiyong; Liu, Donghua; Liu, Hongchen
2017-01-01
In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL) assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized. PMID:28824462
Peptide self-assembly: thermodynamics and kinetics.
Wang, Juan; Liu, Kai; Xing, Ruirui; Yan, Xuehai
2016-10-21
Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Sheng; Shao, Yuyan; Yin, Geping
2010-03-20
Carbon nanotubes (CNTs) are noncovalently functionalized with poly(allylamine hydrochloride) (PAH) and then employed as the support of Pt nanoparticles. X-Ray photoelectron spectroscopy confirms the successful functionalization of CNTs with PAH. The negatively charged Pt precursors are adsorbed on positively charged PAH-wrapping CNTs surface via electrostatic self-assembly and then in situ reduced in ethylene glycol. X-Ray diffraction and transmission electron microscope images reveal that Pt nanoparticles with an average size of 2.6 nm are uniformly dispersed on CNT surface. Pt/PAH-CNTs exhibit unexpectedly high activity towards oxygen reduction reaction, which can be attributed to the large electrochemical surface area of Pt nanoparticles.more » It also shows enhanced electrochemical stability due to the structural integrity of PAH-CNTs. This provides a facile approach to synthesize CNTs-based nanoelectrocatalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erola, Markus O.A.; Philip, Anish; Ahmed, Tanzir
The inverse opal films of SiO{sub 2} containing metal nanoparticles can have both the localized surface plasmon resonance (LSPR) of metal nanoparticles and the Bragg diffraction of inverse opal crystals of SiO{sub 2}, which are very useful properties for applications, such as tunable photonic structures, catalysts and sensors. However, effective processes for fabrication of these films from colloidal particles have rarely been reported. In our study, two methods for preparation of inverse opal films of SiO{sub 2} with three different crystal sizes and containing gold or silver nanoparticles (NPs) via self-assembly using electrostatic interactions and capillary forces are reported. Themore » Bragg diffraction of inverse opal films of SiO{sub 2} in the presence and absence of the template was measured and predicted on the basis of with UV–vis spectroscopy and scanning electron microscopy. The preparation methods used provided good-quality inverse opal SiO{sub 2} films containing highly dispersed, plasmonic AuNPs or AgNPs and having both Bragg diffractions and LSPRs. - Graphical abstract: For syntheses of SiO{sub 2} inverse opals containing Au/Ag nanoparticles two approaches and three template sizes were employed. Self-assembly of template molecules and metal nanoparticles occurred using electrostatic interactions and capillary forces. Both the Bragg diffraction of the photonic crystal and the localized surface plasmon resonance of Au/Ag nanoparticles were detected. - Highlights: • Fabrication methods of silica inverse opals containing metal nanoparticles studied. • Three template sizes used to produce SiO{sub 2} inverse opals with Au/Ag nanoparticles. • PS templates with Au nanoparticles adsorbed used in formation of inverse opals. • Ag particles infiltrated in inverse opals with capillary and electrostatic forces. • Bragg diffractions of IOs and surface plasmon resonances of nanoparticles observed.« less
Tao, Kai; Wang, Jiqian; Li, Yanpeng; Xia, Daohong; Shan, Honghong; Xu, Hai; Lu, Jian R.
2013-01-01
Although one dimensional (1D) Pt nanostructures with well-defined sizes and shapes have fascinating physiochemical properties, their preparation remains a great challenge. Here we report an easy and novel synthesis of 1D Pt nanostructures with controllable morphologies, through the combination of designer self-assembling I3K and phage-displayed P7A peptides. The nanofibrils formed via I3K self-assembly acted as template. Pt precursors ((PtCl4)2− and (PtCl6)2−) were immobilized by electrostatic interaction on the positively charged template surface and subsequent reduction led to the formation of 1D Pt nanostructures. P7A was applied to tune the continuity of the Pt nanostructures. Here, the electrostatic repulsion between the deprotonated C-terminal carboxyl groups of P7A molecules was demonstrated to play a key role. We finally showed that continuous and ordered 1D Pt morphology had a significantly improved electrochemical performance for the hydrogen and methanol electro-oxidation in comparison with either 1D discrete Pt nanoparticle assemblies or isolated Pt nanoparticles. PMID:23995118
How electrostatic networks modulate specificity and stability of collagen.
Zheng, Hongning; Lu, Cheng; Lan, Jun; Fan, Shilong; Nanda, Vikas; Xu, Fei
2018-06-12
One-quarter of the 28 types of natural collagen exist as heterotrimers. The oligomerization state of collagen affects the structure and mechanics of the extracellular matrix, providing essential cues to modulate biological and pathological processes. A lack of high-resolution structural information limits our mechanistic understanding of collagen heterospecific self-assembly. Here, the 1.77-Å resolution structure of a synthetic heterotrimer demonstrates the balance of intermolecular electrostatics and hydrogen bonding that affects collagen stability and heterospecificity of assembly. Atomistic simulations and mutagenesis based on the solved structure are used to explore the contributions of specific interactions to energetics. A predictive model of collagen stability and specificity is developed for engineering novel collagen structures.
Nanoporous Gold for Enzyme Immobilization.
Stine, Keith J; Jefferson, Kenise; Shulga, Olga V
2017-01-01
Nanoporous gold (NPG) is a material of emerging interest for immobilization of biomolecules, especially enzymes. The material provides a high surface area form of gold that is suitable for physisorption or for covalent modification by self-assembled monolayers. The material can be used as a high surface area electrode and with immobilized enzymes can be used for amperometric detection schemes. NPG can be prepared in a variety of formats from alloys containing between 20 and 50 % atomic composition of gold and less noble element(s) by dealloying procedures. Materials resembling NPG can be prepared by hydrothermal and electrodeposition methods. Related high surface area gold structures have been prepared using templating approaches. Covalent enzyme immobilization can be achieved by first forming a self-assembled monolayer on NPG bearing a terminal reactive functional group followed by conjugation to the enzyme through amide linkages to lysine residues. Enzymes can also be entrapped by physisorption or immobilized by electrostatic interactions.
NASA Astrophysics Data System (ADS)
Wang, Wenxia; He, Qi; Xiao, Kaijun; Zhu, Liang
2018-03-01
In the study, a two-major step involving a hydrothermal method and an electrostatic self-assembly method was adopted to synthesis Fe3O4/GO nanocomposites. The Fe3O4 nanoparticles were successfully modified with the 3-aminopropyltrimethoxy-silane and homogeneously deposited onto the surface of GO. They were used as Fenton-like catalyst to degrade Rhodamine B and displayed a higher activity compared with the pristine Fe3O4 nanoparticles, H2O2, Fe3O4/GO nanocomposite and Fe3O4/H2O2 system, demonstrating the synergistic effect between the superior adsorption properties of GO and the excellent catalytic activity of Fe3O4/H2O2 system. Besides, the possible catalytic mechanism and degradation pathway for RhB molecules by Fe3O4/GO nanocomposites and H2O2 was proposed based on the liquid chromatography-mass spectrometry (LC-MS) analysis. The result reveals that the •OH radicals should be the main actives species during catalytic degradation of RhB by the Fe3O4/GO/H2O2 system. In addition, the catalyst is reusable and shows efficiency up to 5 cycles. We believe the strategy in our work can provide insight into designing the novel catalysts for large-scale degradation of organic pollutants in the wastewater.
Haso, Fadi; Li, Dong; Garai, Somenath; Pigga, Joseph M; Liu, Tianbo
2015-09-14
Two Keplerate-type macroions, [Mo(VI) 72 Fe(III) 30 O252 - (CH3 COO)12 {Mo2 O7 (H2 O)}2 {H2 Mo2 O8 (H2 O)}(H2 O)91 ]⋅ca. 150 H2 O= {Mo72 Fe30 } and [{Na(H2 O)12 }⊂{Mo(VI) 72 Cr(III) 30 O252 (CH3 COO)19 - (H2 O)94 }]⋅ca. 120 H2 O={Mo72 Cr30 }, with identical size and shape but different charge density, can self-assemble into spherical "blackberry"-like structures in aqueous solution by means of electrostatic interactions. These two macroanions can self-recognize each other and self-assemble into two separate types of homogeneous blackberries in their mixed dilute aqueous solution, in which they carry -7 and -5 net charges, respectively. Either adjusting the solution pH or raising temperature is expected to make the self-recognition more difficult, by making the charge densities of the two clusters closer, or by decreasing the activation energy barrier for the blackberry formation, respectively. Amazingly, the self-recognition behavior remains, as confirmed by dynamic and static light scattering, TEM, and energy dispersive spectroscopy techniques. The results prove that the self-recognition behavior of the macroions due to the long-range electrostatic interaction is universal and can be achieved when only minimum differences exist between two types of macroanions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-Assembled Nano-energetic Gas Generators based on Bi2O3
NASA Astrophysics Data System (ADS)
Hobosyan, Mkhitar; Trevino, Tyler; Martirosyan, Karen
2012-10-01
Nanoenergetic Gas-Generators are formulations that rapidly release a large amount of gaseous products and generate a fast moving thermal wave. They are mainly based on thermite systems, which are pyrotechnic mixtures of metal powders (fuel- Al, Mg, etc.) and metal oxides (oxidizer, Bi2O3, Fe2O3, WO3, MoO3 etc.) that can generate an exothermic oxidation-reduction reaction referred to as a thermite reaction. A thermite reaction releases a large amount of energy and can generate rapidly extremely high temperatures. The intimate contact between the fuel and oxidizer can be enhanced by use of nano instead of micro particles. The contact area between oxidizer and metal particles depends from method of mixture preparation. In this work we utilize the self-assembly processes, which use the electrostatic forces to produce ordered and self-organized binary systems. In this process the intimate contact significantly enhances and gives the ability to build an energetic material in molecular level, which is crucial for thepressure discharge efficiency of nano-thermites. The DTA-TGA, Zeta-size analysis and FTIR technique were performed to characterize the Bi2O3 particles. The self-assembly of Aluminum and Bi2O3 was conducted in sonic bath with appropriate solvents and linkers. The resultant thermite pressure discharge values were tested in modified Parr reactor. In general, the self-assembled thermites give much higher-pressure discharge values than the thermites prepared with conventional roll-mixing technique.
Simulation of self-assembly of polyzwitterions into vesicles
Mahalik, Jyoti P.; Muthukumar, Murugappan
2016-08-19
Using the Langevin dynamics method and a coarse-grained model, we have researched the formation of vesicles by hydrophobic polymers consisting of periodically placed zwitterion side groups in dilute salt-free aqueous solutions. The zwitterions, being permanent charge dipoles, provide long-range electrostatic correlations which are interfered by the conformational entropy of the polymer. Our simulations are geared towards gaining conceptual understanding in these correlated dipolar systems, where theoretical calculations are at present formidable. A competition between hydrophobic interactions and dipole-dipole interactions leads to a series of self-assembled structures. As the spacing d between the successive zwitterion side groups decreases, single chains undergomore » globule → disk → worm-like structures. We have calculated the Flory-Huggins χ parameter for these systems in terms of d and monitored the radius of gyration, hydrodynamic radius, spatial correlations among hydrophobic and dipole monomers, and dipole-dipole orientational correlation functions. During the subsequent stages of self-assembly, these structures lead to larger globules and vesicles as d is decreased up to a threshold value, below which no large scale morphology forms. Finally the vesicles form via a polynucleation mechanism whereby disk-like structures form first, followed by their subsequent merger.« less
2015-01-01
Biological hydrogels are fundamentally biocompatible and have intrinsic similarities to extracellular matrices in medical applications and drug delivery systems. Herein we demonstrate the ability to form drug-eluting protein hydrogels using a novel mechanism that involves the electrostatically triggered partial denaturation and self-assembly of the protein via changes in pH. Partial denaturation increases the protein’s solvent exposed hydrophobic surface area, which then drives self-assembly of the protein into a hydrogel within 10 min at 37 °C. We describe the properties of an albumin hydrogel formed by this mechanism. Intrinsic drug binding properties of albumin to all-trans retinoic acid (atRA) are conserved through the partial denaturation process, as confirmed by fluorescence quenching. atRA released from the hydrogel inhibited smooth muscle cell migration as per an in vitro scratch wound assay. Atomistic molecular dynamics and potential of mean force calculations show the preservation and potential creation of new atRA binding sites with a binding energy of −41 kJ/mol. The resulting hydrogel is also biocompatible and exhibits rapid postgelation degradation after its implantation in vivo. This interdisciplinary work provides a new tool for the development of biocompatible protein hydrogel drug delivery systems. PMID:25148603
Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface
NASA Astrophysics Data System (ADS)
Kim, Ji Eun; No, Young Hyun; Kim, Joo Nam; Shin, Yong Seon; Kang, Won Tae; Kim, Young Rae; Kim, Kun Nyun; Kim, Yong Ho; Yu, Woo Jong
2017-05-01
Graphene has attracted a great deal of interest for applications in bio-sensing devices because of its ultra-thin structure, which enables strong electrostatic coupling with target molecules, and its excellent electrical mobility promising for ultra-fast sensing speeds. However, thickly stacked receptors on the graphene's surface interrupts electrostatic coupling between graphene and charged biomolecules, which can reduce the sensitivity of graphene biosensors. Here, we report a highly sensitive graphene biosensor by the monomolecular self-assembly of designed peptide protein receptors. The graphene channel was non-covalently functionalized using peptide protein receptors via the π-π interaction along the graphene's Bravais lattice, allowing ultra-thin monomolecular self-assembly through the graphene lattice. In thickness dependent characterization, a graphene sensor with a monomolecular receptor (thickness less than 3 nm) showed five times higher sensitivity and three times higher voltage shifts than graphene sensors with thick receptor stacks (thicknesses greater than 20 nm), which is attributed to excellent gate coupling between graphene and streptavidin via an ultrathin receptor insulator. In addition to having a fast-inherent response time (less than 0.6 s) based on fast binding speed between biotin and streptavidin, our graphene biosensor is a promising platform for highly sensitive real-time monitoring of biomolecules with high spatiotemporal resolution.
Tuning of peptide assembly through force balance adjustment.
Cao, Meiwen; Cao, Changhai; Zhang, Lijuan; Xia, Daohong; Xu, Hai
2013-10-01
Controlled self-assembly of amphiphilic tripeptides into distinct nanostructures is achieved via a controlled design of the molecular architecture. The tripeptide Ac-Phe-Phe-Lys-CONH2 (FFK), hardly soluble in water, forms long amyloid-like tubular structures with the aid of β-sheet hydrogen bonding and aromatic π-π stacking. Substitution of phenylalanine (F) with tyrosine (Y), that is, only a subtle structural variation in adding a hydroxyl group to the phenyl ring, results in great change in molecular self-assembly behavior. When one F is substituted with Y, the resulting molecules of FYK and YFK self-assemble into long thinner fibrils with high propensity for lateral association. When both Fs are substituted with Y, the resulting YYK molecule forms spherical aggregates. Introduction of hydroxyl groups into the molecule modifies aromatic interactions and introduces hydrogen bonding. Moreover, since the driving forces for peptide self-assembly including hydrogen bonding, electrostatic repulsion, and π-π stacking have high interdependence with each other, changes in aromatic interaction induce a Domino effect and cause a shift of force balance to a new state. This leads to significant variations in self-assembly behavior. Copyright © 2013 Elsevier Inc. All rights reserved.
Pattern formation in triboelectrically charged binary packings
NASA Astrophysics Data System (ADS)
Schella, Andre; Vincent, Thomas; Herminghaus, Stephan; Schröter, Matthias
2015-11-01
Electrostatic self-assembly is an interesting route to aim at creating well-defined microstructures. In this spirit, we study the process of self-assembling for vertically shaken granular materials. Our system consists from 1 to 400 plastic beads of 3mm size made from Teflon and Nylon in 2D and 3D geometries. We find self-organization in four, five and sixfold order which is due to charging of the system via triboelectric effects between the grains. We observe that the binary system solidifies on a time scale of a few minutes. Image processing is used to extract the structural and dynamical properties of the assemblies. The mixture ratio is tuned from 1:5 to 5:1 and the humidity level is varied between 10% and 90% leading to various transitions between the morphologies.
Sikorska, Emilia; Dawgul, Małgorzata; Greber, Katarzyna; Iłowska, Emilia; Pogorzelska, Aneta; Kamysz, Wojciech
2014-10-01
In this work, the self-organization and the behavior of the surfactant-like peptides in the presence of biological membrane models were studied. The studies were focused on synthetic palmitic acid-containing lipopeptides, C16-KK-NH2 (I), C16-KGK-NH2 (II) and C16-KKKK-NH2 (III). The self-assembly was explored by molecular dynamics simulations using a coarse-grained force field. The critical micellar concentration was estimated by the surface tension measurements. The thermodynamics of the peptides binding to the anionic and zwitterionic lipids were established using isothermal titration calorimetry (ITC). The influence of the peptides on the lipid acyl chain ordering was determined using FTIR spectroscopy. The compounds studied show surface-active properties with a distinct CMC over the millimolar range. An increase in the steric and electrostatic repulsion between polar head groups shifts the CMC toward higher values and reduces the aggregation number. An analysis of the peptide-membrane binding revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions enabling the lipopeptides to interact with the lipid bilayer. In the case of C16-KKKK-NH2 (III), compensation of the electrostatic and hydrophobic interactions upon binding to the anionic membrane has been suggested and consequently no overall binding effects were noticed in ITC thermograms and FTIR spectra. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Qilu; Dong, Renfeng; Chang, Xueyi; Ren, Biye; Tong, Zhen
2015-11-11
The controlled self-assembly of self-propelled Janus micromotors may give the micromotors some potential applications in many fields. In this work, we design a kind of SiO2-Pt Janus catalytic micromotor functionalized by spiropyran (SP) moieties on the surface of the SiO2 hemisphere. The spiropyran-modified SiO2-Pt Janus micromotor exhibits autonomous self-propulsion in the presence of hydrogen peroxide fuel in N,N-dimethylformamide (DMF)/H2O (1:1 in volume) mixture. We demonstrate that the self-propelled Janus micromotors can dynamically assemble into multiple motors because of the electrostatic attractions and π-π stacking between MC molecules induced by UV light irradiation (λ = 365 nm) and also quickly disassemble into mono motors when the light is switched to green light (λ = 520 nm) for the first time. Furthermore, the assembled Janus motors can move together automatically with different motion patterns propelled by the hydrogen peroxide fuels upon UV irradiation. The work provides a new approach not only to the development of the potential application of Janus motors but also to the fundamental science of reversible self-assembly and disassembly of Janus micromotors.
Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles
Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.
2015-01-01
Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400
Controllable self-assembly of sodium caseinate with a zwitterionic vitamin-derived bolaamphiphile.
Sun, Li-Hui; Sun, Yu-Long; Yang, Li-Jun; Zhang, Jian; Chen, Zhong-Xiu
2013-11-06
The control of self-assembly of sodium caseinate (SC) including the formation of mixed layers, microspheres, or nanoparticles is highly relevant to the microstructure of food and the design of promising drug delivery systems. In this paper, we designed a structure-switchable zwitterionic bolaamphiphile, 1,12-diaminododecanediorotate (DDO), from orotic acid, which has special binding sites and can guide the self-assembly of SC. Complexation between SC and DDO was investigated using dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, and fluorescence spectra measurements. Monomeric DDO was bound to the negatively charged sites on the SC micelle and made the structure of SC more compact with decreased electrostatic repulsion between the head groups. Vesicular DDO led to reassociation of vesicles with enlarged size via preferable hydrophobic interactions. Moreover, the aggregation between SC and DDO was found to be temperature-dependent and reversible. This research provides an effective way to control the reversible self-assembly of SC by the zwitterionic vitamin-derived bolaamphiphile.
Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K
2017-10-19
We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.
Spectral evolution with incremental nanocoating of long period fiber gratings
NASA Astrophysics Data System (ADS)
Del Villar, Ignacio; Corres, Jesus M.; Achaerandio, Miguel; Arregui, Francisco J.; Matias, Ignacio R.
2006-12-01
The incremental deposition of a thin overlay on the cladding of a long-period fiber grating (LPFG) induces important resonance wavelength shifts in the transmission spectrum. The phenomenon is proved theoretically with a vectorial method based on hybrid modes and coupled mode theory, and experimentally with electrostatic self-assembly monolayer process. The phenomenon is repeated periodically for specific overlay thickness values with the particularity that the shape of the resonance wavelength shift depends on the thickness of the overlay. The main applications are the design of wide optical filters and multiparameter sensing devices.
Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles.
Unzueta, Ugutz; Ferrer-Miralles, Neus; Cedano, Juan; Zikung, Xu; Pesarrodona, Mireia; Saccardo, Paolo; García-Fruitós, Elena; Domingo-Espín, Joan; Kumar, Pradeep; Gupta, Kailash C; Mangues, Ramón; Villaverde, Antonio; Vazquez, Esther
2012-11-01
Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bonnet, Nelly; O'Hagan, David; Hähner, Georg
2010-05-07
Oligo(ethylene glycol) (OEG) containing self-assembled monolayers (SAMs) on gold are known for their protein resistant properties. The underlying molecular mechanisms and the contributions of the interactions involved, however, are still not completely understood. It is known that electrostatic, van der Waals, hydrophobic, and hydration forces all play a role in the interaction between proteins and surfaces, but it is difficult to study their influence separately and to quantify their contributions. In the present study we investigate five different OEG containing SAMs and the influence of the ionic strength and the electrostatic component on the amount of a negatively charged protein (fibrinogen) that adsorbs onto them. Atomic force microscopy (AFM) was employed to record force-distance curves with hydrophobic probes depending on the ion concentration, and the amount of the protein that adsorbs relative to a hydrophobic surface was quantified using ellipsometry. The findings suggest that electrostatic forces can create a very low energy barrier thus only slightly decreasing the number of negatively charged proteins in solution with sufficient energy to approach the surface closely, and have a rather small influence on the amount that adsorbs. The films we investigated were not protein resistant. This supports other studies, reporting that a strong short-range repulsion as for example caused by hydration forces is required to make these films resistant to the non-specific adsorption of proteins.
Unknown Aspects of Self-Assembly of PbS Microscale Superstructures
Querejeta-Fernández, Ana; Hernández-Garrido, Juan C.; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J.; González-Calbet, Jose M.; Green, Peter F.; Kotov, Nicholas A.
2012-01-01
A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints this field requires advancements in three principle directions: a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and micro-levels of organization; b) understanding of disassembly/deconstruction processes; and c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: 1) nucleation of early PbS NPs with an average diameter of 31 nm; 2) assembly into 100–500 nm octahedral mesocrystals; 3) assembly into 1000–2500 nm hyperbranched stars; 4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; 5) deconstruction into rods and cubooctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern–determining forces that include vander Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy harvesting devices which require organization of PbS components at multiple scales. PMID:22515512
Unknown aspects of self-assembly of PbS microscale superstructures.
Querejeta-Fernández, Ana; Hernández-Garrido, Juan C; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J; González-Calbet, Jose M; Green, Peter F; Kotov, Nicholas A
2012-05-22
A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints, this field requires advancements in three principle directions: (a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and microlevels of organization; (b) understanding disassembly/deconstruction processes; and (c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: (1) nucleation of early PbS NPs with an average diameter of 31 nm; (2) assembly into 100-500 nm octahedral mesocrystals; (3) assembly into 1000-2500 nm hyperbranched stars; (4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; (5) deconstruction into rods and cuboctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern-determining forces that include van der Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy-harvesting devices which require organization of PbS components at multiple scales.
NASA Astrophysics Data System (ADS)
Yang, Ying
2014-11-01
Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.
Loop electrostatics modulates the intersubunit interactions in ferritin.
Bernacchioni, Caterina; Ghini, Veronica; Pozzi, Cecilia; Di Pisa, Flavio; Theil, Elizabeth C; Turano, Paola
2014-11-21
Functional ferritins are 24-mer nanocages that self-assemble with extended contacts between pairs of 4-helix bundle subunits coupled in an antiparallel fashion along the C2 axes. The largest intersubunit interaction surface in the ferritin nanocage involves helices, but contacts also occur between groups of three residues midway in the long, solvent-exposed L-loops of facing subunits. The anchor points between intersubunit L-loop pairs are the salt bridges between the symmetry-related, conserved residues Asp80 and Lys82. The resulting quaternary structure of the cage is highly soluble and thermostable. Substitution of negatively charged Asp80 with a positively charged Lys in homopolymeric M ferritin introduces electrostatic repulsions that inhibit the oligomerization of the ferritin subunits. D80K ferritin was present in inclusion bodies under standard overexpressing conditions in E. coli, contrasting with the wild type protein. Small amounts of fully functional D80K nanocages formed when expression was slowed. The more positively charged surface results in a different solubility profile and D80K crystallized in a crystal form with a low density packing. The 3D structure of D80K variant is the same as wild type except for the side chain orientations of Lys80 and facing Lys82. When three contiguous Lys groups are introduced in D80KI81K ferritin variant the nanocage assembly is further inhibited leading to lower solubility and reduced thermal stability. Here, we demonstrate that the electrostatic pairing at the center of the L-loops has a specific kinetic role in the self-assembly of ferritin nanocages.
Infrared spectroscopy of organic semiconductors modified by self-assembled monolayers
NASA Astrophysics Data System (ADS)
Khatib, O.; Lee, B.; Podzorov, V.; Yuen, J.; Heeger, A. J.; Li, Z. Q.; di Ventra, M.; Basov, D. N.
2009-03-01
Recently, self-assembled monolayers (SAMs) were used to modify electronic surface properties of organic single crystals, leading to several orders of magnitude increase in the electrical conductivity^1. Motivated by this discovery, the same technique was applied to polymers. Here we present a thorough spectroscopic investigation of organic semiconductors based on poly(3-hexlthiophene) (P3HT) that have been treated with a fluorinated trichlorosilane SAM. Infrared spectroscopy offers access to details of charge injection, electrostatic doping, and the electronic structure that are not always available from transport measurements, which can be dominated by defects and contact effects. In polymer films, the SAM molecules penetrate into the bulk, leading to a rich spectrum of electronic excitations in the mid-infrared energy range. ^1 M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson, V. Podzorov, Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers, Nature Mater. 7, 84--89 (2008)
NASA Technical Reports Server (NTRS)
Russell, C. T.
1978-01-01
Methods of timing magnetic substorms, the rapid fluctuations of aurorae, electromagnetic and electrostatic instabilities observed on the field lines of aurorae, the auroral microstructure, and the relationship of currents, electric field and particle precipitation to auroral form are discussed. Attention is given to such topics as D-perturbations as an indicator of substorm onset, the role of the magnetotail in substorms, spectral information derived from imaging data on aurorae, terrestrial kilometric radiation, and the importance of the mirror force in self-consistent models of particle fluxes, currents and potentials on auroral field lines.
Sprenger, K G; Pfaendtner, Jim
2016-06-07
Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution, results that show the expected physical behavior, i.e., peptide binding strength that decreases with increasing temperature or is independent of temperature altogether, can be recovered on the charged surface. On the basis of this analysis, an overall free energy for the entire thermodynamic cycle for peptide adsorption on charged surfaces is constructed and validated with independent simulations.
Cuvier, Anne-Sophie; Babonneau, Florence; Berton, Jan; Stevens, Christian V; Fadda, Giulia C; Péhau-Arnaudet, Gérard; Le Griel, Patrick; Prévost, Sylvain; Perez, Javier; Baccile, Niki
2015-12-21
The self-assembly behavior of the yeast-derived bolaamphiphile sophorolipid (SL) is generally studied under acidic/neutral pH conditions, at which micellar and fibrillar aggregates are commonly found, according to the (un)saturation of the aliphatic chain: the cis form, which corresponds to the oleic acid form of SL, spontaneously forms micelles, whereas the saturated form, which corresponds to the stearic acid form of SL, preferentially forms chiral fibers. By using small-angle light and X-ray scattering (SLS, SAXS) combined with high-sensitivity transmission electron microscopy imaging under cryogenic conditions (cryo-TEM), the nature of the self-assembled structures formed by these two compounds above pH 10, which is the pH at which they are negatively charged due to the presence of a carboxylate group, has been explored. Under these conditions, these compounds self-assemble into nanoscale platelets, despite the different molecular structures. This work shows that the electrostatic repulsion forces generated by COO(-) mainly drive the self-assembly process at basic pH, in contrast with that found at pH below neutrality, at which self-assembly is driven by van der Waals forces and hydrogen bonding, and thus, is in agreement with previous findings on carbohydrate-based gemini surfactants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tian, Yapeng; Yang, Chenhui; Que, Wenxiu; He, Yucheng; Liu, Xiaobin; Luo, Yangyang; Yin, Xingtian; Kong, Ling Bing
2017-11-01
Supercapacitor, as an important energy storage device, is a critical component for next generation electric power system, due to its high power density and long cycle life. In this study, a novel electrode material with quasi-core-shell structure, consisting of negatively charged few layer Ti3C2 nanosheets (FL-Ti3C2) and positively charged polyethyleneimine as building blocks, has been prepared by using an electrostatic layer-by-layer self-assembly method, with highly conductive Ni foam to be used as the skeleton. The unique quasi-core-shell structured ultrathin Ti3C2 nanosheets provide an excellent electron channel, ion transport channel and large effective contact area, thus leading to a great improvement in electrochemical performance of the material. The specific capacitance of the binder-free FL-Ti3C2@Ni foam electrodes reaches 370 F g-1 at the scan rate of 2 mV s-1 and a specific capacitance of 117 F g-1 is obtained even at the scan rate of 1000 mV s-1 in the electrolyte of Li2SO4, indicating a high rate performance. In addition, this electrode shows a long-term cyclic stability with a loss of only 13.7% after 10,000 circles. Furthermore, quantitative analysis has been conducted to ensure the relationship between the capacitive contribution and the rate performance of the as-fabricated electrode.
Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles
NASA Astrophysics Data System (ADS)
Suryajaya; Nabok, A.; Davis, F.; Hassan, A.; Higson, S. P. J.; Evans-Freeman, J.
2008-05-01
CdS and ZnS semiconducting colloid nanoparticles coated with the organic shell, containing either SO 3- or NH 2+ groups, were prepared using the aqueous phase synthesis. The multilayer films of CdS (or ZnS) were deposited onto glass, quartz and silicon substrates using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy, spectroscopic ellipsometry and atomic force microscopy. A substantial blue shift of the main absorption band with respect to the bulk materials was found for both CdS and ZnS films. The Efros equation in the effective mass approximation (EMA) theoretical model allowed the evaluation of the nanoparticle radius of 1.8 nm, which corresponds well to the ellipsometry results. AFM shows the formation of larger aggregates of nanoparticles on solid surfaces.
NASA Astrophysics Data System (ADS)
Tran, Phan T.; Goldman, Ellen R.; Mattoussi, Hedi M.; Anderson, George P.; Mauro, J. Matthew
2001-06-01
Colloidal semiconductor quantum dots (QDs) seem suitable for labeling certain biomolecules for use in fluorescent tagging applications, such as fluoro-immunoassays. Compared to organic dye labels, Qds are resistant to photo-degradation, and these luminescent nanoparticles have size-dependent emission spectra spanning a wide range of wavelengths in the visible and near IR. We previously described an electrostatic self-assembly approach for conjugating highly luminescent colloidal CdSe-ZnS core-shell Qds with engineered two-domain recombinant proteins. Here we describe the application of this approach to prepare QD conjugates with the (Beta) 2 immunoglobin G (IgG) binding domain of streptococcal protein G (PG) appended with a basic lucine zipper attachment domain (PG-zb). We also demonstrate that the QD/PG conjugates retain their ability to bind IgG antibodies, and that a specific antibody coupled to QD via the PG functional domain efficiently binds its antigen. These preliminary results indicate that electrostatically self-assembled QD/PG-zb/IgG bioconjugates can be used in fluoro-immunoassays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gui-Liang; Xiao, Lisong; Sheng, Tian
Room temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize 3D titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy and computational modeling revealed that the strong interaction between Titania and graphene through comparably strong van-der-Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibitsmore » exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+ and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.« less
Xu, Gui-Liang; Xiao, Lisong; Sheng, Tian; Liu, Jianzhao; Hu, Yi-Xin; Ma, Tianyuan; Amine, Rachid; Xie, Yingying; Zhang, Xiaoyi; Liu, Yuzi; Ren, Yang; Sun, Cheng-Jun; Heald, Steve M; Kovacevic, Jasmina; Sehlleier, Yee Hwa; Schulz, Christof; Mattis, Wenjuan Liu; Sun, Shi-Gang; Wiggers, Hartmut; Chen, Zonghai; Amine, Khalil
2018-01-10
Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy, and computational modeling revealed that the strong interaction between titania and graphene through comparably strong van der Waals forces not only facilitates bulk Na + intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li + , K + , Mg 2+, and Al 3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.
NASA Astrophysics Data System (ADS)
Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.
2014-10-01
High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03069a
Du, Cuiling; Zhao, Jie; Fei, Jinbo; Cui, Yue; Li, Junbai
2013-09-01
Doxorubicin, together with the modified polysaccharide (alginate dialdehyde), was used as a wall material to fabricate microcapsules through self-cross-linking by a template method. The microcapsules as-prepared are pH-responsive. Relevant scanning electronic microscopy, atom force microscopy and confocal laser scanning microscopy confirm the morphology of the uniform microcapsules. The spectroscopic results show that the microcapsules are assembled through electrostatic interaction and Schiff's base covalent bonding. Doxorubicin can be released sustainably from the capsules in buffer solution at a lower pH value. The cellular uptake of the microcapsules and drug release induced by acidic microenvironment are time-dependent processes. The cell cytotoxicity experiments in vitro demonstrate that the doxorubicin-based microcapsules have high efficiency to kill the cancer cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, Hao; Ehlers, Martin; Hu, Xiao-Yu; Zellermann, Elio; Schmuck, Carsten
2018-05-22
Peptide amphiphiles capable of assembling into multidimensional nanostructures have attracted much attention over the past decade due to their potential applications in materials science. Herein, a novel diacetylene-derived peptide gemini amphiphile with a fluorenylmethyloxycarbonyl (Fmoc) group at the N-terminus is reported to hierarchically assemble into spherical micelles, one-dimensional nanorods, two-dimensional foamlike networks and lamellae. Solvent polarity shows a remarkable effect on the self-assembled structures by changing the balance of four weak noncovalent interactions (hydrogen-bonding, π-π stacking, hydrophobic interaction, and electrostatic repulsion). We also show the time-evolution not only from spherical micelles to helical nanofibers in aqueous solution, but also from branched wormlike micelles to foamlike networks in methanol solution. In this work, the presence of the Fmoc group plays a key role in the self-assembly process. This work provides an efficient strategy for precise morphological control, aiding the future development in materials science.
DNA packaging in viral capsids with peptide arms.
Cao, Qianqian; Bachmann, Michael
2017-01-18
Strong chain rigidity and electrostatic self-repulsion of packed double-stranded DNA in viruses require a molecular motor to pull the DNA into the capsid. However, what is the role of electrostatic interactions between different charged components in the packaging process? Though various theories and computer simulation models were developed for the understanding of viral assembly and packaging dynamics of the genome, long-range electrostatic interactions and capsid structure have typically been neglected or oversimplified. By means of molecular dynamics simulations, we explore the effects of electrostatic interactions on the packaging dynamics of DNA based on a coarse-grained DNA and capsid model by explicitly including peptide arms (PAs), linked to the inner surface of the capsid, and counterions. Our results indicate that the electrostatic interactions between PAs, DNA, and counterions have a significant influence on the packaging dynamics. We also find that the packed DNA conformations are largely affected by the structure of the PA layer, but the packaging rate is insensitive to the layer structure.
Gao, Na; Yang, Wen; Nie, Hailiang; Gong, Yunqian; Jing, Jing; Gao, Loujun; Zhang, Xiaoling
2017-10-15
This paper reports a turn-on theranostic fluorescent nanoprobe P-CDs/HA-Dox obtained by electrostatic assembly of polyethylenimine (PEI)-modified carbon dots (P-CDs) and Hyaluronic acid (HA)-conjugated doxorubicin (Dox) for hyaluronidase (HAase) detection, self-targeted imaging and drug delivery. P-CDs/HA-Dox show weak emission in a physiological environment. By utilizing the high affinity of HA to CD44 receptors overexpressed on many cancer cells, P-CDs/HA-Dox are capable of targeting and penetrating into cancer cells, where they are activated by HAase. As a result, HA-Dox can be digested into small fragments, causing the release of Dox and thereby restoring the fluorescence of P-CDs. The theranostic fluorescent nanoprobe can effectively distinguish cancer cells from normal cells. The as-prepared nanoprobe achieves a sensitive assay of HAase with a detection limit of 0.65UmL -1 . Furthermore, upon Dox release, the Dox could efficiently induce apoptosis in HeLa cells, as confirmed by MTT assay. The design of such a turn-on theranostic fluorescent probe provides a new strategy for self-targeted and image-guided chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Mihut, Adriana M.; Stenqvist, Björn; Lund, Mikael; Schurtenberger, Peter; Crassous, Jérôme J.
2017-01-01
We have seen a considerable effort in colloid sciences to copy Nature’s successful strategies to fabricate complex functional structures through self-assembly. This includes attempts to design colloidal building blocks and their intermolecular interactions, such as creating the colloidal analogs of directional molecular interactions, molecular recognition, host-guest systems, and specific binding. We show that we can use oppositely charged thermoresponsive particles with complementary shapes, such as spherical and bowl-shaped particles, to implement an externally controllable lock-and-key self-assembly mechanism. The use of tunable electrostatic interactions combined with the temperature-dependent size and shape and van der Waals interactions of these building blocks provides an exquisite control over the selectivity and specificity of the interactions and self-assembly process. The dynamic nature of the mechanism allows for reversibly cycling through various structures that range from weakly structured dense liquids to well-defined molecule-shaped clusters with different configurations through variations in temperature and ionic strength. We link this complex and dynamic self-assembly behavior to the relevant molecular interactions, such as screened Coulomb and van der Waals forces and the geometrical complementarity of the two building blocks, and discuss our findings in the context of the concepts of adaptive chemistry recently introduced to molecular systems. PMID:28929133
Electrostatic Control of Bioactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberger, Joshua E.; Berns, Eric J.; Bitton, Ronit
2012-03-15
The power of independence: When exhibited on the surface of self-assembling peptide-amphiphile nanofibers, the hydrophobic laminin-derived IKVAV epitope induced nanofiber bundling through interdigitation with neighboring fibers and thus decreased the bioactivity of the resulting materials. The inclusion of charged amino acids in the peptide amphiphiles disrupted the tendency to bundle and led to significantly enhanced neurite outgrowth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuehe; Liu, Guodong; Wang, Jun
2006-06-01
Carbon nanotubes (CNTs) have emerged as new class of nanomaterials that is receiving considerable interest because of their unique structure, mechanical, and electronic properties. One promising application of CNTs is to fabricate highly sensitive chemo/biosensors.1-4 For construction of these CNT-based sensors, the CNTs first have to be modified with some molecules specific to the interests. Generally, covalent binding, affinity, and electrostatic interaction have been utilized for the modification of CNTs. Among them, the electrostatic method is attractive due to its simplicity and high efficiency. In present work, we have developed highly sensitively amperometric biosensors for glucose, choline, organophosphate pesticide (OPP)more » and nerve agents (NAs) based on electrostatically assembling enzymes on the surface of CNTs. All these biosensors were fabricated by immobilization of enzymes on the negatively charged CNTs surface through alternately assembling a cationic poly(diallydimethylammonium chloride) (PDDA) layer and an enzyme layer. Using this layer-by-layer (LBL) technique, a bioactive nanocomposite film was fabricated on the electrode surface. Owing to the electrocatalytic effect of CNTs, an amplified electrochemical signal was achieved, which leads to low detections limits for glucose, choline, and OPP and NAs.« less
DNA assisted self-assembly of PAMAM dendrimers.
Mandal, Taraknath; Kumar, Mattaparthi Venkata Satish; Maiti, Prabal K
2014-10-09
We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.
NASA Astrophysics Data System (ADS)
Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael
Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.
Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L
2018-06-07
Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.
RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism
Kler, Stanislav; Asor, Roi; Li, Chenglei; Ginsburg, Avi; Harries, Daniel; Oppenheim, Ariella; Zlotnick, Adam; Raviv, Uri
2012-01-01
Remarkably, uniform virus-like particles self-assemble in a process that appears to follow a rapid kinetic mechanism. The mechanisms by which spherical viruses assemble from hundreds of capsid proteins around nucleic acid, however, are yet unresolved. Using Time-Resolved Small-Angle X-ray Scattering (TR-SAXS) we have been able to directly visualize SV40 VP1 pentamers encapsidating short RNA molecules (500 mers). This assembly process yields T = 1 icosahedral particles comprised of 12 pentamers and one RNA molecule. The reaction is nearly 1/3 complete within 35 milliseconds, following a two–state kinetic process with no detectable intermediates. Theoretical analysis of kinetics, using a master equation, shows that the assembly process nucleates at the RNA and continues by a cascade of elongation reactions in which one VP1 pentamer is added at a time, with a rate of approximately 109 M−1 s−1. The reaction is highly robust and faster than the predicted diffusion limit. The emerging molecular mechanism, which appears to be general to viruses that assemble around nucleic acids, implicates long-ranged electrostatic interactions. The model proposes that the growing nucleo-protein complex acts as an electrostatic antenna that attracts other capsid subunits for the encapsidation process. PMID:22329660
Self-assembly of polyelectrolyte surfactant complexes using large scale MD simulation
NASA Astrophysics Data System (ADS)
Goswami, Monojoy; Sumpter, Bobby
2014-03-01
Polyelectrolytes (PE) and surfactants are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-surfactant complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic surfactants complexes in dilute condition. The importance of such complexes of PE with oppositely charged surfactants can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-surfactant complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.
Monomer-dependent secondary nucleation in amyloid formation.
Linse, Sara
2017-08-01
Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.
Self-Assembly of Porphyrin J-Aggregates
NASA Astrophysics Data System (ADS)
Snitka, Valentinas; Rackaitis, Mindaugas; Navickaite, Gintare
2006-03-01
The porphyrin nanotubes were built by ionic self-assembly of two oppositely charged porphyrins in aqueous solution. The porphyrins in the acid aqueous solution self-assemble into J-aggregates, wheels or other structures. The electrostatic forces between these porphyrin blocks contribute to the formation of porphyrin aggregates in the form of nanotubes, enhance the structural stability of these nanostructures. The nanotubes were composed mixing aqueous solutions of the two porphyrins - anionic Meso-tetra(4- sulfonatophrnyl)porhine dihydrochloride (TPPS4) and cationic Meso-tetra(4-pyridyl)porphine (T4MPyP). The porphyrin nanotubes obtained are hollow structures with the length of 300 nm and diameter 50 nm. Photocatalytic porphyrins are used to reduce metal complexes from aqueous solution and to control the deposition of Au from AuHCl4 and Au nanoparticles colloid solutions onto porphyrin nanotubes. Porphyrin nanotubes are shown to reduce metal complexes and deposit the metal selectively onto the inner or outer surface of the tubes, leading to nanotube-metal composite structures.
Luminescent Quantum Dot Bioconjugates in Fluorescence Resonance Energy Transfer (FRET) Assays
NASA Astrophysics Data System (ADS)
Clapp, Aaron; Medintz, Igor; Goldman, Ellen; Anderson, George; Mauro, J. Matthew; Mattoussi, Hedi
2003-03-01
Colloidal semiconductor quantum dots (QDs) such as those made of CdSe-ZnS core-shell nanocrystals offer a promising alternative to organic dyes in a variety of biological tagging applications. They exhibit high resistance to chemical and photo-degradations, are highly luminescent, and show unique size-specific optical and spectroscopic properties. We have previously demonstrated a useful method for attaching proteins to CdSe-ZnS QDs using dihydrolipoic acid (DHLA) surface capping groups and electrostatic self-assembly in aqueous environments. We have used this conjugation strategy to build solution-based QD-conjugate sensors based on fluorescence resonance energy transfer (FRET) between QD donors and dye-labeled protein acceptors. Specific binding between the QD-ligand donor and dye-labeled receptor was achieved. In another example, the dye receptor was grafted directly onto the protein, then immobilized onto the QD surface via an electrostatic self-assembly process. The QD-complexes were optically excited in a region where absorption of the dye is negligible compared to that of the nanocrystals. We observed a continuous decrease of the QD emission accompanied by a steady and pronounced increase of the acceptor emission as the ratio of dye to QD was increased. The results of these experiments suggest efficient resonance energy transfer between the QD donor and the dye acceptor upon ligand-receptor binding. We will present these data and discuss other aspects such as donor-acceptor separation distance, degree of overlap between absorption of the acceptor and emission of the QD, and reverse FRET (upon ligand-receptor release) in a reversible assay.
Zhang, Lihua; Xu, Zhiai; Sun, Xuping; Dong, Shaojun
2007-01-15
Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+)-AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.
Water-Soluble Conjugated Polymers: Self-Assembly and Biosensor Applications
NASA Astrophysics Data System (ADS)
Bazan, Guillermo
2005-03-01
Homogeneous assays can be designed which take advantage of the optical amplification of conjugated polymers and the self-assembly characteristic of aqueous polyelectrolytes. For example, a ssDNA sequence sensor comprises an aqueous solution containing a cationic water soluble conjugated polymer such as poly(9,9-bis(trimethylammonium)-hexyl)-fluorene phenylene) with a peptide nucleic acid (PNA) labeled with a dye (PNA-C*). Signal transduction is controlled by hybridization of the neutral PNA-C* probe and the negative ssDNA target, resulting in favorable electrostatic interactions between the hybrid complex and the cationic polymer. Distance requirements for Förster energy transfer are thus met only when ssDNA of complementary sequence to the PNA-C* probe is present. Signal amplification by the conjugated polymer provides fluorescein emission >25 times higher than that of the directly excited dye. Transduction by electrostatic interactions followed by energy transfer is a general strategy. Examples involving other biomolecular recognition events, such as DNA/DNA, RNA/protein and RNA/RNA, will also be provided. The mechanism of biosensing will be discussed, with special attention to the varying contributions of hydrophobic and electrostatic forces, polymer conformation, charge density, local concentration of C*s and tailored defect sites for aggregation-induced optical changes. Finally, the water solubility of these conjugated polymers opens possibilities for spin casting onto organic materials, without dissolving the underlying layers. This property is useful for fabricating multilayer organic optoelectronic devices by simple solution techniques.
Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Kohei; Ji, Wei; Palmer, Liam C.
Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less
Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion
Sato, Kohei; Ji, Wei; Palmer, Liam C.; ...
2017-06-22
Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less
Swell Gels to Dumbbell Micelles: Construction of Materials and Nanostructure with Self-assembly
NASA Astrophysics Data System (ADS)
Pochan, Darrin
2007-03-01
Bionanotechnology, the emerging field of using biomolecular and biotechnological tools for nanostructure or nanotecnology development, provides exceptional opportunity in the design of new materials. Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic or charged synthetic polymer molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Several molecular systems will be discussed. Synthetic block copolymers with charged corona blocks can be assembled in dilute solution containing multivalent organic counterions to produce micelle structures such as toroids. These ring-like micelles are similar to the toroidal bundling of charged semiflexible biopolymers like DNA in the presence of multivalent counterions. Micelle structure can be tuned between toroids, cylinders, and disks simply by using different concentrations or molecular volumes of organic counterion. In addition, these charged blocks can consist of amino acids as monomers producing block copolypeptides. In addition to the above attributes, block copolypeptides provide the control of block secondary structure to further control self-assembly. Design strategies based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, the intramolecular folding event impart a molecular-level mechanism for environmental responsiveness at the material level (e.g. infinite change in viscosity of a solution to a gel with changes in pH, ionic strength, temperature).
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Hogyoku, Michiru; Nagayama, Kuniaki
1996-10-01
We evaluated the contribution of electrostatic interactions to the stability of macromolecular assembly in a horse L ferritin molecule composed of 24 subunits and the three-dimensional crystal of the ferritin molecules with numerical calculation of Poisson-Boltzmann equation based on dielectric model. The calculation showed that the electrostatic energy both favors the assembly of the 24 subunits and the crystalline assembly of the ferritin molecules (i.e., 24-mers). Short-range interactions less than 5 Å such as salt bridges and hydrogen bonds were important for both the subunit assembly and the crystalline assembly. To elucidate the strong stabilization by electrostatic interactions in both the ferritin 24-mer and its crystal, we analyzed the contribution of individual atoms. It revealed that the stabilization was arising from buried salt bridges or hydrogen bonds, which yielded more than 5 kcal/mol in some interactions. These large electrostatic stabilization and also the unexpected small ionic strength dependence was different from those of bovine pancreatic trypsin inhibitor (BPTI) orthorhombic and pig-insulin cubic crystals previously calculated. We also evaluated changes of the accessible surface area (ASA) and hydration free energy in accordance with the process of the subunit assembly. The change of hydration free energy, which was very large (i.e. ˜ + 100 kcal/mol/subunit) and unfavorable for the assembly, was proportional to the electrostatic hydration energy (i.e. Born energy change in hydration process). Hydrophobic groups were likely to appear more frequently than hydrophilic groups at the subunit interfaces. These results suggest that the molecular structure of the ferritin 24-mer and the crystal structure of the 24-mers were both stabilized by local electrostatic interactions, in particular. We view protein crystals as an extension of the protein oligomer to an infinite number of subunits association.
Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam
Maschke, A.W.
1984-04-16
A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.
Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam
Maschke, Alfred W.
1985-01-01
A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.
Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives.
Liyanage, Wathsala; Nilsson, Bradley L
2016-01-26
Supramolecular hydrogels derived from the self-assembly of organic molecules have been exploited for applications ranging from drug delivery to tissue engineering. The relationship between the structure of the assembly motif and the emergent properties of the resulting materials is often poorly understood, impeding rational approaches for the creation of next-generation materials. Aromatic π-π interactions play a significant role in the self-assembly of many supramolecular hydrogelators, but the exact nature of these interactions lacks definition. Conventional models that describe π-π interactions rely on quadrupolar electrostatic interactions between neighboring aryl groups in the π-system. However, recent experimental and computational studies reveal the potential importance of local dipolar interactions between elements of neighboring aromatic rings in stabilizing π-π interactions. Herein, we examine the nature of π-π interactions in the self- and coassembly of Fmoc-Phe-derived hydrogelators by systematically varying the electron-donating or electron-withdrawing nature of the side chain benzyl substituents and correlating these effects to the emergent assembly and gelation properties of the systems. These studies indicate a significant role for stabilizing dipolar interactions between neighboring benzyl groups in the assembled materials. Additional evidence for specific dipolar interactions is provided by high-resolution crystal structures obtained from dynamic transition of gel fibrils to crystals for several of the self-assembled/coassembled Fmoc-Phe derivatives. In addition to electronic effects, steric properties also have a significant effect on the interaction between neighboring benzyl groups in these assembled systems. These findings provide significant insight into the structure-function relationship for Fmoc-Phe-derived hydrogelators and give cues for the design of next-generation materials with desired emergent properties.
Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles
Sun, Jing; Jiang, Xi; Lund, Reidar; ...
2016-03-28
The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less
Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jing; Jiang, Xi; Lund, Reidar
The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less
Self-assembling membranes and related methods thereof
Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L
2013-08-20
The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).
Zhou, Kai-Ge; Chang, Meng-Jie; Wang, Hang-Xing; Xie, Yu-Long; Zhang, Hao-Li
2012-01-01
Thin films of graphene oxide, graphene and copper (II) phthalocyanine dye have been successfully fabricated by electrostatic layer-by-layer (LbL) assembly approach. We present the first variable angle spectroscopic ellipsometry (VASE) investigation on these graphene-dye hybrid thin films. The thickness evaluation suggested that our LbL assembly process produces highly uniform and reproducible thin films. We demonstrate that the refractive indices of the graphene-dye thin films undergo dramatic variation in the range close to the absorption of the dyes. This investigation provides new insight to the optical properties of graphene containing thin films and shall help to establish an appropriate optical model for graphene-based hybrid materials.
FRET detection of Octamer-4 on a protein nanoarray made by size-dependent self-assembly
Tran, Phat L.; Gamboa, Jessica R.; You, David J.
2010-01-01
An alternative approach for fabricating a protein array at nanoscale is suggested with a capability of characterization and/or localization of multiple components on a nanoarray. Fluorescent micro- and nanobeads each conjugated with different antibodies are assembled by size-dependent self-assembly (SDSA) onto nanometer wells that were created on a polymethyl methacrylate (PMMA) substrate by electron beam lithography (EBL). Antibody-conjugated beads of different diameters are added serially and electrostatically attached to corresponding wells through electrostatic attraction between the charged beads (confirmed by zeta potential analysis) and exposed p-doped silicon substrate underneath the PMMA layer. This SDSA method is enhanced by vibrated-wire-guide manipulation of droplets on the PMMA surface containing nanometer wells. Saturation rates of antibody-conjugated beads to the nanometer patterns are up to 97% under one component and 58–70% under two components nanoarrays. High-density arrays (up to 40,000 wells) could be fabricated, which can also be multi-component. Target detection utilizes fluorescence resonance energy transfer (FRET) from fluorescent beads to fluorescent-tagged secondary antibodies to Octamer-4 (Oct4), which eliminates the need for multiple steps of rinsing. The 100 nm green beads are covalently conjugated with anti-Oct4 to capture Oct4 peptides (39 kDa); where the secondary anti-Oct4 and F(ab)2 fragment of anti-gIgG tagged with phycoerythrin are then added to function as an indicator of Oct4 detection. FRET signals are detected through confocal microscopes, and further confirmed by Fluorolog3 spectrofluorometer. The success rates of detecting Oct4 are 32% and 14% of the beads in right place under one and two component nanoarrays, respectively. Ratiometric FRET is used to quantify the amount of Oct4 peptides per each bead, which is estimated about 2 molecules per bead. PMID:20652550
Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin
2015-01-01
Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121
NASA Astrophysics Data System (ADS)
Nie, Ning; Zhang, Liuyang; Fu, Junwei; Cheng, Bei; Yu, Jiaguo
2018-05-01
Photocatalytic reduction of CO2 into hydrocarbon fuels has been regarded as a promising approach to ease the greenhouse effect and the energy shortage. Herein, an electrostatic self-assembly method was exploited to prepare g-C3N4/ZnO composite microsphere. This method simply utilized the opposite surface charge of each component, achieving a hierarchical structure with intimate contact between them. A much improved photocatalytic CO2 reduction activity was attained. The CH3OH production rate was 1.32 μmol h-1 g-1, which was 2.1 and 4.1 times more than that of the pristine ZnO and g-C3N4, respectively. This facile design bestowed the g-C3N4/ZnO composite an extended light adsorption caused by multi-light scattering effect. It also guaranteed the uniform distribution of g-C3N4 nanosheets on the surface of ZnO microspheres, maximizing their advantage and synergistic effect. Most importantly, the preeminent performance was proposed and validated based on the direct Z-scheme. The recombination rate was considerably suppressed. This work features the meliority of constructing hierarchical direct Z-scheme structures in photocatalytic CO2 reduction reactions.
Zhou, Lian; Su, Ping; Deng, Yulan; Yang, Yi
2017-02-01
Zeolitic imidazolate frameworks have positive surface charges and high adsorption capabilities. In this work, zeolitic imidazolate frameworks-8 and negatively charged magnetic nanoparticles were self-assembled by electrostatic attraction under sonication. The extraction performance of the synthesized hybrid material was evaluated by using it as a magnetic adsorbent for the enrichment of triazine herbicides in various sample matrices prior to analysis using ultrafast liquid chromatography. The main parameters, that is, extraction time, adsorbent dosage, salt concentration, and desorption conditions, were evaluated. Under the optimum conditions, good linear responses from 2.5 to 200 ng/mL for atrazine (simazine) and 1 to 200 ng/mL for prometryn (ametryn), with correlation coefficients (R 2 ) higher than 0.9992 were obtained. The detection limits of the method (S/N = 3) were 0.18-0.72 ng/mL. The proposed method was successfully used to determine triazine herbicides in six samples, namely, apple, pear, strawberry, pakchoi, lettuce, and water. The amounts of simazine in all the fruit and vegetable samples were 10.8-25.2 ng/mL. The recoveries of all the analytes were 88.0-101.9%, with relative standard deviations of less than 8.8%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhao, Nan; Fei, Xiao; Cheng, Xiaonong; Yang, Juan
2017-09-01
Recently, silver nanoparticles decorated with graphene and graphene oxide (GO) sheets can be employed as surface-enhanced Raman scattering (SERS) substrates. However, their SERS activity on macromolecular compound detection is all one-time process. In order to solve this issue and decrease the cost of routine SERS detection, silver/silver chloride (Ag/AgCl) with photocatalytic activity under visible light was introduced. In this study, a novel, simple and clean approach is carried out for synthesis of the Ag/AgCl/GO composite. The Ag/AgCl colloidal solution is obtained by hydrothermal method and then mixed with GO solution to obtain the Ag/AgCl/GO composite using a facile electrostatic self-assembly method. Results showed that the Ag/AgCl/GO composite has the optimized SERS activity to Rhodamine 6G molecules with the maximum enhancement factor value of 3.8×107. Furthermore, the Ag/AgCl particles with high efficient and stable photocatalytic activity under visible light lead to an outstanding self-cleaning property of the Ag/AgCl/GO composite.
Ling, Guixia; Zhang, Peng; Zhang, Wenping; Sun, Jin; Meng, Xiaoxue; Qin, Yimeng; Deng, Yihui; He, Zhonggui
2010-12-01
To improve the encapsulation efficiency and oral bioavailability of vincristine sulfate (VCR), novel self-assembled dextran sulphate-PLGA hybrid nanoparticles (DPNs) were successfully developed using self-assembly and nanoprecipitation method. By introducing the negative polymer of dextran sulphate sodium (DS), VCR was highly encapsulated (encapsulation efficiency up to 93.6%) into DPNs by forming electrostatic complex. In vitro release of VCR solution (VCR-Sol) and VCR-loaded DPNs (VCR-DPNs) in pH 7.4 PBS showed that about 80.4% of VCR released from VCR-DPNs after 96h and burst release was effectively reduced, indicating pronounced sustained-release characteristics. In vivo pharmacokinetics in rats after oral administration of VCR-Sol and VCR-DPNs indicated that the apparent bioavailability of VCR-DPNs was increased to approximate 3.3-fold compared to that of VCR-Sol. The cellular uptake experiments were conducted by quantitative assay of VCR cellular accumulation and fluorescence microscopy imaging of fluorescent labeled DPNs in two human breast cancer cells including MCF-7 and P-glycoprotein over-expressing MCF-7/Adr cells. The relative cellular uptake of VCR-DPNs was 12.4-fold higher than that of VCR-Sol in MCF-7/Adr cells implying that P-glycoprotein-mediated drug efflux was diminished by the introduction of DPNs. The new DPNs might provide an effective strategy for oral delivery of VCR with improved encapsulation efficiency and oral bioavailability. Copyright © 2010 Elsevier B.V. All rights reserved.
Wei, Xuetuan; Luo, Mingfang; Liu, Huizhou
2014-04-01
The bifunctional coating with antithrombotic and antimicrobial activity was developed using nattokinase (NK) and nanosilver (AgNPs). Firstly, the adsorption interactions between NK and AgNPs were confirmed, and the composite particles of NK-AgNPs were prepared by adsorption of NK with AgNPs. At 5FU/mL of NK concentration, the saturation adsorption capacity reached 24.35 FU/mg AgNPs with a high activity recovery of 97%, and adsorption by AgNPs also enhanced the heat stability and anticoagulant effect of NK. Based on the electrostatic force driven layer-by-layer self-assembly, the NK-AgNPs were further assembled with polyethylenimine (PEI) to form coating. UV-vis analysis showed that the self-assembly process was regular, and atom force microscopy analysis indicated that NK-AgNPs were uniformly embedded into the coating. The NK-AgNPs-PEI composite coating showed potent antithrombotic activity and antibacterial activity. This study developed a novel strategy to construct the bifunctional coating with antithrombotic and antimicrobial properties, and the coating material showed promising potential to be applied in the medical device. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Yu; Du, Dongfeng; Li, Xuejin; Sun, Hongman; Li, Li; Bai, Peng; Xing, Wei; Xue, Qingzhong; Yan, Zifeng
2017-09-20
A novel sandwich-like composite with ultrathin CoAl-layered double hydroxide (LDH) nanoplates electrostatically assembled on both sides of two-dimensional polypyrrole/graphene (PG) substrate has been successfully fabricated using facile hydrothermal techniques. The PG not only serves as an excellent conductive and structural scaffold to enhance the transmission of electrons and prevent aggregation of CoAl-LDH nanoplates but also contributes to the enhancement of the specific capacitance. Owing to the homogeneous dispersion of CoAl-LDH nanoplates and its intimate interaction with PG substrate, the resulting CoAl-LDH/PG nanocomposite material exhibits excellent capacitive performance, for example, enhanced gravimetric specific capacitance (864 F g -1 at 1 A g -1 ), high rate performance (75% retention at 20 A g -1 ), and excellent cycle life (almost no degradation in supercapacitor performance after 5000 cycles) in aqueous KOH solution. Furthermore, the assembled asymmetric capacitor is able to deliver a superhigh energy density of 46.8 Wh kg -1 at 1.2 kW kg -1 and maintain 90.1% of its initial capacitance after 10 000 cycles. These results indicate a rational assembly strategy toward a high-performance pseudocapacitive electrode material with excellent rate performance, high specific capacitance, and outstanding cycle stability.
Combining QD-FRET and microfluidics to monitor DNA nanocomplex self-assembly in real-time.
Ho, Yi-Ping; Chen, Hunter H; Leong, Kam W; Wang, Tza-Huei
2009-08-26
Advances in genomics continue to fuel the development of therapeutics that can target pathogenesis at the cellular and molecular level. Typically functional inside the cell, nucleic acid-based therapeutics require an efficient intracellular delivery system. One widely adopted approach is to complex DNA with a gene carrier to form nanocomplexes via electrostatic self-assembly, facilitating cellular uptake of DNA while protecting it against degradation. The challenge lies in the rational design of efficient gene carriers, since premature dissociation or overly stable binding would be detrimental to the cellular uptake and therapeutic efficacy. Nanocomplexes synthesized by bulk mixing showed a diverse range of intracellular unpacking and trafficking behavior, which was attributed to the heterogeneity in size and stability of nanocomplexes. Such heterogeneity hinders the accurate assessment of the self-assembly kinetics and adds to the difficulty in correlating their physical properties to transfection efficiencies or bioactivities. We present a novel convergence of nanophotonics (i.e. QD-FRET) and microfluidics to characterize the real-time kinetics of the nanocomplex self-assembly under laminar flow. QD-FRET provides a highly sensitive indication of the onset of molecular interactions and quantitative measure throughout the synthesis process, whereas microfluidics offers a well-controlled microenvironment to spatially analyze the process with high temporal resolution (~milliseconds). For the model system of polymeric nanocomplexes, two distinct stages in the self-assembly process were captured by this analytic platform. The kinetic aspect of the self-assembly process obtained at the microscale would be particularly valuable for microreactor-based reactions which are relevant to many micro- and nano-scale applications. Further, nanocomplexes may be customized through proper design of microfludic devices, and the resulting QD-FRET polymeric DNA nanocomplexes could be readily applied for establishing structure-function relationships.
Liu, Wen; Duan, Lian; Sun, Tijian; Yang, Binsheng
2016-12-01
Ciliate Euplotes octocarinatus centrin (EoCen) is an EF-hand calcium-binding protein closely related to the prototypical calcium sensor protein calmodulin. Four mutants (D37K, D73K, D110K and D146K) were created firstly to elucidate the importance of the first aspartic acid residues (Asp37, Asp73, Asp110 and Asp146) in the beginning of the four EF-loops of EoCen. Aromatic-sensitized Tb 3+ fluorescence indicates that the aspartic acid residues are very important for the metal-binding of EoCen, except for Asp73 (in EF-loop II). Resonance light scattering (RLS) measurements for different metal ions (Ca 2+ and Tb 3+ ) binding proteins suggest that the order of four conserved aspartic acid residues for contributing to the self-assembly of EoCen is Asp37 > Asp146 > Asp110 > Asp73. Cross-linking experiment also exhibits that Asp37 and Asp146 play critical role in the self-assembly of EoCen. Asp37, in site I, which is located in the N-terminal domain, plays the most important role in the metal ion-dependent self-assembly of EoCen, and there is cooperativity between N-terminal and C-terminal domain (especially the site IV). In addition, the dependence of Tb 3+ induced self-assembly of EoCen and the mutants on various factors, including ionic strength and pH, were characterized using RLS. Finally, 2-p-toluidinylnaphthalene-6-sulfonate (TNS) binding, ionic strength and pH control experiments indicate that in the process of EoCen self-assembly, molecular interactions are mediated by both electrostatic and hydrophobic forces, and the hydrophobic interaction has the important status.
Talapin, Dmitri V
2008-06-01
Two papers in this issue report important developments in the field of inorganic nanomaterials. Chen and O'Brien discuss self-assembly of semiconductor nanocrystals into binary nanoparticle superlattices (BNSLs). They show that simple geometrical principles based on maximizing the packing density can determine BNSL symmetry in the absence of cohesive electrostatic interactions. This finding highlights the role of entropy as the driving force for ordering nanoparticles. The other paper, by Weller and co-workers, addresses an important problem related to device integration of nanoparticle assemblies. They employ the Langmuir-Blodgett technique to prepare long-range ordered monolayers of close-packed nanocrystals and transfer them to different substrates.
Dayyoub, Eyas; Hobler, Christian; Nonnweiler, Pierina; Keusgen, Michael; Bakowsky, Udo
2013-07-01
Here we present a new method for providing nanostructured drug-loaded polymer films which enable control of film surface morphology and delivery of therapeutic agents. Silicon wafers were employed as models for implanted biomaterials and poly(lactic-co-glycolic acid) (PLGA) nanoparticles were assembled onto the silicon surface by electrostatic interaction. Monolayers of the PLGA particles were deposited onto the silicon surface upon incubation in an aqueous particle suspension. Particle density and surface coverage of the silicon wafers were varied by altering particle concentration, incubation time in nanoparticle suspension and ionic strength of the suspension. Dye loaded nanoparticles were prepared and assembled to silicon surface to form nanoparticle films. Fluorescence intensity measurements showed diffusion-controlled release of the dye over two weeks and atomic force microscopy (AFM) analysis revealed that these particles remained attached to the surface during the incubation time. This work suggests that coating implants with PLGA nanoparticles is a versatile technique which allows drug release from the implant surface and modulation of surface morphology. Copyright © 2013 Elsevier B.V. All rights reserved.
Self-assembly behavior of β-cyclodextrin and imipramine. A Free energy perturbation study
NASA Astrophysics Data System (ADS)
Sun, Tingting; Shao, Xueguang; Cai, Wensheng
2010-05-01
The self-assembly behavior of β-cyclodextrin (β-CD) and imipramine (IMI), an antidepressant drug, was investigated by molecular dynamics simulations in the gas phase and in an aqueous solution. The binding free energies for 10 possible arrangements of β-CD/IMI complexes with stoichiometries of 1:1, 2:1, and 1:2 were determined using free energy perturbation calculations. The calculations suggest that the 2:1 inclusion mode is the most energetically favored in both phases, in good agreement with experiment. The environment and the neutral and charged IMI influence the stability of the aggregates. The electrostatic interactions constitute the main contribution to the stability. The results reported in this contribution shed new light on the mechanism of association of β-CD with IMI.
Bacteria interface pickering emulsions stabilized by self-assembled bacteria-chitosan network.
Wongkongkatep, Pravit; Manopwisedjaroen, Khajohnpong; Tiposoth, Perapon; Archakunakorn, Somwit; Pongtharangkul, Thunyarat; Suphantharika, Manop; Honda, Kohsuke; Hamachi, Itaru; Wongkongkatep, Jirarut
2012-04-03
An oil-in-water Pickering emulsion stabilized by biobased material based on a bacteria-chitosan network (BCN) was developed for the first time in this study. The formation of self-assembled BCN was possible due to the electrostatic interaction between negatively charged bacterial cells and polycationic chitosan. The BCN was proven to stabilize the tetradecane/water interface, promoting formation of highly stable oil-in-water emulsion (o/w emulsion). We characterized and visualized the BCN stabilized o/w emulsions by scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM). Due to the sustainability and low environmental impact of chitosan, the BCN-based emulsions open up opportunities for the development of an environmental friendly new interface material as well as the novel type of microreactor utilizing bacterial cells network.
NASA Astrophysics Data System (ADS)
Marlowe, Ashley E.; Singh, Abhishek; Semichaevsky, Andrey V.; Yingling, Yaroslava G.
2009-03-01
Nucleic acid nanoparticles can self-assembly through the formation of complementary loop-loop interactions or stem-stem interactions. Presence and concentration of ions can significantly affect the self-assembly process and the stability of the nanostructure. In this presentation we use explicit molecular dynamics simulations to examine the variations in cationic distributions and hydration environment around DNA and RNA helices and loop-loop interactions. Our simulations show that the potassium and sodium ionic distributions are different around RNA and DNA motifs which could be indicative of ion mediated relative stability of loop-loop complexes. Moreover in RNA loop-loop motifs ions are consistently present and exchanged through a distinct electronegative channel. We will also show how we used the specific RNA loop-loop motif to design a RNA hexagonal nanoparticle.
pH-dependent structures and properties of casein micelles.
Liu, Yan; Guo, Rong
2008-08-01
The association behavior of casein over a broad pH range has first been investigated by fluorescent technique together with DLS and turbidity measurements. Casein molecules can self-assemble into casein micelles in the pH ranges 2.0 to 3.0, and 5.5 to 12.0. The hydrophobic interaction, hydrogen bond and electrostatic action are the main interactions in the formation of casein micelles. The results show that the structure of casein micelles is more compact at low pH and looser at high pH. The casein micelle has the most compact structure at pH 5.5, when it has almost no electrostatic repulsion between casein molecules.
van 't Hag, Leonie; Gras, Sally L; Conn, Charlotte E; Drummond, Calum J
2017-05-22
Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).
Reversible Hydrogel–Solution System of Silk with High Beta-Sheet Content
2015-01-01
Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10–50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10–20 nm in diameter is reported here, where these nanofibers formed into “flowing hydrogels” at 0.5–2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above −50 mV) than previous silk materials which tend to be below −30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel–solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self-assembly. These reversible solution-hydrogel transitions were tunable with ultrasonic intensity, time, or temperature. PMID:25056606
Reversible hydrogel-solution system of silk with high beta-sheet content.
Bai, Shumeng; Zhang, Xiuli; Lu, Qiang; Sheng, Weiqin; Liu, Lijie; Dong, Boju; Kaplan, David L; Zhu, Hesun
2014-08-11
Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10-50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10-20 nm in diameter is reported here, where these nanofibers formed into "flowing hydrogels" at 0.5-2% solutions and could be transformed back into the solution state at lower concentrations, even with a high β-sheet content. This is in contrast with other silk processed materials, where significant β-sheet content negates reversibility between solution and solid states. These fibers are formed by regulating the self-assembly process of silk in aqueous solution, which changes the distribution of negative charges while still supporting β-sheet formation in the structures. Mechanistically, there appears to be a shift toward negative charges along the outside of the silk nanofibers in our present study, resulting in a higher zeta potential (above -50 mV) than previous silk materials which tend to be below -30 mV. The higher negative charge on silk nanofibers resulted in electrostatic repulsion strong enough to negate further assembly of the nanofibers. Changing silk concentration changed the balance between hydrophobic interactions and electrostatic repulsion of β-sheet-rich silk nanofibers, resulting in reversible hydrogel-solution transitions. Furthermore, the silk nanofibers could be disassembled into shorter fibers and even nanoparticles upon ultrasonic treatment following the transition from hydrogel to solution due to the increased dispersion of hydrophobic smaller particles, without the loss of β-sheet content, and with retention of the ability to transition between hydrogel and solution states through reversion to longer nanofibers during self-assembly. These reversible solution-hydrogel transitions were tunable with ultrasonic intensity, time, or temperature.
Iritani, Kohei; Ikeda, Motoki; Yang, Anna; Tahara, Kazukuni; Anzai, Masaru; Hirose, Keiji; De Feyter, Steven; Moore, Jeffrey S; Tobe, Yoshito
2018-05-29
We present here the construction of a self-assembled two-dimensional (2D) porous monolayer bearing a highly polar 2D space to study guest co-adsorption through electrostatic interactions at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-TeEG, having tetraethylene glycol (TeEG) groups at the end of the three alternating alkoxy chains connected by p-phenylene linkers was synthesized. As a reference host molecule, DBA-C10, having nonpolar C 10 alkyl chains at three alternating terminals, was employed. As guest molecules, hexagonal phenylene-ethynylene macrocycles (PEMs) attached by triethylene glycol (TEG) ester and hexyl ester groups, PEM-TEG and PEM-C6, respectively, at each vertex of the macrocyclic periphery were used. Scanning tunneling microscopy observations at the 1,2,4-trichlorobenzene/highly oriented pyrolytic graphite interface revealed that PEM-TEG was immobilized in the pores formed by DBA-TeEG at higher probability because of electrostatic interactions such as dipole-dipole and hydrogen bonding interactions between oligoether units of the host and guest, in comparison to PEM-C6 with nonpolar groups. These observations are discussed based on molecular mechanics simulations to investigate the role of the polar functional groups. When a nonpolar host matrix formed by DBA-C10 was used, however, only phase separation and preferential adsorption were observed; virtually no host-guest complexation was discernible. This is ascribed to the strong affinity between the guest molecules which form by themselves densely packed van der Waals networks on the surface.
Kuo, Che-Hung; Chang, Hsun-Yun; Liu, Chi-Ping; Lee, Szu-Hsian; You, Yun-Wen; Shyue, Jing-Jong
2011-03-07
Self-assembled monolayer (SAM)-modified nano-materials are a new technology to deliver drug molecules. While the majority of these depend on covalently immobilizing molecules on the surface, it is proposed that electrostatic interactions may be used to deliver drugs. By tuning the surface potential of solid substrates with SAMs, drug molecules could be either absorbed on or desorbed from substrates through the difference in electrostatic interactions around the selected iso-electric point (IEP). In this work, the surface of silicon substrates was tailored with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS), which form amine- and thiol-bearing SAMs, respectively. The ratio of the functional groups on the silicon surface was quantified by X-ray photoelectron spectrometry (XPS); in general, the deposition kinetics of APTMS were found to be faster than those of MPTMS. Furthermore, for solutions with high MPTMS concentrations, the relative deposition rate of APTMS increased dramatically due to the acid-base reaction in the solution and subsequent electrostatic interactions between the molecules and the substrate. The zeta potential in aqueous electrolytes was determined with an electro-kinetic analyzer. By depositing SAMs of binary functional groups in varied ratios, the surface potential and IEP of silicon substrates could be fine-tuned. For <50% amine concentration in SAMs, the IEP changed linearly with the chemical composition from <2 to 7.18. For higher amine concentrations, the IEP slowly increased with concentration to 7.94 because the formation of hydrogen-bonding suppressed the subsequent protonation of amines.
Zhang, Yu; Wang, Lijun; Ardejani, Maziar S; Aris, Nur Fazlina; Li, Xun; Orner, Brendan P; Wang, Fei
2015-12-01
Ferritins and other cage proteins have been utilized as models to understand the fundamentals of protein folding and self-assembly. The bacterioferritin (BFR) from Escherichia coli, a maxi-ferritin made up of 24 subunits, was chosen as the basis for a mutagenesis study to investigate the role of electrostatic intermolecular interactions mediated through charged amino acids. Through structural and computational analyses, three charged amino acids R30, D56 and E60 which involved in an electrostatic interaction network were mutated to the opposite charge. Four mutants, R30D, D56R, E60H and D56R-E60H, were expressed, purified and characterized. All of the mutants fold into α-helical structures. Consistent with the computational prediction, they all show a lowered thermostability; double mutant D56R-E60H was found to be 16°C less stable than the wild type. Except for the mutant E60H, all the other mutations completely shut down the formation of protein cages to favour the dimer state in solution. The mutants, however, retain their ability to form cage-like nanostructures in the dried, surface immobilized conditions of transmission electron microscopy. Our findings confirm that even a single charge-inversion mutation at the 2-fold interface of BFR can affect the quaternary structure of its dimers and their ability to self-assemble into cage structures. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
The structure and intermolecular forces of DNA condensates.
Yoo, Jejoong; Aksimentiev, Aleksei
2016-03-18
Spontaneous assembly of DNA molecules into compact structures is ubiquitous in biological systems. Experiment has shown that polycations can turn electrostatic self-repulsion of DNA into attraction, yet the physical mechanism of DNA condensation has remained elusive. Here, we report the results of atomistic molecular dynamics simulations that elucidated the microscopic structure of dense DNA assemblies and the physics of interactions that makes such assemblies possible. Reproducing the setup of the DNA condensation experiments, we measured the internal pressure of DNA arrays as a function of the DNA-DNA distance, showing a quantitative agreement between the results of our simulations and the experimental data. Analysis of the MD trajectories determined the DNA-DNA force in a DNA condensate to be pairwise, the DNA condensation to be driven by electrostatics of polycations and not hydration, and the concentration of bridging cations, not adsorbed cations, to determine the magnitude and the sign of the DNA-DNA force. Finally, our simulations quantitatively characterized the orientational correlations of DNA in DNA arrays as well as diffusive motion of DNA and cations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie
Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less
Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles
Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie; ...
2017-10-06
Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less
Gold metal liquid-like droplets.
Smirnov, Evgeny; Scanlon, Micheál D; Momotenko, Dmitry; Vrubel, Heron; Méndez, Manuel A; Brevet, Pierre-Francois; Girault, Hubert H
2014-09-23
Simple methods to self-assemble coatings and films encompassing nanoparticles are highly desirable in many practical scenarios, yet scarcely any examples of simple, robust approaches to coat macroscopic droplets with continuous, thick (multilayer), reflective and stable liquid nanoparticle films exist. Here, we introduce a facile and rapid one-step route to form films of reflective liquid-like gold that encase macroscopic droplets, and we denote these as gold metal liquid-like droplets (MeLLDs). The present approach takes advantage of the inherent self-assembly of gold nanoparticles at liquid-liquid interfaces and the increase in rates of nanoparticle aggregate trapping at the interface during emulsification. The ease of displacement of the stabilizing citrate ligands by appropriate redox active molecules that act as a lubricating molecular glue is key. Specifically, the heterogeneous interaction of citrate stabilized aqueous gold nanoparticles with the lipophilic electron donor tetrathiafulvalene under emulsified conditions produces gold MeLLDs. This methodology relies exclusively on electrochemical reactions, i.e., the oxidation of tetrathiafulvalene to its radical cation by the gold nanoparticle, and electrostatic interactions between the radical cation and nanoparticles. The gold MeLLDs are reversibly deformable upon compression and decompression and kinetically stable for extended periods of time in excess of a year.
Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jun; Ren, Chang E.; Maleski, Kathleen
A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self-assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in-between MXene layers. As a result, the self-restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO-5 wt% electrode displays a volumetric capacitance of 1040 F cm –3 at a scan rate of 2 mV s –1, an impressivemore » rate capability with 61% capacitance retention at 1 V s –1 and long cycle life. Moreover, the fabricated binder-free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L –1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. Furthermore, this work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next-generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.« less
Renewable urea sensor based on a self-assembled polyelectrolyte layer.
Wu, Zhaoyang; Guan, Lirui; Shen, Guoli; Yu, Ruqin
2002-03-01
A renewable urea sensor based on a carboxylic poly(vinyl chloride) (PVC-COOH) matrix pH-sensitive membrane has been proposed, in which a positively charged polyelectrolyte layer is first constructed by using a self-assembly technique on the surface of a PVC-COOH membrane, and urease, with negative charges, is then immobilized through electrostatic adsorption onto the PVC-COOH membrane, by controlling the pH of the urease solution below its isoelectric point. The response characteristics of the PVC-COOH pH-sensitive membrane and the effects of experimental conditions have been investigated in detail. Compared with conventional covalent immobilization, the urea sensor made with this self-assembly immobilization shows significant advantage in terms of sensitivity and ease of regeneration. The potential responses of the urea sensor with self-assembly immobilization increase with the urea concentration over the concentration range 10(-5) - 10(-1) mol l(-1), and the detection limit is 0.028 mmol(-1). Moreover, this type of urea sensor can be repeatedly regenerated by using a simple washing treatment with 0.01 mol l(-1) NaOH (containing 0.5 mol l(-1) NaCl) and 0.01 mol l(-1) HCl. The urease layers and the polyelectrolyte layers on the PVC-COOH membrane are removed, the potential response of the sensor to urea solutions of different concentrations returns nearly to zero, and another assembly cycle of urease and polyelectrolyte can then be carried out.
Pulsipher, Katherine W; Villegas, Jose A; Roose, Benjamin W; Hicks, Tacey L; Yoon, Jennifer; Saven, Jeffery G; Dmochowski, Ivan J
2017-07-18
Protein cage self-assembly enables encapsulation and sequestration of small molecules, macromolecules, and nanomaterials for many applications in bionanotechnology. Notably, wild-type thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) exists as a stable dimer of four-helix bundle proteins at a low ionic strength, and the protein forms a hollow assembly of 24 protomers at a high ionic strength (∼800 mM NaCl). This assembly process can also be initiated by highly charged gold nanoparticles (AuNPs) in solution, leading to encapsulation. These data suggest that salt solutions or charged AuNPs can shield unfavorable electrostatic interactions at AfFtn dimer-dimer interfaces, but specific "hot-spot" residues controlling assembly have not been identified. To investigate this further, we computationally designed three AfFtn mutants (E65R, D138K, and A127R) that introduce a single positive charge at sites along the dimer-dimer interface. These proteins exhibited different assembly kinetics and thermodynamics, which were ranked in order of increasing 24mer propensity: A127R < wild type < D138K ≪ E65R. E65R assembled into the 24mer across a wide range of ionic strengths (0-800 mM NaCl), and the dissociation temperature for the 24mer was 98 °C. X-ray crystal structure analysis of the E65R mutant identified a more compact, closed-pore cage geometry. A127R and D138K mutants exhibited wild-type ability to encapsulate and stabilize 5 nm AuNPs, whereas E65R did not encapsulate AuNPs at the same high yields. This work illustrates designed protein cages with distinct assembly and encapsulation properties.
Electrostatic potential profiles of molecular conductors
NASA Astrophysics Data System (ADS)
Liang, G. C.; Ghosh, A. W.; Paulsson, M.; Datta, S.
2004-03-01
The electrostatic potential across a short ballistic molecular conductor depends sensitively on the geometry of its environment, and can affect its conduction significantly by influencing its energy levels and wave functions. We illustrate some of the issues involved by evaluating the potential profiles for a conducting gold wire and an aromatic phenyl dithiol molecule in various geometries. The potential profile is obtained by solving Poisson’s equation with boundary conditions set by the contact electrochemical potentials and coupling the result self-consistently with a nonequilibrium Green’s function formulation of transport. The overall shape of the potential profile (ramp versus flat) depends on the feasibility of transverse screening of electric fields. Accordingly, the screening is better for a thick wire, a multiwalled nanotube, or a close-packed self-assembled monolayer, in comparison to a thin wire, a single-walled nanotube, or an isolated molecular conductor. The electrostatic potential further governs the alignment or misalignment of intramolecular levels, which can strongly influence the molecular current voltage (I V) characteristic. An external gate voltage can modify the overall potential profile, changing the I V characteristic from a resonant conducting to a saturating one. The degree of saturation and gate modulation depends on the availability of metal-induced-gap states and on the electrostatic gate control parameter set by the ratio of the gate oxide thickness to the channel length.
Self-assembling hydrogel scaffolds for photocatalytic hydrogen production
Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.; ...
2014-10-05
Integration into a soft material of all the molecular components necessary to generate storable fuels is an interesting target in supramolecular chemistry. The concept is inspired by the internal structure of photosynthetic organelles, such as plant chloroplasts, which colocalize molecules involved in light absorption, charge transport and catalysis to create chemical bonds using light energy. We report in this paper on the light-driven production of hydrogen inside a hydrogel scaffold built by the supramolecular self-assembly of a perylene monoimide amphiphile. The charged ribbons formed can electrostatically attract a nickel-based catalyst, and electrolyte screening promotes gelation. We found the emergent phenomenonmore » that screening by the catalyst or the electrolytes led to two-dimensional crystallization of the chromophore assemblies and enhanced the electronic coupling among the molecules. Finally, photocatalytic production of hydrogen is observed in the three-dimensional environment of the hydrogel scaffold and the material is easily placed on surfaces or in the pores of solid supports.« less
NASA Astrophysics Data System (ADS)
Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan
2016-06-01
In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.
pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier.
Liang, Ju; Wu, Wen-Lan; Xu, Xiao-Ding; Zhuo, Ren-Xi; Zhang, Xian-Zheng
2014-02-01
An acid-responsive amphiphilic peptide that contains KKGRGDS sequence in hydrophilic head and VVVVVV sequence in hydrophobic tail was designed and prepared. In neutral or basic medium, this amphiphilic peptide can self-assemble into micelles through hydrogen bonding and hydrophobic interactions. If changing the solution pH to an acidic environment, the electrostatic repulsion interaction among the ionized lysine (K) residues will prevent the self-assembly of the amphiphilic peptide, leading to the dissociation of micelles. The anti-tumor drug of doxorubicin (DOX) was chosen and loaded into the self-assembled micelles of the amphiphilic peptide to investigate the influence of external pH change on the drug release behavior. As expected, the micelles show a sustained DOX release in neutral medium (pH 7.0) but fast release behavior in acidic medium (pH 5.0). When incubating these DOX-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD sequence to deliver the drug into HeLa cells. Combined with the low cytotoxicity of the amphiphilic peptide against both HeLa and COS7 cells, the amphiphilic peptide reported in this work may be promising in clinical application for targeted drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Genyi; Maladen, Michelle; Campanella, Osvaldo H; Hamaker, Bruce R
2010-08-25
The self-assembly of a ternary complex, which is formed through heating and cooling of a mixture of amylose (1.0 mg/mL), whey protein isolate (50 μg/mL), and free fatty acids (FFAs, 250 μg/mL) was investigated. High-performance size-exclusion chromatography-multi-angle laser light scattering (HPSEC-MALLS) analysis showed that the complex is a water-soluble supramolecule (Mw = 6-7 × 10(6)), with a radius of gyration of 20-100 nm, indicating a nanoscale complex. Experimental results using 1-monostearyl-rac-glycerol (MSG) or cetyl alcohol that is similar to FFA in structure (except the headgroup) indicate that FFAs are the bridge between thermodynamically incompatible amylose and protein molecules and their functional carboxyl group is essential to the formation of the complex. Additionally, the effects of pH and salt treatments suggest that electrostatic interactions between negatively charged carboxyl groups of FFAs and polyionic protein are the foundation for the self-assembly of the complex. The fact that FFA is one important component in the self-assembled complex with an estimated molar ratio of 6:1:192 (amylose/protein/FFA, ∼4-5% FFA) demonstrates that it might be used as a nanocarrier for the controlled release of lipophilic functional materials to maintain their stability, bioactivity, and more importantly water solubility.
Moghimian, Pouya; Srot, Vesna; Rothenstein, Dirk; Facey, Sandra J; Harnau, Ludger; Hauer, Bernhard; Bill, Joachim; van Aken, Peter A
2014-09-30
A versatile method for the directional assembly of M13 phage using amorphous carbon and SiO2 thin films was demonstrated. A high affinity of the M13 phage macromolecules for incorporation into aligned structures on an amorphous carbon surface was observed at the concentration range, in which the viral nanofibers tend to disorder. In contrast, the viral particles showed less freedom to adopt an aligned orientation on SiO2 films when deposited in close vicinity. Here an interpretation of the role of the carbon surface in significant enhancement of adsorption and generation of viral arrays with a high orientational order was proposed in terms of surface chemistry and competitive electrostatic interactions. This study suggests the use of amorphous carbon substrates as a template for directional organization of a closely-packed and two-dimensional M13 viral film, which can be a promising route to mineralize a variety of smooth and homogeneous inorganic nanostructure layers.
Construction of Matryoshka-type structures from supercharged protein nanocages.
Beck, Tobias; Tetter, Stephan; Künzle, Matthias; Hilvert, Donald
2015-01-12
Designing nanoscaled hierarchical structures with increasing levels of complexity is challenging. Here we show that electrostatic interactions between two complementarily supercharged protein nanocages can be effectively utilized to create nested Matryoshka-type structures. Cage-within-cage complexes containing spatially ordered iron oxide nanoparticles spontaneously self-assemble upon mixing positively supercharged ferritin compartments with AaLS-13, a larger shell-forming protein with a negatively supercharged lumen. Exploiting engineered Coulombic interactions and protein dynamics in this way opens up new avenues for creating hierarchically organized supramolecular assemblies for application as delivery vehicles, reaction chambers, and artificial organelles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanosensor for detection of glucose
NASA Astrophysics Data System (ADS)
Del Villar, Ignacio; Matias, Ignacio R.; Arregui, Francisco J.
2004-06-01
A novel fiber-optic sensor sensitive to glucose has been designed based on electrostatic self-assembly method. The polycation of the structure is a mixture of poly(allylamine hydrochloride) (PAH) and Prussian Blue, whereas the polyanion is well-known enzyme gluocose oxidase (GOx). The range of glucose concentration that can be measured is submilimolar and is located between 0.1 and 2 mM. Measures are based on a new detection scheme based on the slope of the change of signal produced by injection of glucose, yielding to a linear response. The sensor responses in a PH range between 4 and 7.4, which includes the physiological PH of blood. Some rules for esitmation of the refractive index of the material deposited and the thickness of bilayers are also given.
Kavitha, M K; Gopinath, Pramod; John, Honey
2015-06-14
ZnO is a wide direct bandgap semiconductor; its absorption can be tuned to the visible spectral region by controlling the intrinsic defect levels. Combining graphene with ZnO can improve its performance by photo-induced charge separation by ZnO and electronic transport through graphene. When reduced graphene oxide-ZnO is prepared by a hydrothermal method, the photophysical studies indicate that oxygen vacancy defect states are healed out by diffusion of oxygen from GO to ZnO during its reduction. Because of the passivation of oxygen vacancies, the visible light photoconductivity of the hybrid is depleted, compared to pure ZnO. In order to overcome this reduction in photocurrent, a photoelectrode is fabricated by layer-by-layer (LBL) self-assembly of ZnO and reduced graphene oxide. The multilayer films are fabricated by the electrostatic LBL self-assembly technique using negatively charged poly(sodium 4-styrene sulfonate)-reduced graphene oxide (PSS-rGO) and positively charged polyacrylamide-ZnO (PAM-ZnO) as building blocks. The multilayer films fabricated by this technique will be highly interpenetrating; it will enhance the interaction between the ZnO and rGO perpendicular to the electrode surface. Upon illumination under bias voltage defect assisted excitation occurs in ZnO and the photogenerated charge carriers can transfer to graphene. The electron transferred to graphene sheets can recombine in two ways; either it can recombine with the holes in the valence band of ZnO in its bilayer or the ZnO in the next bilayer. This type of tunnelling of electrons from graphene to the successive bilayers will result in efficient charge transfer. This transfer and propagation of electron will enhance as the number of bilayers increases, which in turn improve the photocurrent of the multilayer films. Therefore this self-assembly technique is an effective approach to fabricate semiconductor-graphene films with excellent conductivity.
Wang, Dongrui; Wang, Xiaogong
2011-03-01
Graphene/azo polyelectrolyte multilayer films were fabricated through electrostatic layer-by-layer (LbL) self-assembly, and their performance as electrochemical capacitor electrode was investigated. Cationic azo polyelectrolyte (QP4VP-co-PCN) was synthesized through radical polymerization, postpolymerization azo coupling reaction, and quaternization. Negatively charged graphene nanosheets were prepared by a chemically modified method. The LbL films were obtained by alternately dipping a piece of the pretreated substrates in the QP4VP-co-PCN and nanosheet solutions. The processes were repeated until the films with required numbers of bilayers were obtained. The self-assembly and multilayer surface morphology were characterized by UV-vis spectroscopy, AFM, SEM, and TEM. The performance of the LbL films as electrochemical capacitor electrode was estimated using cyclic voltammetry. Results show that the graphene nanosheets are densely packed in the multilayers and form random graphene network. The azo polyelectrolyte cohesively interacts with the nanosheets in the multilayer structure, which prevents agglomeration of graphene nanosheets. The sheet resistance of the LbL films decreases with the increase of the layer numbers and reaches the stationary value of 1.0 × 10(6) Ω/square for the film with 15 bilayers. At a scanning rate of 50 mV/s, the LbL film with 9 bilayers shows a gravimetric specific capacitance of 49 F/g in 1.0 M Na(2)SO(4) solution. The LbL films developed in this work could be a promising type of the electrode materials for electric energy storage devices.
2-d and 1-d Nanomaterials Construction through Peptide Computational Design and Solution Assembly
NASA Astrophysics Data System (ADS)
Pochan, Darrin
Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic/H-bonding/hydrophobic interactions to define hierarchical material structure and consequent properties. Importantly, while biomimicry has been a successful strategy for the design of new peptide molecules for intermolecular assembly, computational tools have been developed to de novo design peptide molecules required for construction of pre-determined, desired nanostructures and materials. A new system comprised of coiled coil bundle motifs theoretically designed to assemble into designed, one and two-dimensional nanostructures will be introduced. The strategy provides the opportunity for arbitrary nanostructure formation, i.e. structures not observed in nature, with peptide molecules. Importantly, the desired nanostructure was chosen first while the peptides needed for coiled coil formation and subsequent nanomaterial formation were determined computationally. Different interbundle, two-dimensional nanostructures are stabilized by differences in amino acid composition exposed on the exterior of the coiled coil bundles. Computation was able to determine molecules required for different interbundle symmetries within two-dimensional sheets stabilized by subtle differences in amino acid composition of the inherent peptides. Finally, polymers were also created through covalent interactions between bundles that allowed formation of architectures spanning flexible network forming chains to ultra-stiff polymers, all with the same building block peptides. The success of the computational design strategy is manifested in the nanomaterial results as characterized by electron microscopy, scattering methods, and biophysical techniques. Support from NSF DMREF program under awards DMR-1234161 and DMR-1235084.
Smith, N L; Coukouma, A; Dubnik, S; Asher, S A
2017-12-06
We fabricate 2D photonic crystals (2DPC) by spreading a dispersion of charged colloidal particles (diameters = 409, 570, and 915 nm) onto the surface of electrolyte solutions using a needle tip flow method. When the interparticle electrostatic interaction potential is large, particles self-assemble into highly ordered hexagonal close packed (hcp) monolayers. Ordered 2DPC efficiently forward diffract monochromatic light to produce a Debye ring on a screen parallel to the 2DPC. The diameter of the Debye ring is inversely proportional to the 2DPC particle spacing, while the Debye ring brightness and thickness depends on the 2DPC ordering. The Debye ring thickness increases as the 2DPC order decreases. The Debye ring ordering measurements of 2DPC attached to glass slides track measurements of the 2D pair correlation function order parameter calculated from SEM micrographs. The Debye ring method was used to investigate the 2DPC particle spacing, and ordering at the air-solution interface of NaCl solutions, and for 2DPC arrays attached to glass slides. Surprisingly, the 2DPC ordering does not monotonically decrease as the salt concentration increases. This is because of chloride ion adsorption onto the anionic particle surfaces. This adsorption increases the particle surface charge and compensates for the decreased Debye length of the electric double layer when the NaCl concentration is below a critical value.
Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuecheng; Li, Bo; Li, Songsong
Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. Here in this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particlemore » tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration c fiber and a critical gel concentration c gel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G") are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.« less
Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides
Zhou, Yuecheng; Li, Bo; Li, Songsong; ...
2017-08-17
Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. Here in this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particlemore » tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration c fiber and a critical gel concentration c gel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G") are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.« less
Role of electrostatic interactions in the assembly of empty spherical viral capsids
NASA Astrophysics Data System (ADS)
Šiber, Antonio; Podgornik, Rudolf
2007-12-01
We examine the role of electrostatic interactions in the assembly of empty spherical viral capsids. The charges on the protein subunits that make the viral capsid mutually interact and are expected to yield electrostatic repulsion acting against the assembly of capsids. Thus, attractive protein-protein interactions of nonelectrostatic origin must act to enable the capsid formation. We investigate whether the interplay of repulsive electrostatic and attractive interactions between the protein subunits can result in the formation of spherical viral capsids of a preferred radius. For this to be the case, we find that the attractive interactions must depend on the angle between the neighboring protein subunits (i.e., on the mean curvature of the viral capsid) so that a particular angle(s) is (are) preferred energywise. Our results for the electrostatic contributions to energetics of viral capsids nicely correlate with recent experimental determinations of the energetics of protein-protein contacts in the hepatitis B virus [P. Ceres A. Zlotnick, Biochemistry 41, 11525 (2002)].
NASA Technical Reports Server (NTRS)
Murty, A. N.
1976-01-01
A straightforward self-consistent method was developed to estimate solid state electrostatic potentials, fields and field gradients in ionic solids. The method is a direct practical application of basic electrostatics to solid state and also helps in the understanding of the principles of crystal structure. The necessary mathematical equations, derived from first principles, were presented and the systematic computational procedure developed to arrive at the solid state electrostatic field gradients values was given.
Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components
NASA Astrophysics Data System (ADS)
Gerling, Thomas; Wagenbauer, Klaus F.; Neuner, Andrea M.; Dietz, Hendrik
2015-03-01
We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components’ interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.
NASA Astrophysics Data System (ADS)
Zhang, Li; Qin, Dezhi; Yang, Guangrui; Du, Xian; Zhang, Qiuxia; Li, Feng
2015-09-01
The toroid-like PbS nanocrystals have been prepared in zein ethanol solution based on self-assembly template of protein molecules. From transmission electron microscopy observation, the obtained samples were monodispersed with an average size of about 47 nm. The chemical composition and crystal structure of nanocomposites were determined by X-ray diffraction and energy-dispersive X-ray spectrum measurements. The interaction between PbS and zein was investigated through Fourier transform infrared, photoluminescence, circular dichroism (CD) spectra, and thermogravimetric analysis. The PbS nanocrystals could react with nitrogen and oxygen atoms of zein molecules through coordination and electrostatic force. The CD spectra results suggested that PbS nanocrystals induced the conformational transition of protein from α-helix to β-sheet and then self-assembled into ring or toroid nanostructure. The quenching of zein fluorescence induced by PbS nanocrystals also showed the change in the chemical microenvironments of the fluorescent amino acid residues in the protein structure. The key step of this facile, biomimetic route was the formation of self-assembly nanostructure of zein, which could regulate the nucleation and growth of toroid-like PbS nanocrystals.
The Self- and Directed Assembly of Nanowires
NASA Astrophysics Data System (ADS)
Smith, Benjamin David
This thesis explores the self- and directed assembly of nanowires. Specifically, we examine the driving forces behind nanowire self-assembly and the macro-structures that are formed. Particle-dense, oriented nanowire structures show promise in the fields of photonics, energy, sensing, catalysis, and electronics. Arrays of spherical particles have already found uses in electronic inks, sensing arrays, and many other commercial applications; but, it is a challenge to create specific arrays of morphologically and/or compositionally anisotropic particles. The following chapters illuminate the interactions that drive the assembly of anisotropic particles in high density solutions in the absence of applied fields or solution drying. Special emphasis is placed on the structures that are formed. The properties of micro- and nanoparticles and their assembly are introduced in Chapter 1. In particular, the properties of shape and material anisotropic particles are highlighted, while challenges in producing desired arrays are discussed. In this thesis, metallic nanowires of increasing complexity were used to examine the self-assembly behavior of both shape and material anisotropic particles. Nanowires were synthesized through templated electrodeposition. In this process, porous alumina membranes served as a template in which metal salts were reduced to form particles. Upon template dissolution, billions of nominally identical particles were released. We specifically focused on segmented, metallic nanowires 2-13 mum in length and 180 to 350 nm in diameter. Since these particles have strong van der Waals (VDWs) attractions, an electrostatically repulsive coating was necessary to prevent aggregation; we used small molecule, DNA, or amorphous silica coatings. Nanowires and their coatings were characterized by electron microscopy. In order to study self-assembly behavior, particle-dense aqueous suspensions were placed within an assembly chamber defined by a silicone spacer. The nanowires rapidly sedimented due to gravity onto a glass cover slip to concentrate and form a dense film. Particles and assemblies were imaged using inverted optical microscopy. We quantitatively analyzed the images and movies captured in order to track and classify particles and classify the overall arrays formed. We then correlated how particle characteristics, e.g., materials, size, segmentation, etc. changed the ordering and alignment observed. With that knowledge, we hope to be able to form new and interesting structures. We began our studies by examining the assembly of single component nanowires. Chapter 2 describes this work, in which solid Au nanowires measuring 2-7 mum in length and 290 nm in diameter self-assembled into smectic rows. By both experiment and theory, we determined that these rows formed due to a balance of electrostatic repulsions and van der Waals attractions. Final assemblies were stable for at least several days. Monte Carlo methods were used to simulate assemblies and showed structures that mirrored those experimentally observed. Simulations indicated that the smectic phase was preferred over others, i.e., nematic, when an additional small charge was added to the ends of the nanowires. Our particles have rough tips, which might create these additional electrostatic repulsions. To increase the particle and array complexity, two-component, metallic nanowire assembly was explored in Chapter 3. We examined numerous types of nanowires by changing the segment length, ratio, and material, the nanowire length, the surface coating, and the presence of small third segments. These segmented nanowires were generally Au-Ag and also ordered into smectic rows. Segmented wires arranged in rows, however, can be aligned in two possible ways with respect to a neighboring particle. The Au segments on neighboring particles can be oriented in the same direction or opposed to each other. Orientation was quantified in terms of an order parameter that took into account alignment with respect to nearest neighbor particles. All experiments showed order parameters indicating a slight preference for orientational ordering that was relatively insensitive to segment size, nanowire size, and nanowire coating. Monte Carlo simulations pointed towards this alignment as a consequence of small differences in the van der Waals attractions between the segments. Experimentally, ordering might to be limited by the large size of the nanowires, which results in kinetically trapped structures. In an attempt to obtain better ordering within rows, silica coated nanowires with partial Au cores were made. The synthesis involved silica-coating the nanowires and selectively etching a Ag segment. These particles have extremely different VDWs attractions between their segments, as the Au cores are much more attractive than the solvent-filled etched ends. The assembly of these partially etched nanowires (PENs) is detailed in Chapters 4, 5, and 6. When allowed to self-assemble, we observed the formation of either vertically or horizontally oriented arrays depending on PEN composition. The formation of vertically oriented arrays of anisotropic particles is important, since not many methods to produce these structures are currently available for particles of this size. We examined the effects of PEN length, PEN diameter, and the size, number, and location of the core segments. Our findings showed a large etched segment at one end (which resulted in a large offset in the center of mass and concentrated the VDWs attractions to one end of the particle) resulted in the best columnar assemblies. These vertically orientated arrays formed in a two part process. First, after PENs sedimented, they fell flat and oriented parallel to the surface. These PENs then sampled many orientations, including rotating out of the surface plane. When higher surface concentrations of particles built as more PENs fell to the surface of the cover slip, neighboring particles stabilized vertical orientations. Second, particles fell oriented vertically and when the surface concentrations were high, they retained this orientation upon reaching the substrate. Since vertically aligned PENs supported each other, assembly into vertical arrays was highly dependent on the surface concentration. But, oriented arrays could be easily formed on larger or smaller substrates, provided a particle concentration scaled to the substrate were used. The mixing of these particles to form heterogeneous arrays was examined. The overall array structure favored that of particles which sedimented more quickly and/or were present in higher amounts. The semi-automated counting of PENs in images by software is used heavily in Chapters 4 and 5. Appendix A describes the use, development, and validation of macros within Image-Pro. The structure, syntax, and use are specifically examined for three nanowire counting macros. The counting results; including: number of particles in an image, number of horizontally vs. vertically oriented PENs, and PENs in microwells; are compared with manual hand counts. Chapter 7 examines the overall conclusions and future directions for this research. By combining our assembly techniques with known directing forces (e.g., electric or magnetic fields) more specific alignment and/or positioning could be achieved. We have also begun to explore directing assembly through lithographic microwells. Further work needs to explore the integration of arrays into devices and the use of functional materials. Then, high density, oriented arrays could be created for photonic, energy, sensing, catalytic, and electronic applications.
Self-assembled software and method of overriding software execution
Bouchard, Ann M.; Osbourn, Gordon C.
2013-01-08
A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.
Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation
NASA Astrophysics Data System (ADS)
Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng
2018-04-01
Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.
Ma, Fangwei; Ma, Di; Wu, Guang; Geng, Weidan; Shao, Jinqiu; Song, Shijiao; Wan, Jiafeng; Qiu, Jieshan
2016-05-10
A smart and sustainable strategy based on charge-induced self-assembly and nanocrystal-assisted catalytic graphitization is explored for the efficient construction of 3D nanostructure hierarchical porous graphitic carbons from the pectin biopolymer. The electrostatic interaction between the negatively charged pectin chains and magnesium ions plays a crucial role in the formation of 3D architectures. The 3D HPGCs possess a three-dimensional carbon framework with a hierarchical porous structure, flake-like graphitic carbon walls and high surface area (1320 m(2) g(-1)). The 3D HPGCs show an outstanding specific capacitance of 274 F g(-1) and excellent rate capability with a high capacitance retention of 85% at a high current density of 50 A g(-1) for supercapacitor electrodes. This strategy provided a novel approach to effectively construct 3D porous carbon nanostructures from biopolymers.
Designing non-native iron-binding site on a protein cage for biological synthesis of nanoparticles.
Peng, Tao; Paramelle, David; Sana, Barindra; Lee, Chiu Fan; Lim, Sierin
2014-08-13
In biomineralization processes, a supramolecular organic structure is often used as a template for inorganic nanomaterial synthesis. The E2 protein cage derived from Geobacillus stearothermophilus pyruvate dehydrogenase and formed by the self-assembly of 60 subunits, has been functionalized with non-native iron-mineralization capability by incorporating two types of iron-binding peptides. The non-native peptides introduced at the interior surface do not affect the self-assembly of E2 protein subunits. In contrast to the wild-type, the engineered E2 protein cages can serve as size- and shape-constrained reactors for the synthesis of iron nanoparticles. Electrostatic interactions between anionic amino acids and cationic iron molecules drive the formation of iron oxide nanoparticles within the engineered E2 protein cages. The work expands the investigations on nanomaterial biosynthesis using engineered host-guest encapsulation properties of protein cages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogels constructed via self-assembly of beta-hairpin molecules
NASA Astrophysics Data System (ADS)
Ozbas, Bulent
There is a recent and growing interest in hydrogel materials that are formed via peptide self-assembly for tissue engineering applications. Peptide based materials are excellent candidates for diverse applications in biomedical field due to their responsive behavior and complex self-assembled structures. However, there is very limited information on the self-assembly and resultant network and mechanical properties of these types of hydrogels. The main goal of this dissertation is to investigate the self-assembly mechanism and viscoelastic properties of hydrogels that can be altered by changing solution conditions as well as the primary structure of the peptide. These hydrogels are formed via intramolecular folding and consequent self-assembly of 20 amino acid long beta-hairpin peptide molecules (Max1). The peptide molecules are locally amphiphilic with two linear strands of alternating hydrophobic valine and hydrophilic lysine amino acids connected with a Dproline-LProline turn sequence. Circular dichroism and FTIR spectroscopy show that at physiological conditions peptides are unfolded in the absence of salt. By raising the ionic strength of the solution electrostatic interactions between charged lysines are screened and the peptide arms are forced into a beta-sheet secondary structure stabilized by the turn sequence. These folded molecules intermolecularly assemble via hydrophobic collapse and hydrogen bonding into a three dimensional network. Folding and self-assembly of these molecules can also be triggered by increasing temperature and/or pH of the peptide solution. In addition, the random-coil to beta-sheet transition of the beta-hairpin peptides is pH and, with proper changes in the peptide sequence, thermally reversible. Rheological measurements demonstrate that the resultant supramolecular structure forms an elastic material, whose structure, and thus modulus, can be tuned by magnitude of the stimulus. Hydrogels recover their initial viscoelastic properties after cessation of high magnitude of strain due to the physically crosslinked network structure and strong inter-fibrillar interactions. These interactions can be turned off by either condensing anions or covalently attaching PEG chains on lysine-decorated fibrillar surfaces. TEM, SANS, and rheological data reveal that the elasticity arises from a network consisting of semiflexible fibrillar assemblies that are monodisperse in width. The experimental results are compared with scaling relationships developed for permanently crosslinked semiflexible biopolymer networks. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya
2014-10-01
A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.
Metal Ion-Assembled Micro-Collagen Heterotrimers
LeBruin, Lyndelle Toni; Banerjee, Sunandan; O'Rourke, Bruce Delany; Case, Martin Ashley
2011-01-01
Collagen mimetic peptides (CMPs) provide critical insight into the assembly, stability and structure of the triple helical collagen protein. The majority of natural fibrous collagens are aab or abc heterotrimers, yet few examples of heterotrimeric CMPs have been reported. Previously CMP heterotrimers have only been accessible by total syntheses or by introducing complementary interstrand electrostatic or steric interactions. Here we describe an abc CMP heterotrimer in which each contributing CMP consists of only three amino acids: glycine, proline and 4-hydroxyproline. Assembly of the heterotrimeric triple helix is directed by a combination of metal-ion coordination to set the relative register of the CMPs, and minimization of valence frustration to direct heterotrimerization. Assembly of the four-component mixture is facile and extremely rapid, and equilibration to the abc heterotrimer occurs within a few hours at modestly elevated temperatures. The melting temperatures of the metal-assembled collagen trimers are higher by some 30 °C than the apopeptide assemblies. Two iterations of the design are described, and the outcomes suggest possibilities for designing self-assembling abc and abb heterotrimers. PMID:21590759
Ionic liquid-induced aggregate formation and their applications.
Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni
2018-06-01
In the last two decades, researchers have extensively studied highly stable and ordered supramolecular assembly formation using oppositely charged surfactants. Thereafter, surface-active ionic liquids (SAILs), a special class of room temperature ionic liquids (RTILs), replace the surfactants to form various supramolecular aggregates. Therefore, in the last decade, the building blocks of the supramolecular aggregates (micelle, mixed micelle, and vesicular assemblies) have changed from oppositely charged surfactant/surfactant pair to surfactant/SAIL and SAIL/SAIL pair. It is also found that various biomolecules can also interact with SAILs to construct biologically important supramolecular assemblies. The very latest addition to this combination of ion pairs is the dye molecules having a long hydrophobic chain part along with a hydrophilic ionic head group. Thus, dye/surfactant or dye/SAIL pair also produces different assemblies through electrostatic, hydrophobic, and π-π stacking interactions. Vesicles are one of the important self-assemblies which mimic cellular membranes, and thus have biological application as a drug carrier. Moreover, vesicles can act as a suitable microreactor for nanoparticle synthesis.
Electrostatics at the oil–water interface, stability, and order in emulsions and colloids
Leunissen, Mirjam E.; van Blaaderen, Alfons; Hollingsworth, Andrew D.; Sullivan, Matthew T.; Chaikin, Paul M.
2007-01-01
Oil–water mixtures are ubiquitous in nature and are particularly important in biology and industry. Usually additives are used to prevent the liquid droplets from coalescing. Here, we show that stabilization can also be obtained from electrostatics, because of the well known remarkable properties of water. Preferential ion uptake leads to a tunable droplet charge and surprisingly stable, additive-free, water-in-oil emulsions that can crystallize. For particle-stabilized (“Pickering”) emulsions we find that even extremely hydrophobic, nonwetting particles can be strongly bound to (like-charged) oil–water interfaces because of image charge effects. These basic insights are important for emulsion production, encapsulation, and (self-)assembly, as we demonstrate by fabricating a diversity of structures in bulk, on surfaces, and in confined geometries. PMID:17307876
Xu, Wenjie; Chen, Zhenyi; Chen, Na; Zhang, Heng; Liu, Shupeng; Hu, Xinmao; Wen, Jianxiang; Wang, Tingyun
2017-01-01
A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs) with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP) with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD) technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L. PMID:28245618
Ricci, Clarisse G; Li, Bo; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J Andrew
2017-07-13
Solvation is a fundamental driving force in many biological processes including biomolecular recognition and self-assembly, not to mention protein folding, dynamics, and function. The variational implicit solvent method (VISM) is a theoretical tool currently developed and optimized to estimate solvation free energies for systems of very complex topology, such as biomolecules. VISM's theoretical framework makes it unique because it couples hydrophobic, van der Waals, and electrostatic interactions as a functional of the solvation interface. By minimizing this functional, VISM produces the solvation interface as an output of the theory. In this work, we push VISM to larger scale applications by combining it with coarse-grained solute Hamiltonians adapted from the MARTINI framework, a well-established mesoscale force field for modeling large-scale biomolecule assemblies. We show how MARTINI-VISM ( M VISM) compares with atomistic VISM ( A VISM) for a small set of proteins differing in size, shape, and charge distribution. We also demonstrate M VISM's suitability to study the solvation properties of an interesting encounter complex, barnase-barstar. The promising results suggest that coarse-graining the protein with the MARTINI force field is indeed a valuable step to broaden VISM's and MARTINI's applications in the near future.
Mao, Shun; Lu, Ganhua; Yu, Kehan; ...
2010-01-01
We study the protein viability on Au nanoparticles during an electrospray and electrostatic-force-directed assembly process, through which Au nanoparticle-antibody conjugates are assembled onto the surface of carbon nanotubes (CNTs) to fabricate carbon nanotube field-effect transistor (CNTFET) biosensors. Enzyme-linked immunosorbent assay (ELISA) and field-effect transistor (FET) measurements have been used to investigate the antibody activity after the nanoparticle assembly. Upon the introduction of matching antigens, the colored reaction from the ELISA and the change in the electrical characteristic of the CNTFET device confirm that the antibody activity is preserved during the assembly process.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Jiang, Yanzhou; Chi, Maoqiang; Yang, Zezhou; Nie, Guangdi; Lu, Xiaofeng; Wang, Ce
2016-02-01
This article reports the fabrication of magnetically responsive Au nanoparticles supported on CoFe2O4 nanotubes through polyaniline (PANI) assisted self-assembly strategy which can be used as an efficient magnetically recoverable nanocatalyst. The central magnetic CoFe2O4 nanotubes possess a strong magnetic response under an externally magnetic field, enabling an easy and efficient separation from the reaction system for reuse. The thorn-like PANI layer on the surface of CoFe2O4 nanotubes provides large surface area for supporting Au nanocatalysts due to the electrostatic interactions. The as-prepared CoFe2O4/PANI/Au nanotube assemblies exhibit a high catalytic activity for the hydrogenation of 4-nitrophenol by sodium borohydride (NaBH4) at room temperature, with an apparent kinetic rate constant (Kapp) of about 7.8 × 10-3 s-1. Furthermore, the composite nanocatalyst shows a good recoverable property during the catalytic process. This work affords a reliable way in developing multifunctional nanocomposite for catalysis and other potential applications in many fields.
Thermophilic Ferritin: Versatile Nanohost
NASA Astrophysics Data System (ADS)
Pulsipher, Katherine W.
Thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) is a 24meric, hollow, cage-like protein, whose native function is the oxidation, mineralization, and storage of iron. Unique among ferritins, its self-assembly is dependent on high ionic strength, reflecting the deep sea thermal vent environment where A. fulgidus is found. This ionic strength dependence can be used to encapsulate charged cargo within the AfFtn cavity. Its subunits self-assemble into tetrahedral symmetry, resulting in four, large (4.5 nm), triangular pores, not found in other ferritins. Due to its size (12 nm outer diameter, 8 nm inner diameter), self-assembly properties, and potential for both genetic and chemical modification, AfFtn is an ideal nanocontainer for a variety of cargo, including inorganic nanoparticles and proteins. We have sought to better understand the self-assembly of AfFtn and its encapsulation of various cargo. Guided by computational analysis and through mutagenesis, we have investigated the role of electrostatics along the AfFtn trimeric interface in self-assembly. We have developed a series of single point mutants with increasingly favorable cage assembly. One specific mutation, E65R, has a dramatic effect on AfFtn, almost entirely preventing disassembly and enhancing thermal stability by 14°C. By using a novel graphene-based microelectrode, we have determined that AfFtn maintains its quaternary structure upon encapsulation of a gold nanoparticle, developing a new tool for investigating protein-nanomaterial interactions. We have also shown that AfFtn can be used to template seeded gold nanoparticle growth and have explored two often neglected factors in ferritin-nanoparticle templating: the charge of the gold salt used, and the size of the protein pores. Our results demonstrate that the open, porous structure of AfFtn allows more efficient particle growth than typical closed-pore ferritins. Finally, we have expanded the cargo uptake of AfFtn beyond nanoparticles to include proteins, encapsulating supercharged GFP. The AfFtn-cargo complexes developed here have application in catalysis, nanomaterials synthesis, and targeted delivery.
Zhu, Wanying; Jiang, Guoyi; Xu, Lei; Li, Bingzhi; Cai, Qizhi; Jiang, Huijun; Zhou, Xuemin
2015-07-30
Based on magnetic field directed self-assembly (MDSA) of the ternary Fe3O4@PANI/rGO nanocomposites, a facile and controllable molecularly imprinted electrochemical sensor (MIES) was fabricated through a one-step approach for detection of glutathione (GSH). The ternary Fe3O4@PANI/rGO nanocomposites were obtained by chemical oxidative polymerization and intercalation of Fe3O4@PANI into the graphene oxide layers via π-π stacking interaction, followed by reduction of graphene oxide in the presence of hydrazine hydrate. In molecular imprinting process, the pre-polymers, including GSH as template molecule, Fe3O4@PANI/rGO nanocomposites as functional monomers and pyrrole as both cross-linker and co-monomer, was assembled through N-H hydrogen bonds and the electrostatic interaction, and then was rapidly oriented onto the surface of MGCE under the magnetic field induction. Subsequently, the electrochemical GSH sensor was formed by electropolymerization. In this work, the ternary Fe3O4@PANI/rGO nanocomposites could not only provide available functionalized sites in the matrix to form hydrogen bond and electrostatic interaction with GSH, but also afford a promoting network for electron transfer. Moreover, the biomimetic sensing membrane could be controlled more conveniently and effectively by adjusting the magnetic field strength. The as-prepared controllable sensor showed good stability and reproducibility for the determination of GSH with the detection limit reaching 3 nmol L(-1) (S/N = 3). In addition, the highly sensitive and selective biomimetic sensor has been successfully used for the clinical determination of GSH in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Chemically programmed self-sorting of gelator networks.
Morris, Kyle L; Chen, Lin; Raeburn, Jaclyn; Sellick, Owen R; Cotanda, Pepa; Paul, Alison; Griffiths, Peter C; King, Stephen M; O'Reilly, Rachel K; Serpell, Louise C; Adams, Dave J
2013-01-01
Controlling the order and spatial distribution of self-assembly in multicomponent supramolecular systems could underpin exciting new functional materials, but it is extremely challenging. When a solution of different components self-assembles, the molecules can either coassemble, or self-sort, where a preference for like-like intermolecular interactions results in coexisting, homomolecular assemblies. A challenge is to produce generic and controlled 'one-pot' fabrication methods to form separate ordered assemblies from 'cocktails' of two or more self-assembling species, which might have relatively similar molecular structures and chemistry. Self-sorting in supramolecular gel phases is hence rare. Here we report the first example of the pH-controlled self-sorting of gelators to form self-assembled networks in water. Uniquely, the order of assembly can be predefined. The assembly of each component is preprogrammed by the pK(a) of the gelator. This pH-programming method will enable higher level, complex structures to be formed that cannot be accessed by simple thermal gelation.
DNA-DNA interaction beyond the ground state
NASA Astrophysics Data System (ADS)
Lee, D. J.; Wynveen, A.; Kornyshev, A. A.
2004-11-01
The electrostatic interaction potential between DNA duplexes in solution is a basis for the statistical mechanics of columnar DNA assemblies. It may also play an important role in recombination of homologous genes. We develop a theory of this interaction that includes thermal torsional fluctuations of DNA using field-theoretical methods and Monte Carlo simulations. The theory extends and rationalizes the earlier suggested variational approach which was developed in the context of a ground state theory of interaction of nonhomologous duplexes. It shows that the heuristic variational theory is equivalent to the Hartree self-consistent field approximation. By comparison of the Hartree approximation with an exact solution based on the QM analogy of path integrals, as well as Monte Carlo simulations, we show that this easily analytically-tractable approximation works very well in most cases. Thermal fluctuations do not remove the ability of DNA molecules to attract each other at favorable azimuthal conformations, neither do they wash out the possibility of electrostatic “snap-shot” recognition of homologous sequences, considered earlier on the basis of ground state calculations. At short distances DNA molecules undergo a “torsional alignment transition,” which is first order for nonhomologous DNA and weaker order for homologous sequences.
Xu, Qingsong; Huang, Tong; Li, Shanlong; Li, Ke; Li, Chuanlong; Liu, Yannan; Wang, Yuling; Yu, Chunyang; Zhou, Yongfeng
2018-05-09
Hierarchical solution self-assembly has nowadays become an important biomimetic method to prepare highly complex and multifunctional supramolecular structures. However, despites the great progress, it is still highly challenging to prepare hierarchical self-assemblies in a large scale since the self-assembly processes are generally performed at high dilution. Herein, we report an emulsion-assisted polymerization-induced self-assembly (EAPISA) method with the advantages of in-situ self-assembly process, scalable preparation and facile functionalization to prepare hierarchical multiscale sea urchin-like aggregates (SUAs). It also extends horizons of PISA in monomers and in polymerization method. The obtained SUAs from amphiphilic alternating copolymers represent a novel self-assembled structure with micron-sized rattan ball-like capsule (RBC) acting as the hollow core body and radiating nanotubes tens of micrometers in length as the hollow spines. They can effectively capture model proteins at an ultra-low concentration (≈10 nM) after functionalized with amino groups through click copolymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrostatic 2D assembly of bionanoparticles on a cationic lipid monolayer.
NASA Astrophysics Data System (ADS)
Kewalramani, Sumit; Wang, Suntao; Fukuto, Masafumi; Yang, Lin; Niu, Zhongwei; Nguyen, Giang; Wang, Qian
2010-03-01
We present a grazing-incidence small-angle X-ray scattering (GISAXS) study on 2D assembly of cowpea mosaic virus (CPMV) under a mixed cationic-zwitterionic (DMTAP^+-DMPC) lipid monolayer at the air-water interface. The inter-particle and particle-lipid electrostatic interactions were varied by controlling the subphase pH and the membrane charge density. GISAXS data show that 2D crystals of CPMV are formed above a threshold membrane charge density and only in a narrow pH range just above CPMV's isoelectric point, where the charge on CPMV is expected to be weakly negative. The particle density for the 2D crystals is similar to that for the densest lattice plane in the 3D crystals of CPMV. The results show that the 2D crystallization is achieved in the part of the phase space where the electrostatic interactions are expected to maximize the adsorption of CPMV onto the lipid membrane. This electrostatics-based strategy for controlling interfacial nanoscale assembly should be generally applicable to other nanoparticles.
Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping
2016-01-01
Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786
NASA Astrophysics Data System (ADS)
Shindel, Matthew M.
Developing processes to fabricate inorganic architectures with designer functionalities at increasingly minute length-scales is of chief concern in the fields of nanotechnology and nanoscience. This enterprise requires assembly mechanisms with the capacity to tailor both the spatial arrangement and material composition of a system's constituent building blocks. To this end, significant advances can be made by turning to biology, as the natural world has evolved the ability to generate intricate nanostructures, which can potentially be employed as templates for inorganic nanosystems. We explore this biotemplating methodology using two-dimensional streptavidin crystals, investigating the ability of the protein lattice to direct the assembly of ordered metallic nanoparticle arrays. We demonstrate that the adsorption of nanoparticles on the protein monolayer can be induced through both electrostatic and molecular recognition (ligand-receptor) interactions. Furthermore, the dynamics of adsorption can be modulated through both environmental factors (e.g. pH), and by tailoring particle surface chemistry. When the characteristic nanoparticle size is on the order of the biotemplate's unit-cell dimension, electrostatically-mediated adsorption occurs in a site-specific manner. The nanoparticles exhibit a pronounced preference for adhering to the areas between protein molecules. The two-dimensional structure of the resultant nanoparticle ensemble consequently conforms to that of the underlying protein crystal. Through theoretical calculations, simulation and experiment, we show that interparticle spacing in the templated array is influenced by the screened-coulombic repulsion between particles, and can thus be tuned by controlling ionic strength during deposition. Templating ordered nanoparticle arrays via ligand-receptor mediated adsorption, and the constrained growth of metallic nanoparticles directly on the protein lattice from ionic precursors are also examined. Overall, this work demonstrates that the streptavidin crystal system possesses unique utility for nanoscale, directed-assembly applications.
Engineering the entropy-driven free-energy landscape of a dynamic nanoporous protein assembly.
Alberstein, Robert; Suzuki, Yuta; Paesani, Francesco; Tezcan, F Akif
2018-04-30
De novo design and construction of stimuli-responsive protein assemblies that predictably switch between discrete conformational states remains an essential but highly challenging goal in biomolecular design. We previously reported synthetic, two-dimensional protein lattices self-assembled via disulfide bonding interactions, which endows them with a unique capacity to undergo coherent conformational changes without losing crystalline order. Here, we carried out all-atom molecular dynamics simulations to map the free-energy landscape of these lattices, validated this landscape through extensive structural characterization by electron microscopy and established that it is predominantly governed by solvent reorganization entropy. Subsequent redesign of the protein surface with conditionally repulsive electrostatic interactions enabled us to predictably perturb the free-energy landscape and obtain a new protein lattice whose conformational dynamics can be chemically and mechanically toggled between three different states with varying porosities and molecular densities.
NASA Astrophysics Data System (ADS)
Xu, Jiasheng; Wang, Mengjun; Pan, Binbin; Li, Jinpeng; Xia, Bin; Zhang, Xiaobo; Tong, Zhiwei
To prepare the novel plate-like nanocomposite CoIIITMPyP/Nb3O8, the cationic cobalt (III) tetrakis-5, 10, 15, 20-(N-methyl-4-pyridyl) porphyrin (CoIIITMPyP) was intercalated into the interlayer of the perovskite structural material KNb3O8 via the electrostatic self-assembly of the positively charged CoIIITMPyP molecules and the electronegative Nb3O8- nanosheets. The Nb3O8- nanosheets was obtained by exfoliating the protonated product of niobate KNb3O8 in the tetrabutyl ammonium hydroxide (TBA+OH-) aqueous solution. The zeta potential was measured to indicate the stability and uniformity of the Nb3O8- nanosheet colloidal dispersion, and the structure and component of the parent material KNb3O8, the acidified product HNb3O8, and the interlayered nanocomposite CoIIITMPyP/Nb3O8 were characterized using XRD, FT-IR, SEM and AFM. Furthermore, the electrocatalytic activity toward the oxygen reduction reaction (ORR) of CoIIITMPyP/Nb3O8 hybrids modified GCE was investigated by the cyclic voltammetry (CV) measurements. The modified GCE exhibited good electrocatalytic activity toward ORR in consideration of the peak shift from -0.723V to -0.300V. The linear correlation of the reduction peak current and the square root of the scan rate suggested a diffusion controlled process.
Thornalley, Kiri; Laurini, Erik; Pricl, Sabrina; Smith, David K
2018-05-15
A family of four self-assembling lipopeptides containing Ala-Lys peptides attached to a C16 aliphatic chain was synthesised. These compounds form two enantiomeric pairs that bear a diastereomeric relationship to one another (C16-L-Ala-L-Lys/C16-D-Ala-D-Lys) and (C16-D-Ala-L-Lys/C16-L-Ala-D-Lys). These diastereomeric pairs have very different critical micelle concentrations (CMCs), with LL/DD < DL/LD suggesting more effective assembly of the former. The self-assembled multivalent (SAMul) systems bind biological polyanions as result of the cationic lysine groups on their surfaces. Polyanion binding was investigated using dye displacement assays and isothermal calorimetry (ITC). On heparin binding, there was no significant enantioselectivity, but there was a binding preference for the diastereomeric assemblies with lower CMCs. Conversely, on binding DNA, there was a significant enantioselective preference for systems displaying D-lysine ligands, with a further slight preference for attachment to L-alanine, with the CMC being irrelevant. Binding to adaptive, ill-defined heparin has a large favourable entropic term, suggesting it depends primarily on the cationic SAMul nanostructure maximising surface contact with heparin, which can adapt, displacing solvent and other ions. Conversely, binding to well-defined, shape-persistent DNA has a larger favourable enthalpic term, and combined with the enantioselectivity, this allows us to suggest that its SAMul binding is based on optimised individual electrostatic interactions at the molecular level, with a preference for binding to D-lysine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Colloidosome like structures: self-assembly of silica microrods
Datskos, P.; Polizos, G.; Bhandari, M.; ...
2016-03-07
Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. We demonstrate silica microrod self-assembly by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/ pentanol emulsion droplets. Moreover, rods self-assembled to make structures in the range of z10 40 mm. Smooth rods assembled better than segmented rods. Finally, the assembled structures were bonded by weak van der Waals forces.
Design of fluidic self-assembly bonds for precise component positioning
NASA Astrophysics Data System (ADS)
Ramadoss, Vivek; Crane, Nathan B.
2008-02-01
Self Assembly is a promising alternative to conventional pick and place robotic assembly of micro components. Its benefits include parallel integration of parts with low equipment costs. Various approaches to self assembly have been demonstrated, yet demanding applications like assembly of micro-optical devices require increased positioning accuracy. This paper proposes a new method for design of self assembly bonds that addresses this need. Current methods have zero force at the desired assembly position and low stiffness. This allows small disturbance forces to create significant positioning errors. The proposed method uses a substrate assembly feature to provide a high accuracy alignment guide to the part. The capillary bond region of the part and substrate are then modified to create a non-zero positioning force to maintain the part in the desired assembly position. Capillary force models show that this force aligns the part to the substrate assembly feature and reduces sensitivity of part position to process variation. Thus, the new configuration can substantially improve positioning accuracy of capillary self-assembly. This will result in a dramatic decrease in positioning errors in the micro parts. Various binding site designs are analyzed and guidelines are proposed for the design of an effective assembly bond using this new approach.
Trapping effect of metal nanoparticle mono- and multilayer in the organic field-effect transistor
NASA Astrophysics Data System (ADS)
Lee, Keanchuan; Weis, Martin; Lin, Jack; Taguchi, Dai; Majková, Eva; Manaka, Takaaki; Iwamoto, Mitsumasa
2011-03-01
The effect of silver nanoparticles self-assembled monolayer (Ag NPs SAM) on charge transport in pentacene organic field-effect transistors (OFET) was investigated by both steady-state and transient-state methods, which are current-voltage measurements in steady-state and time-resolved microscopic (TRM) second harmonic generation (SHG) in transient-state, respectively. The analysis of electronic properties revealed that OFET with SAM exhibited significant charge trapping effect due to the space-charge field formed by immobile charges. Lower transient-state mobility was verified by the direct probing of carrier motion by TRM-SHG technique. It was shown that the trapping effect rises together with increase of SAM layers suggesting the presence of traps in the bulk of NP films. The model based on the electrostatic charge barrier is suggested to explain the phenomenon.
Ion source for high-precision mass spectrometry
Todd, Peter J.; McKown, Henry S.; Smith, David H.
1984-01-01
The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.
Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation
NASA Astrophysics Data System (ADS)
Fan, Yunde; Zhou, Ji; Zhang, Jin; Lou, Yaqin; Huang, Zhenwu; Ye, Yong; Jia, Li; Tang, Bin
2018-05-01
Graphite-like carbon nitride (g-C3N4) nanosheets have been facilely assembled via electrostatic interaction onto cotton fabrics for achieving multi-functionalities. The surface morphologies, chemical composition and optical features of the g-C3N4-coated fabrics were characterized. The treated cotton fabrics exhibited remarkable photocatalytic degradation activity and superior self-cleaning performance. A complete degradation of Rhodamine B (RhB) and removal of stains were accomplished under simulated sunlight irradiation. More importantly, the modified fabrics can be reused in catalysis reactions with great durability. The practical treatment approach demonstrated from this work has great potential to be applied in textile industry for functional fabrics manufacture.
Li, Xue; Niitsoo, Olivia; Couzis, Alexander
2016-03-01
An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.
Flexible Electrostatic Technology for Capture and Handling Project
NASA Technical Reports Server (NTRS)
Keys, Andrew; Bryan, Tom; Horwitz, Chris; Rakoczy, John; Waggoner, Jason
2015-01-01
To NASA unfunded & planned missions: This new capability to sense proximity, flexibly align to, and attractively grip and capture practically any object in space without any pre-designed physical features or added sensors or actuators will enable or enhance many of MSFC's strategic emphasis areas in space transportation, and space systems such as: 1. A Flexible Electrostatic gripper can enable the capture, gripping and releasing of an extraterrestrial sample of different minerals or a sample canister (metallic or composite) without requiring a handle or grapple fixture.(B) 2. Flexible self-aligning in-space capture/soft docking or berthing of ISS resupply vehicles, pressurized modules, or nodes for in-space assembly and shielding, radiator, and solar Array deployment for space habitats (C) 3. The flexible electrostatic gripper when combined with a simple steerable extendible boom can grip, position, and release objects of various shapes and materials with low mass and power without any prior handles or physical accommodations or surface contamination for ISS experiment experiments and in-situ repair.(F)(G) 4. The Dexterous Docking concept previously proposed to allow simple commercial resupply ships to station-keep and capture either ISS or an Exploration vehicle for supply or fluid transfer lacked a self-sensing, compliant, soft capture gripper like FETCH that could retract and attach to a CBM. (I) 5. To enable a soft capture and de-orbit of a piece of orbital debris will require self-aligning gripping and holding an object wherever possible (thermal coverings or shields of various materials, radiators, solar arrays, antenna dishes) with little or no residual power while adding either drag or active low level thrust.(K) 6. With the scalability of the FETCH technology, small satellites can be captured and handled or can incorporate FETCH gripper to dock to and handle other small vehicles and larger objects for de-orbiting or mitigating Orbital debris (L) 7. Many of previous MSFC and NASA proposals or concepts can now be realized or simplified by the development of the this initial and future FETCH grippers including commercial resupply, Exploration vehicle assembly, Satellite servicing, and orbital debris removal since a major part of these missions is to align to and capture some handle. Completed Project (2013 - 2014) Flexible Electrostatic Technology for Capture & Handling Project Center Innovation Fund: MSFC CIF Program | Space Technology Mission Directorate (STMD) For more information visit techport.nasa.gov Some NASA technology projects are smaller (for example SBIR/STTR, NIAC and Center Innovation Fund), and will have less content than other, larger projects. Newly created projects may not sensors or injection of permanent adhesives. With gripping forces estimated between 0.5 and 2.5 pounds per square inch or 70-300 lb./sq. ft. of surface contact, the FETCH can turn-on and turn-off rapidly and repeatedly to enable sample handling, soft docking, in-space assembly, and precision relocation for accurate anchor adhesion.
Angular trapping of anisometric nano-objects in a fluid.
Celebrano, Michele; Rosman, Christina; Sönnichsen, Carsten; Krishnan, Madhavi
2012-11-14
We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.
NASA Astrophysics Data System (ADS)
Li, Cuiqin; Guo, Suyue; Lin, Zhiyu; Wang, Jun; Ge, Tengjie
2016-02-01
Two branched alkylamino-compounds (AAC, R12-0.5G, and R12-1.0G), were synthesized from dodecylamine, methyl acrylate and ethylenediamine. The surface tension measurements on branched alkylamino- compounds demonstrated that surface activity of R12-1.0G is superior to that of R12-0.5G at 25°C. It has been found that the self-assembly of R12-1.0G and lauric acid formed by electrostatic interaction and the self-assembly of the molecule might transfer water-soluble dyes from water to toluene. These AAC might be applied for treating dyes in wastewater. The mass ratio of lauric to toluene, the concentration of R12-1.0G, and hydrophilic groups of dyes affected the transfer rate of the water-soluble dyes. The transfer rates of the watersoluble dyes by R12-1.0G were higher than that of 1.0G polyacrylamide-acrylamide.
Clay induced aggregation of a tetra-cationic metalloporphyrin in Layer by Layer self assembled film
NASA Astrophysics Data System (ADS)
Banik, Soma; Bhattacharjee, J.; Hussain, S. A.; Bhattacharjee, D.
2015-12-01
Porphyrins have a general tendency to form aggregates in ultrathin films. Also electrostatic adsorption of cationic porphyrins onto anionic nano clay platelets results in the flattening of porphyrin moieties. The flattening is evidenced by the red-shifting of Soret band with respect to the aqueous solution. In the present communication, we have studied the clay induced aggregation behaviour of a tetra-cationic metalloporphyrin Manganese (III) 5, 10, 15, 20-tetra (4 pyridyl)-21 H, 23 H-porphine chloride tetrakis (methochloride) (MnTMPyP) in Layer-by-Layer (LbL) self assembled film. The adsorption of dye molecules onto nano clay platelets resulted in the flattening of the meso substituent groups of the dye chromophore. In Layer-by-Layer ultrathin film, the flattened porphyrin molecules tagged nano clay platelets were further associated to form porphyrin aggregates. This has been clearly demonstrated from the UV-vis absorption spectroscopic studies. Atomic Force Microscopic (AFM) studies gave visual evidence of the association of organo-clay hybrid molecules in the LbL film.
NASA Astrophysics Data System (ADS)
Eral, Burak; Mampallil Augustine, Dileep; Duits, Michel; Mugele, Frieder; Physics of Complex Fluids Group, University of Twente Team
2011-11-01
We study the influence of electrowetting on the evaporative self-assembly and formation of undesired solute residues, so-called coffee stains, during the evaporation of a drop containing non-volatile solvents. Electrowetting is found to suppress coffee stains of both colloidal particles of various sizes and DNA solutions at alternating (AC) frequencies ranging from a few Hertz to a few tens of kHz. Two main effects are shown to contribute to the suppression: (i) the time-dependent electrostatic force prevents pinning of the three phase contact line and (ii) internal flow fields generated by AC electrowetting counteract the evaporation driven flux and thereby prevent the accumulation of solutes along the contact line Please see the link below for a short presentation and movies: http://www.youtube.com/watch?v=xwipCVZnN4E We thank the Chemical Sciences division of the Netherlands Organization for Scientific Research (NWO-CW) for financial support (ECHO grant).
Photocontrolled reversible self-assembly of dodecamer nitrilase.
Yu, Qiao; Wang, Yong; Zhao, Shengyun; Ren, Yuhong
2017-01-01
Naturally photoswitchable proteins act as a powerful tool for the spatial and temporal control of biological processes by inducing the formation of a photodimerizer. In this study, a method for the precise and reversible inducible self-assembly of dodecamer nitrilase in vivo (in Escherichia coli ) and in vitro (in a cell-free solution) was developed by means of the photoswitch-improved light-inducible dimer (iLID) system which could induce protein-protein dimerization. Nitrilase was fused with the photoswitch protein AsLOV2-SsrA to achieve the photocontrolled self-assembly of dodecamer nitrilase. The fusion protein self-assembled into a supramolecular assembly when illuminated at 470 nm. Scanning electron microscopy showed that the assembly formed a circular sheet structure. Self-assembly was also induced by light in E. coli . Dynamic light scattering and turbidity assay experiments showed that the assemblies formed within a few seconds under 470-nm light and completely disassembled within 5 min in the dark. Assembly and disassembly could be maintained for at least five cycles. Both in vitro and in vivo, the assemblies retained 90% of the initial activity of nitrilase and could be reused at least four times in vitro with 90% activity. An efficient method was developed for the photocontrolled assembly and disassembly of dodecamer nitrilase and for scaffold-free reversible self-assembly of multiple oligomeric enzymes in vivo and in vitro, providing new ideas and methods for immobilization of enzyme without carrier.
NASA Astrophysics Data System (ADS)
Sinha, Tanur; Ahmaruzzaman, M.; Sil, A. K.; Bhattacharjee, Archita
2014-10-01
In this article, a cleaner, greener, cheaper and environment friendly method for the generation of self assembled silver nanoparticles (Ag NPs) applying a simple irradiation technique using the aqueous extract of the fish scales (which is considered as a waste material) of Labeo rohita is described. Gelatin is considered as the major ingredient responsible for the reduction as well as stabilisation of the self assembled Ag NPs. The size and morphology of the individual Ag NPs can be tuned by controlling the various reaction parameters, such as temperature, concentration, and pH. Studies showed that on increasing concentration and pH Ag NPs size decreases, while on increasing temperature, Ag NPs size increases. The present process does not need any external reducing agent, like sodium borohydride or hydrazine or others and gelatin itself can play a dual role: a ‘reducing agent' and ‘stabilisation agent' for the formation of gelatin-Ag NPs colloidal dispersion. The synthesized Ag NPs were characterised by Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscopy (TEM) and Selected area electron diffraction (SAED) analyses. The synthesized Ag NPs was used to study the catalytic reduction of various aromatic nitro compounds in aqueous and three different micellar media. The hydrophobic and electrostatic interaction between the micelle and the substrate is responsible for the catalytic activity of the nanoparticles in micelle.
Ma, Hongmin; Hao, Jingcheng
2011-11-01
Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011
Jia, Nengqin; Lian, Qiong; Tian, Zhong; Duan, Xin; Yin, Min; Jing, Lihong; Chen, Shouhui; Shen, Hebai; Gao, Mingyuan
2010-01-29
Novel multi-color fluorescent nanoprobes were prepared by electrostatically assembling differently sized CdTe quantum dots on polyethylenimine (PEI) functionalized multi-walled carbon nanotubes (MWNTs). The structural and optical properties of the nano-assemblies (MWNTs-PEI-CdTe) were characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectroscopy, confocal microscopy and photoluminescence spectroscopy (PL), respectively. Electrochemical impedance spectroscopy (EIS) was also applied to investigate the electrostatic assembling among oxidized MWNTs, PEI and CdTe. Furthermore, confocal fluorescence microscopy was used to monitor the nano-assemblies' delivery into tumor cells. It was found that the nano-assemblies exhibit efficient intracellular transporting and strong intracellular tracking. These properties would make this luminescent nano-assembly an excellent building block for the construction of intracellular nanoprobes, which could hold great promise for biomedical applications.
Jiang, Bin; Dong, Pei; Zheng, Jianbin
2018-06-01
Using an ionic layer-by-layer self-assembly technique, colloidal gold nanoparticles (AuNPs) and diazo-resins (DAR) were immobilised on the surface of a p-aminobenzenesulfonic acid-modified glassy carbon electrode to form a matrix composite membrane for acetylcholinesterase (AChE) immobilisation. Photo-sensitive DAR was used as the assembly interlayer to convert the ionic bond into a covalent bond to improve the biosensor stability. These fabrication processes were followed by electrochemical impedance spectroscopy and cyclic voltammetry to verify the membrane formation. Because of the introduction of AuNPs/DAR/AChE biofilms, the modified electrode exhibited excellent electron transfer mediation and electrical conductivity. In addition, it exhibited high sensitivity in the range of linear concentration from 1.0 × 10 -8 to 1.0 × 10 -12 g L -1 with the detection limit of 5.12 × 10 -13 and 5.85 × 10 -13 g L -1 for malathion and methyl parathion, respectively. More importantly, the presented biosensor considerably improved stability because the electrostatic interaction was converted into covalent bonds by UV irradiation. It is a simple, cheap and stable method for quantitative detection of organophosphorus pesticides, and this method may pave a way for the sensitive, simple detection of different analytes without the need of expensive instrumentation. Copyright © 2018 Elsevier B.V. All rights reserved.
Diversification of Protein Cage Structure Using Circularly Permuted Subunits.
Azuma, Yusuke; Herger, Michael; Hilvert, Donald
2018-01-17
Self-assembling protein cages are useful as nanoscale molecular containers for diverse applications in biotechnology and medicine. To expand the utility of such systems, there is considerable interest in customizing the structures of natural cage-forming proteins and designing new ones. Here we report that a circularly permuted variant of lumazine synthase, a cage-forming enzyme from Aquifex aeolicus (AaLS) affords versatile building blocks for the construction of nanocompartments that can be easily produced, tailored, and diversified. The topologically altered protein, cpAaLS, self-assembles into spherical and tubular cage structures with morphologies that can be controlled by the length of the linker connecting the native termini. Moreover, cpAaLS proteins integrate into wild-type and other engineered AaLS assemblies by coproduction in Escherichia coli to form patchwork cages. This coassembly strategy enables encapsulation of guest proteins in the lumen, modification of the exterior through genetic fusion, and tuning of the size and electrostatics of the compartments. This addition to the family of AaLS cages broadens the scope of this system for further applications and highlights the utility of circular permutation as a potentially general strategy for tailoring the properties of cage-forming proteins.
Ionochromic 4,4 '-azobispyridinium salt-incorporated polymer: synthesis and optical properties
NASA Astrophysics Data System (ADS)
Lee, Taek Seung; Ahn, Heungki; Lee, Jin Kyun; Park, Won Ho
2003-01-01
Azobispyridinium-bearing polyelectrolyte linked with flexible alkyl chain was synthesized and characterized. The polymer showed absorption changes upon addition of hydroxide anion with an isobestic point in UV-visible spectrum. It is presumed that conformational change of the azo group in the main chain is responsible for the point. Transduction of physical information (hydroxide concentration) into an optical signal from azo group was related to the ionochromic effect. Electrostatic self-assembled multilayer of the polymer with appropriate polyanion was carried out via layer-by-layer deposition.
2017-01-01
Solvation is a fundamental driving force in many biological processes including biomolecular recognition and self-assembly, not to mention protein folding, dynamics, and function. The variational implicit solvent method (VISM) is a theoretical tool currently developed and optimized to estimate solvation free energies for systems of very complex topology, such as biomolecules. VISM’s theoretical framework makes it unique because it couples hydrophobic, van der Waals, and electrostatic interactions as a functional of the solvation interface. By minimizing this functional, VISM produces the solvation interface as an output of the theory. In this work, we push VISM to larger scale applications by combining it with coarse-grained solute Hamiltonians adapted from the MARTINI framework, a well-established mesoscale force field for modeling large-scale biomolecule assemblies. We show how MARTINI-VISM (MVISM) compares with atomistic VISM (AVISM) for a small set of proteins differing in size, shape, and charge distribution. We also demonstrate MVISM’s suitability to study the solvation properties of an interesting encounter complex, barnase–barstar. The promising results suggest that coarse-graining the protein with the MARTINI force field is indeed a valuable step to broaden VISM’s and MARTINI’s applications in the near future. PMID:28613904
Rapid self-assembly of DNA on a microfluidic chip
Zheng, Yao; Footz, Tim; Manage, Dammika P; Backhouse, Christopher James
2005-01-01
Background DNA self-assembly methods have played a major role in enabling methods for acquiring genetic information without having to resort to sequencing, a relatively slow and costly procedure. However, even self-assembly processes tend to be very slow when they rely upon diffusion on a large scale. Miniaturisation and integration therefore hold the promise of greatly increasing this speed of operation. Results We have developed a rapid method for implementing the self-assembly of DNA within a microfluidic system by electrically extracting the DNA from an environment containing an uncharged denaturant. By controlling the parameters of the electrophoretic extraction and subsequent analysis of the DNA we are able to control when the hybridisation occurs as well as the degree of hybridisation. By avoiding off-chip processing or long thermal treatments we are able to perform this hybridisation rapidly and can perform hybridisation, sizing, heteroduplex analysis and single-stranded conformation analysis within a matter of minutes. The rapidity of this analysis allows the sampling of transient effects that may improve the sensitivity of mutation detection. Conclusions We believe that this method will aid the integration of self-assembly methods upon microfluidic chips. The speed of this analysis also appears to provide information upon the dynamics of the self-assembly process. PMID:15717935
Ionic self-assembly for functional hierarchical nanostructured materials.
Faul, Charl F J
2014-12-16
CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons, specifically deoxyguanosine monophosphate. This approach proved, in combination with block copolymer (BCP) self-assembly, very fruitful for the construction of complex and hierarchical functional materials across multiple length scales. Molecular frustration and incommensurability, which played a major role in structure formation in combination with nucleotide assembly, have now become important tools to tune supramolecular structure formation. These concepts, that is, the use of BCP assembly and incommensurability, in combination with metal-containing polymeric materials, have provided access to novel supramolecular morphologies and, more importantly, design rules to prepare such constructs. These design rules are now also being applied to the assembly of electroactive oligo(aniline)-based materials for the preparation of highly ordered functional soft materials, and present an opportunity for materials development for applications in energy storage. In this Account, we therefore discuss investigations into (i) the inclusion and preparation of supramolecular photoactive and electroactive materials; (ii) the exploitation and control over multiple noncovalent interactions to fine-tune function, internal structure, and long-range order and (iii) exploration of construction over multiple length scales by combination of ISA with well-known BCP self-assembly. Combination of ISA with tuning of volume fractions, mutual compatibility, and molecular frustration now provides a versatile tool kit to construct complex and hierarchical functional materials in a facile noncovalent way. A direct challenge for future ISA activities would certainly be the construction of functional mesoscale objects. However, within a broader scientific context, the challenge would be to exploit this powerful assembly tool for application in areas of research with societal impact, for example, energy storage and generation. The hope is that this Account will provide a platform for such future research activities and opportunities.
The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Sarah; Li, Yue; Priftis, Dimitrios
2014-06-01
Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specificmore » interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.« less
Ion source for high-precision mass spectrometry
Todd, P.J.; McKown, H.S.; Smith, D.H.
1982-04-26
The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.
Schiffels, Daniel; Szalai, Veronika A; Liddle, J Alexander
2017-07-25
Robust self-assembly across length scales is a ubiquitous feature of biological systems but remains challenging for synthetic structures. Taking a cue from biology-where disparate molecules work together to produce large, functional assemblies-we demonstrate how to engineer microscale structures with nanoscale features: Our self-assembly approach begins by using DNA polymerase to controllably create double-stranded DNA (dsDNA) sections on a single-stranded template. The single-stranded DNA (ssDNA) sections are then folded into a mechanically flexible skeleton by the origami method. This process simultaneously shapes the structure at the nanoscale and directs the large-scale geometry. The DNA skeleton guides the assembly of RecA protein filaments, which provides rigidity at the micrometer scale. We use our modular design strategy to assemble tetrahedral, rectangular, and linear shapes of defined dimensions. This method enables the robust construction of complex assemblies, greatly extending the range of DNA-based self-assembly methods.
Simple control of surface topography of gold nanoshells by a surfactant-less seeded-growth method.
Topete, Antonio; Alatorre-Meda, Manuel; Villar-Álvarez, Eva M; Cambón, Adriana; Barbosa, Silvia; Taboada, Pablo; Mosquera, Víctor
2014-07-23
We report the synthesis of branched gold nanoshells (BGNS) through a seeded-growth surfactant-less method. This was achieved by decorating chitosan-Pluronic F127 stabilized poly(lactic-co-gycolic) acid nanoparticles (NPs) with Au seeds (NP-seed), using chitosan as an electrostatic self-assembling agent. Branched shells with different degrees of anisotropy and optical response were obtained by modulating the ratios of HAuCl4/K2CO3 growth solution, ascorbic acid (AA) and NP-seed precursor. Chitosan and AA were crucial in determining the BGNS size and structure, acting both as coreductants and structure directing growth agents. Preliminary cytotoxicity experiments point to the biocompatibility of the obtained BGNS, allowing their potential use in biomedical applications. In particular, these nanostructures with "hybrid" compositions, which combine the features of gold nanoshells and nanostars showed a better performance as surface enhanced Raman spectroscopy probes in detecting intracellular cell components than classical smoother nanoshells.
O'Neal, Joshua T; Dai, Ethan Y; Zhang, Yanpu; Clark, Kyle B; Wilcox, Kathryn G; George, Ian M; Ramasamy, Nandha E; Enriquez, Daisy; Batys, Piotr; Sammalkorpi, Maria; Lutkenhaus, Jodie L
2018-01-23
Polyelectrolyte multilayers and layer-by-layer assemblies are susceptible to structural changes in response to ionic environment. By altering the salt type and ionic strength, structural changes can be induced by disruption of intrinsically bound ion pairs within the multilayer network via electrostatic screening. Notably, high salt concentrations have been used for the purposes of salt-annealing and self-healing of LbL assemblies with KBr, in particular, yielding a remarkably rapid response. However, to date, the structural and swelling effects of various monovalent ion species on the behavior of LbL assemblies remain unclear, including a quantitative view of ion content in the LbL assembly and thickness changes over a wide concentration window. Here, we investigate the effects of various concentrations of KBr (0 to 1.6 M) on the swelling and de-swelling of LbL assemblies formed from poly(diallyldimethylammonium) polycation (PDADMA) and poly(styrene sulfonate) polyanion (PSS) in 0.5 M NaCl using quartz-crystal microbalance with dissipation (QCM-D) monitoring as compared to KCl, NaBr, and NaCl. The ion content after salt exchange is quantified using neutron activation analysis (NAA). Our results demonstrate that Br - ions have a much greater effect on the structure of as-prepared thin films than Cl - at ionic strengths above assembly conditions, which is possibly caused by the more chaotropic nature of Br - . It is also found that the anion in general dominates the swelling response as compared to the cation because of the excess PDADMA in the multilayer. Four response regimes are identified that delineate swelling due to electrostatic repulsion, slight contraction, swelling due to doping, and film destruction as ionic strength increases. This understanding is critical if such materials are to be used in applications requiring submersion in chemically dynamic environments such as sensors, coatings on biomedical implants, and filtration membranes.
NASA Astrophysics Data System (ADS)
Poursina, Mohammad; Anderson, Kurt S.
2014-08-01
This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.
Anisotropic nanocolloids: self-assembly, interfacial adsorption, and electrostatic screening
NASA Astrophysics Data System (ADS)
de Graaf, J.
2012-06-01
In this thesis we consider the influence of anisotropy on the behaviour of colloids using theory and simulations. The recent increase in the ability to synthesize anisotropic particles (cubes, caps, octapods, etc.) has led to samples of sufficient quality to perform self-assembly experiments. Our investigation is therefore particularly relevant to current and future experimental studies of colloids. We examine several topics for which shape anisotropy plays an important role: (1.) - Interfacial adsorption. We introduced the triangular-tessellation technique to approximate the surface areas and line length which are associated with a plane-particle intersection. Our method allowed us to determine the free energy of adsorption for a single irregular colloid with heterogeneous surface properties adsorbed at a flat liquid-liquid interface in the Pieranski approximation. Ellipsoids only adsorbed at the interface perpendicular to the interfacial normal. However, for cylinders we could find a metastable adsorption minimum corresponding to parallel adsorption. We also considered the possible time dependence of the adsorption process using simple dynamics. Finally, we studied the adsorption of truncated nanocubes with a contact-angle surface pattern and we observed that there are three prototypical equilibrium adsorption configurations for these particles. (2.) - Crystal-structure prediction. We extended an existing crystal-structure-prediction algorithm to predict structures for systems comprised of irregular hard particles. Using this technique we examined the high-density crystal structures for 17 irregular nonconvex shapes and we confirmed several mathematical conjectures for the packings of a large set of 142 convex polyhedra. We also proved that we have obtained the densest configurations for rhombicuboctahedra and rhombic enneacontrahedra, respectively. Moreover, we considered a family of truncated cubes, which interpolates between a cube and an octahedron, for which we obtained a fascinating richness in crystal structures. For the octahedron we determined the equation of state and we obtained a liquid, a (metastable) body-centred-cubic rotator phase, and a crystal phase. (3.) - Octapod hierarchical self-assembly. We analysed the recently observed hierarchical self-assembly of octapod-shaped nanocrystals (octapods) into three-dimensional (3D) superstructures. We constructed an empirical simulation model capable of reproducing the initial chain-formation step of the self-assembly. The van-der-Waals (vdW) interactions between octapods suspended in an (a)polar medium were obtained by means of a Hamaker-de-Boer-type integration and the nature of these interactions allowed us to justify elements of our empirical model. We used the theoretical vdW calculation, together with the experimental and simulation results, to formulate a mechanism which explained the observed self-assembly in terms of the solvent-dependence and directionality of the octapod-octapod interactions. (4.) - Ionic screening of charged Janus particles. We studied the screening of charged Janus particles in an electrolyte by primitive-model Monte Carlo (MC) simulations for a wide variety of parameters. We also introduced a method to compare these results to the predictions of nonlinear Poisson-Boltzmann (PB) theory. The comparison of MC and PB results allowed us to probe the range of validity of the PB approximation. This range of validity corresponds well to the range that was predicted by field-theoretical studies of homogeneously charged flat surfaces.
Behl, Gautam; Kumar, Parveen; Sikka, Manisha; Fitzhenry, Laurence; Chhikara, Aruna
2018-03-01
Polymeric self-assemblies formed by non-covalent interactions such as hydrophobic interactions, hydrogen bonding, π-π stacking, host-guest and electrostatic interactions have been utilised widely and exhibit controlled release of encapsulated drug. Beside carrier-carrier interactions, small molecule amphiphiles exhibiting carrier-drug interactions have recently been an area of interest for cancer drug delivery, as most of the hydrophobic anti-tumour drugs are aromatic and exhibit π-π conjugated structure. In the present study PEG-coumarin (PC) conjugates forming self-assembled nanoaggregates were synthesised with PEG (polyethylene glycol) as hydrophilic block and coumarin as small molecule lipophilic segment. Curcumin (CUR) as model conjugated aromatic drug was loaded in to the nanoaggregates via dual hydrophobic and π-π stacking interactions. The interactions between the conjugates and CUR, drug release profile and in vitro anti-tumour efficacy were investigated in detail. CUR-loaded nanoaggregate self-assembly was driven by π-π interactions and a maximum loading level of about 18 wt.% (~60 % encapsulation efficiency) was achieved. The average hydrodynamic diameter (D av ) was in the range of 120-160 nm and a spherical morphology was observed by transmission electron microscopy (TEM). A sustained release of CUR was observed for 90 h. Cytotoxicity evaluation of CUR-loaded nanoaggregates on pancreatic cancer cell lines indicated higher efficacy, IC 50 ~11 and ~15 μM as compared to free CUR, IC 50 ~14 and ~20 μM on human pancreatic carcinoma (MIA PaCa-2) and human pancreatic duct epithelioid carcinoma (PANC-1) cell lines respectively. PC conjugates provided a new strategy of fabricating nanoparticles for drug delivery and may form the basis for the development of advanced biomaterials in near future.
Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev
2010-01-01
In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles. PMID:20559513
Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev
2010-05-25
In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles.
TOPICAL REVIEW: Self-assembly from milli- to nanoscales: methods and applications
NASA Astrophysics Data System (ADS)
Mastrangeli, M.; Abbasi, S.; Varel, C.; Van Hoof, C.; Celis, J.-P.; Böhringer, K. F.
2009-08-01
The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed.
Self-assembly from milli- to nanoscales: methods and applications
Mastrangeli, M; Abbasi, S; Varel, C; Van Hoof, C; Celis, J-P; Böhringer, K F
2009-01-01
The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. PMID:20209016
Superhydrogels of nanotubes capable of capturing heavy-metal ions.
Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng
2014-01-01
Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Xing-Hua; Xi, Feng-Na; Zhang, Yi-Ming; Lin, Xian-Fu
2011-06-01
A simple and controllable layer-by-layer (LBL) assembly method was proposed for the construction of reagentless biosensors based on electrostatic interaction between functional multiwall carbon nanotubes (MWNTs) and enzyme-mediator biocomposites. The carboxylated MWNTs were wrapped with polycations poly(allylamine hydrochloride) (PAH) and the resulting PAH-MWNTs were well dispersed and positively charged. As a water-soluble dye methylene blue (MB) could mix well with horseradish peroxidase (HRP) to form a biocompatible and negatively-charged HRP-MB biocomposite. A (PAH-MWNTs/HRP-MB)(n) bionanomultilayer was then prepared by electrostatic LBL assembly of PAH-MWNTs and HRP-MB on a polyelectrolyte precursor film-modified Au electrode. Due to the excellent biocompatibility of HRP-MB biocomposite and the uniform LBL assembly, the immobilized HRP could retain its natural bioactivity and MB could efficiently shuttle electrons between HRP and the electrode. The incorporation of MWNTs in the bionanomultilayer enhanced the surface coverage concentration of the electroactive enzyme and increased the catalytic current response of the electrode. The proposed biosensor displayed a fast response (2 s) to hydrogen peroxide with a low detection limit of 2.0×10⁻⁷ mol/L (S/N=3). This work provided a versatile platform in the further development of reagentless biosensors.
Waveguide electro-optic modulators based on intrinsically polar self-assembled superlattices (SASs)
NASA Astrophysics Data System (ADS)
Liu, Zhifu; Ho, Seng Tiong; Chang, Seongsik; Zhao, Yiguang; Marks, Tobin J.; Kang, Hu; van der Boom, Milko E.; Zhu, Peiwang
2002-12-01
In this paper we describe methods of fabricating and characterizing organic electro-optic modulators based on intrinsically polar self-assembled superlattices. These structures are intrinsically acentric, and exhibit large second harmonic generation and electro-optic responses without the requirement of poling by an external electric field. A novel wet chemical protection-deprotection approach for the growth of self-assembled superlattices have been developed, and the refractive indices of self-assembled organic electro-optic superlattices may be tuned during the self-assembly process. Prototype electro-optic modulators based on chromophoric self-assembled superlattices have been designed and fabricated. The effective electro-optic coefficient of the self-assembled superlattice film in a phase modulator is estimated as about 20 pm/V at a wavelength of 1064 nm.
NASA Astrophysics Data System (ADS)
Zahid, F.; Paulsson, M.; Polizzi, E.; Ghosh, A. W.; Siddiqui, L.; Datta, S.
2005-08-01
We present a transport model for molecular conduction involving an extended Hückel theoretical treatment of the molecular chemistry combined with a nonequilibrium Green's function treatment of quantum transport. The self-consistent potential is approximated by CNDO (complete neglect of differential overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode configurations employing only a single adjustable parameter to locate the Fermi energy. As this model is based on semiempirical methods it is computationally inexpensive and flexible compared to ab initio models, yet at the same time it is able to capture salient qualitative features as well as several relevant quantitative details of transport. We apply our model to investigate recent experimental data on alkane dithiol molecules obtained in a nanopore setup. We also present a comparison study of single molecule transistors and identify electronic properties that control their performance.
NASA Astrophysics Data System (ADS)
Delfino, I.; Bonanni, B.; Andolfi, L.; Baldacchini, C.; Bizzarri, A. R.; Cannistraro, S.
2007-06-01
Various aspects of redox protein integration with nano-electronic elements are addressed by a multi-technique investigation of different yeast cytochrome c (YCC)-based hybrid systems. Three different immobilization strategies on gold via organic linkers are explored, involving either covalent bonding or electrostatic interaction. Specifically, Au surfaces are chemically modified by self-assembled monolayers (SAMs) exposing thiol-reactive groups, or by acid-oxidized single-wall carbon nanotubes (SWNTs). Atomic force microscopy and scanning tunnelling microscopy are employed to characterize the morphology and the electronic properties of single YCC molecules adsorbed on the modified gold surfaces. In each hybrid system, the protein molecules are stably assembled, in a native configuration. A standing-up arrangement of YCC on SAMs is suggested, together with an enhancement of the molecular conduction, as compared to YCC directly assembled on gold. The electrostatic interaction with functionalized SWNTs allows several YCC adsorption geometries, with a preferential high-spin haem configuration, as outlined by Raman spectroscopy. Moreover, the conduction properties of YCC, explored in different YCC nanojunctions by conductive atomic force microscopy, indicate the effectiveness of electrical conduction through the molecule and its dependence on the electrode material. The joint employment of several techniques confirms the key role of a well-designed immobilization strategy, for optimizing biorecognition capabilities and electrical coupling with conductive substrates at the single-molecule level, as a starting point for advanced applications in nano-biotechnology.
NASA Astrophysics Data System (ADS)
Nandiyanto, Asep Bayu Dani
2016-02-01
When synthesizing particles using a liquid-phase synthesis method, reactant components show interaction with the reaction system itself. However, current reports described successful synthesis of material with only partial information on the component-component interaction and possible self-assembly mechanism occurring during the material synthesis process. Here, self-assembly concepts in the formation of nanostructured particles are presented. Influences of self-assembly parameters (i.e., surface charge, size, and concentration of components involving the reaction) on self-organized material fabrication are described. Because understanding the interaction of the component provides significant information in regard to practical uses, this report can be relevant to further material development and fabrication.
Nanoporous polymer electrolyte
Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO
2012-04-24
A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.
NASA Astrophysics Data System (ADS)
Ma, Yuhang; Jiang, Ranran; Li, Dan; Dong, Yutao; Liu, Yushan; Zhang, Jianmin
2018-05-01
Ultrafine ZnSnO3 nanoparticles, with an average diameter of 45 nm, homogeneously grown on reduced graphene oxide (rGO) have been successfully fabricated via methods of low temperature coprecipitation, colloid electrostatic self-assembly, and hydrothermal treatment. The uniformly distributed ZnSnO3 nanocrystals could inhibit the restacking of rGO sheets. In turn, the existence of rGO could hinder the growth and aggregation of ZnSnO3 nanoparticles in the synthesis process, increase the conductivity of the composite, and buffer the volume expansion of the ZnSnO3 nanocrystals upon lithium ion insertion and extraction. The obtained ZnSnO3/rGO exhibited superior cycling stability with a discharge/charge capacity of 718/696 mA h g-1 after 100 cycles at a current density of 0.1 A g-1.
Zheng, Yuanhui; Soeriyadi, Alexander H.; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J.
2015-01-01
Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539
Rodgers, M. Steven; Sniegowski, Jeffry J.; Miller, Samuel L.; McWhorter, Paul J.
2000-01-01
A process for forming complex microelectromechanical (MEM) devices having five layers or levels of polysilicon, including four structural polysilicon layers wherein mechanical elements can be formed, and an underlying polysilicon layer forming a voltage reference plane. A particular type of MEM device that can be formed with the five-level polysilicon process is a MEM transmission for controlling or interlocking mechanical power transfer between an electrostatic motor and a self-assembling structure (e.g. a hinged pop-up mirror for use with an incident laser beam). The MEM transmission is based on an incomplete gear train and a bridging set of gears that can be moved into place to complete the gear train to enable power transfer. The MEM transmission has particular applications as a safety component for surety, and for this purpose can incorporate a pin-in-maze discriminator responsive to a coded input signal.
Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly
Moore, Tyler G.; Garzon, Max H.; Deaton, Russell J.
2015-01-01
Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are “strong” assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly systems in the literature. PMID:26421616
NASA Astrophysics Data System (ADS)
Mieloch, Adam A.; Krecisz, Monika; Rybka, Jakub D.; Strugała, Aleksander; Krupiński, Michał; Urbanowicz, Anna; Kozak, Maciej; Skalski, Bohdan; Figlerowicz, Marek; Giersig, Michael
2018-03-01
Virus-like particles (VLPs) have sparked a great interest in the field of nanobiotechnology and nanomedicine. The introduction of superparamagnetic nanoparticles (SPIONs) as a core, provides potential use of VLPs in the hyperthermia therapy, MRI contrast agents and magnetically-powered delivery agents. Magnetite NPs also provide a significant improvement in terms of VLPs stability. Moreover employing viral structural proteins as self-assembling units has opened a new paths for targeted therapy, drug delivery systems, vaccines design, and many more. In many cases, the self-assembly of a virus strongly depends on electrostatic interactions between positively charged groups of the capsid proteins and negatively charged nucleic acid. This phenomenon imposes the negative net charge as a key requirement for the core nanoparticle. In our experiments, Brome mosaic virus (BMV) capsid proteins isolated from infected plants Hordeum vulgare were used. Superparamagnetic iron oxide nanoparticles (Fe3O4) with 15 nm in diameter were synthesized by thermal decomposition and functionalized with COOH-PEG-PL polymer or dihexadecylphosphate (DHP) in order to provide water solubility and negative charge required for the assembly. Nanoparticles were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transformed Infrared Spectroscopy (FTIR) and Superconducting Quantum Interference Device (SQUID) magnetometry. TEM and DLS study were conducted to verify VLPs creation. This study demonstrates that the increase of negative surface charge is not a sufficient factor determining successful assembly. Additional steric interactions provided by longer ligands are crucial for the assembly of BMV SPION VLPs and may enhance the colloidal stability.
Submolecular Gates Self-Assemble for Hot-Electron Transfer in Proteins.
Filip-Granit, Neta; Goldberg, Eran; Samish, Ilan; Ashur, Idan; van der Boom, Milko E; Cohen, Hagai; Scherz, Avigdor
2017-07-27
Redox reactions play key roles in fundamental biological processes. The related spatial organization of donors and acceptors is assumed to undergo evolutionary optimization facilitating charge mobilization within the relevant biological context. Experimental information from submolecular functional sites is needed to understand the organization strategies and driving forces involved in the self-development of structure-function relationships. Here we exploit chemically resolved electrical measurements (CREM) to probe the atom-specific electrostatic potentials (ESPs) in artificial arrays of bacteriochlorophyll (BChl) derivatives that provide model systems for photoexcited (hot) electron donation and withdrawal. On the basis of computations we show that native BChl's in the photosynthetic reaction center (RC) self-assemble at their ground-state as aligned gates for functional charge transfer. The combined computational and experimental results further reveal how site-specific polarizability perpendicular to the molecular plane enhances the hot-electron transport. Maximal transport efficiency is predicted for a specific, ∼5 Å, distance above the center of the metalized BChl, which is in remarkably close agreement with the distance and mutual orientation of corresponding native cofactors. These findings provide new metrics and guidelines for analysis of biological redox centers and for designing charge mobilizing machines such as artificial photosynthesis.
NASA Astrophysics Data System (ADS)
Gaudet, Ian Daniel
Development of functional soft-tissue engineered constructs for use in regenerative medicine is currently limited by homogeneity within scaffolds that fails to recapitulate the complex architecture that supports normal function in healthy tissues. Additionally, recent breakthroughs in our understanding the biomechanical cell-matrix interface have provided insight into the role of substrate compliance during development and in the pathophysiological environment. This thesis is the result of investigation into using type-I collagen as a base material for creating dynamic, self-assembling, mechanically and biochemically tunable 3D hydrogel scaffolds into which instructive cellular cues can be imparted anisotropically via the directed application of light. This overarching goal was approached by (1) evaluating extant methods for photonically manipulating type I collagen mechanical properties, which led us to the conclusion that published methods were inadequate for our purposes. Following this realization, we (2) developed a novel process for derivatizing free amines on collagen amino acid residues to reactive methacrylamide moieties, allowing robust spatiotemporal control of mechanical properties through photocrosslinking with long-wave UV light and the water-soluble photoinitiator Irgacure 2959. Thorough characterization of this material, collagen methacrylamide (CMA), provided the basis for multiple applications in the field of soft tissue engineering. Additionally, (3) CMA was used in conjunction with synthetic photopolymers in an effort to create a hybrid natural/synthetic hydrogel material. CMA was also (4) employed as a dynamic hydrogel scaffold which we showed could be used to culture a number of neurogenic stem and progenitor cell types with a focus on using photomodulation to impart instructive heterogeneity to the mechanical and biochemical microenvironment. Finally, (5) we used a computational modeling approach to explain interesting yet poorly understood material phenomena exhibited by CMA observed during characterization. Using sequence and structure based models of an optimized triple helical segment of type-I collagen, we obtained valuable insight into the role of amino acid electrostatic interactions in CMA thermodynamic behavior as well as in the context of understanding the biophysical mechanisms of native type I collagen self-assembly and stability.
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A.; Liu, Aihua
2014-10-01
Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm2. The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.
Hassan, Sergio A
2012-08-21
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
NASA Astrophysics Data System (ADS)
Hassan, Sergio A.
2012-08-01
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
Hassan, Sergio A.
2012-01-01
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response. PMID:22920098
Denadai, Angelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S; Sinisterra, Rubén D
2012-01-01
Organic-inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr(3+) and Cr(2)O(7) (2-) ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer-Emmett-Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn.
Choi, U Hyeok; Park, Ji Hun; Kim, Jaekyun
2018-06-21
Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sackett, S.J.
JASON solves general electrostatics problems having either slab or cylindrical symmetry. More specifically, it solves the self-adjoint elliptic equation, div . (KgradV) - ..gamma..V + rho = 0 in an aritrary two-dimensional domain. For electrostatics, V is the electrostatic potential, K is the dielectric tensor, and rho is the free-charge density. The parameter ..gamma.. is identically zero for electrostatics but may have a positive nonzero value in other cases (e.g., capillary surface problems with gravity loading). The system of algebraic equations used in JASON is generated by the finite element method. Four-node quadrilateral elements are used for most of themore » mesh. Triangular elements, however, are occasionally used on boundaries to avoid severe mesh distortions. 15 figures. (RWR)« less
Peptide adsorption to cyanine dye aggregates revealed by cryo-transmission electron microscopy.
von Berlepsch, Hans; Brandenburg, Enrico; Koksch, Beate; Böttcher, Christoph
2010-07-06
The binding interaction between aggregates of the 5-chloro-2-[[5-chloro-3-(3-sulfopropyl)-3H-benzothiazol-2-ylidene]methyl]-3-(3-sulfopropyl)benzothiazolium hydroxide inner salt ammonium salt (CD-1) and alpha-helix, as well as beta-sheet forming de novo designed peptides, was investigated by absorption spectroscopy, circular dichroism spectroscopy, and cryogenic transmission electron microscopy. Both pure dye and pure peptides self-assembled into well-defined supramolecular assemblies in acetate buffer at pH = 4. The dye formed sheetlike and tubular H- and J-aggregates and the peptides alpha-helical coiled-coil assemblies or beta-sheet rich fibrils. After mixing dye and peptide solutions, tubular aggregates with an unusual ultrastructure were found, most likely due to the decoration of dye tubes with monolayers of peptide assemblies based on the strong electrostatic attraction between the oppositely charged species. There was neither indication of a transfer of chirality from the peptides to the dye aggregates nor the opposite effect of a structural transfer from dye aggregates onto the peptides secondary structure.
Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control.
Jiang, Tao; Vail, Owen A; Jiang, Zhigang; Zuo, Xiaobing; Conticello, Vincent P
2015-06-24
Two collagen-mimetic peptides, CP(+) and CP(-), are reported in which the sequences comprise a multiblock architecture having positively charged N-terminal (Pro-Arg-Gly)3 and negatively charged C-terminal (Glu-Hyp-Gly)3 triad extensions, respectively. CP(+) rapidly self-associates into positively charged nanosheets based on a monolayer structure. In contrast, CP(-) self-assembles to form negatively charged monolayer nanosheets at a much slower rate, which can be accelerated in the presence of calcium(II) ion. A 2:1 mixture of unassociated CP(-) peptide with preformed CP(+) nanosheets generates structurally defined triple-layer nanosheets in which two CP(-) monolayers have formed on the identical surfaces of the CP(+) nanosheet template. Experimental data from electrostatic force microscopy (EFM) image analysis, zeta potential measurements, and charged nanoparticle binding assays support a negative surface charge state for the triple-layer nanosheets, which is the reverse of the positive surface charge state observed for the CP(+) monolayer nanosheets. The electrostatic complementarity between the CP(+) and CP(-) triple helical cohesive ends at the layer interfaces promotes a (CP(-)/CP(+)/CP(-)) compositional gradient along the z-direction of the nanosheet. This structurally informed approach represents an attractive strategy for the fabrication of two-dimensional nanostructures with compositional control.
Proton Electrostatic Analyzer.
1983-02-01
Detector Assembly ......................................... 11 2.2 Analyzer (Energy Selector) Assembly............................ 12 2.3 Collimator...Spectrometer assembly ........................................ 13 2.2 Base plate .................................................. 14 - ~ 2.3 Detector ... sensitive vehicle systems. Space objects undergo differential charging due to variations in physical properties among their surface regions. The rate and
A novel electrostatic precipitator
NASA Astrophysics Data System (ADS)
Tang, Minkang; Wang, Liqian; Lin, Zhigui
2013-03-01
ESP (Electrostatic Precipitation) has been widely used in the mining, building materials, metallurgy and power industries. Dust particles or other harmful particles from the airstream can be precipitated by ESP with great collecting efficiency. Because of its' large size, high cost and energy consumption, the scope of application of ESP has been limited to a certain extent. By means of the theory of electrostatics and fluid dynamics, a corona assembly with a self-cleaning function and a threshold voltage automatic tracking technology has been developed and used in ESP. It is indicated that compared with conventional ESP, the electric field length has been reduced to 1/10 of the original, the current density on the collecting electrode increased 3-5 times at the maximum, the approach speed of dust particles in the electric field towards the collecting electrode is 4 times that in conventional ESP and the electric field wind speed may be enhanced by 2-3 times the original. Under the premise of ESP having a high efficiency of dust removal, equipment volume may be actually reduced to 1/5 to 1/10 of the original volume and energy consumption may be reduced by more than 50%.
Quantitative computational models of molecular self-assembly in systems biology
Thomas, Marcus; Schwartz, Russell
2017-01-01
Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally. PMID:28535149
Quantitative computational models of molecular self-assembly in systems biology.
Thomas, Marcus; Schwartz, Russell
2017-05-23
Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.
Self-Assembled Materials Made from Functional Recombinant Proteins.
Jang, Yeongseon; Champion, Julie A
2016-10-18
Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on the surface and can also carry protein, small-molecule, or nanoparticle cargo in the vesicle lumen. To create a material with a more complex hierarchical structure, we combined calcium phosphate with zipper fusion proteins containing random coil polypeptides to produce hybrid protein-inorganic supraparticles with high surface area and porous structure. The use of a functional enzyme created supraparticles with the ability to degrade inflammatory cytokines. Our characterization of these protein materials revealed that the molecular interactions are complex because of the large size of the protein building blocks, their folded structures, and the number of potential interactions including hydrophobic interactions, electrostatic interactions, van der Waals forces, and specific affinity-based interactions. It is difficult or even impossible to predict the structures a priori. However, once the basic assembly principles are understood, there is opportunity to tune the material properties, such as size, through control of the self-assembly conditions. Our future efforts on the fundamental side will focus on identifying the phase space of self-assembly of these fusion proteins and additional experimental levers with which to control and tune the resulting materials. On the application side, we are investigating an array of different functional proteins to expand the use of these structures in both therapeutic protein delivery and biocatalysis.
Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide.
Owczarz, Marta; Casalini, Tommaso; Motta, Anna C; Morbidelli, Massimo; Arosio, Paolo
2015-12-14
In this work we quantified the role of electrostatic interactions in the self-assembly of a model amphiphilic peptide (RADA 16-I) into fibrillar structures by a combination of size exclusion chromatography and molecular simulations. For the peptide under investigation, it is found that a net charge of +0.75 represents the ideal condition to promote the formation of regular amyloid fibrils. Lower net charges favor the formation of amorphous precipitates, while larger net charges destabilize the fibrillar aggregates and promote a reversible dissociation of monomers from the ends of the fibrils. By quantifying the dependence of the equilibrium constant of this reversible reaction on the pH value and the peptide net charge, we show that electrostatic interactions contribute largely to the free energy of fibril formation. The addition of both salt and a charged destabilizer (guanidinium hydrochloride) at moderate concentration (0.3-1 M) shifts the monomer-fibril equilibrium toward the fibrillar state. Whereas the first effect can be explained by charge screening of electrostatic repulsion only, the promotion of fibril formation in the presence of guanidinium hydrochloride is also attributed to modifications of the peptide conformation. The results of this work indicate that the global peptide net charge is a key property that correlates well with the fibril stability, although the peptide conformation and the surface charge distribution also contribute to the aggregation propensity.
Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Neil P.; Sheffler, William; Sawaya, Michael R.
2015-09-17
We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method canmore » be used to design a wide variety of self-assembling protein nanomaterials.« less
Chemoresponsive Colloidosomes via Ag⁺ Soldering of Surface-Assembled Nanoparticle Monolayers.
Liu, Miao; Tian, Qian; Li, Yulin; You, Bo; Xu, An; Deng, Zhaoxiang
2015-04-28
Colloidosomes with a hollow interior and a porous plasmonic shell are highly desired for many applications including nanoreactors, surface-enhanced Raman scattering (SERS), photothermal therapy, and controlled drug release. We herein report a silica nanosphere-templated electrostatic self-assembly in conjunction with a newly developed Ag(+) soldering to fabricate gold colloidosomes toward multifunctionality and stimuli-responsibility. The gold colloidosomes are capable of capturing a nanosized object and releasing it via structural dissociation upon responding to a biochemical input (GSH, glutathione) at a concentration close to its cellular level. In addition, the colloidosomes have a tunable nanoporous shell composed of strongly coupled gold nanoparticles, which exhibit broadened near-infrared plasmon resonance. These features along with the simplicity and high tunability of the fabrication process make the gold colloidosomes quite promising for applications in a chemical or cellular environment.
Qiao, Yiqiang; Luo, Dan; Yu, Min; Zhang, Ting; Cao, Xuanping; Zhou, Yanheng; Liu, Yan
2018-02-09
A broad range of carbon sources have been used to fabricate varieties of carbon quantum dots (CQDs). However, the majority of these studies concern the influence of primary structures and chemical compositions of precursors on the CQDs; it is still unclear whether or not the superstructures of carbon sources have effects on the physiochemical properties of the synthetic CQDs. In this work, the concept of molecular assembly is first introduced into the design of a new carbon source. Compared with the tropocollagen molecules, the hierarchically assembled collagen scaffolds, as a new carbon source, immobilize functional groups of the precursors through hydrogen bonds, electrostatic attraction, and hydrophobic forces. Moreover, the accumulation of functional groups in collagen self-assembly further promotes the covalent bond formation in the obtained CQDs through a hydrothermal process. Both of these two chemical superiorities give rise to high quality CQDs with enhanced emission. The assembled collagen scaffold-based CQDs with heteroatom doping exhibit superior stability, and could be further applied as effective fluorescent probes for Fe 3+ detection and cellular cytosol imaging. These findings open a wealth of possibilities to explore more nanocarbons from precursors with assembled superstructures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multipolar Ewald methods, 1: theory, accuracy, and performance.
Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M
2015-02-10
The Ewald, Particle Mesh Ewald (PME), and Fast Fourier–Poisson (FFP) methods are developed for systems composed of spherical multipole moment expansions. A unified set of equations is derived that takes advantage of a spherical tensor gradient operator formalism in both real space and reciprocal space to allow extension to arbitrary multipole order. The implementation of these methods into a novel linear-scaling modified “divide-and-conquer” (mDC) quantum mechanical force field is discussed. The evaluation times and relative force errors are compared between the three methods, as a function of multipole expansion order. Timings and errors are also compared within the context of the quantum mechanical force field, which encounters primary errors related to the quality of reproducing electrostatic forces for a given density matrix and secondary errors resulting from the propagation of the approximate electrostatics into the self-consistent field procedure, which yields a converged, variational, but nonetheless approximate density matrix. Condensed-phase simulations of an mDC water model are performed with the multipolar PME method and compared to an electrostatic cutoff method, which is shown to artificially increase the density of water and heat of vaporization relative to full electrostatic treatment.
GENESUS: a two-step sequence design program for DNA nanostructure self-assembly.
Tsutsumi, Takanobu; Asakawa, Takeshi; Kanegami, Akemi; Okada, Takao; Tahira, Tomoko; Hayashi, Kenshi
2014-01-01
DNA has been recognized as an ideal material for bottom-up construction of nanometer scale structures by self-assembly. The generation of sequences optimized for unique self-assembly (GENESUS) program reported here is a straightforward method for generating sets of strand sequences optimized for self-assembly of arbitrarily designed DNA nanostructures by a generate-candidates-and-choose-the-best strategy. A scalable procedure to prepare single-stranded DNA having arbitrary sequences is also presented. Strands for the assembly of various structures were designed and successfully constructed, validating both the program and the procedure.
NASA Astrophysics Data System (ADS)
Lu, Benzhuo; Cheng, Xiaolin; Hou, Tingjun; McCammon, J. Andrew
2005-08-01
The electrostatic interaction among molecules solvated in ionic solution is governed by the Poisson-Boltzmann equation (PBE). Here the hypersingular integral technique is used in a boundary element method (BEM) for the three-dimensional (3D) linear PBE to calculate the Maxwell stress tensor on the solvated molecular surface, and then the PB forces and torques can be obtained from the stress tensor. Compared with the variational method (also in a BEM frame) that we proposed recently, this method provides an even more efficient way to calculate the full intermolecular electrostatic interaction force, especially for macromolecular systems. Thus, it may be more suitable for the application of Brownian dynamics methods to study the dynamics of protein/protein docking as well as the assembly of large 3D architectures involving many diffusing subunits. The method has been tested on two simple cases to demonstrate its reliability and efficiency, and also compared with our previous variational method used in BEM.
NASA Astrophysics Data System (ADS)
Lin, Kun-Yi Andrew; Lee, Wei-Der
2016-01-01
Compared to the relatively low adsorption capacities of conventional adsorbents for Malachite Green (MG) (i.e., ∼500 mg g-1), zeolitic imidazolate framework (ZIF) appears to be a promising adsorbent considering its significantly high adsorption capacity (i.e., >2000 mg g-1). Nevertheless, using such a nano-scale ZIF material for adsorption may lead to secondary contamination from the release of nanomaterials to the environment. Thus, ZIF has to be recovered conveniently to prevent the secondary contamination and facilitate the separation of adsorbent from water after adsorption. To this end, in this study ZIF nanocrystals were loaded on the sheet-like magnetic reduced graphene oxide (MRGO) to form a self-assembled MRGO/ZIF. The self-assembly of MRGO/ZIF was achieved possibly via the electrostatic attraction and the π-π stacking interaction between MRGO and ZIF. The resultant MRGO/ZIF exhibited an ultra-high adsorption capacity for MG (∼3000 mg g-1). The adsorption kinetics, isotherm, activation and thermodynamics were also determined. Other factors affecting the adsorption were examined including temperature, pH and co-existing ions/compound. To demonstrate that MRGO/ZIF can be recovered and reused, a multiple-cycle of MG adsorption using the regenerated MRGO/ZIF was revealed and the recyclability remained highly efficient and stable. The highly-effective, recoverable and re-usable features enable MRGO/ZIF a promising adsorbent to remove MG from water.
Backfilled, self-assembled monolayers and methods of making same
Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Addleman, R Shane [Benton City, WA; Aardahl, Christopher L [Sequim, WA; Zheng, Feng [Richland, WA; Busche, Brad [Raleigh, NC; Egorov, Oleg B [West Richland, WA
2009-06-30
Backfilled, self-assembled monolayers and methods of making the same are disclosed. The self-assembled monolayer comprises at least one functional organosilane species and a substantially random dispersion of at least one backfilling organosilane species among the functional organosilane species, wherein the functional and backfilling organosilane species have been sequentially deposited on a substrate. The method comprises depositing sequentially a first organosilane species followed by a backfilling organosilane species, and employing a relaxation agent before or during deposition of the backfilling organosilane species, wherein the first and backfilling organosilane species are substantially randomly dispersed on a substrate.
Importance of elastic finite-size effects: Neutral defects in ionic compounds
Burr, P. A.; Cooper, M. W. D.
2017-09-15
Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less
Importance of elastic finite-size effects: Neutral defects in ionic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, P. A.; Cooper, M. W. D.
Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less
Importance of elastic finite-size effects: Neutral defects in ionic compounds
NASA Astrophysics Data System (ADS)
Burr, P. A.; Cooper, M. W. D.
2017-09-01
Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.
Recognition-Mediated Assembly of Quantum Dot Polymer Conjugates with Controlled Morphology
Nandwana, Vikas; Subramani, Chandramouleeswaran; Eymur, Serkan; Yeh, Yi-Cheun; Tonga, Gulen Yesilbag; Tonga, Murat; Jeong, Youngdo; Yang, Boqian; Barnes, Michael D.; Cooke, Graeme; Rotello, Vincent M.
2011-01-01
We have demonstrated a polymer mediated “bricks and mortar” method for the self-assembly of quantum dots (QDs). This strategy allows QDs to self-assemble into structured aggregates using complementary three-point hydrogen bonding. The resulting nanocomposites have distinct morphologies and inter-particle distances based on the ratio between QDs and polymer. Time resolved photoluminescence measurements showed that the optical properties of the QDs were retained after self-assembly. PMID:22016664
Zhao, Jun; Wang, Qiuming; Liang, Guizhao; Zheng, Jie
2011-12-20
Accumulation of small soluble oligomers of amyloid-β (Aβ) in the human brain is thought to play an important pathological role in Alzheimer's disease. The interaction of these Aβ oligomers with cell membrane and other artificial surfaces is important for the understanding of Aβ aggregation and toxicity mechanisms. Here, we present a series of exploratory molecular dynamics (MD) simulations to study the early adsorption and conformational change of Aβ oligomers from dimer to hexamer on three different self-assembled monolayers (SAMs) terminated with CH(3), OH, and COOH groups. Within the time scale of MD simulations, the conformation, orientation, and adsorption of Aβ oligomers on the SAMs is determined by complex interplay among the size of Aβ oligomers, the surface chemistry of the SAMs, and the structure and dynamics of interfacial waters. Energetic analysis of Aβ adsorption on the SAMs reveals that Aβ adsorption on the SAMs is a net outcome of different competitions between dominant hydrophobic Aβ-CH(3)-SAM interactions and weak CH(3)-SAM-water interactions, between dominant electrostatic Aβ-COOH-SAM interactions and strong COOH-SAM-water interactions, and between comparable hydrophobic and electrostatic Aβ-OH-SAM interactions and strong OH-SAM-water interactions. Atomic force microscopy images also confirm that all of three SAMs can induce the adsorption and polymerization of Aβ oligomers. Structural analysis of Aβ oligomers on the SAMs shows a dramatic increase in structural stability and β-sheet content from dimer to trimer, suggesting that Aβ trimer could act as seeds for Aβ polymerization on the SAMs. This work provides atomic-level understanding of Aβ peptides at interface. © 2011 American Chemical Society
Nucleation and island growth of alkanethiolate ligand domains on gold nanoparticles.
Wang, Yifeng; Zeiri, Offer; Neyman, Alevtina; Stellacci, Francesco; Weinstock, Ira A
2012-01-24
The metal oxide cluster α-AlW(11)O(39)(9-) (1), readily imaged by cryogenic transmission electron microscopy (cryo-TEM), is used as a diagnostic protecting anion to investigate the self-assembly of alkanethiolate monolayers on electrostatically stabilized gold nanoparticles in water. Monolayers of 1 on 13.8 ± 0.9 nm diameter gold nanoparticles are displaced from the gold surface by mercaptoundecacarboxylate, HS(CH(2))(10)CO(2)(-) (11-MU). During this process, no aggregation is observed by UV-vis spectroscopy, and the intermediate ligand-shell organizations of 1 in cryo-TEM images indicate the presence of growing hydrophobic domains, or "islands", of alkanethiolates. UV-vis spectroscopic "titrations", based on changes in the surface plasmon resonance upon exchange of 1 by thiol, reveal that the 330 ± 30 molecules of 1 initially present on each gold nanoparticle are eventually replaced by 2800 ± 30 molecules of 11-MU. UV-vis kinetic data for 11-MU-monolayer formation reveal a slow phase, followed by rapid self-assembly. The Johnson, Mehl, Avrami, and Kolmogorov model gives an Avrami parameter of 2.9, indicating continuous nucleation and two-dimensional island growth. During nucleation, incoming 11-MU ligands irreversibly displace 1 from the Au-NP surface via an associative mechanism, with k(nucleation) = (6.1 ± 0.4) × 10(2) M(-1) s(-1), and 19 ± 8 nuclei, each comprised of ca. 8 alkanethiolates, appear on the gold-nanoparticle surface before rapid growth becomes kinetically dominant. Island growth is also first-order in [11-MU], and its larger rate constant, k(growth), (2.3 ± 0.2) × 10(4) M(-1) s(-1), is consistent with destabilization of molecules of 1 at the boundaries between the hydrophobic (alkanethiolate) and the electrostatically stabilized (inorganic) domains. © 2011 American Chemical Society
Nanostructure Control of Biologically Inspired Polymers
NASA Astrophysics Data System (ADS)
Rosales, Adrianne Marie
Biological polymers, such as polypeptides, are responsible for many of life's most sophisticated functions due to precisely evolved hierarchical structures. These protein structures are the result of monodisperse sequences of amino acids that fold into well-defined chain shapes and tertiary structures. Recently, there has been much interest in the design of such sequence-specific polymers for materials applications in fields ranging from biotechnology to separations membranes. Non-natural polymers offer the stability and robustness necessary for materials applications; however, our ability to control monomer sequence in non-natural polymers has traditionally operated on a much simpler level. In addition, the relationship between monomer sequence and self-assembly is not well understood for biological molecules, much less synthetic polymers. Thus, there is a need to explore self-assembly phase space with sequence using a model system. Polypeptoids are non-natural, sequence-specific polymers that offer the opportunity to probe the effect of sequence on self-assembly. A variety of monomer interactions have an impact on polymer properties, such as chirality, hydrophobicity, and electrostatic interactions. Thus, a necessary starting point for this project was to investigate monomer sequence effects on the bulk properties of polypeptoid homopolymers. It was found that several polypeptoids have experimentally accessible melting transitions that are dependent on the choice of side chains, and it was shown that this transition is tuned by the incorporation of "defects" or a comonomer. The polypeptoid chain shape is also controlled with the choice of monomer and monomer sequence. By using at least 50% monomers with bulky, chiral side chains, the polypeptoid backbone is sterically twisted into a helix, and as found for the first time in this work, the persistence length is increased. However, this persistence length, which is a measure of the stiffness of the polymer, is small compared to other folded helices, indicating the conformational flexibility of polypeptoid chains. With a firmer understanding of how monomer sequence and composition influence polypeptoid bulk properties, we designed block copolymer systems for self-assembly. Because the governing parameters of block copolymer self-assembly are well understood, this architecture provides a convenient starting point for probing the effect of changing polymer sequence. We found that polystyrene-polypeptoid block copolymers readily self-assemble into hexagonally-packed and lamellar morphologies with long range order, and furthermore, sequence control of the polypeptoid block enables us to tune the strength of segregation (and therefore the order-disorder transition) of the block copolymer. Polypeptoid chain shape also affects self-assembly. In classical synthetic block copolymers, it has typically been difficult to change chain shape without also changing polymer chemistry and therefore other factors affecting self-assembly. The advantage of the polypeptoid system is that it is modular, as the side chain chemistry (and therefore polymer properties) can easily be changed without changing the backbone chemistry. Thus, we have decoupled conformational effects from chemical composition by comparing the self-assembly of block copolymers containing either a helical peptoid block or its racemic, non-helical analog. The increase in the persistence length of the peptoid block due to helicity translates to an increase in the morphological domain spacing. In this work, we further the understanding of the effect of monomer sequence on bulk polypeptoid properties and self-assembly. Our findings pave the way for the rational design of structured synthetic polymers with tunable, sequence-specific properties.
Denadai, Ângelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S
2012-01-01
Summary Organic–inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr3+ and Cr2O7 2− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn. PMID:23209524
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Hao, Jinghao; Ma, Qianli; Li, Chuanqi; Liu, Yushan; Li, Baojun; Liu, Zhongyi
2017-06-01
Ruthenium/reduced graphene oxide nanocomposites (Ru/rGO NCs) were synthesized via an electrostatic self-assembly approach. Polyvinylpyrrolidone (PVP) stabilized and positively charged metallic ruthenium nanoclusters about 1.2 nm were synthesized and uniformly loaded onto negatively charged graphene oxide (GO) sheets via strong electrostatic interactions. The as-prepared Ru/rGO NCs exhibited superior performance in catalytic hydrolysis of sodium borohydride (NaBH4) to generate H2. The hydrogen generation rate was up to 14.87 L H2 min-1 gcat -1 at 318 K with relatively low activation energy of 38.12 kJ mol-1. Kinetics study confirmed that the hydrolysis of NaBH4 was first order with respect to concentration of catalysts. Besides, the conversion of NaBH4 remained at 97% and catalytic activity retained more than 70% after 5 reaction cycles at room temperature. These results suggested that the Ru/rGO NCs have a promising prospect in the field of clean energy.
Roy-Gobeil, Antoine; Miyahara, Yoichi; Grutter, Peter
2015-04-08
We present theoretical and experimental studies of the effect of the density of states of a quantum dot (QD) on the rate of single-electron tunneling that can be directly measured by electrostatic force microscopy (e-EFM) experiments. In e-EFM, the motion of a biased atomic force microscope cantilever tip modulates the charge state of a QD in the Coulomb blockade regime. The charge dynamics of the dot, which is detected through its back-action on the capacitavely coupled cantilever, depends on the tunneling rate of the QD to a back-electrode. The density of states of the QD can therefore be measured through its effect on the energy dependence of tunneling rate. We present experimental data on individual 5 nm colloidal gold nanoparticles that exhibit a near continuous density of state at 77 K. In contrast, our analysis of already published data on self-assembled InAs QDs at 4 K clearly reveals discrete degenerate energy levels.
Imaging enzyme-triggered self-assembly of small molecules inside live cells
Gao, Yuan; Shi, Junfeng; Yuan, Dan; Xu, Bing
2012-01-01
Self-assembly of small molecules in water to form nanofibers, besides generating sophisticated biomaterials, promises a simple system inside cells for regulating cellular processes. But lack of a convenient approach for studying the self-assembly of small molecules inside cells hinders the development of such systems. Here we report a method to image enzyme-triggered self-assembly of small molecules inside live cells. After linking a fluorophore to a self-assembly motif to make a precursor, we confirmed by 31P NMR and rheology that enzyme-triggered conversion of the precursor to a hydrogelator results in the formation of a hydrogel via self-assembly. The imaging contrast conferred by the nanofibers of the hydrogelators allowed the evaluation of intracellular self-assembly; the dynamics, and the localization of the nanofibers of the hydrogelators in live cells. This approach explores supramolecular chemistry inside cells and may lead to new insights, processes, or materials at the interface of chemistry and biology. PMID:22929790
NASA Astrophysics Data System (ADS)
Khoromskaia, Venera; Khoromskij, Boris N.
2014-12-01
Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.
NASA Astrophysics Data System (ADS)
Li, Mao; Ishihara, Shinsuke; Ji, Qingmin; Akada, Misaho; Hill, Jonathan P.; Ariga, Katsuhiko
2012-10-01
Current nanotechnology based on top-down nanofabrication may encounter a variety of drawbacks in the near future so that development of alternative methods, including the so-called bottom-up approach, has attracted considerable attention. However, the bottom-up strategy, which often relies on spontaneous self-assembly, might be inefficient in the development of the requisite functional materials and systems. Therefore, assembly processes controlled by external stimuli might be a plausible strategy for the development of bottom-up nanotechnology. In this review, we demonstrate a paradigm shift from self-assembly to commanded assembly by describing several examples of assemblies of typical functional molecules, i.e. porphyrins and fullerenes. In the first section, we describe recent progress in the design and study of self-assembled and co-assembled supramolecular architectures of porphyrins and fullerenes. Then, we show examples of assembly induced by external stimuli. We emphasize the paradigm shift from self-assembly to commanded assembly by describing the recently developed electrochemical-coupling layer-by-layer (ECC-LbL) methodology.
Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.
Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei
2018-02-01
The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bae, Dong Geun; Jeong, Ji-Eun; Kang, Seok Hee; Byun, Myunghwan; Han, Dong-Wook; Lin, Zhiqun; Woo, Han Young; Hong, Suck Won
2016-08-01
DNA molecules have been widely recognized as promising building blocks for constructing functional nanostructures with two main features, that is, self-assembly and rich chemical functionality. The intrinsic feature size of DNA makes it attractive for creating versatile nanostructures. Moreover, the ease of access to tune the surface of DNA by chemical functionalization offers numerous opportunities for many applications. Herein, a simple yet robust strategy is developed to yield the self-assembly of DNA by exploiting controlled evaporative assembly of DNA solution in a unique confined geometry. Intriguingly, depending on the concentration of DNA solution, highly aligned nanostructured fibrillar-like arrays and well-positioned concentric ring-like superstructures composed of DNAs are formed. Subsequently, the ring-like negatively charged DNA superstructures are employed as template to produce conductive organic nanowires on a silicon substrate by complexing with a positively charged conjugated polyelectrolyte poly[9,9-bis(6'-N,N,N-trimethylammoniumhexyl)fluorene dibromide] (PF2) through the strong electrostatic interaction. Finally, a monolithic integration of aligned arrays of DNA-templated PF2 nanowires to yield two DNA/PF2-based devices is demonstrated. It is envisioned that this strategy can be readily extended to pattern other biomolecules and may render a broad range of potential applications from the nucleotide sequence and hybridization as recognition events to transducing elements in chemical sensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keplerate cluster (Mo-132) mediated electrostatic assembly of nanoparticles.
Gooch, Jonathan; Jalan, Abhishek A; Jones, Stephanie; Hine, Corey R; Alam, Rabeka; Garai, Somenath; Maye, Mathew M; Müller, Achim; Zubieta, Jon
2014-10-15
The electrostatic assembly between a series of differently charged Mo-132-type Keplerates present in the compounds (NH4)42[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(CH3COO)}30].ca. {300 H2O+10 CH3COONH4} (Mo-132a), (NH4)72-n[{(H2O)81-n+(NH4)n} {(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(SO4)}30].ca. 200 H2O (Mo-132b), and Na10(NH4)62[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(HPO4)}30]. ca. {300H2O+2Na(+)+2NH4(+)+4H2PO4(-)} (Mo-132c) with cationic gold nanoparticles (AuNPs) was investigated for the first time. The rapid electrostatic assembly from nanoscopic entities to micron scale aggregates was observed upon precipitation, which closely matched the point of aggregate electroneutrality. Successful assembly was demonstrated using UV-vis, DLS, TEM, and zeta-potential analysis. Results indicate that the point at which precipitation occurs is related to charge balance or electroneutrality, and that counterions at both the Mo-132 and AuNP play a significant role in assembly. Copyright © 2014 Elsevier Inc. All rights reserved.
Geometric and electrostatic modeling using molecular rigidity functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Xia, Kelin; Wei, Guowei
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
Geometric and electrostatic modeling using molecular rigidity functions
Mu, Lin; Xia, Kelin; Wei, Guowei
2017-03-01
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
Stepwise self-assembly of C60 mediated by atomic scale moiré magnifiers
NASA Astrophysics Data System (ADS)
Gruznev, D. V.; Matetskiy, A. V.; Bondarenko, L. V.; Utas, O. A.; Zotov, A. V.; Saranin, A. A.; Chou, J. P.; Wei, C. M.; Lai, M. Y.; Wang, Y. L.
2013-04-01
Self-assembly of atoms or molecules on a crystal surface is considered one of the most promising methods to create molecular devices. Here we report a stepwise self-assembly of C60 molecules into islands with unusual shapes and preferred sizes on a gold-indium-covered Si(111) surface. Specifically, 19-mer islands prefer a non-compact boomerang shape, whereas hexagonal 37-mer islands exhibit extraordinarily enhanced stability and abundance. The stepwise self-assembly is mediated by the moiré interference between an island with its underlying lattice, which essentially maps out the adsorption-energy landscape of a C60 on different positions of the surface with a lateral magnification factor and dictates the probability for the subsequent attachment of C60 to an island’s periphery. Our discovery suggests a new method for exploiting the moiré interference to dynamically assist the self-assembly of particles and provides an unexplored tactic of engineering atomic scale moiré magnifiers to facilitate the growth of monodispersed mesoscopic structures.
NASA Astrophysics Data System (ADS)
Govindhan, Raman; Karthikeyan, Balakrishnan
2017-12-01
3,5-Bis(trifluoromethyl)benzylamine derivatives of single amino acid tyrosine produced self-assembled nanotubes (BTTNTs) as simple Phe-Phe. It has been observed that tyrosine derivative gives exclusively micro and nano tubes irrespective of the concentration of the precursor monomer. However, the introduced xenobiotic trifluoromethyl group (TFM) present in key backbone positionsof the self assembly gives the specific therapeutic function has been highlighted. Herein this work study of such self assembled nanotubes were studied through experimental and theoretical methods. The interaction of nanocopper cluster with the nanotubes (Cu@BTTNTs) were extensively studied by various methods like XRD, AFM, confocal Raman microscopy, SERS and theoretical methods like Mulliken's atomic charge analysis. SERS reveals that the interactions of Cu cluster with NH2, OH, NH and phenyl ring π-electrons system of BTTNTs. DFT studies gave the total dipole moment values of Cu@BTTNTs and explained the nature of interaction.
Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko
2016-05-14
In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.
Chirality-selected phase behaviour in ionic polypeptide complexes
Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...
2015-01-14
In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less
Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.; ...
2016-04-07
Nano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. We present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm 2 -scale areas. We used chemically modified block copolymer thin films featuring alternating charged and neutral domains as patterned substrates for electrostatic self-assembly. In-depth characterization of the deposition process using spectroscopy and microscopy techniques, including the state-of-the-art scanning transmission X-ray microscopy (STXM), reveals both the selective deposition of the polyelectrolyte on the charged copolymer domains as well as gradual changes in the film topographymore » that arise from further penetration of the solvent molecules and possibly also the polyelectrolyte into these domains. Our results demonstrate the feasibility of creating nano-patterned polyelectrolyte layers, which opens up new opportunities for structured functional coating fabrication.« less
Barker, John R; Martinez, Antonio
2018-04-04
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.
NASA Astrophysics Data System (ADS)
Barker, John R.; Martinez, Antonio
2018-04-01
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.
Disassembly Control of Saccharide-Based Amphiphiles Driven by Electrostatic Repulsion.
Yamada, Taihei; Kokado, Kenta; Sada, Kazuki
2017-03-14
According to the design of disassembly using electrostatic repulsion, novel amphiphiles consisting of a lipophilic ion part and a hydrophilic saccharide part were synthesized via the facile copper-catalyzed click reaction, and their molecular assemblies in water and chloroform were studied. The amphiphiles exhibited a molecular orientation opposite to that of the conventional amphiphiles in each case. ζ Potential measurements indicated that the lipophilic ion part is exposed outside in chloroform. The size of a solvophobic part in the amphiphiles dominates the size of an assembling structure; that is, in water, these amphiphiles tethering different lengths of the saccharide part exhibited almost identical assembling size, whereas in chloroform, the size depends on the length of the saccharide part in the amphiphiles.
Casanova-Moreno, J; Bizzotto, D
2015-02-17
Electrostatic control of the orientation of fluorophore-labeled DNA strands immobilized on an electrode surface has been shown to be an effective bioanalytical tool. Modulation techniques and later time-resolved measurements were used to evaluate the kinetics of the switching between lying and standing DNA conformations. These measurements, however, are the result of a convolution between the DNA "switching" response time and the other frequency limited responses in the measurement. In this work, a method for analyzing the response of a potential driven DNA sensor is presented by calculating the potential effectively dropped across the electrode interface (using electrochemical impedance spectroscopy) as opposed to the potential applied to the electrochemical cell. This effectively deconvolutes the effect of the charging time on the observed frequency response. The corrected response shows that DNA is able to switch conformation faster than previously reported using modulation techniques. This approach will ensure accurate measurements independent of the electrochemical system, removing the uncertainty in the analysis of the switching response, enabling comparison between samples and measurement systems.
Self-assembled phytosterol-fructose-chitosan nanoparticles as a carrier of anticancer drug.
Qiu, Yeyan; Zhu, Jun; Wang, Jianting; Gong, Renmin; Zheng, Mingming; Huang, Fenghong
2013-08-01
Self-assembled nanoparticles were synthesized from water-soluble fructose-chitosan, substituted by succinyl linkages with phytosterols as hydrophobic moieties for self-assembly. The physicochemical properties of the prepared self-assembled nanoparticles were characterized by Fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. Doxorubicin (DOX), as a model anticancer drug, was physically entrapped inside prepared self-assembled nanoparticles by the dialysis method. With increasing initial levels of the drug, the drug loading content increased, but the encapsulation efficiency decreased. The release profiles in vitro demonstrated that the DOX showed slow sustained released over 48 h, and the release rate in phosphate buffered saline (PBS) solution (pH 7.4) was much slower than in PBS solution (pH 5.5 and pH 6.5), indicating the prepared self-assembled nanoparticles had the potential to be used as a carrier for targeted delivery of hydrophobic anticancer drugs with declined cytotoxicity to normal tissues.
Sinthuvanich, Chomdao; Haines-Butterick, Lisa A.; Nagy, Katelyn J.; Schneider, Joel P.
2012-01-01
Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. PMID:22841922
Sinthuvanich, Chomdao; Haines-Butterick, Lisa A; Nagy, Katelyn J; Schneider, Joel P
2012-10-01
Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. Published by Elsevier Ltd.
Mantha, Sriteja; McDaniel, Jesse G; Perroni, Dominic V; Mahanthappa, Mahesh K; Yethiraj, Arun
2017-01-26
Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water-concentration-dependent lyotropic liquid crystal morphologies that are sensitive to surfactant molecular structure and the nature of the headgroups and counterions. Recently, an interesting dependence of the aqueous-phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker surfactants. In this work, we investigate this "odd/even effect" using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, seven nonterminal carbon atoms in the tails, and either three, four, five, or six carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76, respectively). We find that the relative electrostatic repulsion between headgroups in the different morphologies is correlated with the qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup orientations of Na-74 and Na-76 compared to those of Na-73 and Na-75 surfactants lead to differences in linker-linker packing and long-range headgroup-headgroup electrostatic repulsion, which affects the delicate electrostatic balance between the hexagonal and gyroid phases. Much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.
Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen
2015-08-12
Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.
Iritani, Kohei; Tahara, Kazukuni; De Feyter, Steven; Tobe, Yoshito
2017-05-16
Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C 6 to C 20 . Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host-guest chemistry in integrated nanoporous space that is modified for specific purposes.
Multilayer biomimetics: reversible covalent stabilization of a nanostructured biofilm.
Li, Bingyun; Haynie, Donald T
2004-01-01
Designed polypeptides and electrostatic layer-by-layer self-assembly form the basis of promising research in bionanotechnology and medicine on development of polyelectrolyte multilayer films (PEMs). We show that PEMs can be formed from oppositely charged 32mers containing several cysteine residues. The polypeptides in PEMs become cross-linked under mild oxidizing conditions. This mimicking of disulfide (S-S) bond stabilization of folded protein structure confers on the PEMs a marked increase in resistance to film disassembly at acidic pH. The reversibility of S-S bond stabilization of PEMs presents further advantages for controlling physical properties of films, coatings, and other applications involving PEMs.
Physical Regulation of the Self-Assembly of Tobacco Mosaic Virus Coat Protein
Kegel, Willem K.; van der Schoot, Paul
2006-01-01
We present a statistical mechanical model based on the principle of mass action that explains the main features of the in vitro aggregation behavior of the coat protein of tobacco mosaic virus (TMV). By comparing our model to experimentally obtained stability diagrams, titration experiments, and calorimetric data, we pin down three competing factors that regulate the transitions between the different kinds of aggregated state of the coat protein. These are hydrophobic interactions, electrostatic interactions, and the formation of so-called “Caspar” carboxylate pairs. We suggest that these factors could be universal and relevant to a large class of virus coat proteins. PMID:16731551
Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals.
Liu, Qingkun; Campbell, Michael G; Evans, Julian S; Smalyukh, Ivan I
2014-11-12
Nematic-like and helicoidally orientational self-assemblies of gold nanorods co-dispersed with cellulose nanocrystals to form liquid crystalline phases are developed. Polarization-sensitive extinction spectra and two-photon luminescence imaging are used to characterize orientations and spatial distributions of gold nanorods. Cholesteric-isotropic phase coexistence and continuous domains of single-phase regions are observed and qualitatively discussed on the basis of entropic and electrostatic interactions in co-dispersions of rigid rods of different aspect ratios. Potential applications include biologically compatible plasmonic composite nanomaterials for solar biofuel production and polarization-sensitive plasmonic papers and fabrics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental results of antigliadin antibodies detection using long period fiber grating
NASA Astrophysics Data System (ADS)
Corres, J. M.; Matias, I. R.; Goicoechea, J.; Arregui, F. J.; Viegas, D.; Araújo, F. M.; Santos, J. L.
2008-04-01
In this work a new nano-biofilm is proposed for the detection of celiac disease (CD). A long-period fiber grating (LPFG) is used as a transducer and the surface of the fiber is coated with a precursor layer of SiO2-nanospheres using the electrostatic self-assembly technique (ESA). This layer has been designed in order to create a substrate of high porosity where the gliadins could be deposited. Under the presence of specific antibodies antigliadin antibodies (AGA) the refractive index of the overlay changes giving a detectable shift in the resonance wavelength of the LPFG. Concentrations as low as 5 ppm were detected.
NASA Astrophysics Data System (ADS)
Wu, Keke; Zhang, Xiazhi; Yang, Wufeng; Liu, Xiaoyan; Jiao, Yanpeng; Zhou, Changren
2016-12-01
Electrospun poly(L-lactic acid) (PLLA) nanofiber mats were successfully modified by deposition of multilayers with chitosan (CS), heparin (Hep) and graphene oxide (GO) through electrostatic layer-by-layer (LBL) self-assembly method. In this study, the surface properties of PLLA nanofiber mats before and after modification were investigated via scanning electron microscope (SEM), atomic force microscopy (AFM), attenuated total reflectance fourier transformation infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. In addition, the cytocompatibility of the modified PLLA nanofiber mats were investigated by testing endothelial cells compatibility, including cell attachment, cell proliferation and cell cycle. The results revealed that the surfaces of modified PLLA nanofiber mats become much rougher, stifiness and the hydrophilicity of the LBL modified PLLA nanofiber mats were improved compared to original PLLA one. Moreover, the modified PLLA nanofiber mats had promoted the endothelial cells viability attachment significantly. Besides, we studied the PLLA nanofiber mats on the expression of necrosis factor (TNF-α), interleukine-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells. The results showed that modified PLLA nanofiber mats had inhibited the inflammatory response to some extent.
Chuan, Yap P; Fan, Yuan Y; Lua, Linda H L; Middelberg, Anton P J
2010-03-06
Viral self-assembly is of tremendous virological and biomedical importance. Although theoretical and crystallographic considerations suggest that controlled conformational change is a fundamental regulatory mechanism in viral assembly, direct proof that switching alters the thermodynamic attraction of self-assembling components has not been provided. Using the VP1 protein of polyomavirus, we report a new method to quantitatively measure molecular interactions under conditions of rapid protein self-assembly. We show, for the first time, that triggering virus capsid assembly through biologically relevant changes in Ca(2+) concentration, or pH, is associated with a dramatic increase in the strength of protein molecular attraction as quantified by the second virial coefficient (B(22)). B(22) decreases from -2.3 x 10(-4) mol ml g(-2) (weak protein-protein attraction) to -2.4 x 10(-3) mol ml g(-2) (strong protein attraction) for metastable and Ca(2+)-triggered self-assembling capsomeres, respectively. An assembly-deficient mutant (VP1CDelta63) is conversely characterized by weak protein-protein repulsion independently of chemical change sufficient to cause VP1 assembly. Concomitant switching of both VP1 assembly and thermodynamic attraction was also achieved by in vitro changes in ammonium sulphate concentration, consistent with protein salting-out behaviour. The methods and findings reported here provide new insight into viral assembly, potentially facilitating the development of new antivirals and vaccines, and will open the way to a more fundamental physico-chemical description of complex protein self-assembly systems.
Banerjee, Suvrajit; Parimal, Siddharth; Cramer, Steven M
2017-08-18
Multimodal (MM) chromatography provides a powerful means to enhance the selectivity of protein separations by taking advantage of multiple weak interactions that include electrostatic, hydrophobic and van der Waals interactions. In order to increase our understanding of such phenomena, a computationally efficient approach was developed that combines short molecular dynamics simulations and continuum solvent based coarse-grained free energy calculations in order to study the binding of proteins to Self Assembled Monolayers (SAM) presenting MM ligands. Using this method, the free energies of protein-MM SAM binding over a range of incident orientations of the protein can be determined. The resulting free energies were then examined to identify the more "strongly bound" orientations of different proteins with two multimodal surfaces. The overall free energy of protein-MM surface binding was then determined and correlated to retention factors from isocratic chromatography. This correlation, combined with analytical expressions from the literature, was then employed to predict protein gradient elution salt concentrations as well as selectivity reversals with different MM resin systems. Patches on protein surfaces that interacted strongly with MM surfaces were also identified by determining the frequency of heavy atom contacts with the atoms of the MM SAMs. A comparison of these patches to Electrostatic Potential and hydrophobicity maps indicated that while all of these patches contained significant positive charge, only the highest frequency sites also possessed hydrophobicity. The ability to identify key binding patches on proteins may have significant impact on process development for the separation of bioproduct related impurities. Copyright © 2017 Elsevier B.V. All rights reserved.
Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao
2017-08-16
Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.
Water-Rich Fluid Material Containing Orderly Condensed Proteins.
Nojima, Tatsuya; Iyoda, Tomokazu
2017-01-24
A fluid material with high protein content (120-310 mg mL -1 ) was formed through the ordered self-assembly of native proteins segregated from water. This material is instantly prepared by the simple mixing of a protein solution with anionic and cationic surfactants. By changing the ratio of the surfactants based on the electrostatic characteristics of the target protein, we observed that the surfactants could function as a versatile molecular glue for protein assembly. Moreover, these protein assemblies could be disassembled back into an aqueous solution depending on the salt conditions. Owing to the water-retaining properties of the hydrophilic part of surfactants, the proteins in this material are in a water-rich environment, which maintains their native structure and function. The inclusion of water also provides functional extensibility to this material, as demonstrated by the preparation of an enzymatically active gel. We anticipate that the unique features of this material will permit the use of proteins not only in solution but also as elements of integrated functionalized materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rodgers, M. Steven; Miller, Samuel L.
2003-01-01
A compact electrostatic actuator is disclosed for microelectromechanical (MEM) applications. The actuator utilizes stationary and moveable electrodes, with the stationary electrodes being formed on a substrate and the moveable electrodes being supported above the substrate on a frame. The frame provides a rigid structure which allows the electrostatic actuator to be operated at high voltages (up to 190 Volts) to provide a relatively large actuation force compared to conventional electrostatic comb actuators which are much larger in size. For operation at its maximum displacement, the electrostatic actuator is relatively insensitive to the exact value of the applied voltage and provides a self-limiting displacement.
Nguyen, Hiep Thi; Luong, Hien Thu; Nguyen, Hai Dai; Tran, Hien Anh; Huynh, Khon Chan; Vo, Toi Van
2017-01-01
Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of -80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of -80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold.
Tran, Hien Anh; Huynh, Khon Chan; Vo, Toi Van
2017-01-01
Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of −80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of −80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold. PMID:28367442
Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.; ...
2016-07-05
The combination of block copolymer templating with electrostatic self-assembly provides a simple and robust method for creating nano-patterned polyelectrolyte multilayers over large areas. The deposition of the first polyelectrolyte layer provides important insights on the initial stages of multilayer buildup. Here, we focus on two-dimensionally confined “dots” patterns afforded by block copolymer films featuring hexagonally-packed cylinders that are oriented normal to the substrate. Rendering the cylinder caps positively charged enables the selective deposition of negatively charged polyelectrolytes on them under salt-free conditions. The initially formed polyelectrolyte nanostructures adopt a toroidal (“doughnut”) shape, which results from retraction of dangling polyelectrolyte segmentsmore » into the “dots” upon drying. With increasing exposure time to the polyelectrolyte solution, the final shape of the deposited polyelectrolyte transitions from a doughnut to a hemisphere. In conclusion, these insights would enable the creation of patterned polyelectrolyte multilayers with increased control over adsorption selectivity of the additional incoming polyelectrolytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.
The combination of block copolymer templating with electrostatic self-assembly provides a simple and robust method for creating nano-patterned polyelectrolyte multilayers over large areas. The deposition of the first polyelectrolyte layer provides important insights on the initial stages of multilayer buildup. Here, we focus on two-dimensionally confined “dots” patterns afforded by block copolymer films featuring hexagonally-packed cylinders that are oriented normal to the substrate. Rendering the cylinder caps positively charged enables the selective deposition of negatively charged polyelectrolytes on them under salt-free conditions. The initially formed polyelectrolyte nanostructures adopt a toroidal (“doughnut”) shape, which results from retraction of dangling polyelectrolyte segmentsmore » into the “dots” upon drying. With increasing exposure time to the polyelectrolyte solution, the final shape of the deposited polyelectrolyte transitions from a doughnut to a hemisphere. In conclusion, these insights would enable the creation of patterned polyelectrolyte multilayers with increased control over adsorption selectivity of the additional incoming polyelectrolytes.« less
Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.
Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang
2016-04-15
Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.
Efficiency determination of an electrostatic lunar dust collector by discrete element method
NASA Astrophysics Data System (ADS)
Afshar-Mohajer, Nima; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta
2012-07-01
Lunar grains become charged by the sun's radiation in the tenuous atmosphere of the moon. This leads to lunar dust levitation and particle deposition which often create serious problems in the costly system deployed in lunar exploration. In this study, an electrostatic lunar dust collector (ELDC) is proposed to address the issue and the discrete element method (DEM) is used to investigate the effects of electrical particle-particle interactions, non-uniformity of the electrostatic field, and characteristics of the ELDC. The simulations on 20-μm-sized lunar particles reveal the electrical particle-particle interactions of the dust particles within the ELDC plates require 29% higher electrostatic field strength than that without the interactions for 100% collection efficiency. For the given ELDC geometry, consideration of non-uniformity of the electrostatic field along with electrical interactions between particles on the same ELDC geometry leads to a higher requirement of ˜3.5 kV/m to ensure 100% particle collection. Notably, such an electrostatic field is about 103 times less than required for electrodynamic self-cleaning methods. Finally, it is shown for a "half-size" system that the DEM model predicts greater collection efficiency than the Eulerian-based model at all voltages less than required for 100% efficiency. Halving the ELDC dimensions boosts the particle concentration inside the ELDC, as well as the resulting field strength for a given voltage. Though a lunar photovoltaic system was the subject, the results of this study are useful for evaluation of any system for collecting charged particles in other high vacuum environment using an electrostatic field.
Yan, Kun; Liu, Yi; Zhang, Jitao; Correa, Santiago O; Shang, Wu; Tsai, Cheng-Chieh; Bentley, William E; Shen, Jana; Scarcelli, Giuliano; Raub, Christopher B; Shi, Xiao-Wen; Payne, Gregory F
2018-02-12
The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.
Elucidating dominant pathways of the nano-particle self-assembly process.
Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui
2016-09-14
Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.
Wang, Qing; Luo, Zhi-Yuan; Ye, Mao; Wang, Yu-Zhuo; Xu, Li; Shi, Zhi-Guo; Xu, Lanying
2015-02-27
The zirconia-coated silica (ZrO2/SiO2) material was obtained by coupling layer-by-layer (LbL) self-assembly method and sol-gel technology, to take dual advantages of the suitable porous structure of SiO2 and basic resistance of ZrO2. Adenosine 5'-monophosphate (5'-AMP) was then self-assembled onto ZrO2/SiO2 via Lewis acid-base interaction, generating 5'-AMP-ZrO2/SiO2. The chromatographic properties of 5'-AMP-ZrO2/SiO2 were systemically studied by evaluating the effect of acetonitrile content, pH and buffer concentration in the mobile phase. The results demonstrated that the 5'-AMP-ZrO2/SiO2 possessed hydrophilic interaction chromatographic (HILIC) property comprising hydrophilic, hydrogen-bonding, electrostatic and ion-exchange interactions. For basic analytes, the column efficiency of ZrO2/SiO2 and 5'-AMP-ZrO2/SiO2 was superior to the bare ZrO2, and different selectivity was obtained after the introduction of 5'-AMP. For acidic analytes, good resolution was obtained on 5'-AMP-ZrO2/SiO2 while the analysis failed on the bare ZrO2 column owing to strong adsorption. Hence, the proposed 5'-AMP-ZrO2/SiO2 had great potential in analyzing acidic compounds in HILIC mode. It was an extended application of ZrO2 based SP. Copyright © 2015 Elsevier B.V. All rights reserved.
Self-assembled monolayer and method of making
Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA
2003-03-11
According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.
Self-assembled monolayer and method of making
Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon
2004-05-11
According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.
Self-Assembled Monolayer And Method Of Making
Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon
2004-06-22
According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.
Self-Assembled Monolayer And Method Of Making
Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon
2005-01-25
According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.
Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems.
Zhu, You-Liang; Lu, Zhong-Yuan; Milano, Giuseppe; Shi, An-Chang; Sun, Zhao-Yan
2016-04-14
To achieve simulations on large spatial and temporal scales with high molecular chemical specificity, a hybrid particle-field method was proposed recently. This method is developed by combining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has been validated by successfully predicting the experimentally observable properties of several systems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the MD-SCF framework. In this scheme, charged molecules are interacting with the external fields that are self-consistently determined from the charge densities. This method is validated by comparing the structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as examples, the enhancement of immiscibility between the ion-dissolving block and the inert block by doping lithium salts into the copolymer is examined by using the MD-SCF method. By employing GPU-acceleration, the high performance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation study of many problems involving polyelectrolytes.
Kaminski, Clemens F.; Kaminski Schierle, Gabriele S.
2016-01-01
Abstract. The misfolding and self-assembly of intrinsically disordered proteins into insoluble amyloid structures are central to many neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Optical imaging of this self-assembly process in vitro and in cells is revolutionizing our understanding of the molecular mechanisms behind these devastating conditions. In contrast to conventional biophysical methods, optical imaging and, in particular, optical superresolution imaging, permits the dynamic investigation of the molecular self-assembly process in vitro and in cells, at molecular-level resolution. In this article, current state-of-the-art imaging methods are reviewed and discussed in the context of research into neurodegeneration. PMID:27413767
2017-01-01
Placing nanowires at the predetermined locations on a substrate represents one of the significant hurdles to be tackled for realization of heterogeneous nanowire systems. Here, we demonstrate spatially-controlled assembly of a single nanowire at the photolithographically recessed region at the electrode gap with high integration yield (~90%). Two popular routes, such as protruding electrode tips and recessed wells, for spatially-controlled nanowire alignment, are compared to investigate long-range dielectrophoretic nanowire attraction and short-range nanowire-nanowire electrostatic interaction for determining the final alignment of attracted nanowires. Furthermore, the post-assembly process has been developed and tested to make a robust electrical contact to the assembled nanowires, which removes any misaligned ones and connects the nanowires to the underlying electrodes of circuit. PMID:29048363
Self-assembly of amphiphilic molecules in organic liquids
NASA Astrophysics Data System (ADS)
Tung, Shih-Huang
2007-12-01
Amphiphilic molecules are well-known for their ability to self-assemble in water to form structures such as micelles and vesicles. In comparison, much less is known about amphiphilic self-assembly in nonpolar organic liquids. Such "reverse" self assembly can produce many of the counterparts to structures found in water. In this dissertation, we focus on the formation and dynamics of such reverse structures. We seek to obtain fundamental insight into the driving forces for reverse self-assembly processes. Three specific types of reverse structures are studied: (a) reverse wormlike micelles, i.e., long, flexible micellar chains; (b) reverse vesicles, i.e., hollow containers enclosed by reverse bilayers; and (c) organogel networks. While our focus is on the fundamentals, we note that reverse structures can be useful in a variety of applications ranging from drug delivery, controlled release, hosts for enzymatic reactions, and templates for nanomaterials synthesis. In the first part of this study, we describe a new route for forming reverse wormlike micelles in nonpolar organic liquids. This route involves the addition of trace amounts of a bile salt to solutions of the phospholipid, lecithin. We show that bile salts, due to their unique "facially amphiphilic" structure, can promote the aggregation of lecithin molecules into these reverse micellar chains. The resulting samples are viscoelastic and show interesting rheological properties. Unusual trends are seen in the temperature dependence of their rheology, which indicates the importance of hydrogen-bonding interactions in the formation of these micelles. Another remarkable feature of their rheology is the presence of strain-stiffening, where the material becomes stiffer at high deformations. Strain-stiffening has been seen before for elastic gels of biopolymers; here, we demonstrate the same properties for viscoelastic micellar solutions. The second reverse aggregate we deal with is the reverse vesicle. We present a new route for forming stable unilamellar reverse vesicles, and this involves mixing short- and long-chain lipids (lecithins) with a trace of sodium chloride. The ratio of the short to long-chain lipid controls the type and size of self-assembled structure formed, and as this ratio is increased, a transition from reverse micelles to vesicles occurs. The structural changes can be explained in terms of molecular geometry, with the sodium chloride acting as a "glue" in binding lipid headgroups together through electrostatic interactions. The final part of this dissertation focuses on organogels. The two-tailed anionic surfactant, AOT, is well-known to form spherical reverse micelles in organic solvents. We have found that trace amounts (e.g., less than 1 mM) of the dihydroxy bile salt, sodium deoxycholate (SDC) can transform these dilute micellar solutions into self-supporting, transparent organogels. The structure and rheology of these organogels is reminiscent of the self-assembled networks formed by proteins such as actin in water. The organogels are based on networks of long, rigid, cylindrical filaments, with SDC molecules stacked together in the filament core.
Self-assembled peptide nanostructures for functional materials
NASA Astrophysics Data System (ADS)
Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.
2016-10-01
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.
Sun, Yuqiao; Li, Wen; Wu, Xiaoli; Zhang, Na; Zhang, Yongnu; Ouyang, Songying; Song, Xiyong; Fang, Xinyu; Seeram, Ramakrishna; Xue, Wei; He, Liumin; Wu, Wutian
2016-01-27
Self-assembling peptide (SAP) RADA16-I (Ac-(RADA)4-CONH2) has been suffering from a main drawback associated with low pH, which damages cells and host tissues upon direct exposure. In this study, we presented a strategy to prepare nanofiber hydrogels from two designer SAPs at neutral pH. RADA16-I was appended with functional motifs containing cell adhesion peptide RGD and neurite outgrowth peptide IKVAV. The two SAPs were specially designed to have opposite net charges at neutral pH, the combination of which created a nanofiber hydrogel (-IKVAV/-RGD) characterized by significantly higher G' than G″ in a viscoelasticity examination. Circular dichroism, Fourier transform infrared spectroscopy, and Raman measurements were performed to investigate the secondary structure of the designer SAPs, indicating that both the hydrophobic/hydrophilic properties and electrostatic interactions of the functional motifs play an important role in the self-assembling behavior of the designer SAPs. The neural progenitor cells (NPCs)/stem cells (NSCs) fully embedded in the 3D-IKVAV/-RGD nanofiber hydrogel survived, whereas those embedded within the RADA 16-I hydrogel hardly survived. Moreover, the -IKVAV/-RGD nanofiber hydrogel supported NPC/NSC neuron and astrocyte differentiation in a 3D environment without adding extra growth factors. Studies of three nerve injury models, including sciatic nerve defect, intracerebral hemorrhage, and spinal cord transection, indicated that the designer -IKVAV/-RGD nanofiber hydrogel provided a more permissive environment for nerve regeneration than the RADA 16-I hydrogel. Therefore, we reported a new mechanism that might be beneficial for the synthesis of SAPs for in vitro 3D cell culture and nerve regeneration.
Improving the treatment of coarse-grain electrostatics: CVCEL.
Ceres, N; Lavery, R
2015-12-28
We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding.
Yan, Mingyan; Wang, Xinping
2018-05-27
The kinetic self-assembly of type I collagen from tilapia (Oreochromis niloticus) skin was characterized by the fluorescence method based on thioflavin T (ThT). The fluorescence probe could bind to the active monomeric collagen with a higher ordered degree of molecule, which displayed the pH and ionic strength dependence, the binding constant higher at neutral pH and proportional to the NaCl concentration. Compared to the turbidity method, ThT was more suitable to characterize the nucleation phase of collagen self-assembly. The nucleus size was determined through the ThT fluorescence and linear-polymerization model. At various pH and ionic strength, the nucleus size was nearly identical, either one or two monomers, demonstrating that one or two active monomeric collagen formed into the nucleus and different pH and ionic strength didn't alter the self-assembly mechanism of collagen. This approach was beneficial to advance the understanding of the kinetic self-assembly of the fish-sourced collagen in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.
Multilayer block copolymer meshes by orthogonal self-assembly
Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.
2016-01-01
Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218
Toward a molecular programming language for algorithmic self-assembly
NASA Astrophysics Data System (ADS)
Patitz, Matthew John
Self-assembly is the process whereby relatively simple components autonomously combine to form more complex objects. Nature exhibits self-assembly to form everything from microscopic crystals to living cells to galaxies. With a desire to both form increasingly sophisticated products and to understand the basic components of living systems, scientists have developed and studied artificial self-assembling systems. One such framework is the Tile Assembly Model introduced by Erik Winfree in 1998. In this model, simple two-dimensional square 'tiles' are designed so that they self-assemble into desired shapes. The work in this thesis consists of a series of results which build toward the future goal of designing an abstracted, high-level programming language for designing the molecular components of self-assembling systems which can perform powerful computations and form into intricate structures. The first two sets of results demonstrate self-assembling systems which perform infinite series of computations that characterize computably enumerable and decidable languages, and exhibit tools for algorithmically generating the necessary sets of tiles. In the next chapter, methods for generating tile sets which self-assemble into complicated shapes, namely a class of discrete self-similar fractal structures, are presented. Next, a software package for graphically designing tile sets, simulating their self-assembly, and debugging designed systems is discussed. Finally, a high-level programming language which abstracts much of the complexity and tedium of designing such systems, while preventing many of the common errors, is presented. The summation of this body of work presents a broad coverage of the spectrum of desired outputs from artificial self-assembling systems and a progression in the sophistication of tools used to design them. By creating a broader and deeper set of modular tools for designing self-assembling systems, we hope to increase the complexity which is attainable. These tools provide a solid foundation for future work in both the Tile Assembly Model and explorations into more advanced models.
Selective Binding, Self-Assembly and Nanopatterning of the Creutz-Taube Ion on Surfaces
Wang, Yuliang; Lieberman, Marya; Hang, Qingling; Bernstein, Gary
2009-01-01
The surface attachment properties of the Creutz-Taube ion, i.e., [(NH3)5Ru(pyrazine)Ru(NH3)5]5+, on both hydrophilic and hydrophobic types of surfaces were investigated using X-ray photoelectron spectroscopy (XPS). The results indicated that the Creutz-Taube ions only bound to hydrophilic surfaces, such as SiO2 and –OH terminated organic SAMs on gold substrates. No attachment of the ions on hydrophobic surfaces such as –CH3 terminated organic SAMs and poly(methylmethacrylate) (PMMA) thin films covered gold or SiO2 substrates was observed. Further ellipsometric, atomic force microscopy (AFM) and time-dependent XPS studies suggested that the attached cations could form an inorganic analog of the self-assembled monolayer on SiO2 substrate with a “lying-down” orientation. The strong electrostatic interaction between the highly charged cations and the anionic SiO2 surface was believed to account for these observations. Based on its selective binding property, patterning of wide (∼200 nm) and narrow (∼35 nm) lines of the Creutz-Taube ions on SiO2 surface were demonstrated through PMMA electron resist masks written by electron beam lithography (EBL). PMID:19333420
Shen, Liguo; Cui, Xia; Yu, Genying; Li, Fengquan; Li, Liang; Feng, Shushu; Lin, Hongjun; Chen, Jianrong
2017-05-15
In this study, polyvinylidene fluoride (PVDF) microfiltration membrane was coated by dipping the membrane alternatingly in solutions of the polyelectrolytes (poly-diallyldimethylammonium chloride (PDADMAC) and polystyrenesulfonate (PSS)) via layer-by-layer (LBL) self-assembly technique to improve the membrane antifouling ability. Filtration experiments showed that, sludge cake layer on the coated membrane could be more easily washed off, and moreover, the remained flux ratio (RFR) of the coated membrane was obviously improved as compared with the control membrane. Characterization of the membranes showed that a polyelectrolyte layer was successfully coated on the membrane surfaces, and the hydrophilicity, surface charge and surface morphology of the coated membrane were changed. Based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approaches, quantification of interfacial interactions between foulants and membranes in three different scenarios was achieved. It was revealed that there existed a repulsive energy barrier when a particle foulant adhered to membrane surface, and the enhanced electrostatic double layer (EL) interaction and energy barrier should be responsible for the improved antifouling ability of the coated membrane. This study provided a combined solution to membrane modification and interaction energy evaluation related with membrane fouling simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Xiaodong; Chen, Bizheng; Li, Xiaojun; Zhang, Lifen; Xu, Yujie; Liu, Zhuang; Cheng, Zhenping; Zhu, Xiulin
2015-10-21
Responsive block copolymer micelles emerging as promising imaging and drug delivery systems show high stability and on-demand drug release activities. Herein, we developed self-assembled pH-responsive NIR emission micelles entrapped with doxorubicin (DOX) within the cores by the electrostatic interactions for fluorescence imaging and chemotherapy applications. The block copolymer, poly(methacrylic acid)-block-poly[(poly(ethylene glycol) methyl ether methacrylate)-co-boron dipyrromethene derivatives] (PMAA-b-P(PEGMA-co-BODIPY), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the molecular weight distribution of this copolymer was narrow (Mw/Mn = 1.31). The NIR fluorescence enhancement induced by the phenol/phenolate interconversion equilibrium works as a switch in response to the intracellular pH fluctuations. DOX-loaded PMAA-b-P(PEGMA-co-BODIPY) micelles can detect the physiological pH fluctuations with a pKa near physiological conditions (∼7.52), and showed pH-responsive collapse and an obvious acid promoted anticancer drug release behavior (over 58.8-62.8% in 10 h). Real-time imaging of intracellular pH variations was performed and a significant chemotherapy effect was demonstrated against HeLa cells.
NASA Astrophysics Data System (ADS)
Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei
2018-04-01
Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Yang, Shaojun; Zhang, Jing; Zhang, Ling; Kang, Pingli; Li, Jinghong; Xu, Jingwei; Zhou, Hua; Song, Xi-Ming
2011-12-01
A novel hybrid nanomaterial (GO-MWNTs) was explored based on the self-assembly of multiwall carbon nanotubes (MWNTs) and graphene oxide (GO). Compared with pristine MWNTs, such a nanocomposite could be well dispersed in aqueous solution and exhibit a negative charge. Driven by the electrostatic interaction, positively charged horseradish peroxidase (HRP) could then be immobilized onto GO-MWNTs at the surface of a glassy carbon (GC) electrode to form a HRP/GO-MWNT/GC electrode under mild conditions. TEM was used to characterize the morphology of the GO-MWNT nanocomposite. UV-vis and FTIR spectra suggested that HRP was immobilized onto the hybrid matrix without denaturation. Furthermore, the immobilized HRP showed enhanced direct electron transfer for the HRP-Fe(III)/Fe(II) redox center. Based on the direct electron transfer of the immobilized HRP, the HRP/GO-MWNT/GC electrode exhibited excellent electrocatalytic behavior to the reduction of H2O2 and NaNO2, respectively. Therefore, GO-MWNTs could provide a novel and efficient platform for the immobilization and biosensing of redox enzymes, and thus may find wide potential applications in the fabrication of biosensors, biomedical devices, and bioelectronics.
Geist, Brian; Spillman, William B; Claus, Richard O
2005-10-20
Some laser applications produce high power densities that can be dangerous to equipment and operators. We have fabricated thin-film coatings by using molecular electrostatic self-assembly to create a spectrally selective absorbing coating that is able to withstand thermal fluctuations from -20 degrees C to 120 degrees C. We made the thin-film coatings by alternating deposition of an organic dye and gold colloidal nanoparticles onto glass substrates. Nile Blue A perchlorate, with a maximum absorbance slightly above 632 nm, was chosen as the organic dye. Strong coupling between the dye molecules and the gold nanoparticles provides a redshift that increases as the film's thickness is increased. The incorporation of the gold colloidal nanoparticles also decreases the resistivity of the film. The resistivity of the film was measured with a four-point probe and found to be approximately 10 omega/cm for the two samples measured. Atomic-force microscopy was used to show that film thickness increased 2.4 nm per bilayer. The optical properties of the film were measured at the end of every 5 thermal cycles from -20 degrees C to 120 degrees C, and negligible degradation was observed after 30 cycles.
Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Honghu
Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering.more » Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.« less
On-chip self-assembly of cell embedded microstructures to vascular-like microtubes.
Yue, Tao; Nakajima, Masahiro; Takeuchi, Masaru; Hu, Chengzhi; Huang, Qiang; Fukuda, Toshio
2014-03-21
Currently, research on the construction of vascular-like tubular structures is a hot area of tissue engineering, since it has potential applications in the building of artificial blood vessels. In this paper, we report a fluidic self-assembly method using cell embedded microstructures to construct vascular-like microtubes. A novel 4-layer microfluidic device was fabricated using polydimethylsiloxane (PDMS), which contains fabrication, self-assembly and extraction areas inside one channel. Cell embedded microstructures were directly fabricated using poly(ethylene glycol) diacrylate (PEGDA) in the fabrication area, namely on-chip fabrication. Self-assembly of the fabricated microstructures was performed in the assembly area which has a micro well. Assembled tubular structures (microtubes) were extracted outside the channel into culture dishes using a normally closed (NC) micro valve in the extraction area. The self-assembly mechanism was experimentally demonstrated. The performance of the NC micro valve and embedded cell concentration were both evaluated. Fibroblast (NIH/3T3) embedded vascular-like microtubes were constructed inside this reusable microfluidic device.
Enabling complex nanoscale pattern customization using directed self-assembly.
Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P
2014-12-16
Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.
Self-assembled graphene hydrogel via a one-step hydrothermal process.
Xu, Yuxi; Sheng, Kaixuan; Li, Chun; Shi, Gaoquan
2010-07-27
Self-assembly of two-dimensional graphene sheets is an important strategy for producing macroscopic graphene architectures for practical applications, such as thin films and layered paperlike materials. However, construction of graphene self-assembled macrostructures with three-dimensional networks has never been realized. In this paper, we prepared a self-assembled graphene hydrogel (SGH) via a convenient one-step hydrothermal method. The SGH is electrically conductive, mechanically strong, and thermally stable and exhibits a high specific capacitance. The high-performance SGH with inherent biocompatibility of carbon materials is attractive in the fields of biotechnology and electrochemistry, such as drug-delivery, tissue scaffolds, bionic nanocomposites, and supercapacitors.
Tähkä, Sari; Laiho, Ari; Kostiainen, Mauri A
2014-03-03
Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as efficient transverse relaxivity (T2 ) contrast agents in magnetic resonance imaging (MRI). Organizing small (D<10 nm) SPIONs into large assemblies can considerably enhance their relaxivity. However, this assembly process is difficult to control and can easily result in unwanted aggregation and precipitation, which might further lead to lower contrast agent performance. Herein, we present highly stable protein-polymer double-stabilized SPIONs for improving contrast in MRI. We used a cationic-neutral double hydrophilic poly(N-methyl-2-vinyl pyridinium iodide-block-poly(ethylene oxide) diblock copolymer (P2QVP-b-PEO) to mediate the self-assembly of protein-cage-encapsulated iron oxide (γ-Fe2 O3 ) nanoparticles (magnetoferritin) into stable PEO-coated clusters. This approach relies on electrostatic interactions between the cationic N-methyl-2-vinylpyridinium iodide block and magnetoferritin protein cage surface (pI≈4.5) to form a dense core, whereas the neutral ethylene oxide block provides a stabilizing biocompatible shell. Formation of the complexes was studied in aqueous solvent medium with dynamic light scattering (DLS) and cryogenic transmission electron microcopy (cryo-TEM). DLS results indicated that the hydrodynamic diameter (Dh ) of the clusters is approximately 200 nm, and cryo-TEM showed that the clusters have an anisotropic stringlike morphology. MRI studies showed that in the clusters the longitudinal relaxivity (r1 ) is decreased and the transverse relaxivity (r2 ) is increased relative to free magnetoferritin (MF), thus indicating that clusters can provide considerable contrast enhancement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology
NASA Astrophysics Data System (ADS)
Cui, Feng; Chen, Wenyuan; Su, Yufeng; Zhang, Weiping; Zhao, Xiaolin
2004-12-01
The prevailing micromachined vibratory gyroscope typically has a proof mass connected to the substrate by a mechanical suspension system, which makes it face a tough challenge to achieve tactical or inertial grade performance levels. With a levitated rotor as the proof mass, a micromachined rotational gyroscope will potentially have higher performance than vibratory gyroscope. Besides working as a moment rebalance dual-axis gyroscope, the micromachined rotational gyroscope based on a levitated rotor can simultaneously work as a force balance tri-axis accelerometer. Micromachined rotational gyroscope based on an electrostatically levitated silicon micromachined rotor has been notably developed. In this paper, factors in designing a rotational gyro/accelerometer based on an electrostatically levitated disc-like rotor, including gyroscopic action of micro rotor, methods of stable levitation, micro displacement detection and control, rotation drive and speed control, vacuum packaging and microfabrication, are comprehensively considered. Hence a design of rotational gyro/accelerometer with an electroforming nickel rotor employing low cost UV-LIGA technology is presented. In this design, a wheel-like flat rotor is proposed and its basic dimensions, diameter and thickness, are estimated according to the required loading capability. Finally, its micromachining methods based on UV-LIGA technology and assembly technology are discussed.
Light-induced Self-Assembly and Diffusion of Nanoclusters
NASA Astrophysics Data System (ADS)
Lian, Wenxuan
Novel methods to build multiple types of three-dimensional structures from various nanoscale components are the most exciting and challenging questions in nano-science. The properties of the assembled structures can be potentially and designed, but the development of such approaches is challenging. In order to realize such rational assembly, a tunable interaction medium is often introduced into the system. Soft matter, such as polymers, surfactants and biomolecules are used to modify the surfaces of the nanoscale building blocks. Deoxyribonucleic acid (DNA) strands are known as polynucleotides since they are composed of simpler units called nucleotides. There are unique base pairing rules that are predictable and programmable, which can be used to regulate self-assembly process with high degree of control. Besides controlling static structure, it is important to develop methods for controlling systems in dynamic matter, with chemical stimuli or external fields. For example, here we study the use of azobezene-trimethylammonium bromide (AzoTAB) as a molecular agent that can control self-assembly via light excitation. In this thesis, DNA assisted self-assembly was conducted. The ability of AzoTAB as a light induced surfactant to control DNA assisted self-assembly was confirmed. The mechanism of AzoTAB as a light controlled self-assembly promoter was studied. In the second project, diffusion of nanoclusters was studied. The presence of polymers brings strong entanglement with nanoclusters. This entanglement is more obvious when the nanocluster is a framed structure like the octahedron in the study. The diffusion coefficient of the octahedron becomes larger during traveling. The following up studies are required to elucidate the origin of the observed effect.
Fibrous microcapsules and methods of assembly and use thereof
Stupp, Samuel; Rozkiewicz, Dorota
2015-01-27
The present invention relates to assembly of peptide amphiphiles and biopolymers into fibrous microcapsules, and uses thereof. In particular, the present invention provides devices, compositions, and methods for interfacial self-assembly of peptide amphiphiles and biopolyments into fibrous microcapsules, and uses thereof.
Garcia-Sucerquia, J; Alvarez-Palacio, D C; Kreuzer, H J
2008-09-10
We report the observation of the Talbot self-imaging effect in high resolution digital in-line holographic microscopy (DIHM) and its application to structural characterization of periodic samples. Holograms of self-assembled monolayers of micron-sized polystyrene spheres are reconstructed at different image planes. The point-source method of DIHM and the consequent high lateral resolution allows the true image (object) plane to be identified. The Talbot effect is then exploited to improve the evaluation of the pitch of the assembly and to examine defects in its periodicity.
Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng
2016-11-15
Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
Strategies for Controlled Placement of Nanoscale Building Blocks
2007-01-01
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185
2015-06-18
platform assembly 2, with micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...beam micro-mirror platform assembly 1; micro-mirror platform deflection, measured on actuation side ( PFa ) and side opposite actuation (PFo...side ( PFa ) and side opposite actuation (PFo) ........................................................ 106 xiv Figure 73: Graph of measured 10-beam
NASA Astrophysics Data System (ADS)
Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang
2017-09-01
Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.
Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta
2017-04-01
DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. Copyright © 2017 Elsevier Inc. All rights reserved.
Mantha, Sriteja; McDaniel, Jesse G.; Perroni, Dominic V.; ...
2016-12-27
Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water concentration-dependent lyotropic liquid crystal (LLC) morphologies that are sensitive to surfactant molecular structure, and na- ture of the headgroups and counterions. Recently, an interesting dependence of the aqueous phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker sur- factants. In this work, we investigate this “odd/even effect” using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, 7 non-terminal carbon atomsmore » in the tails, and either 3, 4, 5, or 6 carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76 respectively). We find that the relative electrostatic repulsion be- tween headgroups in the different morphologies is correlated with qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup ori- entations of Na-74 and Na-76 compared to Na-73 and Na-75 surfactants lead to differences in linker-linker packing, and long-range headgroup/headgroup electrostatic repulsion, which affects the delicate electrostatic balance between hexagonal and gyroid phases. Finally, much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.« less
Chang, Chung-ke; Chen, Chia-Min Michael; Chiang, Ming-hui; Hsu, Yen-lan; Huang, Tai-huang
2013-01-01
The nucleocapsid (N) phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genome into a helical ribonucleocapsid and plays a fundamental role during viral self-assembly. The N protein consists of two structural domains interspersed between intrinsically disordered regions and dimerizes through the C-terminal structural domain (CTD). A key activity of the protein is the ability to oligomerize during capsid formation by utilizing the dimer as a building block, but the structural and mechanistic bases of this activity are not well understood. By disulfide trapping technique we measured the amount of transient oligomers of N protein mutants with strategically located cysteine residues and showed that CTD acts as a primary transient oligomerization domain in solution. The data is consistent with the helical oligomer packing model of N protein observed in crystal. A systematic study of the oligomerization behavior revealed that altering the intermolecular electrostatic repulsion through changes in solution salt concentration or phosphorylation-mimicking mutations affects oligomerization propensity. We propose a biophysical mechanism where electrostatic repulsion acts as a switch to regulate N protein oligomerization.
NASA Astrophysics Data System (ADS)
Bukauskas, V.; Šetkus, A.; Šimkienė, I.; Tumėnas, S.; Kašalynas, I.; Rėza, A.; Babonas, J.; Časaitė, V.; Povilonienė, S.; Meškys, R.
2012-03-01
In present work the formation of hybrid constructions composed of alpha-synuclein-based colloidal solutions on various solid surfaces (silica coated Si, mica, CaF2 and KBr) is investigated by scanning probe microscopy, spectrocopic ellipsometry, Fourier transformed infrared spectroscopy and vibrational circular dichroism. Prior to the modification of the solids, the proteins were intentionally fibrilled under special conditions. It is proved that the multi-component coatings are self-arranged on the solid substrates. Depending on the substrate material, the interface films consisting of individual biomolecules can be detected on the solid surfaces. The coatings with fibril-like alpha-synuclein objects can be obtained on solid surfaces with negligible or comparatively thick interface films. The results are interpreted in terms of the charged surface-controlled electrostatic interaction between the substrate and the biomolecules. Solubility of solids is considered in this interpretation.
Self-Assembly at the Colloidal Scale
NASA Astrophysics Data System (ADS)
Zhong, Xiao
The existence of self-assembly, the phenomenon of spontaneous structural formation from building blocks, transcends many orders of magnitude, ranging from molecular to cosmic. It is arguably the most common, important, and complex question in science. This thesis aims for understanding a spectrum of self-assembly-self assembly at the colloidal scale. Of the whole spectrum of self-assembly, the colloidal scale is of particular interest and importance to researchers, for not only comprehensive tools for colloidal scale studies have been well established, but also the various promising applications colloidal self-assembly can facilitate. In this thesis, a high throughput technique-Polymer Pen Lithography (PPL) is modified and its potential for creating corrals for colloidal assembly is evaluated. Then two different approaches of assembling colloids are explored in depth. One of them is by using a phenomenon called dielectrophoresis (DEP) as driving force to manipulate colloidal nucleation and crystal growth. And the other takes advantage of the Pt-catalyzed H2O 2 redox reaction to drive micrometer-scaled, rod-shaped colloids to swim and assemble. Lastly, an optical method called Holographic Video Microscopy (HVM) is used to monitor and characterize "bad" self-assembly of proteins, that is their aggregations. The four studies discussed in this thesis represent advancements in the colloidal scale from different aspects. The PPL technique enriched the toolbox for colloidal self-assembly. The DEP driven colloidal nucleation and crystal growth shed light on deeper understanding the mechanism of crystallization. And the swimming and assembly of micro-scale rods leads to kinetics reminiscent of bacterial run-and-tumble motion. Finally, the HVM technique for monitoring and understanding protein aggregation could potentially lead to better quality assurance for therapeutic proteins and could be a powerful tool for assessing their shelf lives.
An electromagnetic/electrostatic dual cathode system for electron beam instruments
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Wittry, D. B.; Albee, A. L.
1986-01-01
A method of providing cathode redundancy which consists of two fixed cathodes and uses electromagnetic and/or electrostatic fields to direct the electron beam to the electron optical axis is presented, with application to the cathode system of the Scanning Electron Microscope and Particle Analyzer proposed for NASA's Mariner Mark II Comet Rendezvous/Asteroid Flyby projected for the 1990s. The symmetric double deflection system chosen has the optical property that the image of the effective electron source is formed above the magnet assembly near the apparent position of the effective source, and it makes the transverse positions of the electron sources independent of the electron beam energy. Good performance of the system is found, with the sample imaging resolution being the same as for the single-axis cathode.
Logical NAND and NOR Operations Using Algorithmic Self-assembly of DNA Molecules
NASA Astrophysics Data System (ADS)
Wang, Yanfeng; Cui, Guangzhao; Zhang, Xuncai; Zheng, Yan
DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated for programmable construction of patterned systems on the molecular scale. It has been demonstrated that the simple binary arithmetic and logical operations can be computed by the process of self assembly of DNA tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute five steps of a logical NAND and NOR operations on a string of binary bits. To achieve this, abstract tiles were translated into DNA tiles based on triple-crossover motifs. Serving as input for the computation, long single stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. Our method shows that engineered DNA self-assembly can be treated as a bottom-up design techniques, and can be capable of designing DNA computer organization and architecture.
Self-Assembly of Trimer Colloids: Effect of Shape and Interaction Range†
Hatch, Harold W.; Yang, Seung-Yeob; Mittal, Jeetain; Shen, Vincent K.
2016-01-01
Trimers with one attractive bead and two repulsive beads, similar to recently synthesized trimer patchy colloids, were simulated with flat-histogram Monte Carlo methods to obtain the stable self-assembled structures for different shapes and interaction potentials. Extended corresponding states principle was successfully applied to self-assembling systems in order to approximately collapse the results for models with the same shape, but different interaction range. This helps us directly compare simulation results with previous experiment, and good agreement was found between the two. In addition, a variety of self-assembled structures were observed by varying the trimer geometry, including spherical clusters, elongated clusters, monolayers, and spherical shells. In conclusion, our results help to compare simulations and experiments, via extended corresponding states, and we predict the formation of self-assembled structures for trimer shapes that have not been experimentally synthesized. PMID:27087490
2017-01-01
The review is devoted to the physical, chemical, and technological aspects of the breath-figure self-assembly process. The main stages of the process and impact of the polymer architecture and physical parameters of breath-figure self-assembly on the eventual pattern are covered. The review is focused on the hierarchy of spatial and temporal scales inherent to breath-figure self-assembly. Multi-scale patterns arising from the process are addressed. The characteristic spatial lateral scales of patterns vary from nanometers to dozens of micrometers. The temporal scale of the process spans from microseconds to seconds. The qualitative analysis performed in the paper demonstrates that the process is mainly governed by interfacial phenomena, whereas the impact of inertia and gravity are negligible. Characterization and applications of polymer films manufactured with breath-figure self-assembly are discussed. PMID:28813026
Kumar, M Senthil; Schwartz, Russell
2010-12-09
Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.
NASA Astrophysics Data System (ADS)
Senthil Kumar, M.; Schwartz, Russell
2010-12-01
Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.
NASA Astrophysics Data System (ADS)
Qi, Juanjuan; Chen, Ke; Zhang, Shuhao; Yang, Yun; Guo, Lin; Yang, Shihe
2017-03-01
The controllable self-assembly of nanosized building blocks into larger specific structures can provide an efficient method of synthesizing novel materials with excellent properties. The self-assembly of nanocrystals by assisted means is becoming an extremely active area of research, because it provides a method of producing large-scale advanced functional materials with potential applications in the areas of energy, electronics, optics, and biologics. In this study, we applied an efficient strategy, namely, the use of ‘pressure control’ to the assembly of silver sulfide (Ag2S) nanospheres with a diameter of approximately 33 nm into large-scale, uniform Ag2S sub-microspheres with a size of about 0.33 μm. More importantly, this strategy realizes the online control of the overall reaction system, including the pressure, reaction time, and temperature, and could also be used to easily fabricate other functional materials on an industrial scale. Moreover, the thermodynamics and kinetics parameters for the thermal decomposition of silver diethyldithiocarbamate (Ag(DDTC)) are also investigated to explore the formation mechanism of the Ag2S nanosized building blocks which can be assembled into uniform sub-micron scale architecture. As a method of producing sub-micron Ag2S particles by means of the pressure-controlled self-assembly of nanoparticles, we foresee this strategy being an efficient and universally applicable option for constructing other new building blocks and assembling novel and large functional micromaterials on an industrial scale.
Electrostatics at the nanoscale.
Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A
2011-04-01
Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.
Electrostatics-driven shape transitions in soft shells.
Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica
2014-09-02
Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.
Dynamics of self-assembled cytosine nucleobases on graphene
NASA Astrophysics Data System (ADS)
Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra
2018-05-01
Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.
Nguyễn, Cảnh Hưng; Putaux, Jean-Luc; Santoni, Gianluca; Tfaili, Sana; Fourmentin, Sophie; Coty, Jean-Baptiste; Choisnard, Luc; Gèze, Annabelle; Wouessidjewe, Denis; Barratt, Gillian; Lesieur, Sylviane; Legrand, François-Xavier
2017-10-15
This work aimed at preparing new nanoscale assemblies based on an amphiphilic bio-esterified β-cyclodextrin (β-CD), substituted at the secondary face with n-decanoic fatty acid chains (β-CD-C 10 ), and monoolein (MO) as new carriers for parenteral drug delivery. Stable binary (β-CD-C 10 /MO) and ternary (β-CD-C 10 /MO/stabilizer) nanoscale assemblies close to 100nm in size were successfully prepared in water by the solvent displacement method. The generated nanoparticles were fully characterized by dynamic light scattering, transmission electron microscopy, small-angle X-ray scattering, residual solvent analysis, complement activation and the contribution of each formulation parameter was determined by principal component analysis. The β-CD-C 10 units were shown to self-organize into nanoparticles with a hexagonal supramolecular packing that was significantly modulated by the molar ratio of the constituents and the presence of a steric or electrostatic stabilizer (DOPE-PEG 2000 or DOPA/POPA, respectively). Indeed, nanoparticles differing in morphology and in hexagonal lattice parameters were obtained while the co-existence of multiple mesophases was observed in some formulations, in particular for the β-CD-C 10 /MO/DOPA and β-CD-C 10 /MO/POPA systems. The mixed β-CD-C 10 /MO/DOPE-PEG 2000 nanoparticles (49:49:2 in mol%) appeared to be the most suitable for use as a drug delivery system since they contained a very low amount of residual solvent and showed a low level of complement C3 activation. Copyright © 2017 Elsevier B.V. All rights reserved.
Elizondo-García, Mariana E; Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D
2018-04-21
Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been fully investigated thus it is important to gain insight into its mechanism and dependence on JDs’ molecular structure. In this study, the aggregation behavior in water of a second-generation bis-MPA JD was evaluated using experimental and computational methods. Dispersions of JDs in water were carried out using the thin-film hydration and ethanol injection methods. Resulting assemblies were characterized by dynamic light scattering, confocal microscopy, and atomic force microscopy. Furthermore, a coarse-grained molecular dynamics (CG-MD) simulation was performed to study the mechanism of JDs aggregation. The obtaining of assemblies in water with no interdigitated bilayers was confirmed by the experimental characterization and CG-MD simulation. Assemblies with dendrimersome characteristics were obtained using the ethanol injection method. The results of this study establish a relationship between the molecular structure of the JD and the properties of its aggregates in water. Thus, our findings could be relevant for the design of novel JDs with tailored assemblies suitable for drug delivery systems.
Self-assembled DNA Structures for Nanoconstruction
NASA Astrophysics Data System (ADS)
Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.
2004-09-01
In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.
Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.
NASA Astrophysics Data System (ADS)
Dholakia, Geetha; Kuo, Steven; Allen, E. L.
2007-03-01
Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.
Nanosystem self-assembly pathways discovered via all-atom multiscale analysis.
Pankavich, Stephen D; Ortoleva, Peter J
2012-07-26
We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final aggregates are also derived. It is shown that the definition of an assembly type is a self-consistency criterion that must strike a balance between precision and the need for population levels to be slowly varying relative to the time scale of atomic motion. The deductive multiscale approach is complemented by a qualitative notion of multicomponent association and the ensemble of exact atomic-level configurations consistent with them. In processes such as viral self-assembly from proteins and RNA or DNA, there are many possible intermediates, so that it is usually difficult to predict the most efficient assembly pathway. However, in the current study, rates of assembly of each possible intermediate can be predicted. This avoids the need, as in a phenomenological approach, for recalibration with each new application. The method accounts for the feedback across scales in space and time that is fundamental to nanosystem self-assembly. The theory has applications to bionanostructures, geomaterials, engineered composites, and nanocapsule therapeutic delivery systems.
Potential of mean force of DNA guided assemblies past Debye-Hückel regime
NASA Astrophysics Data System (ADS)
Girard, Martin; Seo, Soyoung; Li, Yaohua; Mirkin, Chad; Olvera de La Cruz, Monica
Many of the bioinspired systems make use of biopolymers such as polypeptides or DNA. The latter is widely used in self-assembled systems, from colloidal crystals to origami construction. In these systems, salt is commonly required to screen the electrostatic repulsion between the strands. In the classical Debye-Hückel picture, salt ions are point particles and the screening distance is a decreasing monotonic function of salt concentration. This picture breaks down at moderate salt concentrations, where the behavior becomes non-monotonic. In this talk, we will show results for potential of mean force of DNA grafted colloids obtained through multiscale molecular dynamics. In this picture, the highly charged DNA causes non-trivial behavior at moderate salt concentrations (c 0 . 3 - 0 . 7 M), namely increase of repulsion for non-complementary DNA strands while repulsion decreases for complementary strands. We will show spatial cluster distribution as function of size and charge as well as implications for experimental systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jin; Li, Wenbin; Zhu, Mao
2014-03-15
The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates thatmore » self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH.« less
NASA Astrophysics Data System (ADS)
Truskett, Thomas M.; Johnston, Keith; Maynard, Jennifer; Borwankar, Ameya; Miller, Maria; Wilson, Brian; Dinin, Aileen; Khan, Tarik; Kaczorowski, Kevin
2012-02-01
Stabilizing concentrated protein solutions is of wide interest in drug delivery. However, a major challenge is how to reliably formulate concentrated, low viscosity (i.e., syringeable) solutions of biologically active proteins. Unfortunately, proteins typically undergo irreversible aggregation at intermediate concentrations of 100-200 mg/ml. In this talk, I describe how they can effectively avoid these intermediate concentrations by reversibly assembling into nanoclusters. Nanocluster assembly is achieved by balancing short-ranged, cosolute-induced attractions with weak, longer-ranger electrostatic repulsions near the isoelectric point. Theory predicts that native proteins are stabilized by a self-crowding mechanism within the concentrated environment of the nanoclusters, while weak cluster-cluster interactions can result in colloidally-stable dispersions with moderate viscosities. I present experimental results where this strategy is used to create concentrated antibody dispersions (up to 260 mg/ml) comprising nanoclusters of proteins [monoclonal antibody 1B7, polyclonal sheep Immunoglobin G and bovine serum albumin], which upon dilution in vitro or administration in vivo, are conformationally stable and retain activity.
Self-Assembly of Nanostructured Electronic Devices (454th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Charles
2009-12-16
Given suitable atmospheric conditions, water vapor from the air will crystallize into beautiful structures: snowflakes. Nature provides many other examples of spontaneous organization of materials into regular patterns, which is a process known as self-assembly. Since self-assembly works at all levels, it can be a useful tool for organizing materials on the nanometer scale. In particular, self-assembly provides a precise method for designing materials with improved electronic properties, thereby enabling advances in semiconductor electronics and solar devices. On Wednesday, December 16, at 4 p.m. in Berkner Hall, Charles Black of the Center for Functional Nanomaterials (CFN) will explore this topicmore » during the 454th Brookhaven Lecture, entitled “Self-Assembly of Nanostructured Electronic Devices.” Refreshments will be offered before and after the lecture. To attend this open-to-the-public event, visitors to the Lab ages 16 and older must present photo ID at the Main Gate. During this talk, Dr. Black will discuss examples of how self-assembly is being integrated into semiconductor microelectronics, as advances in the ability to define circuit elements at higher resolution have fueled more than 40 years of performance improvements. Self-assembly also promises advances in the performance of solar devices; thus he will describe his group’s recent results with nanostructured photovoltaic devices.« less
Li, Junhui; Zhang, Yue; Song, Yanzhai; Zhang, Hui; Fan, Jiangbo; Li, Qun; Zhang, Dongfen; Xue, Yongbiao
2017-01-01
Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hansda, Chaitali; Maiti, Pradip; Singha, Tanmoy; Pal, Manisha; Hussain, Syed Arshad; Paul, Sharmistha; Paul, Pabitra Kumar
2018-10-01
In this study, we investigated the spectroscopic properties of the water-soluble globular protein bovine serum albumin (BSA) while interacting with zinc oxide (ZnO) semiconductor nanoparticles (NPs) in aqueous medium and in a ZnO/BSA layer-by-layer (LbL) self-assembled film fabricated on poly (acrylic acid) (PAA)-coated quartz or a Si substrate via electrostatic interactions. BSA formed a ground state complex due to its interaction with ZnO NPs, which was confirmed by ultraviolet-visible absorption, and steady state and time-resolved fluorescence emission spectroscopic techniques. However, due to its interaction with ZnO, the photophysical properties of BSA depend significantly on the concentration of ZnO NPs in the mixed solution. The quenching of the fluorescence intensity of BSA in the presence of ZnO NPs was due to the interaction between ZnO and BSA, and the formation of their stable ground state complex, as well as energy transfer from the excited BSA to ZnO NPs in the complex nano-bioconjugated species. Multilayer growth of the ZnO/BSA LbL self-assembled film on the quartz substrate was confirmed by monitoring the characteristic absorption band of BSA (280 nm), where the nature of the film growth depends on the number of bilayers deposited on the quartz substrate. BSA formed a well-ordered molecular network-type morphology due to its adsorption onto the surface of the ZnO nanostructure in the backbone of the PAA-coated Si substrate in the LbL film according to atomic force microscopic study. The as-synthesized ZnO NPs were characterized by field emission scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering techniques.
STM imaging ortho- and para-fluorothiophenol self-assembled monolayers on Au(111).
Jiang, Peng; Deng, Ke; Fichou, Denis; Xie, Si-Shen; Nion, Aymeric; Wang, Chen
2009-05-05
Self-assembled monolayers (SAMs) of para- and ortho-fluorothiophenol (p- and o-FTP) spontaneously formed on Au(111) substrate have been contrasted through investigation by a scanning tunneling microscope (STM) at room temperature. High-resolution STM imaging reveals that p-FTP adopts a 6 x radical3R30 degrees molecule arrangement containing six molecules. Two different kinds of p-FTP molecule dimer line structures have been formed on Au(111) by intermolecular pi-pi stacking along 112 substrate directions, besides a single p-FTP molecule line. In contrast, o-FTP molecules self-assemble into a much looser wave-like SAM, which can be described as a 5 x 3 radical3R30 degrees structure containing two molecules. Periodic density functional theory (DFT) calculations for the two systems suggest that these kinds of FTP molecules preferentially take the asymmetrical positions between 3-fold face-centered cubic (fcc) hollow and bridge sites on Au(111), tilting from the substrate surface. Theoretical simulation gives apparent average tilted angles of 58 degrees and 68 degrees for p-FTP and o-FTP with respect to the surface normal, respectively. This simulation shows that o-FTP is more inclined to lie down toward the Au(111) surface compared to p-FTP. The difference between p-FTP and o-FTP SAM structures can be qualitatively understood in terms of the variation of intermolecular dipole-dipole orientation. This suggests that, besides well-known Au-S and pi-pi interactions, electrostatic interactions including dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole interactions might also play an important role in influencing the SAM structures formed by aromatic thiols with a permanent dipole moment.
NASA Astrophysics Data System (ADS)
Ganesh, V.; Muthurasu, A.
2012-04-01
In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).
Hydraulically amplified self-healing electrostatic actuators with muscle-like performance
NASA Astrophysics Data System (ADS)
Acome, E.; Mitchell, S. K.; Morrissey, T. G.; Emmett, M. B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C.
2018-01-01
Existing soft actuators have persistent challenges that restrain the potential of soft robotics, highlighting a need for soft transducers that are powerful, high-speed, efficient, and robust. We describe a class of soft actuators, termed hydraulically amplified self-healing electrostatic (HASEL) actuators, which harness a mechanism that couples electrostatic and hydraulic forces to achieve a variety of actuation modes. We introduce prototypical designs of HASEL actuators and demonstrate their robust, muscle-like performance as well as their ability to repeatedly self-heal after dielectric breakdown—all using widely available materials and common fabrication techniques. A soft gripper handling delicate objects and a self-sensing artificial muscle powering a robotic arm illustrate the wide potential of HASEL actuators for next-generation soft robotic devices.
Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution.
Li, Bo; Li, Songsong; Zhou, Yuecheng; Ardoña, Herdeline Ann M; Valverde, Lawrence R; Wilson, William L; Tovar, John D; Schroeder, Charles M
2017-02-01
Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopolymer subunits. Despite recent progress, there is a need to control and quantitatively understand assembly under nonequilibrium conditions. In this work, we study the nonequilibrium self-assembly of π-conjugated synthetic oligopeptides using a combination of experiments and analytical modeling. By isolating an aqueous peptide solution droplet within an immiscible organic layer, the rate of peptide assembly in the aqueous solution can be controlled by tuning the transport rate of acid that is used to trigger assembly. Using this approach, peptides are guided to assemble under reaction-dominated and diffusion-dominated conditions, with results showing a transition from a diffusion-limited reaction front to spatially homogeneous assembly as the transport rate of acid decreases. Interestingly, our results show that the morphology of self-assembled peptide fibers is controlled by the assembly kinetics such that increasingly homogeneous structures of self-assembled synthetic oligopeptides were generally obtained using slower rates of assembly. We further developed an analytical reaction-diffusion model to describe oligopeptide assembly, and experimental results are compared to the reaction-diffusion model across a range of parameters. Overall, this work highlights the importance of molecular self-assembly under nonequilibrium conditions, specifically showing that oligopeptide assembly is governed by a delicate balance between reaction kinetics and transport processes.
Reversible Self-Assembly of 3D Architectures Actuated by Responsive Polymers.
Zhang, Cheng; Su, Jheng-Wun; Deng, Heng; Xie, Yunchao; Yan, Zheng; Lin, Jian
2017-11-29
An assembly of three-dimensional (3D) architectures with defined configurations has important applications in broad areas. Among various approaches of constructing 3D structures, a stress-driven assembly provides the capabilities of creating 3D architectures in a broad range of functional materials with unique merits. However, 3D architectures built via previous methods are simple, irreversible, or not free-standing. Furthermore, the substrates employed for the assembly remain flat, thus not involved as parts of the final 3D architectures. Herein, we report a reversible self-assembly of various free-standing 3D architectures actuated by the self-folding of smart polymer substrates with programmed geometries. The strategically designed polymer substrates can respond to external stimuli, such as organic solvents, to initiate the 3D assembly process and subsequently become the parts of the final 3D architectures. The self-assembly process is highly controllable via origami and kirigami designs patterned by direct laser writing. Self-assembled geometries include 3D architectures such as "flower", "rainbow", "sunglasses", "box", "pyramid", "grating", and "armchair". The reported self-assembly also shows wide applicability to various materials including epoxy, polyimide, laser-induced graphene, and metal films. The device examples include 3D architectures integrated with a micro light-emitting diode and a flex sensor, indicting the potential applications in soft robotics, bioelectronics, microelectromechanical systems, and others.
Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs.
He, Hao; Zhou, Lianqun; Wang, Yi; Li, Chuanyu; Yao, Jia; Zhang, Wei; Zhang, Qingwen; Li, Mingyu; Li, Haiwen; Dong, Wen-fei
2015-01-01
A 20 MHz quartz crystal microbalance (QCM) sensor coated with in situ self-assembled molecularly imprinted polymers (MIPs) was presented for the detection of trace microcystin-LR (MC-LR) in drinking water. The sensor performance obtained using the in situ self-assembled MIPs was compared with traditionally synthesized MIPs on 20 MHz and normal 10 MHz QCM chip. The results show that the response increases by more than 60% when using the in situ self-assembly method compared using the traditionally method while the 20 MHz QCM chip provides four-fold higher response than the 10 MHz one. Therefore, the in situ self-assembled MIPs coated on a high frequency QCM chip was used in the sensor performance test to detect MC-LR in tap water. It showed a limit of detection (LOD) of 0.04 nM which is lower than the safety guideline level (1 nM MC-LR) of drinking water in China. The low sensor response to other analogs indicated the high specificity of the sensor to MC-LR. The sensor showed high stability and low signal variation less than 2.58% after regeneration. The lake water sample analysis shows the sensor is possible for practical use. The combination of the higher frequency QCM with the in situ self-assembled MIPs provides a good candidate for the detection of other small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Self-assembling peptide amphiphiles and related methods for growth factor delivery
Stupp, Samuel I [Chicago, IL; Donners, Jack J. J. M.; Silva, Gabriel A [Chicago, IL; Behanna, Heather A [Chicago, IL; Anthony, Shawn G [New Stanton, PA
2009-06-09
Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.
Self-assembling peptide amphiphiles and related methods for growth factor delivery
Stupp, Samuel I [Chicago, IL; Donners, Jack J. J. M.; Silva, Gabriel A [Chicago, IL; Behanna, Heather A [Chicago, IL; Anthony, Shawn G [New Stanton, PA
2012-03-20
Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.
Self-assembling peptide amphiphiles and related methods for growth factor delivery
Stupp, Samuel I; Donners, Jack J.J.M.; Silva, Gabriel A; Behanna, Heather A; Anthony, Shawn G
2013-11-12
Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.
Self-assembly of nanocomposite materials
Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng
2001-01-01
A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.
Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings
NASA Astrophysics Data System (ADS)
Hong, Suck Won; Jeong, Wonje; Ko, Hyunhyub; Tsukruk, Vladimir; Kessler, Michael; Lin, Zhiqun
2008-03-01
Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4- phenylenevinylene], i.e., MEH-PPV) with remarkable regularity over large areas were produced by controlled, repetitive ``stick- slip'' motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Subsequently, MEH-PPV rings exploited as template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self-assembly processes, namely, evaporation-induced self- assembly of polymers in a sphere-on-flat geometry, followed by subsequent directed self-assembly of MWNTs on the polymer- templated surfaces.
Development and application of coarse-grained models for lipids
NASA Astrophysics Data System (ADS)
Cui, Qiang
2013-03-01
I'll discuss a number of topics that represent our efforts in developing reliable molecular models for describing chemical and physical processes involving biomembranes. This is an exciting yet challenging research area because of the multiple length and time scales that are present in the relevant problems. Accordingly, we attempt to (1) understand the value and limitation of popular coarse-grained (CG) models for lipid membranes with either a particle or continuum representation; (2) develop new CG models that are appropriate for the particular problem of interest. As specific examples, I'll discuss (1) a comparison of atomistic, MARTINI (a particle based CG model) and continuum descriptions of a membrane fusion pore; (2) the development of a modified MARTINI model (BMW-MARTINI) that features a reliable description of membrane/water interfacial electrostatics and its application to cell-penetration peptides and membrane-bending proteins. Motivated specifically by the recent studies of Wong and co-workers, we compare the self-assembly behaviors of lipids with cationic peptides that include either Arg residues or a combination of Lys and hydrophobic residues; in particular, we attempt to reveal factors that stabilize the cubic ``double diamond'' Pn3m phase over the inverted hexagonal HII phase. For example, to explicitly test the importance of the bidentate hydrogen-bonding capability of Arg to the stabilization of negative Gaussian curvature, we also compare results using variants of the BMW-MARTINI model that treat the side chain of Arg with different levels of details. Collectively, the results suggest that both the bidentate feature of Arg and the overall electrostatic properties of cationic peptides are important to the self-assembly behavior of these peptides with lipids. The results are expected to have general implications to the mechanism of peptides and proteins that stimulate pore formation in biomembranes. Work in collaboration with Zhe Wu, Leili Zhang and Arun Yethiraj
Energetics and Self-Assembly of Amphipathic Peptide Pores in Lipid Membranes
Zemel, Assaf; Fattal, Deborah R.; Ben-Shaul, Avinoam
2003-01-01
We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking α-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1–6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the “toroidal” pore model, whereby a membrane rim larger than ∼1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form “barrel-stave” pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions. PMID:12668433
Gupta, Satyajit; Subramanian, Vaidyanathan Ravi
2014-11-12
Multimetal oxides (AxByOz) offer a higher degree of freedom compared to single metal oxides (AOx) in that these oxides facilitate (i) designing nanomaterials with greater stability, (ii) tuning of the optical bandgap, and (iii) promoting visible light absorption. However, all AxByOz materials such as pyrochlores (A2B2O7)--referred to here as band-gap engineered composite oxide nanomaterials or BECONs--are traditionally prone to severe charge recombination at their surface. To alleviate the charge recombination, an effective strategy is to employ reduced graphene oxide (RGO) as a charge separator. The BECON and the RGO with oppositely charged functional groups attached to them can be integrated at the interface by employing a simple electrostatic self-assembly approach. As a case study, the approach is demonstrated using the Pt-free pyrochlore bismuth titanate (BTO) with RGO, and the application of the composite is investigated for the first time. When tested as a photocatalyst toward hydrogen production, an increase of ∼ 250% using BTO in the presence of RGO was observed. Further, photoelectrochemical measurements indicate an enhancement of ∼ 130% in the photocurrent with RGO inclusion. These two results firmly establish the viability of the electrostatic approach and the inclusion of RGO. The merits of the RGO addition is identified as (i) the RGO-assisted improvement in the separation of the photogenerated charges of BTO, (ii) the enhanced utilization of the charges in a photocatalytic process, and (iii) the maintenance of the BTO/RGO structural integrity after repeated use (established through reusability analysis). The success of the self-assembly strategy presented here lays the foundation for developing other forms of BECONs, belonging to perovskites (ABO3), sillenite (A12BO20), or delafossite (ABO2) groups, hitherto written off due to limited or no photoelectrochemicalactivity.
NASA Astrophysics Data System (ADS)
Liu, Xiaodong; Chen, Bizheng; Li, Xiaojun; Zhang, Lifen; Xu, Yujie; Liu, Zhuang; Cheng, Zhenping; Zhu, Xiulin
2015-10-01
Responsive block copolymer micelles emerging as promising imaging and drug delivery systems show high stability and on-demand drug release activities. Herein, we developed self-assembled pH-responsive NIR emission micelles entrapped with doxorubicin (DOX) within the cores by the electrostatic interactions for fluorescence imaging and chemotherapy applications. The block copolymer, poly(methacrylic acid)-block-poly[(poly(ethylene glycol) methyl ether methacrylate)-co-boron dipyrromethene derivatives] (PMAA-b-P(PEGMA-co-BODIPY)), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the molecular weight distribution of this copolymer was narrow (Mw/Mn = 1.31). The NIR fluorescence enhancement induced by the phenol/phenolate interconversion equilibrium works as a switch in response to the intracellular pH fluctuations. DOX-loaded PMAA-b-P(PEGMA-co-BODIPY) micelles can detect the physiological pH fluctuations with a pKa near physiological conditions (~7.52), and showed pH-responsive collapse and an obvious acid promoted anticancer drug release behavior (over 58.8-62.8% in 10 h). Real-time imaging of intracellular pH variations was performed and a significant chemotherapy effect was demonstrated against HeLa cells.Responsive block copolymer micelles emerging as promising imaging and drug delivery systems show high stability and on-demand drug release activities. Herein, we developed self-assembled pH-responsive NIR emission micelles entrapped with doxorubicin (DOX) within the cores by the electrostatic interactions for fluorescence imaging and chemotherapy applications. The block copolymer, poly(methacrylic acid)-block-poly[(poly(ethylene glycol) methyl ether methacrylate)-co-boron dipyrromethene derivatives] (PMAA-b-P(PEGMA-co-BODIPY)), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the molecular weight distribution of this copolymer was narrow (Mw/Mn = 1.31). The NIR fluorescence enhancement induced by the phenol/phenolate interconversion equilibrium works as a switch in response to the intracellular pH fluctuations. DOX-loaded PMAA-b-P(PEGMA-co-BODIPY) micelles can detect the physiological pH fluctuations with a pKa near physiological conditions (~7.52), and showed pH-responsive collapse and an obvious acid promoted anticancer drug release behavior (over 58.8-62.8% in 10 h). Real-time imaging of intracellular pH variations was performed and a significant chemotherapy effect was demonstrated against HeLa cells. Electronic supplementary information (ESI) available: GPC, UV/vis, fluorescence, and MTT data of the as-prepared polymers; 1H NMR, 13C NMR, HRMS and FT-IR of organic molecules and polymers. See DOI: 10.1039/c5nr04655f
DNA-Based Self-Assembly of Fluorescent Nanodiamonds.
Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim
2015-08-12
As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.
Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications
NASA Astrophysics Data System (ADS)
Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.
2017-10-01
Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.
Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures.
Imura, Tomohiro; Ohta, Noboru; Inoue, Katsuaki; Yagi, Naoto; Negishi, Hideyuki; Yanagishita, Hiroshi; Kitamoto, Dai
2006-03-08
Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The unique and complex molecular structures with several chiral centers that are molecularly engineered by microorganisms must have led to the sophisticated self-assembling properties of the glycolipid biosurfactants.
NASA Astrophysics Data System (ADS)
Tsai, De-Hao
The goal of this dissertation is to understand the synthesis, characterization, and integration of nanoparticles and nanoparticle-based devices by electric field-enhanced transport of nanoparticles. Chapter I describes the factors used for determining particle trajectories and found that electric fields provide the directional electrostatic force to overcome other non-directional influences on particle trajectories. This idea is widely applied in the nanoparticle classification, characterization, and assembly onto substrate surfaces as investigated in the following chapters. Chapter 2 presents a new assembly method to position metal nanoparticles delivered from the gas phase onto surfaces using the electrostatic force generated by biased p-n junction patterned substrates. Aligned deposition patterns of metal nanoparticles were observed, and the patterning selectivity quantified. A simple model accounting for the generated electric field, and the electrostatic, van der Waals, and image forces was used to explain the observed results. Chapter 2.2 describes a data set for particle size resolved deposition, from which a Brownian dynamics model for the process can be evaluated. Brownian motion and fluid convection of nanoparticles, as well as the interactions between the charged nanoparticles and the patterned substrate, including electrostatic force, image force and van der Waals force, are accounted for in the simulation. Using both experiment and simulation the effects of the particle size, electric field intensity, and the convective flow on coverage selectivity have been investigated. Coverage selectivity is most sensitive to electric field, which is controlled by the applied reverse bias voltage across the p-n junction. A non-dimensional analysis of the competition between the electrostatic and diffusion force is found to provide a means to collapse a wide range of process operating conditions and an effective indicator or process performance. Directed assembly of size-selected nanoparticles has been applied in the study of nanoparticle enhanced fluorescence (NEF) bio-sensing devices. Chapter 3 presents results of a systematic examination of funct onalized gold nanoparticles by electrospray-differential mobility analysis (ES-DMA). Formation of selfassembled monolayers (SAMs) of alkylthiol molecules and singly stranded DNA (ssDNA) on the Au-NP surface was detected from a change in particle mobility, which could be modeled to extract the surface packing density. A gas-phase temperature-programmed desorption (TPD) kinetic study of SAMs on the Au-NP found the data to be consistent with a second order Arrhenius based rate law, yielding an Arrhenius-factor of 1x1011s -1 and an activation energy ˜105 kJ/mol. This study suggests that the ES-DMA can be added to the tool set of characterization methods being employed and developed to study the structure and properties of coated nanoparticles. Chapter 3.2 demonstrates this ES-DMA as a new method to investigate colloidal aggregation and the parameters that govern it. Nanoparticle suspensions were characterized by sampling a Au nanoparticle (Au-NP) colloidal solution via electrospray (ES), followed by differential ion-mobility analysis (DMA) to determine the mobility distribution, and thus the aggregate distribution. By sampling at various times, the degree of flocculation and the flocculation rate are determined and found to be inversely proportional to the ionic strength and proportional to the residence time. A stability ratio at different ionic strengths, the critical concentration, and surface potential or surface charge density of Au-NPs are obtained from these data. This method should be a generically useful tool to probe the early stages of colloidal aggregation. Study of ES-DMA is extended to include the characterizations of a variety of materials. Biologically interested materials such as viruses and antibodies could also be characterized. These results show ES-DMA provides a general way to characterize the colloidal materials as well as aerosolized particles.
NASA Astrophysics Data System (ADS)
Thrift, W. J.; Darvishzadeh-Varcheie, M.; Capolino, F.; Ragan, R.
2017-08-01
Colloidal self-assembly combined with templated surfaces holds the promise of fabricating large area devices in a low cost facile manner. This directed assembly approach improves the complexity of assemblies that can be achieved with self-assembly while maintaining advantages of molecular scale control. In this work, electrokinetic driving forces, i.e., electrohydrodynamic flow, are paired with chemical crosslinking between colloidal particles to form close-packed plasmonic metamolecules. This method addresses challenges of obtaining uniformity in nanostructure geometry and nanometer scale gap spacings in structures. Electrohydrodynamic flows yield robust driving forces between the template and nanoparticles as well as between nanoparticles on the surface promoting the assembly of close-packed metamolecules. Here, electron beam lithography defined Au pillars are used as seed structures that generate electrohydrodynamic flows. Chemical crosslinking between Au surfaces enables molecular control over gap spacings between nanoparticles and Au pillars. An as-fabricated structure is analyzed via full wave electromagnetic simulations and shown to produce large magnetic field enhancements on the order of 3.5 at optical frequencies. This novel method for directed self-assembly demonstrates the synergy between colloidal driving forces and chemical crosslinking for the fabrication of plasmonic metamolecules with unique electromagnetic properties.
The self-assembling process and applications in tissue engineering
Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.
2018-01-01
Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174
Applications of molecular self-assembly in tissue engineering
NASA Astrophysics Data System (ADS)
Harrington, Daniel Anton
This thesis studied the application of three self-assembling molecular systems, as potential biomaterials for tissue engineering applications. Cholesteryl-(L-lactic acid)n molecules form thermotropic liquid crystals, which could be coated onto the inner and outer pores of biodegradable PLLA scaffolds, while retaining the lamellar order of the neat material. Primary bovine chondrocytes were cultured on these structures, demonstrating improved attachment and extended retention of phenotype on the C-LA-coated scaffolds. No difference in fibronectin adsorption to C-LA and PLLA surfaces was observed, suggesting a strong role for cholesterol in influencing cell phenotype. A family of peptide-amphiphiles, bearing the "RGD" adhesion sequence from fibronectin, was also assessed in the contexts of cartilage and bladder repair. These molecules self-assemble into one-dimensional fibers, with diameters of 6--8 nm, and lengths of 500 nm or greater. Chondrocytes were seeded and cultured on covalently-crosslinked PA gels and embedded within calcium-triggered PA gels. Cells became dormant over time, but remained viable, suggesting an inappropriate display of the adhesion sequence to cells. A family of "branched" PA molecules with lysine dendron headgroups was designed, in an effort to increase the spatial separation between molecules in the assembled state, and to theoretically improve epitope accessibility. These molecules coated reliably onto PGA fiber scaffolds, and dramatically increased the attachment of human bladder smooth muscle cells, possibly through better epitope display or electrostatic attraction. They also formed strong gels with several negatively-charged biologically-relevant macromolecules. In a third system, amphiphilic segmented dendrimers based on phenylene vinylene and L-lysine entered cells through an endocytic pathway with no discernible toxic effect on cell proliferation or morphology. These amphiphiles formed complex aggregates in aqueous solution, likely an equilibrium state of micelles (5--10 nm) and vesicles (25--35 nm). A pyrene analogue was shown to lyse cells, which correlated with the molecule's reduced propensity to form strong aggregates in aqueous solution. Other amino acid segments were substituted for L-lysine, and only those amphiphiles with basic residues were efficiently taken in by cells. For all three self-assembling systems, their nanoscale organization and their interaction with biological systems were directly related to the chemical nature of their constituent building blocks.
Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris
2004-06-29
Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.
NASA Astrophysics Data System (ADS)
Colquhoun, Catherine; Draper, Emily R.; Eden, Edward G. B.; Cattoz, Beatrice N.; Morris, Kyle L.; Chen, Lin; McDonald, Tom O.; Terry, Ann E.; Griffiths, Peter C.; Serpell, Louise C.; Adams, Dave J.
2014-10-01
Self-sorting in low molecular weight hydrogels can be achieved using a pH triggered approach. We show here that this method can be used to prepare gels with different types of mechanical properties. Cooperative, disruptive or orthogonal assembled systems can be produced. Gels with interesting behaviour can be also prepared, for example self-sorted gels where delayed switch-on of gelation occurs. By careful choice of gelator, co-assembled structures can also be generated, which leads to synergistic strengthening of the mechanical properties.Self-sorting in low molecular weight hydrogels can be achieved using a pH triggered approach. We show here that this method can be used to prepare gels with different types of mechanical properties. Cooperative, disruptive or orthogonal assembled systems can be produced. Gels with interesting behaviour can be also prepared, for example self-sorted gels where delayed switch-on of gelation occurs. By careful choice of gelator, co-assembled structures can also be generated, which leads to synergistic strengthening of the mechanical properties. Electronic supplementary information (ESI) available: Full experimental and synthetic details for the dipeptides, full experimental descriptions, further NMR, single crystal diffraction data, fXRD data and SANS data. See DOI: 10.1039/c4nr04039b
Cano, Manuel; de la Cueva-Méndez, Guillermo
2015-02-28
The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants.
Self-assembled nanogaps for molecular electronics.
Tang, Qingxin; Tong, Yanhong; Jain, Titoo; Hassenkam, Tue; Wan, Qing; Moth-Poulsen, Kasper; Bjørnholm, Thomas
2009-06-17
A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of approximately 20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO2:Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.
Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio
2014-08-21
Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.
Mohtashamian, Shahab; Boddohi, Soheil; Hosseinkhani, Saman
2018-02-01
Self-assembled nanogel was prepared by electrostatic complexation of two oppositely charged biological macromolecules, which were cationic nisin and anionic chondroitin sulfate (ChS). The critical factors affected the physical properties of ChS-nisin nanogel was screened and optimized by Plackett-Burman design (PB) and central composite design (CCD). The independent factors selected were: concentration ratio of nisin to ChS, injection rate of nisin solution, buffer solvent type, magnetic stirring rate, pH of initial buffer solution, centrifuge-cooling temperature, and centrifuge rotation speed. Among these factors, concentration ratio changed the entrapment efficiency and loading capacity significantly. In addition, the hydrodynamic diameter and loading capacity were significantly influenced by injection rate and pH of initial buffer solution. The optimized nanogel structure was obtained by concentration ratio of 6.4mg/mL nisin to 1mg/mL ChS, pH of buffer solution at 4.6, and nisin solution injection rate of 0.2mL/min. The observed values of dependent responses were close to predicted values confirmed by model from response surface methodology. The results obviously showed that quality by design concept (QbD) could be effectively applied to optimize the developed ChS-nisin nanogel. Copyright © 2017 Elsevier B.V. All rights reserved.
Encapsidation of Linear Polyelectrolyte in a Viral Nanocontainer
NASA Astrophysics Data System (ADS)
Hu, Yufang
2005-03-01
We present the results from a combined experimental and theoretical study on the self-assembly of a model icosahedral virus, Cowpea Chlorotic Mottle Virus (CCMV). The formation of native CCMV capsids is believed to be driven primarily by the electrostatic interactions between the viral RNA and the positively charged capsid interior, as well as by the hydrophobic interactions between capsid protein subunits. To probe these molecular interactions, in vitro self-assembly reactions are carried out using the CCMV capsid protein and a synthetic linear polyelectrolyte, sodium polystyrene sulfonate (NaPSS), which functions as the analog of viral RNA. Under appropriate solutions conditions, NaPSS is encapsidated by the viral capsid. The molecular weight of NaPSS is systematically varied and the resulting average capsid size, size distribution, and particle morphology are measured by transmission electron microscopy. The correlation between capsid size and packaged cargo size, as well as the upper limit of capsid packaging capacity, are characterized. To elucidate the physical role played by the encapsidated polyelectrolyte in determining the preferred size of spherical viruses, we have used a mean-field approach to calculate the free energy of the virus-like particle as a function of chain length (and of the strength of chain/capsid attractive interaction). We find good agreement with our analytical calculations and experimental results.
Albanyan, Buthaina; Laurini, Erik; Posocco, Paola; Pricl, Sabrina; Smith, David K
2017-05-05
This paper reports a small family of cationic surfactants designed to bind polyanions such as DNA and heparin. Each molecule has the same hydrophilic cationic ligand and a hydrophobic aliphatic group with eighteen carbon atoms with one, two, or three alkene groups within the hydrophobic chain (C18-1, C18-2 and C18-3). Dynamic light scattering indicates that more alkenes lead to geometric distortion, giving rise to larger self-assembled multivalent (SAMul) nanostructures. Mallard Blue and Ethidium Bromide dye displacement assays demonstrate that heparin and DNA have markedly different binding preferences, with heparin binding most effectively to C18-1, and DNA to C18-3, even though the molecular structural differences of these SAMul systems are buried in the hydrophobic core. Multiscale modelling suggests that adaptive heparin maximises enthalpically favourable interactions with C18-1, while shape-persistent DNA forms a similar number of interactions with each ligand display, but with slightly less entropic cost for binding to C18-3-fundamental thermodynamic differences in SAMul binding of heparin or DNA. This study therefore provides unique insight into electrostatic molecular recognition between highly charged nanoscale surfaces in biologically relevant systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Muppalla, Ravikumar; Jewrajka, Suresh K; Prasad, Kamalesh
2013-06-01
Polysaccharide-based copolymers are promising biomaterials due to their biocompatibility and biodegradability. For potential biomedical applications the copolymer as a whole and all the degraded species must be biocompatible and easily removable from the system. In this regards, new model pH-responsive seaweed agarose (Agr) grafted with weak polyelectrolyte-based well-defined amphiphilic block copolymers ca. poly[(methyl methacrylate)-b-(2-dimethylamino)ethyl methacrylate)] (PMMA-b-PDMA) were designed and synthesized to study the self-assembly, degradation, and in vitro hydrophobic/hydrophilic drug release behavior. The graft copolymer solutions display extremely low critical micelle concentration (CMC) and form pH responsive stable micelles. The degradation study of the graft copolymer reveals that the entire degraded components are well soluble/dispersible in water due to formation of mixed micelles. The micelles are also strongly adsorbed on the mica surface owing to electrostatic interaction. One application of the graft copolymer micelles is that it can entrap both hydrophilic and poorly water soluble hydrophobic drugs effectively and exhibit slow release kinetics. The release kinetics of both the hydrophilic and poorly water soluble hydrophobic drugs change with pH as well as with the composition of the graft copolymer. Copyright © 2012 Wiley Periodicals, Inc.
A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly.
Bogie, Paul M; Holloway, Lauren R; Lyon, Yana; Onishi, Nicole C; Beran, Gregory J O; Julian, Ryan R; Hooley, Richard J
2018-04-02
A strained, "springloaded" Fe 2 L 3 iminopyridine mesocate shows highly variable reactivity upon postassembly reaction with competitive diamines. The strained assembly is reactive toward transimination in minutes at ambient temperature and allows observation of kinetically trapped intermediates in the self-assembly pathway. When diamines are used that can only form less favored cage products upon full equilibration, trapped ML 3 fragments with pendant, "hanging" NH 2 groups are selectively formed instead. Slight variations in diamine structure have large effects on the product outcome: less rigid diamines convert the mesocate to more favored self-assembled cage complexes under mild conditions and allow observation of heterocomplex intermediates in the displacement pathway. The mesocate allows control of equilibrium processes and direction of product outcomes via small, iterative changes in added subcomponent structure and provides a method of accessing metal-ligand cage structures not normally observed in multicomponent Fe-iminopyridine self-assembly.
Li, Xin; Li, Jiansheng; Fang, Xiaofeng; Bakzhan, Kariboz; Wang, Lianjun; Van der Bruggen, Bart
2016-05-01
Fouling of ultrafiltration (UF) membranes is a major impediment for their use in drinking water production. Mixed matrix membranes (MMMs) may have great opportunities in dealing with this challenge due to their hierarchical structures and multiple functionalities. In this study, a synergetic analysis method based on intermolecular adhesion force measurement and fouling process simulation was applied to investigate the fouling mechanism of polyethersulfone (PES) UF membranes containing in situ self-assembled TiO2 nanoparticles (NPs). The fouling resistance behavior and antifouling mechanism of the newly developed composite membranes were investigated with sodium alginate (SA), bovine serum albumin (BSA) and humic acid (HA) as model organic foulants. An improved antifouling effect was conspicuously observed for the composite membranes, expressed by a lower flux decline and significantly better cleaning efficiency. A strong correlation between the self-assembled structure of TiO2 NPs and the antifouling behavior of the composite membrane was observed. A lower magnitude and a narrower distribution of adhesion forces for the composite membrane suggest the effective suppression of foulants adsorption on the clean or fouled membrane. The simulation analysis indicates that the main fouling mechanism was standard blocking and cake filtration, further confirming the superiority of the NPs self-assembled structure in mitigating membrane fouling. This dual analysis method may provide a promising technological support for the application of modified UF membranes with self-assembled NPs in drinking water production. Copyright © 2016 Elsevier Inc. All rights reserved.
Nanoscale Structure and Interaction of Compact Assemblies of Carbon Nano-Materials
NASA Astrophysics Data System (ADS)
Timsina, Raju; Qiu, Xiangyun
Carbon-based nano-materials (CNM) are a diverse family of multi-functional materials under research and development world wide. Our work is further motivated by the predictive power of the physical understanding of the underlying structure-interaction-function relationships. Here we present results form recent studies of the condensed phases of several model CNMs in complexation with biologically derived molecules. Specifically, we employ X-ray diffraction (XRD) to determine nanoscale structures and use the osmotic stress method to quantify their interactions. The systems under investigation are dsDNA-dispersed carbon nanotubes (dsDNA-CNT), bile-salt-dispersed carbon nanotubes, and surfactant-assisted assemblies of graphene oxides. We found that salt and molecular crowding are both effective in condensing CNMs but the resultant structures show disparate phase behaviors. The molecular interactions driving the condensation/assembly sensitively depend on the nature of CNM complex surface chemistry and range from hydrophobic to electrostatic to entropic forces.
Total Scattering Analysis of Disordered Nanosheet Materials
NASA Astrophysics Data System (ADS)
Metz, Peter C.
Two dimensional materials are of increasing interest as building blocks for functional coatings, catalysts, and electrochemical devices. While increasingly sophisticated processing routes have been designed to obtain high-quality exfoliated nanosheets and controlled, self-assembled mesostructures, structural characterization of these materials remains challenging. This work presents a novel method of analyzing pair distribution function (PDF) data for disordered nanosheet ensembles, where supercell stacking models are used to infer atom correlations over as much as 50 A. Hierarchical models are used to reduce the parameter space of the refined model and help eliminate strongly correlated parameters. Three data sets for restacked nanosheet assemblies with stacking disorder are analyzed using these methods: simulated data for graphene-like layers, experimental data for 1 nm thick perovskite layers, and experimental data for highly defective delta-MnO2 layers. In each case, the sensitivity of the PDF to the real-space distribution of layer positions is demonstrated by exploring the fit residual as a function of stacking vectors. The refined models demonstrate that nanosheets tend towards local interlayer ordering, which is hypothesized to be driven by the electrostatic potential of the layer surfaces. Correctly accounting for interlayer atom correlations permits more accurate refinement of local structural details including local structure perturbations and defect site occupancies. In the delta-MnO2 nanosheet material, the new modeling approach identified 14% Mn vacancies while application of 3D periodic crystalline models to the < 7 A PDF region suggests a 25% vacancy concentration. In contrast, the perovskite nanosheet material is demonstrated to exhibit almost negligible structural relaxation in contrast with the bulk crystalline material from which it is derived.
Self-assembly of bimodal particles inside emulsion droplets
NASA Astrophysics Data System (ADS)
Cho, Young-Sang; Yi, Gi-Ra; Yang, Seung-Man; Kim, Young-Kuk; Choi, Chul-Jin
2010-08-01
Colloidal dispersion of bimodal particles were self-organized inside water-in-oil emulsion droplets by evaporationdriven self-assembly method. After droplet shrinkage by heating the complex fluid system, small numbers of microspheres were packed into minimal second moment clusters, which are partially coated with silica nanospheres, resulting in the generation of patchy particles. The patchy particles in this study possess potential applications for selfassembly of non-isotropic particles such as dimmers or tetramers for colloidal photonic crystals with diamond lattice structures. The composite micro-clusters of amidine polystyrene microspheres and titania nanoparticles were also generated by evaporation-driven self-assembly to fabricate nonspherical hollow micro-particles made of titania shell.
NASA Astrophysics Data System (ADS)
Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.
2005-09-01
Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.
Glucose Sensor Using U-Shaped Optical Fiber Probe with Gold Nanoparticles and Glucose Oxidase
Chen, Kuan-Chieh; Li, Yu-Le; Wu, Chao-Wei
2018-01-01
In this study, we proposed a U-shaped optical fiber probe fabricated using a flame heating method. The probe was packaged in glass tube to reduce human factors during experimental testing of the probe as a glucose sensor. The U-shaped fiber probe was found to have high sensitivity in detecting the very small molecule. When the sensor was dipped in solutions with different refractive indexes, its wavelength or transmission loss changed. We used electrostatic self-assembly to bond gold nanoparticles and glucose oxidase (GOD) onto the sensor’s surface. The results over five cycles of the experiment showed that, as the glucose concentration increased, the refractive index of the sensor decreased and its spectrum wavelength shifted. The best wavelength sensitivity was 2.899 nm/%, and the linearity was 0.9771. The best transmission loss sensitivity was 5.101 dB/%, and the linearity was 0.9734. Therefore, the proposed U-shaped optical fiber probe with gold nanoparticles and GOD has good potential for use as a blood sugar sensor in the future. PMID:29659536
Zhang, Shixuan; Zhang, Fan; Feng, Bo; Fan, Qingyu; Yang, Feng; Shang, Debin; Sui, Jinghan; Zhao, Hong
2015-03-01
A series of metal stents coated with chitosan/hyaluronic acid (CS/HA) loading antibodies by electrostatic self-assembled method were prepared, and the types of cells captured by antibodies and their differentiation in vascular endothelial cells (ECs) evaluated by molecular biology and scanning electron microscope. The results showed that CD133 stent can selectively capture hematopoietic stem cells (HSC),which directionally differentiate into vascular ECs in peripheral blood by (CS/HA) induction, and simultaneously inhibit migration and proliferation of immune cells and vascular smooth muscle cells (MCs). CD34 stent can capture HSC, hematopoietic progenitor cells that differentiate into vascular ECs and immune cells, promoting smooth MCs growth, leading to thrombosis, inflammation, and rejection. CD133 stent can be implanted into miniature pig heart coronary and can repair vascular damage by capturing own HSC, thus contributing to the rapid natural vascular repair, avoiding inflammation and rejection, thrombosis and restenosis. These studies demonstrated that CD133 stent of HSC capture will be an ideal coated metal stent providing a new therapeutic approach for cardiovascular and cerebrovascular disease.
Yi, Yinhui; Zhu, Gangbing; Sun, Heng; Sun, Jianfan; Wu, Xiangyang
2016-12-15
Owing to awfully harmful to the environment and human health, the qualitative and quantitative determination of parachlorophenol (PCP) is of great significance. In this paper, by using silica@polydopamine as template, nitrogen-doped hollow carbon spheres wrapped with reduced graphene oxide (NHCNS@RG) nanostructure was prepared successfully via a self-assembly approach due to the electrostatic interaction, and the obtained NHCNS@RG could exhibit the unique properties of NHCNS and RG: the NHCNS could impede the aggregation tendency of RG and possess high electrocatalytic activity; the RG enlarges the contacting area and offers many area-normalized edge-plane structures and active sites. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray diffraction and electrochemical method were used to characterize the morphology and structure of NHCNS@RG. Then, the NHCNS@RG hybrids were applied for the electrochemical sensing of PCP, under the optimized conditions, the detection limit of PCP obtained in this work is 0.01μM and the linear range is 0.03-38.00μM. Copyright © 2016 Elsevier B.V. All rights reserved.
Glucose Sensor Using U-Shaped Optical Fiber Probe with Gold Nanoparticles and Glucose Oxidase.
Chen, Kuan-Chieh; Li, Yu-Le; Wu, Chao-Wei; Chiang, Chia-Chin
2018-04-16
In this study, we proposed a U-shaped optical fiber probe fabricated using a flame heating method. The probe was packaged in glass tube to reduce human factors during experimental testing of the probe as a glucose sensor. The U-shaped fiber probe was found to have high sensitivity in detecting the very small molecule. When the sensor was dipped in solutions with different refractive indexes, its wavelength or transmission loss changed. We used electrostatic self-assembly to bond gold nanoparticles and glucose oxidase (GOD) onto the sensor’s surface. The results over five cycles of the experiment showed that, as the glucose concentration increased, the refractive index of the sensor decreased and its spectrum wavelength shifted. The best wavelength sensitivity was 2.899 nm/%, and the linearity was 0.9771. The best transmission loss sensitivity was 5.101 dB/%, and the linearity was 0.9734. Therefore, the proposed U-shaped optical fiber probe with gold nanoparticles and GOD has good potential for use as a blood sugar sensor in the future.
Tailoring peptide amphiphiles and their assemblies for biomedical applications
NASA Astrophysics Data System (ADS)
Lin, Brian
Peptide amphiphiles (PAs) are molecules composed of a peptide conjugated to a hydrophobic moiety, commonly a fatty acid. They closely resemble the structure of naturally occurring lipopeptides, produced by microbes as signaling and antimicrobial agents. The amphiphilic nature of PAs in concert with the large number of discovered functional peptides inspired scientists to exploit this molecular architecture for producing synthetic self-assembled bioactive materials. PA assemblies are sought after for a wide breadth of applications including disease therapy, regenerative medicine, and catalysis. However, with PAs, the peptide chemistry is a double-edged sword. The peptide component contributes significantly to both the activity and self-assembly. The physiochemical properties of different PAs lead to unique aggregation stability and morphological characteristics which are unpredictable, a priori. Therefore it is challenging to design bioactive PAs and control their self-assembly, simultaneously. This limitation slows the development of PAs for medical use. In this dissertation, methods to control the self-assembly of PAs and the effects of acylating a functional peptide will be discussed. In one part, efforts to direct the self-assembly of PAs into small spherical aggregates, a morphology infrequently observed, will be described. In another section, a strategy to control the stability of PA assemblies will be discussed. In the last section, a pH-responsive membrane perturbing peptide was modified with fatty acid tails and the properties of the resulting PAs will be presented. This dissertation provides some fundamental insight for the use and design of PA self-assemblies.
Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.
Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H
2014-02-21
DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.
NASA Astrophysics Data System (ADS)
Zheng, Huajun; Tang, Fengqiu; Lim, Melvin; Mukherji, Aniruddh; Yan, Xiaoxia; Wang, Lianzhou; (Max) Lu, Gao Qing
Multilayered films of cobalt oxyhydroxide nanowires (CoOOHNW) and exfoliated manganese oxide nanosheet (MONS) are fabricated by potentiostatic deposition and electrostatic self-assembly on indium-tin oxide coated glass substrates. The morphology and chemical composition of these films are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS) and the potential application as electrochemical supercapacitors are investigated using cyclic voltammetry and charge-discharge measurements. These ITO/CoOOHNW/MONS multilayered film electrodes exhibit excellent electrochemical capacitance properties, including high specific capacitance (507 F g -1) and long cycling durability (less 2% capacity loss after 5000 charge/discharge cycles). These characteristics indicate that these newly developed films may find important application for electrochemical capacitors.
Tunable drug loading and release from polypeptide multilayer nanofilms
Jiang, Bingbing; Li, Bingyun
2009-01-01
Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369
Queirós, R B; Gouveia, C; Fernandes, J R A; Jorge, P A S
2014-12-15
An evanescent wave fiber optic sensor for detection of Escherichia coli (E. coli) outer membranes proteins (EcOMPs) using long period gratings (LPGs) as a refractometric platform is presented. The sensing probes were attained by the functionalization of LPGs inscribed in single mode fiber using two different methods of immobilization; electrostatic assembly and covalent binding. The resulting label-free configuration enabled the specific recognition of EcOMPs in water by monitoring the resonance wavelength shift due to refractive index changes induced by binding events. The sensors displayed linear responses in the range of 0.1 nM to 10 nM EcOMPs with sensitivities of -0.1563±0.005 nm decade(-1) [EcOMP, M] (electrostatic method) and -0.1597±0.004 nm decade(-1) [EcOMP, M] (covalent method). The devices could be regenerated (under low pH conditions) with a deviation less than 0.1% for at least three subsequent detection events. The sensors were also applied to spiked environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Qian; Cho, Hoduk; Manthiram, Karthish; ...
2015-03-23
We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power ofmore » this approach to reveal unanticipated features of nanocrystal–nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics.« less
Alivisatos, A. Paul; Colvin, Vicki L.
1998-01-01
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.
NASA Astrophysics Data System (ADS)
Zhong, Ting; Yao, Xin; Zhang, Shuang; Guo, Yang; Duan, Xiao-Chuan; Ren, Wei; Dan Huang; Yin, Yi-Fan; Zhang, Xuan
2016-11-01
The main objective of this study was to demonstrate the proof-of-principle for the hypothesis that conjugated linoleic acid-paclitaxel conjugate (CLA-PTX), a novel fatty acid modified anti-cancer drug conjugate, could self-assemble forming nanoparticles. The results indicated that a novel self-assembling nanomedicine, CLA-PTX@PEG NPs (about 105 nm), with Cremophor EL (CrEL)-free and organic solvent-free characteristics, was prepared by a simple precipitation method. Being the ratio of CLA-PTX:DSPE-PEG was only 1:0.1 (w/w), the higher drug loading CLA-PTX@PEG NPs (about 90%) possessed carrier-free characteristic. The stability results indicated that CLA-PTX@PEG NPs could be stored for at least 9 months. The safety of CLA-PTX@PEG NPs was demonstrated by the MTD results. The anti-tumor activity and cellular uptake were also confirmed in the in vitro experiments. The lower crystallinity, polarity and solubility of CLA-PTX compared with that of paclitaxel (PTX) might be the possible reason for CLA-PTX self-assembling forming nanoparticles, indicating a relationship between PTX modification and nanoparticles self-assembly. Overall, the data presented here confirm that this drug self-delivery strategy based on self-assembly of a CLA-PTX conjugate may offer a new way to prepare nanomedicine products for cancer therapy involving the relationship between anticancer drug modification and self-assembly into nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhanjadeo, Madhabi M.; Academy of Scientific and Innovative Research; Nayak, Ashok K.
DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Fieldmore » emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.« less
Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.
Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung
2016-02-24
Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Clustering effects in ionic polymers: Molecular dynamics simulations.
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S
2015-08-01
Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. These ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Decrease in electrostatic interaction significantly enhances the mobility of the polymer.
Manipulating fluids: Advances in micro-fluidics, opto-fluidics and fluidic self assembly
NASA Astrophysics Data System (ADS)
Vyawahare, Saurabh
This dissertation describes work in three inter-related areas---micro-fluidics, opto-fluidics and fluidic self-assembly. Micro-fluidics has gotten a boost in recent years with the development of multilayered elastomeric devices made of poly (dimethylsiloxane) (PDMS), allowing active elements like valves and pumps. However, while PDMS has many advantages, it is not resistant to organic solvents. New materials and/or new designs are needed for solvent resistance. I describe how novel fluorinated elastomers can replace PDMS when combined with the three dimensional (3-D) solid printing. I also show how another 3-D fabrication method, multilayer photo-lithography, allows for fabrication of devices integrating filters. In general, 3-D fabrications allow new kinds of micro-fluidic devices to be made that would be impossible to emulate with two dimensional chips. In opto-fluidics, I describe a number of experiments with quantum dots both inside and outside chips. Inside chips, I manipulate quantum dots using hydrodynamic focusing to pattern fine lines, like a barcode. Outside chips, I describe our attempts to create quantum dot composites with micro-spheres. I also show how evaporated gold films and chemical passivation can then be used to enhance the emission of quantum dots. Finally, within fluids, self assembly is an attractive way to manipulate materials, and I provide two examples: first, a DNA-based energy transfer molecule that relies on quantum mechanics and self-assembles inside fluids. This kind of molecular photonics mimics parts of the photosynthetic apparatus of plants and bacteria. The second example of self-assembly in fluids describes a new phenomena---the surface tension mediated self assembly of particles like quantum dots and micro-spheres into fine lines. This self assembly by capillary flows can be combined with photo-lithography, and is expected to find use in future nano- and micro-fabrication schemes. In conclusion, advances in fludics, integrating materials like quantum dots and solvent resistant elastomers along with 3-D fabrication and methods of self assembly, provide a new set of tools that significantly expand our control over fluids.
Guo, Xiaoying; Li, Huan; Yeop Ahn, Bok; Duoss, Eric B.; Hsia, K. Jimmy; Lewis, Jennifer A.; Nuzzo, Ralph G.
2009-01-01
Fabrication of 3D electronic structures in the micrometer-to-millimeter range is extremely challenging due to the inherently 2D nature of most conventional wafer-based fabrication methods. Self-assembly, and the related method of self-folding of planar patterned membranes, provide a promising means to solve this problem. Here, we investigate self-assembly processes driven by wetting interactions to shape the contour of a functional, nonplanar photovoltaic (PV) device. A mechanics model based on the theory of thin plates is developed to identify the critical conditions for self-folding of different 2D geometrical shapes. This strategy is demonstrated for specifically designed millimeter-scale silicon objects, which are self-assembled into spherical, and other 3D shapes and integrated into fully functional light-trapping PV devices. The resulting 3D devices offer a promising way to efficiently harvest solar energy in thin cells using concentrator microarrays that function without active light tracking systems. PMID:19934059
Guo, Xiaoying; Li, Huan; Ahn, Bok Yeop; Duoss, Eric B; Hsia, K Jimmy; Lewis, Jennifer A; Nuzzo, Ralph G
2009-12-01
Fabrication of 3D electronic structures in the micrometer-to-millimeter range is extremely challenging due to the inherently 2D nature of most conventional wafer-based fabrication methods. Self-assembly, and the related method of self-folding of planar patterned membranes, provide a promising means to solve this problem. Here, we investigate self-assembly processes driven by wetting interactions to shape the contour of a functional, nonplanar photovoltaic (PV) device. A mechanics model based on the theory of thin plates is developed to identify the critical conditions for self-folding of different 2D geometrical shapes. This strategy is demonstrated for specifically designed millimeter-scale silicon objects, which are self-assembled into spherical, and other 3D shapes and integrated into fully functional light-trapping PV devices. The resulting 3D devices offer a promising way to efficiently harvest solar energy in thin cells using concentrator microarrays that function without active light tracking systems.
Investigating the Modification of Spontaneous Emission using Layer-by-Layer Self-Assembly
NASA Astrophysics Data System (ADS)
Ashry, Islam Ahmed Ibrahim Youssef
The process of spontaneous emission can be dramatically modified by optical micro- and nanostructures. We studied the modification of fluorescence dynamics using a polymer spacer layer fabricated through layer-by-layer (LbL) self-assembly. The advantages of this method are numerous: The self-assembled spacers can possess exceptional smooth surface morphology; The thickness of the spacer can be controlled with nanometer accuracy; And depending on fabrication conditions, the spacer layer is stimuli responsive and its thickness can be dynamically tuned. This thesis contains three interlinked components. First, we vary LbL spacer layer thickness and explore the change in fluorescence lifetime induced by the modified photonic density of states (PDOS), i.e., Purcell effects. Our experimental results agree well with theoretical predictions based on a classical dipole model, which also yields consistent values for the fluorophores' intrinsic fluorescence lifetime and quantum yield near a dielectric as well as a plasmonic interface. Based on this observation, we further demonstrate that self-assembled fluorophores can be used to probe the modified PDOS near optical micro- and nano-structures. These results naturally lead to the second component of our research. In particularly, based on the PDOS-induced changes in fluorescent lifetime, we develop a non-contact method that can measure morphological changes with nanoscale resolution. Our method relies on quantitatively linking fluorophore position with PDOS, and is validated through direct comparison with ellipsometry and atomic force microscopy (AFM) measurements. To demonstrate the potential application of this method, we investigated the swelling/deswelling of LbL films induced by pH changes. Our results indicate significant difference between a LbL film composed of a single polymer monolayer and a LbL film with 3 monolayers. Such stimuli-responsive polymers can be used to construct active and tunable plasmonic nano-devices. As a proof-of-principle demonstration, we experimentally confirm that it is possible to utilize the swelling/deswelling behavior of stimuli-responsive films to dynamically control the separation between Au nanoparticles and Texas Red (TR) dyes. This result is based on the strong correlation of TR fluorescence lifetime and nanoparticles-TR separation. Finally, we investigate the impact of different lithography processes on the fluorescence properties of self-assembled fluorophores. We consider three methods: direct fluorophore patterning through ultraviolet (UV) ablation, focused ion beam (FIB) milling of self-assembled fluorophores, and self-assembly of fluorescent materials over plasmonic nano-patterns.
Subunit assembly of hemoglobin: an important determinant of hematologic phenotype.
Bunn, H F
1987-01-01
Hemoglobin's physiologic properties depend on the orderly assembly of its subunits in erythropoietic cells. The biosynthesis of alpha- and beta-globin polypeptide chains is normally balanced. Heme rapidly binds to the globin subunit, either during translation or shortly thereafter. The formation of the alpha beta-dimer is facilitated by electrostatic attraction of a positively charged alpha-subunit to a negatively charged beta-subunit. The alpha beta-dimer dissociates extremely slowly. The difference between the rate of dissociation of alpha beta- and alpha gamma-dimers with increasing pH explains the well-known alkaline resistance of Hb F. Two dimers combine to form the functioning alpha 2 beta 2-tetramer. This model of hemoglobin assembly explains the different levels of positively charged and negatively charged mutant hemoglobins that are encountered in heterozygotes and the effect of alpha-thalassemia and heme deficiency states in modifying the level of the variant hemoglobin as well as Hb A2. Electrostatic interactions also affect the binding of hemoglobin to the cytoplasmic surface of the red cell membrane and may underlie the formation of target cells. Enhanced binding of positively charged variants such as S and C trigger a normally dormant pathway for potassium and water loss. Thus, the positive charge on beta c is responsible for the two major contributors to the pathogenesis of Hb SC disease: increased proportion of Hb S and increased intracellular hemoglobin concentration. It is likely that electrostatic interactions play an important role in the assembly of a number of other multisubunit macromolecules, including membrane receptors, cytoskeletal proteins, and DNA binding proteins.
Targeted self-assembly of functionalized carbon nanotubes on tumors
Scheinberg, David A.; McDevitt, Michael R.; Villa, Carlos H.; Mulvey, J. Justin
2018-05-22
Provided herein are methods for delivering a molecule in situ to a cell and for treating a cancer via the in situ delivery. The methods comprise contacting or administering to the cell, as two separate components, a morpholino oligonucleotide comprising a targeting moiety followed by a single wall nanotube construct comprising second morpholino oligonucleotides complementary to the first morpholino oligonucleotides and one or both of a therapeutic or diagnostic payload molecule linked to the single wall nanotube construct. Upon self-assembly of a single wall nanotube complex via hybridization of the first morpholino and second complementary morpholino oligonucleotides at the cell, the payload molecule is delivered. Also provided is the two component self-assembly single wall nanotube system and the single wall nanotube construct comprising the second component.
Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery.
Li, Weikun; Yalcin, Murat; Lin, Qishan; Ardawi, Mohammed-Salleh M; Mousa, Shaker A
2017-02-28
Lycopene is a natural anti-oxidant that has attracted much attention due to its varied applications such as protection against loss of bone mass, chronic diseases, skin cancer, prostate cancer, and cardiovascular disease. However, high instability and extremely low oral bioavailability limit its further clinical development. We selected a green tea catechin derivative, oligomerized (-)-epigallocatechin-3-O-gallate (OEGCG) as a carrier for oral lycopene delivery. Lycopene-loaded OEGCG nanoparticles (NPs) were prepared by a nano-precipitation method, followed by coating with chitosan to form a shell. This method not only can easily control the size of the NP to be around 200nm to improve its bioavailability, but also can effectively protect the lycopene against degradation due to EGCG's anti-oxidant property. OEGCG was carefully characterized with nuclear magnetic resonance spectroscopy and mass spectrometry. Lycopene-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared by the same method. Chitosan-coated OEGCG/lycopene NPs had a diameter of 152±32nm and a ζ-potential of 58.3±4.2mv as characterized with transmission electron microscopy and dynamic light scattering. The loading capacity of lycopene was 9% and encapsulation efficiency was 89%. FT-IR spectral analysis revealed electrostatic interaction between OEGCG and chitosan. Freeze drying of the NPs was also evaluated as a means to improve shelf life. Dynamic light scattering data showed that no aggregation occurred, and the size of the NP increased 1.2 times (S f /S i ratio) in the presence of 10% sucrose after freeze drying. The in vitro release study showed slow release of lycopene in simulated gastric fluid at acidic pH and faster release in simulated intestinal fluid. In an in vivo study in mice, lycopene pharmacokinetic parameters were improved by lycopene/OEGCG/chitosan NPs, but not improved by lycopene/PLGA/chitosan NPs. The self-assembled nanostructure of OEGCG combined with lycopene may be a promising application in oral drug delivery in various indications. Copyright © 2017 Elsevier B.V. All rights reserved.
Generation of low-emittance electron beams in electrostatic accelerators for FEL applications
NASA Astrophysics Data System (ADS)
Chen, Teng; Elias, Luis R.
1995-02-01
This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.
Dong, Anjie; Hou, Guoling; Sun, Duoxian
2003-10-15
Amphoteric polyurethane (APU) samples used in this paper were composed of hydrophobic soft segments and pendent -COOH and -CH(2)N(CH(3))(2) groups on the hard segments, which present the properties of both amphoteric polyelectrolytes and amphiphilic block copolymers. APU macromolecules can self-assemble into micelles in acidic and basic aqueous media by hydrophobic/hydrophilic interaction. The self-assembly behavior of APU in acidic and basic media was studied by transmission electron microscopy and light scattering methods. The spherical and hollow micelles of APU were observed respectively in acidic and basic aqueous media. The results indicate that the size and size distribution of APU self-assembly micelles largely depend on the ratio of -COOH to -CH(2)N(CH(3))(2) groups, density of ionizable groups, concentration of APU, and types of acid and base in the media.
Deng, Jie; Liu, Xinyue; Ma, Lang; Cheng, Chong; Shi, Wenbin; Nie, Chuanxiong; Zhao, Changsheng
2014-12-10
In this study, multifunctional and heparin-mimicking star-shaped supramolecules-deposited 3D porous multilayer films with improved biocompatibility were fabricated via a layer-by-layer (LbL) self-assembly method on polymeric membrane substrates. Star-shaped heparin-mimicking polyanions (including poly(styrenesulfonate-co-sodium acrylate; Star-PSS-AANa) and poly(styrenesulfonate-co-poly(ethylene glycol)methyl ether methacrylate; Star-PSS-EGMA)) and polycations (poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate; Star-PMeDMA) were first synthesized by atom transfer radical polymerization (ATRP) from β-cyclodextrin (β-CD) based cores. Then assembly of 3D porous multilayers onto polymeric membrane surfaces was carried out by alternating deposition of the polyanions and polycations via electrostatic interaction. The surface morphology and composition, water contact angle, blood activation, and thrombotic potential as well as cell viability for the coated heparin-mimicking films were systematically investigated. The results of surface ATR-FTIR spectra and XPS spectra verified successful deposition of the star-shaped supramolecules onto the biomedical membrane surfaces; scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations revealed that the modified substrate had 3D porous surface morphology, which might have a great biological influence on the biointerface. Furthermore, systematic in vitro investigation of protein adsorption, platelet adhesion, human platelet factor 4 (PF4, indicates platelet activation), activate partial thromboplastin time (APTT), thrombin time (TT), coagulation activation (thrombin-antithrombin III complex (TAT, indicates blood coagulant)), and blood-related complement activation (C3a and C5a, indicates inflammation potential) confirmed that the heparin-mimicking multilayer coated membranes exhibited ultralow blood component activations and excellent hemocompatibility. Meanwhile, after surface coating, endothelial cell viability was also promoted, which indicated that the heparin-mimicking multilayer coating might extend the application fields of polymeric membranes in biomedical fields.
Low-dimensional materials for organic electronic applications
NASA Astrophysics Data System (ADS)
Beniwal, Sumit
This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties.
Quantifying quality in DNA self-assembly
Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik
2014-01-01
Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596
Pakapongpan, Saithip; Poo-Arporn, Rungtiva P
2017-07-01
A novel approach of the immobilization of a highly selective and stable glucose biosensor based on direct electrochemistry was fabricated by a self-assembly of glucose oxidase (GOD) on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (Fe 3 O 4 NPs) modified on a magnetic screen-printed electrode (MSPE). The RGO-Fe 3 O 4 nanocomposite has remarkable enhancement in large surface areas, is favorable environment for enzyme immobilization, facilitates electron transfer between enzymes and electrode surfaces and possesses superparamagnetism property. The morphology and electrochemical properties of RGO-Fe 3 O 4 /GOD were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, cyclic voltammetry (CV) and amperometry. The modified electrode was a fast, direct electron transfer with an apparent electron transfer rate constant (k s ) of 13.78s -1 . The proposed biosensor showed fast amperometric response (3s) to glucose with a wide linear range from 0.05 to 1mM, a low detection limit of 0.1μM at a signal to noise ratio of 3 (S/N=3) and good sensitivity (5.9μA/mM). The resulting biosensor has high stability, good reproducibility, excellent selectivity and successfully applied detection potential at -0.45V. This mediatorless glucose sensing used the advantages of covalent bonding and self-assembly as a new approach for immobilizing enzymes without any binder. It would be worth noting that it opens a new avenue for fabricating excellent electrochemical biosensors. This is a new approach that reporting the immobilization of glucose oxidase on reduced graphene oxide (RGO) covalently conjugated to magnetic nanoparticles (Fe 3 O 4 NPs) by electrostatic interaction and modified screen printed electrode. We propose the reagentless with fabrication method without binder and adhesive agents for immobilized enzyme. Fe 3 O 4 NPs increasing surface area to enhance the immobilization and prevent the leaching of enzymes at electrode surfaces by magnetic stickers which is improve the stability of the biosensor. Based on this synthesis technique, it is a good new strategy and simple used to fabrication of third-generation glucose biosensor and this nanocomposite could be used as a platform for disposable biosensor and biofuel cell applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shahmoon, Asaf; Strauß, Johnnes; Zafri, Hadar; Schmidt, Michael; Zalevsky, Zeev
In this paper we present the fabrication procedure as well as the preliminary experimental results of a novel method for construction of high resolution nanometric interconnection lines. The fabrication procedure relies on a self-assembly process of gold nanoparticles at specific predetermined nanostructures. The nanostructures for the self-assembly process are based on the focused ion beam (FIB) or scanning electron beam (SEM) technology. The assembled nanoparticles are being illuminated using a picosecond laser with a wavelength of 532 nm. Different pulse energies have been investigated. The paper aimed at developing a novel and reliable process for fabrication of interconnection lines encompass three different disciplines, self-assembly of nanometric particles, optics and microelectronic.
Characterization of iron surface modified by 2-mercaptobenzothiazole self-assembled monolayers
NASA Astrophysics Data System (ADS)
Feng, Yuanyuan; Chen, Shenhao; Zhang, Honglin; Li, Ping; Wu, Ling; Guo, Wenjuan
2006-12-01
A self-assembled monolayer of 2-mercaptobenzothiazole (MBT) adsorbed on the iron surface was prepared. The films were characterized by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared reflection spectroscopy (FT-IR) and scanning electron microscopy (SEM). Besides, the microcalorimetry method was utilized to study the self-assembled process on iron surface and the adsorption mechanism was discussed from the power-time curve. The results indicated that MBT was able to form a film spontaneously on iron surface and the presence of it could protect iron from corrosion effectively. However, the assembling time and the concentration influence the protection efficiency. Quantum chemical calculations, according to which adsorption mechanism was discussed, could explain the experimental results to some extent.
Alivisatos, A.P.; Colvin, V.L.
1998-05-12
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.
1993-04-01
perpendicular to the pipe axis. During assembly, the threads are lubricated and Teflon tape is used for sealing. Aluminum witness plates (25.4 mm thick...3.3 Electrostatic Discharge ( ESD ) ................................. 7 4. INTERMEDIATE-SCALE SENSITIVITY TESTING ..................... 8 4.1 Card Gap...tests include the DWIT, friction, and electrostatic discharge ( ESD ) tests. The purpose of these tests is to enable the researcher to ensure that the
NASA Astrophysics Data System (ADS)
Begum Dikecoglu, F.; Topal, Ahmet E.; Ozkan, Alper D.; Deniz Tekin, E.; Tekinay, Ayse B.; Guler, Mustafa O.; Dana, Aykutlu
2018-07-01
Biological feedback mechanisms exert precise control over the initiation and termination of molecular self-assembly in response to environmental stimuli, while minimizing the formation and propagation of defects through self-repair processes. Peptide amphiphile (PA) molecules can self-assemble at physiological conditions to form supramolecular nanostructures that structurally and functionally resemble the nanofibrous proteins of the extracellular matrix, and their ability to reconfigure themselves in response to external stimuli is crucial for the design of intelligent biomaterials systems. Here, we investigated real-time self-assembly, deformation, and recovery of PA nanofibers in aqueous solution by using a force-stabilizing double-pass scanning atomic force microscopy imaging method to disrupt the self-assembled peptide nanofibers in a force-dependent manner. We demonstrate that nanofiber damage occurs at tip-sample interaction forces exceeding 1 nN, and the damaged fibers subsequently recover when the tip pressure is reduced. Nanofiber ends occasionally fail to reconnect following breakage and continue to grow as two individual nanofibers. Energy minimization calculations of nanofibers with increasing cross-sectional ellipticity (corresponding to varying levels of tip-induced fiber deformation) support our observations, with high-ellipticity nanofibers exhibiting lower stability compared to their non-deformed counterparts. Consequently, tip-mediated mechanical forces can provide an effective means of altering nanofiber integrity and visualizing the self-recovery of PA assemblies.
Dikecoglu, F Begum; Topal, Ahmet E; Ozkan, Alper D; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu
2018-07-13
Biological feedback mechanisms exert precise control over the initiation and termination of molecular self-assembly in response to environmental stimuli, while minimizing the formation and propagation of defects through self-repair processes. Peptide amphiphile (PA) molecules can self-assemble at physiological conditions to form supramolecular nanostructures that structurally and functionally resemble the nanofibrous proteins of the extracellular matrix, and their ability to reconfigure themselves in response to external stimuli is crucial for the design of intelligent biomaterials systems. Here, we investigated real-time self-assembly, deformation, and recovery of PA nanofibers in aqueous solution by using a force-stabilizing double-pass scanning atomic force microscopy imaging method to disrupt the self-assembled peptide nanofibers in a force-dependent manner. We demonstrate that nanofiber damage occurs at tip-sample interaction forces exceeding 1 nN, and the damaged fibers subsequently recover when the tip pressure is reduced. Nanofiber ends occasionally fail to reconnect following breakage and continue to grow as two individual nanofibers. Energy minimization calculations of nanofibers with increasing cross-sectional ellipticity (corresponding to varying levels of tip-induced fiber deformation) support our observations, with high-ellipticity nanofibers exhibiting lower stability compared to their non-deformed counterparts. Consequently, tip-mediated mechanical forces can provide an effective means of altering nanofiber integrity and visualizing the self-recovery of PA assemblies.
Self-Assembled Chiral Photonic Crystals from a Colloidal Helix Racemate.
Lei, Qun-Li; Ni, Ran; Ma, Yu-Qiang
2018-06-20
Chiral crystals consisting of microhelices have many optical properties, while presently available fabrication processes limit their large-scale applications in photonic devices. Here, by using a simplified simulation method, we investigate a bottom-up self-assembly route to build up helical crystals from the smectic monolayer of a colloidal helix racemate. With increasing the density, the system undergoes an entropy-driven cocrystallization by forming crystals of various symmetries with different helical shapes. In particular, we identify two crystals of helices arranged in binary honeycomb and square lattices, which are essentially composed of two sets of opposite-handed chiral crystals. Photonic calculations show that these chiral structures can have large complete photonic band gaps. In addition, in the self-assembled chiral square crystal, we also find dual polarization band gaps that selectively forbid the propagation of circularly polarized light of a specific handedness along the helical axis direction. The self-assembly process in our proposed system is robust, suggesting possibilities of using chiral colloids to assemble photonic metamaterials.
Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process
NASA Astrophysics Data System (ADS)
Wong, Minhao; Ishige, Ryohei; White, Kevin L.; Li, Peng; Kim, Daehak; Krishnamoorti, Ramanan; Gunther, Robert; Higuchi, Takeshi; Jinnai, Hiroshi; Takahara, Atsushi; Nishimura, Riichi; Sue, Hung-Jue
2014-04-01
The large-scale assembly of asymmetric colloidal particles is used in creating high-performance fibres. A similar concept is extended to the manufacturing of thin films of self-assembled two-dimensional crystal-type materials with enhanced and tunable properties. Here we present a spray-coating method to manufacture thin, flexible and transparent epoxy films containing zirconium phosphate nanoplatelets self-assembled into a lamellar arrangement aligned parallel to the substrate. The self-assembled mesophase of zirconium phosphate nanoplatelets is stabilized by epoxy pre-polymer and exhibits rheology favourable towards large-scale manufacturing. The thermally cured film forms a mechanically robust coating and shows excellent gas barrier properties at both low- and high humidity levels as a result of the highly aligned and overlapping arrangement of nanoplatelets. This work shows that the large-scale ordering of high aspect ratio nanoplatelets is easier to achieve than previously thought and may have implications in the technological applications for similar materials.
Molecular Dynamics Studies of Self-Assembling Biomolecules and DNA-functionalized Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Cho, Vince Y.
This thesis is organized as following. In Chapter 2, we use fully atomistic MD simulations to study the conformation of DNA molecules that link gold nanoparticles to form nanoparticle superlattice crystals. In Chapter 3, we study the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber by using CGMD simulations. Compared to fully atomistic MD simulations, CGMD simulations prove to be computationally cost-efficient and reasonably accurate for exploring self-assembly, and are used in all subsequent chapters. In Chapter 4, we apply CGMD methods to study the self-assembly of small molecule-DNA hybrid (SMDH) building blocks into well-defined cage-like dimers, and reveal the role of kinetics and thermodynamics in this process. In Chapter 5, we extend the CGMD model for this system and find that the assembly of SMDHs can be fine-tuned by changing parameters. In Chapter 6, we explore superlattice crystal structures of DNA-functionalized gold nanoparticles (DNA-AuNP) with the CGMD model and compare the hybridization.
NASA Astrophysics Data System (ADS)
Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao
2017-06-01
The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.
Förster Resonance Energy Transfer Evidence for Lysozyme Oligomerization in Lipid Environment
Trusova, Valeriya M.; Gorbenko, Galyna P.; Sarkar, Pabak; Luchowski, Rafal; Akopova, Irina; Patsenker, Leonid D.; Klochko, Oleksii; Tatarets, Anatoliy L.; Kudriavtseva, Yuliia O.; Terpetschnig, Ewald A.; Gryczynski, Ignacy; Gryczynski, Zygmunt
2012-01-01
Intermolecular time-resolved and single-molecule Förster resonance energy transfer (FRET) have been applied to detect quantitatively the aggregation of polycationic protein lysozyme (Lz) in the presence of lipid vesicles composed of phosphatidylcholine (PC) and its mixture with 5, 10, 20, or 40 mol % of phosphatidylglycerol (PG) (PG5, PG10, PG20, or PG40, respectively). Upon binding to PC, PG5, or PG10 model membranes, Lz was found to retain its native monomeric conformation, while increasing content of anionic lipid up to 20 or 40 mol % resulted in the formation of Lz aggregates. The structural parameters of protein self-association (the degree of oligomerization, the distance between the monomers in protein assembly, and the fraction of donors present in oligomers) have been derived. The crucial role of the factors such as lateral density of the adsorbed protein and electrostatic and hydrophobic Lz–lipid interactions in controlling the protein self-association behavior has been proposed. PMID:21126034
Conformal dip-coating of patterned surfaces for capillary die-to-substrate self-assembly
NASA Astrophysics Data System (ADS)
Mastrangeli, M.; Ruythooren, W.; Van Hoof, C.; Celis, J.-P.
2009-04-01
Capillarity-driven self-assembly of small chips onto planar target substrates is a promising alternative to robotic pick-and-place assembly. It critically relies on the selective deposition of thin fluid films on patterned binding sites, which is anyway normally non-conformal. We found that the addition of a thin wetting sidewall, surrounding the entire site perimeter, enables the conformal fluid coverage of arbitrarily shaped sites through dip-coating, significantly improves the reproducibility of the coating process and strongly reduces its sensitivity to surface defects. In this paper we support the feasibility and potential of this method by demonstrating the conformal dip-coating of square and triangular sites conditioned with combinations of different hydrophobic and hydrophilic surface chemistries. We present both experimental and simulative evidence of the advantages brought by the introduction of the wetting boundary on film coverage accuracy. Application of our surface preparation method to capillary self-assembly could result in higher precision in die-to-substrate registration and larger freedom in site shape design.
Li, Ke; Liu, Hao; Gao, Wei; Chen, Mu; Zeng, Yun; Liu, Jiajun; Xu, Liang; Wu, Daocheng
2015-01-01
A comprehensive strategy for the preparation of mulberry-like dual-drug complicated nanocarriers (MLDC NCs) with high drug loading and adjustable dual-drug ratio was developed. First, apogossypolone (ApoG2) amphiphilic starch micelles (AASt MCs) were prepared by self-assembly process, and doxorubicin (DOX) hyaluronic acid nanoparticles (DHA NPs) were prepared by DOX absorption with excess HA by electrostatic absorption. MLDC NCs were obtained by adsorption of 8-9 DHA NPs around one AASt MC via electrostatic interaction. UV-visible and fluorescence spectrophotometers were used to measure the entrapment efficiency and loading efficiency of the two drugs. Transmission electron microscope and dynamic light scattering method were used to observe the size distribution and morphology of the particles. The tumor-targeting feature caused by HA-receptor mediation was confirmed by in vitro cell uptake and in vivo near-infrared fluorescence imaging. MLDC NCs were found to possess a mulberry-like shape with a dynamic size of 83.1 ± 6.6 nm. The final encapsulation efficiencies of ApoG2 and DOX in MLDC NCs were 94 ± 1.7% and 87 ± 5.8% with respect to drug-loading capacities of 13.3 ± 1.2% and 13.1 ± 3.7%, respectively. Almost no ApoG2 release was found within 80 h and less than 30% of DOX was released into the outer phase even after 72 h. In vivo fluorescence imaging revealed that MLDC NCs had highly efficient targeting and accumulation at the tumor in vivo and was maintained for 96 h after being injected intravenously in mice. Low LD50 for the two drugs in MLDC NCs was found after acute toxicity test. One-fifth normal dosage of the two drugs in MLDC NCs exhibited significantly higher anti-tumor efficiency in reducing tumor size compared with free drugs combination or single drug-loaded nanoparticles individually, indicating that the mulberry-like dual-drug nanoplatform has a great potential in tumor therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Clustering effects in ionic polymers: Molecular dynamics simulations
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.
2015-08-18
Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing themore » electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.« less
Methods For Self-Organizing Software
Bouchard, Ann M.; Osbourn, Gordon C.
2005-10-18
A method for dynamically self-assembling and executing software is provided, containing machines that self-assemble execution sequences and data structures. In addition to ordered functions calls (found commonly in other software methods), mutual selective bonding between bonding sites of machines actuates one or more of the bonding machines. Two or more machines can be virtually isolated by a construct, called an encapsulant, containing a population of machines and potentially other encapsulants that can only bond with each other. A hierarchical software structure can be created using nested encapsulants. Multi-threading is implemented by populations of machines in different encapsulants that are interacting concurrently. Machines and encapsulants can move in and out of other encapsulants, thereby changing the functionality. Bonding between machines' sites can be deterministic or stochastic with bonding triggering a sequence of actions that can be implemented by each machine. A self-assembled execution sequence occurs as a sequence of stochastic binding between machines followed by their deterministic actuation. It is the sequence of bonding of machines that determines the execution sequence, so that the sequence of instructions need not be contiguous in memory.
Wang, Cynthia X; Utech, Stefanie; Gopez, Jeffrey D; Mabesoone, Mathijs F J; Hawker, Craig J; Klinger, Daniel
2016-07-06
Well-defined microgel particles were prepared by combining coacervate-driven cross-linking of ionic triblock copolymers with the ability to control particle size and encapsulate functional cargos inherent in microfluidic devices. In this approach, the efficient assembly of PEO-based triblock copolymers with oppositely charged end-blocks allows for bioinspired cross-linking under mild conditions in dispersed aqueous droplets. This strategy enables the integration of charged cargos into the coacervate domains (e.g., the loading of anionic model compounds through electrostatic association with cationic end-blocks). Distinct release profiles can be realized by systematically varying the chemical nature of the payload and the microgel dimensions. This mild and noncovalent assembly method represents a promising new approach to tunable microgels as scaffolds for colloidal biomaterials in therapeutics and regenerative medicine.
Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers.
Wang, Fengyan; Liu, Zhang; Wang, Bing; Feng, Liheng; Liu, Libing; Lv, Fengting; Wang, Yilin; Wang, Shu
2014-01-07
The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hartman, Joshua D; Balaji, Ashwin; Beran, Gregory J O
2017-12-12
Fragment-based methods predict nuclear magnetic resonance (NMR) chemical shielding tensors in molecular crystals with high accuracy and computational efficiency. Such methods typically employ electrostatic embedding to mimic the crystalline environment, and the quality of the results can be sensitive to the embedding treatment. To improve the quality of this embedding environment for fragment-based molecular crystal property calculations, we borrow ideas from the embedded ion method to incorporate self-consistently polarized Madelung field effects. The self-consistent reproduction of the Madelung potential (SCRMP) model developed here constructs an array of point charges that incorporates self-consistent lattice polarization and which reproduces the Madelung potential at all atomic sites involved in the quantum mechanical region of the system. The performance of fragment- and cluster-based 1 H, 13 C, 14 N, and 17 O chemical shift predictions using SCRMP and density functionals like PBE and PBE0 are assessed. The improved embedding model results in substantial improvements in the predicted 17 O chemical shifts and modest improvements in the 15 N ones. Finally, the performance of the model is demonstrated by examining the assignment of the two oxygen chemical shifts in the challenging γ-polymorph of glycine. Overall, the SCRMP-embedded NMR chemical shift predictions are on par with or more accurate than those obtained with the widely used gauge-including projector augmented wave (GIPAW) model.
Tessarek, C; Sarau, G; Kiometzis, M; Christiansen, S
2013-02-11
Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.
Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres
NASA Astrophysics Data System (ADS)
Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya
2018-06-01
We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.
NASA Astrophysics Data System (ADS)
DiPietro, Kelsey L.; Lindsay, Alan E.
2017-11-01
We present an efficient moving mesh method for the simulation of fourth order nonlinear partial differential equations (PDEs) in two dimensions using the Parabolic Monge-Ampére (PMA) equation. PMA methods have been successfully applied to the simulation of second order problems, but not on systems with higher order equations which arise in many topical applications. Our main application is the resolution of fine scale behavior in PDEs describing elastic-electrostatic interactions. The PDE system considered has multiple parameter dependent singular solution modalities, including finite time singularities and sharp interface dynamics. We describe how to construct a dynamic mesh algorithm for such problems which incorporates known self similar or boundary layer scalings of the underlying equation to locate and dynamically resolve fine scale solution features in these singular regimes. We find a key step in using the PMA equation for mesh generation in fourth order problems is the adoption of a high order representation of the transformation from the computational to physical mesh. We demonstrate the efficacy of the new method on a variety of examples and establish several new results and conjectures on the nature of self-similar singularity formation in higher order PDEs.
Hou, Yi; Wang, Zhen; Cai, Chao; Hao, Xi; Li, Dongdong; Zhao, Ning; Zhao, Yiping; Chen, Li; Ma, Hongwei; Xu, Jian
2018-02-01
Assembling nanoparticles (NPs) on various surfaces are intensively investigated for the construction of functional nanocoatings; however, it is still a challenge to fabricate conformal nanocoatings uniformly on surfaces having micro- or nanostructures. Herein, it is demonstrated that the negatively charged SiO 2 NPs and the positively charged silicon coupling agent can be assembled layer-by-layer on the microstructures based on the combination of electrostatic interaction and condensation reaction. Conformal nanocoatings with controllable thickness are formed on the microstructured surfaces with different compositions and morphologies. The formation mechanism is confirmed by using quartz crystal microbalance with dissipation (QCM-D) to study the assembly process in real time. The universality of this method is illustrated by using other reactive building blocks with opposite charge to build up the conformal nanocoatings. Application in the preparation of antireflective nanocoatings on nonplanar optical materials is demonstrated. This simple, versatile, and scalable strategy for the preparation of conformal nanocoatings is promising for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peristalticity-driven banded chemical garden
NASA Astrophysics Data System (ADS)
Pópity-Tóth, É.; Schuszter, G.; Horváth, D.; Tóth, Á.
2018-05-01
Complex structures in nature are often formed by self-assembly. In order to mimic the formation, to enhance the production, or to modify the structures, easy-to-use methods are sought to couple engineering and self-assembly. Chemical-garden-like precipitation reactions are frequently used to study such couplings because of the intrinsic chemical and hydrodynamic interplays. In this work, we present a simple method of applying periodic pressure fluctuations given by a peristaltic pump which can be used to achieve regularly banded precipitate membranes in the copper-phosphate system.
2005-07-21
or solution-based methods such as spin casting or drop casting,’ 1ś self-assembly,1922 Langmuir - Blodgett techniques,23 or electrochemical methods...and Langmuir - exist. Molecules containing a perylene diimide core have Blodgett techniques.’ 8 In many situations, the molecules also been proposed for...remain soluble in the W. J. Langmuir 1996, 12, 2169. absence of other ionic species. These systems represent (35) Antonietti, M.; Conrad, J. Angew
Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports
Meyerson, Joel R.; Rao, Prashant; Kumar, Janesh; Chittori, Sagar; Banerjee, Soojay; Pierson, Jason; Mayer, Mark L.; Subramaniam, Sriram
2014-01-01
Poor partitioning of macromolecules into the holes of holey carbon support grids frequently limits structural determination by single particle cryo-electron microscopy (cryo-EM). Here, we present a method to deposit, on gold-coated carbon grids, a self-assembled monolayer whose surface properties can be controlled by chemical modification. We demonstrate the utility of this approach to drive partitioning of ionotropic glutamate receptors into the holes, thereby enabling 3D structural analysis using cryo-EM methods. PMID:25403871
Self-Assembly of Heterogeneously Shaped Nanoparticles into Plasmonic Metamolecules on DNA Origami.
Liu, Wenyan; Li, Ling; Yang, Shuo; Gao, Jie; Wang, Risheng
2017-10-12
Fabrication of plasmonic metamolecules (PMs) with rationally designed complexity is one of the major goals of nanotechnology. Most self-assembled PMs, however, have been constructed using single-component systems. The corresponding plasmonic assemblies still suffer from the lack of complexity, which is required to achieve a high degree of functionality. Here, we report a general applicable strategy that can realize a series of high-ordered hetero-PMs using bottom-up DNA self-assembly. DNA-functionalized differently shaped nanoparticles were deliberately arranged in prescribed positions on 3D triangular DNA origami frames to form various hetero-PMs. Importantly, we showed that the optical properties of assembled PMs could be facially tuned by selectively regulating the position of each component. This method provides a promising pathway for manufacturing more complex and advanced materials by integrating diverse nanocomponents with particular properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A fabrication guide for planar silicon quantum dot heterostructures
NASA Astrophysics Data System (ADS)
Spruijtenburg, Paul C.; Amitonov, Sergey V.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.
2018-04-01
We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a crucial role in the formation of electrostatically defined quantum dots. Processes such as oxidation, physical vapor deposition and atomic-layer deposition must be tailored in order to prevent unwanted side effects such as defects, disorder and dewetting. In two directly related manuscripts written in parallel we use techniques described in this work to create depletion-mode quantum dots in intrinsic silicon, and low-disorder silicon quantum dots defined with palladium gates. While we discuss three different planar gate structures, the general principles also apply to 0D and 1D systems, such as self-assembled islands and nanowires.
Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems
Jiang, Bingbing; Barnett, John B; Li, Bingyun
2009-01-01
There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464
Effect of γ-PGA on the formation of collagen fibrils in vitro.
Ding, Cuicui; Zheng, Zhigong; Liu, Xinzhong; Li, Hengda; Zhang, Min
2016-07-01
The effect of γ-poly(glutamic acid) (γ-PGA) on the self-assembly of collagen was studied. Under physiological conditions, the kinetic curves for fibril formation showed that the turbidity of collagen/γ-PGA blends at 313 nm was increased with the addition of γ-PGA. Furthermore, it was shown using both field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) that fibrils with a larger diameter were obtained following the addition of γ-PGA, probably due to the electrostatic and hydrogen bond interactions between collagen and γ-PGA, which promoted the lateral association of collagen molecules. In addition, both the thermal stability and viscoelastic properties of the hybrid hydrogels, which were evaluated by differential scanning calorimetry and rheological measurements, respectively, were improved by the addition of γ-PGA.
Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists.
Lotito, Valeria; Zambelli, Tomaso
2017-08-01
Self-assembly of quasi-spherical colloidal particles in two-dimensional (2D) arrangements is essential for a wide range of applications from optoelectronics to surface engineering, from chemical and biological sensing to light harvesting and environmental remediation. Several self-assembly approaches have flourished throughout the years, with specific features in terms of complexity of the implementation, sensitivity to process parameters, characteristics of the final colloidal assembly. Selecting the proper method for a given application amidst the vast literature in this field can be a challenging task. In this review, we present an extensive classification and comparison of the different techniques adopted for 2D self-assembly in order to provide useful guidelines for scientists approaching this field. After an overview of the main applications of 2D colloidal assemblies, we describe the main mechanisms underlying their formation and introduce the mathematical tools commonly used to analyse their final morphology. Subsequently, we examine in detail each class of self-assembly techniques, with an explanation of the physical processes intervening in crystallization and a thorough investigation of the technical peculiarities of the different practical implementations. We point out the specific characteristics of the set-ups and apparatuses developed for self-assembly in terms of complexity, requirements, reproducibility, robustness, sensitivity to process parameters and morphology of the final colloidal pattern. Such an analysis will help the reader to individuate more easily the approach more suitable for a given application and will draw the attention towards the importance of the details of each implementation for the final results. Copyright © 2017 Elsevier B.V. All rights reserved.
Spectro-microscopic study of the formation of supramolecular networks
NASA Astrophysics Data System (ADS)
Sadowski, Jerzy T.
2015-03-01
Metal-organic frameworks (MOFs) are emerging as a new class of materials for CO2 capture. There are many fundamental questions, including the optimum pore size and arrangement of the molecules in the structure to achieve highest CO2 uptake. As only the surface is of interest for potential applications such as heterogeneous catalysis, nano-templating, and sensing, 2D analogs of MOFs can serve as good model systems. Utilizing capabilities of LEEM/PEEM for non-destructive interrogation of the real-time molecular self-assembly, we investigated supramolecular systems based on carboxylic acid-metal complexes, such as trimesic and mellitic acid, doped with transition metals. Such 2D networks act as host systems for transition-metal phthalocyanines (MPc; M = Fe, Ti, Sc) and the electrostatic interactions of CO2 molecules with transition metal ions, can be tuned by controlling the type of TM ion and the size of the pore in the host network. The understanding of directed self-assembly by controlling the molecule-substrate interaction can enable us to engineer the pore size and density, and thus tune the host's chemical activity. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10.
Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li
2014-08-05
The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.
Garrigues, Alvar R.; Yuan, Li; Wang, Lejia; Mucciolo, Eduardo R.; Thompon, Damien; del Barco, Enrique; Nijhuis, Christian A.
2016-01-01
We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Similar to Marcus relaxation processes in wet electrochemistry, the thermal broadening of the Fermi distribution describing the electronic occupation energies in the electrodes accounts for the exponential dependence of the tunneling current on temperature. We demonstrate that a single-level tunnel model satisfactorily explains experimental results obtained in three different molecular junctions (both single-molecule and SAM-based) formed by ferrocene-based molecules. Among other things, we use the model to map the electrostatic potential profile in EGaIn-based SAM junctions in which the ferrocene unit is placed at different positions within the molecule, and we find that electrical screening gives rise to a strongly non-linear profile across the junction. PMID:27216489
Magnetically encoded luminescent composite nanoparticles through layer-by-layer self-assembly.
Song, Erqun; Han, Weiye; Xu, Hongyan; Jiang, Yunfei; Cheng, Dan; Song, Yang; Swihart, Mark T
2014-11-03
Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2 @n Fe3 O4 composite nanoparticles, by using a layer-by-layer self-assembly approach based on electrostatic interactions, is described. Silica-coated CdTe quantum dots (CdTe@SiO2 ) serve as core templates for the deposition of alternating layers of Fe3 O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2 @n Fe3 O4 (n=1, 2, 3, …︁) composite nanoparticles with a defined number (n) of Fe3 O4 layers. Composite nanoparticles were characterized by zeta-potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2 @n Fe3 O4 composite nanoparticles exhibited excellent luminescence properties coupled with well-defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near-simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2 @n Fe3 O4 nanoparticles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils.
Li, Yuping; Douglas, Elliot P
2013-12-01
Even though the behavior of collagen monomers self-assembling into fibrils is commonly understood in terms of hydrophobic and electrostatic interactions, the mechanisms that drive their ordered, longitudinal alignment to form a characteristic periodicity are still unclear. By introducing various salts into the collagen fibrillogenesis system, the intermolecular interactions of fibril formation were studied. We found that the pH and ion species play a critical role in forming native fibrils. Turbidity and electron microscopy revealed that collagen self-assembled into fibrils with a native banding pattern in the presence of multivalent ions. The isoelectric point of collagen in 12mM of NaCl is pH 8.9; it shifted to pH 9.4 and pH 7.0 after adding 10mM CaCl2 and Na2SO4, respectively. Native fibrils were reconstituted at pH 7.4 in salts with divalent anions and at pH 9.0 in salts with divalent cations. Circular dichroism spectroscopy showed a loss of helicity in the conditions where fibrillogenesis was unable to be achieved. The multivalent ions not only change the surface charge of collagen, but also facilitate the formation of fibrils with the native D-periodic banding pattern. It is likely that the binding multivalent ions induce the like-charge attraction and facilitate monomers' longitudinal registration to form fibrils with the native banding. Published by Elsevier B.V.
Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns
Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; ...
2016-08-16
Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyreneblock-poly(methyl methacrylate). Faster assembly kinetics aremore » observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. Lastly, the rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.« less
Materials Design for Block Copolymer Lithography
NASA Astrophysics Data System (ADS)
Sweat, Daniel Patrick
Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up a wide slew of applications from directed self-assembly to biomaterial engineering.
Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng
2012-08-18
Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.
Role of hydrophobic interactions in the self-assembly of alternating copolymers
NASA Astrophysics Data System (ADS)
Malardier-Jugroot, Cecile; Chan, Anita S. W.; Groves, Michael N.
2010-03-01
New nanomaterials already play a key role in several emerging technologies. Among the methods used to fabricate new nanomaterials, the most successful in producing precise structure is the bottom-up method. The materials obtained by self-assembly are ordered on different scales and respond and adapt to the presence of other molecules in their environment [1] and can therefore be used as probes, sensors or switches [2]. In this paper, we will describes the self-assembly of amphiphilic alternating copolymers into nanoarchitectures in aqueous solution. To investigate the role of the nature of the hydrophobic groups on the association, the self-assembly of two polymers are compared: poly(isobutylene-alt-maleic anhydride) (IMA) and poly(styrene-alt-maleic anhydride) (SMA) [3, 4]. The theoretical prediction is also compared to experiment and the characterization using Small Angle Neutron Scattering, Dynamic Light Scattering and High Resolution Transmission Electron Microscopy will be presented in detail. [1] S. Zhang, Nature Biotechnology, 21, 10, 1171, 2003. [2] F. Patolsky, et al., Nanomedicine, 1, 51-65, 2006 [3] C. Malardier-Jugroot, et al., J. of Phys. Chem. B, 109(15), 7022-7032, 2005 [4] A.S.W. Chan, et al., Mol. Sim., accepted for publication, 2009.
NASA Astrophysics Data System (ADS)
Andersen, A.; Govind, N.; Laskin, A.
2017-12-01
Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.
Xie, Yujiao; Liu, Xiaofeng; Hu, Zhuang; Hou, Zhipeng; Chen, Zhangpei; Hu, Jianshe; Yang, Liqun
2018-01-01
New amphiphilic liquid crystal (LC) polycarbonate block copolymers containing side-chain cholesteryl units were synthesized. Their structure, thermal stability, and LC phase behavior were characterized with Fourier transform infrared (FT-IR) spectrum, 1H NMR, gel permeation chromatographic (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), polarizing optical microscope (POM), and XRD methods. The results demonstrated that the LC copolymers showed a double molecular arrangement of a smectic A phase at room temperature. With the elevating of LC unit content in such LC copolymers, the corresponding properties including decomposition temperature (Td), glass temperature (Tg), and isotropic temperature (Ti) increased. The LC copolymers showed pH-responsive self-assembly behavior under the weakly acidic condition, and with more side-chain LC units, the self-assembly process was faster, and the formed particle size was smaller. It indicated that the self-assembly driving force was derived from the orientational ability of LC. The particle size and morphologies of self-assembled microspheres loaded with doxorubicin (DOX), together with drug release tracking, were evaluated by dynamic light scattering (DLS), SEM, and UV–vis spectroscopy. The results showed that DOX could be quickly released in a weakly acidic environment due to the pH response of the self-assembled microspheres. This would offer a new strategy for drug delivery in clinic applications. PMID:29584691