Sample records for electrostatic separator designed

  1. Electrostatic separation for recycling waste printed circuit board: a study on external factor and a robust design for optimization.

    PubMed

    Hou, Shibing; Wu, Jiang; Qin, Yufei; Xu, Zhenming

    2010-07-01

    Electrostatic separation is an effective and environmentally friendly method for recycling waste printed circuit board (PCB) by several kinds of electrostatic separators. However, some notable problems have been detected in its applications and cannot be efficiently resolved by optimizing the separation process. Instead of the separator itself, these problems are mainly caused by some external factors such as the nonconductive powder (NP) and the superficial moisture of feeding granule mixture. These problems finally lead to an inefficient separation. In the present research, the impacts of these external factors were investigated and a robust design was built to optimize the process and to weaken the adverse impact. A most robust parameter setting (25 kv, 80 rpm) was concluded from the experimental design. In addition, some theoretical methods, including cyclone separation, were presented to eliminate these problems substantially. This will contribute to efficient electrostatic separation of waste PCB and make remarkable progress for industrial applications.

  2. Factors that influence the efficiency of a fluidized-bed-type tribo-electrostatic separator for mixed granular plastics

    NASA Astrophysics Data System (ADS)

    Dascalescu, L.; Fati, O.; Bilici, M.; Rahou, F.; Dragan, C.; Samuila, A.; Iuga, A.

    2011-06-01

    Fluidized bed devices have already been used as tribochargers for various industrial electrostatic separation processes. In the present paper, the authors investigate the behaviour of polyamide - polycarbonate granular plastic mixtures in a parallelepiped bed, the height of which is roughly 2 times its length or width, so that the collisions between granules become the prevailing tribocharging mechanism. Two of the opposite walls of the tribocharging chamber consist of metallic plates connected to two DC high-voltage supplies of opposite polarities, so that the charged particles are attracted to the electrodes and separated while still in the fluidized state. The collecting hoppers are designed as Faraday cups connected to two electrometers, thus allowing the instantaneous measurement of the charge carried by the separated particles. Experimental design methodology was employed for the optimization of the tribo-aero-electrostatic separation process, the input variables being the high-voltage applied to the electrodes and the duration of the tribocharging. Higher voltages applied to the electrode system do not necessarily lead to larger quantities of collected products but improve the purity of the concentrates. The composition of the mixture influences the outcome of the process.

  3. Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards.

    PubMed

    Li, Jia; Lu, Hongzhou; Xu, Zhenming; Zhou, Yaohe

    2008-06-15

    Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method.

  4. An improved model for computing the trajectories of conductive particles in roll-type electrostatic separator for recycling metals from WEEE.

    PubMed

    Wu, Jiang; Li, Jia; Xu, Zhenming

    2009-08-15

    Electrostatic separation presents an effective and environmentally friendly way for recycling metals and nonmetals from ground waste electrical and electronic equipment (WEEE). For this process, the trajectory of conductive particle is significant and some models have been established. However, the results of previous researches are limited by some simplifying assumptions and lead to a notable discrepancy between the model prediction and the experimental results. In the present research, a roll-type corona-electrostatic separator and ground printed circuit board (PCB) wastes were used to investigate the trajectory of the conductive particle. Two factors, the air drag force and the different charging situation, were introduced into the improved model. Their effects were analyzed and an improved model for the theoretical trajectory of conductive particle was established. Compared with the previous one, the improved model shows a good agreement with the experimental results. It provides a positive guidance for designing of separator and makes a progress for recycling the metals and nonmetals from WEEE.

  5. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  6. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.

    PubMed

    Li, Jia; Xu, Zhenming; Zhou, Yaohe

    2008-05-30

    Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES.

  7. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board.

    PubMed

    Jiang, Wu; Jia, Li; Zhen-Ming, Xu

    2009-01-15

    The electrostatic separation is an effective method for recycling waste electrical and electronic equipment (WEEE). The efficiency of electrostatic separation processes depends on the ability of the separator. As a classical one, the roll-type corona-electrostatic separator has some advantages in recycling metals and plastics from waste printed circuit board (PCB). However, its industry application still faces some problems, such as: the further disposal of the middling products of the separation process; the balance of the production capacity and the good separation efficiency; the separation of the fine granular mixture and the stability of the separation process. A new "two-roll-type corona-electrostatic separator" was built to overcome the limitation of the classical one. The experimental data were discussed and the results showed that the outcome of the separation process was improved by using the new separator. Compared with the classical machine, the mass of conductive products increases 8.9% (groups 2 and 3) and10.2% (group 4) while the mass of the middling products decreases 45% (groups 2 and 3) and 31.7% (group 4), respectively. The production capacity of the new machine increases, and the stability of the separation process is enhanced.

  8. Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.

    PubMed

    Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria

    2015-10-15

    Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.

  9. Charge sniffer for electrostatics demonstrations

    NASA Astrophysics Data System (ADS)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  10. Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis

    NASA Astrophysics Data System (ADS)

    Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI

    2018-05-01

    Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.

  11. A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Patrick, Brian

    2006-01-01

    Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept demonstrates that this is an attractive concept for increasing the dynamic range capability of electrostatic deformable mirrors.

  12. Electrostatic separation for recovering metals and nonmetals from waste printed circuit board: problems and improvements.

    PubMed

    Wu, Jiang; Li, Jia; Xu, Zhenming

    2008-07-15

    Electrostatic separation is an effective and environmentally friendly method for recycling comminuted waste printed circuit boards (PCB). As a classical separator, the roll-type corona-electrostatic separator (RTS) has some advantages in this field. However, there are still some notable problems, such as the middling products and their further treatment, impurity of nonconductive products because of the aggregation of fine particles, and stability of the separation process and balance between the production capacity and the separation quality. To overcome these problems, a conception of two-step separation is presented, and a new two-roll type corona-electrostatic separator (T-RTS) was built As compared to RTS, the conductive products increase by 8.9%, the middling products decrease by 45%, and the production capacity increases by 50% in treating comminuted PCB wastes by T-RTS. In addition, the separation process in T-RTS is more stable. Therefore, T-RTS is a promising separator for recycling comminuted PCB.

  13. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburghmore » #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous material. There was also evidence that the carbon is present at a higher ratio in larger particles than in small particles. An ultraviolet photoelectron counter for use in ambient atmosphere is nearing completion. The counter will be used to measure work functions of different maceral and mineral types in the coal matrix. A Particle Image Analyzer for measuring size and charge of airborne particles is also under contruction and its current status is presented. A charged, monodisperse, droplet generator is also being constructed for calibration of the Particle Image Analyzer and other airborne particle analyzers in our labs.« less

  14. Impact of nonconductive powder on electrostatic separation for recycling crushed waste printed circuit board.

    PubMed

    Wu, Jiang; Qin, Yufei; Zhou, Quan; Xu, Zhenming

    2009-05-30

    The electrostatic separation is an effective and environmentally friendly method for recycling metals and nonmetals from crushed printed circuit board (PCB) wastes. However, it still confronts some problems brought by nonconductive powder (NP). Firstly, the NP is fine and liable to aggregate. This leads to an increase of middling products and loss of metals. Secondly, the stability of separation process is influenced by NP. Finally, some NPs accumulate on the surface of the corona and electrostatic electrodes during the process. These problems lead to an inefficient separation. In the present research, the impacts of NP on electrostatic separation are investigated. The experimental results show that: the separation is notably influenced when the NP content is more than 10%. With the increase of NP content, the middling products sharply increase from 1.4 g to 4.3g (increase 207.1%), while the conductive products decrease from 24.0 g to 19.1g (decrease 20.4%), and the separation process become more instable.

  15. Functional wettability in carbonate reservoirs

    DOE PAGES

    Brady, Patrick V.; Thyne, Geoffrey

    2016-10-11

    Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less

  16. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    PubMed

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  17. The Effect of Twins on Critical Currents of High Tc Superconductors

    DTIC Science & Technology

    1989-01-01

    particles to stick together due to electrostatic forces. To overcome this we have formed a slurry of the material in liquid nitrogen and flash...can use and the liquid convection tends to counteract the separation process. We have-now designed a magnetic track which particles will slide down with...Currents of High Tc Superconductors" - A.M. Campbell and M.F. Ashby The initial work on levitation forces and separation of superconducting powders has

  18. New design studies for TRIUMF's ARIEL High Resolution Separator

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Marchetto, M.

    2016-06-01

    As part of its new Advanced Rare IsotopE Laboratory (ARIEL), TRIUMF is designing a novel High Resolution Separator (HRS) (Maloney et al., 2015) to separate rare isotopes. The HRS has a 180° bend, separated into two 90° magnetic dipoles, bend radius 1.2 m, with an electrostatic multipole corrector between them. Second order correction comes mainly from the dipole edge curvatures, but is intended to be fine-tuned with a sextupole component and a small octupole component in the multipole. This combination is designed to achieve 1:20,000 resolution for a 3 μm (horizontal) and 6 μm (vertical) emittance. A design for the HRS dipole magnets achieves both radial and integral flatness goals of <10-5. A review of the optical design for the HRS is presented, including the study of limiting factors affecting separation, matching and aberration correction. Field simulations from the OPERA-3D (OPERA) [2] models of the dipole magnets are used in COSY Infinity (COSY) (Berz and Makino, 2005) [3] to find and optimize the transfer maps to 3rd order and study residual nonlinearities to 8th order.

  19. “Capacitive Sensor” to Measure Flow Electrification and Prevent Electrostatic Hazards

    PubMed Central

    Paillat, Thierry; Touchard, Gerard; Bertrand, Yves

    2012-01-01

    At a solid/liquid interface, physico-chemical phenomena occur that lead to the separation of electrical charges, establishing a zone called electrical double layer. The convection of one part of these charges by the liquid flow is the cause of the flow electrification phenomenon which is suspected of being responsible of incidents in the industry. The P' Institute of Poitiers University and CNRS has developed an original sensor called “capacitive sensor” that allows the characterization of the mechanisms involved in the generation, accumulation and transfer of charges. As an example, this sensor included in the design of high power transformers, could easily show the evolution of electrostatic charge generation developed during the operating time of the transformer and, therefore, point out the operations leading to electrostatic hazards and, then, monitor the transformer to prevent such risks. PMID:23202162

  20. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  1. Electrostatic separation for recycling silver, silicon and polyethylene terephthalate from waste photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zisheng; Sun, Bo; Yang, Jie; Wei, Yusheng; He, Shoujie

    2017-04-01

    Electrostatic separation technology has been proven to be an effective and environmentally friendly way of recycling electronic waste. In this study, this technology was applied to recycle waste solar panels. Mixed particles of silver and polyethylene terephthalate, silicon and polyethylene terephthalate, and silver and silicon were separated with a single-roll-type electrostatic separator. The influence of high voltage level, roll speed, radial position corona electrode and angular position of the corona electrode on the separation efficiency was studied. The experimental data showed that separation of silver/polyethylene terephthalate and silicon/polyethylene terephthalate needed a higher voltage level, while separation of silver and silicon needed a smaller angular position for the corona electrode and a higher roll speed. The change of the high voltage level, roll speed, radial position of the corona electrode, and angular position of the corona electrode has more influence on silicon separation efficiency than silver separation efficiency. An integrated process is proposed using a two-roll-type corona separator for multistage separation of a mixture of these three materials. The separation efficiency for silver and silicon were found to reach 96% and 98%, respectively.

  2. Separation of non-ferrous metals from ASR by corona electrostatic separation

    NASA Astrophysics Data System (ADS)

    Kim, Yang-soo; Choi, Jin-Young; Jeon, Ho-Seok; Han, Oh-Hyung; Park, Chul-Hyun

    2016-04-01

    Automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, consists of polymers (plastics and rubber), metals (ferrous and non-ferrous), wood, glass and fluff (textile and fiber). ASR cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then largely deposited in land-fill sites as waste. Thus reducing a pollutant release before disposal, techniques that can improve the liberation of coated (or laminated) complexes and the recovery of valuable metals from the shredder residue are needed. ASR may be separated by a series of physical processing operations such as comminution, air, magnetic and electrostatic separations. The work deals with the characterization of the shredder residue coming from an industrial plant in korea and focuses on estimating the optimal conditions of corona electrostatic separation for improving the separation efficiency of valuable non-ferrous metals such as aluminum, copper and etc. From the results of test, the maximum separation achievable for non-ferrous metals using a corona electrostatic separation has been shown to be recovery of 92.5% at a grade of 75.8%. The recommended values of the process variables, particle size, electrode potential, drum speed, splitter position and relative humidity are -6mm, 50 kV, 35rpm, 20° and less 40%, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. GT-11-C-01-170-0)

  3. Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator.

    PubMed

    Richard, Gontran; Touhami, Seddik; Zeghloul, Thami; Dascalescu, Lucien

    2017-02-01

    Plate-type electrostatic separators are commonly employed for the selective sorting of conductive and non-conductive granular materials. The aim of this work is to identify the optimal operating conditions of such equipment, when employed for separating copper and plastics from either flexible or rigid electric wire wastes. The experiments are performed according to the response surface methodology, on samples composed of either "calibrated" particles, obtained by manually cutting of electric wires at a predefined length (4mm), or actual machine-grinded scraps, characterized by a relatively-wide size distribution (1-4mm). The results point out the effect of particle size and shape on the effectiveness of the electrostatic separation. Different optimal operating conditions are found for flexible and rigid wires. A separate processing of the two classes of wire wastes is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  5. Machined electrostatic sector for mass spectrometer

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    2001-01-01

    An electrostatic sector device for a mass spectrometer is formed from a single piece of machinable ceramic. The machined ceramic is coated with a nickel coating, and a notch is etched in the nickel coating to form two separated portions. The sector can be covered by a cover formed from a separate piece of machined ceramic.

  6. High voltage conditioning of the electrostatic deflector of MARA

    NASA Astrophysics Data System (ADS)

    Partanen, J.; Johansen, U.; Sarén, J.; Tuunanen, J.; Uusitalo, J.

    2016-06-01

    MARA is a new recoil mass separator in the Accelerator Laboratory of University of Jyväskylä (JYFL-ACCLAB) with a mass resolving power of 250 and an ion-optical configuration of QQQDEDM . In this paper the construction, control and conditioning of its electrostatic deflector are described. The deflector was designed for voltages up to 500 kV accross the gap, corresponding to a 3.6 MV/m field, to accomodate fusion reactions with inverse kinematics. Titanium electrodes with a beam dump opening in the anode are used. The conditioning procedure, which has been used repeatedly to take the deflector to 450 kV, is described, along with the safety systems and precautions that are in place.

  7. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  8. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets.

    PubMed

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  9. A contribution to the expansion of the applicability of electrostatic forces in micro transducers

    NASA Astrophysics Data System (ADS)

    Schenk, Harald; Conrad, Holger; Gaudet, Matthieu; Uhlig, Sebastian; Kaiser, Bert; Langa, Sergiu; Stolz, Michael; Schimmanz, Klaus

    2017-02-01

    Electrostatic actuation is highly efficient at micro and nanoscale. However, large deflection in common electrostatically driven MEMS requires large electrode separation and thus high driving voltages. To offer a solution to this problem we developed a novel electrostatic actuator class, which is based on a force-to-stress transformation in the periodically patterned upper layer of a silicon cantilever beam. We report on advances in the development of such electrostatic bending actuators. Several variants of a CMOS compatible and RoHS-directive compliant fabrication processes to fabricate vertical deflecting beams with a thickness of 30 μm are presented. A concept to extend the actuation space towards lateral deflecting elements is introduced. The fabricated and characterized vertical deflecting cantilever beam variants make use of a 0.2 μm electrode gap and achieve deflections of up to multiples of this value. Simulation results based on an FE-model applied to calculate the voltage dependent curvature for various actuator cell designs are presented. The calculated values show very good agreement with the experimentally determined voltage controlled actuation curvatures. Particular attention was paid to parasitic effects induced by small, sub micrometer, electrode gaps. This includes parasitic currents between the two electrode layers. No experimental hint was found that such effects significantly influence the curvature for a control voltage up to 45 V. The paper provides an outlook for the applicability of the technology based on specifically designed and fabricated actuators which allow for a large variety of motion patterns including out-of-plane and in-plane motion as well as membrane deformation and linear motion.

  10. New technology for separating resin powder and fiberglass powder from fiberglass-resin powder of waste printed circuit boards.

    PubMed

    Li, Jia; Gao, Bei; Xu, Zhenming

    2014-05-06

    New recycling technologies have been developed lately to enhance the value of the fiberglass powder-resin powder fraction (FRP) from waste printed circuit boards. The definite aim of the present paper is to present some novel methods that use the image forces for the separation of the resin powder and fiberglass powder generated from FRP during the corona electrostatic separating process. The particle shape charactization and particle trajectory simulation were performed on samples of mixed non-metallic particles. The simulation results pointed out that particles of resin powder and particles of fiberglass powder had different detach trajectories at the conditions of the same size and certain device parameters. An experiment carried out using a corona electrostatic separator validated the possibility of sorting these particles based on the differences in their shape characteristics. The differences in the physical properties of the different types of particles provided the technical basis for the development of electrostatic separation technologies for the recycling industry.

  11. Effective solutions for monitoring the electrostatic separation of metal and plastic granular waste from electric and electronic equipment.

    PubMed

    Senouci, Khouira; Medles, Karim; Dascalescu, Lucian

    2013-02-01

    The variability of the quantity and purity of the recovered materials is a serious drawback for the application of electrostatic separation technologies to the recycling of granular wastes. In a series of previous articles we have pointed out how capability and classic control chart concepts could be employed for better mastering the outcome of such processes. In the present work, the multiple exponentially weighted moving average (MEWMA) control chart is introduced and shown to be more effective than the Hotelling T2 chart for monitoring slow varying changes in the electrostatic separation of granular mixtures originating from electric and electronic equipment waste. The operation of the industrial process was simulated by using a laboratory roll-type electrostatic separator and granular samples resulting from shredded electric cable wastes. The 25 tests carried out during the observation phase enabled the calculation of the upper and lower control limits for the two control charts considered in the present study. The 11 additional tests that simulated the monitoring phase pointed out that the MEWMA chart is more effective than Hotelling's T(2) chart in detecting slow varying changes in the outcome of a process. As the reverse is true in the case of abrupt alterations of monitored process performances, simultaneous usage of the two control charts is strongly recommended. While this study focused on a specific electrostatic separation process, using the MEWMA chart together with the well known Hotelling's T(2) chart should be applicable to the statistical control of other complex processes in the field of waste processing.

  12. Separability of electrostatic and hydrodynamic forces in particle electrophoresis

    NASA Astrophysics Data System (ADS)

    Todd, Brian A.; Cohen, Joel A.

    2011-09-01

    By use of optical tweezers we explicitly measure the electrostatic and hydrodynamic forces that determine the electrophoretic mobility of a charged colloidal particle. We test the ansatz of O'Brien and White [J. Chem. Soc. Faraday IIJCFTBS0300-923810.1039/f29787401607 74, 1607 (1978)] that the electrostatically and hydrodynamically coupled electrophoresis problem is separable into two simpler problems: (1) a particle held fixed in an applied electric field with no flow field and (2) a particle held fixed in a flow field with no applied electric field. For a system in the Helmholtz-Smoluchowski and Debye-Hückel regimes, we find that the electrostatic and hydrodynamic forces measured independently accurately predict the electrophoretic mobility within our measurement precision of 7%; the O'Brien and White ansatz holds under the conditions of our experiment.

  13. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and possibly real wastewater brine residues. In doing so, ideally it will yield a high potassium enrichment for use in spacecraft plant systems.

  14. Formation of ion clusters in the phase separated structures of neutral-charged polymer blends

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Olvera de La Cruz, Monica

    2015-03-01

    Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  15. Liberation characteristic and physical separation of printed circuit board (PCB).

    PubMed

    Guo, Chao; Wang, Hui; Liang, Wei; Fu, Jiangang; Yi, Xin

    2011-01-01

    Recycling of printed circuit board (PCB) is an important subject and to which increasing attention is paid, both in treatment of waste as well as recovery of valuable material terms. Precede physical and mechanical method, a good liberation is the premise to further separation. In this study, two-step crushing process is employed, and standard sieve is applied to screen crushed material to different size fractions, moreover, the liberation situation and particles shape in different size are observed. Then metal of the PCB is separated by physical methods, including pneumatic separation, electrostatic separation and magnetic separation, and major metal contents are characterized by inductively coupled plasma emission spectrometry (ICP-AES). Results show that the metal and nonmetal particles of PCB are dissociated completely under the crush size 0.6mm; metal is mainly enriched in the four size fractions between 0.15 and 1.25 mm; relatively, pneumatic separation is suitable for 0.6-0.9 mm size fraction, while the electrostatic separation is suitable for three size fractions that are 0.15-0.3mm, 0.3-0.6mm and 0.9-1.25 mm. The whole process that involves crushing, electrostatic and magnetic separation has formed a closed cycle that can return material and provide salable product. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  16. Electrostatic Explorations.

    ERIC Educational Resources Information Center

    Gallai, Ditta; Stewart, Gay

    1998-01-01

    Presents a set of hands-on electrostatics experiments in the form of an activity guide and worksheet through which students discover the different types of electric charge, Coulomb's Law, induced charge separation, and grounding. (DDR)

  17. Electrostatic focusing of directly heated linear filament gun using EGUN

    NASA Astrophysics Data System (ADS)

    Iqbal, Munawar; Lodhi, M. A. K.; Majeed, Zahid; Batani, Dimitri

    2011-06-01

    This paper presents the optimization of a line source rectangular electron gun using electrostatic focusing. We optimized the gun by shaping the configuration of its electrodes in order to achieve the desired focusing characteristics, namely maximum focusing distance and minimum beam spread. The optimization has been carried out using the software EGUN. We have also simplified the gun design using only one focusing electrode at the same potential as that of the cathode and by avoiding magnetic focusing field, separate focusing electrodes and additional power supply, thus minimizing the cost without any loss in its accuracy and efficient performance. This gun with the optimum configuration was used in actual experiment and the results of the simulation were compared with the experimental measurements.

  18. Energy harvesting with stacked dielectric elastomer transducers: Nonlinear theory, optimization, and linearized scaling law

    NASA Astrophysics Data System (ADS)

    Tutcuoglu, A.; Majidi, C.

    2014-12-01

    Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.

  19. Visualizing the Positive-Negative Interface of Molecular Electrostatic Potentials as an Educational Tool for Assigning Chemical Polarity

    ERIC Educational Resources Information Center

    Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan

    2010-01-01

    To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…

  20. Recovery of ferrous and nonferrous metal from ASR by physical separation

    NASA Astrophysics Data System (ADS)

    Kim, Min-gyu; Han, Oh-hyung; Park, Chul-hyun

    2017-04-01

    A recycle ratio of waste automobiles in Korea is low, compared to that of the advanced countries. Especially in its recycle, separation of automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, is needed. However ASR is cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then is largely deposited in land-fill sites as waste. In this study ASR was separated by a series of physical processing operations such as comminution, air classification and magnetic separation and electrostatic separations. In particular it focuses on estimating the optimal conditions of magnetic and electrostatic separations for improving the separation efficiency of valuable ferrous and non-ferrous metals such as iron (Fe), aluminum, copper and etc. In magnetic separation, 91.5% Fe grade and 91% recovery could be obtained at conditions of particle size under 10mm and magnetic intensity of 400 gauss. In corona electrostatic separation for recovering nonferrous metals, a grade of 79.2% and recovery of 90.7% could be successfully achieved under conditions of -6mm particle size, 50kV electrode potential, 35rpm drum speed and 20 degree splitter position, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. 2016002250001)

  1. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface.

    PubMed

    Regtmeier, Jan; Käsewieter, Jörg; Everwand, Martina; Anselmetti, Dario

    2011-05-01

    Continuous-flow separation of nanoparticles (NPs) (15 and 39 nm) is demonstrated based on electrostatic sieving at a micro-nanofluidic interface. The interface is realized in a poly(dimethylsiloxane) device with a nanoslit of 525 nm laterally spanning the microfluidic channel (aspect ratio of 540:1). Within this nanoslit, the Debye layers overlap and generate an electrostatic sieve. This was exploited to selectively deflect and sort NPs with a sorting purity of up to 97%. Because of the continuous-flow operation, the sample is continuously fed into the device, immediately separated, and the parameters can be adapted in real time. For bioanalytical purposes, we also demonstrate the deflection of proteins (longest axis 6.8 nm). The continuous operation mode and the general applicability of this separation concept make this method a valuable addition to the current Lab-on-a-Chip devices for continuous sorting of NPs and macromolecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Means for the focusing and acceleration of parallel beams of charged particles. [Patent application

    DOEpatents

    Maschke, A.W.

    1980-09-23

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  3. Electrostatic Interactions Between Glycosaminoglycan Molecules

    NASA Astrophysics Data System (ADS)

    Song, Fan; Moyne, Christian; Bai, Yi-Long

    2005-02-01

    The electrostatic interactions between nearest-neighbouring chondroitin sulfate glycosaminoglycan (CS-GAG) molecular chains are obtained on the bottle brush conformation of proteoglycan aggrecan based on an asymptotic solution of the Poisson-Boltzmann equation the CS-GAGs satisfy under the physiological conditions of articular cartilage. The present results show that the interactions are associated intimately with the minimum separation distance and mutual angle between the molecular chains themselves. Further analysis indicates that the electrostatic interactions are not only expressed to be purely exponential in separation distance and decrease with the increasing mutual angle but also dependent sensitively on the saline concentration in the electrolyte solution within the tissue, which is in agreement with the existed relevant conclusions.

  4. Grain-grain interaction in stationary dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampe, Martin; Joyce, Glenn

    We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is largermore » than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.« less

  5. Macroscopic electric charge separation during hypervelocity impacts: Potential implications for planetary paleomagnetism

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1993-01-01

    The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient magnetic field production mechanism in its own right.

  6. Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field.

    PubMed

    Li, Jia; Lu, Hongzhou; Liu, Shushu; Xu, Zhenming

    2008-05-01

    The printed circuit board (PCB) has a metal content of nearly 28% metal, including an abundance of nonferrous metals such as copper, lead, and tin. The purity of precious metals in PCBs is more than 10 times that of rich-content minerals. Therefore, the recycling of PCBs is an important subject, not only from the viewpoint of waste treatment, but also with respect to the recovery of valuable materials. Compared with traditional process the corona electrostatic separation (CES) had no waste water or gas during the process and it had high productivity with a low-energy cost. In this paper, the roll-type corona electrostatic separator was used to separate metals and nonmetals from scraped waste PCBs. The software MATLAB was used to simulate the distribution of electric field in separating space. It was found that, the variations of parameters of electrodes and applied voltages directly influenced the distribution of electric field. Through the correlation of simulated and experimental results, the good separation results were got under the optimized operating parameter: U=20-30 kV, L=L(1)=L(2)=0.21 m, R(1)=0.114, R(2)=0.019 m, theta(1)=20 degrees and theta(2)=60 degrees .

  7. Food waste management using an electrostatic separator with corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Koonchun; Teh, Pehchiong; Lim, Sooking

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved foodmore » particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.« less

  8. Food waste management using an electrostatic separator with corona discharge

    NASA Astrophysics Data System (ADS)

    Lai, Koonchun; Lim, Sooking; Teh, Pehchiong

    2015-05-01

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  9. Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c.

    PubMed

    Roberts, V A; Freeman, H C; Olson, A J; Tainer, J A; Getzoff, E D

    1991-07-15

    To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.

  10. Evaluating the Use of Tribocharging in the Electrostatic Beneficiation of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Trigwell, S.; Captain, J. G.; Arens, E. E.; Captain, J. E.; Quinn, J. W.; Calle, C. I.

    2007-01-01

    Any future lunar base needs materials to provide thermal and radiation protection. Many factors point to the use of lunar materials as industrial feedstocks. Sintering of full-scale bricks using whole lunar dust has been accomplished. Refinement of soil beneficial before processing means less energy. Triboelectric separation of coal from minerals, quartz from feldspar, and phosphorous from silica and iron ore successively achieved. The Lunar environment ideal for electrostatic separation (1) lack of moisture (2) lower gravitational pull (3) higher voltages in vacuum

  11. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles.

    PubMed

    Guldi, Dirk M; Zilbermann, Israel; Anderson, Greg; Kotov, Nicholas A; Tagmatarchis, Nikos; Prato, Maurizio

    2004-11-10

    Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.

  13. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface chargingmore » characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.« less

  14. Designing single- and multiple-shell sampling schemes for diffusion MRI using spherical code.

    PubMed

    Cheng, Jian; Shen, Dinggang; Yap, Pew-Thian

    2014-01-01

    In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method introduced in dMRI by Jones et al. However, the electrostatic energy formulation in EEM is not directly related to the goal of optimal sampling-scheme design, i.e., achieving large angular separation between sampling points. A mathematically more natural approach is to consider the Spherical Code (SC) formulation, which aims to achieve uniform sampling by maximizing the minimal angular difference between sampling points on the unit sphere. Although SC is well studied in the mathematical literature, its current formulation is limited to a single shell and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC (CSC), currently can only be applied on the continuous unit sphere and hence cannot be used in situations where one or several subsets of sampling points need to be determined from an existing sampling scheme. In this case, discrete SC (DSC) is required. In this paper, we propose novel DSC and CSC methods for designing uniform single-/multi-shell sampling schemes. The DSC and CSC formulations are solved respectively by Mixed Integer Linear Programming (MILP) and a gradient descent approach. A fast greedy incremental solution is also provided for both DSC and CSC. To our knowledge, this is the first work to use SC formulation for designing sampling schemes in dMRI. Experimental results indicate that our methods obtain larger angular separation and better rotational invariance than the generalized EEM (gEEM) method currently used in the Human Connectome Project (HCP).

  15. Dynamics of spherical metallic particles in cylinder electrostatic separators/purifiers.

    PubMed

    Lu, Hong-Zhou; Li, Jia; Guo, Jie; Xu, Zhen-Ming

    2008-08-15

    This paper presents a theoretical analysis of the dynamics of spherical metallic particles in electrostatic separators/purifiers (ESPs). The particle equations of motion are numerically solved in two dimensions using a computational algorithm. The ESPs consist of a pair of conductor cylinder electrodes. The upper cylinder is energized by HVdc, while the lower one is grounded and fixed horizontally on a revolvable axis. Some phenomena and aspects of separation process are explained and depicted including lifting off, impact, "motion collapse" and "sudden bouncing". The results reveal that the several phenomena depend on initial position, radius and density of the particle, curvature of the cylinder electrodes, distance between the electrodes and amplitude of the applied voltage. Optimization of the parameters is presented in order to get better separation/purification processes.

  16. An experiment to study energetic particle fluxes in and beyond the earth's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Lin, R. P.; Paoli, R. J.; Parks, G. K.; Lin, C. S.; Reme, H.; Bosqued, J. M.; Martel, F.; Cotin, F.; Cros, A.

    1978-01-01

    This experiment is designed to take advantage of the ISEE Mother/Daughter dual spacecraft system to study energetic particle phenomena in the earth's outer magnetosphere and beyond. Large geometric factor fixed voltage electrostatic analyzers and passively cooled semiconductor detector telescopes provide high time resolution coverage of the energy range from 1.5 to 300 keV for both ions and electrons. Essentially identical instrumentation is placed on the two spacecraft to separate temporal from spatial effects in the observed particle phenomena.

  17. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Sarah; Li, Yue; Priftis, Dimitrios

    2014-06-01

    Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specificmore » interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.« less

  18. High voltage isolation transformer

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Ruitberg, A. P. (Inventor)

    1985-01-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  19. High voltage isolation transformer

    NASA Astrophysics Data System (ADS)

    Clatterbuck, C. H.; Ruitberg, A. P.

    1985-04-01

    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil.

  20. A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation.

    PubMed

    Chen, Chang-Hsiao; Chuang, Shih-Chang; Su, Huan-Chieh; Hsu, Wei-Lun; Yew, Tri-Rung; Chang, Yen-Chung; Yeh, Shih-Rung; Yao, Da-Jeng

    2011-05-07

    We designed, fabricated and tested a novel three-dimensional flexible microprobe to record neural signals of a lateral giant nerve fiber of the escape circuit of an American crayfish. An electrostatic actuation folded planar probes into three-dimensional neural probes with arbitrary orientations for neuroscientific applications. A batch assembly based on electrostatic forces simplified the fabrication and was non-toxic. A novel fabrication for these three-dimensional flexible probes used SU-8 and Parylene technology. The mechanical strength of the neural probe was great enough to penetrate into a bio-gel. A flexible probe both decreased the micromotion and alleviated tissue encapsulation of the implant caused by chronic inflammation of tissue when an animal breathes or moves. The cortex consisted of six horizontal layers, and the neurons of the cortex were arranged in vertical structures; the three-dimensional microelectrode arrays were suitable to investigate the cooperative activity for neurons in horizontal separate layers and in vertical cortical columns. With this flexible probe we recorded neural signals of a lateral giant cell from an American crayfish. The response amplitude of action potentials was about 343 µV during 1 ms period; the average recorded data had a ratio of signal to noise as great as 30.22 ± 3.58 dB. The improved performance of this electrode made feasible the separation of neural signals according to their distinct shapes. The cytotoxicity indicated a satisfactory biocompatibility and non-toxicity of the flexible device fabricated in this work. © The Royal Society of Chemistry 2011

  1. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface chargingmore » characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.« less

  2. Recycle technology for recovering resources and products from waste printed circuit boards.

    PubMed

    Li, Jia; Lu, Hongzhou; Guo, Jie; Xu, Zhenming; Zhou, Yaohe

    2007-03-15

    The printed circuit board (PCB) contains nearly 28% metals that are abundant non-ferrous metals such as Cu, Al, Sn, etc. The purity of precious metals in PCBs is more than 10 times higher than that of rich-content minerals. Therefore, recycling of PCBs is an important subject not only from the treatment of waste but also from the recovery of valuable materials. Chemical and mechanical methods are two traditional recycling processes for waste PCBs. However, the prospect of chemical methods will be limited since the emission of toxic liquid or gas brings secondary pollution to the environment during the process. Mechanical processes, such as shape separation, jigging, density-based separation, and electrostatic separation have been widely utilized in the recycling industry. But, recycling of waste PCBs is only beginning. In this study, a total of 400 kg of waste PCBs was processed by a recycle technology without negative impact to the environment. The technology contained mechanical two-step crushing, corona electrostatic separating, and recovery. The results indicated that (i) two-step crushing was an effect process to strip metals from base plates completely; (ii) the size of particles between 0.6 and 1.2 mm was suitable for corona electrostatic separating during industrial application; and (iii) the nonmetal of waste PCBs attained 80% weight of a kind of nonmetallic plate that expanded the applying prospect of waste nonmetallic materials.

  3. Real-time modulated nanoparticle separation with an ultra-large dynamic range.

    PubMed

    Zeming, Kerwin Kwek; Thakor, Nitish V; Zhang, Yong; Chen, Chia-Hung

    2016-01-07

    Nanoparticles exhibit size-dependent properties which make size-selective purification of proteins, DNA or synthetic nanoparticles essential for bio-analytics, clinical medicine, nano-plasmonics and nano-material sciences. Current purification methods of centrifugation, column chromatography and continuous-flow techniques suffer from particle aggregation, multi-stage process, complex setups and necessary nanofabrication. These increase process costs and time, reduce efficiency and limit dynamic range. Here, we achieve an unprecedented real-time nanoparticle separation (51-1500 nm) using a large-pore (2 μm) deterministic lateral displacement (DLD) device. No external force fields or nanofabrication are required. Instead, we investigated innate long-range electrostatic influences on nanoparticles within a fluid medium at different NaCl ionic concentrations. In this study we account for the electrostatic forces beyond Debye length and showed that they cannot be assumed as negligible especially for precise nanoparticle separation methods such as DLD. Our findings have enabled us to develop a model to simultaneously quantify and modulate the electrostatic force interactions between nanoparticle and micropore. By simply controlling buffer solutions, we achieve dynamic nanoparticle size separation on a single device with a rapid response time (<20 s) and an enlarged dynamic range (>1200%), outperforming standard benchtop centrifuge systems. This novel method and model combines device simplicity, isolation precision and dynamic flexibility, opening opportunities for high-throughput applications in nano-separation for industrial and biological applications.

  4. PFB coal fired combined cycle development program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. This finding suggestsmore » that large cyclones with natural or augmented electrostatic forces employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. This is of special importance since the use of many small cyclones in parallel, or multicyclones, commonly suffers from fouling and this approach is not recommended in the CFCC application. The original objective of this investigation was to assess the relative merits of the Aerodyne cyclone separator. It was found from both the cold flow and the hot flow tests that its separative efficiencies are disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones.« less

  5. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards

    PubMed Central

    Jujun, Ruan; Jie, Zheng; Jian, Hu; Zhang, Jianwen

    2015-01-01

    For recovering precious metals from waste printed circuit boards (PCBs), a novel hybrid technology including physical and biological methods was developed. It consisted of crushing, corona-electrostatic separation, and bioleaching. Bioleaching process is the focus of this paper. A novel bioreactor for bioleaching was designed. Bioleaching was carried out using Pseudomonas chlororaphis. Bioleaching experiments using mixed particles of Au and Cu were performed and leachate contained 0.006 mg/L, 2823 mg/L Au+ and Cu2+ respectively. It showed when Cu existed, the concentrations of Au were extremely small. This provided the feasibility to separate Cu from Au. The method of orthogonal experimental design was employed in the simulation bioleaching experiments. Experimental results showed the optimized parameters for separating Cu from Au particles were pH 7.0, temperature 22.5 °C, and rotation speed 80 r/min. Based on the optimized parameters obtained, the bioreactor was operated for recovering mixed Au and Cu particles. 88.1 wt.% of Cu and 76.6 wt.% of Au were recovered. The paper contributed important information to recover precious metals from waste PCBs. PMID:26316021

  6. Computer simulation of the pneumatic separator in the pneumatic-electrostatic separation system for recycling waste printed circuit boards with electronic components.

    PubMed

    Xue, Mianqiang; Xu, Zhenming

    2013-05-07

    Technologies could be integrated in different ways into automatic recycling lines for a certain kind of electronic waste according to practical requirements. In this study, a new kind of pneumatic separator with openings at the dust hooper was applied combing with electrostatic separation for recycling waste printed circuit boards. However, the flow pattern and the particles' movement behavior could not be obtained by experimental methods. To better control the separation quantity and the material size distribution, computational fluid dynamics was used to model the new pneumatic separator giving a detailed understanding of the mechanisms. Simulated results showed that the tangential velocity direction reversed with a relatively small value. Axial velocity exhibited two sharp decreases at the x axis. It is indicated that the bottom openings at the dust hopper resulted in an enormous change in the velocity profile. A new phenomenon that was named dusting was observed, which would mitigate the effect of particles with small diameter on the following electrostatic separation and avoid materials plugging caused by the waste printed circuit boards special properties effectively. The trapped materials were divided into seven grades. Experimental results showed that the mass fraction of grade 5, grade 6, and grade 7 materials were 27.54%, 15.23%, and 17.38%, respectively. Grade 1 particles' mass fraction was reduced by 80.30% compared with a traditional separator. Furthermore, the monocrystalline silicon content in silicon element in particles with a diameter of -0.091 mm was 18.9%, higher than that in the mixed materials. This study could serve as guidance for the future material flow control, automation control, waste recycling, and semiconductor storage medium destruction.

  7. Nanofluidic rocking Brownian motors

    NASA Astrophysics Data System (ADS)

    Skaug, Michael J.; Schwemmer, Christian; Fringes, Stefan; Rawlings, Colin D.; Knoll, Armin W.

    2018-03-01

    Control and transport of nanoscale objects in fluids is challenging because of the unfavorable scaling of most interaction mechanisms to small length scales. We designed energy landscapes for nanoparticles by accurately shaping the geometry of a nanofluidic slit and exploiting the electrostatic interaction between like-charged particles and walls. Directed transport was performed by combining asymmetric potentials with an oscillating electric field to achieve a rocking Brownian motor. Using gold spheres 60 nanometers in diameter, we investigated the physics of the motor with high spatiotemporal resolution, enabling a parameter-free comparison with theory. We fabricated a sorting device that separates 60- and 100-nanometer particles in opposing directions within seconds. Modeling suggests that the device separates particles with a radial difference of 1 nanometer.

  8. Electrostatic MEMS devices with high reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  9. Optimization design combined with coupled structural-electrostatic analysis for the electrostatically controlled deployable membrane reflector

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Yang, Guigeng; Zhang, Yiqun

    2015-01-01

    The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.

  10. New tools for investigating student learning in upper-division electrostatics

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.

    Student learning in upper-division physics courses is a growing area of research in the field of Physics Education. Developing effective new curricular materials and pedagogical techniques to improve student learning in upper-division courses requires knowledge of both what material students struggle with and what curricular approaches help to overcome these struggles. To facilitate the course transformation process for one specific content area --- upper-division electrostatics --- this thesis presents two new methodological tools: (1) an analytical framework designed to investigate students' struggles with the advanced physics content and mathematically sophisticated tools/techniques required at the junior and senior level, and (2) a new multiple-response conceptual assessment designed to measure student learning and assess the effectiveness of different curricular approaches. We first describe the development and theoretical grounding of a new analytical framework designed to characterize how students use mathematical tools and techniques during physics problem solving. We apply this framework to investigate student difficulties with three specific mathematical tools used in upper-division electrostatics: multivariable integration in the context of Coulomb's law, the Dirac delta function in the context of expressing volume charge densities, and separation of variables as a technique to solve Laplace's equation. We find a number of common themes in students' difficulties around these mathematical tools including: recognizing when a particular mathematical tool is appropriate for a given physics problem, mapping between the specific physical context and the formal mathematical structures, and reflecting spontaneously on the solution to a physics problem to gain physical insight or ensure consistency with expected results. We then describe the development of a novel, multiple-response version of an existing conceptual assessment in upper-division electrostatics courses. The goal of this new version is to provide an easily-graded electrostatics assessment that can potentially be implemented to investigate student learning on a large scale. We show that student performance on the new multiple-response version exhibits a significant degree of consistency with performance on the free-response version, and that it continues to provide significant insight into student reasoning and student difficulties. Moreover, we demonstrate that the new assessment is both valid and reliable using data from upper-division physics students at multiple institutions. Overall, the work described in this thesis represents a significant contribution to the methodological tools available to researchers and instructors interested in improving student learning at the upper-division level.

  11. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    NASA Technical Reports Server (NTRS)

    Machida, S.; Goertz, C. K.; Lu, G.

    1988-01-01

    The simulation of the critical ionization velocity for a neutral gas cloud moving across the static magnetic field is presented. A low-beta plasma is studied, using a two and a half-dimensional electrostatic code linked with the Plasma and Neutral Interaction Code (Goertz and Machida, 1987). The physics of the ionizing front and the instabilities which occur there are discussed. Results are presented from four numerical runs designed so that the effects of the charge separation field can be distinguished from the wave heating.

  12. Role of plasma membrane surface charges in dictating the feasibility of membrane-nanoparticle interactions

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha

    2017-12-01

    Receptor-ligand (R-L) binding mediated interactions between the plasma membrane (PM) and a nanoparticle (NP) require the ligand-functionalized NPs to come to a distance of separation (DOS) of at least dRL (length of the R-L complex) from the receptor-bearing membranes. In this letter, we establish that the membrane surface charges and the surrounding ionic environment dictate whether or not the attainment of such a critical DOS is possible. The negatively charged membrane invariably induces a negative electrostatic potential at the NP surface, repelling the NP from the membrane. This is countered by the attractive influences of the thermal fluctuations and van der Waals (vdw) interactions that drive the NP close to the membrane. For a NP approaching the membrane from a distance, the ratio of the repulsive (electrostatic) and attractive (thermal and vdW) effects balances at a critical NP-membrane DOS of dg,c. For a given set of parameters, there can be two possible values of dg,c, namely, dg,c,1 and dg,c,2 with dg,c,1 ≫ dg,c,2. We establish that any R-L mediated NP-membrane interaction is possible only if dRL > dg,c,1. Therefore, our study proposes a design criterion for engineering ligands for a NP that will ensure the appropriate length of the R-L complex in order to ensure the successful membrane-NP interaction in the presence of a given electrostatic environment. Finally, we discuss the manner in which our theory can help designing ligand-grafted NPs for targeted drug delivery, design biomimetics NPs, and also explain various experimental results.

  13. Electrostatic attraction between overall neutral surfaces.

    PubMed

    Adar, Ram M; Andelman, David; Diamant, Haim

    2016-08-01

    Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.

  14. Contamination enhanced electrostatic discharge mechanisms

    NASA Technical Reports Server (NTRS)

    Jeffrey, J. A.; Maag, C. R.

    1979-01-01

    The two problems of enhanced electrostatic discharge (ESD) and contamination are discussed. It is shown that there is a synergistic relationship between them such that one enhances the probability of occurance of the other. The action of both provides substantially more deleterious affects than the effects of both separately. Mechanisms for such a relationship are discussed as well as application to large advanced technology systems.

  15. Swelling of biological and semiflexible polyelectrolytes.

    PubMed

    Dobrynin, Andrey V; Carrillo, Jan-Michael Y

    2009-10-21

    We have developed a theoretical model of swelling of semiflexible (biological) polyelectrolytes in salt solutions. Our approach is based on separation of length scales which allowed us to split a chain's electrostatic energy into two parts that describe local and remote electrostatic interactions along the polymer backbone. The local part takes into account interactions between charged monomers that are separated by distances along the polymer backbone shorter than the chain's persistence length. These electrostatic interactions renormalize chain persistence length. The second part includes electrostatic interactions between remote charged pairs along the polymer backbone located at distances larger than the chain persistence length. These interactions are responsible for chain swelling. In the framework of this approach we calculated effective chain persistence length and chain size as a function of the Debye screening length, chain degree of ionization, bare persistence length and chain degree of polymerization. Our crossover expression for the effective chain's persistence length is in good quantitative agreement with the experimental data on DNA. We have been able to fit experimental datasets by using two adjustable parameters: DNA ionization degree (α = 0.15-0.17) and a bare persistence length (l(p) = 40-44 nm).

  16. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation.

    PubMed

    Li, Jia; Wu, Guiqing; Xu, Zhenming

    2015-01-01

    Plastic products can be found everywhere in people's daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (-)-PE-PS-PC-PVC-ABS-PP-(+), while the triboelectric series obtained by cyclone was (-)-PE-PS-PC-PVC-ABS-PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    NASA Technical Reports Server (NTRS)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  18. The influence of actuator materials and nozzle designs on electrostatic charge of pressurised metered dose inhaler (pMDI) formulations.

    PubMed

    Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela

    2014-05-01

    To investigate the influence of different actuator materials and nozzle designs on the electrostatic charge properties of a series of solution metered dose inhaler (pMDI) aerosols. Actuators were manufactured with flat and cone nozzle designs using five different materials from the triboelectric series (Nylon, Polyethylene terephthalate, Polyethylene-High density, Polypropylene copolymer and Polytetrafluoroethylene). The electrostatic charge profiles of pMDI containing beclomethasone dipropionate (BDP) as model drug in HFA-134a propellant, with different concentrations of ethanol were studied. Electrostatic measurements were taken using a modified electrical low-pressure impactor (ELPI) and the deposited drug mass assayed chemically using HPLC. The charge profiles of HFA 134a alone have shown strong electronegativity with all actuator materials and nozzle designs, at an average of -1531.34 pC ± 377.34. The presence of co-solvent ethanol significantly reduced the negative charge magnitude. BDP reduced the suppressing effect of ethanol on the negative charging of the propellant. For all tested formulations, the flat nozzle design showed no significant differences in net charge between different actuator materials, whereas the charge profiles of cone designs followed the triboelectric series. The electrostatic charging profiles from a solution pMDI containing BDP and ethanol can be significantly influenced by the actuator material, nozzle design and formulation components. Ethanol concentration appears to have the most significant impact. Furthermore, BDP interactions with ethanol and HFA have an influence on the electrostatic charge of aerosols. By choosing different combinations of actuator materials and orifice design, the fine particle fractions of formulations can be altered.

  19. Microfluidic pressure amplifier circuits and electrostatic gates for pneumatic microsystems

    DOEpatents

    Tice, Joshua D.; Bassett, Thomas A.; Desai, Amit V.; Apblett, Christopher A.; Kenis, Paul J. A.

    2016-09-20

    An electrostatic actuator is provide that can include a fluidic line, a first electrode, and a second electrode such that a gate chamber portion of the fluidic line is sandwiched between the first electrode and the second electrode. The electrostatic actuator can also include a pressure-balancing channel in fluid communication with the gate chamber portion where the first electrode is sandwiched between the pressure-balancing channel and the gate chamber portion. A pneumatic valve system is provided which includes an electrostatic gate and a fluidic channel fluidly separate from a fluidic control line. A pneumatic valve portion of the fluidic control line can be positioned relative to a portion of the fluidic channel such that expansion of the pneumatic valve portion restricts fluid flow through the fluidic channel. Methods of using an electrostatic actuator and a pneumatic valve system are also provided.

  20. Electrostatic potential of B-DNA: effect of interionic correlations.

    PubMed Central

    Gavryushov, S; Zielenkiewicz, P

    1998-01-01

    Modified Poisson-Boltzmann (MPB) equations have been numerically solved to study ionic distributions and mean electrostatic potentials around a macromolecule of arbitrarily complex shape and charge distribution. Results for DNA are compared with those obtained by classical Poisson-Boltzmann (PB) calculations. The comparisons were made for 1:1 and 2:1 electrolytes at ionic strengths up to 1 M. It is found that ion-image charge interactions and interionic correlations, which are neglected by the PB equation, have relatively weak effects on the electrostatic potential at charged groups of the DNA. The PB equation predicts errors in the long-range electrostatic part of the free energy that are only approximately 1.5 kJ/mol per nucleotide even in the case of an asymmetrical electrolyte. In contrast, the spatial correlations between ions drastically affect the electrostatic potential at significant separations from the macromolecule leading to a clearly predicted effect of charge overneutralization. PMID:9826596

  1. Microencapsulation and Electrostatic Processing Device

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  2. The effect of actuator nozzle designs on the electrostatic charge generated in pressurised metered dose inhaler aerosols.

    PubMed

    Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela

    2015-04-01

    To investigate the influence of different actuator nozzle designs on aerosol electrostatic charges and aerosol performances for pressurised metered dose inhalers (pMDIs). Four actuator nozzle designs (flat, curved flat, cone and curved cone) were manufactured using insulating thermoplastics (PET and PTFE) and conducting metal (aluminium) materials. Aerosol electrostatic profiles of solution pMDI formulations containing propellant HFA 134a with different ethanol concentration and/or model drug beclomethasone dipropionate (BDP) were studied using a modified electrical low-pressure impactor (ELPI) for all actuator designs and materials. The mass of the deposited drug was analysed using high performance liquid chromatography (HPLC). Both curved nozzle designs for insulating PET and PTFE actuators significantly influenced aerosol electrostatics and aerosol performance compared with conducting aluminium actuator, where reversed charge polarity and higher throat deposition were observed with pMDI formulation containing BDP. Results are likely due to the changes in plume geometry caused by the curved edge nozzle designs and the bipolar charging nature of insulating materials. This study demonstrated that actuator nozzle designs could significantly influence the electrostatic charges profiles and aerosol drug deposition pattern of pMDI aerosols, especially when using insulating thermoplastic materials where bipolar charging is more dominant.

  3. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Shchepunov, V. A.; Dmitriev, S. N.; Itkis, M. G.; Gulbekyan, G. G.; Khabarov, M. V.; Bekhterev, V. V.; Bogomolov, S. L.; Efremov, A. A.; Pashenko, S. V.; Stepantsov, S. V.; Yeremin, A. V.; Yavor, M. I.; Kalimov, A. G.

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  4. Effects of ammonium sulfate and sodium chloride concentration on PEG/protein liquid-liquid phase separation.

    PubMed

    Dumetz, André C; Lewus, Rachael A; Lenhoff, Abraham M; Kaler, Eric W

    2008-09-16

    When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.

  5. In-Situ Measurements of Electrostatic Dust Transport on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sternovsky, Z.; Horanyi, M.

    2018-02-01

    A design of the Cubesat Electrostatic Dust Analyzer (CEDA) is described to verify and characterize the electrostatic dust transport process on the lunar surface and to estimate its effect on the surface evolution.

  6. Electrostatic camera system functional design study

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Cook, F. J.; Moore, R. F.

    1972-01-01

    A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.

  7. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles.

    PubMed

    Raudsepp, Allan; A K Williams, Martin; B Hall, Simon

    2016-07-01

    Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.

  8. Vertical phase separation of 6,13-bis(triisopropylsilylethynyl) pentacene/poly(methyl methacrylate) blends prepared by electrostatic spray deposition for organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Onojima, Norio; Hara, Kazuhiro; Nakamura, Ayato

    2017-05-01

    Blend films composed of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) and poly(methyl methacrylate) (PMMA) were prepared by electrostatic spray deposition (ESD). ESD is considered as an intermediate process between dry and wet processes since the solvent present in small droplets can almost be evaporated before arriving at the substrate. Post-drying treatments with the time-consuming evaporation of residual solvents can be omitted. However, it is still not clear that a vertically phase-separated structure can be formed in the ESD process since the vertical phase separation of the blend films is associated with the solvent evaporation. In this study, we fabricated bottom-gate, top-contact organic field-effect transistors based on the blend films prepared by ESD and the devices exhibited transistor behavior with small hysteresis. This result demonstrates that the vertical phase separation of a blend film (upper TIPS pentacene active layer/bottom PMMA gate insulator) can occur in the facile one-step ESD process.

  9. PFB Coal Fired Combined Cycle Development Program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. Hence this findingmore » offers a major hope that large cyclones employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. The separative efficiencies of the Aerodyne cyclone separator were found from both the cold flow and the hot flow tests to be disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones. (LTN)« less

  10. MASS SEPARATION OF HIGH ENERGY PARTICLES

    DOEpatents

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  11. Defining Protein Electrostatic Recognition Processes

    DTIC Science & Technology

    1989-11-30

    of the electrostatic potentiai on the molecular surface of negatively charged Asp-101 in the fifth residue of JH1. the hapten and the V regions of...making and aligning expanded molecular dot surfaces for each molecule and checking these surfaces for interpenetration. The program TURNIP used these...the molecular surfaces are separated by 6 and 12A. All orientations have the exposed heme edge of cytochrome c facing the acidic patch of plastocyanin

  12. Histidine in Continuum Electrostatics Protonation State Calculations

    PubMed Central

    Couch, Vernon; Stuchebruckhov, Alexei

    2014-01-01

    A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521

  13. Development of a negative ion-based neutral beam injector in Novosibirsk.

    PubMed

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  14. AN ELECTROSTATIC PRECIPITATOR BACKUP FOR SAMPLING SYSTEMS

    EPA Science Inventory

    The report describes a program carried out to design and evaluate the performance of an electrostatic collector to be used as an alternative to filters as a fine particle collector. Potential advantages of an electrostatic precipitator are low pressure drop and high capacity. Pot...

  15. Upper-Division Student Difficulties with Separation of Variables

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    Separation of variables can be a powerful technique for solving many of the partial differential equations that arise in physics contexts. Upper-division physics students encounter this technique in multiple topical areas including electrostatics and quantum mechanics. To better understand the difficulties students encounter when utilizing the…

  16. Electrostatic contribution to the persistence length of a semiflexible dipolar chain.

    PubMed

    Podgornik, Rudi

    2004-09-01

    We investigate the electrostatic contribution to the persistence length of a semiflexible polymer chain whose segments interact via a screened Debye-Hückel dipolar interaction potential. We derive the expressions for the renormalized persistence length on the level of a 1/D-expansion method already successfully used in other contexts of polyelectrolye physics. We investigate different limiting forms of the renormalized persistence length of the dipolar chain and show that, in, general, it depends less strongly on the screening length than in the context of a monopolar chain. We show that for a dipolar chain the electrostatic persistence length in the same regime of the parameter phase space as the original Odijk-Skolnick-Fixman (OSF) form for a monopolar chain depends logarithmically on the screening length rather than quadratically. This can be understood solely on the basis of a swifter decay of the dipolar interactions with separation compared to the monopolar electrostatic interactions. We comment also on the general contribution of higher multipoles to the electrostatic renormalization of the bending rigidity.

  17. Design and Simulation of a MEMS Structure for Electrophoretic and Dielectrophoretic Separation of Particles by Contactless Electrodes

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2007-01-01

    Rapid identification of pathogenic bacterial species is an important factor in combating public health problems such as E. coli contamination. Food and waterborne pathogens account for sickness in 76 million people annually (CDC). Diarrheagenic E. coli is a major source of gastrointestinal illness. Severe sepsis and Septicemia within the hospital environment are also major problems. 75 1,000 cases annually with a 30-50% mortality rate (Crit Care Med, July '01, Vol. 29, 1303-10). Patient risks run the continuum from fever to organ failure and death. Misdiagnosis or inappropriate treatment increases mortality. There exists a need for rapid screening of samples for identification of pathogenic species (Certain E. coli strains are essential for health). Critical to the identification process is the ability to isolate analytes of interest rapidly. This poster discusses novel devices for the separation of particles on the basis of the dielectric properties, mass and surface charge characteristics is presented. Existing designs involve contact between electrode surfaces and analyte medium resulting in contamination of the electrode bearing elements Two different device designs using different bulk micromachining MEMS processes (PolyMUMPS and a PyrexBIGold electrode design) are presented. These designs cover a range of particle sizes from small molecules through eucaryotic cells. The application of separation of bacteria is discussed in detail. Simulation data for electrostatic and microfluidic characteristics are provided. Detailed design characteristics and physical features of the as fabricated PolyMUMPS design are provided. Analysis of the simulation data relative to the expected performance of the devices will be provided and subsequent conclusions discussed.

  18. Electrostatic potential map modelling with COSY Infinity

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoup, R.W.; Long, F.; Martin, T.H.

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathodemore » conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design and present the results of the ELECTRO and IVORY analyses.« less

  20. A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring

    NASA Astrophysics Data System (ADS)

    Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.

    2012-11-01

    The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.

  1. Laplace Boundary-Value Problem in Paraboloidal Coordinates

    ERIC Educational Resources Information Center

    Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan

    2012-01-01

    This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…

  2. Method for separating biological cells. [suspended in aqueous polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  3. Advanced coal cleaning meets acid rain emission limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boron, D.J.; Matoney, J.P.; Albrecht, M.C.

    1987-03-01

    The following processes were selected for study: fine-coal, heavy-medium cyclone separation/flotation, advanced flotation, Dow true heavy liquid separation, Advanced Energy Dynamics (AED) electrostatic separation, and National Research Council of Canada oil agglomeration. Advanced coal cleaning technology was done for the state of New York to investigate methods to use high sulfur coal in view of anticipated lower SO/sub 2/ emission limits.

  4. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: weee@sjtu.edu.cn; Wu, Guiqing; Xu, Zhenming

    Highlights: • The cyclone charging was more effective and stable than vibrating charging. • The small particle size was better changed than large ones and was more suitable recycled by TES. • The drying pretreatment is good for improving the short-term charging effect. - Abstract: Plastic products can be found everywhere in people’s daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recyclingmore » plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (−)-PE–PS–PC–PVC–ABS–PP-(+), while the triboelectric series obtained by cyclone was (−)-PE–PS–PC–PVC–ABS–PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator.« less

  5. Comparative study of 2-DOF micromirrors for precision light manipulation

    NASA Astrophysics Data System (ADS)

    Young, Johanna I.; Shkel, Andrei M.

    2001-08-01

    Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.

  6. Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Srinivaas, A.; Sathian, Samanyu; Ramesh, Arjun

    2018-02-01

    The principle of an industrially used emission reduction technique is employed in automotive diesel exhaust to reduce the diesel particulate emission. As the Emission regulation are becoming more stringent legislations have been formulated, due to the hazardous increase in the air quality index in major cities. Initially electrostatic precipitation principle and working was investigated. The High voltage requirement in an Electrostatic precipitator is obtained by designing an appropriate circuit in MATLAB -SIMULINK. Mechanical structural design of the new model after treatment device for the specific diesel exhaust was done. Fluid flow analysis of the ESP model was carried out using ANSYS CFX for optimized fluid with a reduced back pressure. Design reconsideration was done in accordance with fluid flow analysis. Accordingly, a new design is developed by considering diesel particulate filter and catalytic converter design to ESP model.

  7. Role of electrostatic interactions during protein ultrafiltration.

    PubMed

    Rohani, Mahsa M; Zydney, Andrew L

    2010-10-15

    A number of studies over the last decade have clearly demonstrated the importance of electrostatic interactions on the transport of charged proteins through semipermeable ultrafiltration membranes. This paper provides a review of recent developments in this field with a focus on the role of both protein and membrane charge on the rate of protein transport. Experimental results are analyzed using available theoretical models developed from the solution of the Poisson-Boltzmann equation for the partitioning of a charged particle into a charged pore. The potential of exploiting these electrostatic interactions for selective protein separations and for the development of ultrafiltration membranes with enhanced performance characteristics is also examined. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. A Paramagnetic Molecular Voltmeter

    PubMed Central

    Surek, Jack T.; Thomas, David D.

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  9. Phenylboronate chromatography selectively separates glycoproteins through the manipulation of electrostatic, charge transfer, and cis-diol interactions.

    PubMed

    Carvalho, Rimenys J; Woo, James; Aires-Barros, M Raquel; Cramer, Steven M; Azevedo, Ana M

    2014-10-01

    Phenylboronate chromatography (PBC) has been applied for several years, however details regarding the mechanisms of interactions between the ligand and biomolecules are still scarce. The goal of this work is to investigate the various chemical interactions between proteins and their ligands, using a protein library containing both glycosylated and nonglycosylated proteins. Differences in the adsorption of these proteins over a pH range from 4 to 9 were related to two main properties: charge and presence of glycans. Acidic or neutral proteins were strongly adsorbed below pH 8 although the uncharged trigonal form of phenylboronate (PB) is less susceptible to forming electrostatic and cis-diol interactions with proteins. The glycosylated proteins were only adsorbed above pH 8 when the electrostatic repulsion between the boronate anion and the protein surface was mitigated (at 200 mM NaCl). All basic proteins were highly adsorbed above pH 8 with PB also acting as a cation-exchanger with binding occurring through electrostatic interactions. Batch adsorption performed at acidic conditions in the presence of Lewis base showed that charge-transfer interactions are critical for protein retention. This study demonstrates the multimodal interaction of PBC, which can be a selective tool for separation of different classes of proteins. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrostatic design of protein-protein association rates.

    PubMed

    Schreiber, Gideon; Shaul, Yossi; Gottschalk, Kay E

    2006-01-01

    De novo design and redesign of proteins and protein complexes have made promising progress in recent years. Here, we give an overview of how to use available computer-based tools to design proteins to bind faster and tighter to their protein-complex partner by electrostatic optimization between the two proteins. Electrostatic optimization is possible because of the simple relation between the Debye-Huckel energy of interaction between a pair of proteins and their rate of association. This can be used for rapid, structure-based calculations of the electrostatic attraction between the two proteins in the complex. Using these principles, we developed two computer programs that predict the change in k(on), and as such the affinity, on introducing charged mutations. The two programs have a web interface that is available at www.weizmann.ac.il/home/bcges/PARE.html and http://bip.weizmann.ac.il/hypare. When mutations leading to charge optimization are introduced outside the physical binding site, the rate of dissociation is unchanged and therefore the change in k(on) parallels that of the affinity. This design method was evaluated on a number of different protein complexes resulting in binding rates and affinities of hundreds of fold faster and tighter compared to wild type. In this chapter, we demonstrate the procedure and go step by step over the methodology of using these programs for protein-association design. Finally, the way to easily implement the principle of electrostatic design for any protein complex of choice is shown.

  11. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    PubMed

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. © The Author(s) 2014.

  12. Characterization of compounds by time-of-flight measurement utilizing random fast ions

    DOEpatents

    Conzemius, R.J.

    1989-04-04

    An apparatus is described for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions. 8 figs.

  13. Characterization of compounds by time-of-flight measurement utilizing random fast ions

    DOEpatents

    Conzemius, Robert J.

    1989-01-01

    An apparatus for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions.

  14. NASA Tech Briefs, January 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Cryogenic Flow Sensor; Multi-Sensor Mud Detection; Gas Flow Detection System; Mapping Capacitive Coupling Among Pixels in a Sensor Array; Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing; Low-Profile, Dual-Wavelength, Dual-Polarized Antenna; Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications; Cellular Reflectarray Antenna; A One-Dimensional Synthetic-Aperture Microwave Radiometer; Electrical Switching of Perovskite Thin-Film Resistors; Two-Dimensional Synthetic-Aperture Radiometer; Ethernet-Enabled Power and Communication Module for Embedded Processors; Electrically Variable Resistive Memory Devices; Improved Attachment in a Hybrid Inflatable Pressure Vessel; Electrostatic Separator for Beneficiation of Lunar Soil; Amorphous Rover; Space-Frame Antenna; Gear-Driven Turnbuckle Actuator; In-Situ Focusing Inside a Thermal Vacuum Chamber; Space-Frame Lunar Lander; Wider-Opening Dewar Flasks for Cryogenic Storage; Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation; Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C; Designs and Materials for Better Coronagraph Occulting Masks; Fuel-Cell-Powered Vehicle with Hybrid Power Management; Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher; Fuel-Cell Water Separator; Turbulence and the Stabilization Principle; Improved Cloud Condensation Nucleus Spectrometer; Better Modeling of Electrostatic Discharge in an Insulator; Sub-Aperture Interferometers; Terahertz Mapping of Microstructure and Thickness Variations; Multiparallel Three-Dimensional Optical Microscopy; Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber; Vacuum-Compatible Wideband White Light and Laser Combiner Source System; Optical Tapers as White-Light WGM Resonators; EPR Imaging at a Few Megahertz Using SQUID Detectors; Reducing Field Distortion in Magnetic Resonance Imaging; Fluorogenic Cell-Based Biosensors for Monitoring Microbes; A Constant-Force Resistive Exercise Unit; GUI to Facilitate Research on Biological Damage from Radiation; On-Demand Urine Analyzer; More-Realistic Digital Modeling of a Human Body; and Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets.

  15. Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields.

    PubMed

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca

    2014-11-01

    A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and -20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric field in addition to the orthogonal field does not affect the electrostatic correction technique. However, rotation of the x-ray tube by 30° toward the MR bore increases the parallel magnetic field magnitude (∼72 mT). The presence of this larger parallel field along with the orthogonal field leads to incomplete correction. Monte Carlo simulations demonstrate that the mean energy of the x-ray spectrum is not noticeably affected by the electrostatic correction, but the output flux is reduced by 7.5%. The maximum orthogonal magnetic field magnitude that can be compensated for using the proposed design is 65 mT. Larger orthogonal field magnitudes cannot be completely compensated for because a pure electrostatic approach is limited by the dielectric strength of the vacuum inside the x-ray tube insert. The electrostatic approach also suffers from limitations when there are strong magnetic fields in both the orthogonal and parallel directions because the electrons prefer to stay aligned with the parallel magnetic field. These challenging field conditions can be addressed by using a hybrid correction approach that utilizes both active shielding coils and biasing electrodes.

  16. Electrostatic focal spot correction for x-ray tubes operating in strong magnetic fields

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Fahrig, Rebecca

    2014-01-01

    Purpose: A close proximity hybrid x-ray/magnetic resonance (XMR) imaging system offers several critical advantages over current XMR system installations that have large separation distances (∼5 m) between the imaging fields of view. The two imaging systems can be placed in close proximity to each other if an x-ray tube can be designed to be immune to the magnetic fringe fields outside of the MR bore. One of the major obstacles to robust x-ray tube design is correcting for the effects of the MR fringe field on the x-ray tube focal spot. Any fringe field component orthogonal to the x-ray tube electric field leads to electron drift altering the path of the electron trajectories. Methods: The method proposed in this study to correct for the electron drift utilizes an external electric field in the direction of the drift. The electric field is created using two electrodes that are positioned adjacent to the cathode. These electrodes are biased with positive and negative potential differences relative to the cathode. The design of the focusing cup assembly is constrained primarily by the strength of the MR fringe field and high voltage standoff distances between the anode, cathode, and the bias electrodes. From these constraints, a focusing cup design suitable for the close proximity XMR system geometry is derived, and a finite element model of this focusing cup geometry is simulated to demonstrate efficacy. A Monte Carlo simulation is performed to determine any effects of the modified focusing cup design on the output x-ray energy spectrum. Results: An orthogonal fringe field magnitude of 65 mT can be compensated for using bias voltages of +15 and −20 kV. These bias voltages are not sufficient to completely correct for larger orthogonal field magnitudes. Using active shielding coils in combination with the bias electrodes provides complete correction at an orthogonal field magnitude of 88.1 mT. Introducing small fields (<10 mT) parallel to the x-ray tube electric field in addition to the orthogonal field does not affect the electrostatic correction technique. However, rotation of the x-ray tube by 30° toward the MR bore increases the parallel magnetic field magnitude (∼72 mT). The presence of this larger parallel field along with the orthogonal field leads to incomplete correction. Monte Carlo simulations demonstrate that the mean energy of the x-ray spectrum is not noticeably affected by the electrostatic correction, but the output flux is reduced by 7.5%. Conclusions: The maximum orthogonal magnetic field magnitude that can be compensated for using the proposed design is 65 mT. Larger orthogonal field magnitudes cannot be completely compensated for because a pure electrostatic approach is limited by the dielectric strength of the vacuum inside the x-ray tube insert. The electrostatic approach also suffers from limitations when there are strong magnetic fields in both the orthogonal and parallel directions because the electrons prefer to stay aligned with the parallel magnetic field. These challenging field conditions can be addressed by using a hybrid correction approach that utilizes both active shielding coils and biasing electrodes. PMID:25370658

  17. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  18. Adsorptive Separation of Methanol-Acetone on Isostructural Series of Metal-Organic Frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A Computational Study of Adsorption Mechanisms and Metal-Substitution Impacts.

    PubMed

    Wu, Ying; Chen, Huiyong; Xiao, Jing; Liu, Defei; Liu, Zewei; Qian, Yu; Xi, Hongxia

    2015-12-09

    The adsorptive separation properties of M-BTC isostructural series (M = Ti, Fe, Cu, Co, Ru, Mo) for methanol-acetone mixtures were investigated by using various computational procedures of grand canonical Monte Carlo simulations (GCMC), density functional theory (DFT), and ideal adsorbed solution theory (IAST), following with comprehensive understanding of adsorbate-metal interactions on the adsorptive separation behaviors. The obtained results showed that the single component adsorptions were driven by adsorbate-framework interactions at low pressures and by framework structures at high pressures, among which the mass effects, electrostatics, and geometric accessibility of the metal sites also played roles. In the case of methanol-acetone separation, the selectivity of methanol on M-BTCs decreased with rising pressures due to the pressure-dependent separation mechanisms: the cooperative effects between methanol and acetone hindered the separation at low pressures, whereas the competitive effects of acetone further resulted in the lower selectivity at high pressures. Among these M-BTCs, Ti and Fe analogues exhibited the highest thermodynamic methanol/acetone selectivity, making them promising for adsorptive methanol/acetone separation processes. The investigation provides mechanistic insights on how the nature of metal centers affects the adsorption properties of MOFs, and will further promote the rational design of new MOF materials for effective gas mixture separation.

  19. Design of components for growing higher plants in space

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The overall goal of this project is to design unique systems and components for growing higher plants in microgravity during long-term space missions (Mars and beyond). Specific design tasks were chosen to contribute to and supplement NASA's Controlled Ecological Life Support System (CELSS) project. Selected tasks were automated seeding of plants, plant health sensing, and food processing. Prototype systems for planting both germinated and nongerminated seeds were fabricated and tested. Water and air pressure differences and electrostatic fields were used to trap seeds for separation and transport for planting. An absorption spectrometer was developed to measure chlorophyll levels in plants as an early warning of plant health problems. In the area of food processing, a milling system was created using high-speed rotating blades which were aerodynamically configured to produce circulation and retractable to prevent leakage. The project produced significant results having substantial benefit to NASA. It also provided an outstanding learning experience for the students involved.

  20. Nanofluidic rocking Brownian motors.

    PubMed

    Skaug, Michael J; Schwemmer, Christian; Fringes, Stefan; Rawlings, Colin D; Knoll, Armin W

    2018-03-30

    Control and transport of nanoscale objects in fluids is challenging because of the unfavorable scaling of most interaction mechanisms to small length scales. We designed energy landscapes for nanoparticles by accurately shaping the geometry of a nanofluidic slit and exploiting the electrostatic interaction between like-charged particles and walls. Directed transport was performed by combining asymmetric potentials with an oscillating electric field to achieve a rocking Brownian motor. Using gold spheres 60 nanometers in diameter, we investigated the physics of the motor with high spatiotemporal resolution, enabling a parameter-free comparison with theory. We fabricated a sorting device that separates 60- and 100-nanometer particles in opposing directions within seconds. Modeling suggests that the device separates particles with a radial difference of 1 nanometer. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Electrostatic interaction between dissimilar colloids at fluid interfaces

    NASA Astrophysics Data System (ADS)

    Majee, Arghya; Schmetzer, Timo; Bier, Markus

    2018-04-01

    The electrostatic interaction between two nonidentical, moderately charged colloids situated in close proximity of each other at a fluid interface is studied. By resorting to a well-justified model system, this problem is analytically solved within the framework of linearized Poisson-Boltzmann density functional theory. The resulting interaction comprises a surface and a line part, both of which, as functions of the interparticle separation, show a rich behavior including monotonic as well as nonmonotonic variations. In almost all cases, these variations cannot be captured correctly by using the superposition approximation. Moreover, expressions for the surface tensions, the line tensions and the fluid-fluid interfacial tension, which are all independent of the interparticle separation, are obtained. Our results are expected to be particularly useful for emulsions stabilized by oppositely charged particles.

  2. Temperature-responsive chromatography for the separation of biomolecules.

    PubMed

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Optimal charges in lead progression: a structure-based neuraminidase case study.

    PubMed

    Armstrong, Kathryn A; Tidor, Bruce; Cheng, Alan C

    2006-04-20

    Collective experience in structure-based lead progression has found electrostatic interactions to be more difficult to optimize than shape-based ones. A major reason for this is that the net electrostatic contribution observed includes a significant nonintuitive desolvation component in addition to the more intuitive intermolecular interaction component. To investigate whether knowledge of the ligand optimal charge distribution can facilitate more intuitive design of electrostatic interactions, we took a series of small-molecule influenza neuraminidase inhibitors with known protein cocrystal structures and calculated the difference between the optimal and actual charge distributions. This difference from the electrostatic optimum correlates with the calculated electrostatic contribution to binding (r(2) = 0.94) despite small changes in binding modes caused by chemical substitutions, suggesting that the optimal charge distribution is a useful design goal. Furthermore, detailed suggestions for chemical modification generated by this approach are in many cases consistent with observed improvements in binding affinity, and the method appears to be useful despite discrete chemical constraints. Taken together, these results suggest that charge optimization is useful in facilitating generation of compound ideas in lead optimization. Our results also provide insight into design of neuraminidase inhibitors.

  4. The physics of charge separation preceding lightning strokes in thunderclouds

    NASA Technical Reports Server (NTRS)

    Kyrala, Ali

    1987-01-01

    The physics of charge separation preceding lightning strokes in thunderclouds is presented by three types of arguments: An explanation is given for the aggregation of electrical charges of like sign overcoming Coulomb repulsion by attraction due to exchange interaction. The latter is well known in quantum mechanics from the theories of the nuclear bond and the covalent bond. A classical electrostatic model of charge balls of segregated positive and negative charges in the thundercloud is presented. These charge balls can only be maintained in temporarily stable locations by a containing vortex. Because they will be of different sizes and masses, they will stabilize at different altitudes when drag forces are included with the given electrostatic force. The question of how the charges become concentrated again after lightning discharges is approached by means of the collisional Boltzmann transport equation to explain quasi-periodic recharging. It is shown that solutions cannot be separable in both position and time if they are to represent aggregation.

  5. Modeling the Electric Potential and Surface Charge Density near Charged Thunderclouds

    ERIC Educational Resources Information Center

    Neel, Matthew Stephen

    2018-01-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and…

  6. Electrostatic Radionuclide Separation: A New Version of Rutherford's "Thorium Cow".

    ERIC Educational Resources Information Center

    Eiswirth, Marcus; And Others

    1982-01-01

    Describes three experiments (also useful as demonstrations) using a "thorium cow," a device which concentrates the daughter products from thorium compounds by precipitation on a charged electrode. (JN)

  7. Development of an Electrostatically Clean Solar Array Panel

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira

    2000-01-01

    The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.

  8. Electrostatic Rate Enhancement and Transient Complex of Protein-Protein Association

    PubMed Central

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2012-01-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ~105 – 106 M−1s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys. J. 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by kD = kD0 exp(−*/ kBT), where kD and kD0 are the rates in the presence and absence of electrostatic interactions, respectively, * is the average electrostatic interaction energy in a “transient-complex” ensemble, and kBT is thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007, 15:215–224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. PMID:17932929

  9. Selective Adsorption and Separation of Organic Dyes with Spherical Polyelectrolyte Brushes and Compressed Carbon Dioxide.

    PubMed

    Zhang, Rui; Yu, Zhenchuan; Wang, Lei; Shen, Qizhe; Hou, Xiaoyan; Guo, Xuhong; Wang, Junwei; Zhu, Xuedong; Yao, Yuan

    2017-10-04

    Dye-containing wastewater has caused serious environmental pollution. Herein, rationally designed spherical polyelectrolyte brushes (SPBs) with cationic charges, polystyrene-poly(2-aminoethylmethacrylate hydrochloride) (PS-PAEMH) as the absorbent, and compressed carbon dioxide as the antisolvent are proposed for the separation of the anionic dye eosin Y (EY) from a solution of mixed dyes. The adsorption behavior of EY onto PS-PAEMH was highly dependent on CO 2 pressure, contact time, and initial concentration. The maximum adsorption capacity of PS-PAEMH was 335.20 mg g -1 . FTIR and UV/Vis measurements proved that the electrostatic interactions between EY and PS-PAEMH played an important role in the absorbance process. The adsorption process fitted the pseudo-second-order kinetic model and Freundlich isotherm model very well. The combined dye and polymer brush could be easily separated through ion exchange by adding an aqueous solution of NaCl. Recovered PS-PAEMH retained a high adsorption capacity even after ten cycles of regeneration. This method provides a simple and effective way to separate ionic materials for environmental engineering. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  11. Control of aqueous droplets using magnetic and electrostatic forces.

    PubMed

    Ohashi, Tetsuo; Kuyama, Hiroki; Suzuki, Koichi; Nakamura, Shin

    2008-04-07

    Basic control operations were successfully performed on an aqueous droplet using both magnetic and electrostatic forces. In our droplet-based microfluidics, magnetic beads were incorporated in an aqueous droplet as a force mediator. This report describes droplet anchoring and separation of the beads from the droplet using a combination of magnetic and electrostatic forces. When an aqueous droplet is placed in an oil-filled reservoir, the droplet sinks to the bottom, under which an electrode had been placed. The droplet was adsorbed (or anchored) to the bottom surface on the electrode when a DC voltage was applied to the electrode. The magnetic beads were removed with magnetic force after the droplet had been anchored. Surfactant addition into droplet solution was very effective for the elimination of electric charge, which resulted in the stable adsorption of a droplet to hydrophobic substrate under an applied voltage of DC 0.5-3 kV. In a sequential process, small volume of aqueous liquid was successfully transferred using both magnetic and electrostatic forces.

  12. Effect of externally applied electrostatic fields on the surface topography of ceramide-enriched domains in mixed monolayers with sphingomyelin.

    PubMed

    Wilke, Natalia; Maggio, Bruno

    2006-06-20

    Lipid and protein molecules anisotropically oriented at a hydrocarbon-aqueous interface configure a dynamic array of self-organized molecular dipoles. Electrostatic fields applied to lipid monolayers have been shown to induce in-plane migration of domains or phase separation in a homogeneous system. In this work, we have investigated the effect of externally applied electrostatic fields on the distribution of the condensed ceramide-enriched domains in mixed monolayers with sphingomyelin. In these monolayers, the lipids segregate in different phases at all pressures. This allows analyzing by epifluorescence microscopy the effect of the electrostatic field at all lateral pressure because coexistence of lipid domains in condensed state are always present. Our observations indicate that a positive potential applied to an electrode placed over the monolayer promotes a repulsion of the ceramide-enriched domains which is rather insensitive to the film composition, depends inversely on the lateral pressure and exhibits threshold dependence on the in-plane elasticity.

  13. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection.

    PubMed

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-12-23

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 - 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.

  14. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection

    PubMed Central

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-01-01

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8×10−13m/s2/Hz1/2, which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm/Hz1/2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching. PMID:28025534

  15. Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor.

    PubMed

    Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Chen, Ya; Lipsanen, Harri

    2013-10-04

    Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.

  16. Usage of the Upgraded Vassilissa Separator for Synthesis of Super-Heavy Elements

    NASA Astrophysics Data System (ADS)

    Yeremin, A. V.; Malyshev, O. N.; Popeko, A. G.; Sagaidak, R. N.; Chepigin, V. I.; Kabachenko, A. P.; Belozerov, A. V.; Chelnokov, M. L.; Gorshkov, V. A.; Svirikhin, A. I.; Korotkov, S. P.; Rohach, J.; Brida, I.; Berek, G.

    2002-12-01

    Electrostatic separator VASSILISSA is used for exploring complete fussion nuclear reactions. The magnetic analyzer, based on D37 dipole magnet, was installed after the second triplet of quadrupole lenses of the separator for the mass identification of evaporation residues. Mass identification is an powerful tool for identification of recoil atoms of super-heavy elements. The new detection system consisting of the time-of-fiight system and 32-strips position-sensitive detector array was installed in the focal plane of the separator. The mass resolution of the separator after upgrade was found to be about 2.5 %.

  17. Automated seed manipulation and planting

    NASA Technical Reports Server (NTRS)

    Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave

    1988-01-01

    Activities for the Fall Semester, 1987 focused on investigating the mechanical/electrical properties of wheat seeds and forming various Seed Planting System (SPS) concepts based on those properties. The Electrical Division of the design group was formed to devise an SPS using electrostatic charge fields for seeding operations. Experiments concerning seed separation using electrical induction (rearranging of the charges within the seed) were conducted with promising results. The seeds, when exposed to the high voltage and low current field produced by a Van de Graff generator, were observed to move back and forth between two electrodes. An SPS concept has been developed based on this phenomena, and will be developed throughout the Spring Semester, 1988. The Mechanical Division centered on SPS concepts involving valves, pumps, and fluids to separate and deliver seeds. An SPS idea utilizing the pressure difference caused by air as it rushes out of holes drilled in the wall of a closed container has been formulated and will be considered for future development. Also, a system of seed separation and delivery employing a combination of centrifugal force, friction, and air flow was considered.

  18. Design evaluation of graphene nanoribbon nanoelectromechanical devices

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Tak; Stephen Leo, Marie; Lee, Chengkuo; Liang, Gengchiau

    2011-07-01

    Computational studies on nanoelectromechanical switches based on bilayer graphene nanoribbons (BGNRs) with different designs are presented in this work. By varying the interlayer distance via electrostatic means, the conductance of the BGNR can be changed in order to achieve ON-states and OFF-states, thereby mimicking the function of a switch. Two actuator designs based on the modified capacitive parallel plate (CPP) model and the electrostatic repulsive force (ERF) model are discussed for different applications. Although the CPP design provides a simple electrostatic approach to changing the interlayer distance of the BGNR, their switching gate bias VTH strongly depends on the gate area, which poses a limitation on the size of the device. In addition, there exists a risk of device failure due to static fraction between the mobile and fixed electrodes. In contrast, the ERF design can circumvent both issues with a more complex structure. Finally, optimizations of the devices are carried out in order to provide insights into the design considerations of these nanoelectromechanical switches.

  19. Bench-scale performance testing and economic analyses of electrostatic dry coal cleaning. Final report, October 1980-July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, S.R.

    1987-02-01

    The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less

  20. Electrostatic antenna space environment interaction study

    NASA Technical Reports Server (NTRS)

    Katz, I.

    1981-01-01

    The interactions of the electrostatic antenna with the space environment in both low Earth orbit and geosynchronous orbit are investigated. It is concluded that the electrostatically controlled membrane mirror is a viable concept for space applications. However, great care must be taken to enclose the high voltage electrodes in a Faraday cage structure to separate the high voltage region from the ambient plasma. For this reason, metallized cloth is not acceptable as a membrane material. Conventional spacecraft charging at geosynchronous orbit should not be a problem provided ancillary structures (such as booms) are given nonnegligible conductivity and adequate grounding. Power loss due to plasma electrons entering the high field region is a potentially serious problem. In low earth orbit any opening whatever in the Faraday cage is likely to produce an unacceptable power drain.

  1. Electrostatically confined nanoparticle interactions and dynamics.

    PubMed

    Eichmann, Shannon L; Anekal, Samartha G; Bevan, Michael A

    2008-02-05

    We report integrated evanescent wave and video microscopy measurements of three-dimensional trajectories of 50, 100, and 250 nm gold nanoparticles electrostatically confined between parallel planar glass surfaces separated by 350 and 600 nm silica colloid spacers. Equilibrium analyses of single and ensemble particle height distributions normal to the confining walls produce net electrostatic potentials in excellent agreement with theoretical predictions. Dynamic analyses indicate lateral particle diffusion coefficients approximately 30-50% smaller than expected from predictions including the effects of the equilibrium particle distribution within the gap and multibody hydrodynamic interactions with the confining walls. Consistent analyses of equilibrium and dynamic information in each measurement do not indicate any roles for particle heating or hydrodynamic slip at the particle or wall surfaces, which would both increase diffusivities. Instead, lower than expected diffusivities are speculated to arise from electroviscous effects enhanced by the relative extent (kappaa approximately 1-3) and overlap (kappah approximately 2-4) of electrostatic double layers on the particle and wall surfaces. These results demonstrate direct, quantitative measurements and a consistent interpretation of metal nanoparticle electrostatic interactions and dynamics in a confined geometry, which provides a basis for future similar measurements involving other colloidal forces and specific biomolecular interactions.

  2. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    PubMed Central

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  3. Electrodynamic Dust Shield Demonstrator

    NASA Technical Reports Server (NTRS)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid running a multiphase low frequency AC signal. Electrostatically charged particles, such as those encountered on the moon, Mars, or an asteroid, are carried along by the traveling field due to the action of Coulomb and dielectrophoretic forces."2 The technical details have been described in a separate article. This document details the design and construction process of a small demonstration unit. Once finished, this device will go to the Office of the ChiefTechnologist at NASA headquarters, where it will be used to familiarize the public with the technology. 1 NASA KSC FO Intern, Prototype Development Laboratory, Kennedy Space Center, University of Central Florida Kennedy Space

  4. Electrostatic shielding of transformers

    DOEpatents

    De Leon, Francisco

    2017-11-28

    Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.

  5. A Charge-Exchange Neutral Particle Analyzer for an Inertial Electrostatic Confinement Fusion Device

    NASA Astrophysics Data System (ADS)

    Becerra, Gabriel; Kulcinski, Gerald; Santarius, John; Emmert, Gilbert

    2013-10-01

    An electrostatic energy analyzer for outgoing charge-exchange neutral particles has been designed and constructed for application on HELIOS, an inertial electrostatic confinement (IEC) fusion device designed for advanced fuel studies. Ions are extracted from an external helicon plasma source and subsequently accelerated radially into an electrostatic potential well set up by a semi-transparent cathode grid inside the HELIOS spherical chamber. Analysis of fast neutrals produced by charge exchange between energetic ions and background gas yields information on primary ion energy spectra, as well as a quantitative measure of charge exchange as an energy loss mechanism in IEC devices. Preliminary data with helium is used to benchmark the two-charge-state helium formalism of VICTER, a numerical code on spherically convergent ion flow, as it relates to IEC operation with helium-3 fuel. Research supported by the Greatbatch Foundation.

  6. Electrostatic rate enhancement and transient complex of protein-protein association.

    PubMed

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2008-04-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to approximately 10(5)-10(6) M(-1) s(-1). Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys J 1997;73:2441-2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by $k_{\\bf D}$ = $k_{D}0\\ {exp} ( - \\langle U_{el} \\rangle;{\\star}/k_{B} T),$ where k(D) and k(D0) are the rates in the presence and absence of electrostatic interactions, respectively, U(el) is the average electrostatic interaction energy in a "transient-complex" ensemble, and k(B)T is the thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with the experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007;15:215-224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. (c) 2007 Wiley-Liss, Inc.

  7. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.

    PubMed

    Meisterjahn, Boris; Wagner, Stephan; von der Kammer, Frank; Hennecke, Dieter; Hofmann, Thilo

    2016-04-01

    Flow-Field Flow Fractionation (Flow-FFF), coupled with online detection systems is one of the most promising tools available for the separation and quantification of engineered nanoparticles (ENPs) in complex matrices. To correctly relate the retention of nanoparticles in the Flow-FFF-channel to the particle size, ideal separation conditions must be met. This requires optimization of the parameters that influence the separation behavior. The aim of this study was therefore to systematically investigate and evaluate the influence of parameters such as the carrier liquid, the cross flow, and the membrane material, on the separation behavior of two metallic ENPs. For this purpose the retention, recovery, and separation efficiency of sterically stabilized silver nanoparticles (AgNPs) and electrostatically stabilized gold nanoparticles (AuNPs), which represent two materials widely used in investigations on environmental fate and ecotoxicology, were investigated against a parameter matrix of three different cross-flow densities, four representative carrier solutions, and two membrane materials. The use of a complex mixture of buffers, ionic and non-ionic surfactants (FL-70 solution) together with a medium cross-flow density provided an acceptable compromise in peak quality and recovery for both types of ENPs. However, these separation conditions do not represent a perfect match for both particle types at the same time (maximized recovery at maximized retention). It could be shown that the behavior of particles within Flow-FFF channels cannot be predicted or explained purely in terms of electrostatic interactions. Particles were irreversibly lost under conditions where the measured zeta potentials suggested that there should have been sufficient electrostatic repulsion to ensure stabilization of the particles in the Flow-FFF channel resulting in good recoveries. The wide variations that we observed in ENP behavior under different conditions, together with the different behavior that has been reported in published literature for the same NPs under similar conditions, indicate a need for improvement in the membrane materials used for Flow-FFF analysis of NPs. This research has shown that careful adjustment of separation conditions can result in acceptable, but not ideal, separation conditions for two fundamentally different stabilized materials, and that it may not be possible to separate a set of different particles under ideal conditions for each particle type. This therefore needs to be taking into account in method development and when interpreting FFF results from complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electrophoresis in space.

    PubMed

    Bauer, J; Hymer, W C; Morrison, D R; Kobayashi, H; Seaman, G V; Weber, G

    1999-01-01

    Programs for free flow electrophoresis in microgravity over the past 25 years are reviewed. Several studies accomplished during 20 spaceflight missions have demonstrated that sample throughput is significantly higher in microgravity than on the ground. Some studies have shown that resolution is also increased. However, many cell separation trials have fallen victim to difficulties associated with experimenting in the microgravity environment such as microbial contamination, air bubbles in electrophoresis chambers, and inadequate facilities for maintaining cells before and after separation. Recent studies suggest that the charge density of cells at their surface may also be modified in microgravity. If this result is confirmed, a further cellular mechanism of "sensing" the low gravity environment will have been found. Several free fluid electrophoresis devices are now available. Most have been tried at least once in microgravity. Newer units not yet tested in spaceflight have been designed to accommodate problems associated with space processing. The USCEPS device and the Japanese FFEU device are specifically designed for sterile operations, whereas the Octopus device is designed to reduce electroosmotic and electrohydrodynamic effects, which become dominant and detrimental in microgravity. Some of these devices will also separate proteins by zone electrophoresis, isotachophoresis, or isoelectric focusing in a single unit. Separation experiments with standard test particles are useful and necessary for testing and optimizing new space hardware. A cohesive free fluid electrophoresis program in the future will obviously require (1) flight opportunities and funding, (2) identification of suitable cellular and macromolecular candidate samples, and (3) provision of a proper interface of electrophoresis processing equipment with biotechnological facilities--equipment like bioreactors and protein crystal growth chambers. The authors feel that such capabilities will lead to the production of commercially useful quantities of target products and to an accumulation of new knowledge relating to the complexities of electrostatic phenomena at the cell surface.

  9. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions.

    PubMed

    Xu, Qing-Hua; Gaylord, Brent S; Wang, Shu; Bazan, Guillermo C; Moses, Daniel; Heeger, Alan J

    2004-08-10

    We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor-acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents.

  10. Electrostatic Interactions and Self-Assembly in Polymeric Systems

    NASA Astrophysics Data System (ADS)

    Dobrynin, Andrey

    Electrostatic interactions between macroions play an important role in different areas ranging from materials science to biophysics. They are main driving forces behind layer-by-layer assembly technique that allows self-assembly of multilayer films from synthetic polyelectrolytes, DNA, proteins and nanoparticles. They are responsible for complexation and reversible gelation between polyelectrolytes and proteins. In this talk, using results of the molecular dynamics simulations and analytical calculations, I will demonstrate what effect electrostatic interactions, counterion condensation and polymer solvent affinity have on a collapse of polyelectrolyte chain in a poor solvent conditions for the polymer backbone, on complexations and reversible gelation between polyelectrolytes and polyamholytes (unstructured proteins), on microphase separation transitions in spherical and planar charged brushes, and on a layer-by-layer assembly of charged nanoparticles and linear polyelectrolytes on charged surfaces. NSF DMR-1004576 DMR-1409710.

  11. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: The role of electrostatic and hydrophobic interactions

    PubMed Central

    Xu, Qing-Hua; Gaylord, Brent S.; Wang, Shu; Bazan, Guillermo C.; Moses, Daniel; Heeger, Alan J.

    2004-01-01

    We have investigated the energy transfer processes in DNA sequence detection by using cationic conjugated polymers and peptide nucleic acid (PNA) probes with ultrafast pump-dump-emission spectroscopy. Pump-dump-emission spectroscopy provides femtosecond temporal resolution and high sensitivity and avoids interference from the solvent response. The energy transfer from donor (the conjugated polymer) to acceptor (a fluorescent molecule attached to a PNA terminus) has been time resolved. The results indicate that both electrostatic and hydrophobic interactions contribute to the formation of cationic conjugated polymers/PNA-C/DNA complexes. The two interactions result in two different binding conformations. This picture is supported by the average donor–acceptor separations as estimated from time-resolved and steady-state measurements. Electrostatic interactions dominate at low concentrations and in mixed solvents. PMID:15282375

  12. Measurements of the Casimir-Lifshitz force in fluids: The effect of electrostatic forces and Debye screening

    NASA Astrophysics Data System (ADS)

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.

    2008-09-01

    We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.

  13. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  14. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  15. An electrostatic autoresonant ion trap mass spectrometer.

    PubMed

    Ermakov, A V; Hinch, B J

    2010-01-01

    A new method for ion extraction from an anharmonic electrostatic trap is introduced. Anharmonicity is a common feature of electrostatic traps which can be used for small scale spatial confinement of ions, and this feature is also necessary for autoresonant ion extraction. With the aid of ion trajectory simulations, novel autoresonant trap mass spectrometers (ART-MSs) have been designed based on these very simple principles. A mass resolution approximately 60 is demonstrated for the prototypes discussed here. We report also on the pressure dependencies, and the (mV) rf field strength dependencies of the ART-MS sensitivity. Importantly the new MS designs do not require heavy magnets, tight manufacturing tolerances, introduction of buffer gases, high power rf sources, nor complicated electronics. The designs described here are very inexpensive to implement relative to other instruments, and can be easily miniaturized. Possible applications are discussed.

  16. Effective Coulomb force modeling for spacecraft in Earth orbit plasmas

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.; Stiles, Laura A.; Schaub, Hanspeter

    2014-07-01

    Coulomb formation flight is a concept that utilizes electrostatic forces to control the separations of close proximity spacecraft. The Coulomb force between charged bodies is a product of their size, separation, potential and interaction with the local plasma environment. A fast and accurate analytic method of capturing the interaction of a charged body in a plasma is shown. The Debye-Hückel analytic model of the electrostatic field about a charged sphere in a plasma is expanded to analytically compute the forces. This model is fitted to numerical simulations with representative geosynchronous and low Earth orbit (GEO and LEO) plasma environments using an effective Debye length. This effective Debye length, which more accurately captures the charge partial shielding, can be up to 7 times larger at GEO, and as great as 100 times larger at LEO. The force between a sphere and point charge is accurately captured with the effective Debye length, as opposed to the electron Debye length solutions that have errors exceeding 50%. One notable finding is that the effective Debye lengths in LEO plasmas about a charged body are increased from centimeters to meters. This is a promising outcome, as the reduced shielding at increased potentials provides sufficient force levels for operating the electrostatically inflated membrane structures concept at these dense plasma altitudes.

  17. Emergence of a Stern Layer from the Incorporation of Hydration Interactions into the Gouy-Chapman Model of the Electrical Double Layer.

    PubMed

    Brown, Matthew A; Bossa, Guilherme Volpe; May, Sylvio

    2015-10-27

    In one of the most commonly used phenomenological descriptions of the electrical double layer, a charged solid surface and a diffuse region of mobile ions are separated from each other by a thin charge-depleted Stern layer. The Stern layer acts as a capacitor that improves the classical Gouy-Chapman model by increasing the magnitude of the surface potential and limiting the maximal counterion concentration. We show that very similar Stern-like properties of the diffuse double layer emerge naturally from adding a nonelectrostatic hydration repulsion to the electrostatic Coulomb potential. The interplay of electrostatic attraction and hydration repulsion of the counterions and the surface leads to the formation of a diffuse counterion layer that remains well separated from the surface. In addition, hydration repulsions between the ions limit and control the maximal ion concentration and widen the width of the diffuse double layer. Our mean-field model, which we express in terms of electrostatic and hydration potentials, is physically consistent and conceptually similar to the classical Gouy-Chapman model. It allows the incorporation of ion specificity, accounts for hydration properties of charged surfaces, and predicts Stern layer properties, which we analyze in terms of the effective size of the hydrated counterions.

  18. Long-range interaction between heterogeneously charged membranes.

    PubMed

    Jho, Y S; Brewster, R; Safran, S A; Pincus, P A

    2011-04-19

    Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society

  19. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  20. Cloverleaf microgyroscope with electrostatic alignment and tuning

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2007-01-01

    A micro-gyroscope (10) having closed loop output operation by a control voltage (V.sub.ty), that is demodulated by a drive axis (x-axis) signal V.sub.thx of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis) V.sub.thy.about.0. Closed loop drive axis torque, V.sub.tx maintains a constant drive axis amplitude signal, V.sub.thx. The present invention provides independent alignment and tuning of the micro-gyroscope by using separate electrodes and electrostatic bias voltages to adjust alignment and tuning. A quadrature amplitude signal, or cross-axis transfer function peak amplitude is used to detect misalignment that is corrected to zero by an electrostatic bias voltage adjustment. The cross-axis transfer function is either V.sub.thy/V.sub.ty or V.sub.tnx/V.sub.tx. A quadrature signal noise level, or difference in natural frequencies estimated from measurements of the transfer functions is used to detect residual mistuning, that is corrected to zero by a second electrostatic bias voltage adjustment.

  1. A numerical study on liquid charging inside electrostatic atomizers

    NASA Astrophysics Data System (ADS)

    Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad

    2016-11-01

    The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.

  2. Electrostatic interaction between stereocilia: I. Its role in supporting the structure of the hair bundle.

    PubMed

    Dolgobrodov, S G; Lukashkin, A N; Russell, I J

    2000-12-01

    This paper provides theoretical estimates for the forces of electrostatic interaction between adjacent stereocilia in auditory and vestibular hair cells. Estimates are given for parameters within the measured physiological range using constraints appropriate for the known geometry of the hair bundle. Stereocilia are assumed to possess an extended, negatively charged surface coat, the glycocalyx. Different charge distribution profiles within the glycocalyx are analysed. It is shown that charged glycocalices on the apical surface of the hair cells can support spatial separation between adjacent stereocilia in the hair bundles through electrostatic repulsion between stereocilia. The charge density profile within the glycocalyx is a crucial parameter. In fact, attraction instead of repulsion between adjacent stereocilia will be observed if the charge of the glycocalyx is concentrated near the membrane of the stereocilia, thereby making this type of charge distribution unlikely. The forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena that have been recorded from the periphery of the auditory and vestibular systems.

  3. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    PubMed

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. A universal approach to fabricate ordered colloidal crystals arrays based on electrostatic self-assembly.

    PubMed

    Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai

    2010-12-07

    We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.

  5. Why the water bridge does not collapse

    NASA Astrophysics Data System (ADS)

    Aerov, Artem A.

    2011-09-01

    In 2007 an interesting phenomenon was discovered [J. Phys. DJPAPBE0022-372710.1088/0022-3727/40/19/052 40, 6112 (2007)]: a horizontal thread of water, the so-called water bridge, hangs in a horizontal electrostatic field. A different explanation of the water bridge stability is proposed herein: the force supporting it is the surface tension of water, while the role of the electric field is to not allow the water bridge to reduce its surface energy by breaking into separate drops. It is proven that electrostatic field is not the origin of the tension holding the bridge.

  6. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.

    PubMed

    Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei

    2012-08-30

    We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid chromatography with a single column (2DLC-1C), which can also be employed to separate three kinds of active proteins completely, such as lysozyme, ovotransferrin and ovalbumin from egg white. The result is very important not only to the development of new 2DLC technology with a single column for proteomics, but also to recombinant protein drug production for saving column expense and simplifying the process in biotechnology. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. OPERATION AND MAINTENANCE MANUAL FOR ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The manual focuses on the operation and maintenance (O/M) of typical electrostatic precipitators (ESPs). It summarizes available information on theory and design in sufficient detail to provide a basic background O/M portions of the manual. Although O/M-related air pollution prob...

  8. Explosion safety in industrial electrostatics

    NASA Astrophysics Data System (ADS)

    Szabó, S. V.; Kiss, I.; Berta, I.

    2011-01-01

    Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.

  9. High-energy capacitance electrostatic micromotors

    NASA Astrophysics Data System (ADS)

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  10. β-cyclodextrin-ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis.

    PubMed

    Zhou, Chunyan; Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu

    2017-04-01

    Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono-6-deoxy-6-(3-methylimidazolium)-β-cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β-cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β-cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β-cyclodextrin ionic liquid. The satisfied result demonstrated that the β-cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A "Reverse-Schur" Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design.

    PubMed

    Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.

  12. A “Reverse-Schur” Approach to Optimization With Linear PDE Constraints: Application to Biomolecule Analysis and Design

    PubMed Central

    Bardhan, Jaydeep P.; Altman, Michael D.

    2009-01-01

    We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839

  13. GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules

    PubMed Central

    Bertelshofer, Franziska; Sun, Liping; Greiner, Günther; Böckmann, Rainer A.

    2015-01-01

    Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and, in particular, also their interactions with each other. Additionally, knowledge about solution electrostatics may also guide the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson–Boltzmann equation (PBE). Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss–Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and, thus, needs to be carefully considered, e.g., in design studies on membrane proteins. PMID:26636074

  14. Probing lipid membrane electrostatics

    NASA Astrophysics Data System (ADS)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by <2%. One important application of this technique is to estimate the dipole density of lipid membrane. Electrostatic analysis of DOPC lipid bilayers with the AFM reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipid bilayers. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful probe of membrane electrostatics.

  15. Sputtering of Metals by Mass-Analyzed N2(+) and N(+)

    NASA Technical Reports Server (NTRS)

    Bader, Michel; Witteborn, Fred C.; Snouse, Thomas W.

    1961-01-01

    Low-energy sputtering studies were conducted with the help of a specially designed ion accelerator. A high-intensity rf ion source was developed for use in conjunction with electrostatic acceleration and magnetic mass separation of ion beams in the 0 to 8 kev energy range. Beams of N(+) or N2(+) ions have been produced with intensities of 200 to 500 micro-a (approx. 1 sq cm in cross section) and energy half-widths of about 20 ev. The sputtering yields of five metals (Cu, Ni, Fe, Mo, and W) were obtained as a function of energy (0-8 kev), bombarding ion (N(+) and N2(+)), and angle of incidence (normal and 450). Results are presented and some of their theoretical implications are discussed.

  16. Controlling the electronic properties of van der Waals heterostructures by applying electrostatic design

    NASA Astrophysics Data System (ADS)

    Winkler, Christian; Harivyasi, Shashank S.; Zojer, Egbert

    2018-07-01

    Van der Waals heterostructures based on the heteroassembly of 2D materials represent a recently developed class of materials with promising properties especially for optoelectronic applications. The alignment of electronic energy bands between consecutive layers of these heterostructures crucially determines their functionality. In the present paper, relying on dispersion-corrected density-functional theory calculations, we present electrostatic design as a promising tool for manipulating this band alignment. The latter is achieved by inserting a layer of aligned polar molecules between consecutive transition-metal dichalcogenide (TMD) sheets. As a consequence, collective electrostatic effects induce a shift of as much as 0.3 eV in the band edges of successive TMD layers. Building on that, the proposed approach can be used to design electronically more complex systems, like quantum cascades or quantum wells, or to change the type of band lineup between type II and type I.

  17. Electrostatic Similarities between Protein and Small Molecule Ligands Facilitate the Design of Protein-Protein Interaction Inhibitors

    PubMed Central

    Zhang, Kam Y. J.

    2013-01-01

    One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs). We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research) SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs. PMID:24130741

  18. Electrostatic dispersion lenses and ion beam dispersion methods

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Appelhans, Anthony D [Idaho Falls, ID

    2010-12-28

    An EDL includes a case surface and at least one electrode surface. The EDL is configured to receive through the EDL a plurality of ion beams, to generate an electrostatic field between the one electrode surface and either the case surface or another electrode surface, and to increase the separation between the beams using the field. Other than an optional mid-plane intended to contain trajectories of the beams, the electrode surface or surfaces do not exhibit a plane of symmetry through which any beam received through the EDL must pass. In addition or in the alternative, the one electrode surface and either the case surface or the other electrode surface have geometries configured to shape the field to exhibit a less abrupt entrance and/or exit field transition in comparison to another electrostatic field shaped by two nested, one-quarter section, right cylindrical electrode surfaces with a constant gap width.

  19. Increasing the High Voltage Capabilities and Exploring Parameter Space of an Inertial Electrostatic Confinement Fusion Neutron Source for the Detection of Chemical Explosives

    NASA Astrophysics Data System (ADS)

    Michalak, Matthew K.

    The objectives of the work presented here include understanding key operating principles and providing precise data sets that can be used to test inertial electrostatic confinement (IEC) fusion theory and optimize IEC device operation. The underlying physical behavior was separated from superficial trends observed in an IEC device at the University of Wisconsin-Madison (UW). The effects of changing voltage (30-170 kV) and current (30-100 mA) were thoroughly explored, pressure effects (0.15-1.25 mTorr) were mapped, and the effect of impurities in the system was quantified. The most challenging part of this work was designing a high voltage feedthrough that could reliably operate at higher voltages for far longer times than previously attained. A system to detect conventional explosives using fusion neutrons was also designed, constructed, and tested. Precise data sets were created by taking into account and minimizing the effects of short and long term trends in the experiment. Detailed meter current scans were taken that showed a linear relationship of the neutron production rate with current. Cathode voltage scans were slightly greater than linear in the neutron rate from 30 to 170 kV, but the rate increase diminished to near linear as 170 kV was approached. A new high voltage feedthrough was designed that surpassed the performance of past UW IEC lab feedthroughs and shows promise for long duration operation at still higher voltages. Limitations of other equipment in the IEC lab prevented testing the feedthrough to voltages above 175 kV. A more robust construction of the feedthrough and reducing the consequences of a feedthrough failure were also important design criteria that were met. A detector array was made to detect explosives via the 10.8 MeV neutron capture prompt gamma from nitrogen. Signals from four separate detectors were combined to make the individual detectors act similar to one large detector. The detector signals were both summed and combined to compare the performance of the two methods. An overwhelming background radiation signal and insufficient time resolution were two factors that led to the combined signal not performing as well as the summed signal.

  20. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    PubMed

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-08-10

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.

  1. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle

    PubMed Central

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  2. Space manufacturing III; Proceedings of the Fourth Conference, Princeton University, Princeton, N.J., May 14-17, 1979

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor); Krop, C.

    1979-01-01

    Papers are presented on the various technological, political, economic, environmental and social aspects of large manufacturing facilities in space. Specific topics include the potential global market for satellite solar power stations in 2025, the electrostatic separation of lunar soil, methods for extraterrestrial materials processing, the socio-political status of efforts toward the development of space manufacturing facilities, the financing of space industrialization, the optimization of space manufacturing systems, the design and project status of Mass Driver Two, and the use of laser-boosted lighter-than-air-vehicles as heavy-lift launch vehicles. Attention is also given to systems integration in the development of controlled ecological life support systems, the design of a space manufacturing facility to use lunar materials, high performance solar sails, the environmental effects of the satellite power system reference design, the guidance, trajectory and capture of lunar materials ejected from the moon by mass driver, the relative design merits of zero-gravity and one-gravity space environments, consciousness alteration in space and the prospecting and retrieval of asteroids.

  3. Low power interface IC's for electrostatic energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Kempitiya, Asantha

    The application of wireless distributed micro-sensor systems ranges from equipment diagnostic and control to real time structural and biomedical monitoring. A major obstacle in developing autonomous micro-sensor networks is the need for local electric power supply, since using a battery is often not a viable solution. This void has sparked significant interest in micro-scale power generators based on electrostatic, piezoelectric and electromagnetic energy conversion that can scavenge ambient energy from the environment. In comparison to existing energy harvesting techniques, electrostatic-based power generation is attractive as it can be integrated using mainstream silicon technologies while providing higher power densities through miniaturization. However the power output of reported electrostatic micro-generators to date does not meet the communication and computation requirements of wireless sensor nodes. The objective of this thesis is to investigate novel CMOS-based energy harvesting circuit (EHC) architectures to increase the level of harvested mechanical energy in electrostatic converters. The electronic circuits that facilitate mechanical to electrical energy conversion employing variable capacitors can either have synchronous or asynchronous architectures. The later does not require synchronization of electrical events with mechanical motion, which eliminates difficulties in gate clocking and the power consumption associated with complex control circuitry. However, the implementation of the EHC with the converter can be detrimental to system performance when done without concurrent optimization of both elements, an aspect mainly overlooked in the literature. System level analysis is performed to show that there is an optimum value for either the storage capacitor or cycle number for maximum scavenging of ambient energy. The analysis also shows that maximum power is extracted when the system approaches synchronous operation. However, there is a region of interest where the storage capacitor can be optimized to produce almost 70% of the ideal power taken as the power harvested with synchronous converters when neglecting the power consumption associated with synchronizing control circuitry. Theoretical predictions are confirmed by measurements on an asynchronous EHC implemented with a macro-scale electrostatic converter prototype. Based on the preceding analysis, the design of a novel ultra low power electrostatic integrated energy harvesting circuit is proposed for efficient harvesting of mechanical energy. The fundamental challenges of designing reliable low power sensing circuits for charge constrained electrostatic energy harvesters with capacity to self power its controller and driver stages are addressed. Experimental results are presented for a controller design implemented in AMI 0.7muM high voltage CMOS process using a macro-scale electrostatic converter prototype. The EHC produces 1.126muW for a power investment of 417nW with combined conduction and controller losses of 450nW which is a 20-30% improvement compared to prior art on electrostatic EHCs operating under charge constrain. Inherently dual plate variable capacitors harvest energy only during half of the mechanical cycle with the other half unutilized for energy conversion. To harvest mechanical energy over the complete mechanical vibration cycle, a low power energy harvesting circuit (EHC) that performs charge constrained synchronous energy conversion on a tri-plate variable capacitor for maximizing energy conversion is proposed. The tri-plate macro electrostatic generator with capacitor variation of 405pF to 1.15nF and 405pF to 1.07nF on two complementary adjacent capacitors is fabricated and used in the characterization of the designed EHC. The integrated circuit fabricated in AMI 0.7muM high voltage CMOS process, produces a total output power of 497nW to a 10muF reservoir capacitor from a 98Hz vibration signal. In summary, the thesis lays out the theoretical and experimental foundation for overcoming the main challenges associated with the design of charge constrained synchronous EHC's, making electrostatic converters a possible candidate for powering emerging communication transceivers and portable electronics.

  4. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    NASA Astrophysics Data System (ADS)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.

  5. Effects of capacitors, resistors, and residual charges on the static and dynamic performance of electrostatically actuated devices

    NASA Astrophysics Data System (ADS)

    Chan, Edward K.; Dutton, Robert W.

    1999-03-01

    The important practical and realistic design issues of an electrostatic actuator/positioner with full-gap travel are discussed. Analytic expressions and numerical simulations show that parasitic capacitances, and non-uniform deformation in two and three dimensions influence the range of travel of an electrostatic positioner stabilized by the addition of a series capacitor. The effects of residual charge on electrostatically-actuated devices are described. The dynamic stepping characteristics of the positioner under compressible squeeze-film damping and resistive damping are compared. The physical descriptions of devices being fabricated in the MUMPs process are presented along with 3D simulation results that demonstrate viability.

  6. Electrostatic coating technologies for food processing.

    PubMed

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  7. Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Shun-Wen; Theiss, Jesse; Hazra, Jubin

    2015-08-03

    We study photocurrent generation in individual, suspended carbon nanotube pn-junction diodes formed by electrostatic doping using two gate electrodes. Photocurrent spectra collected under various electrostatic doping concentrations reveal distinctive behaviors for free particle optical transitions and excitonic transitions. In particular, the photocurrent generated by excitonic transitions exhibits a strong gate doping dependence, while that of the free particle transitions is gate independent. Here, the built-in potential of the pn-junction is required to separate the strongly bound electron-hole pairs of the excitons, while free particle excitations do not require this field-assisted charge separation. We observe a sharp, well defined E{sub 11}more » free particle interband transition in contrast with previous photocurrent studies. Several steps are taken to ensure that the active charge separating region of these pn-junctions is suspended off the substrate in a suspended region that is substantially longer than the exciton diffusion length and, therefore, the photocurrent does not originate from a Schottky junction. We present a detailed model of the built-in fields in these pn-junctions, which, together with phonon-assistant exciton dissociation, predicts photocurrents on the same order of those observed experimentally.« less

  8. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  9. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    PubMed

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  10. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.

    PubMed

    Ye, Aiqian; Flanagan, John; Singh, Harjinder

    2006-06-05

    The formation of electrostatic complexes between sodium caseinate and gum arabic (GA) was studied as a function of pH (2.0-7.0), using slow acidification in situ with glucono-delta-lactone (GDL) or titration with HCl. The colloidal behavior of the complexes under specific conditions was investigated using absorbance measurements (at 515 or 810 nm) and dynamic light scattering (DLS). In contrast to the sudden increase in absorbance and subsequent precipitation of sodium caseinate solutions at pH < 5.4, the absorbance values of mixtures of sodium caseinate and GA increased to a level that was dependent on GA concentration at pH 5.4 (pH(c)). The absorbance values remained constant with further decreases in pH until a sudden increase in absorbance was observed (at pH(phi)). The pH(phi) was also dependent upon the GA concentration. Dynamic light scattering (DLS) data showed that the sizes of the particles formed by the complexation of sodium caseinate and GA between pH(c) and pH(phi) were between 100 and 150 nm and these nanoparticles were visualized using negative staining transmission electron microscopy (TEM). Below pH(phi), the nanoparticles associated to form larger particles, causing phase separation. zeta-Potential measurements of the nanoparticles and chemical analysis after phase separation showed that phase separation was a consequence of charge neutralization. The formation of complexes between sodium caseinate and GA was inhibited at high ionic strength (>50 mM NaCl). It is postulated that the structure of the nanoparticles comprises an aggregated caseinate core, protected from further aggregation by steric repulsion of one, or more, electrostatically attached GA molecules. Copyright 2005 Wiley Periodicals, Inc.

  11. Development and Use of Fluorescent Antibody and qPCR Protocols for the Electrostatic Spore Trap

    USDA-ARS?s Scientific Manuscript database

    Fluorescent antibody (FA) and qPCR protocols were evaluated for the newly developed aerobiological sampler (Ionic Spore Trap), which depends upon electrostatic deposition of particulates onto a 25 mm aluminum disk (stub). This device was originally designed for assessment of captured particulates by...

  12. Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator.

    PubMed

    Kang, Kiho; Choi, Jinsub; Nam, Joong Hee; Lee, Sang Cheon; Kim, Kyung Ja; Lee, Sang-Won; Chang, Jeong Ho

    2009-01-15

    The work describes a simple and convenient process for highly efficient and direct DNA separation with functionalized silica-coated magnetic nanoparticles. Iron oxide magnetic nanoparticles and silica-coated magnetic nanoparticles were prepared uniformly, and the silica coating thickness could be easily controlled in a range from 10 to 50 nm by changing the concentration of silica precursor (TEOS) including controlled magnetic strength and particle size. A change in the surface modification on the nanoparticles was introduced by aminosilanization to enhance the selective DNA separation resulting from electrostatic interaction. The efficiency of the DNA separation was explored via the function of the amino-group numbers, particle size, the amount of the nanoparticles used, and the concentration of NaCl salt. The DNA adsorption yields were high in terms of the amount of triamino-functionalized nanoparticles used, and the average particle size was 25 nm. The adsorption efficiency of aminofunctionalized nanoparticles was the 4-5 times (80-100%) higher compared to silica-coated nanoparticles only (10-20%). DNA desorption efficiency showed an optimum level of over 0.7 M of the NaCl concentration. To elucidate the agglomeration of nanoparticles after electrostatic DNA binding, the Guinier plots were calculated from small-angle X-ray diffractions in a comparison of the results of energy diffraction TEM and confocal laser scanning microscopy. Additionally, the direct separation of human genomic DNA was achieved from human saliva and whole blood with high efficiency.

  13. Electrostatic Hellmann-Feynman theorem applied to long-range interatomic forces - The hydrogen molecule.

    NASA Technical Reports Server (NTRS)

    Steiner, E.

    1973-01-01

    The use of the electrostatic Hellmann-Feynman theorem for the calculation of the leading term in the 1/R expansion of the force of interaction between two well-separated hydrogen atoms is discussed. Previous work has suggested that whereas this term is determined wholly by the first-order wavefunction when calculated by perturbation theory, the use of the Hellmann-Feynman theorem apparently requires the wavefunction through second order. It is shown how the two results may be reconciled and that the Hellmann-Feynman theorem may be reformulated in such a way that only the first-order wavefunction is required.

  14. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  15. MEMS deformable mirror embedded wavefront sensing and control system

    NASA Astrophysics Data System (ADS)

    Owens, Donald; Schoen, Michael; Bush, Keith

    2006-01-01

    Electrostatic Membrane Deformable Mirror (MDM) technology developed using silicon bulk micro-machining techniques offers the potential of providing low-cost, compact wavefront control systems for diverse optical system applications. Electrostatic mirror construction using bulk micro-machining allows for custom designs to satisfy wavefront control requirements for most optical systems. An electrostatic MDM consists of a thin membrane, generally with a thin metal or multi-layer high-reflectivity coating, suspended over an actuator pad array that is connected to a high-voltage driver. Voltages applied to the array elements deflect the membrane to provide an optical surface capable of correcting for measured optical aberrations in a given system. Electrostatic membrane DM designs are derived from well-known principles of membrane mechanics and electrostatics, the desired optical wavefront control requirements, and the current limitations of mirror fabrication and actuator drive electronics. MDM performance is strongly dependent on mirror diameter and air damping in meeting desired spatial and temporal frequency requirements. In this paper, we present wavefront control results from an embedded wavefront control system developed around a commercially available high-speed camera and an AgilOptics Unifi MDM driver using USB 2.0 communications and the Linux development environment. This new product, ClariFast TM, combines our previous Clarifi TM product offering into a faster more streamlined version dedicated strictly to Hartmann Wavefront sensing.

  16. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  17. Economic comparison of fabric filters and electrostatic precipitators for particulate control on coal-fired utility boilers

    NASA Technical Reports Server (NTRS)

    Cukor, P. M.; Chapman, R. A.

    1978-01-01

    The uncertainties and associated costs involved in selecting and designing a particulate control device to meet California's air emission regulations are considered. The basic operating principles of electrostatic precipitators and fabric filters are discussed, and design parameters are identified. The size and resulting cost of the control device as a function of design parameters is illustrated by a case study for an 800 MW coal-fired fired utility boiler burning a typical southwestern subbituminous coal. The cost of selecting an undersized particulate control device is compared with the cost of selecting an oversized device.

  18. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport

    DOE PAGES

    Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.; ...

    2016-06-21

    The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 10 17 Jones, the highest reported in visible and infrared detectors at room temperature, and 4-5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentratemore » in and percolate along the grain boundaries - a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 10 10 e - per photon, and allows for effective control of the device response speed by active carrier quenching.« less

  19. Management strategies on the industrialization road of state-of-the-art technologies for e-waste recycling: the case study of electrostatic separation--a review.

    PubMed

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2013-02-01

    Electronic waste (e-waste) management is pressing as global production has increased significantly in the past few years and is rising continuously at a fast rate. Many countries are facing hazardous e-waste mountains, most of which are disposed of by backyard recyclers, creating serious threats to public health and ecosystems. Industrialization of state-of-the-art recycling technologies is imperative to enhance the comprehensive utilization of resources and to protect the environment. This article aims to provide an overview of management strategies solving the crucial problems during the process of industrialization. A typical case study of electrostatic separation for recycling waste printed circuit boards was discussed in terms of parameters optimization, materials flow control, noise assessment, risk assessment, economic evaluation and social benefits analysis. The comprehensive view provided by the review could be helpful to the progress of the e-waste recycling industry.

  20. Electrostatic coalescence system with independent AC and DC hydrophilic electrodes

    DOEpatents

    Hovarongkura, A. David; Henry, Jr., Joseph D.

    1981-01-01

    An improved electrostatic coalescence system is provided in which independent AC and DC hydrophilic electrodes are employed to provide more complete dehydration of an oil emulsion. The AC field is produced between an AC electrode array and the water-oil interface wherein the AC electrode array is positioned parallel to the interface which acts as a grounded electrode. The emulsion is introduced into the AC field in an evenly distributed manner at the interface. The AC field promotes drop-drop and drop-interface coalescence of the water phase in the entering emulsion. The continuous oil phase passes upward through the perforated AC electrode array and enters a strong DC field produced between closely spaced DC electrodes in which small dispersed droplets of water entrained in the continuous phase are removed primarily by collection at hydrophilic DC electrodes. Large droplets of water collected by the electrodes migrate downward through the AC electrode array to the interface. All phase separation mechanisms are utilized to accomplish more complete phase separation.

  1. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport

    PubMed Central

    Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.; Ko, Changhyun; Ogletree, D. Frank; Salmeron, Miquel; Alivisatos, A. Paul

    2016-01-01

    The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 1017 Jones, the highest reported in visible and infrared detectors at room temperature, and 4–5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentrate in and percolate along the grain boundaries—a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 1010 e− per photon, and allows for effective control of the device response speed by active carrier quenching. PMID:27323904

  2. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics.

    PubMed

    Kadek, Alan; Kavan, Daniel; Marcoux, Julien; Stojko, Johann; Felice, Alfons K G; Cianférani, Sarah; Ludwig, Roland; Halada, Petr; Man, Petr

    2017-02-01

    Cellobiose dehydrogenase (CDH) is a fungal extracellular oxidoreductase which fuels lytic polysaccharide monooxygenase with electrons during cellulose degradation. Interdomain electron transfer between the flavin and cytochrome domain in CDH, preceding the electron flow to lytic polysaccharide monooxygenase, is known to be pH dependent, but the exact mechanism of this regulation has not been experimentally proven so far. To investigate the structural aspects underlying the domain interaction in CDH, hydrogen/deuterium exchange (HDX-MS) with improved proteolytic setup (combination of nepenthesin-1 with rhizopuspepsin), native mass spectrometry with ion mobility and electrostatics calculations were used. HDX-MS revealed pH-dependent changes in solvent accessibility and hydrogen bonding at the interdomain interface. Electrostatics calculations identified these differences to result from charge neutralization by protonation and together with ion mobility pointed at higher electrostatic repulsion between CDH domains at neutral pH. In addition, we uncovered extensive O-glycosylation in the linker region and identified the long-unknown exact cleavage point in papain-mediated domain separation. Transition of CDH between its inactive (open) and interdomain electron transfer-capable (closed) state is shown to be governed by changes in the protein surface electrostatics at the domain interface. Our study confirms that the interdomain electrostatic repulsion is the key factor modulating the functioning of CDH. The results presented in this paper provide experimental evidence for the role of charge repulsion in the interdomain electron transfer in cellobiose dehydrogenases, which is relevant for exploiting their biotechnological potential in biosensors and biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Contribution of electrostatics to the binding of pancreatic-type ribonucleases to membranes.

    PubMed

    Sundlass, Nadia K; Eller, Chelcie H; Cui, Qiang; Raines, Ronald T

    2013-09-17

    Pancreatic-type ribonucleases show clinical promise as chemotherapeutic agents but are limited in efficacy by the inefficiency of their uptake by human cells. Cellular uptake can be increased by the addition of positive charges to the surface of ribonucleases, either by site-directed mutagenesis or by chemical modification. This observation has led to the hypothesis that ribonuclease uptake by cells depends on electrostatics. Here, we use a combination of experimental and computational methods to ascertain the contribution of electrostatics to the cellular uptake of ribonucleases. We focus on three homologous ribonucleases: Onconase (frog), ribonuclease A (cow), and ribonuclease 1 (human). Our results support the hypothesis that electrostatics are necessary for the cellular uptake of Onconase. In contrast, specific interactions with cell-surface components likely contribute more to the cellular uptake of ribonuclease A and ribonuclease 1 than do electrostatics. These findings provide insight for the design of new cytotoxic ribonucleases.

  4. Control system adds to precipitator efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurrole, G.

    1978-02-01

    An electrostatic precipitator in use at Lion Oil Co., Martinez, Calif., in a fluid catalytic cracking and CO boiler application, was upgraded by mechanical sectionalization of the gas passage and a new electronic control system. The electrostatic precipitator is installed upstream of the CO boiler to handle gas flow up to 4.77 ft/sec, and pressure to 4.5 psi. The independent gas chambers in the electrostatic precipitator were divided by installing gas-tight partition walls to form a total of four electrostatic fields. The precipitator was also equipped with adjustable inlet gas flow-control baffles for even gas distribution. Rows of grounded collectingmore » electrodes are parallel with the flow of gas. The emitting electrode system, powered by separate high-energy transformers for each collecting field, uses silicon-controlled rectifiers and analog electronic networks for rapid response to changing gas and dust conditions. Regulatory requirements call for efficient collection of catalyst fines with no more than 40 lb/hr escaping through the boiler stack. Currently, stack losses average about 38 lb/hr. The installation of two additional control systems with transformers and rectifiers should reduce stack losses to 34 lb/hr.« less

  5. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    PubMed

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. The Problem of Preconcentration of Uranium Ores by Physical Processes; LES PROBLEMES DE LA PRECONCENTRATION DES MINERAIS D'URANIUM PAR VOIE PHYSIQUE. LE TRIAGE ELECTRONIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuchot, L.; Ginocchio, A. et al.

    1959-10-31

    As uranium ores, like most other ores, are not definite substances which can be treated directly for the production of the metal, the ores must be concentrated. The common physical processes used for all ores, such as sieving, gravimetric separation, flotation, electromagnetic separation, and electrostatic separation, are applicable to the beneficiation of uranium. The radioactivity of uranium ores has led to a radiometric method for the concentration. This method is described in detail. As an example, the preconcentration of Forez ores is discussed. (J.S.R.)

  7. Apparatus and process for the separation of gases using supersonic expansion and oblique wave compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanOsdol, John G.

    The disclosure provides an apparatus and method for gas separation through the supersonic expansion and subsequent deceleration of a gaseous stream. The gaseous constituent changes phase from the gaseous state by desublimation or condensation during the acceleration producing a collectible constituent, and an oblique shock diffuser decelerates the gaseous stream to a subsonic velocity while maintain the collectible constituent in the non-gaseous state. Following deceleration, the carrier gas and the collectible constituent at the subsonic velocity are separated by a separation means, such as a centrifugal, electrostatic, or impingement separator. In an embodiment, the gaseous stream issues from a combustionmore » process and is comprised of N.sub.2 and CO.sub.2.« less

  8. Progress Toward a Bulk Micromachined Tunneling Tip Microaccelerometer

    NASA Technical Reports Server (NTRS)

    Frank T. Hartley, Ben Dolgen, Paul M. Zavracky

    1995-01-01

    Ultrasensitive accelerometers are needed for microgravity measurement of orbital drag and active isolation systems. We have designed an accelerometer capable of measuring accelerations of the order of 10(i) g. A tunneling tip sensor can be used as a position sensor with a potential performance advantage of two orders of magnitude over capacitive sensors. In this paper, we disclose our progress in the fabrication and measurement of a bulk microaccelerometer which employs a tunneling tip. Fully assembled accelerometers consisting of four separate die have been fabricated. The device employs a unique folded spring system with a low spring constant. To protect the tunneling tip, we have employed electrostatic clamping. Stiction has not been observed, but the required clamping voltage is greater than expected. We have developed a simple model to analyze our results.

  9. Electrostatic Separator for Beneficiation of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  10. Understanding the mechanism of LCST phase separation of mixed ionic liquids in water by MD simulations.

    PubMed

    Zhao, Yuling; Wang, Huiyong; Pei, Yuanchao; Liu, Zhiping; Wang, Jianji

    2016-08-17

    Recently, it has been found experimentally that two different amino acid ionic liquids (ILs) can be mixed to show unique lowest critical solution temperature (LCST) phase separation in water. However, little is known about the mechanism of phase separation in these IL/water mixtures at the molecular level. In this work, five kinds of amino acid ILs were chosen to study the mechanism of LCST-type phase separation by molecular dynamics (MD) simulations. Toward this end, a series of all-atom MD simulations were carried out on the ternary mixtures consisting of two different ILs and water at different temperatures. The various interaction energies and radial distribution functions (RDFs) were calculated and analyzed for these mixed systems. It was found that for amino acid ILs, the -NH2 or -COOH group of one anion could have a hydrogen bonding interaction with the -COO(-) group of another anion. With the increase of temperature, this kind of hydrogen bonding interaction between anions was strengthened and then the anion-H2O electrostatic interaction was weakened, which led to the LCST-type phase separation of the mixed ILs in water. In addition, a series of MD simulations for [P6668]1[Lys]n[Asp]1-n/H2O systems were also performed to study the effect of the mixing ratio of ILs on phase separation. It was also noted that the experimental critical composition corresponding to the lowest critical solution temperature was well predicted from the total electrostatic interaction energies as a function of mole fraction of [P6668][Lys] in these systems. The conclusions drawn from this study may provide new insight into the LCST-type phase behavior of ILs in water, and motivate further studies on practical applications.

  11. PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)

    NASA Astrophysics Data System (ADS)

    Li, Jie

    2013-03-01

    ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the Faculty of Engineering, McMaster University, Canada), Haitian Scholar of Dalian University of Technology (China), who passed away on 27 February 2011. Professor Chang was active in research fields including the applications of electrostatics, electromagnetic hydrodynamics, plasma environmental pollution control technologies, etc and he contributed much to the development of these fields. Professor Chang was the visiting professor at some Key Universities in China and was the friend of Chinese scholars engaged in electrostatics. Professor Chang was also active in joining and supporting the previous ICAES. We will cherish the memory of Professor Jen-Shih Chang forever. Professor Jie Li Proceedings Editor Dalian, September 2012 Conference photograph

  12. Conceptual design and analysis of a large antenna utilizing electrostatic membrane management

    NASA Technical Reports Server (NTRS)

    Brooks, A. L.; Coyner, J. V.; Gardner, W. J.; Mihora, D. J.

    1982-01-01

    Conceptual designs and associated technologies for deployment 100 m class radiometer antennas were developed. An electrostatically suspended and controlled membrane mirror and the supporting structure are discussed. The integrated spacecraft including STS cargo bay stowage and development were analyzed. An antenna performance evaluation was performed as a measure of the quality of the membrane/spacecraft when used as a radiometer in the 1 GHz to 5 GHz region. Several related LSS structural dynamic models differing by their stiffness property (and therefore, lowest modal frequencies) are reported. Control system whose complexity varies inversely with increasing modal frequency regimes are also reported. Interactive computer-aided-design software is discussed.

  13. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  14. Simulations of Coulomb systems with slab geometry using an efficient 3D Ewald summation method

    NASA Astrophysics Data System (ADS)

    dos Santos, Alexandre P.; Girotto, Matheus; Levin, Yan

    2016-04-01

    We present a new approach to efficiently simulate electrolytes confined between infinite charged walls using a 3d Ewald summation method. The optimal performance is achieved by separating the electrostatic potential produced by the charged walls from the electrostatic potential of electrolyte. The electric field produced by the 3d periodic images of the walls is constant inside the simulation cell, with the field produced by the transverse images of the charged plates canceling out. The non-neutral confined electrolyte in an external potential can be simulated using 3d Ewald summation with a suitable renormalization of the electrostatic energy, to remove a divergence, and a correction that accounts for the conditional convergence of the resulting lattice sum. The new algorithm is at least an order of magnitude more rapid than the usual simulation methods for the slab geometry and can be further sped up by adopting a particle-particle particle-mesh approach.

  15. Electrostatically confined quantum rings in bilayer graphene.

    PubMed

    Zarenia, M; Pereira, J M; Peeters, F M; Farias, G A

    2009-12-01

    We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B(0) --> -B(0) transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.

  16. Experimental Study of Lunar Dust Transportation due to Electrostatic Forces and Micro-meteorite Impacts

    NASA Astrophysics Data System (ADS)

    Orger, N. C.; Toyoda, K.; Cho, M.

    2017-12-01

    Lunar dust particles can be transported via several physical mechanisms above the surface, and the electrostatic dust lofting was suspected to be the responsible mechanism for the high-altitude lunar horizon glow above the terminator region. Most of the recent studies have shown that contact forces acting on the dust grains of sub-micrometer and micrometer sizes are much larger than the electrostatic forces resulting from the ambient plasma conditions; however, the electrostatic forces are strong enough to accelerate the lunar dust grains to high altitudes once the dust particles are separated from the surface by an initial mechanism. In this study our purpose is to investigate if the dust particles can be transported under the electrostatic forces after they are released from the surface by the micrometeorite impacts. It is expected to be the most of the dust grains will be launched from the elastic deformation regions, and the contact forces will be canceled after they are moved tens of nanometers. For the experiments, silica particles are used in a cavity with 2 cm diameter and 5 mm depth on the graphite plates. First, the dust particles are baked under an infrared lamp to release the absorbed atmospheric particles in the vacuum chamber. Second, the electron beam source emits electrons with 100 - 200 eV energies, and a Faraday cup measures the electron current in the vacuum chamber. Third, a laser beam is used to simulate micro-meteorite impacts, and the results are monitored with a high speed camera mostly focusing on the elastic deformation region. Therefore, this study investigates how the impacts modify the dust transportation as an initial mechanism for electrostatic dust lofting to high altitudes.

  17. A Superconducting Magnet UCN Trap for Precise Neutron Lifetime Measurements.

    PubMed

    Picker, R; Altarev, I; Bröcker, J; Gutsmiedl, E; Hartmann, J; Müller, A; Paul, S; Schott, W; Trinks, U; Zimmer, O

    2005-01-01

    Finite-element methods along with Monte Carlo simulations were used to design a magnetic storage device for ultracold neutrons (UCN) to measure their lifetime. A setup was determined which should make it possible to confine UCN with negligible losses and detect the protons emerging from β-decay with high efficiency: stacked superconducting solenoids create the magnetic storage field, an electrostatic extraction field inside the storage volume assures high proton collection efficiency. Alongside with the optimization of the magnetic and electrostatic design, the properties of the trap were investigated through extensive Monte Carlo simulation.

  18. Manufacturing a thin wire electrostatic trap for ultracold polar molecules.

    PubMed

    Kleinert, J; Haimberger, C; Zabawa, P J; Bigelow, N P

    2007-11-01

    We present a detailed description on how to build a thin wire electrostatic trap (TWIST) for ultracold polar molecules. It is the first design of an electrostatic trap that can be superimposed directly onto a magneto-optical trap (MOT). We can thus continuously produce ultracold polar molecules via photoassociation from a two species MOT and instantaneously trap them in the TWIST without the need for complex transfer schemes. Despite the spatial overlap of the TWIST and the MOT, the two traps can be operated and optimized completely independently due to the complementary nature of the utilized trapping mechanisms.

  19. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    In their Swamp Works laboratory at NASA's Kennedy Space Center, Dr. Carlos Calle and Jay Phillips are testing an electrostatic precipitator using dust that closely approximates the make-up of that on Mars. They upgraded their electrostatic precipitator to fully simulate Martian atmosphere by designing and constructing a dust aerosolization pre-chamber. The agency's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  20. Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell

    2006-01-01

    An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.

  1. Field Modeling, Symplectic Tracking, and Spin Decoherence for EDM and Muon $$g\\textrm{-}2$$ Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valetov, Eremey Vladimirovich

    2017-01-01

    While the first particle accelerators were electrostatic machines, and several electrostatic storage rings were subsequently commissioned and operated, electrostatic storage rings pose a number of challenges. Unlike motion in the magnetic field, where particle energy remains constant, particle energy generally changes in electrostatic elements. Conservation of energy in an electrostatic element is, in practice, only approximate, and it requires careful and accurate design, manufacturing, installation, and operational use. Electrostatic deflectors require relatively high electrostatic fields, tend to introduce nonlinear aberrations of all orders, and are more challenging to manufacture than homogeneous magnetic dipoles. Accordingly, magnetic storage rings are overwhelmingly prevalent.more » The search for electric dipole moments (EDMs) of fundamental particles is of key importance in the study of C and CP violations and their sources. C and CP violations are part of the Sakharov conditions that explain the matter–antimatter asymmetry in the universe. Determining the source of CP violations would provide valuable empirical insight for beyond-Standard-Model physics. EDMs of fundamental particles have not to this date been experimentally observed. The search for fundamental particle EDMs has narrowed the target search region; however, an EDM signal is yet to be discovered. In 2008, Brookhaven National Laboratory (BNL) had proposed the frozen spin (FS) concept for the search of a deuteron EDM. The FS concept envisions launching deuterons through a storage ring with combined electrostatic and magnetic fields. The electrostatic and magnetic fields are in a proportion that would, without an EDM, freeze the deuteron’s spin along its momentum as the deuteron moves around the lattice. The radial electrostatic field would result in a torque on the spin vector, proportional to a deuteron EDM, rotating the spin vector out of the midplane.« less

  2. Are electrostatic potentials between regions of different chemical composition measurable? The Gibbs-Guggenheim Principle reconsidered, extended and its consequences revisited.

    PubMed

    Pethica, Brian A

    2007-12-21

    As indicated by Gibbs and made explicit by Guggenheim, the electrical potential difference between two regions of different chemical composition cannot be measured. The Gibbs-Guggenheim Principle restricts the use of classical electrostatics in electrochemical theories as thermodynamically unsound with some few approximate exceptions, notably for dilute electrolyte solutions and concomitant low potentials where the linear limit for the exponential of the relevant Boltzmann distribution applies. The Principle invalidates the widespread use of forms of the Poisson-Boltzmann equation which do not include the non-electrostatic components of the chemical potentials of the ions. From a thermodynamic analysis of the parallel plate electrical condenser, employing only measurable electrical quantities and taking into account the chemical potentials of the components of the dielectric and their adsorption at the surfaces of the condenser plates, an experimental procedure to provide exceptions to the Principle has been proposed. This procedure is now reconsidered and rejected. No other related experimental procedures circumvent the Principle. Widely-used theoretical descriptions of electrolyte solutions, charged surfaces and colloid dispersions which neglect the Principle are briefly discussed. MD methods avoid the limitations of the Poisson-Bolzmann equation. Theoretical models which include the non-electrostatic components of the inter-ion and ion-surface interactions in solutions and colloid systems assume the additivity of dispersion and electrostatic forces. An experimental procedure to test this assumption is identified from the thermodynamics of condensers at microscopic plate separations. The available experimental data from Kelvin probe studies are preliminary, but tend against additivity. A corollary to the Gibbs-Guggenheim Principle is enunciated, and the Principle is restated that for any charged species, neither the difference in electrostatic potential nor the sum of the differences in the non-electrostatic components of the thermodynamic potential difference between regions of different chemical compositions can be measured.

  3. Electrostatic Beneficiation of Lunar Regolith: Applications in In-Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Captain, James; Weis, Kyle; Quinn, Jacqueline

    2011-01-01

    Upon returning to the moon, or further a field such as Mars, presents enormous challenges in sustaining life for extended periods of time far beyond the few days the astronauts experienced on the moon during the Apollo missions. A stay on Mars is envisioned to last several months, and it would be cost prohibitive to take all the requirements for such a stay from earth. Therefore, future exploration missions will be required to be self-sufficient and utilize the resources available at the mission site to sustain human occupation. Such an exercise is currently the focus of intense research at NASA under the In-situ Resource Utilization (ISRU) program. As well as oxygen and water necessary for human life, resources for providing building materials for habitats, radiation protection, and landing/launch pads are required. All these materials can be provided by the regolith present on the surface as it contains sufficient minerals and metals oxides to meet the requirements. However, before processing, it would be cost effective if the regolith could be enriched in the mineral(s) of interest. This can be achieved by electrostatic beneficiation in which tribocharged mineral particles are separated out and the feedstock enriched or depleted as required. The results of electrostatic beneficiation of lunar simulants and actual Apollo regolith, in lunar high vacuum are reported in which various degrees of efficient particle separation and mineral enrichment up to a few hundred percent were achieved.

  4. pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface.

    PubMed

    Kisley, Lydia; Poongavanam, Mohan-Vivekanandan; Kourentzi, Katerina; Willson, Richard C; Landes, Christy F

    2016-02-01

    pH is a common mobile phase variable used to control protein separations due to the tunable nature of amino acid and adsorbent charge. Like other column variables such as column density and ligand loading density, pH is usually optimized empirically. Single-molecule spectroscopy extracts molecular-scale data to provide a framework for mechanistic optimization of pH. The adsorption and diffusion of a model globular protein, α-lactalbumin, was studied by single-molecule microscopy at a silica-aqueous interface analogous to aqueous normal phase and hydrophilic interaction chromatography and capillary electrophoresis interfaces at varied pH. Electrostatic repulsion resulting in free diffusion was observed at pH above the isoelectric point of the protein. In contrast, at low pH strong adsorption and surface diffusion with either no (D ∼ 0.01 μm(2) /s) or translational (D ∼ 0.3 μm(2) /s) motion was observed where the protein likely interacted with the surface through electrostatic, hydrophobic, and hydrogen bonding forces. The fraction of proteins immobilized could be increased by lowering the pH. These results show that retention of proteins at the silica interface cannot be viewed solely as an adsorption/desorption process and that the type of surface diffusion, which ultimately leads to ensemble chromatographic separations, can be controlled by tuning long-range electrostatic and short-range hydrophobic and hydrogen bonding forces with pH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optimizing pH response of affinity between protein G and IgG Fc: how electrostatic modulations affect protein-protein interactions.

    PubMed

    Watanabe, Hideki; Matsumaru, Hiroyuki; Ooishi, Ayako; Feng, Yanwen; Odahara, Takayuki; Suto, Kyoko; Honda, Shinya

    2009-05-01

    Protein-protein interaction in response to environmental conditions enables sophisticated biological and biotechnological processes. Aiming toward the rational design of a pH-sensitive protein-protein interaction, we engineered pH-sensitive mutants of streptococcal protein G B1, a binder to the IgG constant region. We systematically introduced histidine residues into the binding interface to cause electrostatic repulsion on the basis of a rigid body model. Exquisite pH sensitivity of this interaction was confirmed by surface plasmon resonance and affinity chromatography employing a clinically used human IgG. The pH-sensitive mechanism of the interaction was analyzed and evaluated from kinetic, thermodynamic, and structural viewpoints. Histidine-mediated electrostatic repulsion resulted in significant loss of exothermic heat of the binding that decreased the affinity only at acidic conditions, thereby improving the pH sensitivity. The reduced binding energy was partly recovered by "enthalpy-entropy compensation." Crystal structures of the designed mutants confirmed the validity of the rigid body model on which the effective electrostatic repulsion was based. Moreover, our data suggested that the entropy gain involved exclusion of water molecules solvated in a space formed by the introduced histidine and adjacent tryptophan residue. Our findings concerning the mechanism of histidine-introduced interactions will provide a guideline for the rational design of pH-sensitive protein-protein recognition.

  6. Ultrafast Electron Transfer across a Nanocapsular Wall: Coumarins as Donors, Viologen as Acceptor, and Octa Acid Capsule as the Mediator.

    PubMed

    Chuang, Chi-Hung; Porel, Mintu; Choudhury, Rajib; Burda, Clemens; Ramamurthy, V

    2018-01-11

    Results of our study on ultrafast electron transfer (eT) dynamics from coumarins (coumarin-1, coumarin-480, and coumarin-153) incarcerated within octa acid (OA) capsules as electron donors to methyl viologen dissolved in water as acceptor are presented. Upon photoexcitation, coumarin inside the OA capsule transfers an electron to the acceptor electrostatically attached to the capsule leading to a long-lived radical-ion pair separated by the OA capsular wall. This charge-separated state returns to the neutral ground state via back electron transfer on the nanosecond time scale. This system allows for ultrafast electron transfer processes through a molecular wall from the apolar capsular interior to the highly polar (aqueous) environment on the femtosecond time scale. Employing femtosecond transient absorption spectroscopy, distinct rates of both forward (1-25 ps) and backward eT (700-1200 ps) processes were measured. Further understanding of the energetics is provided using Rehm-Weller analysis for the investigated photoinduced eT reactions. The results provide the rates of the eT across a molecular wall, akin to an isotropic solution, depending on the standard free energy of the reaction. The insights from this work could be utilized in the future design of efficient electron transfer processes across interfaces separating apolar and polar environments.

  7. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  8. Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer

    PubMed Central

    Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng

    2011-01-01

    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated. PMID:22247662

  9. Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology

    NASA Astrophysics Data System (ADS)

    Cui, Feng; Chen, Wenyuan; Su, Yufeng; Zhang, Weiping; Zhao, Xiaolin

    2004-12-01

    The prevailing micromachined vibratory gyroscope typically has a proof mass connected to the substrate by a mechanical suspension system, which makes it face a tough challenge to achieve tactical or inertial grade performance levels. With a levitated rotor as the proof mass, a micromachined rotational gyroscope will potentially have higher performance than vibratory gyroscope. Besides working as a moment rebalance dual-axis gyroscope, the micromachined rotational gyroscope based on a levitated rotor can simultaneously work as a force balance tri-axis accelerometer. Micromachined rotational gyroscope based on an electrostatically levitated silicon micromachined rotor has been notably developed. In this paper, factors in designing a rotational gyro/accelerometer based on an electrostatically levitated disc-like rotor, including gyroscopic action of micro rotor, methods of stable levitation, micro displacement detection and control, rotation drive and speed control, vacuum packaging and microfabrication, are comprehensively considered. Hence a design of rotational gyro/accelerometer with an electroforming nickel rotor employing low cost UV-LIGA technology is presented. In this design, a wheel-like flat rotor is proposed and its basic dimensions, diameter and thickness, are estimated according to the required loading capability. Finally, its micromachining methods based on UV-LIGA technology and assembly technology are discussed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoup, R.W.; Long, F.; Martin, T.H.

    Sandia has developed PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack. and MITLs on PBFA II with hardware of a new design. The PBFA-Z accelerator was designed to deliver 20 MA to a 15-mg z-pinch load in 100 ns. The accelerator was modeled using circuit codes to determine the time-dependent voltage and current waveforms at the input and output of the water lines, the insulator stack, and the MITLs. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITLmore » interface requirements, and the machine operations and maintenance requirements. The insulator stack consists of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stacks was evaluated using IVORY, a 2-D PIC code. This paper will describe the insulator stack design, present the results of the ELECTRO and IVORY analyses, and show the results of the stack measurements.« less

  11. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  12. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Fathi, A.; Feghhi, S. A. H.; Sadati, S. M.; Ebrahimibasabi, E.

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  13. Technical Reliability Studies. EOS/ESD Technology Abstracts

    DTIC Science & Technology

    1982-01-01

    RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR 15786 SOME...T.M. 16476 STATIC DISCHARGE MODELING TECHNIQUES FOR EVALUATION OF INTEGRATED (FET) CIRCUIT DESTRUCTION 16145 MODULE ELECTAOSTATIC DISCHARGE SIMULATOR...PLASTIC LSI CIRCUITS PRklE, L.A., II 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR PRICE, R.D. 13455 EVALUATION OF PLASTIC LSI CIRCUITS PSHAENICH, A

  14. Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Wei

    Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equationsmore » such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.« less

  15. Methodology and application of high performance electrostatic field simulation in the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Corona, Thomas

    The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay experiment designed to make a direct, model independent measurement of the electron neutrino mass. The experimental apparatus employs strong ( O[T]) magnetostatic and (O[10 5 V/m]) electrostatic fields in regions of ultra high (O[10-11 mbar]) vacuum in order to obtain precise measurements of the electron energy spectrum near the endpoint of tritium beta-decay. The electrostatic fields in KATRIN are formed by multiscale electrode geometries, necessitating the development of high performance field simulation software. To this end, we present a Boundary Element Method (BEM) with analytic boundary integral terms in conjunction with the Robin Hood linear algebraic solver, a nonstationary successive subspace correction (SSC) method. We describe an implementation of these techniques for high performance computing environments in the software KEMField, along with the geometry modeling and discretization software KGeoBag. We detail the application of KEMField and KGeoBag to KATRIN's spectrometer and detector sections, and demonstrate its use in furthering several of KATRIN's scientific goals. Finally, we present the results of a measurement designed to probe the electrostatic profile of KATRIN's main spectrometer in comparison to simulated results.

  16. A novel multi-actuation CMOS RF MEMS switch

    NASA Astrophysics Data System (ADS)

    Lee, Chiung-I.; Ko, Chih-Hsiang; Huang, Tsun-Che

    2008-12-01

    This paper demonstrates a capacitive shunt type RF MEMS switch, which is actuated by electro-thermal actuator and electrostatic actuator at the same time, and than latching the switching status by electrostatic force only. Since thermal actuators need relative low voltage compare to electrostatic actuators, and electrostatic force needs almost no power to maintain the switching status, the benefits of the mechanism are very low actuation voltage and low power consumption. Moreover, the RF MEMS switch has considered issues for integrated circuit compatible in design phase. So the switch is fabricated by a standard 0.35um 2P4M CMOS process and uses wet etching and dry etching technologies for postprocess. This compatible ability is important because the RF characteristics are not only related to the device itself. If a packaged RF switch and a packaged IC wired together, the parasitic capacitance will cause the problem for optimization. The structure of the switch consists of a set of CPW transmission lines and a suspended membrane. The CPW lines and the membrane are in metal layers of CMOS process. Besides, the electro-thermal actuators are designed by polysilicon layer of the CMOS process. So the RF switch is only CMOS process layers needed for both electro-thermal and electrostatic actuations in switch. The thermal actuator is composed of a three-dimensional membrane and two heaters. The membrane is a stacked step structure including two metal layers in CMOS process, and heat is generated by poly silicon resistors near the anchors of membrane. Measured results show that the actuation voltage of the switch is under 7V for electro-thermal added electrostatic actuation.

  17. Design of a device for simultaneous particle size and electrostatic charge measurement of inhalation drugs.

    PubMed

    Zhu, Kewu; Ng, Wai Kiong; Shen, Shoucang; Tan, Reginald B H; Heng, Paul W S

    2008-11-01

    To develop a device for simultaneous measurement of particle aerodynamic diameter and electrostatic charge of inhalation aerosols. An integrated system consisting of an add-on charge measurement device and a liquid impinger was developed to simultaneously determine particle aerodynamic diameter and electrostatic charge. The accuracy in charge measurement and fine particle fraction characterization of the new system was evaluated. The integrated system was then applied to analyze the electrostatic charges of a DPI formulation composed of salbutamol sulphate-Inhalac 230 dispersed using a Rotahaler. The charge measurement accuracy was comparable with the Faraday cage method, and incorporation of the charge measurement module had no effect on the performance of the liquid impinger. Salbutamol sulphate carried negative charges while the net charge of Inhalac 230 and un-dispersed salbutamol sulphate was found to be positive after being aerosolized from the inhaler. The instantaneous current signal was strong with small noise to signal ratio, and good reproducibility of charge to mass ratio was obtained for the DPI system investigated. A system for simultaneously measuring particle aerodynamic diameter and aerosol electrostatic charges has been developed, and the system provides a non-intrusive and reliable electrostatic charge characterization method for inhalation dosage forms.

  18. ELISA - an electrostatic storage ring for low-energy ions

    NASA Astrophysics Data System (ADS)

    Pape Moeller, Soeren

    1997-05-01

    The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.

  19. Dual actuation micro-mirrors

    NASA Astrophysics Data System (ADS)

    Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.

    2018-07-01

    This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of  ± out of a geometrically allowable range of  ± at a current amplitude i  =  3 mA and a magnetic field of B  =  30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.

  20. Quantum Chemical Topology: Knowledgeable atoms in peptides

    NASA Astrophysics Data System (ADS)

    Popelier, Paul L. A.

    2012-06-01

    The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.

  1. An improved patch for radiative coolers

    NASA Astrophysics Data System (ADS)

    Bly, Vincent T.

    1993-09-01

    A unique structure for constructing the emissive patch of a spaceborne radiative cooler is shown. The structure has very high emissivity for all angles up to a designed-in maximum angle and near zero emissivity for greater angles. The structure also allows the use of high emissivity, nonconducting paints while fully complying with the NASA Electrostatic Discharge Susceptibility requirements for spacecraft. To accomplish these tasks, two previous disadvantages of prior art methods are addressed; eliminating background thermal radiation sources and problems concerning the high emissivity paints used in association with the black body radiator. A reflector consisting of an array of parabolic concentrators is separated from a black body element by an electrically conductive spacer. The concentrators serve to limit the field of view while the conductive spacer eliminates the need to use a conductive paint on the emissive element.

  2. An improved patch for radiative coolers

    NASA Astrophysics Data System (ADS)

    Bly, Vincent T.

    1993-01-01

    A unique structure for constructing the emissive patch of a spaceborne radiative cooler is shown. The structure has very high emissivity for all angles up to a designed-in maximum angle and near zero emissivity for greater angles. The structure also allows the use of high emissivity, nonconducting paints while fully complying with the NASA Electrostatic Discharge Susceptibility requirements for spacecraft. To accomplish these tasks, two previous disadvantages of prior art methods are addressed; eliminating background thermal radiation sources and problems concerning the high emissivity paints used in association with the black body radiator. A reflector consisting of an array of parabolic concentrators is separated from a black body element by an electrically conductive spacer. The concentrators serve to limit the field of view while the conductive spacer eliminates the need to use a conductive paint on the emissive element.

  3. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  4. Detecting chameleons through Casimir force measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-12-15

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field.more » As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models.« less

  5. An Electrostatic Precipitator System for the Martian Environment

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; Phillips, J. R., III; Clements, J. S.

    2012-01-01

    Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Keywords: Space applications, electrostatic precipitator, particle control, particle charging

  6. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  7. Transverse-structure electrostatic charged particle beam lens

    DOEpatents

    Moran, Michael J.

    1998-01-01

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.

  8. Macroion solutions in the cell model studied by field theory and Monte Carlo simulations.

    PubMed

    Lue, Leo; Linse, Per

    2011-12-14

    Aqueous solutions of charged spherical macroions with variable dielectric permittivity and their associated counterions are examined within the cell model using a field theory and Monte Carlo simulations. The field theory is based on separation of fields into short- and long-wavelength terms, which are subjected to different statistical-mechanical treatments. The simulations were performed by using a new, accurate, and fast algorithm for numerical evaluation of the electrostatic polarization interaction. The field theory provides counterion distributions outside a macroion in good agreement with the simulation results over the full range from weak to strong electrostatic coupling. A low-dielectric macroion leads to a displacement of the counterions away from the macroion. © 2011 American Institute of Physics

  9. The binding energies of one and two water molecules to the first transition-row metal positive ions

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.

    1989-01-01

    The bonding of water to the transition metal positive ions is electrostatic in origin. The electrostatic bonding is enhanced by a variety of mechanisms: mixing in 4p character, 4s-3d hybridization, and 4s promotion into the compact 3d orbital. The importance of these effects varies between the different metal ions due to changes in the separation of the metal ion atomic states. Furthermore, the change in the metal-water repulsion when a second water is added also changes the relative importance of the different metal asymptotes. The second water binding energy varies from being 11 kcal/mol smaller than the first for Mn(+) to 3 kcal/mol larger for V(+) and Fe(+).

  10. Graphene nanoplatelet composite 'paper' as an electrostatic actuator.

    PubMed

    Yu, Zeyang; Drzal, Lawrence T

    2018-08-03

    Graphene nanoplatelets (GnP) can be made into a thin 'paper' through vacuum filtration of GnP suspension. Electrodes were fabricated from the compressed GnP paper and then by coating the surface with epoxy. The electrostatic actuator was constructed from two parallel-aligned composite papers fixed at the anode and a cathode connected to ground. The two composite papers would then separate when a voltage was applied. The GnP paper was also modified to increase surface area by introducing porosity or adding ∼10 wt% C750 (GnP with diameter less than 1 μm); or changing the relative permittivity by adding barium titanate particles; or combining these two effects by adding CNCs. Overall the output work could be significantly improved to over 400%.

  11. Multimodal charge-induction chromatography for antibody purification.

    PubMed

    Tong, Hong-Fei; Lin, Dong-Qiang; Chu, Wen-Ning; Zhang, Qi-Lei; Gao, Dong; Wang, Rong-Zhu; Yao, Shan-Jing

    2016-01-15

    Hydrophobic charge-induction chromatography (HCIC) has advantages of high capacity, salt-tolerance and convenient pH-controlled elution. However, the binding specificity might be improved with multimodal molecular interactions. New ligand W-ABI that combining tryptophan and 5-amino-benzimidazole was designed with the concept of mutimodal charge-induction chromatography (MCIC). The indole and benzimidazole groups of the ligand could provide orientated mutimodal binding to target IgG under neutral pH, while the imidazole groups could induce the electrostatic repulsion forces for efficient elution under acidic pH. W-ABI ligand was coupled successfully onto agarose gel, and IgG adsorption behaviors were investigated. High affinity to IgG was found with the saturated adsorption capacity of 70.4 mg/ml at pH 7, and the flow rate of mobile phase showed little impact on the dynamic binding capacity. In addition, efficient elution could be achieved at mild acidic pH with high recovery. Two separation cases (IgG separation from albumin containing feedstock and monoclonal antibody purification from cell culture supernatant) were verified with high purity and recovery. In general, MCIC with the specially-designed ligand is an expanding of HCIC with improved adsorption selectivity, which would be a potential alternative to Protein A-based capture for the cost-effective purification of antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.

    PubMed

    Guo, Shuang; Qiu, Bai-Ling; Zhu, Chen-Qi; Yang, Ya-Ya Gao; Wu, Di; Liang, Qi-Hui; Han, Nan-Yin

    2016-09-15

    Gravitational field-flow fractionation (GrFFF) is a useful technique for separation and characterization for micrometer-sized particles. Elution behavior of micrometer-sized particles in GrFFF was researched in this study. Particles in GrFFF channel are subject to hydrodynamic lift forces (HLF), fluid inertial forces and gravity, which drive them to different velocities by carrier flow, resulting in a size-based separation. Effects of ionic strength, flow rate and viscosity as well as methanol were investigated using polystyrene latex beads as model particles. This study is devoted to experimental verification of the effect of every factor and their comprehensive function. All experiments were performed to show isolated influence of every variable factor. The orthogonal design test was used to evaluate various factors comprehensively. Results suggested that retention ratio of particles increases with increasing flow rate or the viscosity of carrier liquid by adjusting external forces acting on particles. In addition, retention ratio increases as ionic strength decreases because of decreased electrostatic repulsion between particles and channel accumulation wall. As far as methanol, there is no general trend due to the change of both density and viscosity. On the basis of orthogonal design test it was found that viscosity of carrier liquid plays a significant role in determining resolution of micrometer-sized particles in GrFFF. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less

  14. Electric potential and electric field imaging

    NASA Astrophysics Data System (ADS)

    Generazio, E. R.

    2017-02-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  15. Voyager spacecraft electrostatic discharge testing

    NASA Technical Reports Server (NTRS)

    Whittlesey, A.; Inouye, G.

    1980-01-01

    The program of environmental testing undergone by the Voyager spacecraft in order to simulate the transient voltage effects of electrostatic discharges expected in the energetic plasma environment of Jupiter is reported. The testing consists of studies of the electrostatic discharge characteristics of spacecraft dielectrics in a vacuum-chamber-electron beam facility, brief piece part sensitivity tests on such items as a MOSFET multiplexer and the grounding of the thermal blanket, and assembly tests of the magnetometer boom and the science boom. In addition, testing of a complete spacecraft was performed using two arc sources to simulate long and short duration discharge sources for successive spacecraft shielding and grounding improvements. Due to the testing program, both Voyager 1 and Voyager 2 experienced tolerable electrostatic discharge-caused transient anomalies in science and engineering subsystems, however, a closer duplication of the spacecraft environment is necessary to predict and design actual spacecraft responses more accurately.

  16. Use of Molecular Dynamics for the Refinement of an Electrostatic Model for the In Silico Design of a Polymer Antidote for the Anticoagulant Fondaparinux

    PubMed Central

    Kwok, Ezra; Gopaluni, Bhushan; Kizhakkedathu, Jayachandran N.

    2013-01-01

    Molecular dynamics (MD) simulations results are herein incorporated into an electrostatic model used to determine the structure of an effective polymer-based antidote to the anticoagulant fondaparinux. In silico data for the polymer or its cationic binding groups has not, up to now, been available, and experimental data on the structure of the polymer-fondaparinux complex is extremely limited. Consequently, the task of optimizing the polymer structure is a daunting challenge. MD simulations provided a means to gain microscopic information on the interactions of the binding groups and fondaparinux that would have otherwise been inaccessible. This was used to refine the electrostatic model and improve the quantitative model predictions of binding affinity. Once refined, the model provided guidelines to improve electrostatic forces between candidate polymers and fondaparinux in order to increase association rate constants. PMID:27006916

  17. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane

    PubMed Central

    2016-01-01

    Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358

  18. STABILITY OF A CYLINDRICAL SOLUTE-SOLVENT INTERFACE: EFFECT OF GEOMETRY, ELECTROSTATICS, AND HYDRODYNAMICS.

    PubMed

    Li, B O; Sun, Hui; Zhou, Shenggao

    The solute-solvent interface that separates biological molecules from their surrounding aqueous solvent characterizes the conformation and dynamics of such molecules. In this work, we construct a solvent fluid dielectric boundary model for the solvation of charged molecules and apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The solvent fluid is assumed to be incompressible and is described by the Stokes equation. The solute is modeled simply by the ideal-gas law. All the viscous force, hydrostatic pressure, solute-solvent van der Waals interaction, surface tension, and electrostatic force are balanced at the solute-solvent interface. We model the electrostatics by Poisson's equation in which the solute-solvent interface is treated as a dielectric boundary that separates the low-dielectric solute from the high-dielectric solvent. For a cylindrical geometry, we find multiple cylindrically shaped equilibrium interfaces that describe polymodal (e.g., dry and wet) states of hydration of an underlying molecular system. These steady-state solutions exhibit bifurcation behavior with respect to the charge density. For their linearized systems, we use the projection method to solve the fluid equation and find the dispersion relation. Our asymptotic analysis shows that, for large wavenumbers, the decay rate is proportional to wavenumber with the proportionality half of the ratio of surface tension to solvent viscosity, indicating that the solvent viscosity does affect the stability of a solute-solvent interface. Consequences of our analysis in the context of biomolecular interactions are discussed.

  19. [Advances of poly (ionic liquid) materials in separation science].

    PubMed

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  20. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like!

    PubMed

    Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi

    2018-03-15

    Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Coupling of electrostatic ion cyclotron and ion acoustic waves in the solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreeraj, T., E-mail: sreerajt13@iigs.iigm.res.in; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: gslakhina@gmail.com

    2016-08-15

    The coupling of electrostatic ion cyclotron and ion acoustic waves is examined in three component magnetized plasma consisting of electrons, protons, and alpha particles. In the theoretical model relevant to solar wind plasma, electrons are assumed to be superthermal with kappa distribution and protons as well as alpha particles follow the fluid dynamical equations. A general linear dispersion relation is derived for such a plasma system which is analyzed both analytically and numerically. For parallel propagation, electrostatic ion cyclotron (proton and helium cyclotron) and ion acoustic (slow and fast) modes are decoupled. For oblique propagation, coupling between the cyclotron andmore » acoustic modes occurs. Furthermore, when the angle of propagation is increased, the separation between acoustic and cyclotron modes increases which is an indication of weaker coupling at large angle of propagation. For perpendicular propagation, only cyclotron modes are observed. The effect of various parameters such as number density and temperature of alpha particles and superthermality on dispersion characteristics is examined in details. The coupling between various modes occurs for small values of wavenumber.« less

  2. Environmentally friendly power generator based on moving liquid dielectric and double layer effect.

    PubMed

    Huynh, D H; Nguyen, T C; Nguyen, P D; Abeyrathne, C D; Hossain, Md S; Evans, R; Skafidas, E

    2016-06-03

    An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(10(8)μW)/(mm(2)HzV(2)) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting.

  3. Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the Aβ42 peptide and its variants† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00215g Click here for additional data file.

    PubMed Central

    Meisl, Georg; Yang, Xiaoting

    2017-01-01

    The aggregation of the amyloid β peptide (Aβ42), which is linked to Alzheimer's disease, can be altered significantly by modulations of the peptide's intermolecular electrostatic interactions. Variations in sequence and solution conditions have been found to lead to highly variable aggregation behaviour. Here we modulate systematically the electrostatic interactions governing the aggregation kinetics by varying the ionic strength of the solution. We find that changes in the solution ionic strength induce a switch in the reaction pathway, altering the dominant mechanisms of aggregate multiplication. This strategy thereby allows us to continuously sample a large space of different reaction mechanisms and develop a minimal reaction network that unifies the experimental kinetics under a wide range of different conditions. More generally, this universal reaction network connects previously separate systems, such as charge mutants of the Aβ42 peptide, on a continuous mechanistic landscape, providing a unified picture of the aggregation mechanism of Aβ42. PMID:28979758

  4. Dust particle injector for hypervelocity accelerators provides high charge-to-mass ratio

    NASA Technical Reports Server (NTRS)

    Berg, O. E.

    1966-01-01

    Injector imparts a high charge-to-mass ratio to microparticles and injects them into an electrostatic accelerator so that the particles are accelerated to meteoric speeds. It employs relatively large masses in the anode and cathode structures with a relatively wide separation, thus permitting a large increase in the allowable injection voltages.

  5. Advanced Filter Technology For Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  6. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-04

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.

  7. Bus Vent Design Evolution for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2010-01-01

    As a spacecraft undergoes ascent in a launch vehicle, its pressure environment transitions from one atmosphere to high vacuum in a matter of minutes. Venting of internal cavities is necessary to prevent the buildup of pressure differentials across cavity walls. Opposing the need to vent these volumes freely into space are thermal, optical, and electrostatic requirements for limiting or prohibiting the intrusion of unwanted energy into the same cavities. Bus vent design evolution is discussed for the Solar Dynamics Observatory. Design changes were influenced by a number of factors and concerns, such as contamination control, electrostatic discharge, changes in bus material, and driving fairing ascent pressure for a launch vehicle that was just entering service as this satellite project had gotten underway.

  8. A novel MEMS inertial switch with a reinforcing rib structure and electrostatic power assist to prolong the contact time

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wang, Yan; Yang, Zhuoqing; Ding, Guifu; Zhao, Xiaolin; Wang, Hong

    2018-03-01

    The MEMS inertial switch is widely used in various industries owing to its advantage of small size, high integration, low power consumption and low costs, especially in the timing of Internet of things, such as toys, handheld devices, accessories and vibration testing. This paper provided a novel inertial switch with a reinforcing rib structure and electrostatic power assist. The designed inertial switch can reduce the complexity of the post-processing circuit and broaden its application prospect. The continuous electrostatic force can extend the contact time of the designed inertia switch before the leakage of electricity ends. The moving electrode with a reinforcing rib structure can effectively restrain the bending of the lower surface of moving electrode caused by residual stress. The array-type fixed electrode can ensure stable contact between the electrodes when the device is sensitive to external shocks. The dynamic displacement-time curve can be simulated by the COMSOL finite element simulation software. The laminated plating process is used to produce the designed inertial switch and the drop hammer acceleration monitoring system is used to test the fabricated device. The results indicate that, compared with the traditional design, the bouncing phenomenon can be prevented and extend the contact time to 336μs.

  9. Exploring the Feasibility of Electrostatic Shielding for Spacecrafts

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Youngquist, R. C.

    2005-01-01

    NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation explores the feasibility of using electrostatic shielding in concert with innovative materials shielding and protection technologies. The asymmetries of the radiation shielding problem would be exploited in the electrostatics shielding process. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn about the advantages the electrostatic shielding, should it be successful, would bring to the radiation protection design process.

  10. Fluorescence turn-on responses of anionic and cationic conjugated polymers toward proteins: effect of electrostatic and hydrophobic interactions.

    PubMed

    Pu, Kan-Yi; Liu, Bin

    2010-03-11

    Cationic and anionic poly(fluorenyleneethynylene-alt-benzothiadiazole)s (PFEBTs) are designed and synthesized via Sonagashira coupling reaction to show light-up signatures toward proteins. Due to the charge transfer character of the excited states, the fluorescence of PFEBTs is very weak in aqueous solution, while their yellow fluorescence can be enhanced by polymer aggregation. PFEBTs show fluorescence turn-on rather than fluorescence quenching upon complexation with proteins. Both electrostatic and hydrophobic interactions between PFEBTs and proteins are found to improve the polymer fluorescence, the extent of which is dependent on the nature of the polymer and the protein. Changes in solution pH adjust the net charges of proteins, providing an effective way to manipulate electrostatic interactions and in turn the increment in the polymer fluorescence. In addition, the effect of protein digestion on the fluorescence of polymer/protein complexes is probed. The results indicate that electrostatic interaction induced polymer fluorescence increase cannot be substantially reduced through cleaving protein into peptide fragments. In contrast, hydrophobic interactions, mainly determined by the hydrophobicity of proteins, can be minimized by digestion, imparting a light-off signature for the polymer/protein complexes. This study thus not only highlights the opportunities of exerting nonspecific interactions for protein sensing but also reveals significant implications for biosensor design.

  11. New technology for recovering residual metals from nonmetallic fractions of waste printed circuit boards.

    PubMed

    Zhang, Guangwen; He, Yaqun; Wang, Haifeng; Zhang, Tao; Wang, Shuai; Yang, Xing; Xia, Wencheng

    2017-06-01

    Recycling of waste printed circuit boards is important for environmental protection and sustainable resource utilization. Corona electrostatic separation has been widely used to recycle metals from waste printed circuit boards, but it has poor separation efficiency for finer sized fractions. In this study, a new process of vibrated gas-solid fluidized bed was used to recycle residual metals from nonmetallic fractions, which were treated using the corona electrostatic separation technology. The effects of three main parameters, i.e., vibration frequency, superficial air flow velocity, and fluidizing time on gravity segregation, were investigated using a vibrating gas-solid fluidized bed. Each size fraction had its own optimum parameters. Corresponding to their optimal segregation performance, the products from each experiment were analyzed using an X-ray fluorescence (XRF) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). From the results, it can be seen that the metal recoveries of -1+0.5mm, -0.5+0.25mm, and -0.25mm size fractions were 86.39%, 82.22% and 76.63%, respectively. After separation, each metal content in the -1+0.5 or -0.5+0.25mm size fraction reduced to 1% or less, while the Fe and Cu contents are up to 2.57% and 1.50%, respectively, in the -0.25mm size fraction. Images of the nonmetallic fractions with a size of -0.25mm indicated that a considerable amount of clavate glass fibers existed in these nonmetallic fractions, which may explain why fine particles had the poorest segregation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase

    NASA Astrophysics Data System (ADS)

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.

    2015-11-01

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  13. Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase.

    PubMed

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L

    2015-11-07

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.

  14. Free energy landscapes of encounter complexes in protein-protein association.

    PubMed

    Camacho, C J; Weng, Z; Vajda, S; DeLisi, C

    1999-03-01

    We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.

  15. A curved electrode electrostatic actuator designed for large displacement and force in an underwater environment

    NASA Astrophysics Data System (ADS)

    Preetham, B. S.; Lake, Melinda A.; Hoelzle, David J.

    2017-09-01

    There is a need for the development of large displacement (O (10-6) m) and force (O (10-6) N) electrostatic actuators with low actuation voltages (<  ±8 V) for underwater bio-MEMS applications. In this paper, we present the design, fabrication, and characterization of a curved electrode electrostatic actuator in a clamped-clamped beam configuration meant to operate in an underwater environment. Our curved electrode actuator is unique in that it operates in a stable manner past the pull-in instability. Models based on the Rayleigh-Ritz method accurately predict the onset of static instability and the displacement versus voltage function, as validated by quasistatic experiments. We demonstrate that the actuator is capable of achieving a large peak-to-peak displacement of 19.5 µm and force of 43 µN for a low actuation voltage of less than  ±8 V and is thus appropriate for underwater bio-MEMS applications.

  16. Material design of two-phase-coexisting niobate dielectrics by electrostatic adsorption

    NASA Astrophysics Data System (ADS)

    Fuchigami, Teruaki; Yoshida, Katsuya; Kakimoto, Ken-ichi

    2017-10-01

    A material design process using electrostatic adsorption was proposed to synthesize composite ceramics with a two-phase-coexisting structure. Supported particles were fabricated by the electrostatic adsorption of (Na,K)NbO3-SrTiO3 (NKN-ST) nanoparticles on (Na,K)NbO3-Ba2NaNb5O15 (NKN-BNN) particles. NKN-ST and NKN-BNN were well dispersed with no aggregate in NKN-ST/NKN-BNN ceramics synthesized using the supported particles in comparison with ceramics synthesized using a mixture obtained by simply mixing NKN-ST and NKN-BNN powder. The temperature dependence of dielectric constant is closely related to the composite structure and the dielectric constant was stable in a wide temperature range from room temperature to 400 °C. Capacitance for DC bias was also insensitive to temperature in the range of 0-2 kV/mm, and the change rate of the capacitance was within ±5% in the temperature range from room temperature to 200 °C.

  17. Electrostatically Levitated Ring-Shaped Rotational-Gyro/Accelerometer

    NASA Astrophysics Data System (ADS)

    Murakoshi, Takao; Endo, Yasuo; Fukatsu, Keisuke; Nakamura, Sigeru; Esashi, Masayoshi

    2003-04-01

    This paper reports an electrostatically levitated inertia measurement system which is based on the principle of a rotational gyro. The device has several advantages: the levitation of the rotor in a vacuum eliminates mechanical friction resulting in high sensitivity; the position control for the levitation allows accelerations to be sensed in the tri-axis; and the fabrication of the device by a micromachining technique has the cost advantages afforded by miniaturization. Latest measurements yield a noise floor of the gyro and that of the accelerometer as low as 0.15 deg/h1/2 and 30 μG/Hz1/2, respectively. This performance is achieved by a new sensor design. To further improve of the previous device, a ring-shaped structure is designed and fabricated by deep reactive ion etching using inductively coupled plasma. The rotor levitation is performed with capacitive detection and electrostatic actuation. Multiaxis closed-loop control is realized by differential capacitance sensing and frequency multiplying. The rotation of the micro gyro is based on the principle of a planar variable capacitance motor.

  18. Planetary exploration with electrically propelled vehicles.

    NASA Technical Reports Server (NTRS)

    Stuhlinger, E.

    1972-01-01

    The characteristics of propulsion systems required for carrying out flight missions within the solar system, as desired by planetary physicists and astronomers, are reviewed. It is shown that an encouraging answer to these requirements is available in the form of electrostatic or ion propulsion systems. The design and performance characteristics of an electrostatic thrustor employing an ion source, accelerating electrode, beam neutralizer, and power source are discussed, together with those of the Kaufmann engine (electrostatic thrustor employing bombardment type ionization). More demanding missions which will become feasible with the advent of nuclear-electric power sources (such as the incore thermionic reactor) may include close orbiters around all the planets, and asteroid and cometary missions.

  19. Design and Fabrication of Electrostatically Actuated Silicon Microshutters Arrays

    NASA Technical Reports Server (NTRS)

    Oh, L.; Li, M.; Kim, K.; Kelly, D.; Kutyrev, A.; Moseley, S.

    2017-01-01

    We have developed a new fabrication process to actuate microshutter arrays (MSA) electrostatically at NASA Goddard Space Flight Center. The microshutters are fabricated on silicon with thin silicon nitride membranes. A pixel size of each microshutter is 100 x 200 micrometers 2. The microshutters rotate 90 degrees on torsion bars. The selected microshutters are actuated, held, and addressed electrostatically by applying voltages on the electrodes the front and back sides of the microshutters. The atomic layer deposition (ALD) of aluminum oxide was used to insulate electrodes on the back side of walls; the insulation can withstand over 100 V. The ALD aluminum oxide is dry etched, and then the microshutters are released in vapor HF.

  20. Inertial-Electrostatic Confinement (IEC) Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Nadler, Jon

    1999-01-01

    An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using EEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois@Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.

  1. Inertial-Electrostatic Confinement (IEC) Fusion For Space Propulsion

    NASA Technical Reports Server (NTRS)

    Nadler, Jon

    1999-01-01

    An Inertial-Electrostatic Confinement (IEC) device was assembled at the Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) to study the possibility of using IEC technology for deep space propulsion and power. Inertial-Electrostatic Confinement is capable of containing a nuclear fusion plasma in a series of virtual potential wells. These wells would substantially increase plasma confinement, possibly leading towards a high-gain, breakthrough fusion device. A one-foot in diameter IEC vessel was borrowed from the Fusion Studies Laboratory at the University of Illinois @ Urbana-Champaign for the summer. This device was used in initial parameterization studies in order to design a larger, actively cooled device for permanent use at the PRC.

  2. HESQ (Helical Electrostatic Quadrupole), a low energy beam transport for the SSC linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raparia, D.

    A Helical Electrostatic Quadrupole (HESQ) is an option for the low energy beam transport (LEBT) of the SSC linac to transport and match a 35 keV H{sup {minus}} beam from a circular symmetric Magnetron ion source to a 428 MHz RFQ. Being an electrostatic focusing lens, the HESQ avoids neutralization of the H{sup {minus}} beam due to the background gas. The HESQ lenses provide stronger first-order focusing in contrast to weak second-order focusing of einzel lenses and is also stronger than alternating gradient focusing. In this paper, we will present a design and results of a PIC code simulation withmore » space charge.« less

  3. A new method for achieving enhanced dielectric response over a wide temperature range

    DOE PAGES

    Maurya, Deepam; Sun, Fu -Chang; Pamir Alpay, S.; ...

    2015-10-19

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors.

  4. A new method for achieving enhanced dielectric response over a wide temperature range

    PubMed Central

    Maurya, Deepam; Sun, Fu-Chang; Pamir Alpay, S.; Priya, Shashank

    2015-01-01

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors. PMID:26477391

  5. Encapsulating Bi2Ti2O7 (BTO) with reduced graphene oxide (RGO): an effective strategy to enhance photocatalytic and photoelectrocatalytic activity of BTO.

    PubMed

    Gupta, Satyajit; Subramanian, Vaidyanathan Ravi

    2014-11-12

    Multimetal oxides (AxByOz) offer a higher degree of freedom compared to single metal oxides (AOx) in that these oxides facilitate (i) designing nanomaterials with greater stability, (ii) tuning of the optical bandgap, and (iii) promoting visible light absorption. However, all AxByOz materials such as pyrochlores (A2B2O7)--referred to here as band-gap engineered composite oxide nanomaterials or BECONs--are traditionally prone to severe charge recombination at their surface. To alleviate the charge recombination, an effective strategy is to employ reduced graphene oxide (RGO) as a charge separator. The BECON and the RGO with oppositely charged functional groups attached to them can be integrated at the interface by employing a simple electrostatic self-assembly approach. As a case study, the approach is demonstrated using the Pt-free pyrochlore bismuth titanate (BTO) with RGO, and the application of the composite is investigated for the first time. When tested as a photocatalyst toward hydrogen production, an increase of ∼ 250% using BTO in the presence of RGO was observed. Further, photoelectrochemical measurements indicate an enhancement of ∼ 130% in the photocurrent with RGO inclusion. These two results firmly establish the viability of the electrostatic approach and the inclusion of RGO. The merits of the RGO addition is identified as (i) the RGO-assisted improvement in the separation of the photogenerated charges of BTO, (ii) the enhanced utilization of the charges in a photocatalytic process, and (iii) the maintenance of the BTO/RGO structural integrity after repeated use (established through reusability analysis). The success of the self-assembly strategy presented here lays the foundation for developing other forms of BECONs, belonging to perovskites (ABO3), sillenite (A12BO20), or delafossite (ABO2) groups, hitherto written off due to limited or no photoelectrochemicalactivity.

  6. Pentachlorophenol removal from water using surfactant-enhanced filtration through low-pressure thin film composite membranes.

    PubMed

    Kumar, Yogesh; Popat, K M; Brahmbhatt, H; Ganguly, B; Bhattacharya, A

    2008-06-15

    Removal of pentachlorophenol from water is investigated using the surfactant-enhanced cross-flow membrane filtration technique in which anionic surfactant; sodium dodecyl sulfate (SDS) is the carrier of pentachlorophenol. The separation performances are studied by varying SDS concentrations (

  7. Design and Manufacturing of Desalination System Powered by Solar Energy Using CDI Technique

    NASA Astrophysics Data System (ADS)

    Rostami, Mohammad Sajjad; Khashehchi, Morteza; Pipelzadeh, Ehsan

    2017-11-01

    Capacitive deionization (CDI) is an emerging energy efficient, low pressure and low capital intensive desalination process where ions are separated by a pure electrostatic force imposed by a small bias potential as low as 1 V That funded by an external Renewable (Solar) power supply to materials with high specific surface area. The main objective of this configuration is to separate the cation and anions on oppositely charged electrodes. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Various electrode materials have been developed in the past, which have suffered from instability and lack of performance. Preliminary experimental results using carbon black, graphite powder, graphene ∖ graphite ∖ PTFE (Active ∖ Conductive ∖ binder) show that the graphene reduced via urea method is a suitable method to develop CDI electrode materials. Although some progress has been made, production of efficient and stable carbon based electrode materials for large scale desalination has not been fully realized. A new desalination technique using capacitive deionization.

  8. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    NASA Astrophysics Data System (ADS)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water which should theoretically outperform currently available devices, as through our previous work we have developed techniques allowing for transport manipulation not current accessible in traditional membrane motifs.

  9. Characterization of the Electrostatic Environment of Launchers

    NASA Astrophysics Data System (ADS)

    Soyah, Jamila; Mantion, Pascal; Herlem, Yannick

    2016-05-01

    The purpose of this study was to update knowledge in characterization of the electrostatic environment of launchers in order to be able to propose reductions of design constraints.The first part of this study showed that flashover discharges are the most energetic discharges likely to occur on a launcher. They are mostly due to accumulations of charges by triboelectricity on the external surface of the launcher while flying through clouds containing a lot of small solid particles.Actually flashover discharges are mitigated by limiting the surface's resistance of dielectric materials such as thermal protection set on the external skin of the launcher, thanks to antistatic paints that avoid significant accumulations of charges.But this specified limitation leads to a lot of non- conformances during production phases and, as a result, this leads to additional costs and delays in launches campaigns. That is why on-ground tests have been defined in order to assess the accessibility of a relaxation of those specifications, which would reduce non-conformances.On-ground tests have been carried out, in the second part, on samples of thermal protections covered with antistatic paints with different degraded values of surface resistance. These tests aimed at checking in which conditions a surface discharge can occur in order to deduce a relationship between characteristics of the samples (surface resistance, half-discharge time) and the occurrence of a surface discharge, at ambient pressure and at low pressure.In the third part, in-flight experiments have been defined in order to confirm some hypotheses considered in the study and to assess some parameters in a more accurate way like the incoming charges density per surface unit or the voltage between stages when they get separated, in order to assess more accurately whether the unwinding equalization wire dedicated to maintain the electrostatic balance between stages is necessary or not.

  10. Simulation of external and internal electrostatic discharges at the spacecraft system test level

    NASA Technical Reports Server (NTRS)

    Whittlesey, A.; Leung, P.

    1984-01-01

    Environmental test activities concerned with space plasma-caused charging and discharing phenomena are discussed. It is pointed out that the origin of such an electrostatic discharge (ESD) is charging of spacecraft dielectrics by an energetic plasma in geosynchronous orbit, Jupiter's magnetosphere, or other similar space environments. In dealing with environmental testing problems, it is necessary to define the location and magnitude of any ESD's in preparation for a subsequent simulation of the given conditions. Questions of external and internal charging are discussed separately. The environmental hazard from an external discharge can be assessed by viewing the dielectric surface as one side of a parallel plate capacitor. In the case of internal charging, the level of environmental concern depends on the higher energy spectrum of the ambient electrons.

  11. Microencapsulation and Electrostatic Processing Method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  12. Electrical stress and strain in lunar regolith simulants

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Richard, D.; Davis, S.

    2011-11-01

    Experiments to entrain dust with electrostatic and fluid-dynamic forces result in particulate clouds of aggregates rather than individual dust grains. This is explained within the framework of Griffith-flaw theory regarding the comminution/breakage of weak solids. Physical and electrical inhomogeneities in powders are equivalent to microcracks in solids insofar as they facilitate failure at stress risers. Electrical charging of powders induces bulk sample stresses similar to mechanical stresses experienced by strong solids, depending on the nature of the charging. A powder mass therefore "breaks" into clumps rather than separating into individual dust particles. This contrasts with the expectation that electrical forces on the Moon will eject a submicron population of dust from the regolith into the exosphere. A lunar regolith will contain physical and electrostatic inhomogeneities similar to those in most charged powders.

  13. Interaction between two point-like charges in nonlinear electrostatics

    NASA Astrophysics Data System (ADS)

    Breev, A. I.; Shabad, A. E.

    2018-01-01

    We consider two point-like charges in electrostatic interaction within the framework of a nonlinear model, associated with QED, that provides finiteness of their field energy. We find the common field of the two charges in a dipole-like approximation, where the separation between them R is much smaller than the observation distance r : with the linear accuracy with respect to the ratio R / r, and in the opposite approximation, where R≫ r, up to the term quadratic in the ratio r / R. The consideration proposes the law a+b R^{1/3} for the energy, when the charges are close to one another, R→ 0. This leads to the singularity of the force between them to be R^{-2/3}, which is weaker than the Coulomb law, R^{-2}.

  14. Separation and Detection of Toxic Gases with a Silicon Micromachined Gas Chromatography System

    NASA Technical Reports Server (NTRS)

    Kolesar, Edward S.; Reston, Rocky R.

    1995-01-01

    A miniature gas chromatography (GC) system was designed and fabricated using silicon micromachining and integrated circuit (IC) processing techniques. The silicon micromachined gas chromatography system (SMGCS) is composed of a miniature sample injector that incorporates a 10 microliter sample loop; a 0.9 meter long, rectangular shaped (300 micrometer width and 10 micrometer height) capillary column coated with a 0.2 micrometer thick copper phthalocyanine (CuPc) stationary phase; and a dual detector scheme based upon a CuPc-coated chemiresistor and a commercially available 125 micrometer diameter thermal conductivity detector (TCD) bead. Silicon micromachining was employed to fabricate the interface between the sample injector and the GC column, the column itself, and the dual detector cavity. A novel IC thin-film processing technique was developed to sublime the CuPc stationary phase coating on the column walls that were micromachined in the host silicon wafer substrate and Pyrex (r) cover plate, which were then electrostatically bonded together. The SMGCS can separate binary gas mixtures composed of parts-per-million (ppm) concentrations of ammonia (NH3) and nitrogen dioxide (NO2) when isothermally operated (55-80 degrees C). With a helium carrier gas and nitrogen diluent, a 10 microliter sample volume containing ammonia and nitrogen dioxide injected at 40 psi ((2.8 x 10(exp 5)Pa)) can be separated in less than 30 minutes.

  15. Tunable dual-band graphene-based infrared reflectance filter.

    PubMed

    Goldflam, Michael D; Ruiz, Isaac; Howell, Stephen W; Wendt, Joel R; Sinclair, Michael B; Peters, David W; Beechem, Thomas E

    2018-04-02

    We experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm -1 . Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.

  16. Band structure engineering of 2D materials using patterned dielectric superlattices.

    PubMed

    Forsythe, Carlos; Zhou, Xiaodong; Watanabe, Kenji; Taniguchi, Takashi; Pasupathy, Abhay; Moon, Pilkyung; Koshino, Mikito; Kim, Philip; Dean, Cory R

    2018-05-07

    The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals 1-5 . Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40 nm wavelength superlattices and report fractal Hofstadter spectra 6-8 under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability.

  17. Beneficiation of lunar ilmenite

    NASA Technical Reports Server (NTRS)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  18. G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics

    DOE PAGES

    Collins, Liam; Belianinov, Alex; Proksch, Roger; ...

    2016-05-09

    We develop a full information capture approach for Magnetic Force Microscopy (MFM), referred to as generalized mode (G-Mode) MFM. G-Mode MFM acquires and stores the full data stream from the photodetector at sampling rates approaching the intrinsic photodiode limit. The data can be subsequently compressed, denoised, and analyzed, without information loss. Also, 3 G-Mode MFM is implemented and compared to traditional heterodyne based MFM on model systems including domain structures in ferromagnetic Yttrium Iron Garnet (YIG) and electronically and magnetically inhomogeneous high entropy alloy, CoFeMnNiSn. We investigate the use of information theory to mine the G-Mode MFM data and demonstratemore » its usefulness for extracting information which may be hidden in traditional MFM modes, including signatures of nonlinearities and mode coupling phenomena. Finally we demonstrate detection and separation of magnetic and electrostatic tip-sample interactions from a single G-Mode image, by analyzing the entire frequency response of the cantilever. G-Mode MFM is immediately implementable on any AFM platform and as such is expected to be a useful technique for probing spatiotemporal cantilever dynamics and mapping material properties as well as their mutual interactions.« less

  19. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Schiesko, L.; Taliercio, C.; Trevisan, L.

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  20. Electrostatic sensors for SPIDER experiment: design, manufacture of prototypes, and first tests.

    PubMed

    Brombin, M; Spolaore, M; Serianni, G; Barzon, A; Franchin, L; Pasqualotto, R; Pomaro, N; Schiesko, L; Taliercio, C; Trevisan, L

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  1. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Spolaore, M.; Serianni, G.

    2014-02-15

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioningmore » tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.« less

  2. The development of enabling technologies for producing active interrogation beams.

    PubMed

    Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A

    2010-10-01

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  3. High Voltage Design Considerations for the Electrostatic Septum for the Mu2e Beam Resonant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Matthew L.; Jensen, C.; Morris, D.

    aTwo electrostatic septa (ESS) are being designed for the slow extraction of 8GeV proton beam for the Mu2e experiment at Fermilab. Special attention is given to the high voltage components that affect the performance of the septa. The components under consideration are the high voltage (HV) feedthrough, cathode standoff (CS), and clearing electrode ceramic standoffs (CECS). Previous experience with similar HV systems at Fermilab was used to define the evaluation criteria of the design of the high voltage components. Using electric field simulation software, high E-field intensities on the components and integrated field strength along the surface of the dielectricmore » material were minimized. Here we discuss the limitations found and improvements made based on those studies.« less

  4. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  5. Hydration effects on the electrostatic potential around tuftsin.

    PubMed

    Valdeavella, C V; Blatt, H D; Yang, L; Pettitt, B M

    1999-08-01

    The electrostatic potential and component dielectric constants from molecular dynamics (MD) trajectories of tuftsin, a tetrapeptide with the amino acid sequence Thr-Lys-Pro-Arg in water and in saline solution are presented. The results obtained from the analysis of the MD trajectories for the total electrostatic potential at points on a grid using the Ewald technique are compared with the solution to the Poisson-Boltzmann (PB) equation. The latter was solved using several sets of dielectric constant parameters. The effects of structural averaging on the PB results were also considered. Solute conformational mobility in simulations gives rise to an electrostatic potential map around the solute dominated by the solute monopole (or lowest order multipole). The detailed spatial variation of the electrostatic potential on the molecular surface brought about by the compounded effects of the distribution of water and ions close to the peptide, solvent mobility, and solute conformational mobility are not qualitatively reproducible from a reparametrization of the input solute and solvent dielectric constants to the PB equation for a single structure or for structurally averaged PB calculations. Nevertheless, by fitting the PB to the MD electrostatic potential surfaces with the dielectric constants as fitting parameters, we found that the values that give the best fit are the values calculated from the MD trajectories. Implications of using such field calculations on the design of tuftsin peptide analogues are discussed.

  6. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: phase diagrams and molecular dynamic simulations.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2013-06-28

    Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.

  7. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance

    NASA Astrophysics Data System (ADS)

    Acome, E.; Mitchell, S. K.; Morrissey, T. G.; Emmett, M. B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C.

    2018-01-01

    Existing soft actuators have persistent challenges that restrain the potential of soft robotics, highlighting a need for soft transducers that are powerful, high-speed, efficient, and robust. We describe a class of soft actuators, termed hydraulically amplified self-healing electrostatic (HASEL) actuators, which harness a mechanism that couples electrostatic and hydraulic forces to achieve a variety of actuation modes. We introduce prototypical designs of HASEL actuators and demonstrate their robust, muscle-like performance as well as their ability to repeatedly self-heal after dielectric breakdown—all using widely available materials and common fabrication techniques. A soft gripper handling delicate objects and a self-sensing artificial muscle powering a robotic arm illustrate the wide potential of HASEL actuators for next-generation soft robotic devices.

  8. Electrostatic Charging of Polymers by Particle Impact at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mantovani, J. G.; Buhler, C. R.; Hogue, M. D.; Nowicki, A. W.; Groop, E. E.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Studies of the electrostatic interaction between micrometer-sized particles and polymer surfaces are of great interest to NASA's planetary exploration program. The unmanned landing missions to Mars planned for this decade as well as the possible manned missions that might take place during the second decade of this century require a better understanding of the electrostatic response of the materials used in landing crafts and equipment when exposed to wind-blown dust or to surface dust and sand particles. We report on preliminary experiments designed to measure the electrostatic charge developed on five polymer surfaces as they are impacted simultaneously by Mars simulant particles less than 5 micrometers in diameter moving at 20 m/s. Experiments were performed in a CO2 atmosphere at 10 mbars of pressure using a particle delivery method that propels the particles with contact. Experiments were also performed in dry air at atmospheric pressures using a pressurized particle delivery system. The five polymer surfaces, commonly used in space applications, were chosen so that they span the triboelectric series.

  9. Electric Potential and Electric Field Imaging with Applications

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  10. Investigation of the phenomenon of electrostatic compromise of a plastic fiber heat exchanger.

    PubMed

    Elgas, R J

    1999-03-01

    The use of a new generation of blood oxygenator design using plastic fibers for the heat exchange material is growing. The benefits of a plastic heat exchange material are improved biocompatibility and performance over some of the traditional metals used. During the initial period of clinical use of one of these new oxygenators, there were reports of four blood-to-water leaks. No patient complications were associated with these leaks, but the product was withdrawn from the market. After a thorough evaluation, the cause of the leaks was found to be an electrostatic discharge that occurred within the heat exchanger during priming of the extracorporeal circuit. It was found that an electrostatic potential between the blood path and the water path of the heat exchanger is generated as the prime solution is recirculated by a roller pump with polyvinyl chloride (PVC) pumphead tubing. The magnitude of the potential generated was found to vary with the make and model of the roller pump. If this voltage exceeds the dielectric strength of the fiber, a discharge through the wall of a single heat exchange fiber will occur and produce a hole. Several solutions to this problem of roller pumps generating an electrostatic charge when used with PVC pumphead tubing were identified. Centrifugal blood pumps and roller pumps using silicone rubber pumphead tubing were found to generate no significant electrostatic potential between the blood path and the water path. Another solution, a charge equalization line (CEL), was designed to provide a conductive path for the charge to equilibrate across the fiber wall. The CEL can be either external or internal to the oxygenator. Each of these solutions was validated and the product has been reintroduced for clinical use.

  11. CFD-ACE+: a CAD system for simulation and modeling of MEMS

    NASA Astrophysics Data System (ADS)

    Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha

    1999-03-01

    Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.

  12. Design of an electrostatic phase shifting device for biological transmission electron microscopy.

    PubMed

    Koeck, Philip J B

    2018-04-01

    I suggest an electrostatic phase plate designed to broaden the contrast transfer function of a transmission electron microscope operated close to Scherzer defocus primarily in the low resolution direction. At higher defocus the low frequency behavior is equal to that close to Scherzer defocus, but CTF-correction becomes necessary to extend image interpretation to higher resolution. One simple realization of the phase plate consists of two ring shaped electrodes symmetrically surrounding the central beam. Since no physical components come into contact with the central beam and charge on the electrodes is controlled by an external voltage supply, problems with uncontrolled charging are expected to be reduced. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Passive membrane penetration by ZnO nanoparticles is driven by the interplay of electrostatic and phase boundary conditions.

    PubMed

    Tiwari, Anuj; Prince, Ashutosh; Arakha, Manoranjan; Jha, Suman; Saleem, Mohammed

    2018-02-15

    The internalization of nanoparticles through the biological membrane is of immense importance for biomedical applications. A fundamental understanding of the lipid specificity and the role of the membrane biochemical and physical forces at play in modulating penetration are lacking. The current understanding of nanoparticle-membrane interaction is drawn mostly from computational studies and lacks sufficient experimental evidence. Herein, using confocal fluorescence imaging and potentiometric dye-based fluorimetry, we first investigated the interaction of ZnONP in both multi-component and individual lipid membranes using cell-like giant unilamellar vesicles to dissect the lipid specificity; also, we investigated the changes in membrane order, anisotropy and hydrophobicity. ZnONP was found to interact with phosphatidylinositol and phosphatidylcholine head-group-containing lipids specifically. We further investigated the interaction of ZnONP with three physiologically relevant membrane conditions varying in composition and dipole potential. We found that ZnONP interaction leads to a photoinduced enhancement of the partial-to-complete phase separation depending upon the membrane composition and cholesterol content. Interestingly, while the lipid order of a partially-phase-separated membrane remained unchanged upon ZnONP crowding, a fully-phase-separated membrane showed an increase in the lipid order. Strikingly, ZnONP crowding induced a contrasting effect on the fluorescence anisotropy of the membrane upon binding to the two membrane conditions, in line with the measured diffusion coefficient. ZnONP seems to preferentially penetrate through the liquid disordered areas of the membrane and the boundaries of the phase-separated regions driven by the interplay between the electrostatics and phase boundary conditions, which are collectively dictated by the composition and ZnONP-induced lipid reorganization. The results may lead to a greater understanding of the interplay of membrane parameters and ZnONP interaction in driving passive penetration.

  14. Evaluation of effects of pH and ionic strength on colloidal stability of IgG solutions by PEG-induced liquid-liquid phase separation.

    PubMed

    Thompson, Ronald W; Latypov, Ramil F; Wang, Ying; Lomakin, Aleksey; Meyer, Julie A; Vunnum, Suresh; Benedek, George B

    2016-11-14

    Colloidal stability of IgG antibody solutions is important for pharmaceutical and medicinal applications. Solution pH and ionic strength are two key factors that affect the colloidal stability of protein solutions. In this work, we use a method based on the PEG-induced liquid-liquid phase separation to examine the effects of pH and ionic strength on the colloidal stability of IgG solutions. We found that at high ionic strength (≥0.25M), the colloidal stability of most of our IgGs is insensitive to pH, and at low ionic strength (≤0.15M), all IgG solutions are much more stable at pH 5 than at pH 7. In addition, the PEG-induced depletion force is less efficient in causing phase separation at pH 5 than at pH 7. In contrast to the native inter-protein interaction of IgGs, the effect of depletion force on phase separation of the antibody solutions is insensitive to ionic strength. Our results suggest that the long-range electrostatic inter-protein repulsion at low ionic strength stabilizes the IgG solutions at low pH. At high ionic strength, the short-range electrostatic interactions do not make a significant contribution to the colloidal stability for most IgGs with a few exceptions. The weaker effect of depletion force at lower pH indicates a reduction of protein concentration in the condensed phase. This work advances our basic understanding of the colloidal stability of IgG solutions and also introduces a practical approach to measuring protein colloidal stability under various solution conditions.

  15. The use of micellar solutions for novel separation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Bruce Lynn

    1993-01-01

    Surfactant based separation techniques based on the solubilization of organic compounds into the nonpolar interior of a micelle or electrostatic attraction of ionized metals and metal complexes to the charged surface of a micelle were studied in this work. Micellar solutions were used to recover two model volatile organic compounds emitted by the printing and painting industries (toluene and amyl acetate) and to investigate the effect of the most important variables in the surfactant enhanced carbon regeneration (SECR) process. SECR for liquid phase applications was also investigated in which the equilibrium adsorption of cetyl pyridinium chloride (CPC) and sodium dodecylmore » sulfate (SDS) on activated carbon were measured. Micellar-enhanced ultrafiltration (MEUF) was investigated using spiral wound membranes for the simultaneous removal of organic compounds, metals and metal complexes dissolved in water, with emphasis on pollution control applications. Investigations of MEUF to remove 99+ per cent of trichloroethylene (TCE) from contaminated groundwater using criteria such as: membrane flux, solubilization equilibrium constant, surfactant molecular weight, and Krafft temperature led to the selection of an anionic disulfonate with a molecular weight of 642 (DOWFAX 8390). These data and results from supporting experiments were used to design a system which could clean-up water in a 100,000 gallon/day operation. A four stage process was found to be an effective design and estimated cost for such an operation were found to be in the range of the cost of mature competitive technologies.« less

  16. Protein adsorption onto CF(3)-terminated oligo(ethylene glycol) containing self-assembled monolayers (SAMs): the influence of ionic strength and electrostatic forces.

    PubMed

    Bonnet, Nelly; O'Hagan, David; Hähner, Georg

    2010-05-07

    Oligo(ethylene glycol) (OEG) containing self-assembled monolayers (SAMs) on gold are known for their protein resistant properties. The underlying molecular mechanisms and the contributions of the interactions involved, however, are still not completely understood. It is known that electrostatic, van der Waals, hydrophobic, and hydration forces all play a role in the interaction between proteins and surfaces, but it is difficult to study their influence separately and to quantify their contributions. In the present study we investigate five different OEG containing SAMs and the influence of the ionic strength and the electrostatic component on the amount of a negatively charged protein (fibrinogen) that adsorbs onto them. Atomic force microscopy (AFM) was employed to record force-distance curves with hydrophobic probes depending on the ion concentration, and the amount of the protein that adsorbs relative to a hydrophobic surface was quantified using ellipsometry. The findings suggest that electrostatic forces can create a very low energy barrier thus only slightly decreasing the number of negatively charged proteins in solution with sufficient energy to approach the surface closely, and have a rather small influence on the amount that adsorbs. The films we investigated were not protein resistant. This supports other studies, reporting that a strong short-range repulsion as for example caused by hydration forces is required to make these films resistant to the non-specific adsorption of proteins.

  17. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, M.J.; Abbasian, J.; Akin, C.

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less

  18. Nonpolar Solvation Free Energy from Proximal Distribution Functions

    PubMed Central

    Ou, Shu-Ching; Drake, Justin A.; Pettitt, B. Montgomery

    2017-01-01

    Using precomputed near neighbor or proximal distribution functions (pDFs) that approximate solvent density about atoms in a chemically bonded context one can estimate the solvation structures around complex solutes and the corresponding solute–solvent energetics. In this contribution, we extend this technique to calculate the solvation free energies (ΔG) of a variety of solutes. In particular we use pDFs computed for small peptide molecules to estimate ΔG for larger peptide systems. We separately compute the non polar (ΔGvdW) and electrostatic (ΔGelec) components of the underlying potential model. Here we show how the former can be estimated by thermodynamic integration using pDF-reconstructed solute–solvent interaction energy. The electrostatic component can be approximated with Linear Response theory as half of the electrostatic solute–solvent interaction energy. We test the method by calculating the solvation free energies of butane, propanol, polyalanine, and polyglycine and by comparing with traditional free energy simulations. Results indicate that the pDF-reconstruction algorithm approximately reproduces ΔGvdW calculated by benchmark free energy simulations to within ~ kcal/mol accuracy. The use of transferable pDFs for each solute atom allows for a rapid estimation of ΔG for arbitrary molecular systems. PMID:27992228

  19. Active Space Debris Charging for Contactless Electrostatic Disposal Maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, H.; Sternovsky, Z.

    2013-08-01

    We assess the feasibility of removing large space debris from geosynchronous orbit (GEO) by means of a tug spacecraft that uses electrostatic forces to pull the debris without touching. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. Further, the debris does not have to be detumbled first to engage the re-orbit maneuver. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam and an auxiliary ion bleeder. Our simple charging model takes into account the primary electron beam current, UV induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that by active charging high potentials can be both achieved and maintained. The resulting mN level electrostatic force is sufficient for the safe re-orbiting of debris objects over an acceptable period of a few months. The capability of debris removal is becoming a pressing need as the increasing population of dysfunctional satellites poses a threat to the future of satellite operations at GEO.

  20. Environmentally friendly power generator based on moving liquid dielectric and double layer effect

    PubMed Central

    Huynh, D. H.; Nguyen, T. C.; Nguyen, P. D.; Abeyrathne, C. D.; Hossain, Md. S.; Evans, R.; Skafidas, E.

    2016-01-01

    An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(108μW)/(mm2HzV2) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting. PMID:27255577

  1. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    NASA Astrophysics Data System (ADS)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  2. Microgravity Experiments to Evaluate Electrostatic Forces in Controlling Cohesion and Adhesion of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Weislogel, M.; Jacobson, T.

    1999-01-01

    The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single gain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three- dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction. Electrostatic forces are generally under-estimated for their role in causing agglomeration of dispersed grains in particulate clouds, or their role in affecting the internal frictional relationships in packed granular masses. We believe that electrostatic, in particular dipole-mediated processes, are pervasive and probably affect, at some level, everything from astrophysical-scale granular systems such as interstellar nebulae, protoplanetary dust and debris disks, planetary-scale systems such as debris palls from meteorite impact, volcanic eruptions, and aeolian dust storms, all the way to industrial-scale systems in mining, powder and grain processing, pharmaceuticals, and smoke-stack technologies. NASA must concern itself with the electrostatic behavior of dust and sand on Mars because of its potentially critical importance to human exploration. The motion and adhesion of martian surface materials will affect the design and performance of spacesuits, habitats, processing plants, solar panels, and any externally exposed equipment such as surface rovers or communication and weather stations. Additionally, the adhesion of dust and sand could greatly enhance contact with the potentially toxic components of the martian soil.

  3. Numerically simulated two-dimensional auroral double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Joyce, G.

    1983-01-01

    A magnetized 2 1/2-dimensional particle-in-cell system which is periodic in one direction and bounded by reservoirs of Maxwellian plasma in the other is used to numerically simulate electrostatic plasma double layers. For the cases of both oblique and two-dimensional double layers, the present results indicate periodic instability, Debye length rather than gyroradii scaling, and low frequency electrostatic turbulence together with electron beam-excited electrostatatic electron-cyclotron waves. Estimates are given for the thickness of auroral doule layers, as well as the separations within multiple auroral arcs. Attention is given to the temporal modulation of accelerated beams, and the possibilities for ion precipitation and ion conic production by the double layer are hypothesized. Simulations which include the atmospheric backscattering of electrons imply the action of an ionospheric sheath which accelerates ionospheric ions upward.

  4. Computer-generated formulas for three-center nuclear-attraction integrals (electrostatic potential) for Slater-type orbitals

    NASA Technical Reports Server (NTRS)

    Jones, H. W.

    1984-01-01

    The computer-assisted C-matrix, Loewdin-alpha-function, single-center expansion method in spherical harmonics has been applied to the three-center nuclear-attraction integral (potential due to the product of separated Slater-type orbitals). Exact formulas are produced for 13 terms of an infinite series that permits evaluation to ten decimal digits of an example using 1s orbitals.

  5. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    PubMed

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to the (equal) mean charges on the two surfaces and the osmotic pressure of monovalent ions residing between them. These effects can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation, where such effects are predicted to be most pronounced.

  6. The energetics of the primary proton transfer in bacteriorhodopsin revisited: it is a sequential light-induced charge separation after all.

    PubMed

    Braun-Sand, Sonja; Sharma, Pankaz K; Chu, Zhen T; Pisliakov, Andrei V; Warshel, Arieh

    2008-05-01

    The light-induced proton transport in bacteriorhodopsin has been considered as a model for other light-induced proton pumps. However, the exact nature of this process is still unclear. For example, it is not entirely clear what the driving force of the initial proton transfer is and, in particular, whether it reflects electrostatic forces or other effects. The present work simulates the primary proton transfer (PT) by a specialized combination of the EVB and the QCFF/PI methods. This combination allows us to obtain sufficient sampling and a quantitative free energy profile for the PT at different protein configurations. The calculated profiles provide new insight about energetics of the primary PT and its coupling to the protein conformational changes. Our finding confirms the tentative analysis of an earlier work (A. Warshel, Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium, Photochem. Photobiol. 30 (1979) 285-290) and determines that the overall PT process is driven by the energetics of the charge separation between the Schiff base and its counterion Asp85. Apparently, the light-induced relaxation of the steric energy of the chromophore leads to an increase in the ion-pair distance, and this drives the PT process. Our use of the linear response approximation allows us to estimate the change in the protein conformational energy and provides the first computational description of the coupling between the protein structural changes and the PT process. It is also found that the PT is not driven by twist-modulated changes of the Schiff base's pKa, changes in the hydrogen bond directionality, or other non-electrostatic effects. Overall, based on a consistent use of structural information as the starting point for converging free energy calculations, we conclude that the primary event should be described as a light-induced formation of an unstable ground state, whose relaxation leads to charge separation and to the destabilization of the ion-pair state. This provides the driving force for the subsequent PT steps.

  7. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; Deyoreo, James J.

    2014-09-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  8. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    PubMed Central

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; DeYoreo, James J.

    2014-01-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications. PMID:25189418

  9. Development of Electrostatically Clean Solar Array Panels

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  10. Rippled disc electrostatic generator/motor configurations utilizing magnetic insulation

    DOEpatents

    Post, Richard F

    2017-04-04

    Electrostatic generators/motors designs are provided that generally may include a first rippled stator centered about a longitudinal axis; a second rippled stator centered about the axis, a first rippled rotor centered about the axis and located between the first rippled stator and the second rippled stator. A magnetic field having field lines about parallel with the average plane of at least one of the first rippled stator or the second rippled stator is provided with either a Halbach array configuration or a conductor array configuration.

  11. Analysis of the Characteristics of a Rotary Stepper Micromotor

    NASA Astrophysics Data System (ADS)

    Sone, Junji; Mizuma, Toshinari; Masunaga, Masakazu; Mochizuki, Shunsuke; Sarajic, Edin; Yamahata, Christophe; Fujita, Hiroyuki

    A 3-phase electrostatic stepper micromotor was developed. To improve its performance for actual use, we have conducted numerical simulation to optimize the design. An improved simulation method is needed for calculation of various cases. To conduct circuit simulation of this micromotor, its structure is simplified, and a function for computing the force excited by the electrostatic field is added to the circuit simulator. We achieved a reasonably accurate simulation. We also considered an optimal drive waveform to achieve low-voltage operation.

  12. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Foulon, B.; Christophe, B.

    2013-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at ground and in orbit. As the measure must be accurate, no sliding of the core must appear in regard of the accelerometer external reference. To ensure the thermal core stability, the electrode cage of the core is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. To assess the design of the accelerometer in particular the critical parts of the core, specific analysis is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to improve the performance, in particular the thermal sensitivity of the measurements. The Preliminary Design Review of electronics was achieved successfully on July 2013, and the PDR of the whole instrument is forecasted on November 2013. The integration of the Engineering Model will begin on October 2013 and its status will be presented.

  13. Poly(1-allylimidazole)-grafted silica, a new specific stationary phase for reversed-phase and anion-exchange liquid chromatography.

    PubMed

    Sun, Min; Qiu, Hongdeng; Wang, Licheng; Liu, Xia; Jiang, Shengxiang

    2009-05-01

    A new specific stationary phase based on poly(1-allylimidazole)-grafted silica has been synthesized and characterized, by infrared spectra, elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. The results of test showed that poly(1-allylimidazole) can effectively mask the residual silanol groups and reduce the adverse effect of residual silanol. Using this stationary phase, phenol compounds, aniline compounds, and polycyclic aromatic hydrocarbons were successfully separated with symmetric peak shapes in the reversed-phase chromatography. Inorganic anions (IO(3)(-), BrO(3)(-), Br(-), NO(3)(-), I(-), SCN(-)) were also separated completely in the anion-exchange chromatography using sodium chloride solution as the mobile phase. The effects of pH and the concentration of eluent on the separation of inorganic anions were studied. The separation mechanism appears to involve the mixed interactions of hydrogen bonding, hydrophobic, pi-pi, electrostatic, and anion-exchange interactions.

  14. Preparation and evaluation of a silica-based 1-alkyl-3-(propyl-3-sulfonate) imidazolium zwitterionic stationary phase for high-performance liquid chromatography.

    PubMed

    Qiu, Hongdeng; Jiang, Qiong; Wei, Zheng; Wang, Xusheng; Liu, Xia; Jiang, Shengxiang

    2007-09-07

    A new zwitterionic stationary phase based on silica bonded with 1-alkyl-3-(propyl-3-sulfonate) imidazolium was synthesized and characterized in this paper. The materials have been confirmed and evaluated by elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. Potassium and calcium were separated simultaneously with several common inorganic anions including an iodate, chloride, bromide, nitrate and iodide on the phase. The effects of the concentration, organic solvent and pH of the eluent on the separation of anions were studied. Operated in the anion-exchange mode, this new stationary phase shows considerable promise for the separation of anions. Bases, vitamins and three imidazolium ionic liquids with different alkyl chains are also separated successfully on this column. The stationary phase has multiple retention mechanisms, such as anion-exchange, electrostatic attraction and repulsion interactions, and hydrophobic interaction between the zwitterionic stationary phase and specimens.

  15. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    PubMed

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Charged drop dynamics experiment using an electrostatic-acoustic hybrid system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Chung, S. K.; Trinh, E. H.; Elleman, D. D.

    1987-01-01

    The design and the performance of an electrostatic-acoustic hybrid system and its application to a charge drop rotation experiment are presented. This system can levitate a charged drop electrostatically and induce drop rotation or oscillation by imposing an acoustic torque or an oscillating acoustic pressure. Using this system, the equilibrium shapes and stability of a rotating charged drop were experimentally investigated. A 3 mm size water drop was rotated as a rigid body and its gyrostatic equilibrium shapes were observed. Families of axisymmetric shapes, two-lobed shapes, and eventual fissioning have been observed. With the assumption of 'effective surface tension' in which the surface charge simply modified the surface tension of neutral liquid, the results agree exceptionally well with the Brown and Scriven's (1980) prediction for uncharged drops.

  17. Cavallo's multiplier for in situ generation of high voltage

    NASA Astrophysics Data System (ADS)

    Clayton, S. M.; Ito, T. M.; Ramsey, J. C.; Wei, W.; Blatnik, M. A.; Filippone, B. W.; Seidel, G. M.

    2018-05-01

    A classic electrostatic induction machine, Cavallo's multiplier, is suggested for in situ production of very high voltage in cryogenic environments. The device is suitable for generating a large electrostatic field under conditions of very small load current. Operation of the Cavallo multiplier is analyzed, with quantitative description in terms of mutual capacitances between electrodes in the system. A demonstration apparatus was constructed, and measured voltages are compared to predictions based on measured capacitances in the system. The simplicity of the Cavallo multiplier makes it amenable to electrostatic analysis using finite element software, and electrode shapes can be optimized to take advantage of a high dielectric strength medium such as liquid helium. A design study is presented for a Cavallo multiplier in a large-scale, cryogenic experiment to measure the neutron electric dipole moment.

  18. Electrostatic Interactions in Aminoglycoside-RNA Complexes

    PubMed Central

    Kulik, Marta; Goral, Anna M.; Jasiński, Maciej; Dominiak, Paulina M.; Trylska, Joanna

    2015-01-01

    Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity. PMID:25650932

  19. Electronic scraps--recovering of valuable materials from parallel wire cables.

    PubMed

    de Araújo, Mishene Christie Pinheiro Bezerra; Chaves, Arthur Pinto; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2008-11-01

    Every year, the number of discarded electro-electronic products is increasing. For this reason recycling is needed, to avoid wasting non-renewable natural resources. The objective of this work is to study the recycling of materials from parallel wire cable through unit operations of mineral processing. Parallel wire cables are basically composed of polymer and copper. The following unit operations were tested: grinding, size classification, dense medium separation, electrostatic separation, scrubbing, panning, and elutriation. It was observed that the operations used obtained copper and PVC concentrates with a low degree of cross contamination. It was concluded that total liberation of the materials was accomplished after grinding to less than 3 mm, using a cage mill. Separation using panning and elutriation presented the best results in terms of recovery and cross contamination.

  20. On Variable Geometric Factor Systems for Top-Hat Electrostatic Space Plasma Analyzers

    NASA Technical Reports Server (NTRS)

    Kataria, Dhiren O.; Collinson, Glyn A.

    2010-01-01

    Even in the relatively small region of space that is the Earth's magnetosphere, ion and electron fluxes can vary by several orders of magnitude. Top-hat electrostatic analyzers currently do not possess the dynamic range required to sample plasma under all conditions. The purpose of this study was to compare, through computer simulation, three new electrostatic methods that would allow the sensitivity of a sensor to be varied through control of its geometric factor (GF) (much like an aperture on a camera). The methods studied were inner filter plates, split hemispherical analyzer (SHA) and top-cap electrode. This is the first discussion of the filter plate concept and also the first study where all three systems are studied within a common analyzer design, so that their relative merits could be fairly compared. Filter plates were found to have the important advantage that they facilitate the reduction in instrument sensitivity whilst keeping all other instrument parameters constant. However, it was discovered that filter plates have numerous disadvantages that make such a system impracticable for a top-hat electrostatic analyzer. It was found that both the top-cap electrode and SHA are promising variable geometric factor system (VGFS) concepts for implementation into a top-hat electrostatic analyzer, each with distinct advantages over the other.

  1. Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.

    PubMed

    Lip Kwok, Philip Chi

    2015-01-01

    This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.

  2. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR

    PubMed Central

    Voinov, Maxim A.; Smirnov, Alex I.

    2016-01-01

    Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is also described. PMID:26477252

  3. Novel beta-cyclodextrin derivative functionalized polymethacrylate-based monolithic columns for enantioselective separation of ibuprofen and naproxen enantiomers in capillary electrochromatography.

    PubMed

    Tian, Yun; Zhong, Cheng; Fu, Enqin; Zeng, Zhaorui

    2009-02-06

    A novel enantioselective polymethacrylate-based monolithic column for capillary electrochromatography was prepared by ring-opening reaction of epoxy groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith with a novel beta-cyclodextrin derivative bearing 4-dimethylamino-1,8-naphthalimide functionalities. Conditions for the ring-opening reaction with respect to different reaction parameters were thoroughly optimized to obtain high electroosmotic flow, separation efficiency and enantioselectivity for the analytes. The nonaqueous mobile phase composition regarding acetonitrile-methanol ratio and the concentration of electrolyte were examined to manipulate the hydrophobic inclusion and anion-exchange interaction between the analytes and chiral stationary phase. It was observed that in addition to beta-cyclodextrin cavity, the electrostatic interaction exhibited pronounced influence on the enantioseparation of acidic analytes. Acidic enantiomers (ibuprofen and naproxen) could be separated with separation factor (alpha) values up to 1.08 and a maximum separation efficiency of 86000 plates/m could be achieved.

  4. High speed electrostatic photomultiplier tube for the 1.06 micrometer wavelength. Cup and slat dynode chain combined with flat cathode and coax output produces 0.25 nsec rise time

    NASA Technical Reports Server (NTRS)

    Sparks, S. D.

    1973-01-01

    The Varian cup and slat dynode chain was modified to have a flat cathode. These modifications were incorporated in an all-electrostatic photomultiplier tube having a rise time of 0.25 n sec. The tube delivered under the contract had a flat S-20 opaque cathode with a useful diameter of 5 mm. The design of the tube is such that a III to V cathode support is mounted in place of the existing cathode substrate. This cathode support is designed to accept a transferred III to V cathode and maintain the cathode surface in the same position as the S-20 photocathode.

  5. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].

    PubMed

    Guo, Shuang; Zhu, Chenqi; Gao-Yang, Yaya; Qiu, Bailing; Wu, Di; Liang, Qihui; He, Jiayuan; Han, Nanyin

    2016-02-01

    Gravitational field-flow fractionation is the simplest field-flow fractionation technique in terms of principle and operation. The earth' s gravity is its external field. Different sized particles are injected into a thin channel and carried by carrier fluid. The different velocities of the carrier liquid in different places results in a size-based separation. A gravitational field-flow fractionation (GrFFF) instrument was designed and constructed. Two kinds of polystyrene (PS) particles with different sizes (20 µm and 6 µm) were chosen as model particles. In this work, the separation of the sample was achieved by changing the concentration of NaN3, the percentage of mixed surfactant in the carrier liquid and the flow rate of carrier liquid. Six levels were set for each factor. The effects of these three factors on the retention ratio (R) and plate height (H) of the PS particles were investigated. It was found that R increased and H decreased with increasing particle size. On the other hand, the R and H increased with increasing flow rate. The R and H also increased with increasing NaN3 concentration. The reason was that the electrostatic repulsive force between the particles and the glass channel wall increased. The force allowed the samples approach closer to the channel wall. The results showed that the resolution and retention time can be improved by adjusting the experimental conditions. These results can provide important values to the further applications of GrFFF technique.

  6. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior

    PubMed Central

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A.; Nagy, Katelyn J.; Schneider, Joel P.

    2012-01-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. PMID:22841922

  7. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior.

    PubMed

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A; Nagy, Katelyn J; Schneider, Joel P

    2012-10-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. Published by Elsevier Ltd.

  8. Resource Recovery Technology Application Document.

    DTIC Science & Technology

    1982-06-01

    B-6 Electrostatic Precipitator (APC-C) ......................B-1O Venturi Scrubber (APC D) B-15 C Combustion Equipment (CE) C-1 Modular... Scrubber APC-D P. 1 of 4 CONTROLIII COMPONENT DESCRIPTION Types Available - Competing Components Type a. Venturi e. Moving bed Venturi b. Flooded disc f...Clean Gas to Demister (Used Separate Liquid from Gas Stream) / F C Scrubber Wall Liquid Inlet D Scrubber Liquid at Venturi Throat Inlet B E Venturi

  9. Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC.

    PubMed

    Karra, Jagadeswara R; Walton, Krista S

    2008-08-19

    Atomistic grand canonical Monte Carlo simulations were performed in this work to investigate the role of open copper sites of Cu-BTC in affecting the separation of carbon monoxide from binary mixtures containing methane, nitrogen, or hydrogen. Mixtures containing 5%, 50%, or 95% CO were examined. The simulations show that electrostatic interactions between the CO dipole and the partial charges on the metal-organic framework (MOF) atoms dominate the adsorption mechanism. The binary simulations show that Cu-BTC is quite selective for CO over hydrogen and nitrogen for all three mixture compositions at 298 K. The removal of CO from a 5% mixture with methane is slightly enhanced by the electrostatic interactions of CO with the copper sites. However, the pore space of Cu-BTC is large enough to accommodate both molecules at their pure-component loadings, and in general, Cu-BTC exhibits no significant selectivity for CO over methane for the equimolar and 95% mixtures. On the basis of the pure-component and low-concentration behavior of CO, the results indicate that MOFs with open metal sites have the potential for enhancing adsorption separations of molecules of differing polarities, but the pore size relative to the sorbate size will also play a significant role.

  10. Crystal structure of a designed, thermostable, heterotrimeric coiled coil.

    PubMed Central

    Nautiyal, S.; Alber, T.

    1999-01-01

    Electrostatic interactions are often critical for determining the specificity of protein-protein complexes. To study the role of electrostatic interactions for assembly of helical bundles, we previously designed a thermostable, heterotrimeric coiled coil, ABC, in which charged residues were employed to drive preferential association of three distinct, 34-residue helices. To investigate the basis for heterotrimer specificity, we have used multiwavelength anomalous diffraction (MAD) analysis to determine the 1.8 A resolution crystal structure of ABC. The structure shows that ABC forms a heterotrimeric coiled coil with the intended arrangement of parallel chains. Over half of the ion pairs engineered to restrict helix associations were apparent in the experimental electron density map. As seen in other trimeric coiled coils, ABC displays acute knobs-into-holes packing and a buried anion coordinated by core polar amino acids. These interactions validate the design strategy and illustrate how packing and polar contacts determine structural uniqueness. PMID:10210186

  11. A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauro, N.A.; Kelton, K.F.

    2011-10-27

    High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here,more » we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.« less

  12. Electrostatics Explains the Position-Dependent Effect of G⋅U Wobble Base Pairs on the Affinity of RNA Kissing Complexes.

    PubMed

    Abi-Ghanem, Josephine; Rabin, Clémence; Porrini, Massimiliano; Dausse, Eric; Toulmé, Jean-Jacques; Gabelica, Valérie

    2017-10-06

    In the RNA realm, non-Watson-Crick base pairs are abundant and can affect both the RNA 3D structure and its function. Here, we investigated the formation of RNA kissing complexes in which the loop-loop interaction is modulated by non-Watson-Crick pairs. Mass spectrometry, surface plasmon resonance, and UV-melting experiments show that the G⋅U wobble base pair favors kissing complex formation only when placed at specific positions. We tried to rationalize this effect by molecular modeling, including molecular mechanics Poisson-Boltzmann surface area (MMPBSA) thermodynamics calculations and PBSA calculations of the electrostatic potential surfaces. Modeling reveals that the G⋅U stabilization is due to a specific electrostatic environment defined by the base pairs of the entire loop-loop region. The loop is not symmetric, and therefore the identity and position of each base pair matters. Predicting and visualizing the electrostatic environment created by a given sequence can help to design specific kissing complexes with high affinity, for potential therapeutic, nanotechnology or analytical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Vertical electrostatic force in MEMS cantilever IR sensor

    NASA Astrophysics Data System (ADS)

    Rezadad, Imen; Boroumand Azad, Javaneh; Smith, Evan M.; Alhasan, Ammar; Peale, Robert E.

    2014-06-01

    A MEMS cantilever IR detector that repetitively lifts from the surface under the influence of a saw-tooth electrostatic force, where the contact duty cycle is a measure of the absorbed IR radiation, is analyzed. The design is comprised of three parallel conducting plates. Fixed buried and surface plates are held at opposite potential. A moveable cantilever is biased the same as the surface plate. Calculations based on energy methods with position-dependent capacity and electrostatic induction coefficients demonstrate the upward sign of the force on the cantilever and determine the force magnitude. 2D finite element method calculations of the local fields confirm the sign of the force and determine its distribution across the cantilever. The upward force is maximized when the surface plate is slightly larger than the other two. The electrostatic repulsion is compared with Casimir sticking force to determine the maximum useful contact area. MEMS devices were fabricated and the vertical displacement of the cantilever was observed in a number of experiments. The approach may be applied also to MEMS actuators and micromirrors.

  14. Multilayer out-of-plane overlap electrostatic energy harvesting structure actuated by blood pressure for powering intra-cardiac implants

    NASA Astrophysics Data System (ADS)

    Deterre, M.; Risquez, S.; Bouthaud, B.; Dal Molin, R.; Woytasik, M.; Lefeuvre, E.

    2013-12-01

    We present an innovative multilayer out-of-plane electrostatic energy harvesting device conceived in view of scavenging energy from regular blood pressure in the heart. This concept involves the use of a deformable packaging for the implant in order to transmit the blood pressure to the electrostatic transducer. As shown in previous work, this is possible by using thin metal micro-bellows structure, providing long term hermeticity and high flexibility. The design of the electrostatic device has overcome several challenges such as the very low frequency of the mechanical excitation (1 to 2 Hz) and the small available room in the medical implant. Analytical and numerical models have been used to maximize the capacitance variation, and hence to optimize the energy conversion. We have theoretically shown that a 25-layer transducer with 6-mm diameter and 1-mm thickness could harvest at least 20 mJ per heart beat in the left ventricle under a maximum voltage of 75 V. These results show that the proposed concept is promising and could power the next generation of leadless pacemakers.

  15. Electrostatic effects on clustering and ion dynamics in ionomer melts

    NASA Astrophysics Data System (ADS)

    Ma, Boran; Nguyen, Trung; Pryamitsyn, Victor; Olvera de La Cruz, Monica

    An understanding of the relationships between ionomer chain morphology, dynamics and counter-ion mobility is a key factor in the design of ion conducting membranes for battery applications. In this study, we investigate the influence of electrostatic coupling between randomly charged copolymers (ionomers) and counter ions on the structural and dynamic features of a model system of ionomer melts. Using coarse-grained molecular dynamics (CGMD) simulations, we found that variations in electrostatic coupling strength (Γ) remarkably affect the formation of ion-counter ion clusters, ion mobility, and polymer dynamics for a range of charged monomer fractions. Specifically, an increase in Γ leads to larger ionic cluster sizes and reduced polymer and ion mobility. Analysis of the distribution of the radius of gyration of the clusters further reveals that the fractal dimension of the ion clusters is nearly independent from Γ for all the cases studied. Finally, at sufficiently high values of Γ, we observed arrested heterogeneous ions mobility, which is correlated with an increase in ion cluster size. These findings provide insight into the role of electrostatics in governing the nanostructures formed by ionomers.

  16. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent

    2013-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical excitation especially due to launching vibrations. As the measure must be accurate, no displacements or sliding must appear during excitations. The electrode cage is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. Specific analysis on this part is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to win in performance, in particular the thermal sensitivity of the measurements.

  17. Electrostatic Discharge Effects on Thin Film Resistors

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  18. Dye-ligand affinity systems.

    PubMed

    Denizli, A; Pişkin, E

    2001-10-30

    Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.

  19. Electrochemical-mechanical coupling in composite planar structures that integrate flow channels and ion-conducting membranes

    DOE PAGES

    Euser, Bryan Jeffry; Zhu, Huayang; Berger, John; ...

    2017-01-01

    Ceramic oxygen-transport membranes, such as the doped perovskite La 0.6Sr 0.4Co 0.8Fe 0.2O 3-δ(LSCF6482) considered in the present paper, are effective in applications such as air separation. The present paper considers a planar configuration that is composed of a thin (order tens of microns) ion-transport membrane, a relatively thick (order millimeter) porous-ceramic support structure, and millimeter-scale oxygen-collection flow channels. The lattice-scale strain associated with charged defects (oxygen vacancies and small polarons) within ion-transport membranes causes macroscopic stress that could distort or damage the assembly. The modeling approach is based on an extended twodimensional Nernst–Planck–Poisson (NPP) formulation that is developed andmore » applied to evaluate the effects of chemically induced stress within a planar oxygen-separation assembly. The computational model predicts two-dimensional distributions of steady-state defect concentrations, electrostatic potentials, and stress. Parameter studies consider the effects of support-membrane dimensions, materials mechanical properties, and operating conditions. Although the stress is found to have a negligible influence on the defect transport, the defect transport is found to significantly affect the stress distributions. Such results can play important roles in the design and development of planar ion-transport membranes and their support structures.« less

  20. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling

    NASA Astrophysics Data System (ADS)

    Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter

    2018-04-01

    The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.

  1. Automated seed manipulation and planting

    NASA Technical Reports Server (NTRS)

    Garcia, Ray; Herrera, Javier; Holcomb, Scott; Kelly, Paul; Myers, Scott; Rosendo, Manny; Sivitz, Herbert; Wolsefer, Dave

    1988-01-01

    The Mechanical Division fabricated three seed separators utilizing pressure gradients to move and separate wheat seeds. These separators are called minnow buckets and use air, water, or a combination of both to generate the pressure gradient. Electrostatic fields were employed in the seed separator constructed by the Electrical Division. This separator operates by forcing a temporary electric dipole on the wheat seeds and using charged electrodes to attract and move the seeds. Seed delivery to the hydroponic growth tray is accomplished by the seed cassette. The cassette is compatible with all the seed separators, and it consists of a plastic tube threaded with millipore filter paper. During planting operations, the seeds are placed in an empty cassette. The loaded cassette is then placed in the growth tray and nutrient solution provided. The solution wets the filter paper and capillary action draws the nutrients up to feed the seeds. These seeding systems were tested and showed encouraging results. Seeds were effectively separated and the cassette can support the growth of wheat plants. Problems remaining to be investigated include improving the success of delivering the seeds to the cassette and providing adequate spacing between seeds for the electric separator.

  2. Vidicon intensifier

    NASA Technical Reports Server (NTRS)

    Carpentier, R. P.; Pietrzyk, J. P.; Beyer, R. R.; Kalafut, J. S.

    1976-01-01

    Computer-designed sensor, consisting of single-stage electrostatically-focused, triode image intensifier, provides high quality imaging characterized by exceptionally low geometric distortion, low shading, and high center-and-corner modulation transfer function.

  3. Linear electrostatic micromotors for nano- and micro-positioning

    NASA Astrophysics Data System (ADS)

    Baginsky, I. L.; Kostsov, Edvard G.

    2004-05-01

    The functioning of the linear step electrostatic film micromotors with the short controlling pulse (less then 100-200 ´s) is studied to create nano- and micro-positioners. The theoretical study of the step movement of the given mass in this time frame is carried out. The results of the experimental studies of the multipetal reciprocal micromotors created on the basis of La modified Ba0.5Sr0.5Nb2O6 ferroelectric films with 1-3 μm thickness are shown. The petals were made of beryllium bronze. It is shown that the electrostatic rolling can last less than 50 μs, and the process of separating two surfaces (the metal and the ferroelectric) can last less than 1 μs. These parameters allow one to operate the micromotor at 1-10 kHz frequency, and the propulsion force in the beginning (the first 20-100 μs) of the electrostatic rolling can be as high as 1-10 N per 1 mm2 of the rolling surface with the voltage pulse amplitude of 40-50 V. The possibility of obtaining moving plate (MP) step in the nanometer range is studied, as well as the precision of these steps during the continuous MP movement with the different clock frequencies and durations of the voltage pulses. The recommendations are given to improve the accuracy and the speed of the positioning in the nano- and micro-movement range. Possible fields of micromotor application are micromechanics, including precision micromechanics, microelectronics, microrobots, microoptics, microscanners, micropumps (e.g. in the jet printers), micro flying vehicles etc.

  4. A Technology-Enhanced Unit of Modeling Static Electricity: Integrating scientific explanations and everyday observations

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Linn, Marcia C.

    2011-08-01

    What trajectories do students follow as they connect their observations of electrostatic phenomena to atomic-level visualizations? We designed an electrostatics unit, using the knowledge integration framework to help students link observations and scientific ideas. We analyze how learners integrate ideas about charges, charged particles, energy, and observable events. We compare learning enactments in a typical school and a magnet school in the USA. We use pre-tests, post-tests, embedded notes, and delayed post-tests to capture the trajectories of students' knowledge integration. We analyze how visualizations help students grapple with abstract electrostatics concepts such as induction. We find that overall students gain more sophisticated ideas. They can interpret dynamic, interactive visualizations, and connect charge- and particle-based explanations to interpret observable events. Students continue to have difficulty in applying the energy-based explanation.

  5. Characterizing the Perfonnance of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.; Mackey, P. J.; Holbert, E.; Clements, J. S.; Calle, C. I.

    2013-01-01

    A Wheel Electrostatic Spectrometer has been developed as a surveying tool to be incorporated into a planetary rover design. Electrostatic sensors with various protruding cover insulators are embedded into a prototype rover wheel. When these insulators come into contact with a surface, a charge develops on the cover insulator through tribocharging. A charge spectrum is created by analyzing the accumulated charge on each of the dissimilar cover insulators. We eventually intend to prove charge spectra can be used o determine differences in planetary regolith properties. We tested the effects of residual surface charge on the cover insulators and discovered a need to discharge the sensor cover insulators after each revolution. We proved the repeatability of the measurements for this sensor package and found that the sensor repeatability lies within one standard deviation of the noise in the signal.

  6. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  7. Energetics and kinetics of primary charge separation in bacterial photosynthesis.

    PubMed

    LeBard, David N; Kapko, Vitaliy; Matyushov, Dmitry V

    2008-08-21

    We report the results of molecular dynamics (MD) simulations and formal modeling of the free-energy surfaces and reaction rates of primary charge separation in the reaction center of Rhodobacter sphaeroides. Two simulation protocols were used to produce MD trajectories. Standard force-field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates, resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time scale of primary charge separation, resulting in much smaller solvation contributions to the activation barrier. While water dominates solvation thermodynamics on long observation times, protein emerges as the major thermal bath coupled to electron transfer on the picosecond time of the reaction. Marcus parabolas were obtained for the free-energy surfaces of electron transfer by using the first protocol, while a highly asymmetric surface was obtained in the second protocol. A nonergodic formulation of the diffusion-reaction electron-transfer kinetics has allowed us to reproduce the experimental results for both the temperature dependence of the rate and the nonexponential decay of the population of the photoexcited special pair.

  8. The environmental applications and implications of nanotechnology in membrane-based separations for water treatment

    NASA Astrophysics Data System (ADS)

    Shan, Wenqian

    This dissertation presents results of three related projects focused on the applications of membrane separation technology to water treatment: 1) Experimental design and evaluation of polyelectrolyte multilayer films as regenerable membrane coatings with controllable surface properties; 2) Modeling of the interactions of nanoscale TiO2 and NOM molecules in aqueous solutions of environmentally relevant compositions; 3) Experimental design and preliminary testing of a membrane-based crossflow filtration hydrocyclone process for the separation of oil-in-water dispersions. Chapter 2 describes the design of polyelectrolyte multilayers as nanoscale membrane coatings and their application in nanofiltration of feed waters that contain suspended colloids and dissolved species. Layer-by-layer deposition of anionic and cationic polyelectrolytes was employed to prepare membrane coatings allowing for a fine control over their surface properties. This approach to membrane design also affords a possibility of regenerating coatings after they are fouled by colloids. This project demonstrated, for first time, the possibility of designing nanofiltration membranes with regenerable skin. Chapter 3 describes a study on the mechanisms of natural organic matter (NOM) adsorption onto the surface of titania nanoparticles. Titainia (TiO 2) is often used in the fabrication of ceramic membranes and understanding how NOM interacts with TiO2 can help to better predict ceramic membrane fouling by NOM-containing waters. The combined effect of pH and calcium on the interactions of nonozonated and ozonated NOM with nanoscale TiO 2 was investigated by applying extended Derjaguin --- Landau --- Verwey - Overbeek (XDLVO) modeling. XDLVO surface energy analysis predicted NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of electrostatic forces was found to be relatively insignificant. Ozonation increased the surface energy of NOM, contributing to the hydrophilic repulsion component of the NOM-NOM and NOM-TiO2 interactions. In the calcium-controlled regime, non-XDLVO interactions such as intermolecular bridging by calcium were hypothesized to be responsible for the observed adsorption behavior. Chapter 4 describes research on the crossflow filtration hydrocyclone separation of oil-in-water dispersions wherein a ceramic tubular membrane was used as the permeable wall of the hydrocyclone. Air sparging was applied to mitigate oil fouling. A dual membrane system consisting of an outer hydrophilic ceramic membrane and an inner hydrophobic polymeric membrane was evaluated to test the possibility of separating the dispersion into two streams: 1) oil with zero or very low concentration of water and 2) water with zero or very low concentration of oil. The performance of the dual membrane system indicated the possibility of using membranes with different chemical affinities to cost-effectively separate the oil-water dispersion into two separate phases. The incorporation of air sparging to membrane filtration was found to be effective in mitigating oil fouling with improved permeate flux.

  9. Diffuse-charge dynamics of ionic liquids in electrochemical systems.

    PubMed

    Zhao, Hui

    2011-11-01

    We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinert, J.; Haimberger, C.; Zabawa, P. J.

    We present a detailed description on how to build a thin wire electrostatic trap (TWIST) for ultracold polar molecules. It is the first design of an electrostatic trap that can be superimposed directly onto a magneto-optical trap (MOT). We can thus continuously produce ultracold polar molecules via photoassociation from a two species MOT and instantaneously trap them in the TWIST without the need for complex transfer schemes. Despite the spatial overlap of the TWIST and the MOT, the two traps can be operated and optimized completely independently due to the complementary nature of the utilized trapping mechanisms.

  11. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  12. An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms.

    PubMed

    Füzesi, F; Jornod, A; Thomann, P; Plimmer, M D; Dudle, G; Moser, R; Sache, L; Bleuler, H

    2007-10-01

    This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10(-8) mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere.

  13. Electrostatic propulsion beam divergence effects on spacecraft surfaces, volume 2

    NASA Technical Reports Server (NTRS)

    Hall, D. F.

    1973-01-01

    The third phase of a program to develop understanding of and tolerance-level criteria for the deleterious effects of electrostatic rocket exhaust (Cs, Cs(+), Hg, Hg(+)) and materials of rocket construction impinging on typical classes of spacecraft (S/C) surfaces was completed. Models of ion engine effluents and models describing the degradation of S/C surfaces by these effluents are presented. Experimental data from previous phases are summarized and Phase 2 data and analysis are presented in detail. The spacecraft design implications of ion engine contaminants are discussed.

  14. Study of high-power GaAs-based laser diodes operation and failure by cross-sectional electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Ankudinov, A.; Titkov, A. N.; Evtikhiev, Vadim P.; Kotelnikov, Eugeny Y.; Bazhenov, N.; Zegrya, Georgy G.; Huhtinen, H.; Laiho, R.

    2003-06-01

    One of the important factors that restricts the power limit of semiconductor lasers is a catastrophic optical mirror damage. This process is significantly suppressed through decreasing the optical power density due to its redistribution over the broad transverse waveguide (BW). Recently it was shown that record-breaking values of the quasicontinuous and continuous-wave (QWC and CW) output power for 100-μm-wide-aperture devices can be achieved by incorporating a broad transverse waveguide into 0.97 μm emitting Al-free InGaAs(P)/InGaP/GaAs and Al-containing InGaAs/AlGaAs/GaAs separate confinement heterostructure quantum-well lasers (SCH-QWL). Another important factor limiting the CW output power is the Joule overheating of a laser diode due to an extra serial resistance. Traditionally, a decrease in the resistance is achieved by development of the contacts, whereas a voltage distribution across the device structure is not analyzed properly. At high operating currents the applied voltage can drop not only across the n-p-junction, but also at certain additional regions of the laser structure depending on a particular design of the device. Electrostatic force microscopy (EFM) provides a very promising method to study the voltage distribution across an operating device with a nanometer space resolution. An application of EFM for diagnostics of III-V laser diodes without and under applied biases have been recently demonstrated. However, the most interesting range of the biases, the lazing regime, has not been studied yet.

  15. Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: effects of edge-functionalization.

    PubMed

    Lu, Xiaoqing; Jin, Dongliang; Wei, Shuxian; Zhang, Mingmin; Zhu, Qing; Shi, Xiaofan; Deng, Zhigang; Guo, Wenyue; Shen, Wenzhong

    2015-01-21

    The effect of edge-functionalization on the competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons (NPCs) has been investigated for the first time by combining density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulation. Our results show that edge-functionalization has a more positive effect on the single-component adsorption of CO2 than CH4, therefore significantly enhancing the selectivity of CO2 over CH4, in the order of NH2-NPC > COOH-NPC > OH-NPC > H-NPC > NPC at low pressure. The enhanced adsorption originates essentially from the effects of (1) the conducive environment with a large pore size and an effective accessible surface area, (2) the high electronegativity/electropositivity, (3) the strong adsorption energy, and (4) the large electrostatic contribution, due to the inductive effect/direct interaction of the embedded edge-functionalized groups. The larger difference from these effects results in the higher competitive adsorption advantage of CO2 in the binary CO2-CH4 mixture. Temperature has a negative effect on the gas adsorption, but no obvious influence on the electrostatic contribution on selectivity. With the increase of pressure, the selectivity of CO2 over CH4 first decreases sharply and subsequently flattens out to a constant value. This work highlights the potential of edge-functionalized NPCs in competitive adsorption, capture, and separation for the binary CO2-CH4 mixture, and provides an effective and superior alternative strategy in the design and screening of adsorbent materials for carbon capture and storage.

  16. Upgrades to the NSTX HHFW antenna

    NASA Astrophysics Data System (ADS)

    Ellis, R.; Brunkhorst, C.; Hosea, J.

    2014-02-01

    The High Harmonic Fast Wave (HHFW) antenna for the National Spherical Torus Experiment (NSTX) at PPPL will be upgraded as part of the NSTX upgrade project. Higher magnetic fields and plasma current result in disruption forces on the current straps that can be up to four times the original design values. The current straps on the HHFW antenna are presently fed by coaxial feedthroughs with rigid center conductors. The additional forces on the current straps require a compliant section in the center conductor in order to minimize the forces on the feedthrough. The design of this compliant section has been an integrated effort involving electrostatic calculations in parallel with mechanical and thermal analyses, in order to arrive at a design that is optimized for mechanical, thermal and electrical considerations. The voltage standoff obtained from this design will be verified when a prototype antenna is evaluated on our RF test stand. This paper describes the design of the compliant section of the center conductor, mechanical, thermal and electrostatic calculations, and plans for full implementation of the upgrade on NSTX.

  17. Wiring design for the control of electromagnetic interference (EMI)

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1995-01-01

    Wiring design is only one important aspect of EMI control. Other important areas for EMI are: circuit design, filtering, grounding, bonding, shielding, lighting, electrostatic discharge (ESD), transient suppression, and electromagnetic pulse (EMP). Topics covered include: wire magnetic field emissions at low frequencies; wire radiated magnetic field emissions at frequencies; wire design guidelines for EMI control; wire design guidelines for EMI control; high frequency emissions from cables; and pulse frequency spectra.

  18. Microscopic models for bridging electrostatics and currents

    NASA Astrophysics Data System (ADS)

    Borghi, L.; DeAmbrosis, A.; Mascheretti, P.

    2007-03-01

    A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.

  19. Spectral fingerprint of electrostatic forces between biological cells

    NASA Astrophysics Data System (ADS)

    Murovec, T.; Brosseau, C.

    2015-10-01

    The prediction of electrostatic forces (EFs) between biological cells still poses challenges of great scientific importance, e.g., cell recognition, electroporation (EP), and mechanosensing. Frequency-domain finite element simulations explore a variety of cell configurations in the range of parameters typical for eukaryotic cells. Here, by applying an electric field to a pair of layered concentric shells, a prototypical model of a biological cell, we provide numerical evidence that the instantaneous EF changes from repulsion to attraction as the drive frequency of the electric field is varied. We identify crossover frequencies and discuss their dependence as a function of field frequency, conductivity of the extracellular medium, and symmetry of the configuration of cells. We present findings which suggest that the spectrum of EFs depends sensitively on the configuration of cells. We discuss the signatures of the collective behavior of systems with many cells in the spectrum of the EF and highlight a few of the observational consequences that this behavior implies. By looking at different cell configurations, we are able to show that the repulsion-to-attraction transition phenomenon is largely associated with an asymmetric electrostatic screening at very small separation between cells. These findings pave the way for the experimental observation of the electromagnetic properties of efficient and simple models of biological tissues.

  20. A DIM model for sodium cluster-ions interacting with a charged conducting sphere

    NASA Astrophysics Data System (ADS)

    Kuntz, P. J.

    A diatomics-in-molecules (DIM) model for the energy, shape and charge distribution of metal cluster ions in the presence of a charged insulated conducting sphere is presented. The electrostatic interaction between the sphere and the cluster-ion is introduced in a self-consistent manner which allows the sphere to be polarized by the ion and the ion by the sphere. This interaction appears in the diagonal elements of the model Hamiltonian matrix in such a way that the lowest eigenvalue includes the correct electrostatic energy for the charge distribution in the ground state. The model is applied to the calculation of fusion barriers for Na+2 and Na+3 ions. When both the charge distribution and the geometric configuration of the cluster-ion are allowed to relax freely, the energy as a function of distance from the sphere is nearly the same as that calculated from the electrostatic energy alone, which implies that details of the molecular structure of the cluster-ion can be neglected in calculating fusion barriers from charge polarization alone. That the fusion barriers lie sufficiently far away from the sphere so that the molecule does not dissociate under the influence of the Coulomb interaction confirms that it is meaningful to speak of two separate entities at the barrier position.

  1. Electrostatic Solvation Energy for Two Oppositely Charged Ions in a Solvated Protein System: Salt Bridges Can Stabilize Proteins

    PubMed Central

    Gong, Haipeng; Freed, Karl F.

    2010-01-01

    Abstract Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is grossly in error. Our calculations also suggest that a salt bridge on the protein's surface can be stabilizing when the charge separation is ≤4 Å. PMID:20141761

  2. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, M.J.; Abbasian, J.; Akin, C.

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less

  3. An undergraduate laboratory experiment for measuring ɛ 0, μ 0 and speed of light c with do-it-yourself catastrophe machines: electrostatic and magnetostatic pendula

    NASA Astrophysics Data System (ADS)

    Mishonov, Todor M.; Varonov, Albert M.; Maksimovski, Dejan D.; Manolev, Stojan G.; Gourev, Vassil N.; Yordanov, Vasil G.

    2017-03-01

    An experimental set-up for electrostatic measurement of {\\varepsilon }0, separate magnetostatic measurement of {μ }0 and determination of the speed of light c=1/\\sqrt{{\\varepsilon }0{μ }0} according to Maxwell’s theory with percent accuracy is described. No forces are measured with the experimental set-up, therefore there is no need for a scale, and the experiment cost of less than £20 is mainly due to the batteries used. Multiplied 137 times, this experimental set-up was given at the Fourth Open International Experimental Physics Olympiad (EPO4) and a dozen high school students performed successful experiments. The experimental set-up actually contains two different pendula for electric and magnetic measurements. In the magnetic experiment the pendulum is constituted by a magnetic coil attracted to a fixed one. In the electrostatic pendulum when the distance between the plates becomes shorter than a critical value the suspended plate catastrophically sticks to the fixed one, while in the magnetic pendulum the same occurs when the current in the coils becomes greater than a certain critical value. The basic idea of the methodology is to use the loss of stability as a tool for the determination of fundamental constants.

  4. Spectral fingerprint of electrostatic forces between biological cells.

    PubMed

    Murovec, T; Brosseau, C

    2015-10-01

    The prediction of electrostatic forces (EFs) between biological cells still poses challenges of great scientific importance, e.g., cell recognition, electroporation (EP), and mechanosensing. Frequency-domain finite element simulations explore a variety of cell configurations in the range of parameters typical for eukaryotic cells. Here, by applying an electric field to a pair of layered concentric shells, a prototypical model of a biological cell, we provide numerical evidence that the instantaneous EF changes from repulsion to attraction as the drive frequency of the electric field is varied. We identify crossover frequencies and discuss their dependence as a function of field frequency, conductivity of the extracellular medium, and symmetry of the configuration of cells. We present findings which suggest that the spectrum of EFs depends sensitively on the configuration of cells. We discuss the signatures of the collective behavior of systems with many cells in the spectrum of the EF and highlight a few of the observational consequences that this behavior implies. By looking at different cell configurations, we are able to show that the repulsion-to-attraction transition phenomenon is largely associated with an asymmetric electrostatic screening at very small separation between cells. These findings pave the way for the experimental observation of the electromagnetic properties of efficient and simple models of biological tissues.

  5. Analytic model of a laser-accelerated composite plasma target and its stability

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Shvets, Gennady

    2013-10-01

    A self-consistent analytical model of monoenergetic acceleration of a one and two-species ultrathin target irradiated by a circularly polarized laser pulse is developed. In the accelerated reference frame, the bulk plasma in the target is neutral and its parameters are assumed to be stationary. It is found that the structure of the target depends strongly on the temperatures of electrons and ions, which are both strongly influenced by the laser pulse pedestal. When the electron temperature is large, the hot electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials while the heavy and light ions are forced-balanced by the electrostatic and non-inertial fields forming two separated layers. In the opposite limiting case when the ion temperature is large, the hot ions are trapped in the potential well formed by the ion-sheath's electric and non-inertial potentials while the cold electrons are forced-balanced by the electrostatic and ponderomotive fields. Using PIC simulations we have determined which scenario is realized in practice depending on the initial target structure and laser intensity. Target stability with respect to Rayleigh-Taylor instability will also be discussed. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  6. Chromatic Modulator for High Resolution CCD or APS Devices

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)

    2003-01-01

    A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.

  7. Stability and charge separation of different CH3NH3SnI3/TiO2 interface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yang, Zhenzhen; Wang, Yuanxu; Liu, Yunyan

    2018-05-01

    Interface has an important effect on charge separation of perovskite solar cells. Using first-principles calculations, we studied several different interfaces between CH3NH3SnI3 and TiO2. The interfacial structure and electronic structure of these interfaces are thoroughly explored. We found that the SnI2/anatase (SnI2/A) system is more stable than the other three systems, because an anatase surface can make Snsbnd I bond faster restore to the pristine value than a rutile surface, and SnI2/A system has a smaller standard deviation. The calculated plane-averaged electrostatic potential and the density of states suggest that SnI2/anatase interface has a better separation of photo-generated electron-hole pairs.

  8. Does Electrostatic Shielding Work Both Ways?

    ERIC Educational Resources Information Center

    Geller, Zvi; Bagno, Esther

    1994-01-01

    Describes an experiment designed to disprove the belief that an electrical field originating from a point inside a closed conducting surface cannot produce an electric field outside this surface. (ZWH)

  9. Electrostatic vibration energy harvester with 2.4-GHz Cockcroft-Walton rectenna start-up

    NASA Astrophysics Data System (ADS)

    Takhedmit, Hakim; Saddi, Zied; Karami, Armine; Basset, Philippe; Cirio, Laurent

    2017-02-01

    In this paper, we propose the design, fabrication and experiments of a macro-scale electrostatic vibration energy harvester (e-VEH), pre-charged wirelessly for the first time with a 2.4-GHz Cockcroft-Walton rectenna. The rectenna is designed and optimized to operate at low power densities and provide high voltage levels: 0.5 V at 0.76 μW/cm2 and 1 V at 1.53 μW/cm2. The e-VEH uses a Bennet doubler as a conditioning circuit. Experiments show a 23-V voltage across the transducer terminal, when the harvester is excited at 25 Hz by 1.5 g of external acceleration. An accumulated energy of 275 μJ and a maximum available power of 0.4 μW are achieved. xml:lang="fr"

  10. Electrostatic Vibration Energy Harvester Pre-charged Wirelessly at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Saddi, Z.; Takhedmit, H.; Karami, A.; Basset, P.; Cirio, L.

    2016-11-01

    This paper reports the design, fabrication and experiments of an electrostatic vibration harvester (e-VEH), pre-charged wirelessly for the first time by using an electromagnetic waves harvester at 2.4 GHz. The rectenna uses the Cockcroft-Walton voltage doubler rectifier. It is designed and optimized to operate at low power densities and provides high voltage levels: 0.5 V at 0.5 μW/cm2 and 0.8 V at 1 μW/cm2 The e-VEH uses the Bennet doubler as conditioning circuit. Experiments show 23 V voltage across the transducer terminal when the harvester is excited at 25 Hz by 1.5 g of external acceleration. An accumulated energy of 275 μJ and a maximum power of 0.4 μW are available for the load.

  11. An electrostatic deceleration lens for highly charged ions.

    PubMed

    Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P

    2010-04-01

    The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.

  12. Electrostatics of DNA-Functionalized Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoffmann, Kyle; Krishnamoorthy, Kurinji; Kewalramani, Sumit; Bedzyk, Michael; Olvera de La Cruz, Monica

    DNA-functionalized nanoparticles have applications in directed self-assembly and targeted cellular delivery of therapeutic proteins. In order to design specific systems, it is necessary to understand their self-assembly properties, of which the long-range electrostatic interactions are a critical component. We iteratively solved equations derived from classical density functional theory in order to predict the distribution of ions around DNA-functionalized Cg Catalase. We then compared estimates of the resonant intensity to those from SAXS measurements to estimate key features of DNA-functionalized proteins, such as the size of the region linking the protein and DNA and the extension of the single-stranded DNA. Using classical density functional theory and coarse-grained simulations, we are able to predict and understand these fundamental properties in order to rationally design new biomaterials.

  13. On the theory of Carriers's Electrostatic Interaction near an Interface

    NASA Astrophysics Data System (ADS)

    Waters, Michael; Hashemi, Hossein; Kieffer, John

    2015-03-01

    Heterojunction interfaces are common in non-traditional photovoltaic device designs, such as those based small molecules, polymers, and perovskites. We have examined a number of the effects of the heterojunction interface region on carrier/exciton energetics using a mixture of both semi-classical and quantum electrostatic methods, ab initio methods, and statistical mechanics. Our theoretical analysis has yielded several useful relationships and numerical recipes that should be considered in device design regardless of the particular materials system. As a demonstration, we highlight these formalisms as applied to carriers and polaron pairs near a C60/subphthalocyanine interface. On the regularly ordered areas of the heterojunction, the effect of the interface is a significant set of corrections to the carrier energies, which in turn directly affects device performance.

  14. A mass filter based on an accelerating traveling wave.

    PubMed

    Wiedenbeck, Michael; Kasemset, Bodin; Kasper, Manfred

    2008-01-01

    We describe a novel mass filtering concept based on the acceleration of a pulsed ion beam through a stack of electrostatic plates. A precisely controlled traveling wave generated within such an ion guide will induce a mass-selective ion acceleration, with mass separation ultimately accomplished via a simple energy-filtering system. Crucial for successful filtering is that the velocity with which the traveling wave passes through the ion guide must be dynamically controlled in order to accommodate the acceleration of the target ion species. Mass selection is determined by the velocity and acceleration with which the wave traverses the ion guide, whereby the target species will acquire a higher kinetic energy than all other lighter as well as heaver species. Finite element simulations of this design demonstrate that for small masses a mass resolution M/DeltaM approximately 1000 can be achieved within an electrode stack containing as few as 20 plates. Some of the possible advantages and drawbacks which distinguish this concept from established mass spectrometric technologies are discussed.

  15. Tunable dual-band graphene-based infrared reflectance filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, Michael D.; Ruiz, Isaac; Howell, Stephen W.

    Here, we experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm –1. Electromagnetic simulationsmore » verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.« less

  16. Progress on PEEM3 -- An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDowell, A. A.; Feng, J.; DeMello, A.

    2007-01-19

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less

  17. Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDowell, Alastair A.; Feng, J.; DeMello, A.

    2006-05-20

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less

  18. Tunable dual-band graphene-based infrared reflectance filter

    DOE PAGES

    Goldflam, Michael D.; Ruiz, Isaac; Howell, Stephen W.; ...

    2018-03-23

    Here, we experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm –1. Electromagnetic simulationsmore » verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here is applicable across a broad range of infrared frequencies.« less

  19. The STPX Spheromak System: Recent Measurements and Observations

    NASA Astrophysics Data System (ADS)

    Williams, R. L.; Clark, J.; Richardson, M.; Williams, R. E.

    2016-10-01

    We present results of recent measurements made to characterize the plasma formed in the STPX* Spheromak plasma device installed at the Florida A. and M University. The toroidal plasma is formed using a pulsed cylindrical gun discharge and, when fully operational, is designed to approach a density of 1021 /m3 and electron temperatures in the range of 100-350 eV. The diagnostic devices used for these recent measurements include Langmuir probes, electrostatic triple probes, optical spectrometers, CCD detectors, laser probes and magnetic field coils. These probes have been tested using both a static and the pulsed discharges created in the device, and we report the latest measurements. The voltage and current profiles of the pulsed discharge as well as the pulsed magnetic field coils are discussed. Progress in modeling this spheromak using NIMROD and other simulation codes will be discussed. Our recent results of an ongoing study of the topology of magnetic helicity are presented in a separate poster. Spheromak Turbulent Physics Experiment.

  20. A pH-tunable nanofluidic diode with a broad range of rectifying properties.

    PubMed

    Ali, Mubarak; Ramirez, Patricio; Mafé, Salvador; Neumann, Reinhard; Ensinger, Wolfgang

    2009-03-24

    The use of fixed charge nanopores in practical applications requires tuning externally the electrostatic interaction between the charged groups and the ionic permeants in order to allow integrating a variety of functions on the same nanostructure. We design, produce, and characterize, theoretically and experimentally, a single-track amphoteric nanopore functionalized with lysine and histidine chains whose positive and negative charges are very sensitive to the external pH. This nanofluidic diode with amphoteric chains attached to the pore surface allows for a broad set of rectification properties supported by a single nanodevice. A definite plus is to functionalize these groups on a conical nanopore with well-defined, controlled structural asymmetry which gives virtually every rectification characteristic that may be required in practical applications. Nanometerscaled amphoteric pores are of general interest because of the potential applications in drug delivery systems, ion-exchange membranes for separation of biomacromolecules, antifouling materials with reduced molecular adsorption, and biochemical sensors.

  1. Theoretical studies on rapid fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas

    1986-01-01

    Rapid fluctuations in the emission of solar bursts may have many different origins e.g., the acceleration process can have a pulsating structure, the propagation of energetic electrons and ions can be interrupted from plasma instabilities and finally the electromagnetic radiation produced by the interaction of electrostatic and electromagnetic waves may have a pulsating behavior in time. In two separate studies the conditions for rapid fluctuations in solar flare driven emission were analyzed.

  2. Phase Separation from Electron Confinement at Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Scopigno, N.; Bucheli, D.; Caprara, S.; Biscaras, J.; Bergeal, N.; Lesueur, J.; Grilli, M.

    2016-01-01

    Oxide heterostructures are of great interest for both fundamental and applicative reasons. In particular, the two-dimensional electron gas at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces displays many different properties and functionalities. However, there are clear experimental indications that the interface electronic state is strongly inhomogeneous and therefore it is crucial to investigate possible intrinsic mechanisms underlying this inhomogeneity. Here, the electrostatic potential confining the electron gas at the interface is calculated self-consistently, finding that such confinement may induce phase separation, to avoid a thermodynamically unstable state with a negative compressibility. This provides a robust mechanism for the inhomogeneous character of these interfaces.

  3. STS-95 Day 04 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this forth day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, are seen performing an evaluation of bone cell activity under microgravity conditions. Glenn then provides blood samples as part of the Protein Turnover Experiment, which is looking at the balance between the building and breakdown of muscle. He also works with the Advanced Organic Separations (ADSEP) experiment, to provides the capability to separate and purify biological materials in microgravity; and with the Microencapsulation Electrostatic Processing System (MEPS), that studies the formation of anti-tumor capsules containing two kinds of drugs.

  4. Adsorption and separation of proteins by collagen fiber adsorbent.

    PubMed

    Li, Juan; Liao, Xue-pin; Zhang, Qi-xian; Shi, Bi

    2013-06-01

    The separation of proteins is a key step in biomedical and pharmaceutical industries. In the present investigation, the collagen fiber adsorbent (CFA) was exploited as column packing material to separate proteins. Bovine serum albumin (BSA), bovine hemoglobin (Hb) and lysozyme (LYS) that have different isoelectric points (pIs) were selected as model proteins to investigate the separation ability of CFA to proteins. In batch adsorption, the adsorption behaviors of these proteins on CFA under different pHs and ionic strengths indicated that the electrostatic interaction plays a predominant role in the adsorption of proteins on CFA. CFA exhibited high adsorption capacity to Hb and LYS. In column separation, the proteins were completely separated by adjusting pH and ionic strength of the eluent. The increase of flow rate could reduce the separation time with no influence on the recovery of protein in the experimental range. The protein recovery was higher than 90% even when the CFA column was re-used for 4 times in separation of BSA and LYS, and the retention time of BSA or LYS was almost constant during the repeated applications. In addition, as a practical application, LYS was successfully separated from chicken egg white powder by CFA column. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  6. Fractal symmetry of protein interior: what have we learned?

    PubMed

    Banerji, Anirban; Ghosh, Indira

    2011-08-01

    The application of fractal dimension-based constructs to probe the protein interior dates back to the development of the concept of fractal dimension itself. Numerous approaches have been tried and tested over a course of (almost) 30 years with the aim of elucidating the various facets of symmetry of self-similarity prevalent in the protein interior. In the last 5 years especially, there has been a startling upsurge of research that innovatively stretches the limits of fractal-based studies to present an array of unexpected results on the biophysical properties of protein interior. In this article, we introduce readers to the fundamentals of fractals, reviewing the commonality (and the lack of it) between these approaches before exploring the patterns in the results that they produced. Clustering the approaches in major schools of protein self-similarity studies, we describe the evolution of fractal dimension-based methodologies. The genealogy of approaches (and results) presented here portrays a clear picture of the contemporary state of fractal-based studies in the context of the protein interior. To underline the utility of fractal dimension-based measures further, we have performed a correlation dimension analysis on all of the available non-redundant protein structures, both at the level of an individual protein and at the level of structural domains. In this investigation, we were able to separately quantify the self-similar symmetries in spatial correlation patterns amongst peptide-dipole units, charged amino acids, residues with the π-electron cloud and hydrophobic amino acids. The results revealed that electrostatic environments in the interiors of proteins belonging to 'α/α toroid' (all-α class) and 'PLP-dependent transferase-like' domains (α/β class) are highly conducive. In contrast, the interiors of 'zinc finger design' ('designed proteins') and 'knottins' ('small proteins') were identified as folds with the least conducive electrostatic environments. The fold 'conotoxins' (peptides) could be unambiguously identified as one type with the least stability. The same analyses revealed that peptide-dipoles in the α/β class of proteins, in general, are more correlated to each other than are the peptide-dipoles in proteins belonging to the all-α class. Highly favorable electrostatic milieu in the interiors of TIM-barrel, α/β-hydrolase structures could explain their remarkably conserved (evolutionary) stability from a new light. Finally, we point out certain inherent limitations of fractal constructs before attempting to identify the areas and problems where the implementation of fractal dimension-based constructs can be of paramount help to unearth latent information on protein structural properties.

  7. Method to Remove Particulate Matter from Dusty Gases at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Clements, J. Sid

    2012-01-01

    Future human exploration of Mars will rely on local Martian resources to reduce the mass, cost, and risk of space exploration launched from Earth. NASA's In Situ Resource Utilization (ISRU) Project seeks to produce mission consumables from local Martian resources, such as atmospheric gas. The Martian atmosphere, however, contains dust particles in the 2-to-10 -micrometer range. These dust particles must be removed before the Martian atmospheric gas can be processed. The low pressure of the Martian atmosphere, at 5 to 10 mbars, prevents the development of large voltages required for a standard electrostatic precipitator. If the voltage is increased too much, the corona transitions into a glow/streamer discharge unsuitable for the operation of a precipitator. If the voltage is not large enough, the dust particles are not sufficiently charged and the field is not strong enough to drive the particles to the collector. A method using electrostatic fields has been developed to collect dust from gaseous environments at low pressures, specifically carbon dioxide at pressures around 5 to 10 mbars. This method, commonly known as electrostatic precipitation, is a mature technology in air at one atmosphere. In this case, the high voltages required for the method to work can easily be achieved. However, in carbon dioxide at low pressures, such as those found on Mars, large voltages are not possible. The innovation reported here consists of two concentric cylindrical electrodes set at specific potential difference that generate an electric field that produces a corona capable of imparting an electrostatic charge to the incoming dust particles. The strength of the field is carefully balanced so as to produce a stable charging corona at 5 to 10 mbars, and is also capable of imparting a force to the particles that drives them to the collecting electrode. There are only two possible ways that dust can be removed from Martian atmospheric gas intakes: with this electrostatic precipitator design, and with the use of filters. However, filters require upstream compression of the gas to be treated because the atmospheric pressure on Mars is too close to vacuum to use a vacuum pump downstream to the filter to draw the gas through the filter. The electrostatic precipitator is the best and more efficient solution for this environment. No other precipitator designs have been developed for the environment of Mars due to the challenges of the low atmospheric pressure. Dust particles are charged using corona generation around the high-voltage discharge electrode, which ionizes gas molecules. Since the atmospheric gas intakes for the ISRU processing chambers will likely be cylindrical, cylindrical precipitator geometry was chosen. The electrostatic precipitator design presented here removes simulated Martian dust particles in the required range in a simulated Martian atmospheric environment. The current-voltage (I-V) characteristic curves taken for the nine precipitator configurations at 9 mbars of pressure showed that a cylindrical collecting electrode 7.0 cm in diameter with a concentric positive high voltage electrode 100 m thick provides the best range of voltage and charging corona current. This precipitator design is effective for the size of the dust particles expected in the Martian atmosphere. Mass determination, as well as microscopic images and particle size distributions of dust collected on a silicon wafer placed directly below the precipitator with the field on and off, showed excellent initial results.

  8. Advanced understanding on electronic structure of molecular semiconductors and their interfaces

    NASA Astrophysics Data System (ADS)

    Akaike, Kouki

    2018-03-01

    Understanding the electronic structure of organic semiconductors and their interfaces is critical to optimizing functionalities for electronics applications, by rational chemical design and appropriate combination of device constituents. The unique electronic structure of a molecular solid is characterized as (i) anisotropic electrostatic fields that originate from molecular quadrupoles, (ii) interfacial energy-level lineup governed by simple electrostatics, and (iii) weak intermolecular interactions that make not only structural order but also energy distributions of the frontier orbitals sensitive to atmosphere and interface growth. This article shows an overview on these features with reference to the improved understanding of the orientation-dependent electronic structure, comprehensive mechanisms of molecular doping, and energy-level alignment. Furthermore, the engineering of ionization energy by the control of the electrostatic fields and work function of practical electrodes by contact-induced doping is briefly described for the purpose of highlighting how the electronic structure impacts the performance of organic devices.

  9. A rocket-borne electrostatic analyzer for measurement of energetic particle flux

    NASA Technical Reports Server (NTRS)

    Pozzi, M. A.; Smith, L. G.; Voss, H. D.

    1979-01-01

    A rocket-borne electrostatic analyzer experiment is described. It is used to measure energetic particle flux (0.9 to 14 keV) in the nighttime midlatitude E region. Energetic particle precipitation is believed to be a significant nighttime ionization source, particularly during times of high geomagnetic activity. The experiment was designed for use in the payload of a Nike Apache sounding rocket. The electrostatic analyzer employs two cylindrical parallel plates subtending a central angle of 90 deg. The voltage waveform supplied to the plates is a series of steps synchronized to the spin of the payload during flight. Both positive and negative voltages are provided, extending the detection capabilities of the instrument to both electrons and protons (and positive ions). The development, construction and operation of the instrument is described together with a preliminary evaluation of its performance in a rocket flight.

  10. Electrostatics-Driven Hierarchical Buckling of Charged Flexible Ribbons.

    PubMed

    Yao, Zhenwei; Olvera de la Cruz, Monica

    2016-04-08

    We investigate the rich morphologies of an electrically charged flexible ribbon, which is a prototype for many beltlike structures in biology and nanomaterials. Long-range electrostatic repulsion is found to govern the hierarchical buckling of the ribbon from its initially flat shape to its undulated and out-of-plane twisted conformations. In this process, the screening length is the key controlling parameter, suggesting that a convenient way to manipulate the ribbon morphology is simply to change the salt concentration. We find that these shapes originate from the geometric effect of the electrostatic interaction, which fundamentally changes the metric over the ribbon surface. We also identify the basic modes by which the ribbon reshapes itself in order to lower the energy. The geometric effect of the physical interaction revealed in this Letter has implications for the shape design of extensive ribbonlike materials in nano- and biomaterials.

  11. Rational modification of protein stability by targeting surface sites leads to complicated results

    PubMed Central

    Xiao, Shifeng; Patsalo, Vadim; Shan, Bing; Bi, Yuan; Green, David F.; Raleigh, Daniel P.

    2013-01-01

    The rational modification of protein stability is an important goal of protein design. Protein surface electrostatic interactions are not evolutionarily optimized for stability and are an attractive target for the rational redesign of proteins. We show that surface charge mutants can exert stabilizing effects in distinct and unanticipated ways, including ones that are not predicted by existing methods, even when only solvent-exposed sites are targeted. Individual mutation of three solvent-exposed lysines in the villin headpiece subdomain significantly stabilizes the protein, but the mechanism of stabilization is very different in each case. One mutation destabilizes native-state electrostatic interactions but has a larger destabilizing effect on the denatured state, a second removes the desolvation penalty paid by the charged residue, whereas the third introduces unanticipated native-state interactions but does not alter electrostatics. Our results show that even seemingly intuitive mutations can exert their effects through unforeseen and complex interactions. PMID:23798426

  12. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen

    Kelvin probe force microscopy (KPFM) has provided deep insights into the role local electronic, ionic and electrochemical processes play on the global functionality of materials and devices, even down to the atomic scale. Conventional KPFM utilizes heterodyne detection and bias feedback to measure the contact potential difference (CPD) between tip and sample. This measurement paradigm, however, permits only partial recovery of the information encoded in bias- and time-dependent electrostatic interactions between the tip and sample and effectively down-samples the cantilever response to a single measurement of CPD per pixel. This level of detail is insufficient for electroactive materials, devices, ormore » solid-liquid interfaces, where non-linear dielectrics are present or spurious electrostatic events are possible. Here, we simulate and experimentally validate a novel approach for spatially resolved KPFM capable of a full information transfer of the dynamic electric processes occurring between tip and sample. General acquisition mode, or G-Mode, adopts a big data approach utilising high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates (> 4 MHz), providing a permanent record of the tip trajectory. We develop a range of methodologies for analysing the resultant large multidimensional datasets involving classical, physics-based and information-based approaches. Physics-based analysis of G-Mode KPFM data recovers the parabolic bias dependence of the electrostatic force for each cycle of the excitation voltage, leading to a multidimensional dataset containing spatial and temporal dependence of the CPD and capacitance channels. We use multivariate statistical methods to reduce data volume and separate the complex multidimensional data sets into statistically significant components that can then be mapped onto separate physical mechanisms. Overall, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as offer a promising approach to extend KPFM to solid-liquid interfaces.« less

  13. Domain Formation Induced by the Adsorption of Charged Proteins on Mixed Lipid Membranes

    PubMed Central

    Mbamala, Emmanuel C.; Ben-Shaul, Avinoam; May, Sylvio

    2005-01-01

    Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation. PMID:15626713

  14. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space

    DOE PAGES

    Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen; ...

    2016-08-12

    Kelvin probe force microscopy (KPFM) has provided deep insights into the role local electronic, ionic and electrochemical processes play on the global functionality of materials and devices, even down to the atomic scale. Conventional KPFM utilizes heterodyne detection and bias feedback to measure the contact potential difference (CPD) between tip and sample. This measurement paradigm, however, permits only partial recovery of the information encoded in bias- and time-dependent electrostatic interactions between the tip and sample and effectively down-samples the cantilever response to a single measurement of CPD per pixel. This level of detail is insufficient for electroactive materials, devices, ormore » solid-liquid interfaces, where non-linear dielectrics are present or spurious electrostatic events are possible. Here, we simulate and experimentally validate a novel approach for spatially resolved KPFM capable of a full information transfer of the dynamic electric processes occurring between tip and sample. General acquisition mode, or G-Mode, adopts a big data approach utilising high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates (> 4 MHz), providing a permanent record of the tip trajectory. We develop a range of methodologies for analysing the resultant large multidimensional datasets involving classical, physics-based and information-based approaches. Physics-based analysis of G-Mode KPFM data recovers the parabolic bias dependence of the electrostatic force for each cycle of the excitation voltage, leading to a multidimensional dataset containing spatial and temporal dependence of the CPD and capacitance channels. We use multivariate statistical methods to reduce data volume and separate the complex multidimensional data sets into statistically significant components that can then be mapped onto separate physical mechanisms. Overall, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as offer a promising approach to extend KPFM to solid-liquid interfaces.« less

  15. Removing Bacillus subtilis from fermentation broth using alumina nanoparticles.

    PubMed

    Mu, Dashuai; Mu, Xin; Xu, Zhenxing; Du, Zongjun; Chen, Guanjun

    2015-12-01

    In this study, an efficient separation technology using Al2O3 nanoparticles (NPs) was developed for removing Bacillus subtilis from fermentation broth. The dosage of alumina nanoparticles used for separating B. subtilis increased during the culture process and remained stable in the stationary phase of the culture process. The pH of the culture-broth was also investigated for its effects on flocculation efficiency, and showed an acidic pH could enhance the flocculation efficiency. The attachment mechanisms of Al2O3 NPs to the B. subtilis surface were investigated, and the zeta potential analysis showed that Al2O3 NPs could attach to B. subtilis via electrostatic attachment. Finally, the metabolite content and the antibacterial effect of the fermentation supernatants were detected and did not significantly differ between alumina nanoparticle separation and centrifugation separation. Together, these results indicate a great potential for a highly efficient and economical method for removing B. subtilis from fermentation broth using alumina nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ho; Kang, Ki Ho; Choi, Jinsub; Jeong, Young Keun

    2008-10-01

    This work describes the development of high efficiency protein separation with functionalized organosilanes on the surface of silica coated magnetic nanoparticles. The magnetic nanoparticles were synthesized with average particle size of 9 nm and silica coated magnetic nanoparticles were obtained by controlling the coating thicknesses on magnetic nanoparticles. The silica coating thickness could be uniformly sized with a diameter of 10-40 nm by a sol-gel approach. The surface modification was performed with four kinds of functionalized organosilanes such as carboxyl, aldehyde, amine, and thiol groups. The protein separation work with organosilane assembled silica coated magnetic nanoparticles was achieved for model proteins such as bovine serum albumin (BSA) and lysozyme (LSZ) at different pH conditions. Among the various functionalities, the thiol group showed good separation efficiency due to the change of electrostatic interactions and protein conformational structure. The adsorption efficiency of BSA and LSZ was up to 74% and 90% corresponding pH 4.65 and pH 11.

  17. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less

  18. A review of electrostatic monitoring technology: The state of the art and future research directions

    NASA Astrophysics Data System (ADS)

    Wen, Zhenhua; Hou, Junxing; Atkin, Jason

    2017-10-01

    Electrostatic monitoring technology is a useful tool for monitoring and detecting component faults and degradation, which is necessary for system health management. It encompasses three key research areas: sensor technology; signal detection, processing and feature extraction; and verification experimentation. It has received considerable recent attention for condition monitoring due to its ability to provide warning information and non-obstructive measurements on-line. A number of papers in recent years have covered specific aspects of the technology, including sensor design optimization, sensor characteristic analysis, signal de-noising and practical applications of the technology. This paper provides a review of the recent research and of the development of electrostatic monitoring technology, with a primary emphasis on its application for the aero-engine gas path. The paper also presents a summary of some of the current applications of electrostatic monitoring technology in other industries, before concluding with a brief discussion of the current research situation and possible future challenges and research gaps in this field. The aim of this paper is to promote further research into this promising technology by increasing awareness of both the potential benefits of the technology and the current research gaps.

  19. Electrostatic adhesion for added functionality of composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-02-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (˜2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.

  20. Enhanced sub-micron colloidal particle separation with interdigitated microelectrode arrays using mixed AC/DC dielectrophoretic scheme.

    PubMed

    Swaminathan, Vikhram V; Shannon, Mark A; Bashir, Rashid

    2015-04-01

    Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of electric fields in the media. In order to improve the separation of sub-micron colloids, we present a scheme based on multiple interdigitated electrode arrays under mixed AC/DC bias. The use of high frequency longitudinal AC bias breaks the shielding effects through electroosmotic micromixing to enhance electric fields through the electrolyte, while a transverse DC bias between the electrode arrays enables penetration of the separation force to capture particles from the bulk of the microchannel. We determine the favorable biasing conditions for field enhancement with the help of analytical models, and experimentally demonstrate the improved capture from sub-micron colloidal suspensions with the mixed AC/DC electrostatic excitation scheme over conventional AC-DEP methods.

  1. The role of electrostatics in protein-protein interactions of a monoclonal antibody.

    PubMed

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2014-07-07

    Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.

  2. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Electromagnetic Compatibility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2004-01-01

    This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

  4. Data appendix: F-number=1.0 EMR with a flexible back electrode

    NASA Technical Reports Server (NTRS)

    Mihora, D. J.

    1984-01-01

    A 12.5 micron Tedlar low f-number electrostatic membrane reflector was tested. The antenna reflector was designed to achieve a spherical reflector surface with a focal length to diameter ratio f(sub n) of one and a potential accuracy of 1.0 over its 4.88 m diameter. The configuration required the cutting and joining of twelve pie-shaped panels to form the reflector surface. Electrostatic forces are used to tension this preformed membrane reflector. The test data is spare-only three sets of measurements were taken due to lack of funds.

  5. Terahertz absorption of lysozyme in solution

    NASA Astrophysics Data System (ADS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2017-08-01

    Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.

  6. Double-exponential decay of orientational correlations in semiflexible polyelectrolytes.

    PubMed

    Bačová, P; Košovan, P; Uhlík, F; Kuldová, J; Limpouchová, Z; Procházka, K

    2012-06-01

    In this paper we revisited the problem of persistence length of polyelectrolytes. We performed a series of Molecular Dynamics simulations using the Debye-Hückel approximation for electrostatics to test several equations which go beyond the classical description of Odijk, Skolnick and Fixman (OSF). The data confirm earlier observations that in the limit of large contour separations the decay of orientational correlations can be described by a single-exponential function and the decay length can be described by the OSF relation. However, at short countour separations the behaviour is more complex. Recent equations which introduce more complicated expressions and an additional length scale could describe the results very well on both the short and the long length scale. The equation of Manghi and Netz when used without adjustable parameters could capture the qualitative trend but deviated in a quantitative comparison. Better quantitative agreement within the estimated error could be obtained using three equations with one adjustable parameter: 1) the equation of Manghi and Netz; 2) the equation proposed by us in this paper; 3) the equation proposed by Cannavacciuolo and Pedersen. Two characteristic length scales can be identified in the data: the intrinsic or bare persistence length and the electrostatic persistence length. All three equations use a single parameter to describe a smooth crossover from the short-range behaviour dominated by the intrinsic stiffness of the chain to the long-range OSF-like behaviour.

  7. Molecular chirality and domain shapes in lipid monolayers on aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Krüger, Peter; Lösche, Mathias

    2000-11-01

    The shapes of domain boundaries in the mesoscopic phase separation of phospholipids in aqueous surface monolayers are analyzed with particular attention to the influence of molecular chirality. We have calculated equilibrium shapes of such boundaries, and show that the concept of spontaneous curvature-derived from an effective pair potential between the chiral molecules-yields an adequate description of the contribution of chirality to the total energy of the system. For enantiomeric dipalmitoylphosphatidylcholine in pure monolayers, and in mixtures with impurities that adsorb preferentially at the (one-dimensional) boundary line between the isotropic and anisotropic fluid phases, such as cyanobiphenyl (5CB), a total energy term that includes line tension, electrostatic dipole-dipole interaction, and spontaneous curvature is sufficient to describe the shapes of well-separated domain boundaries in full detail. As soon as interdomain distances fall below the domain sizes upon compression of a monolayer, fluctuations take over in determining its detailed structural morphology. Using Minkowski measures for the well-studied dimyristoyl phosphatidic acid (DMPA)/cholesterol system, we show that calculations accounting for line tension, electrostatic repulsion, and molecular chirality yield boundary shapes that are of the same topology as the experimentally observed structures. At a fixed molecular area in the phase coexistence region, the DMPA/cholesterol system undergoes an exponential decay of the line tension λ with decreasing subphase temperature T.

  8. Density-based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.; Ayers, P.W.; Zhang, Y.

    2009-10-28

    The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these twomore » terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.« less

  9. Tailoring nanoscale morphology of polymer: Fullerene blends using electrostatic field

    DOE PAGES

    Elshobaki, Moneim; Gebhardt, Ryan; Carr, John; ...

    2016-12-05

    In this paper, to tailor the nanoscale phase separation in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC 60BM) bulk heterojunction (BHJ). In addition to untreated sample (control); wet P3HT:PC 60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions – horizontal (H), tilted (T) and vertical (V) – relative to the plane of the substrate. Surface and bulk characterizations of field-treated BHJs affirm that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following themore » E-field. E-field treatment yields thin films with large P3HT- and PCBM-rich domains acting as continuous pathways for efficient charge separation, transport, and collection. We improve; (1) the hole mobility values up to 19.4 × 10 -4 ± 1.6 × 10 -4 cm 2 V -1 s -1 (117% higher than the control), and (2) power conversion efficient (PCE) of conventional and inverted OPVs recording 2.58 ± 0.02% and 4.1 ± 0.4%. This E-field approach can serve as a new morphology-tuning technique, which is generally applicable to other polymer-fullerene systems.« less

  10. Synthesis of pH-sensitive and recyclable magnetic nanoparticles for efficient separation of emulsified oil from aqueous environments

    NASA Astrophysics Data System (ADS)

    Lü, Ting; Zhang, Shuang; Qi, Dongming; Zhang, Dong; Vance, George F.; Zhao, Hongting

    2017-02-01

    Emulsified oil wastewaters, arisen from oil industry and oil spill accidents, cause severe environmental and ecological problems. In this study, a series of pH-sensitive magnetic nanomaterials (MNPs) were synthesized and characterized for their evaluation in separation of emulsified oil from aqueous environments. A coprecipitation method was used to produce Fe3O4 magnetic nanoparticles that were coated in a 2-step process with first silica to form a surface for anchoring an (3-aminopropyl)triethoxysilane (APTES) molecular layer. Detailed studies were conducted on effects of MNPs dosage, APTES anchoring density (DA) and pH on oil-water separation performance of the synthetic MNPs. Results showed that, under both acidic and neutral conditions, MNPs with high DA exhibited enhanced oil-water separation performance, while under alkaline condition, the oil-water separation process was minimal. Alkaline conditions allowed the MNPs to be recycled up to 9 cycles without showing any significant decrease in oil-water separation efficiency. An examination of the oil-water separation mechanism found that electrostatic interaction and interfacial activity both played important roles in oil-water separation. In conclusion, pH-sensitive MNPs can be easily synthesized and recycled, providing a promising, cost-effective and environmentally-friendly process for the efficient treatment of emulsified oil wastewater.

  11. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.

    PubMed

    Chaudret, Robin; Gresh, Nohad; Narth, Christophe; Lagardère, Louis; Darden, Thomas A; Cisneros, G Andrés; Piquemal, Jean-Philip

    2014-09-04

    We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles. To understand the benefits of the use of Gaussian electrostatics, we evaluate first the accuracy of GEM, which is a pure density-based Gaussian electrostatics model on a test Ca(II)-H2O complex. GEM is shown to further improve the agreement of MM polarization with ab initio reference results. Indeed, GEM introduces nonclassical effects by modeling the short-range quantum behavior of electric fields and therefore enables a straightforward (and selective) inclusion of the sole overlap-dependent exchange-polarization repulsive contribution by means of a Gaussian damping function acting on the GEM fields. The S/G-1 scheme is then introduced. Upon limiting the use of Gaussian electrostatics to metal centers only, it is shown to be able to capture the dominant quantum effects at play on the metal coordination sphere. S/G-1 is able to accurately reproduce ab initio total interaction energies within closed-shell metal complexes regarding each individual contribution including the separate contributions of induction, polarization, and charge-transfer. Applications of the method are provided for various systems including the HIV-1 NCp7-Zn(II) metalloprotein. S/G-1 is then extended to heavy metal complexes. Tested on Hg(II) water complexes, S/G-1 is shown to accurately model polarization up to quadrupolar response level. This opens up the possibility of embodying explicit scalar relativistic effects in molecular mechanics thanks to the direct transferability of ab initio pseudopotentials. Therefore, incorporating GEM-like electron density for a metal cation enable the introduction of nonambiguous short-range quantum effects within any point-dipole based polarizable force field without the need of an extensive parametrization.

  12. Two Instruments for Measuring Distributions of Low-Energy Charged Particles in Space

    NASA Technical Reports Server (NTRS)

    Bader, Michel; Fryer, Thomas B.; Witteborn, Fred C.

    1961-01-01

    Current estimates indicate that the bulk of interplanetary gas consists of protons with energies between 0 and 20 kev and concentrations of 1 to 105 particles/cu cm. Methods and instrumentation for measuring the energy and density distribution of such a gas are considered from the standpoint of suitability for space vehicle payloads. It is concluded that electrostatic analysis of the energy distribution can provide sufficient information in initial experiments. Both magnetic and electrostatic analyzers should eventually be used. Several instruments designed and constructed at the Ames Research Center for space plasma measurements, and the methods of calibration and data reduction are described. In particular, the instrument designed for operation on solar cell power has the following characteristics: weight, 1.1 pounds; size, 2 by 3 by 4 inches; and power consumption, 145 mw. The instrument is designed to yield information on the concentration, energy distribution, and the anisotropy of ion trajectories in the 0.2 to 20 kev range.

  13. Two-dimensional computer simulation of EMVJ and grating solar cells under AMO illumination

    NASA Technical Reports Server (NTRS)

    Gray, J. L.; Schwartz, R. J.

    1984-01-01

    A computer program, SCAP2D (Solar Cell Analysis Program in 2-Dimensions), is used to evaluate the Etched Multiple Vertical Junction (EMVJ) and grating solar cells. The aim is to demonstrate how SCAP2D can be used to evaluate cell designs. The cell designs studied are by no means optimal designs. The SCAP2D program solves the three coupled, nonlinear partial differential equations, Poisson's Equation and the hole and electron continuity equations, simultaneously in two-dimensions using finite differences to discretize the equations and Newton's Method to linearize them. The variables solved for are the electrostatic potential and the hole and electron concentrations. Each linear system of equations is solved directly by Gaussian Elimination. Convergence of the Newton Iteration is assumed when the largest correction to the electrostatic potential or hole or electron quasi-potential is less than some predetermined error. A typical problem involves 2000 nodes with a Jacobi matrix of order 6000 and a bandwidth of 243.

  14. Electrostatic Beneficiation of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Captain, James; Captain, Janine; Arens, Ellen; Quinn, Jacqueline; Calle, Carlos

    2006-01-01

    Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (> 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and < 25 pm), where very little difference in surface composition was observed between the sizes. Samples of the smallest (< 25 pm) and largest (> 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.

  15. The Charging Events in Contact-Separation Electrification.

    PubMed

    Musa, Umar G; Cezan, S Doruk; Baytekin, Bilge; Baytekin, H Tarik

    2018-02-06

    Contact electrification (CE)-charging of surfaces that are contacted and separated, is a common phenomenon, however it is not completely understood yet. Recent studies using surface imaging techniques and chemical analysis revealed a 'spatial' bipolar distribution of charges at the nano dimension, which made a paradigm shift in the field. However, such analyses can only provide information about the charges that remained on the surface after the separation, providing limited information about the actual course of the CE event. Tapping common polymers and metal surfaces to each other and detecting the electrical potential produced on these surfaces 'in-situ' in individual events of contact and separation, we show that, charges are generated and transferred between the surfaces in both events; the measured potential is bipolar in contact and unipolar in separation. We show, the 'contact-charges' on the surfaces are indeed the net charges that results after the separation process, and a large contribution to tribocharge harvesting comes, in fact, from the electrostatic induction resulting from the generated CE charges. Our results refine the mechanism of CE providing information for rethinking the conventional ranking of materials' charging abilities, charge harvesting, and charge prevention.

  16. Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles

    PubMed Central

    Fiorucci, Sébastien; Zacharias, Martin

    2010-01-01

    Abstract Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. PMID:20441756

  17. Development of Charge to Mass Ratio Microdetector for Future Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Lian Albert

    2003-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars are observed often from Earth. This environment provides an ideal condition for turboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If turboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface on Mars helps to prolong the charge decay on the dust particles and soil. To better understanding the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to measure the velocity distribution, charge distribution and mass distribution of Martian wed dust particles. These sensors are fabricated at NASA Kenney Space Center, Electrostatic and Surface Physics Laboratory. The sensors are calibrated. The momentum sensor is capable to measure 45 pan size particles. The designed detector is very simple, robust, without moving parts, and does not require a high voltage power supply. Two sensors are combined to form the Dust Microdetector - CHAL.

  18. Rotational MEMS mirror with latching arm for silicon photonics

    NASA Astrophysics Data System (ADS)

    Brière, Jonathan; Beaulieu, Philippe-Olivier; Saidani, Menouer; Nabki, Frederic; Menard, Michaël.

    2015-02-01

    We present an innovative rotational MEMS mirror that can control the direction of propagation of light beams inside of planar waveguides implemented in silicon photonics. Potential applications include but are not limited to optical telecommunications, medical imaging, scan and spectrometry. The mirror has a half-cylinder shape with a radius of 300 μm that provides low and constant optical losses over the full angular displacement range. A circular comb drive structure is anchored such that it allows free or latched rotation experimentally demonstrated over 8.5° (X-Y planar rotational movement) using 290V electrostatic actuation. The entire MEMS structure was implemented using the MEMSCAP SOIMUMPs process. The center of the anchor beam is designed to be the approximate rotation point of the circular comb drive to counter the rotation offset of the mirror displacement. A mechanical characterization of the MEMS mirror is presented. The latching mechanism provides up to 20 different angular locking positions allowing the mirror to counter any resonance or vibration effects and it is actuated with an electrostatic linear comb drive. An innovative gap closing structure was designed to reduce optical propagation losses due to beam divergence in the interstitial space between the mirror and the planar waveguide. The gap closing structure is also electrostatically actuated and includes two side stoppers to prevent stiction.

  19. Experiments on the Synthesis of Superheavy Elements with 48CA Beams at the Separator Vassilissa

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Yeremin, A. V.; Belozerov, A. V.; Chelnokov, M. L.; Chepigin, V. I.; Gorshkov, V. A.; Kabachenko, A. P.; Korotkov, S. P.; Malyshev, O. N.; Popeko, A. G.; Roháč, J.; Sagaidak, R. N.; Hofmann, S.; Münzenberg, G.; Veselsky, M.; Saro, S.; Iwasa, N.; Morita, K.; Giardina, G.

    2001-04-01

    The study of the decay properties and formation cross sections of the isotopes of elements 110, 112 and 114 were performed at the FLNR JINR with the use of the high intensity 48Ca beams and an electrostatic separator VASSILISSA. 232Th, 238U and 242Pu targets were used in the experiments. At the beam energies corresponding to the calculated cross section maxima of the 3n evaporation channels the isotopes 277110, 283112 and 287114 were produced and identified. The cross section limits were obtained at excitation energies of the compound nucleus corresponding to the maxima of the 4n evaporation channels for the reactions with 232Th and 238U targets.

  20. Method for producing a secondary lithium cell comprising a heat-sensitive protective mechanism

    DOEpatents

    Ullrich, Matthias; Bechtold, Dieter; Rabenstein, Heinrich; Brohm, Thomas

    2003-01-01

    A method for producing a secondary lithium cell which has at least one lithium-cycling negative electrode, at least one lithium-intercalating positive electrode, at least one separator disposed between the positive and the negative electrode, and a nonaqueous lithium ion-conducting electrolyte. The method is carried out by the electrodes and/or the separator being coated, by means of electrostatic powder coating, with wax particles which are insoluble in the electrolyte and have a melting temperature of from about 50 to about 150 .degree. C. and a mean particle size of from about 6 to about 20 .mu.m, the amount of wax being between about 0.5 and about 2.5 mg/cm.sup.2 of electrode area.

  1. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-05-15

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier createdmore » in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV.« less

  2. The Phosphorylation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) by Engineered Surfaces with Electrostatically or Covalently Immobilized VEGF

    PubMed Central

    Anderson, Sean M.; Chen, Tom T.; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2010-01-01

    Growth factors are a class of signaling proteins that direct cell fate through interaction with cell surface receptors. Although a myriad of possible cell fates stem from a growth factor binding to its receptor, the signaling cascades that result in one fate over another are still being elucidated. One possible mechanism by which nature modulates growth factor signaling is through the method of presentation of the growth factor – soluble or immobilized (matrix bound). Here we present the methodology to study signaling of soluble versus immobilized VEGF through VEGFR-2. We have designed a strategy to covalently immobilize VEGF using its heparin-binding domain to orient the molecule (bind) and a secondary functional group to mediate covalent binding (lock). This bind-and-lock approach aims to allow VEGF to assume a bioactive orientation before covalent immobilization. Surface plasmon resonance (SPR) demonstrated heparin and VEGF binding with surface densities of 60 ng/cm2 and 100 pg/cm2, respectively. ELISA experiments confirmed VEGF surface density and showed that electrostatically bound VEGF releases in cell medium and heparin solutions while covalently bound VEGF remains immobilized. Electrostatically bound VEGF and covalently bound VEGF phosphorylate VEGFR-2 in both VEGFR-2 transfected cells and VEGFR-2 endogenously producing cells. HUVECs plated on VEGF functionalized surfaces showed different morphologies between surface-bound VEGF and soluble VEGF. The surfaces synthesized in these studies allow for the study of VEGF/VEGFR-2 signaling induced by covalently bound, electrostatically bound, and soluble VEGF and may provide further insight into the design of materials for the generation of a mature and stable vasculature. PMID:19540581

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de; Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de

    In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial chargesmore » within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.« less

  4. Analysis of Drop Shapes during Electrowetting on a Dielectric

    NASA Astrophysics Data System (ADS)

    Daneshbod, Yousef

    2005-03-01

    Electrowetting refers to the electrostatic control of the interfacial energy of a liquid on a solid, primarily used for the transport of micro-liter volumes of drops on surfaces with embedded electrode arrays. In the present work, the drop is modeled as a two-dimensional lens-like conductor immersed in an infinite dielectric medium slightly above a planar conductor. A matched asymptotic expansion is used to approximate the electrostatic field surrounding the drop. The outer problem models the drop as a conducting circular segment resting on the conducting plane, each maintained at a separate constant potential. The inner problem corrects the region near the edge of the drop by modeling it as an infinite planar conducting wedge lying slightly above the conducting plane. By matching the inner and outer solutions, the charge density along the entire surface of the drop can be approximated, enabling the calculation of the total capacitance of the system. An energy minimization method similar to that of Shapiro et al. [J. Appl. Phys., 93, 5794 (2003)] is applied to the total energy consisting of the liquid/gas, liquid/solid and solid/gas surface energies, together with the electrostatic contribution, subject to the constraint that the drop volume remains constant. A modified form of the Young-Lippmann equation is thus derived that includes the contribution from the extra capacitance of the drop obtained via matched asymptotics.

  5. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K.; Kohlbrecher, J.

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accountingmore » for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.« less

  6. Image method for induced surface charge from many-body system of dielectric spheres

    NASA Astrophysics Data System (ADS)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-01

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.

  7. IImage method for induced surface charge from many-body system of dielectric spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-28

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less

  8. Tribocharging Lunar Soil for Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.

  9. Influence of electrostatic forces on particle propulsion in the evanescent field of silver ion-exchanged waveguides.

    PubMed

    Gebennikov, Dmytro; Mittler, Silvia

    2013-02-26

    The effect of electrostatic interaction between carboxylate- and amino-functionalized polystyrene particles and a charged waveguide surface on the propulsion speed in optical tweezers is considered to be a function of the pH and ionic strength. It was shown that with the variation of the pH of the aqueous solution in which the particles were immersed, a systematic change in propulsion speed with a maximum speed could be achieved. The appearance of a maximum speed was ascribed to changes in the particle-waveguide separation as a result of the combination of two forces: Coulomb repulsion/attraction and induced dipole forces. The highest maximum speed at low ionic strength was around 12 μm/s. Changes in the ionic strength of the solution influenced the gradient of the dielectric constant near the involved surfaces and also led to a slightly reduced hydrodynamic radius of the particles. The combination of these effects subsequently increased the maximum speed to about 23 μm/s.

  10. Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: numerical study.

    PubMed

    Nardecchia, Ilaria; Spinelli, Lionel; Preto, Jordane; Gori, Matteo; Floriani, Elena; Jaeger, Sebastien; Ferrier, Pierre; Pettini, Marco

    2014-08-01

    The dynamical properties and diffusive behavior of a collection of mutually interacting particles are numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental method to probe the activation of resonant electrodynamic interactions among biomolecules.

  11. Modeling the filtration ability of stockpiled filtering facepiece

    NASA Astrophysics Data System (ADS)

    Rottach, Dana R.

    2016-03-01

    Filtering facepiece respirators (FFR) are often stockpiled for use during public health emergencies such as an infectious disease outbreak or pandemic. While many stockpile administrators are aware of shelf life limitations, environmental conditions can lead to premature degradation. Filtration performance of a set of FFR retrieved from a storage room with failed environmental controls was measured. Though within the expected shelf life, the filtration ability of several respirators was degraded, allowing twice the penetration of fresh samples. The traditional picture of small particle capture by fibrous filter media qualitatively separates the effect of inertial impaction, interception from the streamline, diffusion, settling, and electrostatic attraction. Most of these mechanisms depend upon stable conformational properties. However, common FFR rely on electrets to achieve their high performance, and over time heat and humidity can cause the electrostatic media to degrade. An extension of the Langevin model with correlations to classical filtration concepts will be presented. The new computational model will be used to predict the change in filter effectiveness as the filter media changes with time.

  12. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Yun; Lee, Ensang, E-mail: eslee@khu.ac.kr; Kim, Khan-Hyuk

    2015-12-15

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth ratemore » on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.« less

  13. Exploring the Molecular Design of Protein Interaction Sites with Molecular Dynamics Simulations and Free Energy Calculations†

    PubMed Central

    Liang, Shide; Li, Liwei; Hsu, Wei-Lun; Pilcher, Meaghan N.; Uversky, Vladimir; Zhou, Yaoqi; Dunker, A. Keith; Meroueh, Samy O.

    2009-01-01

    The significant work that has been invested toward understanding protein–protein interaction has not translated into significant advances in structure-based predictions. In particular redesigning protein surfaces to bind to unrelated receptors remains a challenge, partly due to receptor flexibility, which is often neglected in these efforts. In this work, we computationally graft the binding epitope of various small proteins obtained from the RCSB database to bind to barnase, lysozyme, and trypsin using a previously derived and validated algorithm. In an effort to probe the protein complexes in a realistic environment, all native and designer complexes were subjected to a total of nearly 400 ns of explicit-solvent molecular dynamics (MD) simulation. The MD data led to an unexpected observation: some of the designer complexes were highly unstable and decomposed during the trajectories. In contrast, the native and a number of designer complexes remained consistently stable. The unstable conformers provided us with a unique opportunity to define the structural and energetic factors that lead to unproductive protein–protein complexes. To that end we used free energy calculations following the MM-PBSA approach to determine the role of nonpolar effects, electrostatics and entropy in binding. Remarkably, we found that a majority of unstable complexes exhibited more favorable electrostatics than native or stable designer complexes, suggesting that favorable electrostatic interactions are not prerequisite for complex formation between proteins. However, nonpolar effects remained consistently more favorable in native and stable designer complexes reinforcing the importance of hydrophobic effects in protein–protein binding. While entropy systematically opposed binding in all cases, there was no observed trend in the entropy difference between native and designer complexes. A series of alanine scanning mutations of hot-spot residues at the interface of native and designer complexes showed less than optimal contacts of hot-spot residues with their surroundings in the unstable conformers, resulting in more favorable entropy for these complexes. Finally, disorder predictions revealed that secondary structures at the interface of unstable complexes exhibited greater disorder than the stable complexes. PMID:19113835

  14. Apollo 11 ilmenite revisited. [lunar resources of oxygen and water

    NASA Technical Reports Server (NTRS)

    Cameron, E. N.

    1992-01-01

    An account is given of the problems associated with beneficiation of the high-Ti regolith represented by Apollo 11's ilmenite sample. Magnetic and electrostatic separation, combined with sizing to reject all but the best fractions of the lunar regolith, will be essential; the production of high-grade ilmenite concentrates on the scale required for lunar oxygen production may still, however, be unachievable. These findings suggest that ilmenite production directly from high-Ti-content basalt may be a superior alternative.

  15. A Model for Chorus Associated Electrostatic Bursts.

    DTIC Science & Technology

    1983-06-30

    neglect of the ion contribution to D is justified since vb2 >> v12. Now Equation 8 can be further simplified since D2 << g2, allowing a separation of...will be treated here as a review for those who may be unfamiliar with this beam instability. We will assume Vb2 >> Ve2 to simplify the analysis. Then we...principal, one might use the theoretical prediction to try to extract information on the beam from the spectrum. But in this case, the beam

  16. Method development of enantiomer separations by affinity capillary electrophoresis, cyclodextrin electrokinetic chromatography and capillary electrophoresis-mass spectrometry.

    PubMed

    Tanaka, Yoshihide

    2002-07-01

    Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection sensitivity was observed under high concentration of the protein in running solutions. The partial filling technique was practically useful to solve the serious problem. It allowed operation at high protein concentrations, such as 500 mumol/L, without the detection problem. Charged CDs had several advantages for the enantiomer separations over neutral ones. Strong electrostatic interactions between a charged CD and oppositely charged analytes should be effective for the formation of the complex. A large difference in electrophoretic mobility between the free analyte and the inclusion complex should also enhance the enantiomeric resolution. In CE-mass spectrometry (CE-MS), the partial filling technique was applied to avoid the introduction of nonvolatile chiral selectors into the CE-MS interface. By replacing the nonvolatile electrolytes in the running buffer by volatile ones, the separation conditions employed in CE with the UV detection method could be transferred to CE-MS.

  17. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  18. Protein-protein recognition control by modulating electrostatic interactions.

    PubMed

    Han, Song; Yin, Shijin; Yi, Hong; Mouhat, Stéphanie; Qiu, Su; Cao, Zhijian; Sabatier, Jean-Marc; Wu, Yingliang; Li, Wenxin

    2010-06-04

    Protein-protein control recognition remains a huge challenge, and its development depends on understanding the chemical and biological mechanisms by which these interactions occur. Here we describe a protein-protein control recognition technique based on the dominant electrostatic interactions occurring between the proteins. We designed a potassium channel inhibitor, BmP05-T, that was 90.32% identical to wild-type BmP05. Negatively charged residues were translocated from the nonbinding interface to the binding interface of BmP05 inhibitor, such that BmP05-T now used BmP05 nonbinding interface as the binding interface. This switch demonstrated that nonbinding interfaces were able to control the orientation of protein binding interfaces in the process of protein-protein recognition. The novel function findings of BmP05-T peptide suggested that the control recognition technique described here had the potential for use in designing and utilizing functional proteins in many biological scenarios.

  19. Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes.

    PubMed

    Jones, Owen G; McClements, David Julian

    2011-09-14

    Functional biopolymer nanoparticles or microparticles can be formed by heat treatment of globular protein-ionic polysaccharide electrostatic complexes under appropriate solution conditions. These biopolymer particles can be used as encapsulation and delivery systems, fat mimetics, lightening agents, or texture modifiers. This review highlights recent progress in the design and fabrication of biopolymer particles based on heating globular protein-ionic polysaccharide complexes above the thermal denaturation temperature of the proteins. The influence of biopolymer type, protein-polysaccharide ratio, pH, ionic strength, and thermal history on the characteristics of the biopolymer particles formed is reviewed. Our current understanding of the underlying physicochemical mechanisms of particle formation and properties is given. The information provided in this review should facilitate the rational design of biopolymer particles with specific physicochemical and functional attributes, as well as stimulate further research in identifying the physicochemical origin of particle formation. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Single mask, simple structure micro rotational motor driven by electrostatic comb-drive actuators

    NASA Astrophysics Data System (ADS)

    Pham, Phuc Hong; Viet Dao, Dzung; Dang, Lam Bao; Sugiyama, Susumu

    2012-01-01

    We report a design and fabrication of a new micro rotational motor (MRM) using silicon micromachining technology with the overall diameter of 2.4 mm. This motor utilizes four silicon electrostatic comb-drive actuators to drive the outer ring (or rotor) through ratchet teeth. The novel design of the anti-reverse structure helps us to overcome the gap problem after deep reactive ion etching of silicon. The MRM was fabricated by using silicon on insulator wafer with the thickness of the device layer being 30 µm and one mask only. The motor was successfully tested for performance. It was driven by periodic voltage with different frequencies ranging from 1 to 50 Hz. The angular velocity of the outer ratchet ring was proportional to the frequency. Moreover, when the driving frequency is lower than 30 Hz, the experiment results perfectly match the theoretical calculation.

  1. A fast plasma analyser for the study of the solar wind interaction with Mars

    NASA Astrophysics Data System (ADS)

    James, Adrian Martin

    This thesis describes the design and development of the FONEMA instrument to be flown aboard the Russian mission to Mars in 1996. Many probes have flown to Mars yet despite this many mysteries still remain, among them the nature of the interaction of the solar wind with the planetary obstacle. In this thesis I will present some of the results from earlier spacecraft and the models of the interaction that they suggest paying particular attention to the contribution of ion analysers. From these results it will become clear that a fast ion sensor is needed to resolve many of the questions about the magnetosphere of Mars. The FONEMA instrument was designed for this job making use of a novel electrostatic mirror and particle collimator combined with parallel magnetic and electrostatic fields to resolve the ions into mass and energy bins. Development and production of the individual elements is discussed in detail.

  2. Advances in Dust Detection and Removal for Tokamaks

    NASA Astrophysics Data System (ADS)

    Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.

    2008-11-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.

  3. Use of an electric field in an electrostatic liquid film radiator.

    PubMed

    Bankoff, S G; Griffing, E M; Schluter, R A

    2002-10-01

    Experimental and numerical work was performed to further the understanding of an electrostatic liquid film radiator (ELFR) that was originally proposed by Kim et al.(1) The ELFR design utilizes an electric field that exerts a normal force on the interface of a flowing film. The field lowers the pressure under the film in a space radiator and, thereby, prevents leakage through a puncture in the radiator wall. The flowing film is subject to the Taylor cone instability, whereby a cone of fluid forms underneath an electrode and sharpens until a jet of fluid is pulled toward the electrode and disintegrates into droplets. The critical potential for the instability is shown to be as much as an order of magnitude higher than that used in previous designs.(2) Furthermore, leak stoppage experiments indicate that the critical field is adequate to stop leaks in a working radiator.

  4. Safety approaches for high power modular laser operation

    NASA Astrophysics Data System (ADS)

    Handren, R. T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  5. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-on Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Boulanger, D.; Christophe, B.; Foulon, B.; Liorzou, F.; Perrot, E.; Huynh, P. A.

    2014-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Preliminary Design Review was achieved successfully on November 2013. The Engineering Model (EM) was integrated successfully and is under test, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The complete EM tests will be achieved on October 2014. The Critical Design Review is scheduled at the end of September 2014, and the integration of the first Flight Model will begin on October 2014. The results of the Engineering Model tests and the status of the Flight Models will be presented.

  6. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Proton-beam writing channel based on an electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  8. Manipulation of electron transport in graphene by nanopatterned electrostatic potential on an electret

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Wang, Rui; Wang, Shengnan; Zhang, Dongdong; Jiang, Xingbin; Cheng, Zhihai; Qiu, Xiaohui

    2018-01-01

    The electron transport characteristics of graphene can be finely tuned using local electrostatic fields. Here, we use a scanning probe technique to construct a statically charged electret gate that enables in-situ fabrication of graphene devices with precisely designed potential landscapes, including p-type and n-type unipolar graphene transistors and p-n junctions. Electron dynamic simulation suggests that electron beam collimation and focusing in graphene can be achieved via periodic charge lines and concentric charge circles. This approach to spatially manipulating carrier density distribution may offer an efficient way to investigate the novel electronic properties of graphene and other low-dimensional materials.

  9. DNA under Force: Mechanics, Electrostatics, and Hydration.

    PubMed

    Li, Jingqiang; Wijeratne, Sithara S; Qiu, Xiangyun; Kiang, Ching-Hwa

    2015-02-25

    Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  10. Spacelab energetic ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Whalen, B. A.; Mcdiarmid, I. B.; Burrows, J. R.; Sharp, R. D.; Johnson, R. G.; Shelley, E. G.

    1980-01-01

    Basic design criteria are given for an ion mass spectrometer for use in studying magnetospheric ion populations. The proposed instrument is composed of an electrostatic analyzer followed by a magnetic spectrometer and simultaneously measures the energy per unit and mass per unit charge of the ion species. An electromagnet is used for momentum analysis to extend the operational energy range over a much wider domain than is possible with the permanent magnets used in previous flights. The energetic ion source regions, ion energization mechanisms, field line tracing, coordinated investigations, and orbit considerations are discussed and operations of the momentum analyzer and of the electrostatic energy analyzer are examined.

  11. Microwave Interferometric Density Measurements of a Pulsed Helicon Source

    NASA Astrophysics Data System (ADS)

    Scime, Ethan; Scime, Earl; Thompson, Derek

    2017-10-01

    The intense rf environment of a helicon plasma source is problematic for electrostatic probe measurements of plasma density, particularly at low neutral pressures. Here we present measurements of the line-integrated plasma density in a helicon plasma source using a multi-frequency (20-40 GHz) microwave interferometer. The design of the diagnostic and the data acquisition system are presented, as well as a comparison to density profiles obtained with a moveable electrostatic probe. A parametric fit to the probe profile measurements is used to determine the peak density from the microwave density measurements. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.

  12. Evaluation of synthetic linear motor-molecule actuation energetics

    PubMed Central

    Brough, Branden; Northrop, Brian H.; Schmidt, Jacob J.; Tseng, Hsian-Rong; Houk, Kendall N.; Stoddart, J. Fraser; Ho, Chih-Ming

    2006-01-01

    By applying atomic force microscope (AFM)-based force spectroscopy together with computational modeling in the form of molecular force-field simulations, we have determined quantitatively the actuation energetics of a synthetic motor-molecule. This multidisciplinary approach was performed on specifically designed, bistable, redox-controllable [2]rotaxanes to probe the steric and electrostatic interactions that dictate their mechanical switching at the single-molecule level. The fusion of experimental force spectroscopy and theoretical computational modeling has revealed that the repulsive electrostatic interaction, which is responsible for the molecular actuation, is as high as 65 kcal·mol−1, a result that is supported by ab initio calculations. PMID:16735470

  13. Acoustic performance of dual-electrode electrostatic sound generators based on CVD graphene on polyimide film.

    PubMed

    Lee, Kyoung-Ryul; Jang, Sung Hwan; Jung, Inhwa

    2018-08-10

    We investigated the acoustic performance of electrostatic sound-generating devices consisting of bi-layer graphene on polyimide film. The total sound pressure level (SPL) of the sound generated from the devices was measured as a function of source frequency by sweeping, and frequency spectra were measured at 1/3 octave band frequencies. The relationship between various operation conditions and total SPL was determined. In addition, the effects of changing voltage level, adding a DC offset, and using two pairs of electrodes were evaluated. It should be noted that two pairs of electrode operations improved sound generation by about 10 dB over all frequency ranges compared with conventional operation. As for the sound-generating capability, total SPL was 70 dBA at 4 kHz when an AC voltage of 100 V pp was applied with a DC offset of 100 V. Acoustic characteristics differed from other types of graphene-based sound generators, such as graphene thermoacoustic devices and graphene polyvinylidene fluoride devices. The effects of diameter and distance between electrodes were also studied, and we found that diameter greatly influenced the frequency response. We anticipate that the design information provided in this paper, in addition to describing key parameters of electrostatic sound-generating devices, will facilitate the commercial development of electrostatic sound-generating systems.

  14. Emission shaping in fluorescent proteins: role of electrostatics and π-stacking.

    PubMed

    Park, Jae Woo; Rhee, Young Min

    2016-02-07

    For many decades, simulating the excited state properties of complex systems has been an intriguing but daunting task due to its high computational cost. Here, we apply molecular dynamics based techniques with interpolated potential energy surfaces toward calculating fluorescence spectra of the green fluorescent protein (GFP) and its variants in a statistically meaningful manner. With the GFP, we show that the diverse electrostatic tuning can shape the emission features in many different ways. By computationally modulating the electrostatic interactions between the chromophore phenoxy oxygen and its nearby residues, we demonstrate that we indeed can shift the emission to the blue or to the red side in a predictable manner. We rationalize the shifting effects of individual residues in the GFP based on the responses of both the adiabatic and the diabatic electronic states of the chromophore. We next exhibit that the yellow emitting variant, the Thr203Tyr mutant, generates changes in the electrostatic interactions and an additional π-stacking interaction. These combined effects indeed induce a red shift to emit the fluorescence into the yellow region. With the series of demonstrations, we suggest that our approach can provide sound rationales and useful insights in understanding different responses of various fluorescent complexes, which may be helpful in designing new light emitting proteins and other related systems in future studies.

  15. Electrostatics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, John

    2004-01-01

    The purpose of the research was to continue developing an understanding of electrostatic phenomena in preparation for any future flight opportunities of the EGM experiment, originally slated for a 2004 Space Station deployment. Work would be based on theoretical assessments, ground-based lab experiments, and reduced-gravity experiments. The ability to examine dipoles in the lab proved to be elusive, and thus, effort was concentrated on monopoles -how materials become charged, the fate of the charge, the role of material type, and so forth. Several significant milestones were achieved in this regard. In regard of the dipoles, experiments were designed in collaboration with the University of Chicago school district who had access to reduced gravity on the KC-135 aircraft. Two experiments were slated to fly last year but were cancelled after the Columbia accident. One of the experiments has been given a second life and will fly sometime in 2005 if the Shuttle flights resume. There remains active interest in the question of electrostatic dipoles within the educational community, and experiments using magnetic dipoles as a substitute are to be examined. The KC-135 experiments will also examine dispersion methods for particles as a verification of possible future techniques in microgravity. Both laboratory and theoretical work established a number of breakthroughs in our understanding of electrostatic phenomena. These breakthroughs are listed in this paper.

  16. PCE: web tools to compute protein continuum electrostatics

    PubMed Central

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  17. Protein protein interactions: organization, cooperativity and mapping in a bottom-up Systems Biology approach

    NASA Astrophysics Data System (ADS)

    Keskin, Ozlem; Ma, Buyong; Rogale, Kristina; Gunasekaran, K.; Nussinov, Ruth

    2005-06-01

    Understanding and ultimately predicting protein associations is immensely important for functional genomics and drug design. Here, we propose that binding sites have preferred organizations. First, the hot spots cluster within densely packed 'hot regions'. Within these regions, they form networks of interactions. Thus, hot spots located within a hot region contribute cooperatively to the stability of the complex. However, the contributions of separate, independent hot regions are additive. Moreover, hot spots are often already pre-organized in the unbound (free) protein states. Describing a binding site through independent local hot regions has implications for binding site definition, design and parametrization for prediction. The compactness and cooperativity emphasize the similarity between binding and folding. This proposition is grounded in computation and experiment. It explains why summation of the interactions may over-estimate the stability of the complex. Furthermore, statistically, charge-charge coupling of the hot spots is disfavored. However, since within the highly packed regions the solvent is screened, the electrostatic contributions are strengthened. Thus, we propose a new description of protein binding sites: a site consists of (one or a few) self-contained cooperative regions. Since the residue hot spots are those conserved by evolution, proteins binding multiple partners at the same sites are expected to use all or some combination of these regions.

  18. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  19. Characterizing the Performance of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, M. R.; Mackey, P. J.; Holbert, E.; Clements, J. S.; Calle, C. I.

    2013-01-01

    A Wheel Electrostatic Spectrometer has been developed as a surveying tool to be incorporated into a Martian rover design. Electrostatic sensors with various protruding cover insulators are embedded into a prototype rover wheel. When these insulators come into contact with a surface, a charge develops on the cover insulator through tribocharging. A charge spectrum is created by analyzing the accumulated charge on each of the dissimilar cover insulators. This charge spectrum can be used to determine differences in Martian regolith properties. In this study, we analyzed the repeatability of the measurements for this sensor package and found that the sensor repeatability lies within one standard deviation of the noise in the signal. In addition, we tested the need for neutralizing the surface charge on the cover insulators and discovered a need to discharge the sensor cover insulators after each revolution. Future work includes an electronics redesign to reduce noise and a Martian pressure static elimination tool that can be used to neutralize the charge on the sensor cover insulators after each wheel revolution.

  20. Miniature Free-Space Electrostatic Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Stephens, James B.

    2006-01-01

    A miniature electrostatic ion thruster is proposed for maneuvering small spacecraft. In a thruster based on this concept, one or more propellant gases would be introduced into an ionizer based on the same principles as those of the device described in an earlier article, "Miniature Bipolar Electrostatic Ion Thruster". On the front side, positive ions leaving an ionizer element would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid around the periphery of the concave laminate structure. On the front side, electrons leaving an ionizer element would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In a thruster design consisting of multiple membrane ionizers in a thin laminate structure with a peripheral accelerator grid, the direction of thrust could then be controlled (without need for moving parts in the thruster) by regulating the supply of gas to specific ionizer.

  1. Characterization of Dielectric Nanocomposites with Electrostatic Force Microscopy

    PubMed Central

    El Khoury, D.; Fedorenko, V.; Castellon, J.; Laurentie, J.-C.; Fréchette, M.; Ramonda, M.

    2017-01-01

    Nanocomposites physical properties unexplainable by general mixture laws are usually supposed to be related to interphases, highly present at the nanoscale. The intrinsic dielectric constant of the interphase and its volume need to be considered in the prediction of the effective permittivity of nanodielectrics, for example. The electrostatic force microscope (EFM) constitutes a promising technique to probe interphases locally. This work reports theoretical finite-elements simulations and experimental measurements to interpret EFM signals in front of nanocomposites with the aim of detecting and characterizing interphases. According to simulations, we designed and synthesized appropriate samples to verify experimentally the ability of EFM to characterize a nanoshell covering nanoparticles, for different shell thicknesses. This type of samples constitutes a simplified electrostatic model of a nanodielectric. Experiments were conducted using either DC or AC-EFM polarization, with force gradient detection method. A comparison between our numerical model and experimental results was performed in order to validate our predictions for general EFM-interphase interactions. PMID:29109811

  2. Cross-correlation focus method with an electrostatic sensor array for local particle velocity measurement in dilute gas-solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping

    2015-11-01

    The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.

  3. Ground Based Investigation of Electrostatic Accelerometer in HUST

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L Cai, and J Luo, Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum, Class Quantum. Grav. 27 (2010) 205016.

  4. Collection of biological and non-biological particles by new and used filters made from glass and electrostatically charged synthetic fibers.

    PubMed

    Raynor, P C; Kim, B G; Ramachandran, G; Strommen, M R; Horns, J H; Streifel, A J

    2008-02-01

    Synthetic filters made from fibers carrying electrostatic charges and fiberglass filters that do not carry electrostatic charges are both utilized commonly in heating, ventilating, and air-conditioning (HVAC) systems. The pressure drop and efficiency of a bank of fiberglass filters and a bank of electrostatically charged synthetic filters were measured repeatedly for 13 weeks in operating HVAC systems at a hospital. Additionally, the efficiency with which new and used fiberglass and synthetic filters collected culturable biological particles was measured in a test apparatus. Pressure drop measurements adjusted to equivalent flows indicated that the synthetic filters operated with a pressure drop less than half that of the fiberglass filters throughout the test. When measured using total ambient particles, synthetic filter efficiency decreased during the test period for all particle diameters. For particles 0.7-1.0 mum in diameter, efficiency decreased from 92% to 44%. It is hypothesized that this reduction in collection efficiency may be due to charge shielding. Efficiency did not change significantly for the fiberglass filters during the test period. However, when measured using culturable biological particles in the ambient air, efficiency was essentially the same for new filters and filters used for 13 weeks in the hospital for both the synthetic and fiberglass filters. It is hypothesized that the lack of efficiency reduction for culturable particles may be due to their having higher charge than non-biological particles, allowing them to overcome the effects of charge shielding. The type of particles requiring capture may be an important consideration when comparing the relative performance of electrostatically charged synthetic and fiberglass filters. Electrostatically charged synthetic filters with high initial efficiency can frequently replace traditional fiberglass filters with lower efficiency in HVAC systems because properly designed synthetic filters offer less resistance to air flow. Although the efficiency of charged synthetic filters at collecting non-biological particles declined substantially with use, the efficiency of these filters at collecting biological particles remained steady. These findings suggest that the merits of electrostatically charged synthetic HVAC filters relative to fiberglass filters may be more pronounced if collection of biological particles is of primary concern.

  5. Prediction of protein-protein interaction sites using electrostatic desolvation profiles.

    PubMed

    Fiorucci, Sébastien; Zacharias, Martin

    2010-05-19

    Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Tunnel coupling tuning of a QD-donor S-T qubit

    NASA Astrophysics Data System (ADS)

    Jock, R. M.; Rudolph, M.; Harvey-Collard, P.; Jacobson, T.; Wendt, J.; Pluym, T.; Dominguez, J.; Manginell, R.; Lilly, M. P.; Carroll, M. S.

    Coherent coupling between an electrostatic quantum dot (QD) and an implanted 31P donor has been recently demonstrated in a singlet-triplet qubit design. Controlling the tunnel coupling between the QD and donor is a key design challenge. We demonstrate the ability to voltage-tune the tunnel coupling between a QD and a donor in a new, implanted, MOS-QD design. The tunnel coupling is extracted from the frequency dependence of coherent singlet-triplet oscillations on detuning. By tailoring the electrostatic tuning of the QD, we observe a near-order-of-magnitude change in QD-donor tunnel coupling. Independent control of the QD-lead tunnel rates is also demonstrated. This new MOS foundry compatible QD-donor design shows promise for substantially relaxing fabrication requirements for donor based qubits. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Research on magnetic separation for complex nickel deep removal and magnetic seed recycling.

    PubMed

    Qiu, Yiqin; Xiao, Xiao; Ye, Ziwei; Guan, Zhijie; Sun, Shuiyu; Ren, Jie; Yan, Pingfan

    2017-04-01

    This study investigated the deep removal of complex nickel from simulated wastewater using magnetic separation and magnetic seed recycling. Nano-magnetite (Fe 3 O 4 ) was used as the magnetic seed. The flocculant applied was N,N-bis-(dithiocarboxy) ethanediamine (EDTC), a highly efficient heavy metal chelating agent included in dithiocarbamate (DTC). Important investigated parameters included hydraulic retention time, magnetic seed dosage, and magnetic field strength. The study also explored the magnetic flocculation mechanism involved in the reaction. The result indicated that the residual Ni concentration was reduced to less than 0.1 mg/L from the initial concentration of 50 mg/L under optimal conditions. Magnetic seed recovery reached 76.42% after a 3-h stirring period; recycled magnetic seeds were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). The zeta potential results illustrated that magnetic seeds firmly combined with flocs when the pH ranged from 6.5 to 7.5 due to the electrostatic attraction. When the pH was less than 7, magnetic seeds and EDTC were also combined due to electrostatic attraction. Particle size did affect microfloc size; it decreased microfloc size and increased floc volume through magnetic seed loading. The effective binding sites between flocs and magnetic seeds increased when adding the magnetic seeds. This led the majority of magnetic flocs to be integrated with the magnetic seeds, which served as a nucleus to enhance the flocculation property and ultimately improve the nickel complex removal rate.

  8. An Electrostatic Charge Partitioning Model for the Dissociation of Protein Complexes in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Sciuto, Stephen V.; Liu, Jiangjiang; Konermann, Lars

    2011-10-01

    Electrosprayed multi-protein complexes can be dissociated by collisional activation in the gas phase. Typically, these processes follow a mechanism whereby a single subunit gets ejected with a disproportionately high amount of charge relative to its mass. This asymmetric behavior suggests that the departing subunit undergoes some degree of unfolding prior to being separated from the residual complex. These structural changes occur concomitantly with charge (proton) transfer towards the subunit that is being unraveled. Charge accumulation takes place up to the point where the subunit loses physical contact with the residual complex. This work develops a simple electrostatic model for studying the relationship between conformational changes and charge enrichment during collisional activation. Folded subunits are described as spheres that carry continuum surface charge. The unfolded chain is envisioned as random coil bead string. Simulations are guided by the principle that the system will adopt the charge configuration with the lowest potential energy for any backbone conformation. A finite-difference gradient algorithm is used to determine the charge on each subunit throughout the dissociation process. Both dimeric and tetrameric protein complexes are investigated. The model reproduces the occurrence of asymmetric charge partitioning for dissociation events that are preceded by subunit unfolding. Quantitative comparisons of experimental MS/MS data with model predictions yield estimates of the structural changes that occur during collisional activation. Our findings suggest that subunit separation can occur over a wide range of scission point structures that correspond to different degrees of unfolding.

  9. Method and apparatus for electrostatically sorting biological cells

    DOEpatents

    Merrill, John T.

    1982-01-01

    An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.

  10. Vertical electrostatic actuator with extended digital range via tailored topology

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhang; Dunn, Martin L.

    2002-07-01

    We describe the design, fabrication, and testing of an electrostatic vertical actuator that exhibits a range of motion that covers the entire initial gap between the actuator and substrate and provides controllable digital output motion. This is obtained by spatially tailoring the electrode arrangement and the stiffness characteristics of the microstructure to control the voltage-deflection characteristics. The concept is based on the electrostatic pull down of bimaterial beams, via a series of electrodes attached to the beams by flexures with tailored stiffness characteristics. The range of travel of the actuator is defined by the post-release deformed shape of the bilayer beams, and can be controlled by a post-release heat-treat process combined with a tailored actuator topology (material distribution and geometry, including spatial geometrical patterning of the individual layers of the bilayer beams). Not only does this allow an increase in the range of travel to cover the entire initial gap, but it also permits digital control of the tip of the actuator which can be designed to yield linear displacement - pull in step characteristics. We fabricated these actuators using the MUMPs surface micromachining process, and packaged them in-house. We measured, using an interferometric microscope, full field deformed shapes of the actuator at each pull in step. The measurements compare well with companion simulation results, both qualitatively and quantitatively.

  11. Addition of Electrostatic Forces to EDEM with Applications to Triboelectrically Charged Particles

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos; Curry, David

    2008-01-01

    Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carryout experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM Tm, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. In this paper we will present overview of the theoretical calculations and experimental data and their comparison to the results of the DEM simulations. We will also discuss current plans to revise the DEM software with advanced electrodynamic and mechanical algorithms.

  12. Development And Testing Of The Inertial Electrostatic Confinement Diffusion Thruster

    NASA Technical Reports Server (NTRS)

    Becnel, Mark D.; Polzin, Kurt A.

    2013-01-01

    The Inertial Electrostatic Confinement (IEC) diffusion thruster is an experiment in active development that takes advantage of physical phenomenon that occurs during operation of an IEC device. The IEC device has been proposed as a fusion reactor design that relies on traditional electrostatic ion acceleration and is typically arranged in a spherical geometry. The design incorporates two radially-symmetric spherical electrodes. Often the inner electrode utilizes a grid of wire shaped in a sphere with a radius 15 to 50 percent of the radius of the outer electrode. The inner electrode traditionally has 90 percent or more transparency to allow particles (ions) to pass to the center of the spheres and collide/recombine in the dense plasma core at r=0. When operating the IEC, an unsteady plasma leak is typically observed passing out one of the gaps in the lattice grid of the inner electrode. The IED diffusion thruster is based upon the idea that this plasma leak can be used for propulsive purposes. The IEC diffusion thruster utilizes the radial symmetry found in the IEC device. A cylindrical configuration is employed here as it will produce a dense core of plasma the length of the cylindrical grid while promoting the plasma leak to exhaust through an electromagnetic nozzle at one end of the apparatus. A proof-of-concept IEC diffusion thruster is operational and under testing using argon as propellant (Figure 1).

  13. Electrostatics-driven shape transitions in soft shells.

    PubMed

    Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica

    2014-09-02

    Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.

  14. Electrostatic Levitation Technique for Investigations of Physical Properties of Liquid States

    NASA Astrophysics Data System (ADS)

    Okada, Junpei; Ishikawa, Takehiko; Paradis, Paul-Francois; Yoda, Shinichi

    Electrostatic levitator (ESL) levitates a charged sample in a high vacuum using computer con-trolled electrostatic fields [1]. It can levitate materials such as metals, semiconductors, and some insulators. Sample temperature can be varied over a wide range, and samples can be deeply undercooled. We have been engaged in the research and development of the electro-static levitation technique with the aim of performing levitation dissolution experiments in the International Space Station (ISS). Our device for the electrostatic levitation dissolution test has been developed for experiments on the ISS. To this end, the system is designed to be compact and portable so that it can be launched by rocket and used for experiments in the limited space on the ISS. Accordingly, the device can be installed not just on the ISS or our research laboratory, but also in various external sites. We devised a plan to install the electrostatic levitation system in a site other than the ISS to study atomic structure and electron structure of ultra-high-temperature liquids. We mounted our system on third generation synchrotron radiation facility "SPring-8" in Japan, to investigate the atomic and electron structures of high-temperature liquids. The SPring-8 is an experimental facility that allows use of the most powerful X-rays in the world. We conducted a variety of experiments on ultra-high-temperature liquids using SPring-8. The X-ray is ideal for exploring atomic structure and electron structure. Since the X-ray is an electromagnetic wave, it interacts with electrons. In addition, most electrons gather around the atomic nucleus. By close analysis of the scattered x-rays, we can determine its atomic structure and electron structure in detail. In this talk, we introduce an x-ray Compton scattering and x-ray Raman scattering measurements on liquid aluminum and silicon. [1] W. -K. Rhim, et al, Rev. Sci. Instrum. (1985) 56 307.

  15. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.

    PubMed

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng

    2017-11-18

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.

  16. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments

    PubMed Central

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang

    2017-01-01

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587

  17. Enzymatic Transition States, Transition-State Analogs, Dynamics, Thermodynamics, and Lifetimes

    PubMed Central

    Schramm, Vern L.

    2017-01-01

    Experimental analysis of enzymatic transition-state structures uses kinetic isotope effects (KIEs) to report on bonding and geometry differences between reactants and the transition state. Computational correlation of experimental values with chemical models permits three-dimensional geometric and electrostatic assignment of transition states formed at enzymatic catalytic sites. The combination of experimental and computational access to transition-state information permits (a) the design of transition-state analogs as powerful enzymatic inhibitors, (b) exploration of protein features linked to transition-state structure, (c) analysis of ensemble atomic motions involved in achieving the transition state, (d) transition-state lifetimes, and (e) separation of ground-state (Michaelis complexes) from transition-state effects. Transition-state analogs with picomolar dissociation constants have been achieved for several enzymatic targets. Transition states of closely related isozymes indicate that the protein’s dynamic architecture is linked to transition-state structure. Fast dynamic motions in catalytic sites are linked to transition-state generation. Enzymatic transition states have lifetimes of femtoseconds, the lifetime of bond vibrations. Binding isotope effects (BIEs) reveal relative reactant and transition-state analog binding distortion for comparison with actual transition states. PMID:21675920

  18. Maximal near-field radiative heat transfer between two plates

    NASA Astrophysics Data System (ADS)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  19. Charge Separation at Mixed-Dimensional Single and Multilayer MoS2/Silicon Nanowire Heterojunctions.

    PubMed

    Henning, Alex; Sangwan, Vinod K; Bergeron, Hadallia; Balla, Itamar; Sun, Zhiyuan; Hersam, Mark C; Lauhon, Lincoln J

    2018-05-16

    Layered two-dimensional (2-D) semiconductors can be combined with other low-dimensional semiconductors to form nonplanar mixed-dimensional van der Waals (vdW) heterojunctions whose charge transport behavior is influenced by the heterojunction geometry, providing a new degree of freedom to engineer device functions. Toward that end, we investigated the photoresponse of Si nanowire/MoS 2 heterojunction diodes with scanning photocurrent microscopy and time-resolved photocurrent measurements. Comparison of n-Si/MoS 2 isotype heterojunctions with p-Si/MoS 2 heterojunction diodes under varying biases shows that the depletion region in the p-n heterojunction promotes exciton dissociation and carrier collection. We measure an instrument-limited response time of 1 μs, which is 10 times faster than the previously reported response times for planar Si/MoS 2 devices, highlighting the advantages of the 1-D/2-D heterojunction. Finite element simulations of device models provide a detailed understanding of how the electrostatics affect charge transport in nanowire/vdW heterojunctions and inform the design of future vdW heterojunction photodetectors and transistors.

  20. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials

    PubMed Central

    Yu, Woo Jong; Liu, Yuan; Zhou, Hailong; Yin, Anxiang; Li, Zheng; Huang, Yu

    2014-01-01

    Layered materials of graphene and MoS2, for example, have recently emerged as an exciting material system for future electronics and optoelectronics. Vertical integration of layered materials can enable the design of novel electronic and photonic devices. Here, we report highly efficient photocurrent generation from vertical heterostructures of layered materials. We show that vertically stacked graphene–MoS2–graphene and graphene–MoS2–metal junctions can be created with a broad junction area for efficient photon harvesting. The weak electrostatic screening effect of graphene allows the integration of single or dual gates under and/or above the vertical heterostructure to tune the band slope and photocurrent generation. We demonstrate that the amplitude and polarity of the photocurrent in the gated vertical heterostructures can be readily modulated by the electric field of an external gate to achieve a maximum external quantum efficiency of 55% and internal quantum efficiency up to 85%. Our study establishes a method to control photocarrier generation, separation and transport processes using an external electric field. PMID:24162001

Top