Force Field for Water Based on Neural Network.
Wang, Hao; Yang, Weitao
2018-05-18
We developed a novel neural network based force field for water based on training with high level ab initio theory. The force field was built based on electrostatically embedded many-body expansion method truncated at binary interactions. Many-body expansion method is a common strategy to partition the total Hamiltonian of large systems into a hierarchy of few-body terms. Neural networks were trained to represent electrostatically embedded one-body and two-body interactions, which require as input only one and two water molecule calculations at the level of ab initio electronic structure method CCSD/aug-cc-pVDZ embedded in the molecular mechanics water environment, making it efficient as a general force field construction approach. Structural and dynamic properties of liquid water calculated with our force field show good agreement with experimental results. We constructed two sets of neural network based force fields: non-polarizable and polarizable force fields. Simulation results show that the non-polarizable force field using fixed TIP3P charges has already behaved well, since polarization effects and many-body effects are implicitly included due to the electrostatic embedding scheme. Our results demonstrate that the electrostatically embedded many-body expansion combined with neural network provides a promising and systematic way to build the next generation force fields at high accuracy and low computational costs, especially for large systems.
Qi, Helena W; Leverentz, Hannah R; Truhlar, Donald G
2013-05-30
This work presents a new fragment method, the electrostatically embedded many-body expansion of the nonlocal energy (EE-MB-NE), and shows that it, along with the previously proposed electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), produces accurate results for large systems at the level of CCSD(T) coupled cluster theory. We primarily study water 16-mers, but we also test the EE-MB-CE method on water hexamers. We analyze the distributions of two-body and three-body terms to show why the many-body expansion of the electrostatically embedded correlation energy converges faster than the many-body expansion of the entire electrostatically embedded interaction potential. The average magnitude of the dimer contributions to the pairwise additive (PA) term of the correlation energy (which neglects cooperative effects) is only one-half of that of the average dimer contribution to the PA term of the expansion of the total energy; this explains why the mean unsigned error (MUE) of the EE-PA-CE approximation is only one-half of that of the EE-PA approximation. Similarly, the average magnitude of the trimer contributions to the three-body (3B) term of the EE-3B-CE approximation is only one-fourth of that of the EE-3B approximation, and the MUE of the EE-3B-CE approximation is one-fourth that of the EE-3B approximation. Finally, we test the efficacy of two- and three-body density functional corrections. One such density functional correction method, the new EE-PA-NE method, with the OLYP or the OHLYP density functional (where the OHLYP functional is the OptX exchange functional combined with the LYP correlation functional multiplied by 0.5), has the best performance-to-price ratio of any method whose computational cost scales as the third power of the number of monomers and is competitive in accuracy in the tests presented here with even the electrostatically embedded three-body approximation.
Leverentz, Hannah R; Truhlar, Donald G
2009-06-09
This work tests the capability of the electrostatically embedded many-body (EE-MB) method to calculate accurate (relative to conventional calculations carried out at the same level of electronic structure theory and with the same basis set) binding energies of mixed clusters (as large as 9-mers) consisting of water, ammonia, sulfuric acid, and ammonium and bisulfate ions. This work also investigates the dependence of the accuracy of the EE-MB approximation on the type and origin of the charges used for electrostatically embedding these clusters. The conclusions reached are that for all of the clusters and sets of embedding charges studied in this work, the electrostatically embedded three-body (EE-3B) approximation is capable of consistently yielding relative errors of less than 1% and an average relative absolute error of only 0.3%, and that the performance of the EE-MB approximation does not depend strongly on the specific set of embedding charges used. The electrostatically embedded pairwise approximation has errors about an order of magnitude larger than EE-3B. This study also explores the question of why the accuracy of the EE-MB approximation shows such little dependence on the types of embedding charges employed.
Electrostatically Embedded Many-Body Expansion for Neutral and Charged Metalloenzyme Model Systems.
Kurbanov, Elbek K; Leverentz, Hannah R; Truhlar, Donald G; Amin, Elizabeth A
2012-01-10
The electrostatically embedded many-body (EE-MB) method has proven accurate for calculating cohesive and conformational energies in clusters, and it has recently been extended to obtain bond dissociation energies for metal-ligand bonds in positively charged inorganic coordination complexes. In the present paper, we present four key guidelines that maximize the accuracy and efficiency of EE-MB calculations for metal centers. Then, following these guidelines, we show that the EE-MB method can also perform well for bond dissociation energies in a variety of neutral and negatively charged inorganic coordination systems representing metalloenzyme active sites, including a model of the catalytic site of the zinc-bearing anthrax toxin lethal factor, a popular target for drug development. In particular, we find that the electrostatically embedded three-body (EE-3B) method is able to reproduce conventionally calculated bond-breaking energies in a series of pentacoordinate and hexacoordinate zinc-containing systems with an average absolute error (averaged over 25 cases) of only 0.98 kcal/mol.
Image method for electrostatic energy of polarizable dipolar spheres
NASA Astrophysics Data System (ADS)
Gustafson, Kyle S.; Xu, Guoxi; Freed, Karl F.; Qin, Jian
2017-08-01
The multiple-scattering theory for the electrostatics of many-body systems of monopolar spherical particles, embedded in a dielectric medium, is generalized to describe the electrostatics of these particles with embedded dipoles and multipoles. The Neumann image line construction for the electrostatic polarization produced by one particle is generalized to compute the energy, forces, and torques for the many-body system as functions of the positions of the particles. The approach is validated by comparison with direct numerical calculation, and the convergence rate is analyzed and expressed in terms of the discontinuity in dielectric contrast and particle density. As an illustration of this formalism, the stability of small particle clusters is analyzed. The theory is developed in a form that can readily be adapted to Monte Carlo and molecular dynamics simulations for polarizable particles and, more generally, to study the interactions among polarizable molecules.
Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G
2014-09-16
Conspectus The development of more efficient and more accurate ways to represent reactive potential energy surfaces is a requirement for extending the simulation of large systems to more complex systems, longer-time dynamical processes, and more complete statistical mechanical sampling. One way to treat large systems is by direct dynamics fragment methods. Another way is by fitting system-specific analytic potential energy functions with methods adapted to large systems. Here we consider both approaches. First we consider three fragment methods that allow a given monomer to appear in more than one fragment. The first two approaches are the electrostatically embedded many-body (EE-MB) expansion and the electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), which we have shown to yield quite accurate results even when one restricts the calculations to include only electrostatically embedded dimers. The third fragment method is the electrostatically embedded molecular tailoring approach (EE-MTA), which is more flexible than EE-MB and EE-MB-CE. We show that electrostatic embedding greatly improves the accuracy of these approaches compared with the original unembedded approaches. Quantum mechanical fragment methods share with combined quantum mechanical/molecular mechanical (QM/MM) methods the need to treat a quantum mechanical fragment in the presence of the rest of the system, which is especially challenging for those parts of the rest of the system that are close to the boundary of the quantum mechanical fragment. This is a delicate matter even for fragments that are not covalently bonded to the rest of the system, but it becomes even more difficult when the boundary of the quantum mechanical fragment cuts a bond. We have developed a suite of methods for more realistically treating interactions across such boundaries. These methods include redistributing and balancing the external partial atomic charges and the use of tuned fluorine atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.
Image method for induced surface charge from many-body system of dielectric spheres
NASA Astrophysics Data System (ADS)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-01
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.
IImage method for induced surface charge from many-body system of dielectric spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-28
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less
Budkov, Yu A; Kolesnikov, A L
2016-11-01
We present a new simple self-consistent field theory of a polarizable flexible polymer chain under an external constant electric field with account for the many-body electrostatic dipole correlations. We show the effects of electrostatic dipole correlations on the electric-field-induced globule-coil transition. We demonstrate that only when the polymer chain is in the coil conformation, the electrostatic dipole correlations of monomers can be considered as pairwise. However, when the polymer chain is in a collapsed state, the dipole correlations have to be considered at the many-body level.
Embedding beyond electrostatics-The role of wave function confinement.
Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob
2016-09-14
We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.
An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets
NASA Astrophysics Data System (ADS)
Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo
2015-01-01
Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.
An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets.
Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo
2015-01-01
Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.
Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field
Takahashi, Hironori
2004-02-10
A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.
Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; ...
2015-10-22
Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholinemore » catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.« less
Hartman, Joshua D; Beran, Gregory J O
2014-11-11
First-principles chemical shielding tensor predictions play a critical role in studying molecular crystal structures using nuclear magnetic resonance. Fragment-based electronic structure methods have dramatically improved the ability to model molecular crystal structures and energetics using high-level electronic structure methods. Here, a many-body expansion fragment approach is applied to the calculation of chemical shielding tensors in molecular crystals. First, the impact of truncating the many-body expansion at different orders and the role of electrostatic embedding are examined on a series of molecular clusters extracted from molecular crystals. Second, the ability of these techniques to assign three polymorphic forms of the drug sulfanilamide to the corresponding experimental (13)C spectra is assessed. This challenging example requires discriminating among spectra whose (13)C chemical shifts differ by only a few parts per million (ppm) across the different polymorphs. Fragment-based PBE0/6-311+G(2d,p) level chemical shielding predictions correctly assign these three polymorphs and reproduce the sulfanilamide experimental (13)C chemical shifts with 1 ppm accuracy. The results demonstrate that fragment approaches are competitive with the widely used gauge-invariant projector augmented wave (GIPAW) periodic density functional theory calculations.
Status in calculating electronic excited states in transition metal oxides from first principles.
Bendavid, Leah Isseroff; Carter, Emily Ann
2014-01-01
Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.
NASA Astrophysics Data System (ADS)
Hartman, Joshua D.; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J. O.
2015-09-01
We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O
2015-09-14
We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Membrane protein properties revealed through data-rich electrostatics calculations
Guerriero, Christopher J.; Brodsky, Jeffrey L.; Grabe, Michael
2015-01-01
SUMMARY The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem including: full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane induced pKa shifts, calculation of non-polar energies, and command-line scripting for large scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane potentially revealing interesting functional information. PMID:26118532
Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.
Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael
2015-08-04
The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bereau, Tristan, E-mail: bereau@mpip-mainz.mpg.de; Lilienfeld, O. Anatole von
We estimate polarizabilities of atoms in molecules without electron density, using a Voronoi tesselation approach instead of conventional density partitioning schemes. The resulting atomic dispersion coefficients are calculated, as well as many-body dispersion effects on intermolecular potential energies. We also estimate contributions from multipole electrostatics and compare them to dispersion. We assess the performance of the resulting intermolecular interaction model from dispersion and electrostatics for more than 1300 neutral and charged, small organic molecular dimers. Applications to water clusters, the benzene crystal, the anti-cancer drug ellipticine—intercalated between two Watson-Crick DNA base pairs, as well as six macro-molecular host-guest complexes highlightmore » the potential of this method and help to identify points of future improvement. The mean absolute error made by the combination of static electrostatics with many-body dispersion reduces at larger distances, while it plateaus for two-body dispersion, in conflict with the common assumption that the simple 1/R{sup 6} correction will yield proper dissociative tails. Overall, the method achieves an accuracy well within conventional molecular force fields while exhibiting a simple parametrization protocol.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu; Monaco, Stephen
2015-09-14
We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readilymore » in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.« less
Hallez, Yannick; Meireles, Martine
2016-10-11
Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.
Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials.
Olsen, Jógvan Magnus Haugaard; List, Nanna Holmgaard; Kristensen, Kasper; Kongsted, Jacob
2015-04-14
Quantum-mechanical embedding methods have in recent years gained significant interest and may now be applied to predict a wide range of molecular properties calculated at different levels of theory. To reach a high level of accuracy in embedding methods, both the electronic structure model of the active region and the embedding potential need to be of sufficiently high quality. In fact, failures in quantum mechanics/molecular mechanics (QM/MM)-based embedding methods have often been associated with the QM/MM methodology itself; however, in many cases the reason for such failures is due to the use of an inaccurate embedding potential. In this paper, we investigate in detail the quality of the electronic component of embedding potentials designed for calculations on protein biostructures. We show that very accurate explicitly polarizable embedding potentials may be efficiently designed using fragmentation strategies combined with single-fragment ab initio calculations. In fact, due to the self-interaction error in Kohn-Sham density functional theory (KS-DFT), use of large full-structure quantum-mechanical calculations based on conventional (hybrid) functionals leads to less accurate embedding potentials than fragment-based approaches. We also find that standard protein force fields yield poor embedding potentials, and it is therefore not advisable to use such force fields in general QM/MM-type calculations of molecular properties other than energies and structures.
NASA Astrophysics Data System (ADS)
Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco
2018-03-01
Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.
2017-01-01
Methodology 3 2.1 Modified Embedded-Atom Method Theory 3 2.1.1 Embedding Energy Function 3 2.1.2 Screening Factor 8 2.1.3 Modified Embedded-Atom...Simulation Methodology 2.1 Modified Embedded-Atom Method Theory In the EAM and MEAM formalisms1,2,5 the total energy of a system of atoms (Etot) is...An interatomic potential for saturated hydrocarbons using the modified embedded-atom method (MEAM), a semiempirical many-body potential based on
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling illustrations of their unprecedented power in addressing some of the outstanding problems of solid-state chemistry, high-pressure chemistry, or geochemistry. They are the structure and spectra of ice Ih, in particular, the origin of two peaks in the hydrogen-bond-stretching region of its inelastic neutron scattering spectra, a solid-solid phase transition from CO2-I to elusive, metastable CO2-III, pressure tuning of Fermi resonance in solid CO2, and the structure and spectra of solid formic acid, all at the level of second-order Møller-Plesset perturbation theory or higher.
Phase-locked loop based on nanoelectromechanical resonant-body field effect transistor
NASA Astrophysics Data System (ADS)
Bartsch, S. T.; Rusu, A.; Ionescu, A. M.
2012-10-01
We demonstrate the room-temperature operation of a silicon nanoelectromechanical resonant-body field effect transistor (RB-FET) embedded into phase-locked loop (PLL). The very-high frequency resonator uses on-chip electrostatic actuation and transistor-based displacement detection. The heterodyne frequency down-conversion based on resistive FET mixing provides a loop feedback signal with high signal-to-noise ratio. We identify key parameters for PLL operation, and analyze the performance of the RB-FET at the system level. Used as resonant mass detector, the experimental frequency stability in the ppm-range translates into sub atto-gram (10-18 g) sensitivity in high vacuum. The feedback and control system are generic and may be extended to other mechanical resonators with transistor properties, such as graphene membranes and carbon nanotubes.
Embedded random matrix ensembles from nuclear structure and their recent applications
NASA Astrophysics Data System (ADS)
Kota, V. K. B.; Chavda, N. D.
Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.
Electrostatic coupling of ion pumps.
Nieto-Frausto, J; Lüger, P; Apell, H J
1992-01-01
In this paper the electrostatic interactions between membrane-embedded ion-pumps and their consequences for the kinetics of pump-mediated transport processes have been examined. We show that the time course of an intrinsically monomolecular transport reaction can become distinctly nonexponential, if the reaction is associated with charge translocation and takes place in an aggregate of pump molecules. First we consider the electrostatic coupling of a single dimer of ion-pumps embedded in the membrane. Then we apply the treatment to the kinetic analysis of light-driven proton transport by bacteriorhodopsin which forms two-dimensional hexagonal lattices. Finally, for the case of nonordered molecules, we also consider a model in which the pumps are randomly distributed over the nodes of a lattice. Here the average distance is equal to that deduced experimentally and the elemental size of the lattice is the effective diameter of one single pump. This latter model is applied to an aggregate of membrane-embedded Na, K- and Ca-pumps. In all these cases the electrostatic potential considered is the exact solution calculated from the method of electrical images for a plane membrane of finite thickness immersed in an infinite aqueous solution environment. The distributions of charges (ions or charged binding sites) are considered homogeneous or discrete in the membrane and/or in the external solution. In the case of discrete distributions we compare the results from a mean field approximation and a stochastic simulation.
2015-01-01
We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G0W0 calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron–hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6–3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO. PMID:24689856
Understanding the many-body expansion for large systems. I. Precision considerations
NASA Astrophysics Data System (ADS)
Richard, Ryan M.; Lao, Ka Un; Herbert, John M.
2014-07-01
Electronic structure methods based on low-order "n-body" expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H_2O)_{47}. Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program, we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems.
Non-equilibrium many-body dynamics following a quantum quench
NASA Astrophysics Data System (ADS)
Vyas, Manan
2017-12-01
We study analytically and numerically the non-equilibrium dynamics of an isolated interacting many-body quantum system following a random quench. We model the system Hamiltonian by Embedded Gaussian Orthogonal Ensemble (EGOE) of random matrices with one plus few-body interactions for fermions. EGOE are paradigmatic models to study the crossover from integrability to chaos in interacting many-body quantum systems. We obtain a generic formulation, based on spectral variances, for describing relaxation dynamics of survival probabilities as a function of rank of interactions. Our analytical results are in good agreement with numerics.
Electrostatically screened, voltage-controlled electrostatic chuck
Klebanoff, Leonard Elliott
2001-01-01
Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.
MEMS deformable mirror embedded wavefront sensing and control system
NASA Astrophysics Data System (ADS)
Owens, Donald; Schoen, Michael; Bush, Keith
2006-01-01
Electrostatic Membrane Deformable Mirror (MDM) technology developed using silicon bulk micro-machining techniques offers the potential of providing low-cost, compact wavefront control systems for diverse optical system applications. Electrostatic mirror construction using bulk micro-machining allows for custom designs to satisfy wavefront control requirements for most optical systems. An electrostatic MDM consists of a thin membrane, generally with a thin metal or multi-layer high-reflectivity coating, suspended over an actuator pad array that is connected to a high-voltage driver. Voltages applied to the array elements deflect the membrane to provide an optical surface capable of correcting for measured optical aberrations in a given system. Electrostatic membrane DM designs are derived from well-known principles of membrane mechanics and electrostatics, the desired optical wavefront control requirements, and the current limitations of mirror fabrication and actuator drive electronics. MDM performance is strongly dependent on mirror diameter and air damping in meeting desired spatial and temporal frequency requirements. In this paper, we present wavefront control results from an embedded wavefront control system developed around a commercially available high-speed camera and an AgilOptics Unifi MDM driver using USB 2.0 communications and the Linux development environment. This new product, ClariFast TM, combines our previous Clarifi TM product offering into a faster more streamlined version dedicated strictly to Hartmann Wavefront sensing.
Understanding the many-body expansion for large systems. I. Precision considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard, Ryan M.; Lao, Ka Un; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu
2014-07-07
Electronic structure methods based on low-order “n-body” expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H{sub 2}O){sub 47}. Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program,more » we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems.« less
Hartman, Joshua D; Balaji, Ashwin; Beran, Gregory J O
2017-12-12
Fragment-based methods predict nuclear magnetic resonance (NMR) chemical shielding tensors in molecular crystals with high accuracy and computational efficiency. Such methods typically employ electrostatic embedding to mimic the crystalline environment, and the quality of the results can be sensitive to the embedding treatment. To improve the quality of this embedding environment for fragment-based molecular crystal property calculations, we borrow ideas from the embedded ion method to incorporate self-consistently polarized Madelung field effects. The self-consistent reproduction of the Madelung potential (SCRMP) model developed here constructs an array of point charges that incorporates self-consistent lattice polarization and which reproduces the Madelung potential at all atomic sites involved in the quantum mechanical region of the system. The performance of fragment- and cluster-based 1 H, 13 C, 14 N, and 17 O chemical shift predictions using SCRMP and density functionals like PBE and PBE0 are assessed. The improved embedding model results in substantial improvements in the predicted 17 O chemical shifts and modest improvements in the 15 N ones. Finally, the performance of the model is demonstrated by examining the assignment of the two oxygen chemical shifts in the challenging γ-polymorph of glycine. Overall, the SCRMP-embedded NMR chemical shift predictions are on par with or more accurate than those obtained with the widely used gauge-including projector augmented wave (GIPAW) model.
Random matrix ensembles for many-body quantum systems
NASA Astrophysics Data System (ADS)
Vyas, Manan; Seligman, Thomas H.
2018-04-01
Classical random matrix ensembles were originally introduced in physics to approximate quantum many-particle nuclear interactions. However, there exists a plethora of quantum systems whose dynamics is explained in terms of few-particle (predom-inantly two-particle) interactions. The random matrix models incorporating the few-particle nature of interactions are known as embedded random matrix ensembles. In the present paper, we provide a brief overview of these two ensembles and illustrate how the embedded ensembles can be successfully used to study decoherence of a qubit interacting with an environment, both for fermionic and bosonic embedded ensembles. Numerical calculations show the dependence of decoherence on the nature of the environment.
Genuine quantum correlations in quantum many-body systems: a review of recent progress
NASA Astrophysics Data System (ADS)
De Chiara, Gabriele; Sanpera, Anna
2018-07-01
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems.
Dynamic simulations of many-body electrostatic self-assembly
NASA Astrophysics Data System (ADS)
Lindgren, Eric B.; Stamm, Benjamin; Maday, Yvon; Besley, Elena; Stace, A. J.
2018-03-01
Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process. This article is part of the theme issue `Modern theoretical chemistry'.
Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals†
Hartman, Joshua D.; Kudla, Ryan A.; Day, Graeme M.; Mueller, Leonard J.; Beran, Gregory J. O.
2016-01-01
The performance of fragment-based ab initio 1H, 13C, 15N and 17O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. 1H, 13C, 15N, and 17O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same 1H, 13C, 15N, and 17O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tertbutyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490
Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O
2016-08-21
The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.
Exploiting Many-Body Bus States for Multi-Qubit Entanglement
2013-06-06
ancilla qubits . We studied electron-spin-photon coupling in a single-spin double quantum dot embedded in a superconducting stripline cavity. We... qubit to a superconducting stripline cavity,” Xuedong Hu, Yu-xi Liu, and Franco Nori, Phys. Rev. B 86, 035314 (2012). [9] “Controllable exchange...DARPA) EXPLOITING MANY-BODY BUS STATES FOR MULTI- QUBIT ENTANGLEMENT MARK FRIESEN UNIVERSITY OF WISCONSIN SYSTEM 06/06/2013 Final Report
Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee; ...
2016-09-08
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
Assessing Many-Body Effects of Water Self-Ions. I: OH-(H2O) n Clusters.
Egan, Colin K; Paesani, Francesco
2018-04-10
The importance of many-body effects in the hydration of the hydroxide ion (OH - ) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the CCSD(T) level of theory, extrapolated to the complete basis set limit, for the low-lying isomers of OH - (H 2 O) n clusters, with n = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of OH - and water molecules and the hydrogen bonding connectivity within each fragment. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method, this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling OH - hydration. Furthermore, the rapid convergence of the many-body expansion of the interaction energy also suggests a rigorous path for the development of analytical potential energy functions capable of describing individual OH - -water many-body terms, with chemical accuracy. Finally, a comparison between the reference CCSD(T) many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that range-separated, dispersion-corrected, hybrid functionals exhibit the highest accuracy, while GGA functionals, with or without dispersion corrections, are inadequate to describe OH - -water interactions.
Genuine quantum correlations in quantum many-body systems: a review of recent progress.
De Chiara, Gabriele; Sanpera, Anna
2018-04-19
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.
Geminal embedding scheme for optimal atomic basis set construction in correlated calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorella, S., E-mail: sorella@sissa.it; Devaux, N.; Dagrada, M., E-mail: mario.dagrada@impmc.upmc.fr
2015-12-28
We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wavemore » function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee
Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface.more » Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.« less
APPARATUS FOR CLEANING GASES WITH ELECTROSTATICALLY CHARGED PARTICLES
Johnstone, H.F.
1960-02-01
An apparatus is described for cleaning gases with the help of electrostatically charged pellets. The pellets are blown past baffles in a conduit and into the center of a rotuting body of the gas to be cleaned. The pellets are charged electrostatically by impinging on the baffles. The pellets collect the particles suspended in the gas in their passage from the center of the rotating body to its edge.
NASA Astrophysics Data System (ADS)
Kota, V. K. B.
2003-07-01
Smoothed forms for expectation values < K> E of positive definite operators K follow from the K-density moments either directly or in many other ways each giving a series expansion (involving polynomials in E). In large spectroscopic spaces one has to partition the many particle spaces into subspaces. Partitioning leads to new expansions for expectation values. It is shown that all the expansions converge to compact forms depending on the nature of the operator K and the operation of embedded random matrix ensembles and quantum chaos in many particle spaces. Explicit results are given for occupancies < ni> E, spin-cutoff factors < JZ2> E and strength sums < O†O> E, where O is a one-body transition operator.
Characterizing the Performance of the Wheel Electrostatic Spectrometer
NASA Technical Reports Server (NTRS)
Johansen, Michael R.; Mackey, P. J.; Holbert, E.; Calle, C. I.; Clements, J. S.
2013-01-01
Insulators need to be discharged after each wheel revolution. Sensor responses repeatable within one standard deviation in the noise of the signal. Insulators may not need to be cleaned after each revolution. Parent Technology- Mars Environmental Compatibility Assessment/Electrometer Electrostatic sensors with dissimilar cover insulators Protruding insulators tribocharge against regolith simulant Developed for use on the scoop for the 2001 Mars Odyssey lander Wheel Electrostatic Spectrometer Embedded electrostatic sensors in prototype Martian rover wheel If successful, this technology will enable constant electrostatic testing on Mars Air ionizing fan used to neutralize the surface charge on cover insulators . WES rolled on JSClA lunar simulant Control experiment -Static elimination not conducted between trials -Capacitor discharged after each experiment Charge neutralization experiment -Static elimination conducted between trials -Capacitor discharged after each experiment. Air ionizing fan used on insulators after each wheel revolution Capacitor discharged after each trial Care was taken to roll WES with same speed/pressure Error bars represent one standard deviation in the noise of e ach sensor
Fidelity decay of the two-level bosonic embedded ensembles of random matrices
NASA Astrophysics Data System (ADS)
Benet, Luis; Hernández-Quiroz, Saúl; Seligman, Thomas H.
2010-12-01
We study the fidelity decay of the k-body embedded ensembles of random matrices for bosons distributed over two single-particle states. Fidelity is defined in terms of a reference Hamiltonian, which is a purely diagonal matrix consisting of a fixed one-body term and includes the diagonal of the perturbing k-body embedded ensemble matrix, and the perturbed Hamiltonian which includes the residual off-diagonal elements of the k-body interaction. This choice mimics the typical mean-field basis used in many calculations. We study separately the cases k = 2 and 3. We compute the ensemble-averaged fidelity decay as well as the fidelity of typical members with respect to an initial random state. Average fidelity displays a revival at the Heisenberg time, t = tH = 1, and a freeze in the fidelity decay, during which periodic revivals of period tH are observed. We obtain the relevant scaling properties with respect to the number of bosons and the strength of the perturbation. For certain members of the ensemble, we find that the period of the revivals during the freeze of fidelity occurs at fractional times of tH. These fractional periodic revivals are related to the dominance of specific k-body terms in the perturbation.
Molecular Kondo effect in flat-band lattices
NASA Astrophysics Data System (ADS)
Tran, Minh-Tien; Nguyen, Thuy Thi
2018-04-01
The Kondo effect of a single magnetic impurity embedded in the Lieb lattice is studied by the numerical renormalization group. When the band flatness is present in the local density of states at the impurity site, it quenches the participation of all dispersive electrons in the Kondo singlet formation and reduces the many-body Kondo problem to a two-electron molecular Kondo problem. A quantum entanglement of two spins, which is the two-electron molecular analog of the many-body Kondo singlet, is stable at low temperature, and the impurity contributions to thermodynamical and dynamical quantities are qualitatively different from that obtained in the many-body Kondo effect. The conditions for existence of the molecular Kondo effect in narrow band systems are also presented.
Detection of foreign bodies in foods using continuous wave terahertz imaging.
Lee, Young-Ki; Choi, Sung-Wook; Han, Seong-Tae; Woo, Deog Hyun; Chun, Hyang Sook
2012-01-01
Foreign bodies (FBs) in food are health hazards and quality issues for many food manufacturers and enforcement authorities. In this study, continuous wave (CW) terahertz (THz) imaging at 0.2 THz with an output power of 10 mW was compared with X-ray imaging as techniques for inspection of food for FBs. High-density FBs, i.e., aluminum and granite pieces of various sizes, were embedded in a powdered instant noodle product and detected using THz and X-ray imaging. All aluminum and granite pieces (regular hexahedrons with an edge length of 1 to 5 mm) were visualized by both CW THz and X-ray imaging. THz imaging also detected maggots (length = 8 to 22 mm) and crickets (length = 35 and 50 mm), which were embedded in samples as low density FBs. However, not all sizes of maggot pieces embedded in powdered instant noodle were detected with X-ray imaging, although larger crickets (length = 50 mm and thickness = 10 mm) were detected. These results suggest that CW THz imaging has potential for detecting both high-density and low-density FBs embedded in food.
ERIC Educational Resources Information Center
Criado, Ana Maria; Garcia-Carmona, Antonio
2010-01-01
Student teachers were tested before and after a teaching unit on electrostatic interactions in an attempt to consider their intuitive ideas and concept development. A study was made of students' explanations of basic interactions: those between two charged bodies, and those between a charged body and a neutral body. Two indicators of the cognitive…
Clinical validation of a nanodiamond-embedded thermoplastic biomaterial
Lee, Dong-Keun; Kee, Theodore; Liang, Zhangrui; Hsiou, Desiree; Miya, Darron; Wu, Brian; Osawa, Eiji; Chow, Edward Kai-Hua; Kang, Mo K.; Ho, Dean
2017-01-01
Detonation nanodiamonds (NDs) are promising drug delivery and imaging agents due to their uniquely faceted surfaces with diverse chemical groups, electrostatic properties, and biocompatibility. Based on the potential to harness ND properties to clinically address a broad range of disease indications, this work reports the in-human administration of NDs through the development of ND-embedded gutta percha (NDGP), a thermoplastic biomaterial that addresses reinfection and bone loss following root canal therapy (RCT). RCT served as the first clinical indication for NDs since the procedure sites involved nearby circulation, localized administration, and image-guided treatment progress monitoring, which are analogous to many clinical indications. This randomized, single-blind interventional treatment study evaluated NDGP equivalence with unmodified GP. This progress report assessed one control-arm and three treatment-arm patients. At 3-mo and 6-mo follow-up appointments, no adverse events were observed, and lesion healing was confirmed in the NDGP-treated patients. Therefore, this study is a foundation for the continued clinical translation of NDs and other nanomaterials for a broad spectrum of applications. PMID:29078364
NASA Astrophysics Data System (ADS)
Riera, Marc; Mardirossian, Narbe; Bajaj, Pushp; Götz, Andreas W.; Paesani, Francesco
2017-10-01
This study presents the extension of the MB-nrg (Many-Body energy) theoretical/computational framework of transferable potential energy functions (PEFs) for molecular simulations of alkali metal ion-water systems. The MB-nrg PEFs are built upon the many-body expansion of the total energy and include the explicit treatment of one-body, two-body, and three-body interactions, with all higher-order contributions described by classical induction. This study focuses on the MB-nrg two-body terms describing the full-dimensional potential energy surfaces of the M+(H2O) dimers, where M+ = Li+, Na+, K+, Rb+, and Cs+. The MB-nrg PEFs are derived entirely from "first principles" calculations carried out at the explicitly correlated coupled-cluster level including single, double, and perturbative triple excitations [CCSD(T)-F12b] for Li+ and Na+ and at the CCSD(T) level for K+, Rb+, and Cs+. The accuracy of the MB-nrg PEFs is systematically assessed through an extensive analysis of interaction energies, structures, and harmonic frequencies for all five M+(H2O) dimers. In all cases, the MB-nrg PEFs are shown to be superior to both polarizable force fields and ab initio models based on density functional theory. As previously demonstrated for halide-water dimers, the MB-nrg PEFs achieve higher accuracy by correctly describing short-range quantum-mechanical effects associated with electron density overlap as well as long-range electrostatic many-body interactions.
Understanding the many-body expansion for large systems. II. Accuracy considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lao, Ka Un; Liu, Kuan-Yu; Richard, Ryan M.
2016-04-28
To complement our study of the role of finite precision in electronic structure calculations based on a truncated many-body expansion (MBE, or “n-body expansion”), we examine the accuracy of such methods in the present work. Accuracy may be defined either with respect to a supersystem calculation computed at the same level of theory as the n-body calculations, or alternatively with respect to high-quality benchmarks. Both metrics are considered here. In applications to a sequence of water clusters, (H{sub 2}O){sub N=6−55} described at the B3LYP/cc-pVDZ level, we obtain mean absolute errors (MAEs) per H{sub 2}O monomer of ∼1.0 kcal/mol for two-bodymore » expansions, where the benchmark is a B3LYP/cc-pVDZ calculation on the entire cluster. Three- and four-body expansions exhibit MAEs of 0.5 and 0.1 kcal/mol/monomer, respectively, without resort to charge embedding. A generalized many-body expansion truncated at two-body terms [GMBE(2)], using 3–4 H{sub 2}O molecules per fragment, outperforms all of these methods and affords a MAE of ∼0.02 kcal/mol/monomer, also without charge embedding. GMBE(2) requires significantly fewer (although somewhat larger) subsystem calculations as compared to MBE(4), reducing problems associated with floating-point roundoff errors. When compared to high-quality benchmarks, we find that error cancellation often plays a critical role in the success of MBE(n) calculations, even at the four-body level, as basis-set superposition error can compensate for higher-order polarization interactions. A many-body counterpoise correction is introduced for the GMBE, and its two-body truncation [GMBCP(2)] is found to afford good results without error cancellation. Together with a method such as ωB97X-V/aug-cc-pVTZ that can describe both covalent and non-covalent interactions, the GMBE(2)+GMBCP(2) approach provides an accurate, stable, and tractable approach for large systems.« less
Solvation effects on chemical shifts by embedded cluster integral equation theory.
Frach, Roland; Kast, Stefan M
2014-12-11
The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.
ERIC Educational Resources Information Center
Garoian, Charles R.; Gaudelius, Yvonne M.
2004-01-01
Many contemporary artists, critical theorists, and educators challenge the cultural assumptions that are embedded in our understandings of technology and its relationship to art, the body, and human life. In this article, we discuss the performance artworks of osseus labyrint, Goat Island, and Guillermo Gomez-Pena, Roberto Sifuentes, and Juan…
NASA Astrophysics Data System (ADS)
Li, Jing; D'Avino, Gabriele; Duchemin, Ivan; Beljonne, David; Blase, Xavier
2018-01-01
We present a novel hybrid quantum/classical approach to the calculation of charged excitations in molecular solids based on the many-body Green's function G W formalism. Molecules described at the G W level are embedded into the crystalline environment modeled with an accurate classical polarizable scheme. This allows the calculation of electron addition and removal energies in the bulk and at crystal surfaces where charged excitations are probed in photoelectron experiments. By considering the paradigmatic case of pentacene and perfluoropentacene crystals, we discuss the different contributions from intermolecular interactions to electronic energy levels, distinguishing between polarization, which is accounted for combining quantum and classical polarizabilities, and crystal field effects, that can impact energy levels by up to ±0.6 eV. After introducing band dispersion, we achieve quantitative agreement (within 0.2 eV) on the ionization potential and electron affinity measured at pentacene and perfluoropentacene crystal surfaces characterized by standing molecules.
Effective Field Theory of Surface-mediated Forces in Soft Matter
NASA Astrophysics Data System (ADS)
Yolcu, Cem
We propose a field theoretic formalism for describing soft surfaces modified by the presence of inclusions. Examples include particles trapped at a fluid-fluid interface, proteins attached to (or embedded in) a biological membrane, etc. We derive the energy functional for near-flat surfaces by an effective field theory approach. The two disparate length scales, particle sizes and inter-particle separations, afford the expansion parameters for controlling the accuracy of the effective theory, which is arbitrary in principle. We consider the following two surface types: (i) one where tension determines the behavior, such as a fluid-fluid interface (referred to as a film), and (ii) one where bending-elasticity dominates (referred to as a membrane). We also restrict to rigid inclusions with a circular footprint, and discuss generalizations briefly. As a result of the localized constraints imposed on the surface by the inclusions, the free energy of the system depends on their spatial arrangement, i.e. forces arise between them. Such surface-mediated interactions are believed to play an important role in the aggregation behavior of colloidal particles at interfaces and proteins on membranes. The interaction free energy consists of two parts: (i) the ground-state of the surface determined by possible deformations imposed by the particles, and (ii) the fluctuation correction. The former is analogous to classical electrostatics with the height profile of the surface playing the role of the electrostatic potential, while the latter is analogous to the Casimir effect and originates from the mere presence of constraints. We compute both interactions in truncated expansions. The efficiency of the formalism allows us to predict, with remarkable ease, quite a few orders of subleading corrections to existing results which are only valid when the inclusions are infinitely far apart. We also found that the few previous studies on finite distance corrections were incomplete. In addition to pairwise additive interactions, we compute the leading behavior of several many-body interactions, as well as subleading corrections where the leading contribution was previously calculated.
Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea
NASA Astrophysics Data System (ADS)
Koenraad, P. M.; Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Hamhuis, G. J.; Notzel, R.; Silov, A. Yu.
2010-03-01
Using voltage dependent photoluminescence spectroscopy we have studied the coupling between QD states and the continuum of states of a Fermi sea of electrons in the close proximity of a self-assembled InAs quantum dot embedded in GaAs. This coupling gives rise to new optical transitions, manifesting the formation of many-body exciton states. The lines in the photoluminescence spectra can be well explained within the Anderson and Mahan exciton models. The presence of Mahan excitons originates from the Coulomb interaction between electrons in the Fermi sea and the hole(s) in the QD whereas a the second type of many-body exciton is due to a hybridized exciton originating from the tunnel interaction between the continuum of states in the Fermi sea and the localized state in the QD. Our study demonstrates the possibility to investigate a variety of many-body states in QDs coupled to a Fermi sea and opens the way to investigate optically the Kondo effect and related spin phenomena in these systems.
Electrostatic and Electromagnetic Resonances of the Curling probe
NASA Astrophysics Data System (ADS)
Arshadi, Ali; Valadbeigi, Leila; Brinkmann, Ralf Peter
2015-09-01
The term Active Plasma Resonance Spectroscopy denotes a class of plasma diagnostic techniques utilizing the natural ability of plasma to resonate on or near the electron plasma frequency: An electric signal in the GHz range is coupled into the plasma via a probe. The spectral response of the plasma is recorded and a mathematical model is used to find plasma parameters such as the electron density. The curling probe, recently invented by Liang et al., is a novel realization of this concept which has many practical advantages. In particular, it can be miniaturized, and flatly embedded into the chamber wall, enabling monitoring of plasma processes without perturbing them. Physically, the curling probe can be seen as a ``curled'' form of the hairpin probe. Assuming that the effect of the spiralization is negligible, this work investigates the features of a ``straightened'' curling probe by modeling it as a slot-type resonator which is in contact with the plasma. The diffraction of an incident plane wave at the slot is calculated by solving Maxwell's equations and the cold plasma model simultaneously. Electrostatic and Electromagnetic resonances are derived. Good agreement of the analytically computed resonance frequencies with the numerical results of the probe inventors is shown.
Beard, D A; Schlick, T
2001-01-01
Much progress has been achieved on quantitative assessment of electrostatic interactions on the all-atom level by molecular mechanics and dynamics, as well as on the macroscopic level by models of continuum solvation. Bridging of the two representations-an area of active research-is necessary for studying integrated functions of large systems of biological importance. Following perspectives of both discrete (N-body) interaction and continuum solvation, we present a new algorithm, DiSCO (Discrete Surface Charge Optimization), for economically describing the electrostatic field predicted by Poisson-Boltzmann theory using a discrete set of Debye-Hückel charges distributed on a virtual surface enclosing the macromolecule. The procedure in DiSCO relies on the linear behavior of the Poisson-Boltzmann equation in the far zone; thus contributions from a number of molecules may be superimposed, and the electrostatic potential, or equivalently the electrostatic field, may be quickly and efficiently approximated by the summation of contributions from the set of charges. The desired accuracy of this approximation is achieved by minimizing the difference between the Poisson-Boltzmann electrostatic field and that produced by the linearized Debye-Hückel approximation using our truncated Newton optimization package. DiSCO is applied here to describe the salt-dependent electrostatic environment of the nucleosome core particle in terms of several hundred surface charges. This representation forms the basis for modeling-by dynamic simulations (or Monte Carlo)-the folding of chromatin. DiSCO can be applied more generally to many macromolecular systems whose size and complexity warrant a model resolution between the all-atom and macroscopic levels. Copyright 2000 John Wiley & Sons, Inc.
Distributed digital signal processors for multi-body flexible structures
NASA Technical Reports Server (NTRS)
Lee, Gordon K. F.
1992-01-01
Multi-body flexible structures, such as those currently under investigation in spacecraft design, are large scale (high-order) dimensional systems. Controlling and filtering such structures is a computationally complex problem. This is particularly important when many sensors and actuators are located along the structure and need to be processed in real time. This report summarizes research activity focused on solving the signal processing (that is, information processing) issues of multi-body structures. A distributed architecture is developed in which single loop processors are employed for local filtering and control. By implementing such a philosophy with an embedded controller configuration, a supervising controller may be used to process global data and make global decisions as the local devices are processing local information. A hardware testbed, a position controller system for a servo motor, is employed to illustrate the capabilities of the embedded controller structure. Several filtering and control structures which can be modeled as rational functions can be implemented on the system developed in this research effort. Thus the results of the study provide a support tool for many Control/Structure Interaction (CSI) NASA testbeds such as the Evolutionary model and the nine-bay truss structure.
NASA Astrophysics Data System (ADS)
Leś, Andrzej; Adamowicz, Ludwik
1991-06-01
The molecular electrostatic potential and molecular electric field have been estimated by means of the expectation values of the respective one-electron operators. We used the molecular density matrix that includes the electron correlation effects up to the second-order of the many body perturbation theory. The results show that around the 2(1H)-pyrimidone molecule one may distinguish the electrophilic and nucleophilic regions, the latter characterized by two potential minima of -2.9 V. In the tautomeric form, 2-hydroxypyrimidine, a third potential minimum of -2.1 V appears close to the N1 nitrogen atom. For both molecules strong orientational forces acting on polar solvents are predicted in the vicinity of oxygen (O7) and nitrogen (N3) atoms. The electron correlation effects do not significantly alter the SCF values of the electrostatic potential and electric field at the distances within the van der Waals envelope of the pyrimidine bases. At larger distances, however, the correlation correction is significant, particularly in the direction facing the proton transfer path.
Electrostatic dust transport on the surfaces of airless bodies
NASA Astrophysics Data System (ADS)
Wang, X.; Schwan, J.; Hsu, H. W.; Horanyi, M.
2015-12-01
The surfaces of airless bodies are charged due to the exposure to solar wind plasma and UV radiation. Dust particles on the regolith of these surfaces can become charged, and may move and even get lofted due to electrostatic force. Electrostatic dust transport has been a long-standing problem that may be related to many observed phenomena on the surfaces of airless planetary bodies, including the lunar horizon glow, the dust ponds on asteroid Eros, the spokes in Saturn's rings, and more recently, the collection of dust particles ejected off Comet 67P, observed by Rosetta. In order to resolve these puzzles, a handful of laboratory experiments have been performed in the past and demonstrated that dust indeed moves and lifts from surfaces exposed to plasma. However, the exact mechanisms for the mobilization of dust particles still remain a mystery. Current charging models, including the so-called "shared charge model" and the charge fluctuation theory, will be discussed. It is found that neither of these models can explain the results from either laboratory experiments or in-situ observations. Recently, single dust trajectories were captured with our new dust experiments, enabling novel micro-scale investigations. The particles' initial launch speeds and size distributions are analyzed, and a new so-called "patched charge model" is proposed to explain our findings. We identify the role of plasma micro-cavities that are formed in-between neighboring dust particles. The emitted secondary or photo- electrons are proposed to be absorbed inside the micro-cavities, resulting in significant charge accumulation on the exposed patches of the surfaces of neighboring particles. The resulting enhanced Coulomb force (repulsion) between particles is likely the dominant force to mobilize and lift them off the surface. The role of other properties, including surface morphology, cohesion and photoelectron charging, will also be discussed.
NASA Astrophysics Data System (ADS)
Shen, Ji; Linn, Marcia C.
2011-08-01
What trajectories do students follow as they connect their observations of electrostatic phenomena to atomic-level visualizations? We designed an electrostatics unit, using the knowledge integration framework to help students link observations and scientific ideas. We analyze how learners integrate ideas about charges, charged particles, energy, and observable events. We compare learning enactments in a typical school and a magnet school in the USA. We use pre-tests, post-tests, embedded notes, and delayed post-tests to capture the trajectories of students' knowledge integration. We analyze how visualizations help students grapple with abstract electrostatics concepts such as induction. We find that overall students gain more sophisticated ideas. They can interpret dynamic, interactive visualizations, and connect charge- and particle-based explanations to interpret observable events. Students continue to have difficulty in applying the energy-based explanation.
Characterizing the Perfonnance of the Wheel Electrostatic Spectrometer
NASA Technical Reports Server (NTRS)
Johansen, Michael R.; Mackey, P. J.; Holbert, E.; Clements, J. S.; Calle, C. I.
2013-01-01
A Wheel Electrostatic Spectrometer has been developed as a surveying tool to be incorporated into a planetary rover design. Electrostatic sensors with various protruding cover insulators are embedded into a prototype rover wheel. When these insulators come into contact with a surface, a charge develops on the cover insulator through tribocharging. A charge spectrum is created by analyzing the accumulated charge on each of the dissimilar cover insulators. We eventually intend to prove charge spectra can be used o determine differences in planetary regolith properties. We tested the effects of residual surface charge on the cover insulators and discovered a need to discharge the sensor cover insulators after each revolution. We proved the repeatability of the measurements for this sensor package and found that the sensor repeatability lies within one standard deviation of the noise in the signal.
Many-body expansion of the Fock matrix in the fragment molecular orbital method
NASA Astrophysics Data System (ADS)
Fedorov, Dmitri G.; Kitaura, Kazuo
2017-09-01
A many-body expansion of the Fock matrix in the fragment molecular orbital method is derived up to three-body terms for restricted Hartree-Fock and density functional theory in the atomic orbital basis and compared to the expansion in the basis of fragment molecular orbitals (MOs). The physical nature of many-body corrections is revealed in terms of charge transfer terms. An improvement of the fragment MO expansion is proposed by adding exchange to the embedding. The accuracy of all developed methods is demonstrated in comparison to unfragmented results for polyalanines, a water cluster, Trp-cage (PDB: 1L2Y) and crambin (PDB: 1CRN) proteins, a zeolite cluster, a Si nano-wire, and a boron nitride ribbon. The physical nature of metallicity is discussed, and it is shown what kinds of metallic systems can be treated by fragment-based methods. The density of states is calculated for a fully closed and a partially open nano-ring of boron nitride with a diameter of 105 nm.
Paths and Perspectives on Being a Data Scientist: Anatomy and Physiology
NASA Astrophysics Data System (ADS)
Fox, P. A.
2015-12-01
While many educators are trying to look forward and develop or adapt degree programs, curricula and even courses for prospective data scientists, not many are able to reflect on and draw from the long look back into their career path and choices related to data science. Given the considerable hype and co-opting of the term Data Science by business and government, its roots are in numerous scientific research fields. This contribution offers the author's path in data science, assessed and framed in terms of the anatomy and physiology of a data scientist; quite literally the "body" parts and functions and the function of the "body", or the data scientist as-a-whole. Pivoting to the prospectives for both data science research and education, course, curricula and degree programs are mapped to data science functions and how they work together. The conclusion is that data science must become embedded in all degree and continuing programs, lest it be misconstrued as a separate discipline. Ideas and experience on how this embedding may be accomplished are also offered for discussion.
Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Martínez, Todd J; Kongsted, Jacob
2017-12-12
The calculation of spectral properties for photoactive proteins is challenging because of the large cost of electronic structure calculations on large systems. Mixed quantum mechanical (QM) and molecular mechanical (MM) methods are typically employed to make such calculations computationally tractable. This study addresses the connection between the minimal QM region size and the method used to model the MM region in the calculation of absorption properties-here exemplified for calculations on the green fluorescent protein. We find that polarizable embedding is necessary for a qualitatively correct description of the MM region, and that this enables the use of much smaller QM regions compared to fixed charge electrostatic embedding. Furthermore, absorption intensities converge very slowly with system size and inclusion of effective external field effects in the MM region through polarizabilities is therefore very important. Thus, this embedding scheme enables accurate prediction of intensities for systems that are too large to be treated fully quantum mechanically.
NASA Astrophysics Data System (ADS)
Jing, Zhifeng; Qi, Rui; Liu, Chengwen; Ren, Pengyu
2017-10-01
The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg2+/Ca2+ and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.
Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple.
Herring, Patrick K; Hsu, Allen L; Gabor, Nathaniel M; Shin, Yong Cheol; Kong, Jing; Palacios, Tomás; Jarillo-Herrero, Pablo
2014-02-12
We explore the photoresponse of an ambipolar graphene infrared thermocouple at photon energies close to or below monolayer graphene's optical phonon energy and electrostatically accessible Fermi energy levels. The ambipolar graphene infrared thermocouple consists of monolayer graphene supported by an infrared absorbing material, controlled by two independent electrostatic gates embedded below the absorber. Using a scanning infrared laser microscope, we characterize these devices as a function of carrier type and carrier density difference controlled at the junction between the two electrostatic gates. On the basis of these measurements, conducted at both mid- and near-infrared wavelengths, the primary detection mechanism can be modeled as a thermoelectric response. By studying the effect of different infrared absorbers, we determine that the optical absorption and thermal conduction of the substrate play the dominant role in the measured photoresponse of our devices. These experiments indicate a path toward hybrid graphene thermal detectors for sensing applications such as thermography and chemical spectroscopy.
NASA Astrophysics Data System (ADS)
Azib, M.; Baudoin, F.; Binaud, N.; Villeneuve-Faure, C.; Bugarin, F.; Segonds, S.; Teyssedre, G.
2018-04-01
Recent experimental results demonstrated that an electrostatic force distance curve (EFDC) can be used for space charge probing in thin dielectric layers. A main advantage of the method is claimed to be its sensitivity to charge localization, which, however, needs to be substantiated by numerical simulations. In this paper, we have developed a model which permits us to compute an EFDC accurately by using the most sophisticated and accurate geometry for the atomic force microscopy probe. To avoid simplifications and in order to reproduce experimental conditions, the EFDC has been simulated for a system constituted of a polarized electrode embedded in a thin dielectric layer (SiN x ). The individual contributions of forces on the tip and on the cantilever have been analyzed separately to account for possible artefacts. The EFDC sensitivity to potential distribution is studied through the change in electrode shape, namely the width and the depth. Finally, the numerical results have been compared with experimental data.
Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study
NASA Astrophysics Data System (ADS)
Marsusi, F.; Fedorov, I. A.; Gerivani, S.
2018-01-01
Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a -0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.
Molecular Origin of the Vibrational Structure of Ice Ih.
Moberg, Daniel R; Straight, Shelby C; Knight, Christopher; Paesani, Francesco
2017-06-15
An unambiguous assignment of the vibrational spectra of ice I h remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice I h in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the lattice vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal. The high level of agreement with experiment raises prospects for predictive MB-MD simulations that, complementing analogous measurements, will provide molecular-level insights into fundamental processes taking place in bulk ice and on ice surfaces under different thermodynamic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moberg, Daniel R.; Straight, Shelby C.; Knight, Christopher
Here, an unambiguous assignment of the vibrational spectra of ice I h remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice I h in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the latticemore » vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal. The high level of agreement with experiment raises prospects for predictive MB-MD simulations that, complementing analogous measurements, will provide molecular-level insights into fundamental processes taking place in bulk ice and on ice surfaces under different thermodynamic conditions.« less
The effect of power-law body forces on a thermally driven flow between concentric rotating spheres
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1986-01-01
A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.
The effect of power law body forces on a thermally-driven flow between concentric rotating spheres
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1985-01-01
A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.
Electrostatic-Dipole (ED) Fusion Confinement Studies
NASA Astrophysics Data System (ADS)
Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert
2004-11-01
The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH
The electrostatic characteristics of G·U wobble base pairs
Xu, Darui; Landon, Theresa; Greenbaum, Nancy L.; Fenley, Marcia O.
2007-01-01
G·U wobble base pairs are the most common and highly conserved non-Watson–Crick base pairs in RNA. Previous surface maps imply uniformly negative electrostatic potential at the major groove of G·U wobble base pairs embedded in RNA helices, suitable for entrapment of cationic ligands. In this work, we have used a Poisson–Boltzmann approach to gain a more detailed and accurate characterization of the electrostatic profile. We found that the major groove edge of an isolated G·U wobble displays distinctly enhanced negativity compared with standard GC or AU base pairs; however, in the context of different helical motifs, the electrostatic pattern varies. G·U wobbles with distinct widening have similar major groove electrostatic potentials to their canonical counterparts, whereas those with minimal widening exhibit significantly enhanced electronegativity, ranging from 0.8 to 2.5 kT/e, depending upon structural features. We propose that the negativity at the major groove of G·U wobble base pairs is determined by the combined effect of the base atoms and the sugar-phosphate backbone, which is impacted by stacking pattern and groove width as a result of base sequence. These findings are significant in that they provide predictive power with respect to which G·U sites in RNA are most likely to bind cationic ligands. PMID:17526525
Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.
Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R
2016-07-12
In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.
Failure and recovery in dynamical networks.
Böttcher, L; Luković, M; Nagler, J; Havlin, S; Herrmann, H J
2017-02-03
Failure, damage spread and recovery crucially underlie many spatially embedded networked systems ranging from transportation structures to the human body. Here we study the interplay between spontaneous damage, induced failure and recovery in both embedded and non-embedded networks. In our model the network's components follow three realistic processes that capture these features: (i) spontaneous failure of a component independent of the neighborhood (internal failure), (ii) failure induced by failed neighboring nodes (external failure) and (iii) spontaneous recovery of a component. We identify a metastable domain in the global network phase diagram spanned by the model's control parameters where dramatic hysteresis effects and random switching between two coexisting states are observed. This dynamics depends on the characteristic link length of the embedded system. For the Euclidean lattice in particular, hysteresis and switching only occur in an extremely narrow region of the parameter space compared to random networks. We develop a unifying theory which links the dynamics of our model to contact processes. Our unifying framework may help to better understand controllability in spatially embedded and random networks where spontaneous recovery of components can mitigate spontaneous failure and damage spread in dynamical networks.
NASA Astrophysics Data System (ADS)
Chibani, Wael; Ren, Xinguo; Scheffler, Matthias; Rinke, Patrick
2016-04-01
We present an embedding scheme for periodic systems that facilitates the treatment of the physically important part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on the concept of dynamical mean-field theory formulated in terms of Green's functions. Our real-space dynamical mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for the periodic surrounding. The total energy is computed from the resulting Green's functions. The performance of our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational supercell) size.
Direct Analysis of Large Living Organism by Megavolt Electrostatic Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man
2014-09-01
A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.
Direct analysis of large living organism by megavolt electrostatic ionization mass spectrometry.
Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man
2014-09-01
A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.
Edutainment Science: Electrostatics
ERIC Educational Resources Information Center
Ahlers, Carl
2009-01-01
Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…
Prospects and challenges of touchless electrostatic detumbling of small bodies
NASA Astrophysics Data System (ADS)
Bennett, Trevor; Stevenson, Daan; Hogan, Erik; Schaub, Hanspeter
2015-08-01
The prospects of touchlessly detumbling a small, multiple meters in size, space object using electrostatic forces are intriguing. Physically capturing an object with a large rotation rate poses significant momentum transfer and collision risks. If the spin rate is reduced to less than 1 deg/s, relative motion sensing and control associated with mechanical docking becomes manageable. In particular, this paper surveys the prospects and challenges of detumbling large debris objects near Geostationary Earth Orbit for active debris remediation, and investigates if such electrostatic tractors are suitable for small asteroids being considered for asteroid retrieval missions. Active charge transfer is used to impart arresting electrostatic torques on such objects, given that they are sufficiently non-spherical. The concept of touchless electrostatic detumbling of space debris is outlined through analysis and experiments and is shown to hold great promise to arrest the rotation within days to weeks. However, even conservatively optimistic simulations of small asteroid detumbling scenarios indicate that such a method could take over a year to arrest the asteroid rotation. The numerical debris detumbling simulation includes a charge transfer model in a space environment, and illustrates how a conducting rocket body could be despun without physical contact.
Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets
NASA Astrophysics Data System (ADS)
Lü, Kun; Zhou, Jian; Zhou, Le; Chen, X. S.; Chan, Siew Hwa; Sun, Qiang
2012-06-01
Transition metal (TM) embedded two-dimensional phthalocyanine (Pc) sheets have been recently synthesized in experiments [M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc. 133, 1203 (2010)], 10.1021/ja108628r, where the transition metal ions are uniformly distributed in porous structures, providing the possibility of capturing gas molecules. Using first principles and grand canonical Monte Carlo simulations, TMPc sheets (TM = Sc, Ti, and Fe) are studied for pre-combustion CO2 capture by considering the adsorptions of H2/CO2 gas mixtures. It is found that ScPc sheet shows a good selectivity for CO2, and the excess uptake capacity of single-component CO2 on ScPc sheet at 298 K and 50 bar is found to be 2949 mg/g, larger than that of any other reported porous materials. Furthermore, electrostatic potential and natural bond orbital analyses are performed to reveal the underlying interaction mechanisms, showing that electrostatic interactions as well as the donation and back donation of electrons between the transition metal ions and the CO2 molecules play a key role in the capture.
Characterizing the Performance of the Wheel Electrostatic Spectrometer
NASA Technical Reports Server (NTRS)
Johansen, M. R.; Mackey, P. J.; Holbert, E.; Clements, J. S.; Calle, C. I.
2013-01-01
A Wheel Electrostatic Spectrometer has been developed as a surveying tool to be incorporated into a Martian rover design. Electrostatic sensors with various protruding cover insulators are embedded into a prototype rover wheel. When these insulators come into contact with a surface, a charge develops on the cover insulator through tribocharging. A charge spectrum is created by analyzing the accumulated charge on each of the dissimilar cover insulators. This charge spectrum can be used to determine differences in Martian regolith properties. In this study, we analyzed the repeatability of the measurements for this sensor package and found that the sensor repeatability lies within one standard deviation of the noise in the signal. In addition, we tested the need for neutralizing the surface charge on the cover insulators and discovered a need to discharge the sensor cover insulators after each revolution. Future work includes an electronics redesign to reduce noise and a Martian pressure static elimination tool that can be used to neutralize the charge on the sensor cover insulators after each wheel revolution.
Electrostatic atomization: Effect of electrode materials on electrostatic atomizer performance
NASA Astrophysics Data System (ADS)
Sankaran, Abhilash; Staszel, Christopher; Kashir, Babak; Perri, Anthony; Mashayek, Farzad; Yarin, Alexander
2016-11-01
Electrostatic atomization was studied experimentally with a pointed electrode in a converging nozzle. Experiments were carried out on poorly conductive canola oil where it was observed that electrode material may affect charge transfer. This points at the possible faradaic reactions that can occur at the surfaces of the electrodes. The supply voltage is applied to the sharp electrode and the grounded nozzle body constitutes the counter-electrode. The charge transfer is controlled by the electrochemical reactions on both the electrodes. The electrical performance study of the atomizer issuing a charged oil jet was conducted using three different nozzle body materials - brass, copper and stainless steel. Also, two sharp electrode materials - brass and stainless steel - were tested. The experimental results revealed that both the nozzle body material, as well as the sharp electrode material affected the spray and leak currents. Moreover, the effect of the sharp electrode material is quite significant. This research is supported by NSF Grant 1505276.
Random matrix theory for transition strengths: Applications and open questions
NASA Astrophysics Data System (ADS)
Kota, V. K. B.
2017-12-01
Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different) and so on. Using embedded ensembles (EE), there are efforts to derive a good statistical theory for transition strengths. With m fermions (or bosons) in N mean-field single particle levels and interacting via two-body forces, we have with GOE embedding, the so called EGOE(1+2). Now, the transition strength density (transition strength multiplied by the density of states at the initial and final energies) is a convolution of the density generated by the mean-field one-body part with a bivariate spreading function due to the two-body interaction. Using the embedding U(N) algebra, it is established, for a variety of transition operators, that the spreading function, for sufficiently strong interactions, is close to a bivariate Gaussian. Also, as the interaction strength increases, the spreading function exhibits a transition from bivariate Breit-Wigner to bivariate Gaussian form. In appropriate limits, this EE theory reduces to the polynomial theory of Draayer, French and Wong on one hand and to the theory due to Flambaum and Izrailev for one-body transition operators on the other. Using spin-cutoff factors for projecting angular momentum, the theory is applied to nuclear matrix elements for neutrinoless double beta decay (NDBD). In this paper we will describe: (i) various developments in the EE theory for transition strengths; (ii) results for nuclear matrix elements for 130Te and 136Xe NDBD; (iii) important open questions in the current form of the EE theory.
APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane
Callenberg, Keith M.; Choudhary, Om P.; de Forest, Gabriel L.; Gohara, David W.; Baker, Nathan A.; Grabe, Michael
2010-01-01
Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated. PMID:20949122
APBSmem: a graphical interface for electrostatic calculations at the membrane.
Callenberg, Keith M; Choudhary, Om P; de Forest, Gabriel L; Gohara, David W; Baker, Nathan A; Grabe, Michael
2010-09-29
Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated.
Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices
Zhang, Wen-Ming; Meng, Guang; Chen, Di
2007-01-01
Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.
Molecular origin of the vibrational structure of ice I h
Moberg, Daniel R.; Straight, Shelby C.; Knight, Christopher; ...
2017-05-25
Here, an unambiguous assignment of the vibrational spectra of ice I h remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice I h in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the latticemore » vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal. The high level of agreement with experiment raises prospects for predictive MB-MD simulations that, complementing analogous measurements, will provide molecular-level insights into fundamental processes taking place in bulk ice and on ice surfaces under different thermodynamic conditions.« less
Measurement of Cohesion in Asteroid Regolith Materials
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Gaier, James; Waters, Deborah; Harvey, Ralph; Zeszut, Zoe; Carreno, Brandon; Shober, Patrick
2017-01-01
There is increasing evidence that a large fraction of asteroids, and even Phobos, have such low densities (<2 g/cu cm) that the are unlikely to be consolidated rocks in space.-Water is unlikely due to close orbits to the sun. Instead, many of these asteroids are thought to be made up of unconsolidated smaller particles of varying size referred to as rubble piles. Images of the asteroid Itokawa reinforce this hypothesis. What holds the rubble piles together? Gravitational forces alone are not strong enough to hold together rubble pile asteroids, at least not those that are rapidly spinning Van der Waals forces and or Electrostatic forces must therefore be responsible for holding them together. Previous work suggests that electrostatic forces, which are orders of magnitude stronger are far more likely. Charge build-up is a likely consequence of the interaction of airless bodies with the solar wind plasma, analogous to what has been proposed to occur on the moon. Objective: Experimentally measure cohesive forces relevant to those holding rubble pile asteroids together
NASA Astrophysics Data System (ADS)
Barakat, T.
2011-12-01
Higher order multipole potentials and electrostatic screening effects are introduced to incorporate the dangling bonds on the surface of a metallic nanopaticle and to modify the coulomb like potential energy terms, respectively. The total interaction energy function for any metallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terms are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.
Investigation of human body potential measured by a non-contact measuring system.
Ichikawa, Norimitsu
2016-12-07
A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body's voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.
NASA Astrophysics Data System (ADS)
Wang, X.; Hood, N.; Schwan, J.; Hsu, H. W.; Horanyi, M.
2017-12-01
Electrostatic dust mobilization on the surfaces of airless bodies due to direct exposure to solar wind and solar ultraviolet (UV) radiation has been suggested from a number of unusual planetary observations and supported by our recent laboratory experiments. This electrostatic process may have a significant contribution in the evolution of these surfaces in addition to other surface processes, e.g., thermal fragmentation. The critical questions are how this process changes the surface physical characteristics and how efficient this process can be. We report new laboratory experiments that record dust activities as function of the incoming fluxes of photons or energetic electrons over a long exposure time under Earth gravity. Dust is observed to hop and move on the surface, causing the significant change in surface morphology and becoming smoother over time. Our results indicate that the dynamics of dust mobilization may be complicated by temporal charging effect as dust moves. Various sizes and types of dust are examined, showing large effects on dust mobilization. These laboratory data will help us to predict the electrostatic surface processes and estimate their timescales in space conditions.
Electrostatic and electrodynamic response properties of nanostructures
NASA Astrophysics Data System (ADS)
Ayaz, Yuksel
1999-11-01
This thesis addresses the problem of nanostructure dielectric response to excitation by electric fields, both in the electrostatic c→infinity and the electrodynamic regimes. The nanostructures treated include planar quantum wells and quantum wires embedded in the vicinity of the bounding surface of the host semiconductor medium. Various cases are analyzed, including a single well or wire, a double well or wire, a lattice of N wells or wires and an infinite superlattice of wells or wires. The host medium is considered to have phonons and/or a bulk semiconductor plasma which interact with the plasmons of the embedded quantum wells or wires, and the host plasma is treated in both the local "cold" plasma regime and the nonlocal "hot" plasma regime. New hybridized quantum plasma collective modes emerge from these studies. The techniques employed here include the variational differential formulation of integral equations for the inverse dielectric function (in electrostatic case) and the dyadic Green's function (in the electrodynamic case) for the various systems described above. These integral equations are then solved in frequency-position representation by a variety of techniques depending on the geometrical features of the particular problem. Explicit closed form solutions for the inverse dielectric function or dyadic Green's function facilitate identification of the coupled collective modes in terms of their frequency poles, and the residues at the pole positions provide the relative amplitudes with which these normal modes respond to external excitation. Interesting features found include, for example, explicit formulas showing the transference of coupling of a two dimensional (2D) quantum well plasmon from a surface phonon to a bulk phonon as the 2D quantum well is displaced away from the bounding surface, deeper into the medium.
NASA Astrophysics Data System (ADS)
Ali, Rizwaan; Mahapatra, D. Roy; Gopalakrishnan, S.
2008-04-01
This paper is a successor to the previous paper by Ali et al (2008 Smart Mater. Struct. 17 025037); it presents the analysis for sensing an embedded mode-II crack in a substrate. The displacement field kinematics for the film-substrate system is extended to the problem of applied surface shear stress. This extension requires modifying the model presented in the previous paper to include the differences due to changes in boundary and excitation conditions. The film response in terms of voltage pattern over the film area—peculiar to the presence of a mode-II crack in the substrate—is illustrated here through the results of numerical simulations. Our analysis shows that the proposed electrostatic measures of the voltage and its gradients are useful in identifying the axial and depth-wise location, as well as the crack-face area of a planar mode-II crack. There is a marked difference in the pattern of results presented in this paper with the results in part I of this work for a mode-I crack. This distinction is of utmost importance, for it singularly suffices to identify the mode of crack in a substrate for a given set of boundary conditions.
Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.
Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H
2015-12-08
Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.
A Hygroscopic Sensor Electrode for Fast Stabilized Non-Contact ECG Signal Acquisition
Fong, Ee-May; Chung, Wan-Young
2015-01-01
A capacitive electrocardiography (cECG) technique using a non-invasive ECG measuring technology that does not require direct contact between the sensor and the skin has attracted much interest. The system encounters several challenges when the sensor electrode and subject’s skin are weakly coupled. Because there is no direct physical contact between the subject and any grounding point, there is no discharge path for the built-up electrostatic charge. Subsequently, the electrostatic charge build-up can temporarily contaminate the ECG signal from being clearly visible; a stabilization period (3–15 min) is required for the measurement of a clean, stable ECG signal at low humidity levels (below 55% relative humidity). Therefore, to obtain a clear ECG signal without noise and to reduce the ECG signal stabilization time to within 2 min in a dry ambient environment, we have developed a fabric electrode with embedded polymer (FEEP). The designed hygroscopic FEEP has an embedded superabsorbent polymer layer. The principle of FEEP as a conductive electrode is to provide humidity to the capacitive coupling to ensure strong coupling and to allow for the measurement of a stable, clear biomedical signal. The evaluation results show that hygroscopic FEEP is capable of rapidly measuring high-accuracy ECG signals with a higher SNR ratio. PMID:26251913
A Hygroscopic Sensor Electrode for Fast Stabilized Non-Contact ECG Signal Acquisition.
Fong, Ee-May; Chung, Wan-Young
2015-08-05
A capacitive electrocardiography (cECG) technique using a non-invasive ECG measuring technology that does not require direct contact between the sensor and the skin has attracted much interest. The system encounters several challenges when the sensor electrode and subject's skin are weakly coupled. Because there is no direct physical contact between the subject and any grounding point, there is no discharge path for the built-up electrostatic charge. Subsequently, the electrostatic charge build-up can temporarily contaminate the ECG signal from being clearly visible; a stabilization period (3-15 min) is required for the measurement of a clean, stable ECG signal at low humidity levels (below 55% relative humidity). Therefore, to obtain a clear ECG signal without noise and to reduce the ECG signal stabilization time to within 2 min in a dry ambient environment, we have developed a fabric electrode with embedded polymer (FEEP). The designed hygroscopic FEEP has an embedded superabsorbent polymer layer. The principle of FEEP as a conductive electrode is to provide humidity to the capacitive coupling to ensure strong coupling and to allow for the measurement of a stable, clear biomedical signal. The evaluation results show that hygroscopic FEEP is capable of rapidly measuring high-accuracy ECG signals with a higher SNR ratio.
Investigation of human body potential measured by a non-contact measuring system
ICHIKAWA, Norimitsu
2016-01-01
A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body’s voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not. PMID:27319403
Electrostatic Deformation of Liquid Surfaces by a Charged Rod and a Van De Graaff Generator
ERIC Educational Resources Information Center
Slisko, Josip; García-Molina, Rafael; Abril, Isabel
2014-01-01
Authors of physics textbooks frequently use the deflection of a thin, vertically falling water jet by a charged balloon, comb, or rod as a visually appealing and conceptually relevant example of electrostatic attraction. Nevertheless, no attempts are made to explore whether these charged bodies could cause visible deformation of a horizontal water…
Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations
NASA Astrophysics Data System (ADS)
Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.
2015-12-01
Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.
Optical fiber sensors embedded in flexible polymer foils
NASA Astrophysics Data System (ADS)
van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter
2010-04-01
In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.
Effectiveness Testing of Embedded User Support for U.S. Army Installation-Level Software
1991-06-01
under what conditions Dynamic Help could influence performance and satisfaction. The ACIFS program was modified to provide automatic collection of all...under what conditions Dynamic Help can influence user performance and satisfaction. This chapter reports the design, implementation, and analysis of...ambiguous or is hidden in the body of the message. The ACIFS program has many user interface deficiencies, but it does allow the user to use trial and
NASA Astrophysics Data System (ADS)
Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; Qin, Jian; Karpeev, Dmitry; Hernandez-Ortiz, Juan; de Pablo, Juan J.; Heinonen, Olle
2016-08-01
Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O(N2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Method (FMM) to evaluate the integrals in O(N) operations, with O(N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. The results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.
Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; ...
2016-08-10
Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O( N 2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Methodmore » (FMM) to evaluate the integrals in O( N) operations, with O( N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. Lastly, the results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.« less
Electrostatic Model Applied to ISS Charged Water Droplet Experiment
NASA Technical Reports Server (NTRS)
Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.
2015-01-01
The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.
Experience with 3-D composite grids
NASA Technical Reports Server (NTRS)
Benek, J. A.; Donegan, T. L.; Suhs, N. E.
1987-01-01
Experience with the three-dimensional (3-D), chimera grid embedding scheme is described. Applications of the inviscid version to a multiple-body configuration, a wind/body/tail configuration, and an estimate of wind tunnel wall interference are described. Applications to viscous flows include a 3-D cavity and another multi-body configuration. A variety of grid generators is used, and several embedding strategies are described.
Zeman, Herbert D.
1994-01-01
A scintillator screen for an X-ray system includes a substrate of low-Z material and bodies of a high-Z material embedded within the substrate. By preselecting the size of the bodies embedded within the substrate, the spacial separation of the bodies and the thickness of the screen, the sensitivity of the screen to X-rays within a predetermined energy range can be predicted.
Toward Hamiltonian Adaptive QM/MM: Accurate Solvent Structures Using Many-Body Potentials.
Boereboom, Jelle M; Potestio, Raffaello; Donadio, Davide; Bulo, Rosa E
2016-08-09
Adaptive quantum mechanical (QM)/molecular mechanical (MM) methods enable efficient molecular simulations of chemistry in solution. Reactive subregions are modeled with an accurate QM potential energy expression while the rest of the system is described in a more approximate manner (MM). As solvent molecules diffuse in and out of the reactive region, they are gradually included into (and excluded from) the QM expression. It would be desirable to model such a system with a single adaptive Hamiltonian, but thus far this has resulted in distorted structures at the boundary between the two regions. Solving this long outstanding problem will allow microcanonical adaptive QM/MM simulations that can be used to obtain vibrational spectra and dynamical properties. The difficulty lies in the complex QM potential energy expression, with a many-body expansion that contains higher order terms. Here, we outline a Hamiltonian adaptive multiscale scheme within the framework of many-body potentials. The adaptive expressions are entirely general, and complementary to all standard (nonadaptive) QM/MM embedding schemes available. We demonstrate the merit of our approach on a molecular system defined by two different MM potentials (MM/MM'). For the long-range interactions a numerical scheme is used (particle mesh Ewald), which yields energy expressions that are many-body in nature. Our Hamiltonian approach is the first to provide both energy conservation and the correct solvent structure everywhere in this system.
Heiner, Anneliese D.; Lundberg, Hannah J.; Baer, Thomas E.; Pedersen, Douglas R.; Callaghan, John J.; Brown, Thomas D.
2008-01-01
In total joint arthroplasty, third body particle access to the articulating surfaces results in accelerated wear. Hip joint subluxation is an under-recognized means by which third body particles could potentially enter the otherwise closely conforming articular bearing space. The present study was designed to test the hypothesis that, other factors being equal, even occasional events of femoral head subluxation greatly increase the number of third body particles that enter the bearing space and become embedded in the acetabular liner, as compared to level walking cycles alone. Ten metal-on-polyethylene hip joint head-liner pairs were tested in a multi-axis joint motion simulator, with CoCrMo third body particles added to the synovial fluid analog. All component pairs were tested for two hours of level walking; half also were subjected to twenty intermittent subluxation events. The number and location of embedded particles on the acetabular liners were then determined. Subluxation dramatically increased the number of third body particles embedded in the acetabular liners, and it considerably increased the amount of scratch damage on the femoral heads. Since both third body particles and subluxation frequently occur in contemporary total hip arthroplasty, their potent synergy needs to be factored prominently into strategies to minimize wear. PMID:18561936
Electrostatic Field Invisibility Cloak
NASA Astrophysics Data System (ADS)
Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji
2015-11-01
The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications.
Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions.
Bartlett, Michael D; Fassler, Andrew; Kazem, Navid; Markvicka, Eric J; Mandal, Pratiti; Majidi, Carmel
2016-05-01
An all-soft-matter composite with exceptional electro-elasto properties is demonstrated by embedding liquid-metal inclusions in an elastomer matrix. This material exhibits a unique combination of high dielectric constant, low stiffness, and large strain limit (ca. 600% strain). The elasticity, electrostatics, and electromechanical coupling of the composite are investigated, and strong agreement with predictions from effective medium theory is found. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discovery of B ring propellers in Cassini UVIS and ISS
NASA Astrophysics Data System (ADS)
Sremcevic, M.; Stewart, G.; Albers, N.; Esposito, L. W.
2011-12-01
One of the successes of the planetary ring theory has been the theoretical prediction of gravitational signatures of bodies embedded in the rings, and their subsequent detection in Cassini data. Bodies within the rings perturb the nearby ring material, and the orbital shear forms a two-armed structure -- dubbed a ``propeller'' -- which is centered at the embedded body. Although direct evidence of the present body or moonlet is still lacking, the observations of their propeller signatures has proved as an indispensable method to extend our knowledge about ring structure and dynamics. So far, propellers have been successfully detected within Saturn's A ring in two populations: a group of small and numerous propellers interior to the Encke gap forming belts, and by far less numerous but larger propellers exterior to Pan's orbit. Although there have been hints of propellers present within the B ring, or even C ring, their detection is less certain (e.g. neither has a single propeller been seen twice, nor has the ubiquitous two armed structure been observed). In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. A single object is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe the feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at a=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS occultations are consistent with an asymmetric propeller shape. The asymmetry of the observed shape is most likely a consequence of the strong surface mass density gradient, as the feature is located at an edge between high and relatively low optical depth. From the radial separation of the propeller wings we estimate that the embedded body is about 1.5km in size. We estimate that there are possibly dozen up to 100 other propeller objects in Saturn's B ring. Since the discovered body sits at an edge of a dense ringlet within the B ring this suggests a novel mechanism for the up to now illusive B ring irregular shape of alternating high and low optical depth ringlets. We propose that the long standing search for the mechanism that maintains the B ring irregular shape may have its explanation in the presence of many embedded bodies that shepherd the individual B ring ringlets.
“Beating speckles” via electrically-induced vibrations of Au nanorods embedded in sol-gel
Ritenberg, Margarita; Beilis, Edith; Ilovitsh, Asaf; Barkai, Zehava; Shahmoon, Asaf; Richter, Shachar; Zalevsky, Zeev; Jelinek, Raz
2014-01-01
Generation of macroscopic phenomena through manipulating nano-scale properties of materials is among the most fundamental goals of nanotechnology research. We demonstrate cooperative “speckle beats” induced through electric-field modulation of gold (Au) nanorods embedded in a transparent sol-gel host. Specifically, we show that placing the Au nanorod/sol-gel matrix in an alternating current (AC) field gives rise to dramatic modulation of incident light scattered from the material. The speckle light patterns take form of “beats”, for which the amplitude and frequency are directly correlated with the voltage and frequency, respectively, of the applied AC field. The data indicate that the speckle beats arise from localized vibrations of the gel-embedded Au nanorods, induced through the interactions between the AC field and the electrostatically-charged nanorods. This phenomenon opens the way for new means of investigating nanoparticles in constrained environments. Applications in electro-optical devices, such as optical modulators, movable lenses, and others are also envisaged. PMID:24413086
Rethinking of the regolith transport on airless bodies in the Solar system
NASA Astrophysics Data System (ADS)
Hsu, S.; Wang, X.; Seiss, M.; Schwan, J.; Sternovsky, Z.; Horanyi, M.
2016-12-01
Recent laboratory experiments provided important constraints on the characteristics of electrostatic dust transport on airless bodies. The proposed "patched charging model" illustrates how regolith particles acquire grain charges much higher than expected to drive the surface dust movements, including rotation and hopping of individual regolith particle as well as the overall smoothing of the regolith surface observed in the experiments. Here we apply the experimental results to re-examine the regolith transport on the airless bodies in the Solar systems, including both observation (e.g., dust ponds on Eros) and theoretical aspects (e.g., electrostatic dust levitation). We will also discuss the observational criteria and implications to be expected from current and future missions, such as Asteroid Redirect Mission, Cassini, Hayabusa 2, and OSIRIS-Rex.
Electrostatic hazards of charging of bedclothes and ignition in medical facilities.
Endo, Yuta; Ohsawa, Atsushi; Yamaguma, Mizuki
2018-02-26
We investigated the charge generated on bedclothes (cotton and polyester) during bedding exchange with different humidities and the ignitability of an alcohol-based hand sanitizer (72.3 mass% ethanol) due to static spark with different temperatures to identify the hazards of electrostatic shocks and ignitions occurring previously in medical facilities. The results indicated that charging of the polyester bedclothes may induce a human body potential of over about 10 kV, resulting in shocks even at a relative humidity of 50%, and a human body potential of higher than about 8 kV can cause a risk for the ignition of the hand sanitizer. The grounding of human bodies via footwear and flooring, therefore, is essential to avoid such hazards (or to reduce such risks).
System-on-chip-centric unattended embedded sensors in homeland security and defense applications
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin; Shih, Min-Yi; Walter, Kevin; Lee, Kang; Gans, Eric; Esterkin, Vladimir
2009-05-01
System-on-chip (SoC) single-die electronic integrated circuit (IC) integration has recently been attracting a great deal of attention, due to its high modularity, universality, and relatively low fabrication cost. The SoC also has low power consumption and it is naturally suited to being a base for integration of embedded sensors. Such sensors can run unattended, and can be either commercial off-the-shelf (COTS) electronic, COTS microelectromechanical systems (MEMS), or optical-COTS or produced in house (i.e., at Physical Optics Corporation, POC). In the version with the simplest electronic packaging, they can be integrated with low-power wireless RF that can communicate with a central processing unit (CPU) integrated in-house and installed on the specific platform of interest. Such a platform can be a human body (for e-clothing), unmanned aerial vehicle (UAV), unmanned ground vehicle (UGV), or many others. In this paper we discuss SoC-centric embedded unattended sensors in Homeland Security and military applications, including specific application scenarios (or CONOPS). In one specific example, we analyze an embedded polarization optical sensor produced in house, including generalized Lambertian light-emitting diode (LED) sources and secondary nonimaging optics (NIO).
Accelerating wavefunction in density-functional-theory embedding by truncating the active basis set
NASA Astrophysics Data System (ADS)
Bennie, Simon J.; Stella, Martina; Miller, Thomas F.; Manby, Frederick R.
2015-07-01
Methods where an accurate wavefunction is embedded in a density-functional description of the surrounding environment have recently been simplified through the use of a projection operator to ensure orthogonality of orbital subspaces. Projector embedding already offers significant performance gains over conventional post-Hartree-Fock methods by reducing the number of correlated occupied orbitals. However, in our first applications of the method, we used the atomic-orbital basis for the full system, even for the correlated wavefunction calculation in a small, active subsystem. Here, we further develop our method for truncating the atomic-orbital basis to include only functions within or close to the active subsystem. The number of atomic orbitals in a calculation on a fixed active subsystem becomes asymptotically independent of the size of the environment, producing the required O ( N 0 ) scaling of cost of the calculation in the active subsystem, and accuracy is controlled by a single parameter. The applicability of this approach is demonstrated for the embedded many-body expansion of binding energies of water hexamers and calculation of reaction barriers of SN2 substitution of fluorine by chlorine in α-fluoroalkanes.
Electrodynamic Dust Shield Demonstrator
NASA Technical Reports Server (NTRS)
Stankie, Charles G.
2013-01-01
The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid running a multiphase low frequency AC signal. Electrostatically charged particles, such as those encountered on the moon, Mars, or an asteroid, are carried along by the traveling field due to the action of Coulomb and dielectrophoretic forces."2 The technical details have been described in a separate article. This document details the design and construction process of a small demonstration unit. Once finished, this device will go to the Office of the ChiefTechnologist at NASA headquarters, where it will be used to familiarize the public with the technology. 1 NASA KSC FO Intern, Prototype Development Laboratory, Kennedy Space Center, University of Central Florida Kennedy Space
McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung; Drabek, Andrew A; Klein, Thomas; Blacklow, Stephen C
2016-08-02
The endosomal sorting complex required for transport (ESCRT) is a conserved protein complex that facilitates budding and fission of membranes. It executes a key step in many cellular events, including cytokinesis and multi-vesicular body formation. The ESCRT-III protein Shrub in flies, or its homologs in yeast (Snf7) or humans (CHMP4B), is a critical polymerizing component of ESCRT-III needed to effect membrane fission. We report the structural basis for polymerization of Shrub and define a minimal region required for filament formation. The X-ray structure of the Shrub core shows that individual monomers in the lattice interact in a staggered arrangement using complementary electrostatic surfaces. Mutations that disrupt interface salt bridges interfere with Shrub polymerization and function. Despite substantial sequence divergence and differences in packing interactions, the arrangement of Shrub subunits in the polymer resembles that of Snf7 and other family homologs, suggesting that this intermolecular packing mechanism is shared among ESCRT-III proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Electrostatic Structure and Double-Probe Performance in Tenuous Plasmas
NASA Astrophysics Data System (ADS)
Cully, C. M.; Ergun, R. E.
2006-12-01
Many in-situ plasma instruments are affected by the local electrostatic structure surrounding the spacecraft. In order to better understand this structure, we have developed a fully 3-dimensional self-consistent model that uses realistic spacecraft geometry, including thin (<1 mm) wires and long (>100m) booms, with open boundary conditions. One of the more surprising results is that in tenuous plasmas, the charge on the booms can dominate over the charge on the spacecraft body. For instruments such as electric field double probes and boom-mounted low-energy particle detectors, this challenges the existing paradigm: long booms do not allow the probes to escape the spacecraft potential. Instead, the potential structure simply expands as the boom is deployed. We then apply our model to the double-probe Electric Field and Waves (EFW) instruments on Cluster, and predict the magnitudes of the main error sources. The overall error budget is consistent with experiment, and the model yields some additional interesting insights. We show that the charge in the photoelectron cloud is relatively unimportant, and that the spacecraft potential is typically underestimated by about 20% by double-probe experiments.
Combined effect of moisture and electrostatic charges on powder flow
NASA Astrophysics Data System (ADS)
Rescaglio, Antonella; Schockmel, Julien; Vandewalle, Nicolas; Lumay, Geoffroy
2017-06-01
It is well known in industrial applications involving powders and granular materials that the relative air humidity and the presence of electrostatic charges influence drastically the material flowing properties. The relative air humidity induces the formation of capillary bridges and modify the grain surface conductivity. The presence of capillary bridges produces cohesive forces. On the other hand, the apparition of electrostatic charges due to the triboelectric effect at the contacts between the grains and at the contacts between the grains and the container produces electrostatic forces. Therefore, in many cases, the powder cohesiveness is the result of the interplay between capillary and electrostatic forces. Unfortunately, the triboelectric effect is still poorly understood, in particular inside a granular material. Moreover, reproducible electrostatic measurements are difficult to perform. We developed an experimental device to measures the ability of a powder to charge electrostatically during a flow in contact with a selected material. Both electrostatic and flow measurements have been performed in different hygrometric conditions. The correlation between the powder electrostatic properties, the hygrometry and the flowing behavior are analyzed.
A Triboelectric Sensor Array for Electrostatic Studies on the Lunar Surface
NASA Technical Reports Server (NTRS)
Johansen, Michael R.; Mackey, Paul J.; Calle, C. I.
2015-01-01
The moons electrostatic environment requires careful consideration in the development of future lunar landers. Electrostatically charged dust was well documented during the Apollo missions to cause thermal control, mechanical, and visibility issues. The fine dust particles that make up the surface are electrostatically charged as a result of numerous charging mechanisms. The relatively dry conditions on the moon creates a prime tribocharging environment during surface operations. The photoelectric effect is dominant for lunar day static charging, while plasma electrons are the main contributor for lunar night electrostatic effects. Electrostatic charging is also dependent on solar intensity, Earth-moon relative positions, and cosmic ray flux. This leads to a very complex and dynamic electrostatic environment that must be studied for the success of long term lunar missions.In order to better understand the electrostatic environment of planetary bodies, Kennedy Space Center, in previous collaboration with the Jet Propulsion Laboratory, has developed an electrostatic sensor suite. One of the instruments included in this package is the triboelectric sensor array. It is comprised of strategically selected materials that span the triboelectric series and that also have previous spaceflight history. In this presentation, we discuss detailed testing with the triboelectric sensor array performed at Kennedy Space Center. We will discuss potential benefits and use cases of this low mass, low cost sensor package, both for science and for mission success.
Frontier applications of electrostatic accelerators
NASA Astrophysics Data System (ADS)
Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er
2013-10-01
Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K
2017-08-02
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob; Corni, Stefano; Frediani, Luca; Steindal, Arnfinn Hykkerud; Guido, Ciro A; Scalmani, Giovanni; Mennucci, Benedetta
2018-03-13
Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdW TS ) scheme aimed at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdW TS expression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We explore transferable atom type-based parametrization strategies for the MM parameters, based on either vdW TS calculations performed on isolated fragments or on a direct estimation of the parameters from atomic polarizabilities taken from a polarizable force field. We investigate the performance of the implementation by computing self-consistent interaction energies for the S22 benchmark set, designed to represent typical noncovalent interactions in biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our results suggest that the present implementation is a promising strategy to include dispersion and repulsion in multiscale QM/MM models incorporating their explicit dependence on the electronic density.
NASA Astrophysics Data System (ADS)
Vyas, Manan; Kota, V. K. B.
2012-12-01
Following the earlier studies on embedded unitary ensembles generated by random two-body interactions [EGUE(2)] with spin SU(2) and spin-isospin SU(4) symmetries, developed is a general formulation, for deriving lower order moments of the one- and two-point correlation functions in eigenvalues, that is valid for any EGUE(2) and BEGUE(2) ("B" stands for bosons) with U(Ω)⊗SU(r) embedding and with two-body interactions preserving SU(r) symmetry. Using this formulation with r = 1, we recover the results derived by Asaga et al. [Ann. Phys. (N.Y.) 297, 344 (2002)], 10.1006/aphy.2002.6248 for spinless boson systems. Going further, new results are obtained for r = 2 (this corresponds to two species boson systems) and r = 3 (this corresponds to spin 1 boson systems).
NASA Tech Briefs, January 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Cryogenic Flow Sensor; Multi-Sensor Mud Detection; Gas Flow Detection System; Mapping Capacitive Coupling Among Pixels in a Sensor Array; Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing; Low-Profile, Dual-Wavelength, Dual-Polarized Antenna; Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications; Cellular Reflectarray Antenna; A One-Dimensional Synthetic-Aperture Microwave Radiometer; Electrical Switching of Perovskite Thin-Film Resistors; Two-Dimensional Synthetic-Aperture Radiometer; Ethernet-Enabled Power and Communication Module for Embedded Processors; Electrically Variable Resistive Memory Devices; Improved Attachment in a Hybrid Inflatable Pressure Vessel; Electrostatic Separator for Beneficiation of Lunar Soil; Amorphous Rover; Space-Frame Antenna; Gear-Driven Turnbuckle Actuator; In-Situ Focusing Inside a Thermal Vacuum Chamber; Space-Frame Lunar Lander; Wider-Opening Dewar Flasks for Cryogenic Storage; Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation; Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C; Designs and Materials for Better Coronagraph Occulting Masks; Fuel-Cell-Powered Vehicle with Hybrid Power Management; Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher; Fuel-Cell Water Separator; Turbulence and the Stabilization Principle; Improved Cloud Condensation Nucleus Spectrometer; Better Modeling of Electrostatic Discharge in an Insulator; Sub-Aperture Interferometers; Terahertz Mapping of Microstructure and Thickness Variations; Multiparallel Three-Dimensional Optical Microscopy; Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber; Vacuum-Compatible Wideband White Light and Laser Combiner Source System; Optical Tapers as White-Light WGM Resonators; EPR Imaging at a Few Megahertz Using SQUID Detectors; Reducing Field Distortion in Magnetic Resonance Imaging; Fluorogenic Cell-Based Biosensors for Monitoring Microbes; A Constant-Force Resistive Exercise Unit; GUI to Facilitate Research on Biological Damage from Radiation; On-Demand Urine Analyzer; More-Realistic Digital Modeling of a Human Body; and Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xianwei; State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062; Zhang, John Z. H.
2015-11-14
Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. Inmore » this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.« less
Reversible Rigidity Control Using Low Melting Temperature Alloys
NASA Astrophysics Data System (ADS)
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-03-01
Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.
Electrostatic micromembrane actuator arrays as motion generator
NASA Astrophysics Data System (ADS)
Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.
2004-05-01
A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.
Detecting chameleon dark energy via an electrostatic analogy.
Jones-Smith, Katherine; Ferrer, Francesc
2012-06-01
The late-time accelerated expansion of the Universe could be caused by a scalar field that is screened on small scales, as in the case of chameleon or symmetron scenarios. We present an analogy between such scalar fields and electrostatics, which allows calculation of the field profile for general extended bodies. Interestingly, the field demonstrates a "lightning rod" effect, where it becomes enhanced near the ends of a pointed or elongated object. Drawing from this correspondence, we show that nonspherical test bodies immersed in a background field will experience a net torque caused by the scalar field. This effect, with no counterpart in the gravitational case, can be potentially tested in future experiments.
First-principles simulations of electrostatic interactions between dust grains
NASA Astrophysics Data System (ADS)
Itou, H.; Amano, T.; Hoshino, M.
2014-12-01
We investigated the electrostatic interaction between two identical dust grains of an infinite mass immersed in homogeneous plasma by employing first-principles N-body simulations combined with the Ewald method. We specifically tested the possibility of an attractive force due to overlapping Debye spheres (ODSs), as was suggested by Resendes et al. [Phys. Lett. A 239, 181-186 (1998)]. Our simulation results demonstrate that the electrostatic interaction is repulsive and even stronger than the standard Yukawa potential. We showed that the measured electric field acting on the grain is highly consistent with a model electrostatic potential around a single isolated grain that takes into account a correction due to the orbital motion limited theory. Our result is qualitatively consistent with the counterargument suggested by Markes and Williams [Phys. Lett. A 278, 152-158 (2000)], indicating the absence of the ODS attractive force.
Sealed substrate carrier for electroplating
Ganti, Kalyana Bhargava [Fremont, CA
2012-07-17
One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, Henrik F.; Chen, Yu-Sheng; Jayatilaka, Dylan
2012-02-07
The crystal structure of the {beta}-polymorph of hydroquinone ({beta}-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated withmore » the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/{angstrom}{sup 2} (0.27 V/{angstrom}) 1 {angstrom} along the 3-fold axis and 0.0105 e/{angstrom}{sup 2} (0.15 V/{angstrom}) 1 {angstrom} along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.« less
Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce
2009-01-01
We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods. PMID:18567005
Electrostatic analogy for symmetron gravity
NASA Astrophysics Data System (ADS)
Ogden, Lillie; Brown, Katherine; Mathur, Harsh; Rovelli, Kevin
2017-12-01
The symmetron model is a scalar-tensor theory of gravity with a screening mechanism that suppresses the effect of the symmetron field at high densities characteristic of the Solar System and laboratory scales but allows it to act with gravitational strength at low density on the cosmological scale. We elucidate the screening mechanism by showing that in the quasistatic Newtonian limit there are precise analogies between symmetron gravity and electrostatics for both strong and weak screening. For strong screening we find that large dense bodies behave in a manner analogous to perfect conductors in electrostatics. Based on this analogy we find that the symmetron field exhibits a lightning rod effect wherein the field gradients are enhanced near the ends of pointed or elongated objects. An ellipsoid placed in a uniform symmetron gradient is shown to experience a torque. By symmetry there is no gravitational torque in this case. Hence this effect unmasks the symmetron and might serve as the basis for future laboratory experiments. The symmetron force between a point mass and a large dense body includes a component corresponding to the interaction of the point mass with its image in the larger body. None of these effects have counterparts in the Newtonian limit of Einstein gravity. We discuss the similarities between symmetron gravity and the chameleon model as well as the differences between the two.
Effective Coulomb force modeling for spacecraft in Earth orbit plasmas
NASA Astrophysics Data System (ADS)
Seubert, Carl R.; Stiles, Laura A.; Schaub, Hanspeter
2014-07-01
Coulomb formation flight is a concept that utilizes electrostatic forces to control the separations of close proximity spacecraft. The Coulomb force between charged bodies is a product of their size, separation, potential and interaction with the local plasma environment. A fast and accurate analytic method of capturing the interaction of a charged body in a plasma is shown. The Debye-Hückel analytic model of the electrostatic field about a charged sphere in a plasma is expanded to analytically compute the forces. This model is fitted to numerical simulations with representative geosynchronous and low Earth orbit (GEO and LEO) plasma environments using an effective Debye length. This effective Debye length, which more accurately captures the charge partial shielding, can be up to 7 times larger at GEO, and as great as 100 times larger at LEO. The force between a sphere and point charge is accurately captured with the effective Debye length, as opposed to the electron Debye length solutions that have errors exceeding 50%. One notable finding is that the effective Debye lengths in LEO plasmas about a charged body are increased from centimeters to meters. This is a promising outcome, as the reduced shielding at increased potentials provides sufficient force levels for operating the electrostatically inflated membrane structures concept at these dense plasma altitudes.
NASA Astrophysics Data System (ADS)
Cosgrove, R. B.; Schultz, A.; Imamura, N.
2016-12-01
Although electrostatic equilibrium is always assumed in the ionosphere, there is no good theoretical or experimental justification for the assumption. In fact, recent theoretical investigations suggest that the electrostatic assumption may be grossly in error. If true, many commonly used modeling methods are placed in doubt. For example, the accepted method for calculating ionospheric conductance??field line integration??may be invalid. In this talk we briefly outline the theoretical research that places the electrostatic assumption in doubt, and then describe how comparison of ground magnetic field data with incoherent scatter radar (ISR) data can be used to test the electrostatic assumption in the ionosphere. We describe a recent experiment conducted for the purpose, where an array of magnetometers was temporalily installed under the Poker Flat AMISR.
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids
Boschitsch, Alexander H.; Fenley, Marcia O.
2011-01-01
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent – analytical solutions are available for this case, thus allowing rigorous assessment of the solution accuracy; (ii) a pair of low dielectric charged spheres embedded in a ionic solvent to compute electrostatic interaction free energies as a function of the distance between sphere centers; (iii) surface potentials of proteins, nucleic acids and their larger-scale assemblies such as ribosomes; and (iv) electrostatic solvation free energies and their salt sensitivities – obtained with both linear and nonlinear Poisson-Boltzmann equation – for a large set of proteins. These latter results along with timings can serve as benchmarks for comparing the performance of different PBE solvers. PMID:21984876
Non-permeable substrate carrier for electroplating
Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava
2012-11-27
One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
Non-permeable substrate carrier for electroplating
Abas, Emmanuel Chua; Chen, Chen-an; Ma, Diana Xiaobing; Ganti, Kalyana; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor
2015-12-29
One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
Emphasizing the Significance of Electrostatic Interactions in Chemical Bonding
ERIC Educational Resources Information Center
Venkataraman, Bhawani
2017-01-01
This paper describes a pedagogical approach to help students understand chemical bonding by emphasizing the importance of electrostatic interactions between atoms. The approach draws on prior studies that have indicated many misconceptions among students in understanding the nature of the chemical bond and energetics associated with bond formation…
Progress Towards Microwave Ignition of Explosives
NASA Astrophysics Data System (ADS)
Curling, Mark; Collins, Adam; Dima, Gabriel; Proud, William
2009-06-01
Microwaves could provide a method of propellant ignition that does away with a traditional primer, making ammunition safer and suitable for Insensitive Munitions (IM) applications. By embedding a suitable material inside a propellant, it is postulated that microwaves could be used to stimulate hotspots, through direct heating or electrostatic discharge (arcing) across the energetic material. This paper reports on progress in finding these suitable materials. Graphite rod, magnetite cubes and powders of graphite, aluminium, copper oxide, and iron were irradiated in a conventional microwave oven. Temperature measurements were made using a shielded thermocouple and thermal paints. Only graphite rod and magnetite showed significant heating upon microwave exposure. The light output from arcing of iron, steel, iron pyrite, magnetite and graphite was measured in the same microwave oven as above. Sample mass and shape were correlated with arcing intensity. A strategy is proposed to create a homogeneous igniter material by embedding arcing materials within an insulator, Polymethylpentene (TPX). External discharges were transmitted through TPX, however no embedded samples were successful in generating an electrical breakdown suitable for propellant ignition.
Tseng, Yuhwai; Su, Chauchin; Ho, Yingchieh
2016-01-01
Background Intra-body communication is a new wireless scheme for transmitting signals through the human body. Understanding the transmission characteristics of the human body is therefore becoming increasingly important. Electrostatic-coupling intra-body communication system in a ground-free situation that integrate electronic products that are discretely located on individuals, such as mobile phones, PDAs, wearable computers, and biomedical sensors, are of particular interest. Materials and Methods The human body is modeled as a simplified Resistor-Capacitor network. A virtual ground between the transmitter and receiver in the system is represented by a resister-capacitor network. Value of its resistance and capacitance are determined from a system perspective. The system is characterized by using a mathematical unit step function in digital baseband transmission scheme with and without Manchester code. As a result, the signal-to-noise and to-intersymbol-interference ratios are improved by manipulating the load resistor. The data transmission rate of the system is optimized. A battery-powered transmitter and receiver are developed to validate the proposal. Results A ground-free system fade signal energy especially for a low-frequency signal limited system transmission rate. The system transmission rate is maximized by simply manipulating the load resistor. Experimental results demonstrate that for a load resistance of 10k−50k Ω, the high-pass 3 dB frequency of the band-pass channel is 400kHz−2MHz in the worst-case scenario. The system allows a Manchester-coded baseband signal to be transmitted at speeds of up to 20M bit per second with signal-to-noise and signal-to-intersymbol-interference ratio of more than 10 dB. Conclusion The human body can function as a high speed transmission medium with a data transmission rate of 20Mbps in an electrostatic-coupling intra-body communication system. Therefore, a wideband signal can be transmitted directly through the human body with a good signal-to-noise quality of 10 dB if the high-pass 3 dB frequency is suitably selected. PMID:26866602
Tseng, Yuhwai; Su, Chauchin; Ho, Yingchieh
2016-01-01
Intra-body communication is a new wireless scheme for transmitting signals through the human body. Understanding the transmission characteristics of the human body is therefore becoming increasingly important. Electrostatic-coupling intra-body communication system in a ground-free situation that integrate electronic products that are discretely located on individuals, such as mobile phones, PDAs, wearable computers, and biomedical sensors, are of particular interest. The human body is modeled as a simplified Resistor-Capacitor network. A virtual ground between the transmitter and receiver in the system is represented by a resister-capacitor network. Value of its resistance and capacitance are determined from a system perspective. The system is characterized by using a mathematical unit step function in digital baseband transmission scheme with and without Manchester code. As a result, the signal-to-noise and to-intersymbol-interference ratios are improved by manipulating the load resistor. The data transmission rate of the system is optimized. A battery-powered transmitter and receiver are developed to validate the proposal. A ground-free system fade signal energy especially for a low-frequency signal limited system transmission rate. The system transmission rate is maximized by simply manipulating the load resistor. Experimental results demonstrate that for a load resistance of 10k-50k Ω, the high-pass 3 dB frequency of the band-pass channel is 400kHz-2MHz in the worst-case scenario. The system allows a Manchester-coded baseband signal to be transmitted at speeds of up to 20M bit per second with signal-to-noise and signal-to-intersymbol-interference ratio of more than 10 dB. The human body can function as a high speed transmission medium with a data transmission rate of 20Mbps in an electrostatic-coupling intra-body communication system. Therefore, a wideband signal can be transmitted directly through the human body with a good signal-to-noise quality of 10 dB if the high-pass 3 dB frequency is suitably selected.
Su, Yuxi; Nan, Guoxin
2016-05-01
Embedment of metallic foreign bodies in the soft tissues is commonly encountered in the emergency room. Most foreign bodies are easily removed, but removal is difficult if the foreign body is very small or deeply embedded. To determine the usefulness of methylene blue staining in the surgical removal of tiny metallic foreign bodies embedded in the soft tissue. This prospective study involved 41 children treated between May 2007 and May 2012. The patients were randomly divided into a methylene blue group and a control group. In the control group, foreign bodies were located using a C-arm and removed via direct incision. In the methylene blue group, foreign bodies were located using a C-arm, marked with an injection of methylene blue and then removed surgically. The clinical outcomes, complications, operation time, surgical success rate, incision length, frequency of C-arm use, and length and depth of the foreign body were compared between the two groups. The surgical success rate was significantly higher in the methylene blue group. The average operation time was significantly shorter in the methylene blue group. The C-arm was used significantly less frequently in the methylene blue group than in the control group. The incision length was significantly shorter in the methylene blue group than in the control group. Methylene blue staining facilitated the location and removal of tiny metallic foreign bodies from the soft tissue, and significantly reduced operation time, incision length and radiation exposure compared to the conventional method. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Many-body effects in transport through a quantum-dot cavity system
NASA Astrophysics Data System (ADS)
Dinu, I. V.; Moldoveanu, V.; Gartner, P.
2018-05-01
We theoretically describe electric transport through an optically active quantum dot embedded in a single-mode cavity, and coupled to source-drain particle reservoirs. The populations of various many-body configurations (e.g., excitons, trions, biexciton) and the photon-number occupancies are calculated from a master equation which is derived in the basis of dressed states. These take into account both the Coulomb and the light-matter interaction. The former is essential in the description of the transport, while for the latter we identify situations in which it can be neglected in the expression of tunneling rates. The fermionic nature of the particle reservoirs plays an important role in the argument. The master equation is numerically solved for the s -shell many-body configurations of disk-shaped quantum dots. If the cavity is tuned to the biexciton-exciton transition, the most efficient optical processes take place in a three-level Λ system. The alternative exciton-ground-state route is inhibited as nonresonant due to the biexciton binding energy. The steady-state current is analyzed as a function of the photon frequency and the coupling to the leads. An unexpected feature appears in its dependence on the cavity loss rate, which turns out to be nonmonotonic.
Jiménez-García, Brian; Pons, Carles; Fernández-Recio, Juan
2013-07-01
pyDockWEB is a web server for the rigid-body docking prediction of protein-protein complex structures using a new version of the pyDock scoring algorithm. We use here a new custom parallel FTDock implementation, with adjusted grid size for optimal FFT calculations, and a new version of pyDock, which dramatically speeds up calculations while keeping the same predictive accuracy. Given the 3D coordinates of two interacting proteins, pyDockWEB returns the best docking orientations as scored mainly by electrostatics and desolvation energy. The server does not require registration by the user and is freely accessible for academics at http://life.bsc.es/servlet/pydock. Supplementary data are available at Bioinformatics online.
a Computational Approach to Explore Protein Translocation Through Type III Secretion Apparatus
NASA Astrophysics Data System (ADS)
Rathinavelan, Thenmalarchelvi; Im, Wonpil
2010-01-01
Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus (TTSA) that is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. Interestingly, the electronegative channel interior creates an energy barrier for MxiH to enter the channel, while the same may facilitate the ejection of the effectors into host cells. Structurally-known basal regions and ATPase underneath the basal region have also such electronegative interior, while effector proteins have considerable electronegative patches on their surfaces. Based on these observations, we propose a repulsive electrostatic mechanism for protein translocation through the TTSA. This mechanism is supported by the suggestion that an ATPase is required for protein translocation through these nanomachines, which may provide the energy to overcome the initial electrostatic energy barrier. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported.
Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431; Giese, Timothy J.
2015-12-21
Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion andmore » dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.« less
Kaiser, V.; Comtet, J.; Niguès, A.; Siria, A.; Coasne, B.; Bocquet, L.
2017-01-01
The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon the approach by [Kornyshev et al. Zh. Eksp. Teor. Fiz., 78(3):1008–1019, 1980] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allow for an estimate of interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. A counterintuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length ℓTF, profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement. PMID:28436506
Watanabe, Hideki; Matsumaru, Hiroyuki; Ooishi, Ayako; Feng, Yanwen; Odahara, Takayuki; Suto, Kyoko; Honda, Shinya
2009-05-01
Protein-protein interaction in response to environmental conditions enables sophisticated biological and biotechnological processes. Aiming toward the rational design of a pH-sensitive protein-protein interaction, we engineered pH-sensitive mutants of streptococcal protein G B1, a binder to the IgG constant region. We systematically introduced histidine residues into the binding interface to cause electrostatic repulsion on the basis of a rigid body model. Exquisite pH sensitivity of this interaction was confirmed by surface plasmon resonance and affinity chromatography employing a clinically used human IgG. The pH-sensitive mechanism of the interaction was analyzed and evaluated from kinetic, thermodynamic, and structural viewpoints. Histidine-mediated electrostatic repulsion resulted in significant loss of exothermic heat of the binding that decreased the affinity only at acidic conditions, thereby improving the pH sensitivity. The reduced binding energy was partly recovered by "enthalpy-entropy compensation." Crystal structures of the designed mutants confirmed the validity of the rigid body model on which the effective electrostatic repulsion was based. Moreover, our data suggested that the entropy gain involved exclusion of water molecules solvated in a space formed by the introduced histidine and adjacent tryptophan residue. Our findings concerning the mechanism of histidine-introduced interactions will provide a guideline for the rational design of pH-sensitive protein-protein recognition.
Electrostatic effects on hyaluronic acid configuration
NASA Astrophysics Data System (ADS)
Berezney, John; Saleh, Omar
2015-03-01
In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.
USDA-ARS?s Scientific Manuscript database
The aerial electrostatic spraying system patented by the USDA-ARS is a unique aerial application system which inductively charges spray droplets for the purpose of increasing deposition and efficacy. While this system has many potential benefits, no published data exits which describe how changes i...
USDA-ARS?s Scientific Manuscript database
The aerial electrostatic spraying system patented by the USDA ARS is a unique aerial application system which inductively charges spray particles for the purpose of increasing deposition and efficacy. While this system has many potential benefits, very little is known about how changes in airspeed o...
Seif, Salem; Planz, Viktoria; Windbergs, Maike
2017-10-01
Proteins play a vital role within the human body by regulating various functions and even serving as structural constituent of many body parts. In this context, protein-based therapeutics have attracted a lot of attention in the last few decades as potential treatment of different diseases. Due to the steadily increasing interest in protein-based therapeutics, different dosage forms were investigated for delivering such complex macromolecules to the human body. Here, electrospun fibers hold a great potential for embedding proteins without structural damage and for controlled release of the protein for therapeutic applications. This review provides a comprehensive overview of the current state of protein-based carrier systems using electrospun fibers, with special emphasis on discussing their potential and key challenges in developing such therapeutic strategies, along with a prospective view of anticipated future directions. © 2017 Deutsche Pharmazeutische Gesellschaft.
Suaud, Nicolas; López, Xavier; Ben Amor, Nadia; Bandeira, Nuno A G; de Graaf, Coen; Poblet, Josep M
2015-02-10
Accurate quantum chemical calculations on real-world magnetic systems are challenging, the inclusion of electron correlation being the bottleneck of such task. One method proposed to overcome this difficulty is the embedded fragment approach. It tackles a chemical problem by dividing it into small fragments, which are treated in a highly accurate way, surrounded by an embedding included at an approximate level. For the vast family of medium-to-large sized polyoxometalates, two-electron-reduced systems are habitual and their magnetic properties are interesting. In this paper, we aim at assessing the quality of embedded fragment calculations by checking their ability to reproduce the electronic spectra of a complete system, here the mixed-metal series [MoxW6-xO19](4-) (x = 0-6). The microscopic parameters extracted from fragment calculations (electron hopping, intersite electrostatic repulsion, local orbital energy, etc.) have been used to reproduce the spectra through model Hamiltonian calculations. These energies are compared to the results of the highly accurate ab initio difference dedicated configuration interaction (DDCI) method on the complete system. In general, the model Hamiltonian calculations using parameters extracted from embedded fragments nearly exactly reproduce the DDCI spectra. This is quite an important result since it can be generalized to any inorganic magnetic system. Finally, the occurrence of singlet or triplet ground states in the series of molecules studied is rationalized upon the interplay of the parameters extracted.
NASA Astrophysics Data System (ADS)
Lode, Axel U. J.; Diorico, Fritz S.; Wu, RuGway; Molignini, Paolo; Papariello, Luca; Lin, Rui; Lévêque, Camille; Exl, Lukas; Tsatsos, Marios C.; Chitra, R.; Mauser, Norbert J.
2018-05-01
We consider laser-pumped one-dimensional two-component bosons in a parabolic trap embedded in a high-finesse optical cavity. Above a threshold pump power, the photons that populate the cavity modify the effective atom trap and mediate a coupling between the two components of the Bose–Einstein condensate. We calculate the ground state of the laser-pumped system and find different stages of self-organization depending on the power of the laser. The modified potential and the laser-mediated coupling between the atomic components give rise to rich many-body physics: an increase of the pump power triggers a self-organization of the atoms while an even larger pump power causes correlations between the self-organized atoms—the BEC becomes fragmented and the reduced density matrix acquires multiple macroscopic eigenvalues. In this fragmented superradiant state, the atoms can no longer be described as two-level systems and the mapping of the system to the Dicke model breaks down.
Xu, Xianlin; Li, Rui; Tang, Chenxiao; Wang, Hang; Zhuang, Xupin; Liu, Ya; Kang, Weimin; Shi, Lei
2018-03-15
Cellulose nanofibers were embedded into sulfonated poly (ether sulfone) matrix to heighten the water retention and proton conductivity of proton exchange membranes (PEMs). Cellulose nanofibers were obtained by hydrolyzing cellulose acetate nanofibers, which were prepared via electrostatic-induction-assisted solution blow spinning. Morphology, thermal stability, and mechanical properties of the PEMs were investigated. The results showed that proton conductivity, water uptake, and methanol permeability of the composite membranes were improved. Hydrophilicity of the composite membranes was gradually improved with the addition of nanofibers. When the content of nanofibers was 5 wt%, the highest proton conductivity was 0.13 S/cm (80 °C, 100% RH). Therefore, the cellulose nanofiber could be used as support materials to enhance the performance of proton exchange membranes, the composite membranes have potential application in Direct methanol fuel cells (DMFCs). Copyright © 2017 Elsevier Ltd. All rights reserved.
The Electrostatic Environments of the Moon and Mars: Implications for Human Missions
NASA Technical Reports Server (NTRS)
Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.
2016-01-01
Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.
NASA Astrophysics Data System (ADS)
Chacón, L.; Chen, G.; Barnes, D. C.
2013-01-01
We describe the extension of the recent charge- and energy-conserving one-dimensional electrostatic particle-in-cell algorithm in Ref. [G. Chen, L. Chacón, D.C. Barnes, An energy- and charge-conserving, implicit electrostatic particle-in-cell algorithm, Journal of Computational Physics 230 (2011) 7018-7036] to mapped (body-fitted) computational meshes. The approach maintains exact charge and energy conservation properties. Key to the algorithm is a hybrid push, where particle positions are updated in logical space, while velocities are updated in physical space. The effectiveness of the approach is demonstrated with a challenging numerical test case, the ion acoustic shock wave. The generalization of the approach to multiple dimensions is outlined.
A 3-D chimera grid embedding technique
NASA Technical Reports Server (NTRS)
Benek, J. A.; Buning, P. G.; Steger, J. L.
1985-01-01
A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.
DelPhiForce web server: electrostatic forces and energy calculations and visualization.
Li, Lin; Jia, Zhe; Peng, Yunhui; Chakravorty, Arghya; Sun, Lexuan; Alexov, Emil
2017-11-15
Electrostatic force is an essential component of the total force acting between atoms and macromolecules. Therefore, accurate calculations of electrostatic forces are crucial for revealing the mechanisms of many biological processes. We developed a DelPhiForce web server to calculate and visualize the electrostatic forces at molecular level. DelPhiForce web server enables modeling of electrostatic forces on individual atoms, residues, domains and molecules, and generates an output that can be visualized by VMD software. Here we demonstrate the usage of the server for various biological problems including protein-cofactor, domain-domain, protein-protein, protein-DNA and protein-RNA interactions. The DelPhiForce web server is available at: http://compbio.clemson.edu/delphi-force. delphi@clemson.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Effective charges and virial pressure of concentrated macroion solutions
Boon, Niels; Guerrero-García, Guillermo Ivan; van Roij, René; ...
2015-07-13
The stability of colloidal suspensions is crucial in a wide variety of processes, including the fabrication of photonic materials and scaffolds for biological assemblies. The ionic strength of the electrolyte that suspends charged colloids is widely used to control the physical properties of colloidal suspensions. The extensively used two-body Derjaguin-Landau-Verwey-Overbeek (DLVO) approach allows for a quantitative analysis of the effective electrostatic forces between colloidal particles. DLVO relates the ionic double layers, which enclose the particles, to their effective electrostatic repulsion. Nevertheless, the double layer is distorted at high macroion volume fractions. Therefore, DLVO cannot describe the many-body effects that arisemore » in concentrated suspensions. In this paper, we show that this problem can be largely resolved by identifying effective point charges for the macroions using cell theory. This extrapolated point charge (EPC) method assigns effective point charges in a consistent way, taking into account the excluded volume of highly charged macroions at any concentration, and thereby naturally accounting for high volume fractions in both salt-free and added-salt conditions. We provide an analytical expression for the effective pair potential and validate the EPC method by comparing molecular dynamics simulations of macroions and monovalent microions that interact via Coulombic potentials to simulations of macroions interacting via the derived EPC effective potential. The simulations reproduce the macroion-macroion spatial correlation and the virial pressure obtained with the EPC model. Finally, our findings provide a route to relate the physical properties such as pressure in systems of screened Coulomb particles to experimental measurements.« less
Research on Plasma Synthetic Jet Actuator
NASA Astrophysics Data System (ADS)
Che, X. K.; Nie, W. S.; Hou, Z. Y.
2011-09-01
Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Chakraborty, Suman
2016-06-01
In this study, we attempt to bring out a generalized formulation for electro-osmotic flows over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. To this end, we start with modified electro-chemical potential of the individual species and subsequently use it to derive modified Nernst-Planck equation accounting for the ionic fluxes generated because of the presence of non-electrostatic potential. We establish what we refer to as the Poisson-Helmholtz-Nernst-Planck equations, coupled with the Navier-Stokes equations, to describe the complete transport process. Our analysis shows that the presence of non-electrostatic interactions between the ions results in an excess body force on the fluid, and modifies the osmotic pressure as well, which has hitherto remained unexplored. We further apply our analysis to a simple geometry, in an effort to work out the Smoluchowski slip velocity for thin electrical double layer limits. To this end, we employ singular perturbation and develop a general framework for the asymptotic analysis. Our calculations reveal that the final expression for slip velocity remains the same as that without accounting for non-electrostatic interactions. However, the presence of non-electrostatic interactions along with ion specificity can significantly change the quantitative behavior of Smoluchowski slip velocity. We subsequently demonstrate that the presence of non-electrostatic interactions may significantly alter the effective interfacial potential, also termed as the "Zeta potential." Our analysis can potentially act as a guide towards the prediction and possibly quantitative determination of the implications associated with the existence of non-electrostatic potential, in an electrokinetic transport process.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2009-09-22
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2012-05-29
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R.; Maitland, Duncan J.
2014-04-01
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
NASA Astrophysics Data System (ADS)
Zeng, Bin; Chen, Xiaohua; Ning, Xutao; Chen, Chuansheng; Deng, Weina; Huang, Qun; Zhong, Wenbin
2013-07-01
Carbon nanotubes/reduced graphene oxides (CNTs/rGO) implanting cuprous oxide (Cu2O) composite spheres have been successfully prepared via an electrostatic self-assemble with microwave-assisted. Scanning electron microscopy and transmission electron microscopy observations confirmed that the hybrid of CNTs and rGO was implanted into Cu2O matrix and formed a three-dimensional embedded micrometer sphere structure. The possible formation mechanism of this architecture was also proposed. The photocatalytic properties were further investigated by evaluating on photo-degradation of a pollutant methyl orange (MO). The experimental results indicated that this novel architecture enhanced photocatalytic performance with 99.8% decomposition of MO after 40 min in the presence of H2O2 under visible light irradiation, which was much higher than that of pure Cu2O powders (67.9%). This study provides a convenient method for assembling various CNTs/rGO-semiconductor composites in the future applications of water purification as well as optoelectronic fields at a large scale.
Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.
2016-01-01
Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554
RESLanjut: The learning media for improve students understanding in embedded systems
NASA Astrophysics Data System (ADS)
Indrianto, Susanti, Meilia Nur Indah; Karina, Djunaidi
2017-08-01
The use of network in embedded system can be done with many kinds of network, with the use of mobile phones, bluetooths, modems, ethernet cards, wireless technology and so on. Using network in embedded system could help people to do remote controlling. On previous research, researchers found that many students have the ability to comprehend the basic concept of embedded system. They could also make embedded system tools but without network integration. And for that, a development is needed for the embedded system module. The embedded system practicum module design needs a prototype method in order to achieve the desired goal. The prototype method is often used in the real world. Or even, a prototype method is a part of products that consist of logic expression or external physical interface. The embedded system practicum module is meant to increase student comprehension of embedded system course, and also to encourage students to innovate on technology based tools. It is also meant to help teachers to teach the embedded system concept on the course. The student comprehension is hoped to increase with the use of practicum course.
Kaiser, V; Comtet, J; Niguès, A; Siria, A; Coasne, B; Bocquet, L
2017-07-01
The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon a previous approach [M. A. Vorotyntsev and A. A. Kornyshev, Zh. Eksp. Teor. Fiz., 1980, 78(3), 1008-1019] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allows for an estimation of the interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. The counter-intuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length l TF , profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement.
Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K
2015-01-01
The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application.
Medium-induced change of the optical response of metal clusters in rare-gas matrices
NASA Astrophysics Data System (ADS)
Xuan, Fengyuan; Guet, Claude
2017-10-01
Interaction with the surrounding medium modifies the optical response of embedded metal clusters. For clusters from about ten to a few hundreds of silver atoms, embedded in rare-gas matrices, we study the environment effect within the matrix random phase approximation with exact exchange (RPAE) quantum approach, which has proved successful for free silver clusters. The polarizable surrounding medium screens the residual two-body RPAE interaction, adds a polarization term to the one-body potential, and shifts the vacuum energy of the active delocalized valence electrons. Within this model, we calculate the dipole oscillator strength distribution for Ag clusters embedded in helium droplets, neon, argon, krypton, and xenon matrices. The main contribution to the dipole surface plasmon red shift originates from the rare-gas polarization screening of the two-body interaction. The large size limit of the dipole surface plasmon agrees well with the classical prediction.
Maintainable substrate carrier for electroplating
Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA
2012-07-17
One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.
Maintainable substrate carrier for electroplating
Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing
2016-08-02
One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.
Charged drop dynamics experiment using an electrostatic-acoustic hybrid system
NASA Technical Reports Server (NTRS)
Rhim, W. K.; Chung, S. K.; Trinh, E. H.; Elleman, D. D.
1987-01-01
The design and the performance of an electrostatic-acoustic hybrid system and its application to a charge drop rotation experiment are presented. This system can levitate a charged drop electrostatically and induce drop rotation or oscillation by imposing an acoustic torque or an oscillating acoustic pressure. Using this system, the equilibrium shapes and stability of a rotating charged drop were experimentally investigated. A 3 mm size water drop was rotated as a rigid body and its gyrostatic equilibrium shapes were observed. Families of axisymmetric shapes, two-lobed shapes, and eventual fissioning have been observed. With the assumption of 'effective surface tension' in which the surface charge simply modified the surface tension of neutral liquid, the results agree exceptionally well with the Brown and Scriven's (1980) prediction for uncharged drops.
Many-body effects in electron liquids with Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Simion, George E.
The main topic of the present thesis is represented by the many-body effects which characterize the physical behavior of an electron liquid in various realizations. We begin by studying the problem of the response of an otherwise homogeneous electron liquid to the potential of an impurity embedded in its bulk. The most dramatic consequence of this perturbation is the existence of so called Friedel density oscillations. We present calculations of their amplitude valid in two as well as in three dimensions. The second problem we will discuss is that of the correlation effects in a three dimensional electron liquid in the metallic density regime. A number of quasiparticle properties are evaluated: the electron self-energy, the quasiparticle effective mass and the renormalization constant. We also present an analysis of the effective Lande g-factor as well as the compressibility. The effects of the Coulomb interactions beyond the random phase approximation have been treated by means of an approach based on the many-body local field factors theory and by utilizing the latest numerical results of Quantum Monte Carlo numerical simulations. The final chapter includes the results of our extensive work on various aspects regarding the two dimensional Fermi liquid in the presence of linear Rashba spin-orbit coupling. By using a number of many-body techniques, we have studied the interplay between spin-orbit coupling and electron-electron interaction. After proving an extension to the famous Overhauser Hartree-Fock instability theorem, a considerable amount of work will be presented on the problem of the density and spin response functions. For the study of the spin response, we will present the results of extensive numerical calculations based on the time dependent mean field theory approach.
Nielsen, Jens E.; Gunner, M. R.; Bertrand García-Moreno, E.
2012-01-01
The pKa Cooperative http://www.pkacoop.org was organized to advance development of accurate and useful computational methods for structure-based calculation of pKa values and electrostatic energy in proteins. The Cooperative brings together laboratories with expertise and interest in theoretical, computational and experimental studies of protein electrostatics. To improve structure-based energy calculations it is necessary to better understand the physical character and molecular determinants of electrostatic effects. The Cooperative thus intends to foment experimental research into fundamental aspects of proteins that depend on electrostatic interactions. It will maintain a depository for experimental data useful for critical assessment of methods for structure-based electrostatics calculations. To help guide the development of computational methods the Cooperative will organize blind prediction exercises. As a first step, computational laboratories were invited to reproduce an unpublished set of experimental pKa values of acidic and basic residues introduced in the interior of staphylococcal nuclease by site-directed mutagenesis. The pKa values of these groups are unique and challenging to simulate owing to the large magnitude of their shifts relative to normal pKa values in water. Many computational methods were tested in this 1st Blind Prediction Challenge and critical assessment exercise. A workshop was organized in the Telluride Science Research Center to assess objectively the performance of many computational methods tested on this one extensive dataset. This volume of PROTEINS: Structure, Function, and Bioinformatics introduces the pKa Cooperative, presents reports submitted by participants in the blind prediction challenge, and highlights some of the problems in structure-based calculations identified during this exercise. PMID:22002877
Waterspout as a special type of atmospheric aerosol dusty plasma
NASA Astrophysics Data System (ADS)
Rantsev-Kartinov, Valentin A.
2004-11-01
An analysis of databases of photographic images of oceanic surface revealed the presence of oceanic skeletal structures (OSS) [1] Rantsev-Kartinov V.A., Preprint . The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to thin, tens of microns-sized capillaries. The SSs in the Earth atmosphere were suggested [1] to be produced during atmospheric electricity activity by the volcanic-born dust. The fall-out of such SSs on the oceanic surface is a material source of OSS. Here we suggest that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and WS column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. With such a capillary&;electrostatic model of WS, it appears possible to interpret many effects related to WS.
A Repulsive Electrostatic Mechanism for Protein Export through the Type III Secretion Apparatus
Rathinavelan, Thenmalarchelvi; Zhang, Lingling; Picking, Wendy L.; Weis, David D.; De Guzman, Roberto N.; Im, Wonpil
2010-01-01
Abstract Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus, which is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. The trajectories reveal a screwlike rotation motion during the export of nativelike helix-turn-helix conformations. Interestingly, the channel interior with excessive electronegative potential creates an energy barrier for MxiH to enter the channel, whereas the same may facilitate the ejection of the effectors into host cells. Structurally known basal regions and ATPase underneath the basal region also have electronegative interiors. Effector proteins also have considerable electronegative potential patches on their surfaces. From these observations, we propose a repulsive electrostatic mechanism for protein translocation through the type III secretion apparatus. Based on this mechanism, the ATPase activity and/or proton motive force could be used to energize the protein translocation through these nanomachines. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported. PMID:20141759
Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel
2013-09-21
We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.
On the Difference Between Additive and Subtractive QM/MM Calculations
Cao, Lili; Ryde, Ulf
2018-01-01
The combined quantum mechanical (QM) and molecular mechanical (MM) approach (QM/MM) is a popular method to study reactions in biochemical macromolecules. Even if the general procedure of using QM for a small, but interesting part of the system and MM for the rest is common to all approaches, the details of the implementations vary extensively, especially the treatment of the interface between the two systems. For example, QM/MM can use either additive or subtractive schemes, of which the former is often said to be preferable, although the two schemes are often mixed up with mechanical and electrostatic embedding. In this article, we clarify the similarities and differences of the two approaches. We show that inherently, the two approaches should be identical and in practice require the same sets of parameters. However, the subtractive scheme provides an opportunity to correct errors introduced by the truncation of the QM system, i.e., the link atoms, but such corrections require additional MM parameters for the QM system. We describe and test three types of link-atom correction, viz. for van der Waals, electrostatic, and bonded interactions. The calculations show that electrostatic and bonded link-atom corrections often give rise to problems in the geometries and energies. The van der Waals link-atom corrections are quite small and give results similar to a pure additive QM/MM scheme. Therefore, both approaches can be recommended. PMID:29666794
Wang, Wenhang; Zhang, Xiuling; Li, Cong; Du, Guanhua; Zhang, Hongjie; Ni, Yonghao
2018-06-01
Collagen-based films including casings with a promising application in meat industry are still needed to improve its inferior performance. In the present study, the reinforcement of carboxylated cellulose nanofibers (CNF) for collagen film, based on inter-/intra- molecular electrostatic interaction between cationic acid-swollen collagen fiber and anionic carboxylated CNF, was investigated. Adding CNF decreased the zeta-potential but increased particle size of collagen fiber suspension, with little effect on pH. Furthermore, CNF addition led to a higher tensile strength but a lower elongation, and the water vapor and oxygen barrier properties were improved remarkably. Because the CNF content was 50 g kg -1 or lower, the films had a homogeneous interwoven network, and CNF homogeneously embedded into collagen fiber matrix according to the scanning electron microscopy and atomic force microscopy analysis. Additionally, CNF addition increased film thickness and opacity, as well as swelling rate. The incorporation of CNF endows collagen fiber films good mechanical and barrier properties over a proper concentration range (≤ 50 g kg -1 collagen fiber), which is closely associated with electrostatic reaction of collagen fiber and CNF and, subsequently, the form of the homogenous, compatible spatial network, indicating a potential applications of CNF in collagenous protein films, such as edible casings. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Analysis of Drop Shapes during Electrowetting on a Dielectric
NASA Astrophysics Data System (ADS)
Daneshbod, Yousef
2005-03-01
Electrowetting refers to the electrostatic control of the interfacial energy of a liquid on a solid, primarily used for the transport of micro-liter volumes of drops on surfaces with embedded electrode arrays. In the present work, the drop is modeled as a two-dimensional lens-like conductor immersed in an infinite dielectric medium slightly above a planar conductor. A matched asymptotic expansion is used to approximate the electrostatic field surrounding the drop. The outer problem models the drop as a conducting circular segment resting on the conducting plane, each maintained at a separate constant potential. The inner problem corrects the region near the edge of the drop by modeling it as an infinite planar conducting wedge lying slightly above the conducting plane. By matching the inner and outer solutions, the charge density along the entire surface of the drop can be approximated, enabling the calculation of the total capacitance of the system. An energy minimization method similar to that of Shapiro et al. [J. Appl. Phys., 93, 5794 (2003)] is applied to the total energy consisting of the liquid/gas, liquid/solid and solid/gas surface energies, together with the electrostatic contribution, subject to the constraint that the drop volume remains constant. A modified form of the Young-Lippmann equation is thus derived that includes the contribution from the extra capacitance of the drop obtained via matched asymptotics.
On the difference between additive and subtractive QM/MM calculations
NASA Astrophysics Data System (ADS)
Cao, Lili; Ryde, Ulf
2018-04-01
The combined quantum mechanical (QM) and molecular mechanical (MM) approach (QM/MM) is a popular method to study reactions in biochemical macromolecules. Even if the general procedure of using QM for a small, but interesting part of the system and MM for the rest is common to all approaches, the details of the implementations vary extensively, especially the treatment of the interface between the two systems. For example, QM/MM can use either additive or subtractive schemes, of which the former is often said to be preferable, although the two schemes are often mixed up with mechanical and electrostatic embedding. In this article, we clarify the similarities and differences of the two approaches. We show that inherently, the two approaches should be identical and in practice require the same sets of parameters. However, the subtractive scheme provides an opportunity to correct errors introduced by the truncation of the QM system, i.e. the link atoms, but such corrections require additional MM parameters for the QM system. We describe and test three types of link-atom correction, viz. for van der Waals, electrostatic and bonded interactions. The calculations show that electrostatic and bonded link-atom corrections often give rise to problems in the geometries and energies. The van der Waals link-atom corrections are quite small and give results similar to a pure additive QM/MM scheme. Therefore, both approaches can be recommended.
Experimental Results of an Electrostatic Injector
2014-10-01
is important especially in the realm of biofuels . In the long term, the United States Department of Defense (DOD) is interested in converting many...of their vehicles to biofuels . Both the U.S. Army and Navy have invested substantially into research pertaining to converting existing fleets to... biofuel compatibility. The recent work of Owkes and Desjardins has investigated the effects of electrostatic spray with biofuels [11]. They
NASA Astrophysics Data System (ADS)
Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic
2017-10-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.
NASA Astrophysics Data System (ADS)
Yeo, L. H.; Han, J.; Wang, X.; Werner, G.; Deca, J.; Munsat, T.; Horanyi, M.
2017-12-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection/reflection of thecharged particles. Consequently, surface charging in these regions will be modified. Using the Colorado Solar Wind Experiment facility, this interaction is investigated with high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole (0.13 T) embedded under various insulating surfaces. The dipole moment is perpendicular to the surface. Using an emissive probe, 2D plasma potential profiles are obtained above the surface. In the dipole lobe regions, the surfaces are charged to significantly positive potentials due to the impingement of the unmagnetized ions while the electrons are magnetically shielded. At low ion beam energies, the results agree with the theoretical predictions, i.e., the surface potential follows the energy of the beam ions in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of investigations have been conducted and indicate that the surface properties (e.g., modified surface conductance, ion induced secondary electrons and electron-neutral collision at the surface) are likely to play a role in determining the surface potential.
Spline screw multiple rotations mechanism
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.
First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces.
Kharche, Neerav; Muckerman, James T; Hybertsen, Mark S
2014-10-24
A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.
Liu, Kuan-Yu; Herbert, John M
2017-10-28
Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affecting the many-body expansion (MBE), which only manifest in larger systems and thus have received scant attention in the literature. Many-body counterpoise (CP) corrections are shown to accelerate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set superposition error affects subsystem versus supersystem calculations. In water clusters ranging in size up to (H 2 O) 37 , four-body terms prove necessary to achieve accurate results for both total interaction energies and relative isomer energies, but the sheer number of tetramers makes the use of cutoff schemes essential. To predict relative energies of (H 2 O) 20 isomers, two approximations based on a lower level of theory are introduced and an ONIOM-type procedure is found to be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme suggest that if reasonable approximations to the subsystem energies are available (based on classical multipoles, say), then the number of requisite subsystem calculations can be reduced even more dramatically than when distance-based thresholds are employed. The end result is several accurate four-body methods that do not require charge embedding, and which are stable in large basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quantum chemistry methods. Even with aggressive thresholding, however, the four-body approach at the self-consistent field level still requires roughly ten times more processors to outmatch the performance of the corresponding supersystem calculation, in test cases involving 1500-1800 basis functions.
NASA Astrophysics Data System (ADS)
Liu, Kuan-Yu; Herbert, John M.
2017-10-01
Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affecting the many-body expansion (MBE), which only manifest in larger systems and thus have received scant attention in the literature. Many-body counterpoise (CP) corrections are shown to accelerate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set superposition error affects subsystem versus supersystem calculations. In water clusters ranging in size up to (H2O)37, four-body terms prove necessary to achieve accurate results for both total interaction energies and relative isomer energies, but the sheer number of tetramers makes the use of cutoff schemes essential. To predict relative energies of (H2O)20 isomers, two approximations based on a lower level of theory are introduced and an ONIOM-type procedure is found to be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme suggest that if reasonable approximations to the subsystem energies are available (based on classical multipoles, say), then the number of requisite subsystem calculations can be reduced even more dramatically than when distance-based thresholds are employed. The end result is several accurate four-body methods that do not require charge embedding, and which are stable in large basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quantum chemistry methods. Even with aggressive thresholding, however, the four-body approach at the self-consistent field level still requires roughly ten times more processors to outmatch the performance of the corresponding supersystem calculation, in test cases involving 1500-1800 basis functions.
Evidence of Microfossils in Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Rozanov, Alexei Y.; Zhmur, S. I.; Gorlenko, V. M.
1998-01-01
Investigations have been carried out on freshly broken, internal surfaces of the Murchison, Efremovka and Orgueil carbonaceous chondrites using Scanning Electron Microscopes (SEM) in Russia and the Environmental Scanning Electron Microscope (ESEM) in the United States. These independent studies on different samples of the meteorites have resulted in the detection of numerous spherical and ellipsoidal bodies (some with spikes) similar to the forms of uncertain biogenicity that were designated "organized elements" by prior researchers. We have also encountered numerous complex biomorphic microstructures in these carbonaceous chondrites. Many of these complex bodies exhibit diverse characteristics reminiscent of microfossils of cyanobacteria such as we have investigated in ancient phosphorites and high carbon rocks (e.g. oil shales). Energy Dispersive Spectroscopy (EDS) analysis and 2D elemental maps shows enhanced carbon content in the bodies superimposed upon the elemental distributions characteristic of the chondritic matrix. The size, distribution, composition, and indications of cell walls, reproductive and life cycle developmental stages of these bodies are strongly suggestive of biology' These bodies appear to be mineralized and embedded within the meteorite matrix, and can not be attributed to recent surface contamination effects. Consequently, we have interpreted these in-situ microstructures to represent the lithified remains of prokaryotes and filamentous cyanobacteria. We also detected in Orgueil microstructures morphologically similar to fibrous kerite crystals. We present images of many biomorphic microstructures and possible microfossils found in the Murchison, Efremovka, and Orgueil chondrites and compare these forms with known microfossils from the Cambrian phosphate-rich rocks (phosphorites) of Khubsugul, Northern Mongolia.
NASA Astrophysics Data System (ADS)
Morita, Hiroshi; Hatanaka, Ayumu; Yokosuka, Toshiyuki; Seki, Yoshitaka; Tsumuraya, Yoshiaki; Doi, Motomichi
The measurement system of the surface electrostatic potential on a solid insulation board in vacuum has been developed. We used this system to measure the electrostatic potential distribution of the surface of a borosilicate glass plate applied a high voltage. A local increase in the electric field was observed. It is considered that this phenomenon is caused by a positive electrostatic charge generated by a secondary emission of field emission electrons from an electrode. On the other hand, a local increase in the electric field was not observed on a glass plate coated with silica particles and a glass plate roughened by sandblast. We reasoned that this could be because the electrons were trapped by the roughness of the surface. It is considered that these phenomena make many types of equipment using the vacuum insulation more reliable.
Electrostatic Studies for the 2008 Hubble Service Repair Mission
NASA Technical Reports Server (NTRS)
Buhler, C. R.; Clements, J. S.; Calle, C. I.
2012-01-01
High vacuum triboelectric testing of space materials was required to identify possible Electrostatic Discharge (ESD) concerns for the astronauts in space during electronics board replacement on the Hubble Space Telescope. Testing under high vacuum conditions with common materials resulted in some interesting results. Many materials were able to charge to high levels which did not dissipate quickly even when grounded. Certain materials were able to charge up in contact with grounded metals while others were not. An interesting result was that like materials did not exchange electrostatic charge under high vacuum conditions. The most surprising experimental result is the lack of brush discharges from charged insulators under high vacuum conditions.
Electrostatic demonstration of free-fall weightlessness
NASA Astrophysics Data System (ADS)
Balukovic, Jasmina; Slisko, Josip; Corona Cruz, Adrian
2015-05-01
The phenomena of free-fall weightlessness have been demonstrated to students for many years in a number of different ways. The essential basis of all these demonstrations is the fact that in free-falling, gravitationally accelerated systems, the weight force and weight-related forces (for example, friction and hydrostatic forces) disappear. In this article, an original electrostatic demonstration of weightlessness is presented. A charged balloon fixed at the opening of a plastic container cannot lift a light styrofoam sphere sitting on the bottom when the container is at rest. However, while the system is in free-fall, the sphere becomes weightless and the charged balloon is able to lift it electrostatically.
Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.
2008-01-01
Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated but connected through electric power lines to the fans. This paper presents a brief description of the earlier CESTOL vehicle concept and the newly proposed electrically driven fan concept vehicle, using the previous CESTOL vehicle as a baseline.
Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides
NASA Technical Reports Server (NTRS)
Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.
1986-01-01
Spectroscopic parameters are accurately determined for the alkali and alkaline-earth monofluorides and monochlorides by means of ab initio self-consistent field and correlated wave function calculations. Numerical Hartree-Fock calculations are performed on selected systems to ensure that the extended Slater basis sets employed are near the Hartree-Fock limit. Since the bonding is predominantly electrostatic in origin, a strong correlation exists between the dissociation energy (to ions) and the spectroscopic parameter r(e). By dissociating to the ionic limits, most of the differential correlation effects can be embedded in the accurate experimental electron affinities and ionization potentials.
Electrostatic and hydrodynamics effects in a sedimented magnetorheological suspension.
Domínguez-García, P; Pastor, J M; Melle, Sonia; Rubio, Miguel A
2009-08-01
We present experimental results on the equilibrium microstructure of a sedimented magnetorheological suspension, namely, an aqueous suspension of micron-sized superparamagnetic particles. We develop a study of the electrical interactions on the suspension by processing video-microscopy images of the sedimented particles. We calculate the pair distribution function, g(r), which yields the electrostatic pair potential u(r), showing an anomalous attractive interaction for distances on the order of twice the particle diameter, with characteristic parameters whose values show a dependence with the two-dimensional concentration of particles. The repulsive body of the potential is adjusted to a DLVO expression in order to calculate the Debye screening length and the effective surface charge density. Influence of confinement and variations on the Boltzmann sedimentation profile because of the electrostatic interactions appear to be essential for the interpretation of experimental results.
Cao, Yiping; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O.
2016-01-01
Coupling of electrostatic complexation with conformational transition is rather general in protein/polyelectrolyte interaction and has important implications in many biological processes and practical applications. This work studied the electrostatic complexation between κ-carrageenan (κ-car) and type B gelatin, and analyzed the effects of the conformational ordering of κ-car induced upon cooling in the presence of potassium chloride (KCl) or tetramethylammonium iodide (Me4NI). Experimental results showed that the effects of conformational ordering on protein/polyelectrolyte electrostatic complexation can be decomposed into ionic binding and chain stiffening. At the initial stage of conformational ordering, electrostatic complexation can be either suppressed or enhanced due to the ionic bindings of K+ and I− ions, which significantly alter the charge density of κ-car or occupy the binding sites of gelatin. Beyond a certain stage of conformational ordering, i.e., helix content θ > 0.30, the effect of chain stiffening, accompanied with a rapid increase in helix length ζ, becomes dominant and tends to dissociate the electrostatic complexation. The effect of chain stiffening can be theoretically interpreted in terms of double helix association. PMID:27030165
ELISA - an electrostatic storage ring for low-energy ions
NASA Astrophysics Data System (ADS)
Pape Moeller, Soeren
1997-05-01
The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Hamilton, H. H., II
1981-01-01
A computational technique for computing the three-dimensional inviscid flow over blunt bodies having large regions of embedded subsonic flow is detailed. Results, which were obtained using the CDC Cyber 203 vector processing computer, are presented for several analytic shapes with some comparison to experimental data. Finally, windward surface pressure computations over the first third of the Space Shuttle vehicle are compared with experimental data for angles of attack between 25 and 45 degrees.
Simulation of vibrational dephasing of I(2) in solid Kr using the semiclassical Liouville method.
Riga, Jeanne M; Fredj, Erick; Martens, Craig C
2006-02-14
In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.
Structural and functional properties of spatially embedded scale-free networks.
Emmerich, Thorsten; Bunde, Armin; Havlin, Shlomo
2014-06-01
Scale-free networks have been studied mostly as non-spatially embedded systems. However, in many realistic cases, they are spatially embedded and these constraints should be considered. Here, we study the structural and functional properties of a model of scale-free (SF) spatially embedded networks. In our model, both the degree and the length of links follow power law distributions as found in many real networks. We show that not all SF networks can be embedded in space and that the largest degree of a node in the network is usually smaller than in nonembedded SF networks. Moreover, the spatial constraints (each node has only few neighboring nodes) introduce degree-degree anticorrelations (disassortativity) since two high degree nodes cannot stay close in space. We also find significant effects of space embedding on the hopping distances (chemical distance) and the vulnerability of the networks.
The Electrostatic Environments of Mars and the Moon
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2011-01-01
The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.
Emission shaping in fluorescent proteins: role of electrostatics and π-stacking.
Park, Jae Woo; Rhee, Young Min
2016-02-07
For many decades, simulating the excited state properties of complex systems has been an intriguing but daunting task due to its high computational cost. Here, we apply molecular dynamics based techniques with interpolated potential energy surfaces toward calculating fluorescence spectra of the green fluorescent protein (GFP) and its variants in a statistically meaningful manner. With the GFP, we show that the diverse electrostatic tuning can shape the emission features in many different ways. By computationally modulating the electrostatic interactions between the chromophore phenoxy oxygen and its nearby residues, we demonstrate that we indeed can shift the emission to the blue or to the red side in a predictable manner. We rationalize the shifting effects of individual residues in the GFP based on the responses of both the adiabatic and the diabatic electronic states of the chromophore. We next exhibit that the yellow emitting variant, the Thr203Tyr mutant, generates changes in the electrostatic interactions and an additional π-stacking interaction. These combined effects indeed induce a red shift to emit the fluorescence into the yellow region. With the series of demonstrations, we suggest that our approach can provide sound rationales and useful insights in understanding different responses of various fluorescent complexes, which may be helpful in designing new light emitting proteins and other related systems in future studies.
Electrostatic interaction energy and factor 1.23
NASA Astrophysics Data System (ADS)
Rubčić, A.; Arp, H.; Rubčić, J.
The factor F≫1.23 has originally been found in the redshift of quasars. Recently, it has been found in very different physical phenomena: the life-time of muonium, the masses of elementary particles (leptons, quarks,...), the correlation of atomic weight (A) and atomic number (Z) and the correlation of the sum of masses of all orbiting bodies with the mass of the central body in gravitational systems.
Resonant tunneling across a ferroelectric domain wall
NASA Astrophysics Data System (ADS)
Li, M.; Tao, L. L.; Velev, J. P.; Tsymbal, E. Y.
2018-04-01
Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with L a0.5S r0.5Mn O3 electrodes separated by a BaTi O3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTi O3 can be induced by polar interfaces. The resulting V -shaped electrostatic potential profile across the BaTi O3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.
Anatomy and embryology of umbilicus in newborns: a review and clinical correlations.
Hegazy, Abdelmonem A
2016-09-01
Umbilicus is considered a mirror of the abdomen in newborns. Despite its importance, the umbilicus has been stated in literature and textbooks as discrete subjects with many body systems, such as the urinary, digestive, and cardiovascular ones. This article aimed to address the basic knowledge of the umbilicus in relation to clinical disorders under one integrated topic to aid physicians and surgeons in assessing newborns and infants. The umbilicus appears as early as the fourth week of fetal life when the folding of the embryonic plate occurs. The umbilicus appears initially as a primitive umbilical ring on the ventral aspect of the body. The primitive umbilicus contains the connecting stalk, umbilical vessels, vitelline duct and vessels, allantois, and loop of the intestine. Changes occur to form the definitive cord, which contains three umbilical vessels, namely, "one vein and two arteries," embedded in Wharton's jelly. After birth, the umbilical vessels inside the body obliterate and gradually form ligaments. Congenital disorders at the umbilicus include herniation, bleeding, and discharge of mucous, urine, or feces. Some of these disorders necessitate emergent surgical interference, whereas others may be managed conservatively. The umbilicus has many embryological remnants. Thus, the umbilicus is prone to various clinical disorders. Detecting these disorders as early as possible is essential to prevent or minimize possible complications.
Electron Microscopic Observations of the Carotid Body of the Cat
Ross, Leonard L.
1959-01-01
Carotid bodies were removed from cats, fixed in buffered 1 per cent osmic acid, embedded in deaerated, nitrogenated methacrylate, and cut into thin sections for electron microscopic study. The carotid body is seen to be composed of islands of chemoreceptor and sustentacular cells surrounded by wide irregular sinusoids. These cells are separated from the sinusoids by relatively broad interstitial spaces which are filled with collagen, fibroblasts, and many unmyelinated nerve fibers with their Schwann cell sheaths. The chemoreceptor cells are surrounded by the flattened, multiprocessed sustentacular cells which serve to convey the axons from an interstitial to a pericellular location. These sustentacular cells are assumed to be lemmoblastic in origin. Relatively few axons are seen to abut on the chemoreceptor cells. The cytoplasm of the chemoreceptor cell is characterized by numerous small mitochondria, units of granular endoplasmic reticulum, a small Golgi complex, and a variety of vesicles. There are many small vesicles diffusely scattered throughout the cytoplasm. In addition, there is a small number of dark-cored vesicles of the type which has been previously described in the adrenal medulla. These are usually associated with the Golgi complex. These findings are discussed in relation to the concepts of the origin of the chemoreceptor cell and the nature of the synapse. PMID:14439171
Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study
NASA Astrophysics Data System (ADS)
Xiao-Jun, Zhang; Chang-Le, Chen
2016-01-01
Within the harmonic approximation, the analytic expression of the dynamical matrix is derived based on the modified analytic embedded atom method (MAEAM) and the dynamics theory of surface lattice. The surface phonon dispersions along three major symmetry directions , and X¯M¯ are calculated for the clean Ag (100) surface by using our derived formulas. We then discuss the polarization and localization of surface modes at points X¯ and M¯ by plotting the squared polarization vectors as a function of the layer index. The phonon frequencies of the surface modes calculated by MAEAM are compared with the available experimental and other theoretical data. It is found that the present results are generally in agreement with the referenced experimental or theoretical results, with a maximum deviation of 10.4%. The agreement shows that the modified analytic embedded atom method is a reasonable many-body potential model to quickly describe the surface lattice vibration. It also lays a significant foundation for studying the surface lattice vibration in other metals. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301 and 61078057), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1301), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045).
The Use of Video-Gaming Devices as a Motivation for Learning Embedded Systems Programming
ERIC Educational Resources Information Center
Gonzalez, J.; Pomares, H.; Damas, M.; Garcia-Sanchez,P.; Rodriguez-Alvarez, M.; Palomares, J. M.
2013-01-01
As embedded systems are becoming prevalent in everyday life, many universities are incorporating embedded systems-related courses in their undergraduate curricula. However, it is not easy to motivate students in such courses since they conceive of embedded systems as bizarre computing elements, different from the personal computers with which they…
Pichierri, Fabio
2011-02-01
We perform a quantum mechanical study of the peptides that are part of the LH2 complex from Rhodopseudomonas acidophila, a non-sulfur purple bacteria that has the ability of producing chemical energy from photosynthesis. The electronic structure calculations indicate that the transmembrane helices of these peptides are characterized by dipole moments with a magnitude of about 150D. When the full nonamer assembly made of 18 peptides is considered, then a macrodipole of magnitude 806D is built up from the vector sum of each monomer dipole. The macrodipole is oriented normal to the membrane plane and with the positive tip toward the cytoplasm thereby indicating that the electronic charge of the protein scaffold is polarized toward the periplasm. The results obtained here suggest that the asymmetric charge distribution of the protein scaffold contributes an anisotropic electrostatic environment which differentiates the absorption properties of the bacteriochlorophyll pigments, B800 and B850, embedded in the LH2 complex. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Zipping dielectric elastomer actuators: characterization, design and modeling
NASA Astrophysics Data System (ADS)
Maffli, L.; Rosset, S.; Shea, H. R.
2013-10-01
We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.
NASA Astrophysics Data System (ADS)
Heidari, M.; Cortes-Huerto, R.; Donadio, D.; Potestio, R.
2016-10-01
In adaptive resolution simulations the same system is concurrently modeled with different resolution in different subdomains of the simulation box, thereby enabling an accurate description in a small but relevant region, while the rest is treated with a computationally parsimonious model. In this framework, electrostatic interaction, whose accurate treatment is a crucial aspect in the realistic modeling of soft matter and biological systems, represents a particularly acute problem due to the intrinsic long-range nature of Coulomb potential. In the present work we propose and validate the usage of a short-range modification of Coulomb potential, the Damped shifted force (DSF) model, in the context of the Hamiltonian adaptive resolution simulation (H-AdResS) scheme. This approach, which is here validated on bulk water, ensures a reliable reproduction of the structural and dynamical properties of the liquid, and enables a seamless embedding in the H-AdResS framework. The resulting dual-resolution setup is implemented in the LAMMPS simulation package, and its customized version employed in the present work is made publicly available.
lee, Lee-Peng; Tidor, Bruce
2001-01-01
Theoretical and experimental studies have shown that the large desolvation penalty required for polar and charged groups frequently precludes their involvement in electrostatic interactions that contribute strongly to net stability in the folding or binding of proteins in aqueous solution near room temperature. We have previously developed a theoretical framework for computing optimized electrostatic interactions and illustrated use of the algorithm with simplified geometries. Given a receptor and model assumptions, the method computes the ligand-charge distribution that provides the most favorable balance of desolvation and interaction effects on binding. In this paper the method has been extended to treat complexes using actual molecular shapes. The barnase-barstar protein complex was investigated with barnase treated as a target receptor. The atomic point charges of barstar were varied to optimize the electrostatic binding free energy. Barnase and natural barstar form a tight complex (Kd ∼ 10−14 M) with many charged and polar groups near the interface that make this a particularly relevant system for investigating the role of electrostatic effects on binding. The results show that sets of barstar charges (resulting from optimization with different constraints) can be found that give rise to relatively large predicted improvements in electrostatic binding free energy. Principles for enhancing the effect of electrostatic interactions in molecular binding in aqueous environments are discussed in light of the optima. Our findings suggest that, in general, the enhancements in electrostatic binding free energy resulting from modification of polar and charged groups can be substantial. Moreover, a recently proposed definition of electrostatic complementarity is shown to be a useful tool for examining binding interfaces. Finally, calculational results suggest that wild-type barstar is closer to being affinity optimized than is barnase for their mutual binding, consistent with the known roles of these proteins. PMID:11266622
NASA Astrophysics Data System (ADS)
Marshall, J.; Sauke, T.; Buehler, M.; Farrell, W.; Green, R.; Birchenough, A.
1999-09-01
A granular-materials experiment is being developed for a 2002 launch for Space Station deployment. The experiment is funded by NASA HQ and managed through NASA Lewis Research Center. The experiment will examine electrostatic aggregation of coarse granular materials with the goals of (a) obtaining proof for an electrostatic dipole model of grain interactions, and (b) obtaining knowledge about the way aggregation affects the behavior of natural particulate masses: (1) in unconfined dispersions (clouds such as nebulae, aeolian dust palls, volcanic plumes), (2) in semi-confined, self-loaded masses as in fluidized flows (pyroclastic surges, avalanches) and compacted regolith, or (3) in semi-confined non-loaded masses as in dust layers adhering to solar cells or space suits on Mars. The experiment addresses both planetary/astrophysical issues as well as practical concerns for human exploration of Mars or other solar system bodies. Additional information is contained in the original.
NASA Astrophysics Data System (ADS)
Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei
2018-06-01
We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2016-04-01
Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.
First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces
Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.
2014-10-21
A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1 b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation andmore » the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less
Not on the Face Alone: Perception of Contextualized Face Expressions in Huntington's Disease
ERIC Educational Resources Information Center
Aviezer, Hillel; Bentin, Shlomo; Hassin, Ran R.; Meschino, Wendy S.; Kennedy, Jeanne; Grewal, Sonya; Esmail, Sherali; Cohen, Sharon; Moscovitch, Morris
2009-01-01
Numerous studies have demonstrated that Huntington's disease mutation-carriers have deficient explicit recognition of isolated facial expressions. There are no studies, however, which have investigated the recognition of facial expressions embedded within an emotional body and scene context. Real life facial expressions are typically embedded in…
Efficient calculation of many-body induced electrostatics in molecular systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, Keith, E-mail: kmclaugh@mail.usf.edu; Cioce, Christian R.; Pham, Tony
Potential energy functions including many-body polarization are in widespread use in simulations of aqueous and biological systems, metal-organics, molecular clusters, and other systems where electronically induced redistribution of charge among local atomic sites is of importance. The polarization interactions, treated here via the methods of Thole and Applequist, while long-ranged, can be computed for moderate-sized periodic systems with extremely high accuracy by extending Ewald summation to the induced fields as demonstrated by Nymand, Sala, and others. These full Ewald polarization calculations, however, are expensive and often limited to very small systems, particularly in Monte Carlo simulations, which may require energymore » evaluation over several hundred-thousand configurations. For such situations, it shall be shown that sufficiently accurate computation of the polarization energy can be produced in a fraction of the central processing unit (CPU) time by neglecting the long-range extension to the induced fields while applying the long-range treatments of Ewald or Wolf to the static fields; these methods, denoted Ewald E-Static and Wolf E-Static (WES), respectively, provide an effective means to obtain polarization energies for intermediate and large systems including those with several thousand polarizable sites in a fraction of the CPU time. Furthermore, we shall demonstrate a means to optimize the damping for WES calculations via extrapolation from smaller trial systems.« less
Polymer chain collapse induced by many-body dipole correlations.
Budkov, Yu A; Kalikin, N N; Kolesnikov, A L
2017-04-01
We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.
NASA Astrophysics Data System (ADS)
Chouvion, B.; McWilliam, S.; Popov, A. A.
2018-06-01
This paper investigates the dynamic behaviour of capacitive ring-based Coriolis Vibrating Gyroscopes (CVGs) under severe shock conditions. A general analytical model is developed for a multi-supported ring resonator by describing the in-plane ring response as a finite sum of modes of a perfect ring and the electrostatic force as a Taylor series expansion. It is shown that the supports can induce mode coupling and that mode coupling occurs when the shock is severe and the electrostatic forces are nonlinear. The influence of electrostatic nonlinearity is investigated by numerically simulating the governing equations of motion. For the severe shock cases investigated, when the electrode gap reduces by ∼ 60 % , it is found that three ring modes of vibration (1 θ, 2 θ and 3 θ) and a 9th order force expansion are needed to obtain converged results for the global shock behaviour. Numerical results when the 2 θ mode is driven at resonance indicate that electrostatic nonlinearity introduces mode coupling which has potential to reduce sensor performance under operating conditions. Under some circumstances it is also found that severe shocks can cause the vibrating response to jump to another stable state with much lower vibration amplitude. This behaviour is mainly a function of shock amplitude and rigid-body motion damping.
Waterspout as a result of the ocean skeletal structures
NASA Astrophysics Data System (ADS)
Rantsev-Kartinov, Valentin A.
2004-11-01
An analysis of databases of photographic images of oceanic surface, taken from various altitudes and for various types of rough ocean surface, reduced to a revealing the presence of oceanic skeletal structures (OSS) = http://www.arxiv.org/ftp/physics/papers/0401/0401139.pdf [1] Rantsev-Kartinov V.A., Preprint. The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to capillary sizes. It is suggested [1] the dust produced by the volcanic activity forms the SS of powerful clouds due to of atmospheric electricity. The fall-out of such SSs on the oceanic surface is a material source of OSS. It is suggested that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of the WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and its column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. Suggested a capillary-electrostatic model of the WS permits to interpret many effects connected with the WS.
Berggren, K.-F.; Pepper, M.
2010-01-01
In this article, we present a summary of the current status of the study of the transport of electrons confined to one dimension in very low disorder GaAs–AlGaAs heterostructures. By means of suitably located gates and application of a voltage to ‘electrostatically squeeze’ the electronic wave functions, it is possible to produce a controllable size quantization and a transition from two-dimensional transport. If the length of the electron channel is sufficiently short, then transport is ballistic and the quantized subbands each have a conductance equal to the fundamental quantum value 2e2/h, where the factor of 2 arises from the spin degeneracy. This mode of conduction is discussed, and it is shown that a number of many-body effects can be observed. These effects are discussed as in the spin-incoherent regime, which is entered when the separation of the electrons is increased and the exchange energy is less than kT. Finally, results are presented in the regime where the confinement potential is decreased and the electron configuration relaxes to minimize the electron–electron repulsion to move towards a two-dimensional array. It is shown that the ground state is no longer a line determined by the size quantization alone, but becomes two distinct rows arising from minimization of the electrostatic energy and is the precursor of a two-dimensional Wigner lattice. PMID:20123751
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708
We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less
Rational design of a colorimetric pH sensor from a soluble retinoic acid chaperone.
Berbasova, Tetyana; Nosrati, Meisam; Vasileiou, Chrysoula; Wang, Wenjing; Lee, Kin Sing Stephen; Yapici, Ipek; Geiger, James H; Borhan, Babak
2013-10-30
Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474-640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor.
Parallel implementation of approximate atomistic models of the AMOEBA polarizable model
NASA Astrophysics Data System (ADS)
Demerdash, Omar; Head-Gordon, Teresa
2016-11-01
In this work we present a replicated data hybrid OpenMP/MPI implementation of a hierarchical progression of approximate classical polarizable models that yields speedups of up to ∼10 compared to the standard OpenMP implementation of the exact parent AMOEBA polarizable model. In addition, our parallel implementation exhibits reasonable weak and strong scaling. The resulting parallel software will prove useful for those who are interested in how molecular properties converge in the condensed phase with respect to the MBE, it provides a fruitful test bed for exploring different electrostatic embedding schemes, and offers an interesting possibility for future exascale computing paradigms.
Intralenticular foreign body: a D-Day reminder.
Dhawahir-Scala, Felipe E; Kamal, A
2005-12-01
Intralenticular foreign bodies are not uncommon after penetrating eye injuries. This is an observational case report where a patient was found to have an embedded lenticular foreign body for more than 60 years. Following such a long period of time the patient has not experienced any significant cataract formation or compromised ocular function due to the foreign body.
Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay
NASA Astrophysics Data System (ADS)
Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun
2015-06-01
In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.
NASA Astrophysics Data System (ADS)
Poursina, Mohammad; Anderson, Kurt S.
2014-08-01
This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.
Optoacoustic multispectral imaging of radiolucent foreign bodies in tissue.
Page, Leland; Maswadi, Saher; Glickman, Randolph D
2013-01-01
Optoacoustic imaging is an emerging medical technology that uniquely combines the absorption contrast of optical imaging and the penetration depth of ultrasound. While it is not currently employed as a clinical imaging modality, the results of current research strongly support the use of optoacoustic-based methods in medical imaging. One such application is the diagnosis of the presence of soft tissue foreign bodies. Because many radiolucent foreign bodies have sufficient contrast for imaging in the optical domain, laser-induced optoacoustic imaging could be advantageous for the detection of such objects. Common foreign bodies have been scanned over a range of visible and near infrared wavelengths by using an optoacoustic method to obtain the spectroscopic properties of the materials commonly associated with these foreign bodies. The derived optical absorption spectra compared quite closely to the absorption spectra generated when using a conventional spectrophotometer. By using the probe-beam deflection technique, a novel, pressure-wave detection method, we successfully generated optoacoustic spectroscopic plots of a wooden foreign body embedded in a tissue phantom, which closely resembled the spectrum of the same object obtained in isolation. A practical application of such spectra is to assemble a library of spectroscopic data for radiolucent materials, from which specific characteristic wavelengths can be selected for use in optimizing imaging instrumentation and provide a basis for the identification of the material properties of particular foreign bodies.
Quantum carpets in a one-dimensional tilted optical lattices
NASA Astrophysics Data System (ADS)
Parra Murillo, Carlos Alberto; Muã+/-Oz Arias, Manuel Humberto; Madroã+/-Ero, Javier
A unit filling Bose-Hubbard Hamiltonian embedded in a strong Stark field is studied in the off-resonant regime inhibiting single- and many-particle first-order tunneling resonances. We investigate the occurrence of coherent dipole wavelike propagation along an optical lattice by means of an effective Hamiltonian accounting for second-order tunneling processes. It is shown that dipole wave function evolution in the short-time limit is ballistic and that finite-size effects induce dynamical self-interference patterns known as quantum carpets. We also present the effects of the border right after the first reflection, showing that the wave function diffuses normally with the variance changing linearly in time. This work extends the rich physical phenomenology of tilted one-dimensional lattice systems in a scenario of many interacting quantum particles, the so-called many-body Wannier-Stark system. The authors acknownledge the finantial support of the Universidad del Valle (project CI 7996). C. A. Parra-Murillo greatfully acknowledges the financial support of COLCIENCIAS (Grant 656).
Gianesin, Barbara; Zefiro, Daniele; Paparo, Francesco; Caminata, Alessio; Balocco, Manuela; Carrara, Paola; Quintino, Sabrina; Pinto, Valeria; Bacigalupo, Lorenzo; Rollandi, Gian Andrea; Marinelli, Mauro; Forni, Gian Luca
2015-05-01
A preliminary assessment of the MRI-compatibility of metallic object possibly embedded within the patient is required before conducting the MRI examination. The Magnetic Iron Detector (MID) is a highly sensitive susceptometer that uses a weak magnetic field to measure iron overload in the liver. MID might be used to perform a screening procedure for MRI by determining the ferromagnetic/conductive properties of embedded metallic objects. The study was composed by: (i) definition of MID sensitivity threshold; (ii) application of MID in a procedure to characterize the ferromagnetic/conductive properties of metallic foreign objects in 958 patients scheduled for MID examination. The detection threshold for ferromagnetic objects was found to be the equivalent of a piece of wire of length 2 mm and gauge 0.8 mm(2) and, representing purely conductive objects, an aluminum sheet of area 2 × 2 cm(2) . Of 958 patients, 165 had foreign bodies of unknown nature. MID was able to detect those with ferromagnetic and/or conducting properties based on fluctuations in the magnetic and eddy current signals versus control. The high sensitivity of MID makes it suitable for assessing the ferromagnetic/conductive properties of metallic foreign objects embedded within the body of patients scheduled for MRI. © 2015 Wiley Periodicals, Inc.
Challenges in Embedding Numeracy throughout the Curriculum in Three Queensland Secondary Schools
ERIC Educational Resources Information Center
Carter, Merilyn Gladys; Klenowski, Valentina; Chalmers, Christina
2015-01-01
The Australian Curriculum identified seven General Capabilities, including numeracy, to be embedded in all learning areas. However, it has been left to individual schools to manage this. Whilst there is a growing body of literature about pedagogies that embed numeracy in various learning areas, there are few studies from the management…
A fast plasma analyser for the study of the solar wind interaction with Mars
NASA Astrophysics Data System (ADS)
James, Adrian Martin
This thesis describes the design and development of the FONEMA instrument to be flown aboard the Russian mission to Mars in 1996. Many probes have flown to Mars yet despite this many mysteries still remain, among them the nature of the interaction of the solar wind with the planetary obstacle. In this thesis I will present some of the results from earlier spacecraft and the models of the interaction that they suggest paying particular attention to the contribution of ion analysers. From these results it will become clear that a fast ion sensor is needed to resolve many of the questions about the magnetosphere of Mars. The FONEMA instrument was designed for this job making use of a novel electrostatic mirror and particle collimator combined with parallel magnetic and electrostatic fields to resolve the ions into mass and energy bins. Development and production of the individual elements is discussed in detail.
Optimal charges in lead progression: a structure-based neuraminidase case study.
Armstrong, Kathryn A; Tidor, Bruce; Cheng, Alan C
2006-04-20
Collective experience in structure-based lead progression has found electrostatic interactions to be more difficult to optimize than shape-based ones. A major reason for this is that the net electrostatic contribution observed includes a significant nonintuitive desolvation component in addition to the more intuitive intermolecular interaction component. To investigate whether knowledge of the ligand optimal charge distribution can facilitate more intuitive design of electrostatic interactions, we took a series of small-molecule influenza neuraminidase inhibitors with known protein cocrystal structures and calculated the difference between the optimal and actual charge distributions. This difference from the electrostatic optimum correlates with the calculated electrostatic contribution to binding (r(2) = 0.94) despite small changes in binding modes caused by chemical substitutions, suggesting that the optimal charge distribution is a useful design goal. Furthermore, detailed suggestions for chemical modification generated by this approach are in many cases consistent with observed improvements in binding affinity, and the method appears to be useful despite discrete chemical constraints. Taken together, these results suggest that charge optimization is useful in facilitating generation of compound ideas in lead optimization. Our results also provide insight into design of neuraminidase inhibitors.
Shazman, Shula; Celniker, Gershon; Haber, Omer; Glaser, Fabian; Mandel-Gutfreund, Yael
2007-07-01
Positively charged electrostatic patches on protein surfaces are usually indicative of nucleic acid binding interfaces. Interestingly, many proteins which are not involved in nucleic acid binding possess large positive patches on their surface as well. In some cases, the positive patches on the protein are related to other functional properties of the protein family. PatchFinderPlus (PFplus) http://pfp.technion.ac.il is a web-based tool for extracting and displaying continuous electrostatic positive patches on protein surfaces. The input required for PFplus is either a four letter PDB code or a protein coordinate file in PDB format, provided by the user. PFplus computes the continuum electrostatics potential and extracts the largest positive patch for each protein chain in the PDB file. The server provides an output file in PDB format including a list of the patch residues. In addition, the largest positive patch is displayed on the server by a graphical viewer (Jmol), using a simple color coding.
Electrostatics of lipid bilayer bending.
Chou, T; Jarić, M V; Siggia, E D
1997-01-01
The electrostatic contribution to spontaneous membrane curvature is calculated within Poisson-Boltzmann theory under a variety of assumptions and emphasizing parameters in the physiological range. Asymmetrical surface charges can be fixed with respect to bilayer midplane area or with respect to the lipid-water area, but induce curvatures of opposite signs. Unequal screening layers on the two sides of a vesicle (e.g., multivalent cationic proteins on one side and monovalent salt on the other) also induce bending. For reasonable parameters, tubules formed by electrostatically induced bending can have radii in the 50-100-nm range, often seen in many intracellular organelles. Thus membrane associated proteins may induce curvature and subsequent budding, without themselves being intrinsically curved. Furthermore, we derive the previously unexplored effects of respecting the strict conservation of charge within the interior of a vesicle. The electrostatic component of the bending modulus is small under most of our conditions and is left as an experimental parameter. The large parameter space of conditions is surveyed in an array of graphs. Images FIGURE 1 FIGURE 10 PMID:9129807
Shazman, Shula; Celniker, Gershon; Haber, Omer; Glaser, Fabian; Mandel-Gutfreund, Yael
2007-01-01
Positively charged electrostatic patches on protein surfaces are usually indicative of nucleic acid binding interfaces. Interestingly, many proteins which are not involved in nucleic acid binding possess large positive patches on their surface as well. In some cases, the positive patches on the protein are related to other functional properties of the protein family. PatchFinderPlus (PFplus) http://pfp.technion.ac.il is a web-based tool for extracting and displaying continuous electrostatic positive patches on protein surfaces. The input required for PFplus is either a four letter PDB code or a protein coordinate file in PDB format, provided by the user. PFplus computes the continuum electrostatics potential and extracts the largest positive patch for each protein chain in the PDB file. The server provides an output file in PDB format including a list of the patch residues. In addition, the largest positive patch is displayed on the server by a graphical viewer (Jmol), using a simple color coding. PMID:17537808
Manifolds for pose tracking from monocular video
NASA Astrophysics Data System (ADS)
Basu, Saurav; Poulin, Joshua; Acton, Scott T.
2015-03-01
We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).
Adhesion Between Volcanic Glass and Spacecraft Materials in an Airless Body Environment
NASA Technical Reports Server (NTRS)
Berkebile, Stephen; Street, Kenneth W., Jr.; Gaier, James R.
2012-01-01
The successful exploration of airless bodies, such as the Earth s moon, many smaller moons of the outer planets (including those of Mars) and asteroids, will depend on the development and implementation of effective dust mitigation strategies. The ultrahigh vacuum environment (UHV) on the surfaces of these bodies, coupled with constant ion and photon bombardment from the Sun and micrometeorite impacts (space weathering), makes dust adhesion to critical spacecraft systems a severe problem. As a result, the performance of thermal control surfaces, photovoltaics and mechanical systems can be seriously degraded even to the point of failure. The severe dust adhesion experienced in these environments is thought to be primarily due to two physical mechanisms, electrostatic attraction and high surface energies, but the dominant of these has yet to be determined. The experiments presented here aim to address which of these two mechanisms is dominant by quantifying the adhesion between common spacecraft materials (polycarbonate, FEP and PTFE Teflon, (DuPont) Ti-6-4) and a synthetic noritic volcanic glass, as a function of surface cleanliness and triboelectric charge transfer in a UHV environment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10, although the increase is dependent on the particular material pair. The knowledge gained by these studies is envisioned to aid the development of new dust mitigation strategies and improve existing strategies by helping to identify and characterize mechanisms of glass to spacecraft adhesion for norite volcanic glass particles. Furthermore, the experience of the Apollo missions revealed that dust mitigation strategies must be subjected to high fidelity tests. To facilitate the effectiveness of ground-based testing of mitigation strategies, the issue of a pressure limit for high fidelity tests will be addressed.
Ritchie, David W; Kozakov, Dima; Vajda, Sandor
2008-09-01
Predicting how proteins interact at the molecular level is a computationally intensive task. Many protein docking algorithms begin by using fast Fourier transform (FFT) correlation techniques to find putative rigid body docking orientations. Most such approaches use 3D Cartesian grids and are therefore limited to computing three dimensional (3D) translational correlations. However, translational FFTs can speed up the calculation in only three of the six rigid body degrees of freedom, and they cannot easily incorporate prior knowledge about a complex to focus and hence further accelerate the calculation. Furthemore, several groups have developed multi-term interaction potentials and others use multi-copy approaches to simulate protein flexibility, which both add to the computational cost of FFT-based docking algorithms. Hence there is a need to develop more powerful and more versatile FFT docking techniques. This article presents a closed-form 6D spherical polar Fourier correlation expression from which arbitrary multi-dimensional multi-property multi-resolution FFT correlations may be generated. The approach is demonstrated by calculating 1D, 3D and 5D rotational correlations of 3D shape and electrostatic expansions up to polynomial order L=30 on a 2 GB personal computer. As expected, 3D correlations are found to be considerably faster than 1D correlations but, surprisingly, 5D correlations are often slower than 3D correlations. Nonetheless, we show that 5D correlations will be advantageous when calculating multi-term knowledge-based interaction potentials. When docking the 84 complexes of the Protein Docking Benchmark, blind 3D shape plus electrostatic correlations take around 30 minutes on a contemporary personal computer and find acceptable solutions within the top 20 in 16 cases. Applying a simple angular constraint to focus the calculation around the receptor binding site produces acceptable solutions within the top 20 in 28 cases. Further constraining the search to the ligand binding site gives up to 48 solutions within the top 20, with calculation times of just a few minutes per complex. Hence the approach described provides a practical and fast tool for rigid body protein-protein docking, especially when prior knowledge about one or both binding sites is available.
Evaluating the Use of Tribocharging in the Electrostatic Beneficiation of Lunar Simulant
NASA Technical Reports Server (NTRS)
Trigwell, S.; Captain, J. G.; Arens, E. E.; Captain, J. E.; Quinn, J. W.; Calle, C. I.
2007-01-01
Any future lunar base needs materials to provide thermal and radiation protection. Many factors point to the use of lunar materials as industrial feedstocks. Sintering of full-scale bricks using whole lunar dust has been accomplished. Refinement of soil beneficial before processing means less energy. Triboelectric separation of coal from minerals, quartz from feldspar, and phosphorous from silica and iron ore successively achieved. The Lunar environment ideal for electrostatic separation (1) lack of moisture (2) lower gravitational pull (3) higher voltages in vacuum
NASA Astrophysics Data System (ADS)
Leushin, A. M.
2011-10-01
The level structure of the ground 3d5 configuration of Mn2+, Fe3+, Co4+ and Ni5+ ions was theoretically interpreted by means of a least-squares fit of the energy parameters to the observed values within the framework of the single-configuration approximation. In the Hamiltonian in addition to real electrostatic, spin-orbit, and spin-spin interactions, electrostatic and spin-orbit interactions correlated by configuration mixing were included. It was shown that the correct positions of almost all the energy levels are determined when the Hamiltonian includes the terms of the lineal (two-body operators) and nonlinear (three-body operators) theory of the configuration interaction. The most correct theoretical description of the experimental spectra was obtained by taking into account relativistic interactions and correlation effects of spin-orbit interactions. Adjustable parameters of the interactions included into the Hamiltonian were found.
Quantum dynamics in continuum for proton transport—Generalized correlation
NASA Astrophysics Data System (ADS)
Chen, Duan; Wei, Guo-Wei
2012-04-01
As a key process of many biological reactions such as biological energy transduction or human sensory systems, proton transport has attracted much research attention in biological, biophysical, and mathematical fields. A quantum dynamics in continuum framework has been proposed to study proton permeation through membrane proteins in our earlier work and the present work focuses on the generalized correlation of protons with their environment. Being complementary to electrostatic potentials, generalized correlations consist of proton-proton, proton-ion, proton-protein, and proton-water interactions. In our approach, protons are treated as quantum particles while other components of generalized correlations are described classically and in different levels of approximations upon simulation feasibility and difficulty. Specifically, the membrane protein is modeled as a group of discrete atoms, while ion densities are approximated by Boltzmann distributions, and water molecules are represented as a dielectric continuum. These proton-environment interactions are formulated as convolutions between number densities of species and their corresponding interaction kernels, in which parameters are obtained from experimental data. In the present formulation, generalized correlations are important components in the total Hamiltonian of protons, and thus is seamlessly embedded in the multiscale/multiphysics total variational model of the system. It takes care of non-electrostatic interactions, including the finite size effect, the geometry confinement induced channel barriers, dehydration and hydrogen bond effects, etc. The variational principle or the Euler-Lagrange equation is utilized to minimize the total energy functional, which includes the total Hamiltonian of protons, and obtain a new version of generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation and generalized Kohn-Sham equation. A set of numerical algorithms, such as the matched interface and boundary method, the Dirichlet to Neumann mapping, Gummel iteration, and Krylov space techniques, is employed to improve the accuracy, efficiency, and robustness of model simulations. Finally, comparisons between the present model predictions and experimental data of current-voltage curves, as well as current-concentration curves of the Gramicidin A channel, verify our new model.
Foreign Body in the Oral Cavity Mimicking a Benign Connective Tissue Tumor
Ram, Saravanan; Sedghizadeh, Parish P.
2013-01-01
Foreign bodies may be embedded in the oral cavity either by traumatic injury or iatrogenically. The commonly encountered iatrogenic foreign bodies are restorative materials like amalgam, obturation materials, broken instruments, needles, and impression materials. This paper describes an asymptomatic presentation of a foreign body in the oral mucosa which clinically appeared like a benign connective tissue tumor. PMID:23634307
Foreign body in the oral cavity mimicking a benign connective tissue tumor.
Puliyel, Divya; Balouch, Amir; Ram, Saravanan; Sedghizadeh, Parish P
2013-01-01
Foreign bodies may be embedded in the oral cavity either by traumatic injury or iatrogenically. The commonly encountered iatrogenic foreign bodies are restorative materials like amalgam, obturation materials, broken instruments, needles, and impression materials. This paper describes an asymptomatic presentation of a foreign body in the oral mucosa which clinically appeared like a benign connective tissue tumor.
Embedding and partial resolution of complex cones over Fano threefolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Siddharth, E-mail: sdwivedi@iitk.ac.in
2016-12-15
This work deals with the study of embeddings of toric Calabi–Yau fourfolds which are complex cones over the smooth Fano threefolds. In particular, we focus on finding various embeddings of Fano threefolds inside other Fano threefolds and study the partial resolution of the latter in hope to find new toric dualities. We find many diagrams possible for many of these Fano threefolds, but unfortunately, none of them are consistent quiver theories. We also obtain a quiver Chern–Simons theory which matches a theory known to the literature, thus providing an alternate method of obtaining it.
Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon
2016-10-14
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.
NASA Astrophysics Data System (ADS)
Rubinstein, Alexander I.; Sabirianov, Renat F.; Namavar, Fereydoon
2016-10-01
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ˜80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.
Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics
McClean, Jarrod R.; Parkhill, John A.; Aspuru-Guzik, Alán
2013-01-01
We introduce a discrete-time variational principle inspired by the quantum clock originally proposed by Feynman and use it to write down quantum evolution as a ground-state eigenvalue problem. The construction allows one to apply ground-state quantum many-body theory to quantum dynamics, extending the reach of many highly developed tools from this fertile research area. Moreover, this formalism naturally leads to an algorithm to parallelize quantum simulation over time. We draw an explicit connection between previously known time-dependent variational principles and the time-embedded variational principle presented. Sample calculations are presented, applying the idea to a hydrogen molecule and the spin degrees of freedom of a model inorganic compound, demonstrating the parallel speedup of our method as well as its flexibility in applying ground-state methodologies. Finally, we take advantage of the unique perspective of this variational principle to examine the error of basis approximations in quantum dynamics. PMID:24062428
Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.
Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L
2014-01-01
Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.
A nonintrusive temperature measuring system for estimating deep body temperature in bed.
Sim, S Y; Lee, W K; Baek, H J; Park, K S
2012-01-01
Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.
Bardhan, Jaydeep P; Altman, Michael D; Tidor, B; White, Jacob K
2009-01-01
We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule's electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts-in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method.
Bardhan, Jaydeep P.; Altman, Michael D.
2009-01-01
We present a partial-differential-equation (PDE)-constrained approach for optimizing a molecule’s electrostatic interactions with a target molecule. The approach, which we call reverse-Schur co-optimization, can be more than two orders of magnitude faster than the traditional approach to electrostatic optimization. The efficiency of the co-optimization approach may enhance the value of electrostatic optimization for ligand-design efforts–in such projects, it is often desirable to screen many candidate ligands for their viability, and the optimization of electrostatic interactions can improve ligand binding affinity and specificity. The theoretical basis for electrostatic optimization derives from linear-response theory, most commonly continuum models, and simple assumptions about molecular binding processes. Although the theory has been used successfully to study a wide variety of molecular binding events, its implications have not yet been fully explored, in part due to the computational expense associated with the optimization. The co-optimization algorithm achieves improved performance by solving the optimization and electrostatic simulation problems simultaneously, and is applicable to both unconstrained and constrained optimization problems. Reverse-Schur co-optimization resembles other well-known techniques for solving optimization problems with PDE constraints. Model problems as well as realistic examples validate the reverse-Schur method, and demonstrate that our technique and alternative PDE-constrained methods scale very favorably compared to the standard approach. Regularization, which ordinarily requires an explicit representation of the objective function, can be included using an approximate Hessian calculated using the new BIBEE/P (boundary-integral-based electrostatics estimation by preconditioning) method. PMID:23055839
Electrostatic effects in unfolded staphylococcal nuclease
Fitzkee, Nicholas C.; García-Moreno E, Bertrand
2008-01-01
Structure-based calculations of pK a values and electrostatic free energies of proteins assume that electrostatic effects in the unfolded state are negligible. In light of experimental evidence showing that this assumption is invalid for many proteins, and with increasing awareness that the unfolded state is more structured and compact than previously thought, a detailed examination of electrostatic effects in unfolded proteins is warranted. Here we address this issue with structure-based calculations of electrostatic interactions in unfolded staphylococcal nuclease. The approach involves the generation of ensembles of structures representing the unfolded state, and calculation of Coulomb energies to Boltzmann weight the unfolded state ensembles. Four different structural models of the unfolded state were tested. Experimental proton binding data measured with a variant of nuclease that is unfolded under native conditions were used to establish the validity of the calculations. These calculations suggest that weak Coulomb interactions are an unavoidable property of unfolded proteins. At neutral pH, the interactions are too weak to organize the unfolded state; however, at extreme pH values, where the protein has a significant net charge, the combined action of a large number of weak repulsive interactions can lead to the expansion of the unfolded state. The calculated pK a values of ionizable groups in the unfolded state are similar but not identical to the values in small peptides in water. These studies suggest that the accuracy of structure-based calculations of electrostatic contributions to stability cannot be improved unless electrostatic effects in the unfolded state are calculated explicitly. PMID:18227429
A computational study of anion-modulated cation-π interactions.
Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M
2012-05-24
The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.
Aviezer, Hillel; Hassin, Ran. R.; Bentin, Shlomo
2011-01-01
In the current study we examined the recognition of facial expressions embedded in emotionally expressive bodies in case LG, an individual with a rare form of developmental visual agnosia who suffers from severe prosopagnosia. Neuropsychological testing demonstrated that LG‘s agnosia is characterized by profoundly impaired visual integration. Unlike individuals with typical developmental prosopagnosia who display specific difficulties with face identity (but typically not expression) recognition, LG was also impaired at recognizing isolated facial expressions. By contrast, he successfully recognized the expressions portrayed by faceless emotional bodies handling affective paraphernalia. When presented with contextualized faces in emotional bodies his ability to detect the emotion expressed by a face did not improve even if it was embedded in an emotionally-congruent body context. Furthermore, in contrast to controls, LG displayed an abnormal pattern of contextual influence from emotionally-incongruent bodies. The results are interpreted in the context of a general integration deficit in developmental visual agnosia, suggesting that impaired integration may extend from the level of the face to the level of the full person. PMID:21482423
Kozlovsky, Yonathan; Zimmerberg, Joshua; Kozlov, Michael M.
2004-01-01
We consider the elastic behavior of flat lipid monolayer embedding cylindrical inclusions oriented obliquely with respect to the monolayer plane. An oblique inclusion models a fusion peptide, a part of a specialized protein capable of inducing merger of biological membranes in the course of fundamental cellular processes. Although the crucial importance of the fusion peptides for membrane merger is well established, the molecular mechanism of their action remains unknown. This analysis is aimed at revealing mechanical deformations and stresses of lipid monolayers induced by the fusion peptides, which, potentially, can destabilize the monolayer structure and enhance membrane fusion. We calculate the deformation of a monolayer embedding a single oblique inclusion and subject to a lateral tension. We analyze the membrane-mediated interactions between two inclusions, taking into account bending of the monolayer and tilt of the hydrocarbon chains with respect to the surface normal. In contrast to a straightforward prediction that the oblique inclusions should induce tilt of the lipid chains, our analysis shows that the monolayer accommodates the oblique inclusion solely by bending. We find that the interaction between two inclusions varies nonmonotonically with the interinclusion distance and decays at large separations as square of the distance, similar to the electrostatic interaction between two electric dipoles in two dimensions. This long-range interaction is predicted to dominate the other interactions previously considered in the literature. PMID:15298906
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
NASA Astrophysics Data System (ADS)
Li, Bin; Fontecchio, Adam K.; Visell, Yon
2016-01-01
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.
NASA Astrophysics Data System (ADS)
Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.
2014-10-01
We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K <0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.
Axial interface optical phonon modes in a double-nanoshell system.
Kanyinda-Malu, C; Clares, F J; de la Cruz, R M
2008-07-16
Within the framework of the dielectric continuum (DC) model, we analyze the axial interface optical phonon modes in a double system of nanoshells. This system is constituted by two identical equidistant nanoshells which are embedded in an insulating medium. To illustrate our results, typical II-VI semiconductors are used as constitutive polar materials of the nanoshells. Resolution of Laplace's equation in bispherical coordinates for the potentials derived from the interface vibration modes is made. By imposing the usual electrostatic boundary conditions at the surfaces of the two-nanoshell system, recursion relations for the coefficients appearing in the potentials are obtained, which entails infinite matrices. The problem of deriving the interface frequencies is reduced to the eigenvalue problem on infinite matrices. A truncating method for these matrices is used to obtain the interface phonon branches. Dependences of the interface frequencies on the ratio of inter-nanoshell separation to core size are obtained for different systems with several values of nanoshell interdistance. Effects due to the change of shell and embedding materials are also investigated in interface phonon modes.
Etienne, Thibaud; Very, Thibaut; Perpète, Eric A; Monari, Antonio; Assfeld, Xavier
2013-05-02
We present a time-dependent density functional theory computation of the absorption spectra of one β-carboline system: the harmane molecule in its neutral and cationic forms. The spectra are computed in aqueous solution. The interaction of cationic harmane with DNA is also studied. In particular, the use of hybrid quantum mechanics/molecular mechanics methods is discussed, together with its coupling to a molecular dynamics strategy to take into account dynamic effects of the environment and the vibrational degrees of freedom of the chromophore. Different levels of treatment of the environment are addressed starting from purely mechanical embedding to electrostatic and polarizable embedding. We show that a static description of the spectrum based on equilibrium geometry only is unable to give a correct agreement with experimental results, and dynamic effects need to be taken into account. The presence of two stable noncovalent interaction modes between harmane and DNA is also presented, as well as the associated absorption spectrum of harmane cation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissman, J., E-mail: jwissman@andrew.cmu.edu; Finkenauer, L.; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theorymore » based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.« less
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Fontecchio, Adam K.; Visell, Yon
2016-01-04
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arraysmore » of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.« less
NASA Astrophysics Data System (ADS)
Feng, Yue; Yu, Zejie; Han, Yanhui
2018-01-01
In conventional gap-closing electret-biased electrostatic energy harvesting (EEEH) schemes, electrets with a very low ratio of electret thickness to permittivity are in great demand to allow the attainment of high power output. However, in practice, pursuing such a low ratio introduces unwanted burdens on the electret stability and therefore the reliability of the EEEH devices. In this paper, we propose a dielectric-oscillator-based electrostatic EH (DEEH) scheme as an alternative approach to harvesting electret-biased electrostatic energy. This approach permits the fabrication of an electret-free closed EH circuit. The DEEH architecture directly collects the electrical energy exclusively through the oscillating dielectric body and thus completely circumvents the restrictions imposed by the electret parameters (thickness and permittivity) on power generation. Significantly, without considering the electret thickness and permittivity, both theoretical analysis and experiments have verified the effectiveness of this DEEH strategy, and a high figure of merit (on the order of 10-8 mW cm-2 V-2 Hz-1) was achieved for low-frequency movements.
Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping
2016-08-10
The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.
Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping
2016-01-01
The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927
Measurements of electrostatic double layer potentials with atomic force microscopy
NASA Astrophysics Data System (ADS)
Giamberardino, Jason
The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL. This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clears up previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.
Probing lipid membrane electrostatics
NASA Astrophysics Data System (ADS)
Yang, Yi
The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by <2%. One important application of this technique is to estimate the dipole density of lipid membrane. Electrostatic analysis of DOPC lipid bilayers with the AFM reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipid bilayers. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful probe of membrane electrostatics.
A new venous infusion path monitoring system utilizing electrostatic induced potential.
Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Caldwell, W Morton
2008-01-01
A new venous infusion pathway monitoring system has been developed for hospital and home use. The system consists of linear and digital integrated circuits and a low-power 8-bit single chip microcomputer which constantly monitors the infusion pathway intactness. A 330 kHz AC voltage, which is induced on the patient's body by electrostatic coupling from a 330 kHz pulse oscillator, can be recorded by main and reference electrodes wrapped around the infusion polyvinyl chloride tube. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltages and alerts the nursing station, via the nurse call system or PHS (personal handy phone system).
The fast multipole method and point dipole moment polarizable force fields.
Coles, Jonathan P; Masella, Michel
2015-01-14
We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.
Excited state electronic polarization and reappraisal of the n ← π∗ emission of acetone in water
NASA Astrophysics Data System (ADS)
Orozco-González, Yoelvis; Coutinho, Kaline; Canuto, Sylvio
2010-10-01
Electronic polarization of the acetone molecule in the excited n → π∗ state is considered and its influence on the solvent shift in the emission spectrum is analyzed. Using an iterative procedure the electronic polarizations of both the ground and the excited states are included and compared with previous results obtained with Car-Parrinello dynamics. Analysis of the emission transition obtained using CIS(D)/aug-cc-pVDZ on statistically uncorrelated solute-solvent structures, composed of acetone and twelve explicit water molecules embedded in the electrostatic field of remaining 263 water molecules, corroborates that the solvent effect is mild, calculated here between 80 and 380 cm -1.
Application-oriented programming model for sensor networks embedded in the human body.
Barbosa, Talles M G de A; Sene, Iwens G; da Rocha, Adson F; Nascimento, Fransisco A de O; Carvalho, Hervaldo S; Camapum, Juliana F
2006-01-01
This work presents a new programming model for sensor networks embedded in the human body which is based on the concept of multi-programming application-oriented software. This model was conceived with a top-down approach of four layers and its main goal is to allow the healthcare professionals to program and to reconfigure the network locally or by the Internet. In order to evaluate this hypothesis, a benchmarking was executed in order to allow the assessment of the mean time spent in the programming of a multi-functional sensor node used for the measurement and transmission of the electrocardiogram.
Kin, Kyohei; Ono, Yasuhiro; Fujimori, Takeshi; Kuramoto, Satoshi; Katsumata, Atsushi; Goda, Yuji; Kawauchi, Masamitsu
2015-10-01
Penetrating brain injury(PBI)is very rare in Japan. Because there is a very wide variety of pathological condition of PBI, the guideline for the treatment of PBI has not been established yet. We report the unique case of PBI caused by a steel wire piece completely embedded in the brain parenchyma. A 75-year-old man was brought to the emergency department due to ocular injury caused by a steel wire piece. Neurological examination revealed only left visual disturbance. CT scan revealed a steel wire piece located intraparenchymally between the left frontal lobe and the ventricles, but digital subtraction angiography showed no significant vascular injury in the surrounding structures. We performed an open surgery and removed the steel wire piece. Because the steel wire piece was completely embedded in the brain, we used intraoperative X-ray fluoroscopy to choose a less invasive approach for the brain. The patient suffered no additional neurological deficit and no sign of cerebral infection or seizure after surgery. He was discharged after a 4-week administration of antibiotics. In most cases of PBI caused by low velocity injury, foreign bodies are not completely embedded in the brain except for remnants after surgical removal. This is the first report of low velocity PBI caused by a foreign body completely embedded in the brain.
Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.
Lip Kwok, Philip Chi
2015-01-01
This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.
Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge.
Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert
2012-07-07
Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators.
Electric Fields and Enzyme Catalysis
Fried, Stephen D.; Boxer, Steven G.
2017-01-01
What happens inside an enzyme’s active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists’ attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme’s active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site. PMID:28375745
Contemporary NMR Studies of Protein Electrostatics.
Hass, Mathias A S; Mulder, Frans A A
2015-01-01
Electrostatics play an important role in many aspects of protein chemistry. However, the accurate determination of side chain proton affinity in proteins by experiment and theory remains challenging. In recent years the field of nuclear magnetic resonance spectroscopy has advanced the way that protonation states are measured, allowing researchers to examine electrostatic interactions at an unprecedented level of detail and accuracy. Experiments are now in place that follow pH-dependent (13)C and (15)N chemical shifts as spatially close as possible to the sites of protonation, allowing all titratable amino acid side chains to be probed sequence specifically. The strong and telling response of carefully selected reporter nuclei allows individual titration events to be monitored. At the same time, improved frameworks allow researchers to model multiple coupled protonation equilibria and to identify the underlying pH-dependent contributions to the chemical shifts.
Comparative study of 2-DOF micromirrors for precision light manipulation
NASA Astrophysics Data System (ADS)
Young, Johanna I.; Shkel, Andrei M.
2001-08-01
Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.
Fidelity decay in interacting two-level boson systems: Freezing and revivals
NASA Astrophysics Data System (ADS)
Benet, Luis; Hernández-Quiroz, Saúl; Seligman, Thomas H.
2011-05-01
We study the fidelity decay in the k-body embedded ensembles of random matrices for bosons distributed in two single-particle states, considering the reference or unperturbed Hamiltonian as the one-body terms and the diagonal part of the k-body embedded ensemble of random matrices and the perturbation as the residual off-diagonal part of the interaction. We calculate the ensemble-averaged fidelity with respect to an initial random state within linear response theory to second order on the perturbation strength and demonstrate that it displays the freeze of the fidelity. During the freeze, the average fidelity exhibits periodic revivals at integer values of the Heisenberg time tH. By selecting specific k-body terms of the residual interaction, we find that the periodicity of the revivals during the freeze of fidelity is an integer fraction of tH, thus relating the period of the revivals with the range of the interaction k of the perturbing terms. Numerical calculations confirm the analytical results.
Khaleghi, Ali; Balasingham, Ilangko; Chavez-Santiago, Raul
2014-01-01
In this work an ultra-wideband wire antenna was designed and fabricated for transmitting/receiving signals to/from inside the human body. The antenna provides high gain and thus high field intensity in its broadside direction; hence, a high energy density wireless can be established with the inner body. The proposed antenna operates in the frequency band of 3-10 GHz with an impedance of 200 Ohms in free space. The antenna was embedded in different materials with permittivity values ranging from 12 to 74 in order to evaluate the matching layer effect on wave propagation from outside to inside the body. The antenna port impedance was adjusted by using matching circuits. The electric field intensity inside the human chest was calculated for different materials and depths. The best improvement in wave penetration was obtained for the frequency band of 750-1000 MHz by embedding the antenna inside a material with permittivity equal to 27.
Don't Say That to ME: Opposition to Targeting in Weight-Centric Intervention Messages.
Robinson, Becky; Coveleski, Samantha
2018-02-01
Obesity is a global health issue. Despite well-intentioned efforts by public institutions, traditional health promotion techniques often lead to offending those most in need of weight loss. For example, when Bryn Mawr College targeted overweight students to offer a free fitness and nutrition program, it was met with accusations of fat-shaming, indicating that weight-centric messages operate in a more complex sociocultural system than many public health concerns. To better understand reactions to weight-centric health messages, college-aged women evaluated the Bryn Mawr College e-mail. Using an embedded mixed-methods design, analysis revealed that reactions followed four positive themes, six negative themes, and one neutral theme. Statistical tests indicated that health literacy, feminist identification, body dissatisfaction, and body size discrepancy influenced evaluations of message offensiveness and effectiveness. Contrary to the recommendations of traditional behavior change research, these results indicate that audience segmentation and message tailoring may not be effective for promoting weight loss.
Stabilization of gold nanoparticle films on glass by thermal embedding.
Karakouz, Tanya; Maoz, Ben M; Lando, Gilad; Vaskevich, Alexander; Rubinstein, Israel
2011-04-01
The poor adhesion of gold nanoparticles (NPs) to glass has been a known obstacle to studies and applications of NP-based systems, such as glass/Au-NP optical devices. Here we present a simple scheme for obtaining stable localized surface plasmon resonance (LSPR) transducers based on Au NP films immobilized on silanized glass and annealed. The procedure includes high-temperature annealing of the Au NP film, leading to partial embedding in the glass substrate and stabilization of the morphology and optical properties. The method is demonstrated using citrate-stabilized Au NPs, 20 and 63 nm mean diameter, immobilized electrostatically on glass microscope cover slides precoated with an aminosilane monolayer. Partial thermal embedding of the Au NPs in the glass occurs at temperatures in the vicinity of the glass transition temperature of the substrate. Upon annealing in air the Au NPs gradually settle into the glass and become encircled by a glass rim. In situ transmission UV-vis spectroscopy carried out during the annealing in a specially designed optical oven shows three regions: The most pronounced change of the surface plasmon (SP) band shape occurs in the first ca. 15 min of annealing; this is followed by a blue-shift of the SP band maximum (up to ca. 5 h), after which a steady red-shift of the SP band is observed (up to ca. 70 h, when the experiment was terminated). The development of the SP extinction spectrum was correlated to changes in the system structure, including thermal modification of the NP film morphology and embedding in the glass. The partially embedded Au NP films pass successfully the adhesive-tape test, while their morphology and optical response are stable toward immersion in solvents, drying, and thiol self-assembly. The enhanced adhesion is attributed to the metal NP embedding and rim formation. The stabilized NP films display a refractive index sensitivity (RIS) of 34-48 nm/RIU and 0.1-0.4 abs.u./RIU in SP band shift and extinction change, respectively. The RIS can be improved significantly by electroless deposition of Au on the embedded NPs, while the system stability is maintained. The method presented provides a simple route to obtaining stable Au NP film transducers. © 2011 American Chemical Society
A new infusion pathway monitoring system utilizing electrostatic induced potential.
Maki, Hiromichi; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Alien W; Caldwell, W Morton
2006-01-01
We have developed a new infusion pathway monitoring system employing linear integrated circuits and a low-power 8-bit single chip microcomputer. The system is available for hospital and home use and it constantly monitors the intactness of the pathway. The sensor is an electro-conductive polymer electrode wrapped around the infusion polyvinyl chloride infusion tube. This records an AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. If the injection needle or infusion tube becomes detached, then the system detects changes in the induced AC voltage and alerts the nursing station, via the nurse call system or PHS (personal handy phone System).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reipurth, Bo; Connelley, Michael; Mikkola, Seppo
2010-12-10
We explore the origin of a population of distant companions ({approx}1000-5000 AU) to Class I protostellar sources recently found by Connelley and coworkers, who noted that the companion fraction diminished as the sources evolved. Here, we present N-body simulations of unstable triple systems embedded in dense cloud cores. Many companions are ejected into unbound orbits and quickly escape, but others are ejected with insufficient momentum to climb out of the potential well of the cloud core and associated binary. These loosely bound companions reach distances of many thousands of AU before falling back and eventually being ejected into escapes asmore » the cloud cores gradually disappear. We use the term orphans to denote protostellar objects that are dynamically ejected from their placental cloud cores, either escaping or for a time being tenuously bound at large separations. Half of all triple systems are found to disintegrate during the protostellar stage, so if multiple systems are a frequent outcome of the collapse of a cloud core, then orphans should be common. Bound orphans are associated with embedded close protostellar binaries, but escaping orphans can travel as far as {approx}0.2 pc during the protostellar phase. The steep climb out of a potential well ensures that orphans are not kinematically distinct from young stars born with a less violent pre-history. The identification of orphans outside their heavily extincted cloud cores will allow the detailed study of protostars high up on their Hayashi tracks at near-infrared and in some cases even at optical wavelengths.« less
Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties
Atalay, Ozgur; Kennon, William Richard; Husain, Muhammad Dawood
2013-01-01
The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties. PMID:23966199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de; Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in moremore » efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense; Olsen, Jógvan Magnus Haugaard
2015-03-21
We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linearmore » response have been implemented in a development version of DALTON. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.« less
3D indoor modeling using a hand-held embedded system with multiple laser range scanners
NASA Astrophysics Data System (ADS)
Hu, Shaoxing; Wang, Duhu; Xu, Shike
2016-10-01
Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.
NASA Astrophysics Data System (ADS)
Lancellotti, V.; de Hon, B. P.; Tijhuis, A. G.
2011-08-01
In this paper we present the application of linear embedding via Green's operators (LEGO) to the solution of the electromagnetic scattering from clusters of arbitrary (both conducting and penetrable) bodies randomly placed in a homogeneous background medium. In the LEGO method the objects are enclosed within simple-shaped bricks described in turn via scattering operators of equivalent surface current densities. Such operators have to be computed only once for a given frequency, and hence they can be re-used to perform the study of many distributions comprising the same objects located in different positions. The surface integral equations of LEGO are solved via the Moments Method combined with Adaptive Cross Approximation (to save memory) and Arnoldi basis functions (to compress the system). By means of purposefully selected numerical experiments we discuss the time requirements with respect to the geometry of a given distribution. Besides, we derive an approximate relationship between the (near-field) accuracy of the computed solution and the number of Arnoldi basis functions used to obtain it. This result endows LEGO with a handy practical criterion for both estimating the error and keeping it in check.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millis, Andrew
Understanding the behavior of interacting electrons in molecules and solids so that one can predict new superconductors, catalysts, light harvesters, energy and battery materials and optimize existing ones is the ``quantum many-body problem’’. This is one of the scientific grand challenges of the 21 st century. A complete solution to the problem has been proven to be exponentially hard, meaning that straightforward numerical approaches fail. New insights and new methods are needed to provide accurate yet feasible approximate solutions. This CMSCN project brought together chemists and physicists to combine insights from the two disciplines to develop innovative new approaches. Outcomesmore » included the Density Matrix Embedding method, a new, computationally inexpensive and extremely accurate approach that may enable first principles treatment of superconducting and magnetic properties of strongly correlated materials, new techniques for existing methods including an Adaptively Truncated Hilbert Space approach that will vastly expand the capabilities of the dynamical mean field method, a self-energy embedding theory and a new memory-function based approach to the calculations of the behavior of driven systems. The methods developed under this project are now being applied to improve our understanding of superconductivity, to calculate novel topological properties of materials and to characterize and improve the properties of nanoscale devices.« less
Di Rocco, Giulia; Ranieri, Antonio; Bortolotti, Carlo Augusto; Battistuzzi, Gianantonio; Bonifacio, Alois; Sergo, Valter; Borsari, Marco; Sola, Marco
2013-08-28
A bacterial di-heme cytochrome c binds electrostatically to a gold electrode surface coated with a negatively charged COOH-terminated SAM adopting a sort of 'perpendicular' orientation. Cyclic voltammetry, Resonance Raman and SERRS spectroscopies indicate that the high-potential C-terminal heme center proximal to the SAM's surface undergoes an adsorption-induced swapping of one axial His ligand with a water molecule, which is probably lost in the reduced form, and a low- to high-spin transition. This coordination change for a bis-His ligated heme center upon an electrostatically-driven molecular recognition is as yet unprecedented, as well as the resulting increase in reduction potential. We discuss it in comparison with the known methionine ligand lability in monoheme cytochromes c occurring upon interaction with charged molecular patches. One possible implication of this finding in biological ET is that mobile redox partners do not behave as rigid and invariant bodies, but in the ET complex are subjected to molecular changes and structural fluctuations that affect in a complex way the thermodynamics and the kinetics of the process.
Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.
Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria
2015-10-15
Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.
Electrostatics-Driven Hierarchical Buckling of Charged Flexible Ribbons.
Yao, Zhenwei; Olvera de la Cruz, Monica
2016-04-08
We investigate the rich morphologies of an electrically charged flexible ribbon, which is a prototype for many beltlike structures in biology and nanomaterials. Long-range electrostatic repulsion is found to govern the hierarchical buckling of the ribbon from its initially flat shape to its undulated and out-of-plane twisted conformations. In this process, the screening length is the key controlling parameter, suggesting that a convenient way to manipulate the ribbon morphology is simply to change the salt concentration. We find that these shapes originate from the geometric effect of the electrostatic interaction, which fundamentally changes the metric over the ribbon surface. We also identify the basic modes by which the ribbon reshapes itself in order to lower the energy. The geometric effect of the physical interaction revealed in this Letter has implications for the shape design of extensive ribbonlike materials in nano- and biomaterials.
Isik, Nimet
2016-04-01
Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.
Self organization of exotic oil-in-oil phases driven by tunable electrohydrodynamics
Varshney, Atul; Ghosh, Shankar; Bhattacharya, S.; Yethiraj, Anand
2012-01-01
Self organization of large-scale structures in nature - either coherent structures like crystals, or incoherent dynamic structures like clouds - is governed by long-range interactions. In many problems, hydrodynamics and electrostatics are the source of such long-range interactions. The tuning of electrostatic interactions has helped to elucidate when coherent crystalline structures or incoherent amorphous structures form in colloidal systems. However, there is little understanding of self organization in situations where both electrostatic and hydrodynamic interactions are present. We present a minimal two-component oil-in-oil model system where we can control the strength and lengthscale of the electrohydrodynamic interactions by tuning the amplitude and frequency of the imposed electric field. As a function of the hydrodynamic lengthscale, we observe a rich phenomenology of exotic structure and dynamics, from incoherent cloud-like structures and chaotic droplet dynamics, to polyhedral droplet phases, to coherent droplet arrays. PMID:23071902
PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)
NASA Astrophysics Data System (ADS)
Li, Jie
2013-03-01
ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the Faculty of Engineering, McMaster University, Canada), Haitian Scholar of Dalian University of Technology (China), who passed away on 27 February 2011. Professor Chang was active in research fields including the applications of electrostatics, electromagnetic hydrodynamics, plasma environmental pollution control technologies, etc and he contributed much to the development of these fields. Professor Chang was the visiting professor at some Key Universities in China and was the friend of Chinese scholars engaged in electrostatics. Professor Chang was also active in joining and supporting the previous ICAES. We will cherish the memory of Professor Jen-Shih Chang forever. Professor Jie Li Proceedings Editor Dalian, September 2012 Conference photograph
Bate, Paul; Warwicker, Jim
2004-07-02
Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.
Searching the Force Field Electrostatic Multipole Parameter Space.
Jakobsen, Sofie; Jensen, Frank
2016-04-12
We show by tensor decomposition analyses that the molecular electrostatic potential for amino acid peptide models has an effective rank less than twice the number of atoms. This rank indicates the number of parameters that can be derived from the electrostatic potential in a statistically significant way. Using this as a guideline, we investigate different strategies for deriving a reduced set of atomic charges, dipoles, and quadrupoles capable of reproducing the reference electrostatic potential with a low error. A full combinatorial search of selected parameter subspaces for N-methylacetamide and a cysteine peptide model indicates that there are many different parameter sets capable of providing errors close to that of the global minimum. Among the different reduced multipole parameter sets that have low errors, there is consensus that atoms involved in π-bonding require higher order multipole moments. The possible correlation between multipole parameters is investigated by exhaustive searches of combinations of up to four parameters distributed in all possible ways on all possible atomic sites. These analyses show that there is no advantage in considering combinations of multipoles compared to a simple approach where the importance of each multipole moment is evaluated sequentially. When combined with possible weighting factors related to the computational efficiency of each type of multipole moment, this may provide a systematic strategy for determining a computational efficient representation of the electrostatic component in force field calculations.
Electrostatic modification of novel materials
NASA Astrophysics Data System (ADS)
Ahn, C. H.; Bhattacharya, A.; di Ventra, M.; Eckstein, J. N.; Frisbie, C. Daniel; Gershenson, M. E.; Goldman, A. M.; Inoue, I. H.; Mannhart, J.; Millis, Andrew J.; Morpurgo, Alberto F.; Natelson, Douglas; Triscone, Jean-Marc
2006-10-01
Application of the field-effect transistor principle to novel materials to achieve electrostatic doping is a relatively new research area. It may provide the opportunity to bring about modifications of the electronic and magnetic properties of materials through controlled and reversible changes of the carrier concentration without modifying the level of disorder, as occurs when chemical composition is altered. As well as providing a basis for new devices, electrostatic doping can in principle serve as a tool for studying quantum critical behavior, by permitting the ground state of a system to be tuned in a controlled fashion. In this paper progress in electrostatic doping of a number of materials systems is reviewed. These include structures containing complex oxides, such as cuprate superconductors and colossal magnetoresistive compounds, organic semiconductors, in the form of both single crystals and thin films, inorganic layered compounds, single molecules, and magnetic semiconductors. Recent progress in the field is discussed, including enabling experiments and technologies, open scientific issues and challenges, and future research opportunities. For many of the materials considered, some of the results can be anticipated by combining knowledge of macroscopic or bulk properties and the understanding of the field-effect configuration developed during the course of the evolution of conventional microelectronics. However, because electrostatic doping is an interfacial phenomenon, which is largely an unexplored field, real progress will depend on the development of a better understanding of lattice distortion and charge transfer at interfaces in these systems.
Fischer, G
1977-08-01
Comparative investigations were carried out concerning the influence on the motility of mice of different electrobioclimatic conditions (electrostatic field with a residual wave component of 1% and a field strength of 4.500 V/m; pure residual wave component: 32 Vs/s, field strength 120 V/m/ss; electrostatic field established by batteries: initial voltage 900 V, field strength 4.500 V/m; shielded from ambient atmospheric electrical fields: damping efficiency at 99%). The Faraday condition represented the control as absolutely objective physical magnitude. All experimental chambers were positioned under Faraday shields. Following a 20 day period of acclimatization to the unaccustomed surroundings for the animals (adaptation period), we established the previously described electrophysical conditions in the cages for a further period of 20 days (experimental period). The lowest values measured during the daily readings were found in the Faraday cage, resp. in the pure electrostatic field, the highest in the DC-field with residual wave component resp. in the residual wave component alone. We draw the following conclusion from the findings: the pure DC-field apparently does not possess those bioclimatologically decisive importance that has been and is being postulated from several sides. Many of the stimtng effects observed and attributed to the electrostatic field are most probably due to the residual wave component resulting from the high-voltage generators employed.
ICTV virus taxonomy profile: Baculoviridae
USDA-ARS?s Scientific Manuscript database
The Baculoviridae is a family of large viruses with circular dsDNA genomes ranging from 80 to 180 kbp. Virions consist of enveloped rod-shaped nucleocapsids and are embedded in distinctive occlusion bodies measuring 0.15 to 15 µm. The occlusion bodies consist of a matrix composed of a single viral...
Optical fibre sensing in metals by embedment in 3D printed metallic structures
NASA Astrophysics Data System (ADS)
Maier, R. R. J.; Havermann, D.; Schneller, O.; Mathew, J.; Polyzos, D.; MacPherson, W. N.; Hand, D. P.
2014-05-01
Additive manufacturing or 3D printing of structural components in metals has potential to revolutionise the manufacturing industry. Embedded sensing in such structures opens a route towards SMART metals, providing added functionality, intelligence and enhanced performance in many components. Such embedded sensors would be capable of operating at extremely high temperatures by utilizing regenerated fibre Bragg gratings and in-fibre Fabry-Perot cavities.
An Overview of the MSFC Electrostatic Levitation Facility
NASA Technical Reports Server (NTRS)
Rogers, J. R.; Robinson, M. B.; Hyers, R. W.; Savage, L.; Rathz, T.
2000-01-01
Electrostatic levitation (ESL) provides a means to study molten materials in a contamination-free environment, including no contact with a container. Many phenomena important to materials science can be studied in the ESL. Solidification of metals, alloys and undercooled materials represent an important topic for research in the ESL. Recent studies of metals and alloys during solidification in the ESL are reported. Measurements include time, temperature and transformation of metallic glass-forming alloys, solidification velocities, and microstructure. This multimedia report includes a video clip showing processing in the ESL, with descriptions of the different segments in the text.
Run-time implementation issues for real-time embedded Ada
NASA Technical Reports Server (NTRS)
Maule, Ruth A.
1986-01-01
A motivating factor in the development of Ada as the department of defense standard language was the high cost of embedded system software development. It was with embedded system requirements in mind that many of the features of the language were incorporated. Yet it is the designers of embedded systems that seem to comprise the majority of the Ada community dissatisfied with the language. There are a variety of reasons for this dissatisfaction, but many seem to be related in some way to the Ada run-time support system. Some of the areas in which the inconsistencies were found to have the greatest impact on performance from the standpoint of real-time systems are presented. In particular, a large part of the duties of the tasking supervisor are subject to the design decisions of the implementer. These include scheduling, rendezvous, delay processing, and task activation and termination. Some of the more general issues presented include time and space efficiencies, generic expansions, memory management, pragmas, and tracing features. As validated compilers become available for bare computer targets, it is important for a designer to be aware that, at least for many real-time issues, all validated Ada compilers are not created equal.
The sliding-helix voltage sensor
Peyser, Alexander; Nonner, Wolfgang
2012-01-01
The voltage sensor (VS) domain of voltage-gated ion channels underlies electrical excitability of living cells. We simulate a mesoscale model of the VS domain to determine the functional consequences of some of its physical elements. Our mesoscale model is based on VS charges, linear dielectrics and whole-body motion, applied to an S4 ‘sliding helix’. The electrostatics under voltage-clamped boundary conditions are solved consistently using a boundary element method. Based on electrostatic configurational energy, statistical-mechanical expectations of the experimentally observable relation between displaced charge and membrane voltage are predicted. Consequences of the model are investigated for variations of: S4 configuration (α- and 310-helical), countercharge alignment with S4 charges, protein polarizability, geometry of the gating canal, screening of S4 charges by the baths, and fixed charges located at the bath interfaces. The sliding helix VS domain has an inherent electrostatic stability in the explored parameter space: countercharges present in the region of weak dielectric always retain an equivalent S4 charge in that region but allow sliding movements displacing 3 to 4 e0. That movement is sensitive to small energy variations (< 2kT) along the path dependent on a number of electrostatic parameters tested in our simulations. These simulations show how the slope of the relation between displaced charge and voltage could be tuned in a channel. PMID:22907204
Wu, Yang; Li, Yao; Hu, Na; Hong, Mei
2014-02-14
Recently, experimental and theoretical studies on amino acid ionic liquid (AAIL) systems have attracted much attention. A transferable intermolecular potential approach that includes fluctuating charges and a flexible body based on a combination of the electronegativity equalization method and molecular mechanics (EEM/MM), and its application to an AAIL system containing 1-ethyl-3-methylimidazolium ([Emim](+)) and glycine ([Gly](-)) are explored and tested in this study. A consistent integration of EEM with MM requires the input of the EEM charges of all atoms into the MM intermolecular electrostatic interaction term. Compared with ionic liquid (IL) force fields, the EEM/MM model has an outstanding feature: the EEM/MM model not only presents the electrostatic interaction of atoms and their changes in response to different ambient environments but also introduces "the H-bond interaction region" in which a new parameter kHB(RHB) is used to describe the electrostatic interaction of hydrogen atoms in [Emim](+) and oxygen atoms in [Gly](-), which can form hydrogen bonds. The EEM/MM model gives quite accurate predictions for gas-phase state properties of [Emim](+), [Gly](-), and ion pairs, such as optimized geometries, dipole moments, vibrational frequencies, and cluster interaction energies. Due to its explicit description of charges and hydrogen bonds, the EEM/MM model also performs well for the liquid-phase properties of [Emim][Gly] under ambient conditions. The calculated properties, such as density, heat of vaporization, the self-diffusion coefficient, and ionic conductivity, are fairly consistent with available experimental results.
In-vacuum sensors for the beamline components of the ITER neutral beam test facility.
Dalla Palma, M; Pasqualotto, R; Sartori, E; Spagnolo, S; Spolaore, M; Veltri, P
2016-11-01
Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.
Electrodynamic Dust Shield for Surface Exploration Activities on the Moon and Mars
NASA Technical Reports Server (NTRS)
Calle, C. I.; Immer, C. D.; Clements, J. S.; Chen, A.; Buhler, C. R.; Lundeen, P.; Mantovani, J. G.; Starnes, J. W.; Michalenko, M.; Mazumder, M. K.
2006-01-01
The Apollo missions to the moon showed that lunar dust can hamper astronaut surface activities due to its ability to cling to most surfaces. NASA's Mars exploration landers and rovers have also shown that the problem is equally hard if not harder on Mars. In this paper, we report on our efforts to develop and electrodynamic dust shield to prevent the accumulation of dust on surfaces and to remove dust already adhering to those surfaces. The parent technology for the electrodynamic dust shield, developed in the 1970s, has been shown to lift and transport charged and uncharged particles using electrostatic and dielectrophoretic forces. This technology has never been applied for space applications on Mars or the moon due to electrostatic breakdown concerns. In this paper, we show that an appropriate design can prevent the electrostatic breakdown at the low Martian atmospheric pressures. We are also able to show that uncharged dust can be lifted and removed from surfaces under simulated Martian environmental conditions. This technology has many potential benefits for removing dust from visors, viewports and many other surfaces as well as from solar arrays. We have also been able to develop a version of the electrodynamic dust shield working under. hard vacuum conditions. This version should work well on the moon.
NASA Astrophysics Data System (ADS)
Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Kulse, P.; Reich, C.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; Schulz, K.; Wolansky, D.; Winkler, W.; Guschauski, T.; Ehwald, R.
2013-06-01
The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm3—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.
Amplitude-Stabilized Oscillator for a Capacitance-Probe Electrometer
NASA Technical Reports Server (NTRS)
Blaes, Brent R.; Schaefer, Rembrandt T.
2012-01-01
A multichannel electrometer voltmeter that employs a mechanical resonator maintained in sustained amplitude-stabilized oscillation has been developed for the space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM) sensor. The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Creating a stable oscillator from the mechanical resonator was achieved by employing magnetic induction for sensing the resonator s velocity, and forcing a current through a coil embedded in the resonator to produce a Lorentz actuation force that overcomes the resonator s dissipative losses. Control electronics employing an AGC loop provide conditions for stabilized, constant amplitude harmonic oscillation. The prototype resonator was composed of insulating FR4 printed-wireboard (PWB) material containing a flat, embedded, rectangular coil connected through flexure springs to a base PWB, and immersed in a magnetic field having two regions of opposite field direction generated by four neodymium block magnets. In addition to maintaining the mechanical movement needed for the electrometer s capacitor-probe transducer, this oscillator provides a reference signal for synchronous detection of the capacitor probe s output signal current so drift of oscillation frequency due to environmental effects is inconsequential.
Charge Inversion in semi-permeable membranes
NASA Astrophysics Data System (ADS)
Das, Siddhartha; Sinha, Shayandev; Jing, Haoyuan
Role of semi-permeable membranes like lipid bilayer is ubiquitous in a myriad of physiological and pathological phenomena. Typically, lipid membranes are impermeable to ions and solutes; however, protein channels embedded in the membrane allow the passage of selective, small ions across the membrane enabling the membrane to adopt a semi-permeable nature. This semi-permeability, in turn, leads to electrostatic potential jump across the membrane, leading to effects such as regulation of intracellular calcium, extracellular-vesicle-membrane interactions, etc. In this study, we theoretically demonstrate that this semi-permeable nature may trigger the most remarkable charge inversion (CI) phenomenon in the cytosol-side of the negatively-charged lipid bilayer membrane that are selectively permeable to only positive ions of a given salt. This CI is manifested as the changing of the sign of the electrostatic potential from negative to positive from the membrane-cytosol interface to deep within the cytosol. We study the impact of the parameters such as the concentration of this salt with selectively permeable ions as well as the concentration of an external salt in the development of this CI phenomenon. We anticipate such CI will profoundly influence the interaction of membrane and intra-cellular moieties (e.g., exosome or multi-cellular vesicles) having implications for a host of biophysical processes.
Born-Oppenheimer ab initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions
Zhou, Yanzi; Wang, Shenglong; Li, Yongle; Zhang, Yingkai
2016-01-01
There are two key requirements for reliably simulating enzyme reactions: one is a reasonably accurate potential energy surface to describe the bond forming/breaking process as well as to adequately model the heterogeneous enzyme environment; the other is to perform extensive sampling since an enzyme system consists of at least thousands of atoms and its energy landscape is very complex. One attractive approach to meet both daunting tasks is Born-Oppenheimer ab initio QM/MM molecular dynamics simulation (aiQM/MM-MD) with umbrella sampling. In this chapter, we describe our recently developed pseudobond Q-Chem–Amber interface, which employs a combined electrostatic-mechanical embedding scheme with periodic boundary condition and the particle mesh Ewald method for long-range electrostatics interactions. In our implementation, Q-Chem and the sander module of Amber are combined at the source code level without using system calls, and all necessary data communications between QM and MM calculations are achieved via computer memory. We demonstrate the applicability of this pseudobond Q-Chem–Amber interface by presenting two examples, one reaction in aqueous solution and one enzyme reaction. Finally, we describe our established aiQM/MM-MD enzyme simulation protocol, which has been successfully applied to study more than a dozen enzymes. PMID:27498636
Sticker Shock--There's a High Price to Pay for Ignorance about Electricity
ERIC Educational Resources Information Center
Roy, Ken
2005-01-01
Lighting a fluorescent bulb by touching it to the nose of a student who has one hand on an electrostatic generator is an illuminating demonstration of the properties of voltage. It demonstrates that the several hundred thousand volts of electricity passing through the student's body are not dangerous. However, students and teachers need to…
NASA Astrophysics Data System (ADS)
Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Kondtatyev, N. A.; Kuznetsova, E. A.; Shvetsov, V. N.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.; Pyatkov, Yu. V.; Jacobs, N.; Malaza, V.
2015-06-01
Motivation and status of the VEGA (Velocity-Energy Guide based Array) project is presented. One armed fission fragments spectrometer with an electrostatic guide system is proposed for installation at the vertical experimental channel of the IBR-2 reactor. Scientific program aimed at investigation of new multi-body decays of actinides, shapeisomeric states in fission fragments and fission modes is reported.
Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei
Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equationsmore » such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.« less
KSC Electrostatic Discharge (ESD) Issues
NASA Technical Reports Server (NTRS)
Buhler, Charles
2008-01-01
Discussion of key electrostatic issues that have arisen during the past few years at KSC that the Electrostatics Laboratory has studied. The lab has studied in depth the Space Shuttle's Thermal Control System Blankets, the International Space Station Thermal Blanket, the Pan/Tilt Camera Blankets, the Kapton Purge Barrier Curtain, the Aclar Purge Barrier Curtain, the Thrust Vector Controller Blankets, the Tyvek Reaction Control System covers, the AID-PAK and FLU-9 pyro inflatable devices, the Velostat Solid Rocket Booster mats, and the SCAPE suits. In many cases these materials are insulating meaning that they might be a source of unsafe levels of electrostatic discharge (ESD). For each, the lab provided in-depth testing of each material within its current configuration to ensure that it does not cause an ESD concern that may violate the safety of the astronauts, the workers and equipment for NASA. For example the lab provides unique solutions and testing such as Spark Incendivity Testing that checks whether a material is capable of generating a spark strong enough to ignite a flammable gas. The lab makes recommendations to changes in specifications, procedures, and material if necessary. The lab also consults with a variety of non-safety related ESD issues for the agency.
Li, Junhui; Zhang, Yue; Song, Yanzhai; Zhang, Hui; Fan, Jiangbo; Li, Qun; Zhang, Dongfen; Xue, Yongbiao
2017-01-01
Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking
NASA Technical Reports Server (NTRS)
Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)
2009-01-01
A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,
Sensitivity vector fields in time-delay coordinate embeddings: theory and experiment.
Sloboda, A R; Epureanu, B I
2013-02-01
Identifying changes in the parameters of a dynamical system can be vital in many diagnostic and sensing applications. Sensitivity vector fields (SVFs) are one way of identifying such parametric variations by quantifying their effects on the morphology of a dynamical system's attractor. In many cases, SVFs are a more effective means of identification than commonly employed modal methods. Previously, it has only been possible to construct SVFs for a given dynamical system when a full set of state variables is available. This severely restricts SVF applicability because it may be cost prohibitive, or even impossible, to measure the entire state in high-dimensional systems. Thus, the focus of this paper is constructing SVFs with only partial knowledge of the state by using time-delay coordinate embeddings. Local models are employed in which the embedded states of a neighborhood are weighted in a way referred to as embedded point cloud averaging. Application of the presented methodology to both simulated and experimental time series demonstrates its utility and reliability.
Diverse power iteration embeddings: Theory and practice
Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...
2015-11-09
Manifold learning, especially spectral embedding, is known as one of the most effective learning approaches on high dimensional data, but for real-world applications it raises a serious computational burden in constructing spectral embeddings for large datasets. To overcome this computational complexity, we propose a novel efficient embedding construction, Diverse Power Iteration Embedding (DPIE). DPIE shows almost the same effectiveness of spectral embeddings and yet is three order of magnitude faster than spectral embeddings computed from eigen-decomposition. Our DPIE is unique in that (1) it finds linearly independent embeddings and thus shows diverse aspects of dataset; (2) the proposed regularized DPIEmore » is effective if we need many embeddings; (3) we show how to efficiently orthogonalize DPIE if one needs; and (4) Diverse Power Iteration Value (DPIV) provides the importance of each DPIE like an eigen value. As a result, such various aspects of DPIE and DPIV ensure that our algorithm is easy to apply to various applications, and we also show the effectiveness and efficiency of DPIE on clustering, anomaly detection, and feature selection as our case studies.« less
Bonnet, Vincent; Richard, Vincent; Camomilla, Valentina; Venture, Gentiane; Cappozzo, Aurelio; Dumas, Raphaël
2017-09-06
To reduce the impact of the soft tissue artefact (STA) on the estimate of skeletal movement using stereophotogrammetric and skin-marker data, multi-body kinematics optimisation (MKO) and extended Kalman filters (EKF) have been proposed. This paper assessed the feasibility and efficiency of these methods when they embed a mathematical model of the STA and simultaneously estimate the ankle, knee and hip joint kinematics and the model parameters. A STA model was used that provides an estimate of the STA affecting the marker-cluster located on a body segment as a function of the kinematics of the adjacent joints. The MKO and the EKF were implemented with and without the STA model. To assess these methods, intra-cortical pin and skin markers located on the thigh, shank, and foot of three subjects and tracked during the stance phase of running were used. Embedding the STA model in MKO and EKF reduced the average RMS of marker tracking from 12.6 to 1.6mm and from 4.3 to 1.9mm, respectively, showing that a STA model trial-specific calibration is feasible. Nevertheless, with the STA model embedded in MKO, the RMS difference between the estimated and the reference joint kinematics determined from the pin markers slightly increased (from 2.0 to 2.1deg) On the contrary, when the STA model was embedded in the EKF, this RMS difference was slightly reduced (from 2.0 to 1.7deg) thus showing a better potentiality of this method to attenuate STA effects and improve the accuracy of joint kinematics estimate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Hao; Chen, Guang; Das, Siddhartha
2016-11-01
Understanding the behavior and properties of spherical polyelectrolyte brushes (SPEBs), which are polyelectrolyte brushes grafted to a spherical core, is fundamental to many applications in biomedical, chemical and petroleum engineering as well as in pharmaceutics. In this paper, we study the pH-responsive electrostatics of such SPEBs in the decoupled regime. In the first part of the paper, we derive the scaling conditions in terms of the grafting density of the PEs on the spherical core that ensure that the analysis can be performed in the decoupled regime. In such a regime the elastic and the excluded volume effects of polyelectrolyte brushes (PEBs) can be decoupled from the electrostatic effects associated with the PE charge and the induced EDL. As a consequence the PE brush height, assumed to be dictated by the balance of the elastic and excluded volume effects, can be independent of the electrostatic effects. In the second part, we quantify the pH-responsive electrostatics of the SPEBs - we pinpoint that the radial monomer distribution for a given brush molecule exhibit a non-unique cubic distribution that decays away from the spherical core. Such a monomer distribution ensures that the hydrogen ion concentration is appropriately accounted for in the description of the SPEB thermodynamics. We anticipate that the present analysis, which provides possibly one of the first models for probing the electrostatics of pH-responsive SPEBs in a thermodynamically-consistent framework, will be vital for understanding the behavior of a large number of entities ranging from PE-coated NPs and stealth liposomes to biomolecules like bacteria and viruses. Copyright © 2016 Elsevier B.V. All rights reserved.
Surface electrostatics of lipid bilayers by EPR of a pH-sensitive spin-labeled lipid.
Voinov, Maxim A; Rivera-Rivera, Izarys; Smirnov, Alex I
2013-01-08
Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids' polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Surface Electrostatics of Lipid Bilayers by EPR of a pH-Sensitive Spin-Labeled Lipid
Voinov, Maxim A.; Rivera-Rivera, Izarys; Smirnov, Alex I.
2013-01-01
Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids’ polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. PMID:23332063
NASA Astrophysics Data System (ADS)
Bereau, Tristan; DiStasio, Robert A.; Tkatchenko, Alexandre; von Lilienfeld, O. Anatole
2018-06-01
Classical intermolecular potentials typically require an extensive parametrization procedure for any new compound considered. To do away with prior parametrization, we propose a combination of physics-based potentials with machine learning (ML), coined IPML, which is transferable across small neutral organic and biologically relevant molecules. ML models provide on-the-fly predictions for environment-dependent local atomic properties: electrostatic multipole coefficients (significant error reduction compared to previously reported), the population and decay rate of valence atomic densities, and polarizabilities across conformations and chemical compositions of H, C, N, and O atoms. These parameters enable accurate calculations of intermolecular contributions—electrostatics, charge penetration, repulsion, induction/polarization, and many-body dispersion. Unlike other potentials, this model is transferable in its ability to handle new molecules and conformations without explicit prior parametrization: All local atomic properties are predicted from ML, leaving only eight global parameters—optimized once and for all across compounds. We validate IPML on various gas-phase dimers at and away from equilibrium separation, where we obtain mean absolute errors between 0.4 and 0.7 kcal/mol for several chemically and conformationally diverse datasets representative of non-covalent interactions in biologically relevant molecules. We further focus on hydrogen-bonded complexes—essential but challenging due to their directional nature—where datasets of DNA base pairs and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and as a first look, we consider IPML for denser systems: water clusters, supramolecular host-guest complexes, and the benzene crystal.
Fabrication of a smart air intake structure using shape memory alloy wire embedded composite
NASA Astrophysics Data System (ADS)
Jung, Beom-Seok; Kim, Min-Saeng; Kim, Ji-Soo; Kim, Yun-Mi; Lee, Woo-Yong; Ahn, Sung-Hoon
2010-05-01
Shape memory alloys (SMAs) have been actively studied in many fields utilizing their high energy density. Applying SMA wire-embedded composite to aerospace structures, such as air intake of jet engines and guided missiles, is attracting significant attention because it could generate a comparatively large actuating force. In this research, a scaled structure of SMA wire-embedded composite was fabricated for the air intake of aircraft. The structure was composed of several prestrained Nitinol (Ni-Ti) SMA wires embedded in ∩-shape glass fabric reinforced plastic (GFRP), and it was cured at room temperature for 72 h. The SMA wire-embedded GFRP could be actuated by applying electric current through the embedded SMA wires. The activation angle generated from the composite structure was large enough to make a smart air intake structure.
Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry
Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; ...
2015-05-26
The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy,more » and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.« less
NASA Astrophysics Data System (ADS)
Rixman, Monica A.; Ortiz, Christine
2002-03-01
A critical determinant of the biocompatibility of implanted blood-contacting devices is the initial noncovalent adsorption of blood plasma proteins onto the biomaterial surface. Using high-resolution force spectroscopy, we have measured the complex intermolecular interaction forces between individual end-grafted PEO chains and a probe tip covalently bound with human serum albumin, the most abundant blood plasma protein in the human body. On approach, a long-range, nonlinear repulsive force is observed. Upon retraction, however, adhesion between the HSA probe tip and PEO chain occurs, which in many cases is strong enough to allow long-range adhesion and stretching of the individual PEO chains. The known PEO strain-induced conformational transition from the helical (ttg) to the planar (ttt) conformation is clearly observed and seen to shift to lower force values. Statistical analysis of adhesion data, comparison to a variety of control experiments, and theoretical modeling enable us to interpret these experimental results in terms of electrostatic interactions, hydrogen bonding, and steric forces.
Howard, Amanda R.
2012-01-01
In cells infected with some orthopoxviruses, numerous mature virions (MVs) become embedded within large, cytoplasmic A-type inclusions (ATIs) that can protect infectivity after cell lysis. ATIs are composed of an abundant viral protein called ATIp, which is truncated in orthopoxviruses such as vaccinia virus (VACV) that do not form ATIs. To study ATI formation and occlusion of MVs within ATIs, we used recombinant VACVs that express the cowpox full-length ATIp or we transfected plasmids encoding ATIp into cells infected with VACV, enabling ATI formation. ATI enlargement and MV embedment required continued protein synthesis and an intact microtubular network. For live imaging of ATIs and MVs, plasmids expressing mCherry fluorescent protein fused to ATIp were transfected into cells infected with VACV expressing the viral core protein A4 fused to yellow fluorescent protein. ATIs appeared as dynamic, mobile bodies that enlarged by multiple coalescence events, which could be prevented by disrupting microtubules. Coalescence of ATIs was confirmed in cells infected with cowpox virus. MVs were predominantly at the periphery of ATIs early in infection. We determined that coalescence contributed to the distribution of MVs within ATIs and that microtubule-disrupting drugs abrogated coalescence-mediated MV embedment. In addition, MVs were shown to move from viral factories at speeds consistent with microtubular transport to the peripheries of ATIs, whereas disruption of microtubules prevented such trafficking. The data indicate an important role for microtubules in the coalescence of ATIs into larger structures, transport of MVs to ATIs, and embedment of MVs within the ATI matrix. PMID:22438543
Orthogonality of embedded wave functions for different states in frozen-density embedding theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zech, Alexander; Wesolowski, Tomasz A.; Aquilante, Francesco
2015-10-28
Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematicalmore » structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.« less
The “Electrostatic-Switch” Mechanism: Monte Carlo Study of MARCKS-Membrane Interaction
Tzlil, Shelly; Murray, Diana; Ben-Shaul, Avinoam
2008-01-01
The binding of the myristoylated alanine-rich C kinase substrate (MARCKS) to mixed, fluid, phospholipid membranes is modeled with a recently developed Monte Carlo simulation scheme. The central domain of MARCKS is both basic (ζ = +13) and hydrophobic (five Phe residues), and is flanked with two long chains, one ending with the myristoylated N-terminus. This natively unfolded protein is modeled as a flexible chain of “beads” representing the amino acid residues. The membranes contain neutral (ζ = 0), monovalent (ζ = −1), and tetravalent (ζ = −4) lipids, all of which are laterally mobile. MARCKS-membrane interaction is modeled by Debye-Hückel electrostatic potentials and semiempirical hydrophobic energies. In agreement with experiment, we find that membrane binding is mediated by electrostatic attraction of the basic domain to acidic lipids and membrane penetration of its hydrophobic moieties. The binding is opposed by configurational entropy losses and electrostatic membrane repulsion of the two long chains, and by lipid demixing upon adsorption. The simulations provide a physical model for how membrane-adsorbed MARCKS attracts several PIP2 lipids (ζ = −4) to its vicinity, and how phosphorylation of the central domain (ζ = +13 to ζ = +7) triggers an “electrostatic switch”, which weakens both the membrane interaction and PIP2 sequestration. This scheme captures the essence of “discreteness of charge” at membrane surfaces and can examine the formation of membrane-mediated multicomponent macromolecular complexes that function in many cellular processes. PMID:18502797
Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles
Fiorucci, Sébastien; Zacharias, Martin
2010-01-01
Abstract Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. PMID:20441756
Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices
Hulme, S. Elizabeth; Shevkoplyas, Sergey S.
2011-01-01
This paper describes a method for prefabricating screw, pneumatic, and solenoid valves and embedding them in microfluidic devices. This method of prefabrication and embedding is simple, requires no advanced fabrication, and is compatible with soft lithography. Because prefabrication allows many identical valves to be made at one time, the performance across different valves made in the same manner is reproducible. In addition, the performance of a single valve is reproducible over many cycles of opening and closing: an embedded solenoid valve opened and closed a microfluidic channel more than 100,000 times with no apparent deterioration in its function. It was possible to combine all three types of prefabricated valves in a single microfluidic device to control chemical gradients in a microfluidic channel temporally and spatially. PMID:19209338
Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices.
Hulme, S Elizabeth; Shevkoplyas, Sergey S; Whitesides, George M
2009-01-07
This paper describes a method for prefabricating screw, pneumatic, and solenoid valves and embedding them in microfluidic devices. This method of prefabrication and embedding is simple, requires no advanced fabrication, and is compatible with soft lithography. Because prefabrication allows many identical valves to be made at one time, the performance across different valves made in the same manner is reproducible. In addition, the performance of a single valve is reproducible over many cycles of opening and closing: an embedded solenoid valve opened and closed a microfluidic channel more than 100,000 times with no apparent deterioration in its function. It was possible to combine all three types of prefabricated valves in a single microfluidic device to control chemical gradients in a microfluidic channel temporally and spatially.
Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P
1994-02-01
We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and (2) they help the user understand how different energy terms interact to stabilize a given conformation. The Sculpt paradigm combines many of the best features of interactive graphical modeling, energy minimization, and actual physical models, and we propose it as an especially productive way to use current and future increases in computer speed.
Design and Control of Omnidirectional Unmanned Ground Vehicles for Rough Terrain
2012-08-29
company, Quantum Signal. This rigid body dynamics simulation, housed within the Autonomous Navigation and Virtual Environment Laboratory (ANVEL) software...72 Figure 22: PIC main code. Page 24 of 72 Figure 23: PIC interrupt code. 3.3 Central Body Embedded Electronics As described above...located on the main body of the vehicle. This section describes how the on-board electronics works. The outline of the code is presented as is how
Purification and Characterization of the Bacterial Flagellar Basal Body from Salmonella enterica.
Aizawa, Shin-Ichi
2017-01-01
The bacterial flagellum is a motility organelle. The flagellum is composed of three main structures: the basal body as a rotary engine embedded in the cellular membranes and cell wall, the long external filament that acts as a propeller, and the hook acting as a universal joint that connects them. I describe protocols for the purification of the filament and hook-basal body from Salmonella enterica serovar Typhimurium.
The Incredible Embeddable Librarian
ERIC Educational Resources Information Center
Dale, Jenny; Kellam, Lynda
2012-01-01
The "embedded librarian" as a concept has emerged in the literature only recently, but has quickly gained footing as a model of practice. Many scholarly explorations of embedded librarianship have been published, though no two works define this concept in the exact same way. David Shumaker's description seems to be particularly apt: "Embedded…
ERIC Educational Resources Information Center
Bury, Sophie; Sheese, Ron
2016-01-01
We discuss an educational development approach to embedding academic literacies instruction within disciplinary curricula. This developmental, embedded approach contrasts with the generic, extra-curricular, study-skills approach adopted in many universities. Learning Commons partners at York University, including librarians, writing instructors,…
Promoting Teacher Growth through Lesson Study: A Culturally Embedded Approach
ERIC Educational Resources Information Center
Ebaeguin, Marlon
2015-01-01
Lesson Study has captured the attention of many international educators with its promise of improved student learning and sustained teacher growth. Lesson Study, however, has cultural underpinnings that a simple transference model overlooks. A culturally embedded approach attends to the existing cultural orientations and values of host schools.…
DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines
NASA Technical Reports Server (NTRS)
vonTerzi, Dominic; Bauer, H.-J.
2010-01-01
DNS is a powerful tool with high potential for investigating unsteady heat transfer and fluid flow phenomena, in particular for cases involving transition to turbulence and/or large coherent structures. - DNS of idealized configurations related to turbomachinery components is already possible. - For more realistic configurations and the inclusion of more effects, reduction of computational cost is key issue (e.g., hybrid methods). - Approach pursued here: Embedded DNS ( segregated coupling of DNS with LES and/or RANS). - Embedded DNS is an enabling technology for many studies. - Pre-transitional heat transfer and trailing-edge cutback film-cooling are good candidates for (embedded) DNS studies.
Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system
NASA Astrophysics Data System (ADS)
Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.
2016-11-01
In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.
In-vacuum sensors for the beamline components of the ITER neutral beam test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.
2016-11-15
Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strainmore » gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chen, E-mail: chuang3@fsu.edu
A key element in the density functional embedding theory (DFET) is the embedding potential. We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2) the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities and the total system’s density, are calculated at a finite temperature. This is a physical extension since materials work at finite temperatures. We show that the embedding potential is strictly unique at T > 0. To resolve the second issue, wemore » introduce an efficient iterative embedding potential solver. We discuss how to relax the magnetic moments in subsystems and how to equilibrate the chemical potentials across subsystems. The solver is robust and efficient for several non-trivial examples, in all of which good quality spin-polarized embedding potentials were obtained. We also demonstrate the solver on an extended periodic system: iron body-centered cubic (110) surface, which is related to the modeling of the heterogeneous catalysis involving iron, such as the Fischer-Tropsch and the Haber processes. This work would make it efficient and accurate to perform embedding simulations of some challenging material problems, such as the heterogeneous catalysis and the defects of complicated spin configurations in electronic materials.« less
NASA Astrophysics Data System (ADS)
Parrish, Robert M.; Sherrill, C. David
2014-07-01
We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in systems with up to 220 atoms and 2845 basis functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, Robert M.; Sherrill, C. David, E-mail: sherrill@gatech.edu
2014-07-28
We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work throughmore » the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in systems with up to 220 atoms and 2845 basis functions.« less
Zhang, Yongfeng; Bai, Xian-Ming; Yu, Jianguo; ...
2016-06-01
A formation path for homogeneous γ hydride formation in hcp α-Zr, from solid solution to the ζ and then the γ hydride, was demonstrated using molecular static calculations and molecular dynamic simulations with the charge-optimized many-body (COMB) potential. Hydrogen has limited solubility in α-Zr. Once the solubility limit is exceeded, the stability of solid solution gives way to that of coherent hydride phases such as the ζ hydride by planar precipitation of hydrogen. At finite temperatures, the ζ hydride goes through a partial hcp-fcc transformation via 1/3 <1¯100> slip on the basal plane, and transforms into a mixture of γmore » hydride and α-Zr. In the ζ hydride, slip on the basal plane is favored thermodynamically with negligible barrier, and is therefore feasible at finite temperatures without mechanical loading. The transformation process involves slips of three equivalent shear partials, in contrast to that proposed in the literature where only a single shear partial was involved. The adoption of multiple slip partials minimizes the macroscopic shape change of embedded hydride clusters and the shear strain accumulation in the matrix, and thus reduces the overall barrier needed for homogeneous γ hydride formation. In conclusion, this formation path requires finite temperatures for hydrogen diffusion without mechanical loading. Therefore, it should be effective at the cladding operating conditions.« less
Debugging embedded computer programs. [tactical missile computers
NASA Technical Reports Server (NTRS)
Kemp, G. H.
1980-01-01
Every embedded computer program must complete its debugging cycle using some system that will allow real time debugging. Many of the common items addressed during debugging are listed. Seven approaches to debugging are analyzed to evaluate how well they treat those items. Cost evaluations are also included in the comparison. The results indicate that the best collection of capabilities to cover the common items present in the debugging task occurs in the approach where a minicomputer handles the environment simulation with an emulation of some kind representing the embedded computer. This approach can be taken at a reasonable cost. The case study chosen is an embedded computer in a tactical missile. Several choices of computer for the environment simulation are discussed as well as different approaches to the embedded emulator.
The Design and Development of BMI Calc Android Application
NASA Astrophysics Data System (ADS)
Mohd Ali, Iliana; Samsudin, Nooraida
2016-11-01
Body mass index is a familiar term for those who are weight conscious. It is the term that let user know about the overall body composition in terms of fat.The available body mass index calculators whether online or on Play Store do not provide Malaysian meal suggestions. Hence, this paper proposes an application for body mass index calculator together with Malaysian meal suggestion. The objectives of the study are to design and develop BMI Calc android application for the purpose of calculating body mass index while embedding meal suggestion module. The design and methodology involve in the process are also presented.
Embedded correlated wavefunction schemes: theory and applications.
Libisch, Florian; Huang, Chen; Carter, Emily A
2014-09-16
Conspectus Ab initio modeling of matter has become a pillar of chemical research: with ever-increasing computational power, simulations can be used to accurately predict, for example, chemical reaction rates, electronic and mechanical properties of materials, and dynamical properties of liquids. Many competing quantum mechanical methods have been developed over the years that vary in computational cost, accuracy, and scalability: density functional theory (DFT), the workhorse of solid-state electronic structure calculations, features a good compromise between accuracy and speed. However, approximate exchange-correlation functionals limit DFT's ability to treat certain phenomena or states of matter, such as charge-transfer processes or strongly correlated materials. Furthermore, conventional DFT is purely a ground-state theory: electronic excitations are beyond its scope. Excitations in molecules are routinely calculated using time-dependent DFT linear response; however applications to condensed matter are still limited. By contrast, many-electron wavefunction methods aim for a very accurate treatment of electronic exchange and correlation. Unfortunately, the associated computational cost renders treatment of more than a handful of heavy atoms challenging. On the other side of the accuracy spectrum, parametrized approaches like tight-binding can treat millions of atoms. In view of the different (dis-)advantages of each method, the simulation of complex systems seems to force a compromise: one is limited to the most accurate method that can still handle the problem size. For many interesting problems, however, compromise proves insufficient. A possible solution is to break up the system into manageable subsystems that may be treated by different computational methods. The interaction between subsystems may be handled by an embedding formalism. In this Account, we review embedded correlated wavefunction (CW) approaches and some applications. We first discuss our density functional embedding theory, which is formally exact. We show how to determine the embedding potential, which replaces the interaction between subsystems, at the DFT level. CW calculations are performed using a fixed embedding potential, that is, a non-self-consistent embedding scheme. We demonstrate this embedding theory for two challenging electron transfer phenomena: (1) initial oxidation of an aluminum surface and (2) hot-electron-mediated dissociation of hydrogen molecules on a gold surface. In both cases, the interaction between gas molecules and metal surfaces were treated by sophisticated CW techniques, with the remainder of the extended metal surface being treated by DFT. Our embedding approach overcomes the limitations of conventional Kohn-Sham DFT in describing charge transfer, multiconfigurational character, and excited states. From these embedding simulations, we gained important insights into fundamental processes that are crucial aspects of fuel cell catalysis (i.e., O2 reduction at metal surfaces) and plasmon-mediated photocatalysis by metal nanoparticles. Moreover, our findings agree very well with experimental observations, while offering new views into the chemistry. We finally discuss our recently formulated potential-functional embedding theory that provides a seamless, first-principles way to include back-action onto the environment from the embedded region.
NASA charging analyzer program: A computer tool that can evaluate electrostatic contamination
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Mandell, M. J.
1978-01-01
A computer code, the NASA Charging Analyzer Program (NASCAP), was developed to study the surface charging of bodies subjected to geomagnetic substorm conditions. This program will treat the material properties of a surface in a self-consistent manner and calculate the electric fields in space due to the surface charge. Trajectories of charged particles in this electric field can be computed to determine if these particles enhance surface contamination. A preliminary model of the Spacecraft Charging At The High Altitudes (SCATHA) satellite was developed in the NASCAP code and subjected to a geomagnetic substorm environment to investigate the possibility of electrostatic contamination. The results indicate that differential voltages will exist between the spacecraft ground surfaces and the insulator surfaces. The electric fields from this differential charging can enhance the contamination of spacecraft surfaces.
Cohen-Gihon, Inbar; Fong, Jessica H.; Sharan, Roded; Nussinov, Ruth
2012-01-01
Most eukaryotic proteins are composed of two or more domains. These assemble in a modular manner to create new proteins usually by the acquisition of one or more domains to an existing protein. Promiscuous domains which are found embedded in a variety of proteins and co-exist with many other domains are of particular interest and were shown to have roles in signaling pathways and mediating network communication. The evolution of domain promiscuity is still an open problem, mostly due to the lack of sequenced ancestral genomes. Here we use inferred domain architectures of ancestral genomes to trace the evolution of domain promiscuity in eukaryotic genomes. We find an increase in average promiscuity along many branches of the eukaryotic tree. Moreover, domain promiscuity can proceed at almost a steady rate over long evolutionary time or exhibit lineage-specific acceleration. We also observe that many signaling and regulatory domains gained domain promiscuity around the Bilateria divergence. In addition we show that those domains that played a role in the creation of two body axes and existed before the divergence of the bilaterians from fungi/metazoan achieve a boost in their promiscuities during the bilaterian evolution. PMID:21127809
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, Jaydeep P
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
Li, Lin; Alper, Joshua; Alexov, Emil
2016-01-01
Dyneins are important molecular motors involved in many essential biological processes, including cargo transport along microtubules, mitosis, and in cilia. Dynein motility involves the coupling of microtubule binding and unbinding to a change in the configuration of the linker domain induced by ATP hydrolysis, which occur some 25 nm apart. This leaves the accuracy of dynein stepping relatively inaccurate and susceptible to thermal noise. Using multi-scale modeling with a computational focusing technique, we demonstrate that the microtubule forms an electrostatic funnel that guides the dynein’s microtubule binding domain (MTBD) as it finally docks to the precise, keyed binding location on the microtubule. Furthermore, we demonstrate that electrostatic component of the MTBD’s binding free energy is linearly correlated with the velocity and run length of dynein, and we use this linearity to predict the effect of mutating each glutamic and aspartic acid located in MTBD domain to alanine. Lastly, we show that the binding of dynein to the microtubule is associated with conformational changes involving several helices, and we localize flexible hinge points within the stalk helices. Taken all together, we demonstrate that long range electrostatic interactions bring a level of precision to an otherwise noisy dynein stepping process. PMID:27531742
Crystal Field in Rare-Earth Complexes: From Electrostatics to Bonding.
Alessandri, Riccardo; Zulfikri, Habiburrahman; Autschbach, Jochen; Bolvin, Hélène
2018-04-11
The flexibility of first-principles (ab initio) calculations with the SO-CASSCF (complete active space self-consistent field theory with a treatment of the spin-orbit (SO) coupling by state interaction) method is used to quantify the electrostatic and covalent contributions to crystal field parameters. Two types of systems are chosen for illustration: 1) The ionic and experimentally well-characterized PrCl 3 crystal; this study permits a revisitation of the partition of contributions proposed in the early days of crystal field theory; and 2) a series of sandwich molecules [Ln(η n -C n H n ) 2 ] q , with Ln=Dy, Ho, Er, and Tm and n=5, 6, and 8, in which the interaction between Ln III and the aromatic ligands is more difficult to describe within an electrostatic approach. It is shown that a model with three layers of charges reproduces the electrostatic field generated by the ligands and that the covalency plays a qualitative role. The one-electron character of crystal field theory is discussed and shown to be valuable, although it is not completely quantitative. This permits a reduction of the many-electron problem to a discussion of the energy of the seven 4f orbitals. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Fan, Meng; Liu, Yanhui
When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate R{sub c}, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. R{sub c} (or the corresponding critical casting thickness d{sub c}) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small R{sub c} < 10{sup −2} K/s, pure metals and most alloys are typically poor glass-formers with large R{sub c} > 10{sup 10} K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with R{sub c} approachingmore » that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for designing BMGs with cm or greater casting thickness.« less
The effect of photoelectrons on boom-satellite potential differences during electron beam ejection
NASA Technical Reports Server (NTRS)
Lai, Shu T.; Cohen, Herbert A.; Aggson, Thomas L.; Mcneil, William J.
1987-01-01
Data taken on the SCATHA satellite at geosynchronous altitudes during periods of electron beam ejection in sunlight showed that the potential difference between an electrically isolated boom and the satellite main body was a function of beam current, energy, and boom-sun angle. The potential difference decreased as the boom area illuminated by the sun increased; the maximum and minimum potential differences were measured when minimum and maximum boom areas, respectively, were exposed to the sun. It is shown that photoelectrons, created on the boom, could be engulfed in the electrostatic field of the highly charged satellite main body. Theoretical calculations made using a simple current balance model showed that these electrons could provide a substantial discharging current to the main body and cause the observed variations in the potential difference between the main body and the booms.
Johnson, Jennifer; Maloney, Colleen L.; Yandl, Emily; Griffiths, Denise; Thurberg, Beth L.; Ryan, Susan
2012-01-01
Niemann-Pick disease (types A and B), or acid sphingomyelinase deficiency, is an inherited deficiency of acid sphingomyelinase, resulting in intralysosomal accumulation of sphingomyelin in cells throughout the body, particularly within those of the reticuloendothelial system. These cellular changes result in hepatosplenomegaly and pulmonary infiltrates in humans. A knockout mouse model mimics many elements of human ASMD and is useful for studying disease histopathology. However, traditional formalin-fixation and paraffin embedding of ASMD tissues dissolves sphingomyelin, resulting in tissues with a foamy cell appearance, making quantitative analysis of the substrate difficult. To optimize substrate fixation and staining, a modified osmium tetroxide and potassium dichromate postfixation method was developed to preserve sphingomyelin in epon-araldite embedded tissue and pulmonary cytology specimens. After processing, semi-thin sections were incubated with tannic acid solution followed by staining with toluidine blue/borax. This modified method provides excellent preservation and staining contrast of sphingomyelin with other cell structures. The resulting high-resolution light microscopy sections permit digital quantification of sphingomyelin in light microscopic fields. A lysenin affinity stain for sphingomyelin was also developed for use on these semi-thin epon sections. Finally, ultrathin serial sections can be cut from these same tissue blocks and stained for ultrastructural examination by electron microscopy. PMID:22614361
Towards a Real-Time Embedded System for Water Monitoring Installed in a Robotic Sailboat
da Silva Junior, Andouglas Goncalves; de Lima Sa, Sarah Thomaz; dos Santos, Davi Henrique; de Negreiros, Álvaro Pinto Ferrnandes; de Souza Silva, João Moreno Vilas Boas; Álvarez Jácobo, Justo Emílio; Garcia Gonçalves, Luiz Marcos
2016-01-01
Problems related to quality (and quantity) of water in natural resources or in artificial reservoirs are frequently arising and are at the center of attention of authorities and governments around the world. Many times the monitoring is not performed in an efficient time frame and a precise manner, whereas the adoption of fast and punctual solutions would undoubtedly improve the water quality and consequently enhance the life of people. To minimize or diminish such kinds of problems, we propose an architecture for sensors installed in a robotic platform, an autonomous sail boat, able to acquire raw data relative to water quality, to process and make them available to people that might be interested in such information. The main contributions are the sensors architecture itself, which uses low cost sensors, with practical experimentation done with a prototype. Results show data collected for points in lakes and rivers in the northeast of Brazil. This embedded system is fixed in the sailboat robot with the intention to facilitate the study of water quality for long endurance missions. This robot can help monitoring water bodies in a more consistent manner. Nonetheless the system can also be used with fixed vases or buoys in strategic points. PMID:27509506
ERIC Educational Resources Information Center
Guillot, Ladonna; Stahr, Beth; Meeker, Bonnie Juve'
2010-01-01
Nursing and library faculty face many information literacy challenges when graduate nursing programs migrate to online course delivery. The authors describe a collaborative model for providing cost-effective online library services to new graduate students in a three-university consortium. The embedded librarian service links a health sciences…
Leu, Jenq-Shiou; Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih
2014-01-01
As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source-Linphone-in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation.
Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih
2014-01-01
As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source—Linphone—in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation. PMID:25300280
Quantum Rotational Effects in Nanomagnetic Systems
NASA Astrophysics Data System (ADS)
O'Keeffe, Michael F.
Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions. These transitions coincide in time with changes in the oscillator dynamics. A large number of spins on a single oscillator coupled only through the in-phase oscillations behaves as a single large spin, greatly enhancing the spin-phonon coupling.
Angle-resolved effective potentials for disk-shaped molecules
NASA Astrophysics Data System (ADS)
Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.
2014-12-01
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.
NASA Astrophysics Data System (ADS)
Tjan, P. M.; Srilestari, A.; Abdurrohim, K.; Kresnawan, T.
2017-08-01
Obesity is a major health problem worldwide, affecting more than 500 million adults with an additional 1.5 billion adults classified as overweight. Acupuncture has been recognized as an adjunctive therapy for obesity, and recent evidence suggests its potential to reduce the inflammatory response in adipose tissue, a condition believed to be responsible for obesity-related health problems. Interleukin-6 (IL-6) has been proposed as an important mediator of the inflammatory response in adipose tissue, but the number of studies addressing the issue is still limited. A double-blind, randomized, placebo-controlled trial was conducted with36 obese patients currently receiving dietary intervention. The patients were randomly allocated into the catgut embedding acupuncture group with diet intervention or the sham (placebo) embedding acupuncture group with diet intervention. Catgut embedding therapy was given twice at CV12 Zhongwan, ST25 Tianshu, CV6 Qihai, and SP6 Sanyinjiao acupoints with two week intervals between procedures. The study endpoints were the IL-6 levels in the blood plasma and body mass index (BMI), measured before and after the intervention. We observed a reduction in the IL-6 levels (mean reduction 0.13 pg/mL, 95% CI: 0.03-0.23) and BMI (mean reduction 0.66, 95% CI 0.43-0.88) in the accupuncture group. The average difference in mean reduction of BMI between the accupuncture and sham groups was 0.34 (95% CI: 0.17-0.52). No difference was found in mean IL-6 reduction between the two groups (95% CI: -0.17 to 0.06). The results suggest that acupoint catgut embedding therapy may help reduce IL-6 levels and BMI in obese patients receiving dietary intervention.
Review of ESA Experimental Research Activities for Electric Propulsion
2011-01-01
detect gravitational waves, distortions of space-time occurring when a massive body is accelerated or disturbed. To achieve that goal the relative...thrusters of Electric Propulsion systems accelerate the propellant ions to velocities of tens of kilometers per second making it a propulsion option that is...expanded through nozzle Ion electrostatically accelerated . Plasma accelerated via interaction of current and magnetic field. Concept Resistojets
Yang, Zhong-Zhi; Wu, Yang; Zhao, Dong-Xia
2004-02-08
Recently, experimental and theoretical studies on the water system are very active and noticeable. A transferable intermolecular potential seven points approach including fluctuation charges and flexible body (ABEEM-7P) based on a combination of the atom-bond electronegativity equalization and molecular mechanics (ABEEM/MM), and its application to small water clusters are explored and tested in this paper. The consistent combination of ABEEM and molecular mechanics (MM) is to take the ABEEM charges of atoms, bonds, and lone-pair electrons into the intermolecular electrostatic interaction term in molecular mechanics. To examine the charge transfer we have used two models coming from the charge constraint types: one is a charge neutrality constraint on whole water system and the other is on each water molecule. Compared with previous water force fields, the ABEEM-7P model has two characters: (1) the ABEEM-7P model not only presents the electrostatic interaction of atoms, bonds and lone-pair electrons and their changing in respond to different ambient environment but also introduces "the hydrogen bond interaction region" in which a new parameter k(lp,H)(R(lp,H)) is used to describe the electrostatic interaction of the lone-pair electron and the hydrogen atom which can form the hydrogen bond; (2) nonrigid but flexible water body permitting the vibration of the bond length and angle is allowed due to the combination of ABEEM and molecular mechanics, and for van der Waals interaction the ABEEM-7P model takes an all atom-atom interaction, i.e., oxygen-oxygen, hydrogen-hydrogen, oxygen-hydrogen interaction into account. The ABEEM-7P model based on ABEEM/MM gives quite accurate predictions for gas-phase state properties of the small water clusters (H(2)O)(n) (n=2-6), such as optimized geometries, monomer dipole moments, vibrational frequencies, and cluster interaction energies. Due to its explicit description of charges and the hydrogen bond, the ABEEM-7P model will be applied to discuss properties of liquid water, ice, aqueous solutions, and biological systems.
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S
1995-03-01
We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain < 11% acidic lipid, the -25 mV equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S
1995-01-01
We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain < 11% acidic lipid, the -25 mV equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:7756540
Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn
2016-05-11
The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.
Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing
2016-12-23
The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 - 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.
Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing
2016-01-01
The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8×10−13m/s2/Hz1/2, which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm/Hz1/2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching. PMID:28025534
Brownian Dynamics Simulations of Ion Transport through the VDAC
Lee, Kyu Il; Rui, Huan; Pastor, Richard W.; Im, Wonpil
2011-01-01
It is important to gain a physical understanding of ion transport through the voltage-dependent anion channel (VDAC) because this channel provides primary permeation pathways for metabolites and electrolytes between the cytosol and mitochondria. We performed grand canonical Monte Carlo/Brownian dynamics (GCMC/BD) simulations to explore the ion transport properties of human VDAC isoform 1 (hVDAC1; PDB:2K4T) embedded in an implicit membrane. When the MD-derived, space-dependent diffusion constant was used in the GCMC/BD simulations, the current-voltage characteristics and ion number profiles inside the pore showed excellent agreement with those calculated from all-atom molecular-dynamics (MD) simulations, thereby validating the GCMC/BD approach. Of the 20 NMR models of hVDAC1 currently available, the third one (NMR03) best reproduces both experimental single-channel conductance and ion selectivity (i.e., the reversal potential). In addition, detailed analyses of the ion trajectories, one-dimensional multi-ion potential of mean force, and protein charge distribution reveal that electrostatic interactions play an important role in the channel structure and ion transport relationship. Finally, the GCMC/BD simulations of various mutants based on NMR03 show good agreement with experimental ion selectivity. The difference in ion selectivity between the wild-type and the mutants is the result of altered potential of mean force profiles that are dominated by the electrostatic interactions. PMID:21281575
Prediction of protein-protein interaction sites using electrostatic desolvation profiles.
Fiorucci, Sébastien; Zacharias, Martin
2010-05-19
Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
ELECTROSTATIC CHARGE ON NANO-PARTICLES ACTIVATES CNS MACROPHAGES (MICROGLIA).
Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...
Charge Inversion by Electrostatic Complexation: Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Faraudo, Jordi; Travesset, Alex
2007-03-01
Ions near interfaces play an important role in many biological and physico-chemical processes and exhibit a fascinating diverse range of phenomena. A relevant example is charge inversion, where interfacial charges attract counterions in excess of their own nominal charge, thus leading to an inversion of the sign of the interfacial charge. In this work, we argue that in the case of amphiphilic interfaces, charge inversion can be generated by complexation, that is, electrostatic complexes containing several counterions bound to amphiphilic molecules. The formation of these complexes require the presence at the interface of groups with conformational degrees of freedom with many electronegative atoms. We illustrate this mechanism by analyzing all atomic molecular dynamics simulations of a DMPA (Dimirystoil-Phosphatidic acid) phospholipid monolayer in contact with divalent counterions. The results are found to be in agreement with recent experimental results on Langmuir monolayers. We also discuss the implications for biological systems, as Phosphatidic acid is emerging as a key signaling phospholipid.
Aidas, Kęstutis; Olsen, Jógvan Magnus H; Kongsted, Jacob; Ågren, Hans
2013-02-21
Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores-acridine yellow and proflavin-located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site. The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted to reproduce the electrostatic potential and isotropic atomic polarizabilities computed individually for every residue of the protein was used in the linear response calculations. Comparing the calculated aqueous solution-to-protein shifts of maximum absorption energies to available experimental data, we concluded that the cationic proflavin chromophore is likely not to bind albumin at its drug binding site 1 nor at its heme binding site. Although agreement with experimental data could only be obtained in qualitative terms, our results clearly indicate that the difference in optical response of the two probes is due to deprotonation, and not, as earlier suggested, to different binding sites. The ramifications of this finding for design of molecular probes targeting albumin or other proteins is briefly discussed.
Kamerlin, Shina C L; Haranczyk, Maciej; Warshel, Arieh
2009-02-05
Hybrid quantum mechanical/molecular mechanical (QM/MM) approaches have been used to provide a general scheme for chemical reactions in proteins. However, such approaches still present a major challenge to computational chemists, not only because of the need for very large computer time in order to evaluate the QM energy but also because of the need for proper computational sampling. This review focuses on the sampling issue in QM/MM evaluations of electrostatic energies in proteins. We chose this example since electrostatic energies play a major role in controlling the function of proteins and are key to the structure-function correlation of biological molecules. Thus, the correct treatment of electrostatics is essential for the accurate simulation of biological systems. Although we will be presenting different types of QM/MM calculations of electrostatic energies (and related properties) here, our focus will be on pKa calculations. This reflects the fact that pKa's of ionizable groups in proteins provide one of the most direct benchmarks for the accuracy of electrostatic models of macromolecules. While pKa calculations by semimacroscopic models have given reasonable results in many cases, existing attempts to perform pKa calculations using QM/MM-FEP have led to discrepancies between calculated and experimental values. In this work, we accelerate our QM/MM calculations using an updated mean charge distribution and a classical reference potential. We examine both a surface residue (Asp3) of the bovine pancreatic trypsin inhibitor and a residue buried in a hydrophobic pocket (Lys102) of the T4-lysozyme mutant. We demonstrate that, by using this approach, we are able to reproduce the relevant side chain pKa's with an accuracy of 3 kcal/mol. This is well within the 7 kcal/mol energy difference observed in studies of enzymatic catalysis, and is thus sufficient accuracy to determine the main contributions to the catalytic energies of enzymes. We also provide an overall perspective of the potential of QM/MM calculations in general evaluations of electrostatic free energies, pointing out that our approach should provide a very powerful and accurate tool to predict the electrostatics of not only solution but also enzymatic reactions, as well as the solvation free energies of even larger systems, such as nucleic acid bases incorporated into DNA.
NASA Astrophysics Data System (ADS)
Bhalla, Amneet Pal Singh; Johansen, Hans; Graves, Dan; Martin, Dan; Colella, Phillip; Applied Numerical Algorithms Group Team
2017-11-01
We present a consistent cell-averaged discretization for incompressible Navier-Stokes equations on complex domains using embedded boundaries. The embedded boundary is allowed to freely cut the locally-refined background Cartesian grid. Implicit-function representation is used for the embedded boundary, which allows us to convert the required geometric moments in the Taylor series expansion (upto arbitrary order) of polynomials into an algebraic problem in lower dimensions. The computed geometric moments are then used to construct stencils for various operators like the Laplacian, divergence, gradient, etc., by solving a least-squares system locally. We also construct the inter-level data-transfer operators like prolongation and restriction for multi grid solvers using the same least-squares system approach. This allows us to retain high-order of accuracy near coarse-fine interface and near embedded boundaries. Canonical problems like Taylor-Green vortex flow and flow past bluff bodies will be presented to demonstrate the proposed method. U.S. Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231).
The Effects of Thunderstorm Static and Quasi-Static Electric Fields on the Lower Ionosphere
NASA Astrophysics Data System (ADS)
Salem, Mohammad Ahmad
Thunderstorms and their lightning discharges are of great interest to many areas of geophysics and atmospheric electricity. A thunderstorm is an electric generator; it can produce both electrostatic and quasi-electrostatic fields in the overhead atmospheric D region. The D region is the lower part of the ionosphere that extends from about 40-90 km altitude where the electrons and ions are sufficient enough to affect the propagation of radio waves. In contrast to the electrostatic field, the quasi-electrostatic fields can be much stronger in magnitude, but shorter in duration, and can trigger halos. A halo is one type of the transient luminous events (TLEs) and typically appears within 1-2 ms after an intense cloud to ground lightning discharge. It looks like a relatively homogeneous glow in the shape of a pancake that is centered around 75-80 km altitude with a horizontal extent of tens of kilometers and vertical thickness of several kilometers. The goals of this dissertation research are to investigate the electrical effects of thunderstorm electrostatic and quasi-electrostatic fields on the nighttime lower ionosphere, and their covert relation to the formation of atmospheric halos. This work entails numerical and theoretical modeling analyses, and comparison of current theory and simulation results with the actual observations. For the first part of this study we have demonstrated that, under steady state conditions, electrostatic fields of <0.4Ek values (not strong enough to produce TLEs) can be established in the lower ionosphere due to underlying thunderstorms. We utilized the simplified nighttime ion chemistry model described in the work of Liu [2012] to investigate how these fields affect the lower ionosphere ion density profile. The three-body electron attachment, through which electrons can be converted to negative ions, is the only process whose rate constant depends on the field values within the above-mentioned limit. As a result of the variation of the rate constant with the electric field, the nighttime steady state electron density profile can be reduced by ˜40% or enhanced by a factor of ˜6. We have improved our model in order to self-consistently calculate the steady state conductivity of the lower ionosphere above a thunderstorm. The new model takes into account the heating effects of thunderstorm electrostatic fields on the free electrons. The modeling results indicate that under steady state condition, although the electron density is generally increased, the nighttime lower ionospheric conductivity can be reduced by up to 1-2 orders of magnitude because electron mobility is significantly reduced due to the electron heating effect. Because of this reduction, it is found that for a typical ionospheric density profile, the resulting changes in the reflection heights of ELF and VLF waves are 5 and 2 km, respectively. In the second part of this dissertation, a one-dimensional plasma discharge fluid model is developed to study the response of the nighttime lower ionosphere to the quasi-electrostatic field produced by cloud-to-ground lightning flashes. When the quasi-electrostatic field reaches and exceeds about E k, a halo can be triggered in the lower ionosphere. The modeling results indicate that the ionospheric perturbation is determined by the ambient ionospheric density profile, the charge. moment change, and charge transfer time. Tenuous ambient profiles result in larger changes in the ionospheric electron density. Cloud-to-ground lightning discharges, with larger charge moment changes and shorter charge transfer times, result in a larger change in the ionospheric electron density. In particular, the enhancement in the lower ionospheric electron density due to impulsive negative cloud-to-ground lightning flashes has been investigated. It is found that the enhancement can reach up to about 3 orders of magnitude above ˜70 km altitude in a few seconds. Below ˜75 km altitude, this enhancement recovers in a few seconds due to the fast electron attachment process. The recovery time of the electron enhancement above ˜75 km altitude is controlled by a slower recombination process; it depends on the ambient density profile and can last for tens of minutes to hours. Finally, the modeling results of the lower ionosphere recovery time are analyzed to investigate the role of halos in producing early VLF events with long recovery time. It is found that these events can be explained when sufficient ionization is produced around ˜80 km altitude. Such ionization can be produced by the impact of impulsive negative cloud-to-ground lightning flashes with a relatively large charge moment change on a tenuous ionospheric density profile.
Genetics Home Reference: glycoprotein VI deficiency
... protein called glycoprotein VI (GPVI). This protein is embedded in the outer membrane of blood cell fragments ... erythematosus (SLE). Autoimmune disorders occur when the immune system malfunctions and attacks the body's own cells and ...
Al-Hamdani, Yasmine S; Rossi, Mariana; Alfè, Dario; Tsatsoulis, Theodoros; Ramberger, Benjamin; Brandenburg, Jan Gerit; Zen, Andrea; Kresse, Georg; Grüneis, Andreas; Tkatchenko, Alexandre; Michaelides, Angelos
2017-07-28
Molecular adsorption on surfaces plays an important part in catalysis, corrosion, desalination, and various other processes that are relevant to industry and in nature. As a complement to experiments, accurate adsorption energies can be obtained using various sophisticated electronic structure methods that can now be applied to periodic systems. The adsorption energy of water on boron nitride substrates, going from zero to 2-dimensional periodicity, is particularly interesting as it calls for an accurate treatment of polarizable electrostatics and dispersion interactions, as well as posing a practical challenge to experiments and electronic structure methods. Here, we present reference adsorption energies, static polarizabilities, and dynamic polarizabilities, for water on BN substrates of varying size and dimension. Adsorption energies are computed with coupled cluster theory, fixed-node quantum Monte Carlo (FNQMC), the random phase approximation, and second order Møller-Plesset theory. These wavefunction based correlated methods are found to agree in molecular as well as periodic systems. The best estimate of the water/h-BN adsorption energy is -107±7 meV from FNQMC. In addition, the water adsorption energy on the BN substrates could be expected to grow monotonically with the size of the substrate due to increased dispersion interactions, but interestingly, this is not the case here. This peculiar finding is explained using the static polarizabilities and molecular dispersion coefficients of the systems, as computed from time-dependent density functional theory (DFT). Dynamic as well as static polarizabilities are found to be highly anisotropic in these systems. In addition, the many-body dispersion method in DFT emerges as a particularly useful estimation of finite size effects for other expensive, many-body wavefunction based methods.
Planetary surface photometry and imaging: progress and perspectives.
Goguen, Jay D
2014-10-01
Spacecraft have visited and returned many thousands of images and spectra of all of the planets, many of their moons, several asteroids, and a few comet nuclei during the golden age of planetary exploration. The signal in each pixel of each image or spectral channel is a measurement of the radiance of scattered sunlight into a specific direction. The information on the structure and composition of the surface that is contained in variation of the radiance with scattering geometry and wavelength, including polarization state, has only just begun to be exploited and is the topic of this review. The uppermost surfaces of these bodies are mainly composed of particles that are continuously generated by impacts of micrometeoroids and larger impactors. Models of light scattering by distributions of sizes and irregular shapes of particles and by closely packed particles within a surface are challenging. These are active topics of research where considerable progress has recently been made. We focus on the surfaces of bodies lacking atmospheres.These surfaces are diverse and their morphologies give evidence of their evolution by impacts and resurfacing by a variety of processes including down slope movement and electrostatic transport of particles, gravitational accumulation of debris, volatile outgassing and migration, and magnetospheric interactions. Sampling of scattering geometries and spatial resolution is constrained by spacecraft trajectories. However, the large number of archived images and spectra demand more quantitative interpretation. The scattering geometry dependence of the radiance is underutilized and promises constraints on the compositions and structure of the surface for materials that lack diagnostic wavelength dependence. The general problem is considered in terms of the lunar regolith for which samples have been returned to Earth.
Four-body correlation embedded in antisymmetrized geminal power wave function.
Kawasaki, Airi; Sugino, Osamu
2016-12-28
We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.
Mechanics, morphology, and mobility in stratum corneum membranes
NASA Astrophysics Data System (ADS)
Olmsted, Peter; Das, Chinmay; Noro, Massimo
2012-02-01
The stratum corneum is the outermost layer of skin, and serves as a protective barrier against external agents, and to control moisture. It comprises keratin bodies (corneocytes) embedded in a matrix of lipid bilayers. Unlike the more widely studied phospholipid bilayers, the SC bilayers are typically in a gel-like state. Moreover, the SC membrane composition is radically different from more fluid counterparts: it comprises single tailed fatty acids, ceramides, and cholesterol; with many distinct ceramides possessing different lengths of tails, and always with two tails of different lengths. I will present insight from computer simulations into the morphology, mechanical properties, and diffusion (barrier) properties of these highly heterogeneous membranes. Our results provide some clue as to the design principles for the SC membrane, and is an excellent example of the use of wide polydispersity by natural systems.
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1988-01-01
A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features.
ERIC Educational Resources Information Center
Macizo, Pedro; Van Petten, Cyma; O'Rourke, Polly L.
2012-01-01
Many multisyllabic words contain shorter words that are not semantic units, like the CAP in HANDICAP and the DURA ("hard") in VERDURA ("vegetable"). The spaces between printed words identify word boundaries, but spurious identification of these embedded words is a potentially greater challenge for spoken language comprehension, a challenge that is…
ERIC Educational Resources Information Center
Koshino, Makoto; Kojima, Yuki; Kanedera, Noboru
2013-01-01
Educational materials of embedded systems are currently used in many educational institutions. However, they have difficulties in arousing the interest of students. One of the reasons is that a poor CPU (central processing unit), which has been loaded in the current materials, cannot execute the multimedia processing. In order to make the…
Information Literacy Development at a Distance: Embedded or Reality?
ERIC Educational Resources Information Center
Chisholm, Elizabeth; Lamond, Heather M.
2012-01-01
A small library using two full time equivalent (FTE) professional staff integrated into the Moodle environment of over 40 postgraduate distance courses with the potential to reach over 1,800 students and getting results. How? This is not embedding as many would think of it, with the librarian an active teacher throughout the entire length of the…
ERIC Educational Resources Information Center
Divan, Aysha; Bowman, Marion; Seabourne, Anna
2015-01-01
There is general agreement in the literature that international students are more likely to plagiarise compared to their native speaker peers and, in many instances, plagiarism is unintentional. In this article we describe the effectiveness of an academic writing development programme embedded into a Biological Sciences Taught Masters course…
Law, Lisa M; Edirisinghe, Nuwani; Wason, James Ms
2016-08-01
Many types of telehealth interventions rely on activity from the patient in order to have a beneficial effect on their outcome. Remote monitoring systems require the patient to record regular measurements at home, for example, blood pressure, so clinicians can see whether the patient's health changes over time and intervene if necessary. A big problem in this type of intervention is non-compliance. Most telehealth trials report compliance rates, but they rarely compare compliance among various options of telehealth delivery, of which there may be many. Optimising telehealth delivery is vital for improving compliance and, therefore, clinical outcomes. We propose a trial design which investigates ways of improving compliance. For efficiency, this trial is embedded in a larger trial for evaluating clinical effectiveness. It employs a technique called micro-randomisation, where individual patients are randomised multiple times throughout the study. The aims of this article are (1) to verify whether the presence of an embedded secondary trial still allows valid analysis of the primary research and (2) to demonstrate the usefulness of the micro-randomisation technique for comparing compliance interventions. Simulation studies were used to simulate a large number of clinical trials, in which no embedded trial was used, a micro-randomised embedded trial was used, and a factorial embedded trial was used. Each simulation recorded the operating characteristics of the primary and secondary trials. We show that the type I error rate of the primary analysis was not affected by the presence of an embedded secondary trial. Furthermore, we show that micro-randomisation is superior to a factorial design as it reduces the variation caused by within-patient correlation. It therefore requires smaller sample sizes - our simulations showed a requirement of 128 patients for a micro-randomised trial versus 760 patients for a factorial design, in the presence of within-patient correlation. We believe that an embedded, micro-randomised trial is a feasible technique that can potentially be highly useful in telehealth trials. © The Author(s) 2016.
EXIF Custom: Automatic image metadata extraction for Scratchpads and Drupal.
Baker, Ed
2013-01-01
Many institutions and individuals use embedded metadata to aid in the management of their image collections. Many deskop image management solutions such as Adobe Bridge and online tools such as Flickr also make use of embedded metadata to describe, categorise and license images. Until now Scratchpads (a data management system and virtual research environment for biodiversity) have not made use of these metadata, and users have had to manually re-enter this information if they have wanted to display it on their Scratchpad site. The Drupal described here allows users to map metadata embedded in their images to the associated field in the Scratchpads image form using one or more customised mappings. The module works seamlessly with the bulk image uploader used on Scratchpads and it is therefore possible to upload hundreds of images easily with automatic metadata (EXIF, XMP and IPTC) extraction and mapping.
EXIF Custom: Automatic image metadata extraction for Scratchpads and Drupal
2013-01-01
Abstract Many institutions and individuals use embedded metadata to aid in the management of their image collections. Many deskop image management solutions such as Adobe Bridge and online tools such as Flickr also make use of embedded metadata to describe, categorise and license images. Until now Scratchpads (a data management system and virtual research environment for biodiversity) have not made use of these metadata, and users have had to manually re-enter this information if they have wanted to display it on their Scratchpad site. The Drupal described here allows users to map metadata embedded in their images to the associated field in the Scratchpads image form using one or more customised mappings. The module works seamlessly with the bulk image uploader used on Scratchpads and it is therefore possible to upload hundreds of images easily with automatic metadata (EXIF, XMP and IPTC) extraction and mapping. PMID:24723768
Real-time depth processing for embedded platforms
NASA Astrophysics Data System (ADS)
Rahnama, Oscar; Makarov, Aleksej; Torr, Philip
2017-05-01
Obtaining depth information of a scene is an important requirement in many computer-vision and robotics applications. For embedded platforms, passive stereo systems have many advantages over their active counterparts (i.e. LiDAR, Infrared). They are power efficient, cheap, robust to lighting conditions and inherently synchronized to the RGB images of the scene. However, stereo depth estimation is a computationally expensive task that operates over large amounts of data. For embedded applications which are often constrained by power consumption, obtaining accurate results in real-time is a challenge. We demonstrate a computationally and memory efficient implementation of a stereo block-matching algorithm in FPGA. The computational core achieves a throughput of 577 fps at standard VGA resolution whilst consuming less than 3 Watts of power. The data is processed using an in-stream approach that minimizes memory-access bottlenecks and best matches the raster scan readout of modern digital image sensors.
Upper-Division Student Difficulties with Separation of Variables
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Pollock, Steven J.
2015-01-01
Separation of variables can be a powerful technique for solving many of the partial differential equations that arise in physics contexts. Upper-division physics students encounter this technique in multiple topical areas including electrostatics and quantum mechanics. To better understand the difficulties students encounter when utilizing the…
Moving improvement research closer to practice: the Researcher-in-Residence model
Marshall, Martin; Pagel, Christina; French, Catherine; Utley, Martin; Allwood, Dominique; Fulop, Naomi; Pope, Catherine; Banks, Victoria; Goldmann, Allan
2014-01-01
The traditional separation of the producers of research evidence in academia from the users of that evidence in healthcare organisations has not succeeded in closing the gap between what is known about the organisation and delivery of health services and what is actually done in practice. As a consequence, there is growing interest in alternative models of knowledge creation and mobilisation, ones which emphasise collaboration, active participation of all stakeholders, and a commitment to shared learning. Such models have robust historical, philosophical and methodological foundations but have not yet been embraced by many of the people working in the health sector. This paper presents an emerging model of participation, the Researcher-in-Residence. The model positions the researcher as a core member of a delivery team, actively negotiating a body of expertise which is different from, but complementary to, the expertise of managers and clinicians. Three examples of in-residence models are presented: an anthropologist working as a member of an executive team, operational researchers working in a front-line delivery team, and a Health Services Researcher working across an integrated care organisation. Each of these examples illustrates the contribution that an embedded researcher can make to a service-based team. They also highlight a number of unanswered questions about the model, including the required level of experience of the researcher and their areas of expertise, the institutional facilitators and barriers to embedding the model, and the risk that the independence of an embedded researcher might be compromised. The Researcher-in-Residence model has the potential to engage both academics and practitioners in the promotion of evidence-informed service improvement, but further evaluation is required before the model should be routinely used in practice. PMID:24894592
Casey, T. T.; Cousar, J. B.; Collins, R. D.
1988-01-01
Routine fixation and paraffin embedding destroys many hematopoietic and lymphoid differentiation antigens detected by flow cytometry or frozen section immunohistochemistry. On the other hand, morphologic evaluation is difficult in flow cytometric or frozen section studies. A simplified three-step plastic embedding system using acetone-fixed tissues embedded in glycol-methacrylate (GMA) resin has been found to provide both excellent morphologic and antigenic preservation. With our system, a wide variety of antigens are detected in plastic sections without trypsinization or prolonged embedding procedures; pan-B (CD19, CD22), pan-T (CD7, CD5, CD3, CD2), T-subset (CD4, CD8, CD1, CD25) markers as well as surface immunoglobulin and markers for myeloid and mononuclear-phagocyte cells are preserved. In summary, modifications of plastic embedding techniques used in this study simplify the procedure, apparently achieve excellent antigenic preservation, and facilitate evaluation of morphologic details in relation to immunocytochemical markers. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3282442
A Mobile GPS Application: Mosque Tracking with Prayer Time Synchronization
NASA Astrophysics Data System (ADS)
Hashim, Rathiah; Ikhmatiar, Mohammad Sibghotulloh; Surip, Miswan; Karmin, Masiri; Herawan, Tutut
Global Positioning System (GPS) is a popular technology applied in many areas and embedded in many devices, facilitating end-users to navigate effectively to user's intended destination via the best calculated route. The ability of GPS to track precisely according to coordinates of specific locations can be utilized to assist a Muslim traveler visiting or passing an unfamiliar place to find the nearest mosque in order to perform his prayer. However, not many techniques have been proposed for Mosque tracking. This paper presents the development of GPS technology in tracking the nearest mosque using mobile application software embedded with the prayer time's synchronization system on a mobile application. The prototype GPS system developed has been successfully incorporated with a map and several mosque locations.
Strategy and Sociability: The Mind, the Body, and the Soul of Chess
ERIC Educational Resources Information Center
Fine, Gary Alan
2014-01-01
Chess is a game of minds, bodies, and emotions. Most players recognize each of these as essential to playful competition, and all three are embedded in social relations. Thus chess, despite its reputation as a game of the mind, is not only a deeply thoughtful exercise, but also a test of physical endurance and strong emotions in its joys and…
Fiber-based generator for wearable electronics and mobile medication.
Zhong, Junwen; Zhang, Yan; Zhong, Qize; Hu, Qiyi; Hu, Bin; Wang, Zhong Lin; Zhou, Jun
2014-06-24
Smart garments for monitoring physiological and biomechanical signals of the human body are key sensors for personalized healthcare. However, they typically require bulky battery packs or have to be plugged into an electric plug in order to operate. Thus, a smart shirt that can extract energy from human body motions to run body-worn healthcare sensors is particularly desirable. Here, we demonstrated a metal-free fiber-based generator (FBG) via a simple, cost-effective method by using commodity cotton threads, a polytetrafluoroethylene aqueous suspension, and carbon nanotubes as source materials. The FBGs can convert biomechanical motions/vibration energy into electricity utilizing the electrostatic effect with an average output power density of ∼0.1 μW/cm(2) and have been identified as an effective building element for a power shirt to trigger a wireless body temperature sensor system. Furthermore, the FBG was demonstrated as a self-powered active sensor to quantitatively detect human motion.
Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël
2016-01-01
The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a "soft" constraint using a penalty-based method, this elastic joint description challenges the strictness of "hard" constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO.
Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël
2016-01-01
The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a “soft” constraint using a penalty-based method, this elastic joint description challenges the strictness of “hard” constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO. PMID:27314586
Planetary Surface-Atmosphere Interactions
NASA Astrophysics Data System (ADS)
Merrison, J. P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Knak Jensen, S.; Nørnberg, P.
2013-09-01
Planetary bodies having an accessible solid surface and significant atmosphere, such as Earth, Mars, Venus, Titan, share common phenomenology. Specifically wind induced transport of surface materials, subsequent erosion, the generation and transport of solid aerosols which leads both to chemical and electrostatic interaction with the atmosphere. How these processes affect the evolution of the atmosphere and surface will be discussed in the context of general planetology and the latest laboratory studies will be presented.
NASA Astrophysics Data System (ADS)
Modafe, Alireza
This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.
Molecular Dynamics Simulation of Membranes and a Transmembrane Helix
NASA Astrophysics Data System (ADS)
Duong, Tap Ha; Mehler, Ernest L.; Weinstein, Harel
1999-05-01
Three molecular dynamics (MD) simulations of 1.5-ns length were carried out on fully hydrated patches of dimyristoyl phosphatidylcholine (DMPC) bilayers in the liquid-crystalline phase. The simulations were performed using different ensembles and electrostatic conditions: a microcanonical ensemble or constant pressure-temperature ensemble, with or without truncated electrostatic interactions. Calculated properties of the membrane patches from the three different protocols were compared to available data from experiments. These data include the resulting overall geometrical dimensions, the order characteristics of the lipid hydrocarbon chains, as well as various measures of the conformations of the polar head groups. The comparisons indicate that the simulation carried out within the microcanonical ensemble with truncated electrostatic interactions yielded results closest to the experimental data, provided that the initial equilibration phase preceding the production run was sufficiently long. The effects of embedding a non-ideal helical protein domain in the membrane patch were studied with the same MD protocols. This simulation was carried out for 2.5 ns. The protein domain corresponds to the seventh transmembrane segment (TMS7) of the human serotonin 5HT 2Areceptor. The peptide is composed of two α-helical segments linked by a hinge domain around a perturbing Asn-Pro motif that produces at the end of the simulation a kink angle of nearly 80° between the two helices. Several aspects of the TMS7 structure, such as the bending angle, backbone Φ and Ψ torsion angles, the intramolecular hydrogen bonds, and the overall conformation, were found to be very similar to those determined by NMR for the corresponding transmembrane segment of the tachykinin NK-1 receptor. In general, the simulations were found to yield structural and dynamic characteristics that are in good agreement with experiment. These findings support the application of simulation methods to the study of the complex biomolecular systems at the membrane interface of cells.
NASA Astrophysics Data System (ADS)
Khoromskaia, Venera; Khoromskij, Boris N.
2014-12-01
Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.
Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems.
Park, Jiwoong; Garudadri, Harinath; Mercier, Patrick P
2017-02-01
The purpose of this contribution is to estimate the path loss of capacitive human body communication (HBC) systems under practical conditions. Most prior work utilizes large grounded instruments to perform path loss measurements, resulting in overly optimistic path loss estimates for wearable HBC devices. In this paper, small battery-powered transmitter and receiver devices are implemented to measure path loss under realistic assumptions. A hybrid electrostatic finite element method simulation model is presented that validates measurements and enables rapid and accurate characterization of future capacitive HBC systems. Measurements from form-factor-accurate prototypes reveal path loss results between 31.7 and 42.2 dB from 20 to 150 MHz. Simulation results matched measurements within 2.5 dB. Comeasurements using large grounded benchtop vector network analyzer (VNA) and large battery-powered spectrum analyzer (SA) underestimate path loss by up to 33.6 and 8.2 dB, respectively. Measurements utilizing a VNA with baluns, or large battery-powered SAs with baluns still underestimate path loss by up to 24.3 and 6.7 dB, respectively. Measurements of path loss in capacitive HBC systems strongly depend on instrumentation configurations. It is thus imperative to simulate or measure path loss in capacitive HBC systems utilizing realistic geometries and grounding configurations. HBC has a great potential for many emerging wearable devices and applications; accurate path loss estimation will improve system-level design leading to viable products.
Ni, Jiancong; Yang, Weiqiang; Wang, Qingxiang; Luo, Fang; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Yang, Huanghao
2018-05-15
The difference of electrostatic interaction between free Ru(phen) 3 2+ and Ru(phen) 3 2+ embedded in double strand DNA (dsDNA) to the negatively charged indium tin oxide (ITO) electrode has been applied to develop a homogeneous and label-free electrochemiluminescence (ECL) aptasensor for the first time. Ochratoxin A (OTA) has been chosen as the model target. The OTA aptamer is first hybridized with its complementary single strand DNA (ssDNA) to form dsDNA and then interacted with Ru(phen) 3 2+ via the grooves binding mode to form dsDNA-Ru(phen) 3 2+ complex, which remains negatively charged feature as well as low diffusion capacity to the negatively charged ITO electrode surface owing to the electrostatic repulsion. Meanwhile, the intercalated Ru(phen) 3 2+ in the grooves of dsDNA works as an ECL signal reporter instead of the labor-intensive labeling steps and can generate much more ECL signal than that from the labeling probe. In the presence of target, the aptamer prefers to form an aptamer-target complex in lieu of dsDNA, which induces the releasing of Ru(phen) 3 2+ from the dsDNA-Ru(phen) 3 2+ complex into the solution. With the assistance of RecJ f exonuclease (a ssDNA specific exonuclease), the released ssDNA and the aptamer in the target-complex were digested into mononucleotides. In the meantime, the target can be also liberated from OTA-aptamer complex and induce target cycling and large amount of free Ru(phen) 3 2+ present in the solution. Since Ru(phen) 3 2+ contains positive charges, which can diffuses easily to the ITO electrode surface because of electrostatic attraction, causing an obviously enhanced ECL signal detected. Under the optimal conditions, the enhanced ECL of the system has a linear relationship with the OTA concentration in the range of 0.01-1.0 ng/mL with a detection limit of 2 pg/mL. This innovative system not only expands the immobilization-free sensors in the electrochemiluminescent fields, but also can be developed for the detection of different targets easily with the same strategy by changing the aptamer used. Copyright © 2018 Elsevier B.V. All rights reserved.
Spatial Distributions of Guest Molecule and Hydration Level in Dendrimer-Based Guest–Host Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chih-Ying; Chen, Hsin-Lung; Do, Changwoo
2016-08-09
Using the electrostatic complex of G4 poly(amidoamine) (PAMAM) dendrimer with an amphiphilic surfactant as a model system, contrast variation small angle neutron scattering (SANS) is implemented to resolve the key structural characteristics of dendrimer-based guest–host system. Quantifications of the radial distributions of the scattering length density and the hydration level within the complex molecule reveal that the surfactant is embedded in the peripheral region of dendrimer and the steric crowding in this region increases the backfolding of the dendritic segments, thereby reducing the hydration level throughout the complex molecule. Here, the insights into the spatial location of the guest moleculesmore » as well as the perturbations of dendrimer conformation and hydration level deduced here are crucial for the delicate design of dendrimer-based guest–host system for biomedical applications.« less
NASA Astrophysics Data System (ADS)
Huang, Tao; Zou, Yanhui; Lv, Jianhong; Yang, Jinchun; Tao, Li; Zhou, Jianfei
2017-09-01
Human body under high-voltage AC transmission lines will produce a certain induced voltage due to the electrostatic induction. When the human body contacts with some grounded objects, the charges transfer from the body to the ground and produce contact current which may cause transient electric shock. Using CDEGS and ATP/EMTP, the paper proposes a method for quantitatively calculating the transient electric shock characteristics. It calculates the human body voltage, discharge current and discharge energy under certain 500kV compact-type transmission lines and predicts the corresponding human feelings. The results show that the average root value of discharge current is less than 10mA when the human body is under the 500kV compact-type transmission lines and the human body is overall safe if the transmission lines satisfy the relevant design specifications. It concludes that the electric field strength above the ground should be limited to 4kV/m through the residential area for the purpose of reducing the electromagnetic impact.
NASA Astrophysics Data System (ADS)
Llusar, Rosa; Casarrubios, Marcos; Barandiarán, Zoila; Seijo, Luis
1996-10-01
An ab initio theoretical study of the optical absorption spectrum of Ni2+-doped MgO has been conducted by means of calculations in a MgO-embedded (NiO6)10-cluster. The calculations include long- and short-range embedding effects of electrostatic and quantum nature brought about by the MgO crystalline lattice, as well as electron correlation and spin-orbit effects within the (NiO6)10- cluster. The spin-orbit calculations have been performed using the spin-orbit-CI WB-AIMP method [Chem. Phys. Lett. 147, 597 (1988); J. Chem. Phys. 102, 8078 (1995)] which has been recently proposed and is applied here for the first time to the field of impurities in crystals. The WB-AIMP method is extended in order to handle correlation effects which, being necessary to produce accurate energy differences between spin-free states, are not needed for the proper calculation of spin-orbit couplings. The extension of the WB-AIMP method, which is also aimed at keeping the size of the spin-orbit-CI within reasonable limits, is based on the use of spin-free-state shifting operators. It is shown that the unreasonable spin-orbit splittings obtained for MgO:Ni2+ in spin-orbit-CI calculations correlating only 8 electrons become correct when the proposed extension is applied, so that the same CI space is used but energy corrections due to correlating up to 26 electrons are included. The results of the ligand field spectrum of MgO:Ni2+ show good overall agreement with the experimental measurements and a reassignment of the observed Eg(b3T1g) excited state is proposed and discussed.
Parametric embedding for class visualization.
Iwata, Tomoharu; Saito, Kazumi; Ueda, Naonori; Stromsten, Sean; Griffiths, Thomas L; Tenenbaum, Joshua B
2007-09-01
We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.
Effects of electrostatic interactions on ligand dissociation kinetics
NASA Astrophysics Data System (ADS)
Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.
2018-02-01
We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.
Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase
NASA Astrophysics Data System (ADS)
Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.
2015-11-01
In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.
Coarse-grained electrostatic interactions of coronene: Towards the crystalline phase.
Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L
2015-11-07
In this article, we present and compare two different, coarse-grained approaches to model electrostatic interactions of disc-shaped aromatic molecules, specifically coronene. Our study builds on our previous work [T. Heinemann et al., J. Chem. Phys. 141, 214110 (2014)], where we proposed, based on a systematic coarse-graining procedure starting from the atomistic level, an anisotropic effective (Gay-Berne-like) potential capable of describing van der Waals contributions to the interaction energy. To take into account electrostatics, we introduce, first, a linear quadrupole moment along the symmetry axis of the coronene disc. The second approach takes into account the fact that the partial charges within the molecules are distributed in a ring-like fashion. We then reparametrize the effective Gay-Berne-like potential such that it matches, at short distances, the ring-ring potential. To investigate the validity of these two approaches, we perform many-particle molecular dynamics simulations, focusing on the crystalline phase (karpatite) where electrostatic interaction effects are expected to be particularly relevant for the formation of tilted stacked columns. Specifically, we investigate various structural parameters as well as the melting transition. We find that the second approach yields consistent results with those from experiments despite the fact that the underlying potential decays with the wrong distance dependence at large molecule separations. Our strategy can be transferred to a broader class of molecules, such as benzene or hexabenzocoronene.
Watkins, Herschel M.; Vallée-Bélisle, Alexis; Ricci, Francesco; Makarov, Dmitrii E.; Plaxco, Kevin W.
2012-01-01
Surface-tethered biomolecules play key roles in many biological processes and biotechnologies. However, while the physical consequences of such surface attachment have seen significant theoretical study, to date this issue has seen relatively little experimental investigation. In response we present here a quantitative experimental and theoretical study of the extent to which attachment to a charged –but otherwise apparently inert– surface alters the folding free energy of a simple biomolecule. Specifically, we have measured the folding free energy of a DNA stem loop both in solution and when site-specifically attached to a negatively charged, hydroxyl-alkane-coated gold surface. We find that, whereas surface attachment is destabilizing at low ionic strength it becomes stabilizing at ionic strengths above ~130 mM. This behavior presumably reflects two competing mechanisms: excluded volume effects, which stabilize the folded conformation by reducing the entropy of the unfolded state, and electrostatics, which, at lower ionic strengths, destabilizes the more compact folded state via repulsion from the negatively charged surface. To test this hypothesis we have employed existing theories of the electrostatics of surface-bound polyelectrolytes and the entropy of surface-bound polymers to model both effects. Despite lacking any fitted parameters, these theoretical models quantitatively fit our experimental results, suggesting that, for this system, current knowledge of both surface electrostatics and excluded volume effects is reasonably complete and accurate. PMID:22239220
Covalent bonding: the fundamental role of the kinetic energy.
Bacskay, George B; Nordholm, Sture
2013-08-22
This work addresses the continuing disagreement between two prevalent schools of thought concerning the mechanism of covalent bonding. According to Hellmann, Ruedenberg, and Kutzelnigg, a lowering of the kinetic energy associated with electron delocalization is the key stabilization mechanism. The opposing view of Slater, Feynman, and Bader has maintained that the source of stabilization is electrostatic potential energy lowering due to electron density redistribution to binding regions between nuclei. Despite the large body of accurate quantum chemical work on a range of molecules, the debate concerning the origin of bonding continues unabated, even for H2(+), the simplest of covalently bound molecules. We therefore present here a detailed study of H2(+), including its formation, that uses a sequence of computational methods designed to reveal the relevant contributing mechanisms as well as the spatial density distributions of the kinetic and potential energy contributions. We find that the electrostatic mechanism fails to provide real insight or explanation of bonding, while the kinetic energy mechanism is sound and accurate but complex or even paradoxical to those preferring the apparent simplicity of the electrostatic model. We further argue that the underlying mechanism of bonding is in fact of dynamical character, and analyses that focus on energy do not reveal the origin of covalent bonding in full clarity.
Kollipara, Sireesha; Tatireddy, Shivakishore; Pathirathne, Thusitha; Rathnayake, Lasantha K; Northrup, Scott H
2016-08-25
Brownian dynamics (BD) simulations provide here a theoretical atomic-level treatment of the reduction of human ferric cytochrome b5 (cyt b5) by NADH-cytochrome b5 reductaste (cyt b5r) and several of its mutants. BD is used to calculate the second-order rate constant of electron transfer (ET) between the proteins for direct correlation with experiments. Interestingly, the inclusion of electrostatic forces dramatically increases the reaction rate of the native proteins despite the overall negative charge of both proteins. The role played by electrostatic charge distribution in stabilizing the ET complexes and the role of mutations of several amino acid residues in stabilizing or destabilizing the complexes are analyzed. The complex with the shortest ET reaction distance (d = 6.58 Å) from rigid body BD is further subjected to 1 ns of molecular dynamics (MD) in a periodic box of TIP3P water to produce a more stable complex allowed by flexibility and with a shorter average reaction distance d = 6.02 Å. We predict a docking model in which the following ion-ion interactions are dominant (cyt b5r/cyt b5): Lys162-Heme O1D/Lys163-Asp64/Arg91-Heme O1A/Lys125-Asp70.
NASA Astrophysics Data System (ADS)
Kolikov, Kiril
2016-11-01
The Coulomb's formula for the force FC of electrostatic interaction between two point charges is well known. In reality, however, interactions occur not between point charges, but between charged bodies of certain geometric form, size and physical structure. This leads to deviation of the estimated force FC from the real force F of electrostatic interaction, thus imposing the task to evaluate the disparity. In the present paper the problem is being solved theoretically for two charged conductive spheres of equal radii and arbitrary electric charges. Assessment of the deviation is given as a function of the ratio of the distance R between the spheres centers to the sum of their radii. For the purpose, relations between FC and F derived in a preceding work of ours, are employed to generalize the Coulomb's interactions. At relatively short distances between the spheres, the Coulomb force FC, as estimated to be induced by charges situated at the centers of the spheres, differ significantly from the real force F of interaction between the spheres. In the case of zero and non-zero charge we prove that with increasing the distance between the two spheres, the force F decrease rapidly, virtually to zero values, i.e. it appears to be short-acting force.
NASA Astrophysics Data System (ADS)
Matthews, James
2015-10-01
Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical presentation related to their work. Chilworth Technology and Infolytica both took advantage of this opportunity. David Firth from Chilworth Technology delivered some case studies related to process safety and Chris Emson from Infolytica compared the different types of modelling software used in industry and academia. For two days of the conference, an exhibition was held for delegates to meet and discuss their work with interested companies. Sessions on Modelling and Simulation and on Measurement and Instrumentation were included. Recent successful IOP meetings on Electrospinning and Electrospray prove that this is an important topic, and were the subject of a session in the conference, including an invited talk by Dr Horst von Recum on Electrospun materials for affinity based drug delivery. The conference finished with a session on Environmental and Space Applications. The Southampton Yacht Club provided a fitting venue for the conference dinner on the Wednesday evening. Meal times, and conference dinners in particular, are always a great opportunity to meet with other workers in related fields, and there were many conversations started in question and answer sessions that continued over a plate of food. Within the conference dinner, prizes were awarded for the best student work. Ladislav Konopka's talk in the modelling and simulation session discussed how different particle sizes can be shown to transfer charge in a modelled system. Matthias Perez's poster presented early work on the use of a small-scale wind turbine to generate wind power. The discussions both within the lecture theatre and the ongoing discussions that occur over coffee and tea in between sessions are often a place where new ideas are shared. In fact, the presentation submitted by Dr Atsushi Ohsawa, Charge neutralisation from the side surface of an insulating plate, acknowledged an inspiration from a question raised at a previous Electrostatics conference in Budapest in 2013. In these proceedings the conference committee took the decision to transcribe the questions and answers to leave a lasting record of the conversations that took place after each oral presentation and they are included in the printed proceedings. I am very grateful to Keith Davies and the conference committee, and Joanne Hemstock and other IOP staff, who provided advice and assistance throughout the whole process. A peer reviewed proceedings is not possible without willing expert reviewers who are able to provide reviews on abstracts and submitted papers. I am grateful to all who undertook reviews throughout the process. I hope to see many of this year's delegates in four years time for Electrostatics 2019.
Demystifying Electric Flux and Gauss's Law
ERIC Educational Resources Information Center
McManus, Jeff
2017-01-01
Many physics students have experienced the difficulty of internalizing concepts in electrostatics. After studying concrete, measurable details in mechanics, they are challenged by abstract ideas such as electric fields, flux, Gauss's law, and electric potential. There are a few well-known hands-on activities that help students get experience with…
Manson, William C; Ryan, James G; Ladner, Heidi; Gupta, Sanjey
2011-01-01
Introduction We compared the immediate cosmetic outcome of metallic foreign-body removal by emergency medicine (EM) residents with ultrasound guidance and conventional radiography. Methods This single-blinded, randomized, crossover study evaluated the ability of EM residents to remove metallic pins embedded in pigs' feet. Before the experiment, we embedded 1.5-cm metallic pins into numbered pigs' feet. We randomly assigned 14 EM residents to use either ultrasound or radiography to help remove the foreign body. Residents had minimal ultrasound experience. After a brief lecture, we provided residents with a scalpel, laceration kit, a bedside portable ultrasound machine, nipple markers, paper clips, a dedicated radiograph technician, and radiograph machine 20 feet away. After removal, 3 board-certified emergency physicians, who were blinded to the study group, evaluated the soft-tissue model by using a standardized form. They recorded incision length and cosmetic appearance on the Visual Analog Scale. Results In total, 28 foreign bodies were removed. No significant difference in the time of removal (P = 0.12), cosmetic appearance (P = 0.96), or incision length (P = 0.76) was found. Conclusion This study showed no difference between bedside ultrasound and radiography in assisting EM residents with metallic foreign-body removal from soft tissue. No significant difference was found in removal time or cosmetic outcome when comparing ultrasound with radiography. PMID:22224139
ERIC Educational Resources Information Center
Henry, Jim; Bruland, Holly Huff; Sano-Franchini, Jennifer
2011-01-01
This article examines a mentoring initiative that embedded advanced students in first-year composition courses to mentor students to excel to the best of their abilities. Mentors attended all classes along with students and conducted many out-of-class individual conferences, documenting each of them using programimplemented work logs. Four hundred…
NASA Technical Reports Server (NTRS)
Stone, N. H.
1981-01-01
The objectives are to provide a parametric description of the electrostatic interaction of a mesosonic, collisionless plasma with conducting bodies on the order of 1 to 10 Debye lengths in size, and to extend this description to the satellite-ionospheric interaction, where possible. Experimental findings include: the wake of the geometrically complex body appears to be a linear superposition of the wakes of its simple geometric components; and vector ion flux measurements show converging ion streams at the wake axis and direct evidence of ion streams deflected from the wake axis by the positive space charge potential associated with the axial ion peak. The extension to the satellite-ionospheric interaction utilizes qualitative scaling and indicates that similar, but smaller amplitude, wake structures may be expected for small or highly charged bodies. However, for large bodies at small potentials, the structure may be diffused by the thermal ion motion and the dispersion resulting for space charge potentials.
From the Biochemistry of Tubulin to the Biophysics of Microtubules
NASA Astrophysics Data System (ADS)
Brown, J. A.; Tuszyński, J. A.
2001-09-01
Mirotubules (MTs) are protein polymers of the cytoskeleton that once fully understood will provide a deeper understanding of many cell functions. Assembly dynamics with the characteristic dynamic instability phenomenon has been intensively investigated over the past two decades and several models have been developed which adequately describe this phenomenon. Since the tubulin structure was imaged by Nogales and Downing, the dipole has been calculated and also the charge distribution on the surface of the protein together with a hydrophobicity plot. However, it still remains to be seen how the dipole changes upon the conformational change due to GTP hydrolysis. Furthermore, the contribution of the carboxyl terminus to the dipolar and electrostatic properties has not been accounted for. Using the crystallographic data of Nogales and Downing, some properties of the new structure of tubulin were examined. The so called multi-tubulin hypothesis seems to be explained by the differences in the electrostatic potentials produced by various tubulin isotypes produced by only several amino-acid substitutions. Such small changes in the tubulin structure may render the MTs less susceptible to naturally occurring agents which would otherwise bind them and impair their function. The hypothesis of electrostatic binding between protofilaments seems to be well founded. The MT structure has been compared with the previous work, to comment on models of motor protein movement and to consider how isotype changes affect the electrostatic potential surrounding the MT. The nature of binding between the MT and motor proteins also seems to be electrostatic and can be used to explain the stepping of these motors along the MT surface. The overall picture emerging from these studies is that the tubulin's molecular structure and the ensuing microtubular architecture can provide a microscopic-level understanding of the biological function in the cell.
Calculation of noncontact forces between silica nanospheres.
Sun, Weifu; Zeng, Qinghua; Yu, Aibing
2013-02-19
Quantification of the interactions between nanoparticles is important in understanding their dynamic behaviors and many related phenomena. In this study, molecular dynamics simulation is used to calculate the interaction potentials (i.e., van der Waals attraction, Born repulsion, and electrostatic interaction) between two silica nanospheres of equal radius in the range of 0.975 to 5.137 nm. The results are compared with those obtained from the conventional Hamaker approach, leading to the development of modified formulas to calculate the van der Waals attraction and Born repulsion between nanospheres, respectively. Moreover, Coulomb's law is found to be valid for calculating the electrostatic potential between nanospheres. The developed formulas should be useful in the study of the dynamic behaviors of nanoparticle systems under different conditions.
Osmotic regulation of gene action.
Douzou, P
1994-03-01
Most reactions involved in gene translation systems are ionic-dependent and may be explained in electrostatic terms. However, a number of observations of equilibria and rate processes making up the overall reactions clearly indicate that there is still an enormous gap between the rough picture of the mechanism of ionic regulation and the detailed behavior of reactions at the molecular level that hold the key to specific mechanisms. The present paper deals with possible osmotic contributions arising from the gel state of gene systems that are complementary to, and interdependent of, electrostatic contributions. This treatment, although still oversimplified, explains many previous observations by relating them to a general osmotic mechanism and suggests experimental approaches to studying the mechanisms of gene regulation in organelle-free and intact systems.
Friction coefficient dependence on electrostatic tribocharging
Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando
2013-01-01
Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227
Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.
Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan
2012-01-01
Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.
Constraint Embedding Technique for Multibody System Dynamics
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Cheng, Michael K.
2011-01-01
Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with closure-constraints into an equivalent tree-topology system, and thus allows one to take advantage of the host of techniques available to the latter class of systems. This technology is highly suitable for the class of multibody systems where the closure-constraints are local, i.e., where they are confined to small groupings of bodies within the system. Important examples of such local closure-constraints are constraints associated with four-bar linkages, geared motors, differential suspensions, etc. One can eliminate these closure-constraints and convert the system into a tree-topology system by embedding the constraints directly into the system dynamics and effectively replacing the body groupings with virtual aggregate bodies. Once eliminated, one can apply the well-known results and algorithms for tree-topology systems to solve the dynamics of such closed-chain system.
Theory of terahertz intervalence band polaritons and antipolaritons
NASA Astrophysics Data System (ADS)
Faragai, Inuwa Aliyu
The work presented in this thesis is a theoretical investigation of the interaction of terahertz (THz) radiation with intersubband excitations in microcavities leading to THz polaritons and antipolaritons. The approach is based on the dielectric function formalism. The dielectric constant is derived from an optical susceptibility evaluated with Non Equilibrium Many Body Green's Functions (NEGF), which is then adjusted to a Lorentzian fit. Finally, the resulting expression is included in the wave equation describing the propagating electric field in the medium. This model is applied to GaAs/Al[0.3]Ga[0.7]As multiple quantum wells embedded in a microcavity. The energy dispersion relations leading to THz polaritons and antipolaritons are obtained and investigated for different carrier densities and cavity configurations. Recently, intersubband based THz polariton emitters and THz quantum cascade lasers are attracting major research interest due to their great importance in applications such as THz imaging, spectroscopy as well as in security control for detection of biological and hazardous materials and medical diagnosis. The coupling of THz radiation with intersubband transitions in semiconductor microcavities can lead to further tunability and improved quantum efficiency for THz devices. Here we propose a simple geometry and used a simplified modelling technique to investigate the interactions of transverse electric (TE-Mode) polarized THz cavity modes with intervalence band excitations. The model is applied to single and multiple transition problems and combinations of many body effects and scattering mechanism are included in the input dielectric constant.
NASA Astrophysics Data System (ADS)
Bardelli, Fabrizio; Veronesi, Giulia; Capella, Silvana; Bellis, Donata; Charlet, Laurent; Cedola, Alessia; Belluso, Elena
2017-03-01
Once penetrated into the lungs of exposed people, asbestos induces an in vivo biomineralisation process that leads to the formation of a ferruginous coating embedding the fibres. The ensemble of the fibre and the coating is referred to as asbestos body and is believed to be responsible for the high toxicological outcome of asbestos. Lung tissue of two individuals subjected to prolonged occupational exposure to crocidolite asbestos was investigated using synchrotron radiation micro-probe tools. The distribution of K and of elements heavier than Fe (Zn, Cu, As, and Ba) in the asbestos bodies was observed for the first time. Elemental quantification, also reported for the first time, confirmed that the coating is highly enriched in Fe (~20% w/w), and x-ray absorption spectroscopy indicated that Fe is in the 3+ oxidation state and that it is present in the form of ferritin or hemosiderin. Comparison of the results obtained studying the asbestos bodies upon removing the biological tissue by chemical digestion and those embedded in histological sections, allowed unambiguously distinguishing the composition of the asbestos bodies, and understanding to what extent the digestion procedure altered their chemical composition. A speculative model is proposed to explain the observed distribution of Fe.
A novel sample preparation method to avoid influence of embedding medium during nano-indentation
NASA Astrophysics Data System (ADS)
Meng, Yujie; Wang, Siqun; Cai, Zhiyong; Young, Timothy M.; Du, Guanben; Li, Yanjun
2013-02-01
The effect of the embedding medium on the nano-indentation measurements of lignocellulosic materials was investigated experimentally using nano-indentation. Both the reduced elastic modulus and the hardness of non-embedded cell walls were found to be lower than those of the embedded samples, proving that the embedding medium used for specimen preparation on cellulosic material during nano-indentation can modify cell-wall properties. This leads to structural and chemical changes in the cell-wall constituents, changes that may significantly alter the material properties. Further investigation was carried out to detect the influence of different vacuum times on the cell-wall mechanical properties during the embedding procedure. Interpretation of the statistical analysis revealed no linear relationships between vacuum time and the mechanical properties of cell walls. The quantitative measurements confirm that low-viscosity resin has a rapid penetration rate early in the curing process. Finally, a novel sample preparation method aimed at preventing resin diffusion into lignocellulosic cell walls was developed using a plastic film to wrap the sample before embedding. This method proved to be accessible and straightforward for many kinds of lignocellulosic material, but is especially suitable for small, soft samples.
NASA Workmanship Hot Topics: Water Soluble Flux and ESD Charge Device Model
NASA Technical Reports Server (NTRS)
Plante, Jeannette F.
2009-01-01
This slide presentation reviews two topics of interest to NASA Workmanship: (1) Water Soluble Flux (WSF) and Electrostatic Discharge (ESD) safety. In the first topic, WSF, the presentation reviews voiding and the importance of cleanliness in using WSF for welding and soldering operations. The second topic reviews the NASA-HDBK-8739.21 for Human Body Model, and Machine Model safety methods, and challenges associated with the Charged Device Model (CDM)
Wave-Particle Interactions on Relativistic Electron Beams.
1983-10-20
8217 , , , . , • -- . . : - ’ - , % % , . , , : " ’ . I_ °- , ,, - - . . . . . . . . . . . . . - .- , ,. , - ,.. .. -l -. ’- - ’ @ -5- In summary, the body of published research which resulted from Office...current beams so that the influence of the self- U(5 )-Y space charge on the beam can be neglected. We thus require that the transverse electrostatic...the gain en - hancement is that the equilibrium electron orbits in the wiggler be nearly helical. Without the axial guide field a helical magnetic
Berezowska, Sabina; Galván, José A
2017-01-01
Autophagy is a highly conserved cellular mechanism of "self digestion," ensuring cellular homeostasis, and playing a role in many diseases including cancer. As a stress response mechanism, it may also be involved in cellular response to therapy.LC3 and Sequestosome 1 (p62/SQSTM1) are among the most widely used markers to monitor autophagy, and can be visualized in formalin-fixed and paraffin-embedded tissue by immunohistochemistry. Here we describe a validated staining protocol using an automated staining system available in many routine pathology laboratories, enabling high-throughput staining under standardized conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh
2009-03-01
Hybrid quantum mechanical / molecular mechanical (QM/MM) approaches have been used to provide a general scheme for chemical reactions in proteins. However, such approaches still present a major challenge to computational chemists, not only because of the need for very large computer time in order to evaluate the QM energy but also because of the need for propercomputational sampling. This review focuses on the sampling issue in QM/MM evaluations of electrostatic energies in proteins. We chose this example since electrostatic energies play a major role in controlling the function of proteins and are key to the structure-function correlation of biologicalmore » molecules. Thus, the correct treatment of electrostatics is essential for the accurate simulation of biological systems. Although we will be presenting here different types of QM/MM calculations of electrostatic energies (and related properties), our focus will be on pKa calculations. This reflects the fact that pKa of ionizable groups in proteins provide one of the most direct benchmarks for the accuracy of electrostatic models of macromolecules. While pKa calculations by semimacroscopic models have given reasonable results in many cases, existing attempts to perform pKa calculations using QM/MM-FEP have led to large discrepancies between calculated and experimental values. In this work, we accelerate our QM/MM calculations using an updated mean charge distribution and a classical reference potential. We examine both a surface residue (Asp3) of the bovine pancreatic trypsin inhibitor, as well as a residue buried in a hydrophobic pocket (Lys102) of the T4-lysozyme mutant. We demonstrate that by using this approach, we are able to reproduce the relevant sidechain pKas with an accuracy of 3 kcal/mol. This is well within the 7 kcal/mol energy difference observed in studies of enzymatic catalysis, and is thus sufficient accuracy to determine the main contributions to the catalytic energies of enzymes. We also provide an overall perspective of the potential of QM/MM calculations in general evaluations of electrostatic free energies, pointing out that our approach should provide a very powerful and accurate tool to predict the electrostatics of not only solution but also enzymatic reactions, as well as the solvation free energies of even larger systems, such as nucleic acid bases incorporated into DNA.« less
NASA Astrophysics Data System (ADS)
Spurzem, R.; Berczik, P.; Zhong, S.; Nitadori, K.; Hamada, T.; Berentzen, I.; Veles, A.
2012-07-01
Astrophysical Computer Simulations of Dense Star Clusters in Galactic Nuclei with Supermassive Black Holes are presented using new cost-efficient supercomputers in China accelerated by graphical processing cards (GPU). We use large high-accuracy direct N-body simulations with Hermite scheme and block-time steps, parallelised across a large number of nodes on the large scale and across many GPU thread processors on each node on the small scale. A sustained performance of more than 350 Tflop/s for a science run on using simultaneously 1600 Fermi C2050 GPUs is reached; a detailed performance model is presented and studies for the largest GPU clusters in China with up to Petaflop/s performance and 7000 Fermi GPU cards. In our case study we look at two supermassive black holes with equal and unequal masses embedded in a dense stellar cluster in a galactic nucleus. The hardening processes due to interactions between black holes and stars, effects of rotation in the stellar system and relativistic forces between the black holes are simultaneously taken into account. The simulation stops at the complete relativistic merger of the black holes.
Life Stress and Health: A Review of Conceptual Issues and Recent Findings.
Slavich, George M
2016-10-01
Life stress is a central construct in many models of human health and disease. The present article reviews research on stress and health, with a focus on (a) how life stress has been conceptualized and measured over time, (b) recent evidence linking stress and disease, and (c) mechanisms that might underlie these effects. Emerging from this body of work is evidence that stress is involved in the development, maintenance, or exacerbation of several mental and physical health conditions, including asthma, rheumatoid arthritis, anxiety disorders, depression, cardiovascular disease, chronic pain, human immunodeficiency virus/AIDS, stroke, and certain types of cancer. Stress has also been implicated in accelerated biological aging and premature mortality. These effects have been studied most commonly using self-report checklist measures of life stress exposure, although interview-based approaches provide a more comprehensive assessment of individuals' exposure to stress. Most recently, online systems like the Stress and Adversity Inventory (STRAIN) have been developed for assessing lifetime stress exposure, and such systems may provide important new information to help advance our understanding of how stressors occurring over the life course get embedded in the brain and body to affect lifespan health.
Wardlaw, Margaret P
2011-03-01
Modern medicine serves a religious function for modern Americans as a conduit through which science can be applied directly to the human body. The first half of this paper will focus on the theoretical foundations for viewing medicine as a religious practice arguing that just as a hierarchical structured authoritarian church historically mediated access to God, contemporary Western medicine provides a conduit by which the universalizable truths of science can be applied to the human being thereby functioning as a new established religion. I will then illustrate the many parallels between medicine and religion through an analysis of rituals and symbols surrounding and embedded within the modern practice of medicine. This analysis will pay special attention to the primacy placed on secret interior knowledge of the human body. I will end by responding to the hope for a "secularization of American medicine," exploring some of the negative consequences of secularization, and arguing that, rather than seeking to secularize, American medicine should strive to use its religious features to offer hope and healing to the sick, in keeping with its historically religious legacy.
An integrated design and fabrication strategy for entirely soft, autonomous robots.
Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J
2016-08-25
Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.
Gu, Jianwei; Chao, Hongbo; Wang, Hao; Li, Yonghong; Li, Dianrong; Xiang, Jun; Gan, Jianping; Lu, Guangyuan; Zhang, Xuekun; Long, Yan; Li, Maoteng
2017-01-01
Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway. PMID:28111582
Gu, Jianwei; Chao, Hongbo; Wang, Hao; Li, Yonghong; Li, Dianrong; Xiang, Jun; Gan, Jianping; Lu, Guangyuan; Zhang, Xuekun; Long, Yan; Li, Maoteng
2016-01-01
Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway.
Multiscale modeling of interfacial flow in particle-solidification front dynamics
NASA Astrophysics Data System (ADS)
Garvin, Justin
2005-11-01
Particle-solidification front interactions are important in many applications, such as metal-matrix composite manufacture, frost heaving in soils and cryopreservation. The typical length scale of the particles and the solidification fronts are of the order of microns. However, the force of interaction between the particle and the front typically arises when the gap between them is of the order of tens of nanometers. Thus, a multiscale approach is necessary to analyze particle-front interactions. Solving the Navier-Stokes equations to simulate the dynamics by including the nano-scale gap between the particle and the front would be impossible. Therefore, the microscale dynamics is solved using a level-set based Eulerian technique, while an embedded model is developed for solution in the nano-scale (but continuum) gap region. The embedded model takes the form of a lubrication equation with disjoining pressure acting as a body force and is coupled to the outer solution. A particle is pushed by the front when the disjoining pressure is balanced by the viscous drag. The results obtained show that this balance can only occur when the thermal conductivity ratio of the particle to the melt is less than 1.0. The velocity of the front at which the particle pushing/engulfment transition occurs is predicted. In addition, this novel method allows for an in-depth analysis of the flow physics that cause particle pushing/engulfment.
New mechanisms of cluster diffusion on metal fcc(100) surfaces
NASA Astrophysics Data System (ADS)
Trushin, Oleg; Salo, Petri; Alatalo, Matti; Ala-Nissila, Tapio
2001-03-01
We have studied atomic mechanisms of the diffusion of small clusters on the fcc(100) metal surfaces using semi-empirical and ab-initio molecular static calculations. Primary goal of these studies was to investigate possible many-body mechanisms of cluster motion which can contribute to low temperature crystal growth. We used embedded atom and Glue potentials in semi-empirical simulations of Cu and Al. Combination of the Nudged Elastic Band and Eigenvector Following methods allowed us to find all the possible transition paths for cluster movements on flat terrace. In case of Cu(001) we have found several new mechanisms for diffusion of clusters, including mechanisms called row-shearing and dimer-rotating in which a whole row inside an island moves according to a concerted jump and a dimer rotates at the periphery of an island, respectively. In some cases these mechanisms yield a lower energy barrier than the standard mechanisms.
Enzyme Histochemistry for Functional Histology in Invertebrates.
Cima, Francesca
2017-01-01
In invertebrates, enzyme histochemistry has recently found a renaissance regarding its applications in morphology and ecology. Many enzyme activities are useful for the morphofunctional characterization of cells, as biomarkers of biological and pathologic processes, and as markers of the response to environmental stressors. Here, the adjustments to classic techniques, including the most common enzymes used for digestion, absorption, transport, and oxidation, as well as techniques for azo-coupling, metal salt substitution and oxidative coupling polymerization, are presented in detail for various terrestrial and aquatic invertebrates. This chapter also provides strategies to solve the problems regarding anesthesia, small body size, the presence of an exo- or endoskeleton and the search for the best fixative in relation to the internal fluid osmolarity. These techniques have the aim of obtaining good results for both the pre- and post-embedding labeling of specimens, tissue blocks, sections, and hemolymph smears using both light and transmission electron microscopy.
Universal scaling laws of diffusion in two-dimensional granular liquids.
Wang, Chen-Hung; Yu, Szu-Hsuan; Chen, Peilong
2015-06-01
We find, in a two-dimensional air table granular system, that the reduced diffusion constant D* and excess entropy S(2) follow two distinct scaling laws: D*∼e(S(2)*) for dense liquids and D∼e(3S(2)*) for dilute ones. The scaling for dense liquids is very similar to that for three-dimensional liquids proposed previously [M. Dzugutov, Nature (London) 381, 137 (1996); A. Samanta et al., Phys. Rev. Lett. 92, 145901 (2004)]. In the dilute regime, a power law [Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999)] also fits our data reasonably well. In our system, particles experience low air drag dissipation and interact with each others through embedded magnets. These near-conservative many-body interactions are responsible for the measured Gaussian velocity distribution functions and the scaling laws. The dominance of cage relaxations in dense liquids leads to the different scaling laws for dense and dilute regimes.
Imaging Ultrasound Guidance and on-line Estimation of Thermal Behavior in HIFU Exposed Targets
NASA Astrophysics Data System (ADS)
Chauhan, Sunita; Haryanto, Amir
2006-05-01
Elevated temperatures have been used for many years to combat several diseases including treatment of certain types of cancers/tumors. High Intensity Focused Ultrasound (HIFU) has emerged as a potential non-invasive modality for trackless targeting of deep-seated cancers of human body. For the procedures which require thermal elevation such as hyperthermia and tissue ablation, temperature becomes a parameter of vital importance in order to monitor the treatment on-line. Also, embedding invasive temperature probes for this purpose beats the supremacy of the non-invasive ablating modality. In this paper, we describe the use of a non-invasive and inexpensive conventional imaging ultrasound modality for lesion positioning and estimation of thermal behavior of the tissue on exposure to HIFU. Representative results of our online lesion tracking algorithm for discerning lesioning behavior using image capture, processing and phase-shift measurements are presented.
Understanding mutagenesis through delineation of mutational signatures in human cancer
Petljak, Mia; Alexandrov, Ludmil B.
2016-05-04
Each individual cell within a human body acquires a certain number of somatic mutations during a course of its lifetime. These mutations originate from a wide spectra of both endogenous and exogenous mutational processes that leave distinct patterns of mutations, termed mutational signatures, embedded within the genomes of all cells. In recent years, the vast amount of data produced by sequencing of cancer genomes was coupled with novel mathematical models and computational tools to generate the first comprehensive map of mutational signatures in human cancer. Up to date, >30 distinct mutational signatures have been identified, and etiologies have been proposedmore » for many of them. This paper provides a brief historical background on examination of mutational patterns in human cancer, summarizes the knowledge accumulated since introducing the concept of mutational signatures and discusses their future potential applications and perspectives within the field.« less
How much of Toyota's philosophy is embedded in health care at the organisational level? A review.
Antierens, Alain; Beeckman, Dimitri; Verhaeghe, Sofie; Myny, Dries; Van Hecke, Ann
2018-05-01
Identify which of Toyota's principles are reported in health care institutions at the organisational level and to identify the type of reported outcomes related to the effectiveness of lean production reported in these studies. No scientific research has been conducted to determine which of Toyota's principles are embedded in health care systems. This knowledge is needed to perform targeted adjustments in health care. Sixty studies were identified for the final analysis. Some Toyota Way principles appear more deeply embedded in health care institutions than others are. Not all principles of Toyota's philosophy and production system were embedded in the studies in this review. The type of reported outcomes at the organisational level was diverse. This literature review increases our knowledge about how many (and which) of the Toyota Way principles are embedded in health care. This knowledge may support reflection by nursing managers about how the full range of lean management principles could be embedded at the managerial and/or operational level. © 2018 John Wiley & Sons Ltd.
Diverse Power Iteration Embeddings and Its Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang H.; Yoo S.; Yu, D.
2014-12-14
Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detectionmore » and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.« less
Weinstein, Dana; Bhave, Sunil A
2010-04-14
This paper introduces the resonant body transistor (RBT), a silicon-based dielectrically transduced nanoelectromechanical (NEM) resonator embedding a sense transistor directly into the resonator body. Combining the benefits of FET sensing with the frequency scaling capabilities and high quality factors (Q) of internal dielectrically transduced bar resonators, the resonant body transistor achieves >10 GHz frequencies and can be integrated into a standard CMOS process for on-chip clock generation, high-Q microwave circuits, fundamental quantum-state preparation and observation, and high-sensitivity measurements. An 11.7 GHz bulk-mode RBT is demonstrated with a quality factor Q of 1830, marking the highest frequency acoustic resonance measured to date on a silicon wafer.
Geometrical Simplification of the Dipole-Dipole Interaction Formula
ERIC Educational Resources Information Center
Kocbach, Ladislav; Lubbad, Suhail
2010-01-01
Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…
The Leaf Electroscope: A Take-Home Project of Unexpected Depth
ERIC Educational Resources Information Center
Stewart, John; Skinner, Stephen; Stewart, Gay
2013-01-01
The leaf electroscope is a common piece of demonstration equipment found in many high school and introductory college physics laboratories. Its simplicity allows a compelling demonstration of electrostatic forces, and its versatility makes it useful in the demonstration of a number of physical phenomena. The electroscope has a long history; a…
The Transmission Line as a Simple Example for Introducing Integral Equations to Undergraduates
ERIC Educational Resources Information Center
Rothwell, E. J.
2009-01-01
Integral equations are becoming a common means for describing problems in electromagnetics, and so it is important to expose students to methods for their solution. Typically this is done using examples in antennas, scattering, or electrostatics. Unfortunately, many difficult issues arise in the formulation and solution of the associated…
A MEMS Micro-Translation Stage with Long Linear Translation
NASA Technical Reports Server (NTRS)
Ferguson, Cynthia K.; English, J. M.; Nordin, G. P.; Ashley, P. R.; Abushagur, M. A. G.
2004-01-01
A MEMS Micro-Translation Stage (MTS) actuator concept has been developed that is capable of traveling long distances, while maintaining low power, low voltage, and accuracy as required by many applications, including optical coupling. The Micro-Translation Stage (MTS) uses capacitive electrostatic forces in a linear motor application, with stationary stators arranged linearly on both sides of a channel, and matching rotors on a moveable shuttle. This creates a force that allows the shuttle to be pulled along the channel. It is designed to carry 100 micron-sized elements on the top surface, and can travel back and forth in the channel, either in a stepping fashion allowing many interim stops, or it can maintain constant adjustable speeds for a controlled scanning motion. The MTS travel range is limited only by the size of the fabrication wafer. Analytical modeling and simulations were performed based on the fabrication process, to assure the stresses, friction and electrostatic forces were acceptable to allow successful operation of this device. The translation forces were analyzed to be near 0.5 micron N, with a 300 micron N stop-to-stop time of 11.8 ms.
Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, A. P.; Banerjee, S.
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as wellmore » as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.« less
Peptide adsorption on the hydrophobic surface: A free energy perspective
NASA Astrophysics Data System (ADS)
Sheng, Yuebiao; Wang, Wei; Chen, P.
2011-05-01
Protein adsorption is a very attractive topic which relates to many novel applications in biomaterials, biotechnology and nanotechnology. Ionic complementary peptides are a group of novel nano-biomaterials with many biomedical applications. In this work, molecular dynamics simulations of the ionic-complementary peptide EAK16-II on a hydrophobic graphite surface were performed under neutral, acidic and basic solution conditions. Adsorption free energy contour maps were obtained by analyzing the dynamical trajectories. Hydrophobic interactions were found to govern the adsorption of the first peptide molecule, and both hydrophobic and electrostatic interactions contributed to the adsorption of the second peptide molecule. Especially under acidic and basic solution conditions, interplay existed among chain-chain hydrophobic, chain-surface hydrophobic and chain-chain electrostatic interactions during the adsorption of the second peptide molecule. Non-charged residues were found to lie on the graphite surface, while charged residue side-chains oriented towards the solution after the peptide deposited on the surface. These results provide a basis for understanding peptide adsorption on the hydrophobic surface under different solution conditions, which is useful for novel applications such as bioactive implant devices and drug delivery material design.
AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe
Van Berkel, Gary J.
2015-06-23
An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.
Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin
2010-09-21
An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-
Warren, Oden L; Asif, Syed Amanula Syed; Cyrankowski, Edward; Kounev, Kalin
2013-06-04
An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.
CH/π Interactions in Carbohydrate Recognition.
Spiwok, Vojtěch
2017-06-23
Many carbohydrate-binding proteins contain aromatic amino acid residues in their binding sites. These residues interact with carbohydrates in a stacking geometry via CH/π interactions. These interactions can be found in carbohydrate-binding proteins, including lectins, enzymes and carbohydrate transporters. Besides this, many non-protein aromatic molecules (natural as well as artificial) can bind saccharides using these interactions. Recent computational and experimental studies have shown that carbohydrate-aromatic CH/π interactions are dispersion interactions, tuned by electrostatics and partially stabilized by a hydrophobic effect in solvated systems.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.
Kim, Kun-Hyung; Jun, Yong-Woo; Park, Yongsoo; Lee, Jin-A; Suh, Byung-Chang; Lim, Chae-Seok; Lee, Yong-Seok; Kaang, Bong-Kiun; Jang, Deok-Jin
2014-01-01
Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively. PMID:25077971
A simple, efficient polarizable coarse-grained water model for molecular dynamics simulations.
Riniker, Sereina; van Gunsteren, Wilfred F
2011-02-28
The development of coarse-grained (CG) models that correctly represent the important features of compounds is essential to overcome the limitations in time scale and system size currently encountered in atomistic molecular dynamics simulations. Most approaches reported in the literature model one or several molecules into a single uncharged CG bead. For water, this implicit treatment of the electrostatic interactions, however, fails to mimic important properties, e.g., the dielectric screening. Therefore, a coarse-grained model for water is proposed which treats the electrostatic interactions between clusters of water molecules explicitly. Five water molecules are embedded in a spherical CG bead consisting of two oppositely charged particles which represent a dipole. The bond connecting the two particles in a bead is unconstrained, which makes the model polarizable. Experimental and all-atom simulated data of liquid water at room temperature are used for parametrization of the model. The experimental density and the relative static dielectric permittivity were chosen as primary target properties. The model properties are compared with those obtained from experiment, from clusters of simple-point-charge water molecules of appropriate size in the liquid phase, and for other CG water models if available. The comparison shows that not all atomistic properties can be reproduced by a CG model, so properties of key importance have to be selected when coarse graining is applied. Yet, the CG model reproduces the key characteristics of liquid water while being computationally 1-2 orders of magnitude more efficient than standard fine-grained atomistic water models.
Feng, Yawei; Ling, Lili; Nie, Jinhui; Han, Kai; Chen, Xiangyu; Bian, Zhenfeng; Li, Hexing; Wang, Zhong Lin
2017-12-26
Recently, atmospheric pollution caused by particulate matter or volatile organic compounds (VOCs) has become a serious issue to threaten human health. Consequently, it is highly desirable to develop an efficient purifying technique with simple structure and low cost. In this study, by combining a triboelectric nanogenerator (TENG) and a photocatalysis technique, we demonstrated a concept of a self-powered filtering method for removing pollutants from indoor atmosphere. The photocatalyst P25 or Pt/P25 was embedded on the surface of polymer-coated stainless steel wires, and such steel wires were woven into a filtering network. A strong electric field can be induced on this filtering network by TENG, while both electrostatic adsorption effect and TENG-enhanced photocatalytic effect can be achieved. Rhodamine B (RhB) steam was selected as the pollutant for demonstration. The absorbed RhB on the filter network with TENG in 1 min was almost the same amount of absorption achieved in 15 min without using TENG. Meanwhile, the degradation of RhB was increased over 50% under the drive of TENG. Furthermore, such a device was applied for the degradation of formaldehyde, where degradation efficiency was doubled under the drive of TENG. This work extended the application for the TENG in self-powered electrochemistry, design and concept of which can be possibly applied in the field of haze governance, indoor air cleaning, and photocatalytic pollution removal for environmental protection.
Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H
2017-12-12
A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.
Nikfarjam, Alireza; Hosseini, Seyedsina; Salehifar, Nahideh
2017-05-10
In this research, a single-aligned nanofiber of pure TiO 2 and gold nanoparticle (GNP)-TiO 2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C 12 H 28 O 4 Ti), acetic acid (CH 3 COOH), ethanol (C 2 H 5 OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 μm, electro-spinning applied voltage decreased. Response of pure TiO 2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO 2 and GNP-TiO 2 triangular samples was about 5 ppb and 700 ppt, respectively.
PCE: web tools to compute protein continuum electrostatics
Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.
2005-01-01
PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492
Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B
2013-05-16
Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.
Optimizing pKa computation in proteins with pH adapted conformations.
Kieseritzky, Gernot; Knapp, Ernst-Walter
2008-05-15
pK(A) in proteins are determined by electrostatic energy computations using a small number of optimized protein conformations derived from crystal structures. In these protein conformations hydrogen positions and geometries of salt bridges on the protein surface were determined self-consistently with the protonation pattern at three pHs (low, ambient, and high). Considering salt bridges at protein surfaces is most relevant, since they open at low and high pH. In the absence of these conformational changes, computed pK(A)(comp) of acidic (basic) groups in salt bridges underestimate (overestimate) experimental pK(A)(exp), dramatically. The pK(A)(comp) for 15 different proteins with 185 known pK(A)(exp) yield an RMSD of 1.12, comparable with two other methods. One of these methods is fully empirical with many adjustable parameters. The other is also based on electrostatic energy computations using many non-optimized side chain conformers but employs larger dielectric constants at short distances of charge pairs that diminish their electrostatic interactions. These empirical corrections that account implicitly for additional conformational flexibility were needed to describe the energetics of salt bridges appropriately. This is not needed in the present approach. The RMSD of the present approach improves if one considers only strongly shifted pK(A)(exp) in contrast to the other methods under these conditions. Our method allows interpreting pK(A)(comp) in terms of pH dependent hydrogen bonding pattern and salt bridge geometries. A web service is provided to perform pK(A) computations. 2007 Wiley-Liss, Inc.
Vanquelef, Enguerran; Simon, Sabrina; Marquant, Gaelle; Garcia, Elodie; Klimerak, Geoffroy; Delepine, Jean Charles; Cieplak, Piotr; Dupradeau, François-Yves
2011-07-01
R.E.D. Server is a unique, open web service, designed to derive non-polarizable RESP and ESP charges and to build force field libraries for new molecules/molecular fragments. It provides to computational biologists the means to derive rigorously molecular electrostatic potential-based charges embedded in force field libraries that are ready to be used in force field development, charge validation and molecular dynamics simulations. R.E.D. Server interfaces quantum mechanics programs, the RESP program and the latest version of the R.E.D. tools. A two step approach has been developed. The first one consists of preparing P2N file(s) to rigorously define key elements such as atom names, topology and chemical equivalencing needed when building a force field library. Then, P2N files are used to derive RESP or ESP charges embedded in force field libraries in the Tripos mol2 format. In complex cases an entire set of force field libraries or force field topology database is generated. Other features developed in R.E.D. Server include help services, a demonstration, tutorials, frequently asked questions, Jmol-based tools useful to construct PDB input files and parse R.E.D. Server outputs as well as a graphical queuing system allowing any user to check the status of R.E.D. Server jobs.
Hussain, Shah; Güzel, Yüksel; Schönbichler, Stefan A; Rainer, Matthias; Huck, Christian W; Bonn, Günther K
2013-09-01
Thionins are cysteine-rich, biologically active small (∼5 kDa) and basic proteins occurring ubiquitously in the plant kingdom. This study describes an efficient solid-phase extraction (SPE) method for the selective isolation of these pharmacologically active proteins. Hollow-monolithic extraction tips based on poly(styrene-co-divinylbenzene) with embedded zirconium silicate nano-powder were designed, which showed an excellent selectivity for sulphur-rich proteins owing to strong co-ordination between zirconium and the sulphur atoms from the thiol-group of cysteine. The sorbent provides a combination of strong hydrophobic and electrostatic interactions which may help in targeted separation of certain classes of proteins in a complex mixture based upon the binding strength of different proteins. European mistletoe, wheat and barley samples were used for selective isolation of viscotoxins, purothionins and hordothionins, respectively. The enriched fractions were subjected to analysis by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometer to prove the selectivity of the SPE method towards thionins. For peptide mass-fingerprint analysis, tryptic digests of SPE eluates were examined. Reversed-phase high-performance liquid chromatography hyphenated to diode-array detection was employed for the purification of individual isoforms. The developed method was found to be highly specific for the isolation and purification of thionins.
NASA Astrophysics Data System (ADS)
Ma, Yuhang; Jiang, Ranran; Li, Dan; Dong, Yutao; Liu, Yushan; Zhang, Jianmin
2018-05-01
Ultrafine ZnSnO3 nanoparticles, with an average diameter of 45 nm, homogeneously grown on reduced graphene oxide (rGO) have been successfully fabricated via methods of low temperature coprecipitation, colloid electrostatic self-assembly, and hydrothermal treatment. The uniformly distributed ZnSnO3 nanocrystals could inhibit the restacking of rGO sheets. In turn, the existence of rGO could hinder the growth and aggregation of ZnSnO3 nanoparticles in the synthesis process, increase the conductivity of the composite, and buffer the volume expansion of the ZnSnO3 nanocrystals upon lithium ion insertion and extraction. The obtained ZnSnO3/rGO exhibited superior cycling stability with a discharge/charge capacity of 718/696 mA h g-1 after 100 cycles at a current density of 0.1 A g-1.
Li, Hui; Li, Wei; Li, Shuhua; Ma, Jing
2008-06-12
Molecular fragmentation quantum mechanics (QM) calculations have been combined with molecular mechanics (MM) to construct the fragmentation QM/MM method for simulations of dilute solutions of macromolecules. We adopt the electrostatics embedding QM/MM model, where the low-cost generalized energy-based fragmentation calculations are employed for the QM part. Conformation energy calculations, geometry optimizations, and Born-Oppenheimer molecular dynamics simulations of poly(ethylene oxide), PEO(n) (n = 6-20), and polyethylene, PE(n) ( n = 9-30), in aqueous solution have been performed within the framework of both fragmentation and conventional QM/MM methods. The intermolecular hydrogen bonding and chain configurations obtained from the fragmentation QM/MM simulations are consistent with the conventional QM/MM method. The length dependence of chain conformations and dynamics of PEO and PE oligomers in aqueous solutions is also investigated through the fragmentation QM/MM molecular dynamics simulations.
Sinthuvanich, Chomdao; Haines-Butterick, Lisa A.; Nagy, Katelyn J.; Schneider, Joel P.
2012-01-01
Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. PMID:22841922
Bonthuis, Douwe Jan; Netz, Roland R
2013-10-03
Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.
Sinthuvanich, Chomdao; Haines-Butterick, Lisa A; Nagy, Katelyn J; Schneider, Joel P
2012-10-01
Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. Published by Elsevier Ltd.
Electrostatically Accelerated Coupled Binding and Folding of Intrinsically Disordered Proteins
Ganguly, Debabani; Otieno, Steve; Waddell, Brett; Iconaru, Luigi; Kriwacki, Richard W.; Chen, Jianhan
2012-01-01
Intrinsically disordered proteins (IDPs) are now recognized to be prevalent in biology, and many potential functional benefits have been discussed. However, the frequent requirement of peptide folding in specific interactions of IDPs could impose a kinetic bottleneck, which could be overcome only by efficient folding upon encounter. Intriguingly, existing kinetic data suggest that specific binding of IDPs is generally no slower than that of globular proteins. Here, we exploited the cell cycle regulator p27Kip1 (p27) as a model system to understand how IDPs might achieve efficient folding upon encounter for facile recognition. Combining experiments and coarse-grained modeling, we demonstrate that long-range electrostatic interactions between enriched charges on p27 and near its binding site on cyclin A not only enhance the encounter rate (i.e., electrostatic steering), but also promote folding-competent topologies in the encounter complexes, allowing rapid subsequent formation of short-range native interactions en route to the specific complex. In contrast, nonspecific hydrophobic interactions, while hardly affecting the encounter rate, can significantly reduce the efficiency of folding upon encounter and lead to slower binding kinetics. Further analysis of charge distributions in a set of known IDP complexes reveals that, although IDP binding sites tend to be more hydrophobic compared to the rest of the target surface, their vicinities are frequently enriched with charges to complement those on IDPs. This observation suggests that electrostatically accelerated encounter and induced folding might represent a prevalent mechanism for promoting facile IDP recognition. PMID:22721951
Plasma waves near saturn: initial results from voyager 1.
Gurnett, D A; Kurth, W S; Scarf, F L
1981-04-10
The Voyager 1 plasma wave instrument detected many familiar types of plasma waves during the encounter with Saturn, including ion-acoustic waves and electron plasma oscillations upstream of the bow shock, an intense burst of electrostatic noise at the shock, and chorus, hiss, electrostatic electron cyclotron waves, and upper hybrid resonance emissions in the inner magnetosphere. A clocklike Saturn rotational control of low-frequency radio emissions was observed, and evidence was obtained of possible control by the moon Dione. Strong plasma wave emissions were detected at the Titan encounter indicating the presence of a turbulent sheath extending around Titan, and upper hybrid resonance measurements of the electron density show the existence of a dense plume of plasma being carried downstream of Titan by the interaction with the rapidly rotating magnetosphere of Saturn.
Guidelines for reporting embedded recruitment trials.
Madurasinghe, Vichithranie W
2016-01-14
Recruitment to clinical trials is difficult with many trials failing to recruit to target and within time. Embedding trials of recruitment interventions within host trials may provide a successful way to improve this. There are no guidelines for reporting such embedded methodology trials. As part of the Medical Research Council funded Systematic Techniques for Assisting Recruitment to Trials (MRC START) programme designed to test interventions to improve recruitment to trials, we developed guidelines for reporting embedded trials. We followed a three-phase guideline development process: (1) pre-meeting literature review to generate items for the reporting guidelines; (2) face-to-face consensus meetings to draft the reporting guidelines; and (3) post-meeting feedback review, and pilot testing, followed by finalisation of the reporting guidelines. We developed a reporting checklist based on the Consolidated Standards for Reporting Trials (CONSORT) statement 2010. Embedded trials evaluating recruitment interventions should follow the CONSORT statement 2010 and report all items listed as essential. We used a number of examples to illustrate key issues that arise in embedded trials and how best to report them, including (a) how to deal with description of the host trial; (b) the importance of describing items that may differ in the host and embedded trials (such as the setting and the eligible population); and (c) the importance of identifying clearly the point at which the recruitment interventions were embedded in the host trial. Implementation of these guidelines will improve the quality of reports of embedded recruitment trials while advancing the science, design and conduct of embedded trials as a whole.
Jiang, JingLe; Marathe, Amar R.; Keene, Jennifer C.; Taylor, Dawn M.
2016-01-01
Background Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. New Method We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Results Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. Comparison with Existing Methods For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Conclusions Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. PMID:27979758
Jiang, JingLe; Marathe, Amar R; Keene, Jennifer C; Taylor, Dawn M
2017-02-01
Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. Published by Elsevier B.V.
Dougherty, Dennis A
2013-04-16
The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author's perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forego aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction (Li(+) binds to benzene with 38 kcal/mol of binding energy; NH4(+) with 19 kcal/mol) distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2-5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) C(δ-)-H(δ+) bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li(+) > Na(+) > K(+) > Rb(+): as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is more polarizable than benzene but a decidedly poorer cation binder. Many studies have documented cation-π interactions in protein structures, where lysine or arginine side chains interact with phenylalanine, tyrosine, or tryptophan. In addition, countless studies have established the importance of the cation-π interaction in a range of biological processes. Our work has focused on molecular neurobiology, and we have shown that neurotransmitters generally use a cation-π interaction to bind to their receptors. We have also shown that many drug-receptor interactions involve cation-π interactions. A cation-π interaction plays a critical role in the binding of nicotine to ACh receptors in the brain, an especially significant case. Other researchers have established important cation-π interactions in the recognition of the "histone code," in terpene biosynthesis, in chemical catalysis, and in many other systems.