Science.gov

Sample records for electrostatics theory

  1. Surface electrostatics: theory and computations

    PubMed Central

    Chatzigeorgiou, G.; Javili, A.; Steinmann, P.

    2014-01-01

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined. PMID:24711720

  2. Spin damping correction to electrostatic modes in kinetic plasma theory

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.

    2009-12-01

    The effect of spin of particles is studied using a semi-classical kinetic theory for a magnetized plasma. No other quantum effects are included. We focus in the simple damping effects for the electrostatic wave modes. Besides Landau damping, we show that spin produces two new different effects of damping or instability which are proportional to ℏ. These corrections depend on the electromagnetic part of the wave that is coupled with the spin vector.

  3. Electrostatic interactions in charged nanoslits within an explicit solvent theory.

    PubMed

    Buyukdagli, Sahin

    2015-11-18

    Within a dipolar Poisson-Boltzmann theory including electrostatic correlations, we consider the effect of explicit solvent structure on solvent and ion partition confined to charged nanopores. We develop a relaxation scheme for the solution of this highly non-linear integro-differential equation for the electrostatic potential. The scheme is an extension of the approach previously introduced for simple planes (Buyukdagli and Blossey 2014 J. Chem. Phys. 140 234903) to nanoslit geometry. We show that the reduced dielectric response of solvent molecules at the membrane walls gives rise to an electric field significantly stronger than the field of the classical Poisson-Boltzmann equation. This peculiarity associated with non-local electrostatic interactions results in turn in an interfacial counterion adsorption layer absent in continuum theories. The observation of this enhanced counterion affinity in the very close vicinity of the interface may have important impacts on nanofluidic transport through charged nanopores. Our results indicate the quantitative inaccuracy of solvent implicit nanofiltration theories in predicting the ionic selectivity of membrane nanopores. PMID:26443128

  4. 3D RISM theory with fast reciprocal-space electrostatics

    SciTech Connect

    Heil, Jochen; Kast, Stefan M.

    2015-03-21

    The calculation of electrostatic solute-solvent interactions in 3D RISM (“three-dimensional reference interaction site model”) integral equation theory is recast in a form that allows for a computational treatment analogous to the “particle-mesh Ewald” formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.

  5. Extended Debye-Hückel theory for studying the electrostatic solvation energy.

    PubMed

    Xiao, Tiejun

    2015-03-16

    The electrostatic part of the solvation energy has been studied by using extended Debye-Hückel (DH) theories. Specifically, our molecular Debye-Hückel theory [J. Chem. Phys. 2011, 135, 104104] and its simplified version, an energy-scaled Debye-Hückel theory, were applied to electrolytes with strong electrostatic coupling. Our theories provide a practical methodology for calculating the electrostatic solvation free energies, and the accuracy was verified for atomic and diatomic charged solutes.

  6. Electrostatics

    NASA Astrophysics Data System (ADS)

    Wallace, John P.; Wallace, Michael J.

    2015-12-01

    Quantum mechanics should be able to generate the basic properties of a particle. One of the most basic properties are charge and the associated electrostatic electric field. Electrostatic force is a fundamental characteristics of a charged fermion and should have its nature described by the fermion's structure. To produce the particle properties require two spaces that define both their dynamics and their base structure. Relativity and the conservation of energy dictate how these two separate spaces are connected and the differential equations that describe behavior within these two spaces. The main static characteristic of an elementary fermion are mass and charge. Mass represents a scale measure of the fermion and it appears that charge results from the detailed structure of the fermion, which must merge into the electric field description of Maxwell. Coulomb's law is a good approximation for large distances, but it is a poor approximation at dimension on the order of a particle's Compton wavelength. The relativistic description of the fermion in its own frame of reference contains the information required for producing the electrostatic field over all space without a singularity as a source. With this description it is possible to understand the first order correction to the ionization energy of hydrogen. The role of nuclear effects on ionization energies can now be better defined for nuclei heavier than hydrogen.

  7. Electrostatics

    SciTech Connect

    Wallace, John P.; Wallace, Michael J.

    2015-12-04

    Quantum mechanics should be able to generate the basic properties of a particle. One of the most basic properties are charge and the associated electrostatic electric field. Electrostatic force is a fundamental characteristics of a charged fermion and should have its nature described by the fermion’s structure. To produce the particle properties require two spaces that define both their dynamics and their base structure. Relativity and the conservation of energy dictate how these two separate spaces are connected and the differential equations that describe behavior within these two spaces. The main static characteristic of an elementary fermion are mass and charge. Mass represents a scale measure of the fermion and it appears that charge results from the detailed structure of the fermion, which must merge into the electric field description of Maxwell. Coulomb’s law is a good approximation for large distances, but it is a poor approximation at dimension on the order of a particle’s Compton wavelength. The relativistic description of the fermion in its own frame of reference contains the information required for producing the electrostatic field over all space without a singularity as a source. With this description it is possible to understand the first order correction to the ionization energy of hydrogen. The role of nuclear effects on ionization energies can now be better defined for nuclei heavier than hydrogen.

  8. The theory of Langmuir probes in strong electrostatic potential structures

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1986-01-01

    The operation of collecting and emitting Langmuir probes and double probes within time-stationary strong electrostatic potential structures is analyzed. The cross sections of spherical and cylindrical probes to charged particles within the structures are presented and used to obtain the current-voltage characteristics of idealized probes. The acquisition of plasma parameters from these characteristics is outlined, and the operation of idealized floating double-probe systems is analyzed. Probe surface effects are added to the idealized theory, and some surface effects pertinent to spacecraft probes are quantified. Magnetic field effects on idealized probes are examined, and the time required for floating probes to change their potentials by collecting charge and by emitting photoelectrons is discussed. Calculations on the space-charge effects of probe-perturbed beams and on the space-charge limiting of electron emission are given in an appendix.

  9. Kinetic theory for electrostatic waves due to transverse velocity shears

    NASA Technical Reports Server (NTRS)

    Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.

    1988-01-01

    A kinetic theory in the form of an integral equation is provided to study the electrostatic oscillations in a collisionless plasma immersed in a uniform magnetic field and a nonuniform transverse electric field. In the low temperature limit the dispersion differential equation is recovered for the transverse Kelvin-Helmholtz modes for arbitrary values of K parallel, where K parallel is the component of the wave vector in the direction of the external magnetic field assumed in the z direction. For higher temperatures the ion-cyclotron-like modes described earlier in the literature by Ganguli, Lee and Plamadesso are recovered. In this article, the integral equation is reduced to a second-order differential equation and a study is made of the kinetic Kelvin-Helmholtz and ion-cyclotron-like modes that constitute the two branches of oscillation in a magnetized plasma including a transverse inhomogeneous dc electric field.

  10. Electrostatic atomization--Experiment, theory and industrial applications

    NASA Astrophysics Data System (ADS)

    Okuda, H.; Kelly, Arnold J.

    1996-05-01

    Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle.

  11. Theory of Electrostatic Fields in the Ionosphere at Equatorial Latitudes

    NASA Technical Reports Server (NTRS)

    Briggs, Benjamin R.; Spreiter, John R.

    1961-01-01

    The properties of the elongated electrostatic fields that are required to provide the coupling mechanism in the dynamo-motor concept of the E and F regions of the ionosphere are examined theoretically for the conditions that prevail in equatorial latitudes. The analysis is developed for an electrostatic field of arbitrary horizontal scale in a horizontally stratified partly ionized gas subject to an imposed magnetic field having the form of a parabolic arch over the equator. The anisotropic character and continuous variation with height of the conductivity are retained throughout , and numerical solutions are determined for the attenuation of the electric field with distance along the field line. The results are similar qualitatively to those found previously upon analysis of the corresponding problem for middle latitudes, but the attenuation of the electrostatic field with height is considerably greater. It develops, in particular, that the coupling between E and F regions is very small for fields having horizontal wavelengths of a few kilometers. It follows that the dynamo-motor concept could not be used to account for the presence of irregularities of this scale. On the other hand, it is found that almost all the attenuation occurs at heights near that of the E region. If an electrostatic field having a horizontal wavelength of a few kilometers could be produced at heights of, say 200 km or greater, it follows that it would be very elongated and extend with little change in amplitude from hemisphere to hemisphere. The results also indicate that effective coupling could be achieved for fields having horizontal wavelengths of the order of tens of kilometers, but the assumptions introduced to simplify the analysis may impair the quantitative reliability of the results for fields of this scale.

  12. Electromagnetic fields radiated from electrostatic discharges: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Wilson, Perry F.; Ondrejka, Arthur R.; Ma, Mark T.; Ladbury, John M.

    1988-02-01

    The fields radiated by electrostatic discharges (ESD) are studied both theoretically and experimentally. The ESD spark is modeled theoretically as an electrically short, time dependent, linear dipole situated above an infinite ground plane. Experimentally, sparks of varying voltages are generated by a commercially available simulator and used to excite a number of targets including: (1) the extended inner conductor of a coaxial cable mounted in a ground plane, (2) direct discharges to a ground plane, (3) indirect radiation from a large metal plate, (4) a metal chair over a a ground plane, and (5) a metal trash can. Results show that relatively low-voltage sparks (2 to 4 kV) excite the strongest radiated fields. This suggests that the spark fields can pose a significant interference threat to electronic equipment into the gigahertz range.

  13. Theory and simulations of electrostatic field error transport

    SciTech Connect

    Dubin, Daniel H. E.

    2008-07-15

    Asymmetries in applied electromagnetic fields cause plasma loss (or compression) in stellarators, tokamaks, and non-neutral plasmas. Here, this transport is studied using idealized simulations that follow guiding centers in given fields, neglecting collective effects on the plasma evolution, but including collisions at rate {nu}. For simplicity the magnetic field is assumed to be uniform; transport is due to asymmetries in applied electrostatic fields. Also, the Fokker-Planck equation describing the particle distribution is solved, and the predicted transport is found to agree with the simulations. Banana, plateau, and fluid regimes are identified and observed in the simulations. When separate trapped particle populations are created by application of an axisymmetric squeeze potential, enhanced transport regimes are observed, scaling as {radical}({nu}) when {nu}<{omega}{sub 0}<{omega}{sub B} and as 1/{nu} when {omega}{sub 0}<{nu}<{omega}{sub B} (where {omega}{sub 0} and {omega}{sub B} are the rotation and axial bounce frequencies, respectively). These regimes are similar to those predicted for neoclassical transport in stellarators.

  14. Quantitative assessment of electrostatic embedding in Density Functional Theory calculations of biomolecular systems

    SciTech Connect

    Fattebert, J; Law, R J; Bennion, B; Lau, E Y; Schwegler, E; Lightstone, F C

    2009-04-24

    We evaluate the accuracy of density functional theory quantum calculations of biomolecular subsystems using a simple electrostatic embedding scheme. Our scheme is based on dividing the system of interest into a primary and secondary subsystem. A finite difference discretization of the Kohn-Sham equations is used for the primary subsystem, while its electrostatic environment is modeled with a simple one-electron potential. Force-field atomic partial charges are used to generate smeared Gaussian charge densities and to model the secondary subsystem. We illustrate the utility of this approach with calculations of truncated dipeptide chains. We analyze quantitatively the accuracy of this approach by calculating atomic forces and comparing results with fullQMcalculations. The impact of the choice made in terminating dangling bonds at the frontier of the QM region is also investigated.

  15. Theory, experiment and computer simulation of the electrostatic potential at crystal/electrolyte interfaces

    SciTech Connect

    Zarzycki, Piotr P.; Rosso, Kevin M.; Chatman, Shawn ME; Preocanin, Tajana; Kallay, Nikola; Piasecki, Wojciech

    2010-10-01

    In this feature article we discuss recent advances and challenges in measuring, analyzing and interpreting the electrostatic potential development at crystal/electrolyte interfaces. We highlight progress toward fundamental understanding of historically difficult aspects, including point of zero potential estimation for single faces of single crystals, the non-equilibrium pH titration hysteresis loop, and the origin of nonlinearities in the titration response. It has been already reported that the electrostatic potential is strongly affected by many second order type phenomena such as: surface heterogeneity, (sub)surface transformations, charge transfer reactions, and additional potential jumps at crystal face edges and/or Schottky barriers. Single-crystal electrode potentials seem particularly sensitive to these phenomena, which makes interpretation of experimental observations complicated. We hope that recent theory developments in our research group including an analytical model of titration hysteresis, a perturbative surface potential expansion, and a new surface complexation model that incorporates charge transfer processes will help experimental data analysis, and provide unique insights into the electrostatic response of nonpolarizable single-crystal electrodes.

  16. Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Yang, Weitao

    2016-06-01

    We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniform external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics' force fields and nontransferable molecule-specific atomic polarizabilities.

  17. Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory.

    PubMed

    Wang, Hao; Yang, Weitao

    2016-06-14

    We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniform external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics' force fields and nontransferable molecule-specific atomic polarizabilities.

  18. Electrostatic image theory for the dielectric sphere with an internal source

    NASA Astrophysics Data System (ADS)

    Sten, J. C. E.; Lindell, I. V.

    1991-03-01

    The well known electrostatic image theory for a point charge next to a conducting sphere, originally discovered by Lord Kelvin, was recently generalized to the dielectric sphere, by one of the present authors, for sources located outside the sphere. The present paper treats the problem of a source located inside the dielectric sphere, thus completing the theory. Image expressions corresponding to potentials both inside and outside the spheres are worked out and their validity is checked with numerous tests. The image expression consists of simple functions easily handled with a pocket calculator. The theory can be straightforwardly transformed to cover direct current problems involving a current source inside a sphere located in a surrounding medium with different conductivity, which can be of interest, for example, to problems of electrocardiography.

  19. Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory

    NASA Astrophysics Data System (ADS)

    Shojaeian, Milad; Beni, Yaghoub Tadi; Ataei, Hossein

    2016-01-01

    Electromechanical buckling (EMB) of beam-type nanoelectromechanical systems (NEMSs) is investigated based on modified strain gradient theory. The system is modeled as a clamped-guided nanobeam which is under compressive or tensile axial loads as well as the effect of nonlinear electrostatic and van der Waals symmetric transverse forces. In addition, the beam is considered to be made of axially and transverse functionally graded materials. Here, FGM is Poly-SiGe, of which the general properties change gradually from silicon to germanium based on a simple power-law method. Considering the Euler-Bernoulli beam theory and using the principle of minimum potential energy, the governing equations and corresponding boundary conditions are established. After validation of results, the effects of power law index, variation of size effect parameters, length-thickness ratio and the distance between the two fixed and movable electrodes on the buckling response of the system are discussed.

  20. Kinetic theory of electrostatic 'bounce' modes in two-dimensional current sheets

    SciTech Connect

    Tur, A.; Louarn, P.

    2010-10-15

    The role of trapped particles in the destabilization of two-dimensional (2D) current sheets is investigated for applications to theories of magnetospheric substorms. Considering a 2D 'Lembege and Pellat' equilibrium, the linearized gyrokinetic Vlasov-Maxwell equations are solved for electrostatic perturbations with periods close to the typical electron bounce period ({tau}{sub be}). The particle bounce motion is approximated to its first Fourier component ({omega}{sub b}=2{pi}/{tau}{sub b}) which allows the explicit time integration of Vlasov equation and the calculation of the nonlocal particle response. The dispersion equation of the electrostatic bounce modes is derived from the quasineutrality condition. It is shown that the bounce modes exist in a narrow domain of electron-to-ion temperature ratio (T{sub e}/T{sub i} varying from 0.2 to 1.4), with large growth rates ({delta}{approx}0.2{omega}), leading to current sheet destabilization over time scales of 1-2 min.

  1. A second-order theory for transverse ion heating and momentum coupling due to electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Miller, Ronald H.; Winske, Dan; Gary, S. P.

    1992-01-01

    A second-order theory for electrostatic instabilities driven by counterstreaming ion beams is developed which describes momentum coupling and heating of the plasma via wave-particle interactions. Exchange rates between the waves and particles are derived, which are suitable for the fluid equations simulating microscopic effects on macroscopic scales. Using a fully kinetic simulation, the electrostatic ion cyclotron instability due to counterstreaming H(+) beams has been simulated. A power spectrum from the kinetic simulation is used to evaluate second-order exchange rates. The calculated heating and momentum loss from second-order theory is compared to the numerical simulation.

  2. Theory and observations of electrostatic ion waves in the cold Io torus

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Kurth, W. S.

    1990-01-01

    A study of the ELF plasma wave environment of the cold Io torus in Jupiter's magnetosphere is made. Voyager 1 data are presented which show three distinct types of electrostatic ion waves occurring there: the Buchsbaum ion-ion mode just below the proton cyclotron frequency f(cp), hydrogen Bernstein modes at (n + 1/2) f(cp), and lower hybrid waves near f(LHR). The presence of these waves at their characteristic frequencies is consistent with a predominantly heavy ion plasma composed of singly ionized sulfur and oxygen ions along with a small admixture of protons. The hydrogen Bernstein modes are tightly confined to the magnetic equator, occurring within + or - 4 deg of it, while the Buchsbaum mode is localized to the dense heavy ion plasma of the cold torus near the centrifugal equator. A general theory for excitation of the waves based on the ion pickup process is developed.

  3. Dispersion, static correlation, and delocalisation errors in density functional theory: an electrostatic theorem perspective.

    PubMed

    Dwyer, Austin D; Tozer, David J

    2011-10-28

    Dispersion, static correlation, and delocalisation errors in density functional theory are considered from the unconventional perspective of the force on a nucleus in a stretched diatomic molecule. The electrostatic theorem of Feynman is used to relate errors in the forces to errors in the electron density distortions, which in turn are related to erroneous terms in the Kohn-Sham equations. For H(2), the exact dispersion force arises from a subtle density distortion; the static correlation error leads to an overestimated force due to an exaggerated distortion. For H(2)(+), the exact force arises from a delicate balance between attractive and repulsive components; the delocalisation error leads to an underestimated force due to an underestimated distortion. The net force in H(2)(+) can become repulsive, giving the characteristic barrier in the potential energy curve. Increasing the fraction of long-range exact orbital exchange increases the distortion, reducing delocalisation error but increasing static correlation error.

  4. Size-dependent bistability of an electrostatically actuated arch NEMS based on strain gradient theory

    NASA Astrophysics Data System (ADS)

    Tajaddodianfar, Farid; Nejat Pishkenari, Hossein; Hairi Yazdi, Mohammad Reza; Maani Miandoab, Ehsan

    2015-06-01

    This paper deals with the investigation of the size-dependent nature of nonlinear dynamics, in a doubly clamped shallow nano-arch actuated by spatially distributed electrostatic force. We employ strain gradient theory together with the Euler-Bernoulli and shallow arch assumptions in order to derive the nonlinear partial differential equation governing the transverse motion of the arch with mid-plane stretching effects. Using the Galerkin projection method, we derive the lumped single degree of freedom model which is then used for the study of the size effects on the nonlinear snap-through and pull-in instabilities of the arch nano-electro-mechanical-system (NEMS). Moreover, using strain gradient theory, the size-dependent bistability and fundamental frequencies of the nano-arch are scrutinized, revealing that, despite what is predicted by the classical theory, the bistability region in the parameter space of the nano-structure shrinks as the structure scales down. Also, we show that the minimum initial elevation, required for bistability, increases as the nano-arch scales down.

  5. Theory for large-amplitude electrostatic ion shocks in quantum plasmas.

    PubMed

    Akbari-Moghanjoughi, M; Shukla, P K

    2012-12-01

    We present a generalized nonlinear theory for large-amplitude electrostatic (ES) ion shocks in collisional quantum plasmas composed of mildly coupled degenerate electron fluid of arbitrary degeneracy and nondegenerate strongly correlated ion fluid with arbitrary atomic number. For our purposes, we use the inertialess electron momentum equation including the electrostatic force, pressure gradient, and relevant quantum forces, as well as a generalized viscoelastic ion momentum (GVIM) equation for strongly correlated nondegenerate ions. The ion continuity equation, in the quasineutral approximation, then closes our nonlinear system of equations. When the electric field force is eliminated from the GVIM equation by using the inertialess electron momentum equation, we then obtain a GVIM and ion continuity equations, which exhibit nonlinear couplings between the ion number density and the ion fluid velocity. The pair of nonlinear equations is numerically solved to study the dynamics of arbitrarily-large-amplitude planar and nonplanar ES shocks arising from a balance between harmonic generation nonlinearities and the ion fluid viscosity for a wide range of plasma mass densities and ion atomic numbers that are relevant for the cores of giant planets (viz., Jupiter) and compact stars (viz., white dwarfs). Our numerical results reveal that the ES shock density profiles strongly depend on the plasma number density and composition (the atomic-number) parameters. Furthermore, ion density perturbations propagate with Mach numbers which significantly depend on the studied plasma fractional parameters. It is concluded that the dynamics of the ES shocks in the superdense degenerate plasma is quite different in the core of a white dwarf star from that in the lower density crust region. PMID:23368053

  6. Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.

    2011-09-01

    We study the energetics of burying charges, ion pairs, and ionizable groups in a simple protein model using nonlocal continuum electrostatics. Our primary finding is that the nonlocal response leads to markedly reduced solvent screening, comparable to the use of application-specific protein dielectric constants. Employing the same parameters as used in other nonlocal studies, we find that for a sphere of radius 13.4 Å containing a single +1e charge, the nonlocal solvation free energy varies less than 18 kcal/mol as the charge moves from the surface to the center, whereas the difference in the local Poisson model is ˜35 kcal/mol. Because an ion pair (salt bridge) generates a comparatively more rapidly varying Coulomb potential, energetics for salt bridges are even more significantly reduced in the nonlocal model. By varying the central parameter in nonlocal theory, which is an effective length scale associated with correlations between solvent molecules, nonlocal-model energetics can be varied from the standard local results to essentially zero; however, the existence of the reduction in charge-burial penalties is quite robust to variations in the protein dielectric constant and the correlation length. Finally, as a simple exploratory test of the implications of nonlocal response, we calculate glutamate pKa shifts and find that using standard protein parameters (ɛprotein = 2-4), nonlocal results match local-model predictions with much higher dielectric constants. Nonlocality may, therefore, be one factor in resolving discrepancies between measured protein dielectric constants and the model parameters often used to match titration experiments. Nonlocal models may hold significant promise to deepen our understanding of macromolecular electrostatics without substantially increasing computational complexity.

  7. Theory for large-amplitude electrostatic ion shocks in quantum plasmas.

    PubMed

    Akbari-Moghanjoughi, M; Shukla, P K

    2012-12-01

    We present a generalized nonlinear theory for large-amplitude electrostatic (ES) ion shocks in collisional quantum plasmas composed of mildly coupled degenerate electron fluid of arbitrary degeneracy and nondegenerate strongly correlated ion fluid with arbitrary atomic number. For our purposes, we use the inertialess electron momentum equation including the electrostatic force, pressure gradient, and relevant quantum forces, as well as a generalized viscoelastic ion momentum (GVIM) equation for strongly correlated nondegenerate ions. The ion continuity equation, in the quasineutral approximation, then closes our nonlinear system of equations. When the electric field force is eliminated from the GVIM equation by using the inertialess electron momentum equation, we then obtain a GVIM and ion continuity equations, which exhibit nonlinear couplings between the ion number density and the ion fluid velocity. The pair of nonlinear equations is numerically solved to study the dynamics of arbitrarily-large-amplitude planar and nonplanar ES shocks arising from a balance between harmonic generation nonlinearities and the ion fluid viscosity for a wide range of plasma mass densities and ion atomic numbers that are relevant for the cores of giant planets (viz., Jupiter) and compact stars (viz., white dwarfs). Our numerical results reveal that the ES shock density profiles strongly depend on the plasma number density and composition (the atomic-number) parameters. Furthermore, ion density perturbations propagate with Mach numbers which significantly depend on the studied plasma fractional parameters. It is concluded that the dynamics of the ES shocks in the superdense degenerate plasma is quite different in the core of a white dwarf star from that in the lower density crust region.

  8. Effective medium theory of the space-charge region electrostatics of arrays of nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Gurugubelli, Vijaya Kumar; Karmalkar, Shreepad

    2016-01-01

    We develop an Effective Medium Theory for the electrostatics of the Space-Charge Region (SCR) of Schottky and p-n junctions in arrays of nanofilms (NFs), nanowires (NWs), and nanotubes (NTs) in a dielectric ambient. The theory captures the effects of electric fields in both the semiconductor, i.e., NF/NW/NT, and the dielectric media of the array. It shows that the depletion width and the screening length characterizing the SCR tail in the array correspond to those in a bulk junction with an effective semiconductor medium, whose permittivity and doping are their weighted averages over the cross-sectional areas of the semiconductor and dielectric; the shapes of the cross-sections are immaterial. Further, the reverse bias 1 /C2 -V behavior of junctions in NF/NW/NT arrays is linear, as in bulk junctions, and is useful to extract from measurements the built-in potential, effective doping including the semiconductor-dielectric interface charge, and NF/NW/NT length. The theory is validated with numerical simulations, is useful for the experimentalist, and yields simple formulas for nano-device design which predict the following. In the limiting case of a single sheet-like NF, the junction depletion width variation with potential drop is linear rather than square-root (as in a bulk junction). In arrays of symmetric silicon p-n junctions in oxide dielectric where NF/NW thickness and separation are 5% and 100% of the bulk depletion width, respectively, the junction depletion width and the screening length are scaled up from their bulk values by the same factor of ˜2 for NF and ˜10 for NW array.

  9. A comparison of intense electrostatic waves near f-UHR with linear instability theory. [upper hybrid resonance frequency

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. J.; Ashour-Abdalla, M.; Kennel, C. F.; Sentman, D. D.

    1979-01-01

    Intense electrostatic waves near the upper hybrid resonance frequency (f-UHR) have recently been detected near but beyond the plasmapause between + or -50 deg magnetic latitude at all local times. The paper shows that the electrostatic waves observed with the ISEE 1 plasma wave receiver near f-UHR are in qualitative agreement with linear theory of multicyclotron harmonic emissions. The peak amplitudes and bandwidths observed are similar to those calculated for maximum spatial growth rates. Measurements on Hawkeye of similar waves suggest that the electric field polarization is also consistent with theory. For a wide range of plasma parameters, nonconvective instability or large spatial growth rates occur within the cyclotron band encompassing the cold upper hybrid frequency.

  10. An auxilliary grid method for the calculation of electrostatic terms in density functional theory on a real-space grid.

    PubMed

    Zuzovski, Michael; Boag, Amir; Natan, Amir

    2015-12-21

    In this work we show the implementation of a linear scaling algorithm for the calculation of the Poisson integral. We use domain decomposition and non-uniform auxiliary grids (NGs) to calculate the electrostatic interaction. We demonstrate the approach within the PARSEC density functional theory code and perform calculations of long 1D carbon chains and other long molecules. Finally, we discuss possible applications to additional problems and geometries. PMID:26123448

  11. MEAN-FIELD THEORY AND COMPUTATION OF ELECTROSTATICS WITH IONIC CONCENTRATION DEPENDENT DIELECTRICS *

    PubMed Central

    LI, BO; WEN, JIAYI; ZHOU, SHENGGAO

    2015-01-01

    We construct a mean-field variational model to study how the dependence of dielectric coefficient (i.e., relative permittivity) on local ionic concentrations affects the electrostatic interaction in an ionic solution near a charged surface. The electrostatic free-energy functional of ionic concentrations, which is the key object in our model, consists mainly of the electrostatic potential energy and the ionic ideal-gas entropy. The electrostatic potential is determined by Poisson’s equation in which the dielectric coefficient depends on the sum of concentrations of individual ionic species. This dependence is assumed to be qualitatively the same as that on the salt concentration for which experimental data are available and analytical forms can be obtained by the data fitting. We derive the first and second variations of the free-energy functional, obtain the generalized Boltzmann distributions, and show that the free-energy functional is in general nonconvex. To validate our mathematical analysis, we numerically minimize our electrostatic free-energy functional for a radially symmetric charged system. Our extensive computations reveal several features that are significantly different from a system modeled with a dielectric coefficient independent of ionic concentration. These include the non-monotonicity of ionic concentrations, the ionic depletion near a charged surface that has been previously predicted by a one-dimensional model, and the enhancement of such depletion due to the increase of surface charges or bulk ionic concentrations. PMID:26877718

  12. Weakly relativistic quantum kinetic theory for electrostatic wave modes in magnetized plasmas

    SciTech Connect

    Hussain, Azhar; Stefan, Martin; Brodin, Gert

    2014-03-15

    We have derived the electrostatic dispersion relation in a magnetized plasma using a recently developed quantum kinetic model based on the Dirac equation. The model contains weakly relativistic spin effects such as Thomas precession, the polarization currents associated with the spin and the spin-orbit coupling. It turns out that for strictly electrostatic perturbations the non-relativistic spin effects vanish, and the modification of the classical dispersion relation is solely associated with the relativistic terms. Several new wave modes appear due the electron spin effects, and an example for astrophysical plasmas are given.

  13. Electronic responses of long chains to electrostatic fields: Hartree-Fock vs. density-functional theory: A model study

    SciTech Connect

    Vargas, Jorge; Springborg, Michael; Kirtman, Bernard

    2014-02-07

    The response to an electrostatic field is determined through simple model calculations, within both the restricted Hartree-Fock and density functional theory methods, for long, finite as well as infinite, periodic chains. The permanent dipole moment, μ{sub 0}, the polarizability, α, and the hyperpolarizabilities β and γ, calculated using a finite-field approach, are extensively analyzed. Our simple model allows for treatment of large systems and for separation of the properties into atomic and unit-cell contributions. That part of the response properties attributable to the terminations of the finite system change into delocalized current contributions in the corresponding infinite periodic system. Special emphasis is placed on analyzing the reasons behind the dramatic overestimation of the response properties found with density functional theory methods presently in common use.

  14. The prevention of electrical breakdown and electrostatic voltage problems in the space shuttle and its payloads. Part 1: Theory and phenomena

    NASA Technical Reports Server (NTRS)

    Whitson, D. W.

    1975-01-01

    An introduction to the theory of corona discharge and electrostatic phenomena is presented. The theory is mainly qualitative so that workers in the field should not have to go outside this manual for an understanding of the relevant phenomena. Some of the problems that may occur with the space shuttle in regard to electrical discharge are discussed.

  15. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies.

    PubMed

    Horn, Paul R; Mao, Yuezhi; Head-Gordon, Martin

    2016-03-21

    In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na(+), water-Cl(-), and the naphthalene dimer. PMID:27004862

  16. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies

    NASA Astrophysics Data System (ADS)

    Horn, Paul R.; Mao, Yuezhi; Head-Gordon, Martin

    2016-03-01

    In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na+, water-Cl-, and the naphthalene dimer.

  17. On a theory of temporal fluctuations in the electrostatic potential structures associated with auroral arcs

    NASA Technical Reports Server (NTRS)

    Silevitch, M. B.

    1981-01-01

    A possible mechanism is presented for the generation of large-amplitude temporal fluctuations in the structure of the electron energization region associated with auroral arcs. The mechanism is based on the observation that the auroral arc system resembles a laboratory circuit consisting of the series connection of battery, resistance and a forward biased diode containing collisionless plasma in which large-amplitude relaxation oscillations are sometimes observed to be superimposed on the steady-state current. It is shown that in both the laboratory and auroral systems, in which a localized auroral arc dynamo, the ionosphere and the electron energization region are involved, the oscillations are controlled by the times for ions and electrons to traverse the acceleration region, which also characterize the low- and high-frequency structure of the fluctuating waveform. It is demonstrated that a plausible one-dimensional double-layer model of the auroral arc acceleration region exhibits the dynamic negative resistance necessary for the generation of oscillations by the present mechanism. Finally, consideration is given to two kinds of auroral phenomena which might be associated with the mechanism: the 10-Hz quasi-periodic flickering aurora and 10-Hz modulations in the intensity of electrostatic hydrogen cyclotron waves.

  18. Electrostatic correlations in colloidal suspensions: Density profiles and effective charges beyond the Poisson-Boltzmann theory

    NASA Astrophysics Data System (ADS)

    dos Santos, Alexandre P.; Diehl, Alexandre; Levin, Yan

    2009-03-01

    A theory is proposed which allows us to calculate the distribution of the multivalent counterions around a colloidal particle using the cell model. The results are compared with the Monte Carlo simulations and are found to be very accurate in the two asymptotic regimes, close to the colloidal particle and far from it. The theory allows to accurately calculate the osmotic pressure and the effective charge of colloidal particles with multivalent counterions.

  19. Ion Acceleration by Beating Electrostatic Waves: Theory, Experiments and Relevance to Spacecraft Propulsion

    NASA Astrophysics Data System (ADS)

    Choueiri, Edgar

    2007-10-01

    After a brief overview of electrodeless plasma propulsion concepts, we will focus on a recently discovered ion acceleration mechanism, which appears to occur naturally in Earth's ionosphere, holds promise as an effective means to energize ions for applications in thermonuclear fusion and electrodeless space plasma propulsion. Unlike previously known mechanisms for energizing plasmas with electrostatic (ES) waves, and which accelerate only ions whose initial velocities are above a certain threshold (close to the wave's phase velocity), the new acceleration mechanism, involving pairs of beating ES waves, is non-resonant and can accelerate ions with arbitrarily small initial velocities, thus offering a more effective way to couple energy to plasmas. We will discuss the fundamentals of the nonlinear dynamics of a single magnetized ion interacting with a pair of beating ES waves and show that there exist necessary and sufficient conditions for the phenomenon to occur. We will see how these fundamental conditions are derived by analyzing the motion's Hamiltonian using a second-order perturbation technique in conjunction with Lie transformations. The analysis shows that when the Hamiltonian lies outside the energy barrier defined by the location of the elliptic and hyperbolic critical points of the motion, the electric field of the beating waves can accelerate ions regularly from low initial velocities, then stochastically, to high energies. We will then illustrate real plasma effects using Monte Carlo numerical simulation and discuss the recent results from a dedicated experiment in my lab in which laser-induced fluorescence (LIF) measurements of ion energies have provided the first laboratory observation of this acceleration mechanism. The talk will conclude with a few ideas on how the fundamental insight can be applied to develop novel plasma propulsion concepts.

  20. Electronic structure, molecular electrostatic potentials, vibrational spectra in substituted calix[n]arenes (n = 4, 5) from density functional theory.

    PubMed

    Khedkar, Jayshree K; Pinjari, Rahul V; Gejji, Shridhar P

    2011-09-29

    Electronic structure, molecular electrostatic potential, and vibrational frequencies of para-substituted calix[n]arene CX[n]-R (n = 4, 5; R = H, NH(2), t-Bu, CH(2)Cl, SO(3)H, NO(2)) and their thia analogs (S-CX[n]-R; with R = H and t-Bu) in which sulfur bridges two aromatic rings of CX[n] have been derived from the density functional theory. A rotation around CH(2) groups connecting the phenol rings engenders four, namely, cone, partial cone, 1,2-alternate, and 1,3-alternate CX[n]-R conformers. Of these, the cone conformer comprising of large number of O1-H1···O1' interactions turns out to be of lowest energy. Normal vibration analysis reveal the O1-H1 stretching frequency of unsubstituted CX[n] shifts to higher wavenumber (blue shift) on substitution of electron-withdrawing (NO(2) or SO(3)H) groups, while electron-donating substituents (NH(2), t-Bu) engender a shift of O1-H1 vibration in the opposite direction (red shift). The direction of frequency shifts have been analyzed using natural bond orbital analysis and molecular electrostatic potential (MESP) topography. Furthermore, calculated (1)H NMR chemical shift (δ(H)) in modified CX[n] hosts follow the order: H1 > H3/H5 > H7(a) > H7(b). The δ(H) values in CX[4] are in consonant with the observed (1)H NMR spectra.

  1. Electron collection theory for a D-region subsonic blunt electrostatic probe

    NASA Technical Reports Server (NTRS)

    Wai-Kwong Lai, T.

    1974-01-01

    Blunt probe theory for subsonic flow in a weakly ionized and collisional gas is reviewed, and an electron collection theory for the relatively unexplored case, Deybye length approximately 1, which occurs in the lower ionosphere (D-region), is developed. It is found that the dimensionless Debye length is no longer an electric field screening parameter, and the space charge field effect can be negelected. For ion collection, Hoult-Sonin theory is recognized as a correct description of the thin, ion density-perturbed layer adjacent the blunt probe surface. The large volume with electron density perturbed by a positively biased probe renders the usual thin boundary layer analysis inapplicable. Theories relating free stream conditions to the electron collection rate for both stationary and moving blunt probes are obtained. A model based on experimental nonlinear electron drift velocity data is proposed. For a subsonically moving probe, it is found that the perturbed region can be divided into four regions with distinct collection mechanisms.

  2. Electrostatic and Allosteric Cooperativity in Ion-Pair Binding: A Quantitative and Coupled Experiment-Theory Study with Aryl-Triazole-Ether Macrocycles.

    PubMed

    Qiao, Bo; Sengupta, Arkajyoti; Liu, Yun; McDonald, Kevin P; Pink, Maren; Anderson, Joseph R; Raghavachari, Krishnan; Flood, Amar H

    2015-08-01

    Cooperative binding of ion pairs to receptors is crucial for the manipulation of salts, but a comprehensive understanding of cooperativity has been elusive. To this end, we combine experiment and theory to quantify ion-pair binding and to separate allostery from electrostatics to understand their relative contributions. We designed aryl-triazole-ether macrocycles (MC) to be semiflexible, which allows ion pairs (NaX; X = anion) to make contact, and to be monocyclic to simplify analyses. A multiequilibrium model allows us to quantify, for the first time, the experimental cooperativity, α, for the equilibrium MC·Na(+) + MC·X(-) ⇌ MC·NaX + MC, which is associated with contact ion-pair binding of NaI (α = 1300, ΔGα = -18 kJ mol(-1)) and NaClO4 (α = 400, ΔGα = -15 kJ mol(-1)) in 4:1 dichloromethane-acetonitrile. We used accurate energies from density functional theory to deconvolute how the electrostatic effects and the allosteric changes in receptor geometry individually contribute to cooperativity. Computations, using a continuum solvation model (dichloromethane), show that allostery contributes ∼30% to overall positive cooperativity. The calculated trend of electrostatic cooperativity using pairs of spherical ions (NaCl > NaBr > NaI) correlates to experimental observations (NaI > NaClO4). We show that intrinsic ionic size, which dictates charge separation distance in contact ion pairs, controls electrostatic cooperativity. This finding supports the design principle that semiflexible receptors can facilitate optimal electrostatic cooperativity. While Coulomb's law predicts the size-dependent trend, it overestimates electrostatic cooperativity; we suggest that binding of the individual anion and cation to their respective binding sites dilutes their effective charge. This comprehensive understanding is critical for rational designs of ion-pair receptors for the manipulation of salts. PMID:26207611

  3. Electrostatic interactions in finite systems treated with periodic boundary conditions: application to linear-scaling density functional theory.

    PubMed

    Hine, Nicholas D M; Dziedzic, Jacek; Haynes, Peter D; Skylaris, Chris-Kriton

    2011-11-28

    We present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory (DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such cases the effects of PBCs on the calculations need to be avoided, so that the results obtained represent the open rather than the periodic boundary. The very large systems encountered in LS-DFT make the demands of the supercell approximation for isolated systems more difficult to manage, and we show cases where the open boundary (infinite cell) result cannot be obtained from extrapolation of calculations from periodic cells of increasing size. We discuss, implement, and test three very different approaches for overcoming or circumventing the effects of PBCs: truncation of the Coulomb interaction combined with padding of the simulation cell, approaches based on the minimum image convention, and the explicit use of open boundary conditions (OBCs). We have implemented these approaches in the ONETEP LS-DFT program and applied them to a range of systems, including a polar nanorod and a protein. We compare their accuracy, complexity, and rate of convergence with simulation cell size. We demonstrate that corrective approaches within PBCs can achieve the OBC result more efficiently and accurately than pure OBC approaches.

  4. Electrostatic Explorations.

    ERIC Educational Resources Information Center

    Gallai, Ditta; Stewart, Gay

    1998-01-01

    Presents a set of hands-on electrostatics experiments in the form of an activity guide and worksheet through which students discover the different types of electric charge, Coulomb's Law, induced charge separation, and grounding. (DDR)

  5. Electrostatics of Rigid Polyelectrolytes

    SciTech Connect

    Wong, G.C.L.

    2009-06-04

    The organization of rigid biological polyelectrolytes by multivalent ions and macroions are important for many fundamental problems in biology and biomedicine, such as cytoskeletal regulation and antimicrobial sequestration in cystic fibrosis. These polyelectrolytes have been used as model systems for understanding electrostatics in complex fluids. Here, we review some recent results in theory, simulations, and experiments.

  6. Electrostatic monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  7. Electrostatic precipitator

    SciTech Connect

    Hayashi, T.

    1982-08-03

    An electrostatic precipitator comprising a plurality of flat plate dust-collecting electrodes, arranged in substantially equally spaced and parallel relationship with one another and each having a discharge electrode, or electrodes, on and along the edge of one side thereof with the discharge electrodes of the adjacent dust-collecting electrodes alternately facing in opposite directions; the edges having the discharge electrodes are arranged in a setback relation by some distance in relation to the nearby edges of the adjacent dust-collecting plates, where no discharge electrodes are provided, so that uniform and nonuniform electric fields may be produced.

  8. Electrostatic thrusters.

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Reader, P. D.

    1972-01-01

    The current status of research and development programs on electrostatic thrusters is reviewed. Current programs that utilize mercury electron-bombardment thrusters range from 5- to 30-cm in diameter. Recent progress on the 5-cm thruster has emphasized durability, with accelerator time exceeding 6300 hours and total time on the rest of the thruster exceeding 8300 hours. Recent progress on the 30-cm thruster has been outstanding in dished-grid accelerator systems. Ion beams up to 5 amperes have been obtained for short periods with 1000 volts net accelerating potential difference. The cesium electron-bombardment and cesium contact programs are also described.

  9. Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory.

    PubMed

    Fakhrabadi, Mir Masoud Seyyed; Rastgoo, Abbas; Ahmadian, Mohammad Taghi

    2013-01-01

    The paper presents the effects of fluid flow on the static and dynamic properties of carbon nanotubes that convey a viscous fluid. The mathematical model is based on the modified couple stress theory. The effects of various fluid parameters and boundary conditions on the pull-in voltages are investigated in detail. The applicability of the proposed system as nanovalves or nanosensors in nanoscale fluidic systems is elaborated. The results confirm that the nanoscale system studied in this paper can be properly applied for these purposes.

  10. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Rak, Zs.; Rost, C. M.; Lim, M.; Sarker, P.; Toher, C.; Curtarolo, S.; Maria, J.-P.; Brenner, D. W.

    2016-09-01

    Density functional theory calculations were carried out for three entropic rocksalt oxides, (Mg0.1Co0.1Ni0.1Cu0.1Zn0.1)O0.5, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved density of states (DOS) for Co+3 in J14 + Li are very different from Co+2, while for Cu and Ni the Bader charges form continuous distributions and the two DOS are similar for the two oxidation states. Experimental detection of different oxidation states may therefore be challenging for Cu and Ni compared to Co. Based on these results, empirical stability parameters for these entropic oxides may be more complicated than those for non-oxide entropic solids.

  11. Ionic electrostatic excitations along biological membranes

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2011-02-01

    A theoretical analysis of ionic electrostatic excitations of a charged biological membrane is presented within the framework of the fluid theory for surface ions inside and outside the cell, in conjunction with the Poisson's equation. General expressions of dispersion relations are obtained for electrostatic oscillations of intrinsic cellular with different shapes and symmetries.

  12. Electrostatic interactions in gas-solid chromatography.

    NASA Technical Reports Server (NTRS)

    Benson, S. W.; King, J., Jr.

    1966-01-01

    Electrostatic theory of physical adsorption applied to gas-solid chromatography, discussing chromatographic inseparability of argon and oxygen at room temperature, prediction of elution order of many gases, etc

  13. Electrostatic precipitator manual

    SciTech Connect

    McDonald, J.R.; Dean, A.H.

    1982-01-01

    Studies performed by various individuals and organizations on the application of electrostatic precipitators to the collection of fly ash produced in the combustion of pulverized fuel are summarized in this manual. The scope of the studies evaluated include full scale precipitators and laboratory investigations. It covers measurement of fly ash resistivity, rapping reentrainment, conditioning agents, fundamental operations of hot-side precipitators. The major chapter headings are: Terminology and General Design Features Associated with Electrostatic Precipitators Used to Collect Fly Ash Particles; Fundamental Principles of Electrostatic Precipitation; Limiting Factors Affecting Precipitator Performance; Use of Electrostatic Precipitators for the Collection of Fly Ash; Analysis of Factors influencing ESP Performance; Emissions from Electrostatic Precipitators; Choosig an Electrostatic Precipitator: Cold-side versus Hot-side; Safety Aspects of Working with Electrostatic Precipitators; Maintenance Procedures; Troubleshooting; An Electrostatic Precipitator Computer Model; Features of a Well-equipped Electrostatic Precipitator.

  14. Electrostatic correlations near charged planar surfaces

    PubMed Central

    Deng, Mingge; Em Karniadakis, George

    2014-01-01

    Electrostatic correlation effects near charged planar surfaces immersed in a symmetric electrolytes solution are systematically studied by numerically solving the nonlinear six-dimensional electrostatic self-consistent equations. We compare our numerical results with widely accepted mean-field (MF) theory results, and find that the MF theory remains quantitatively accurate only in weakly charged regimes, whereas in strongly charged regimes, the MF predictions deviate drastically due to the electrostatic correlation effects. We also observe a first-order like phase-transition corresponding to the counterion condensation phenomenon in strongly charged regimes, and compute the phase diagram numerically within a wide parameter range. Finally, we investigate the interactions between two likely-charged planar surfaces, which repulse each other as MF theory predicts in weakly charged regimes. However, our results show that they attract each other above a certain distance in strongly charged regimes due to significant electrostatic correlations. PMID:25194382

  15. Determination of electrostatic parameters of a coumarin derivative compound C17H13NO3 by x-ray and density functional theory

    NASA Astrophysics Data System (ADS)

    Youcef, Megrouss; Nadia, Benhalima; Rawia, Bahoussi; Nouredine, Boukabcha; Abdelkader, Chouaih; Fodil, Hamzaoui

    2015-10-01

    This work is devoted to the experimental determination of the electrostatic properties of the molecular 4-methyl-7-(salicylidene amino) coumarin (C17H13NC3) using high resolution x-ray diffraction data. The experimental results are compared with those obtained theoretically from calculation type ab initio. The experimental investigation is carried out using the molecular electron charge density distribution based on the multipolar model of Hansen and Coppens. However the theoretical calculations are conducted by using the molecular orbital B3LYP method and the Hartree-Fock (HF) approximation with the basis set 6-31G (d,p) implemented in the Gaussian program. In addition to the structural analysis, the thermal agitation is also analyzed in terms of rigid blocks to ensure a better precision of the results. Subsequently, the electrostatic atomic and molecular properties such as the net charges, the molecular dipolar moment to highlight the nature of charge transfer existing within the molecule studied are derived. Moreover, the obtained electrostatic potential enables the localization of the electropositive and the electronegative parts of the investigated molecule. The present work reports in detail the obtained electrostatic properties of this biologically important molecule.

  16. Electrostatic Levitator Electrodes

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Electrostatic levitation system inside Electrostatic Levitator (ESL) vacuum chamber. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  17. Electrostatically controlled micromechanical gyroscope

    NASA Technical Reports Server (NTRS)

    Hawkey, Timothy (Inventor); Torti, Richard (Inventor); Johnson, Bruce (Inventor)

    1994-01-01

    An integrated electrostatically-controlled micromechanical gyroscope with a rotor encompassed within a rotor cavity and electrostatically spun within the cavity. The gyroscope includes a plurality of axial electrostatic rotor actuators above and below the rotor for controlling the axial and tilt position of the rotor within the cavity, and a plurality of radial electrostatic actuators spaced circumferentially around the rotor for controlling the radial and tilt position of the rotor within the cavity. The position of the rotor within the cavity is then resolved to determine the external forces acting on the rotor.

  18. Electrostatic Charged Two-Phase Flow Equations

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Wen, Jianlong; Wang, Junfeng; Tang, Zhihua; Luo, Tiqian

    2007-06-01

    Electrostatic charged two-phase flows exit in electrostatic spray crop-dusting and fuel spray and so on. Electrostatic charged spray applying to FGD scrubber can improve desulfurization efficiency, decrease water usage. For the complexity of two-phase flow's structure in FGD scrubber, and there exit coupled action between non-uniform electric and flow field, also exit phase interaction between charged particles and continuous phase, which makes the flow more complex. So the complete theory has not formed at present. This paper adopts Lagrange and Euler method of combining together and takes the dispersed particle as fluid, and applies the Reynolds transport principle to set up a Reynolds transport equation, which suit electrostatic charged particle and liquid phase. Then based on Reynolds transport equation, equations for the volume average and instantaneous state of the electrostatic charged two-phase flow are obtained. Similar to equations for single phase turbulent flow, this paper applies Reynolds-average method, and develops equations for Reynolds-average equations for electrostatic charged two-phase flow. Finally, according to the model of single phase turbulent flow, equations for electrostatic charged two-phase flows has been closed. So the k - ɛ - kp model is obtained. Contrast of result by PIV and simulation has been finished.

  19. Edutainment Science: Electrostatics

    ERIC Educational Resources Information Center

    Ahlers, Carl

    2009-01-01

    Electrostatics should find a special place in all primary school science curricula. It is a great learning area that reinforces the basics that underpin electricity and atomic structure. Furthermore, it has many well documented hands-on activities. Unfortunately, the "traditional" electrostatics equipment such as PVC rods, woollen cloths, rabbit…

  20. Electrostatic precipitator efficiency enhancement

    SciTech Connect

    Polizzotti, D.M.; Steelhammer, J.C.

    1983-05-24

    Method for enhancing the removal of particles from a particleladen gas stream utilizing an electrostatic precipitator, which comprises treating the gas with morpholine or derivatives thereof. Treated particles are found to also have desirable flow characteristics. Particularly effective compositions for the purpose comprise a combination of the morpholine, or derivative thereof, with an electrostatic precipitator efficiency enhancer, and in particular an alkanolamine.

  1. Stochastic ion acceleration by beating electrostatic waves.

    PubMed

    Jorns, B; Choueiri, E Y

    2013-01-01

    A study is presented of the stochasticity in the orbit of a single, magnetized ion produced by the particle's interaction with two beating electrostatic waves whose frequencies differ by the ion cyclotron frequency. A second-order Lie transform perturbation theory is employed in conjunction with a numerical analysis of the maximum Lyapunov exponent to determine the velocity conditions under which stochasticity occurs in this dynamical system. Upper and lower bounds in ion velocity are found for stochastic orbits with the lower bound approximately equal to the phase velocity of the slower wave. A threshold condition for the onset of stochasticity that is linear with respect to the wave amplitudes is also derived. It is shown that the onset of stochasticity occurs for beating electrostatic waves at lower total wave energy densities than for the case of a single electrostatic wave or two nonbeating electrostatic waves. PMID:23410446

  2. Electrostatic Field Invisibility Cloak

    PubMed Central

    Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji

    2015-01-01

    The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications. PMID:26552343

  3. Electrostatic Field Invisibility Cloak

    NASA Astrophysics Data System (ADS)

    Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji

    2015-11-01

    The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications.

  4. Studying Electrostatic Levitator Specimen

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Kevin Croat of Washington University in St. Louis, MO, examines samples processed in NASA/Marshall Space Flight Center's (MSFC)Electrostatic Levitator Facility. Croat is working with Prof. Kerneth Kelton in investigating undercooling of polytetrahedral phase-forming liquids.

  5. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  6. Graphene Electrostatic Microphone

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Onishi, Seita; Zettl, A.

    2015-03-01

    We demonstrate a wideband electrostatic graphene microphone displaying flat frequency response over the entire human audible region as well as into the ultrasonic regime. Using the microphone, low-level ultrasonic bat calls are successfully recorded. The microphone can be paired with a similarly constructed electrostatic graphene loudspeaker to create a wideband ultrasonic radio. Materials Sciences Division, Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute at the University of California - Berkeley.

  7. Electrostatic Linear Actuator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Curry, Kenneth C.

    1990-01-01

    Electrically charged helices attract or repel each other. Proposed electrostatic linear actuator made with intertwined dual helices, which holds charge-bearing surfaces. Dual-helix configuration provides relatively large unbroken facing charged surfaces (relatively large electrostatic force) within small volume. Inner helix slides axially in outer helix in response to voltages applied to conductors. Spiral form also makes components more rigid. Actuator conceived to have few moving parts and to be operable after long intervals of inactivity.

  8. Electrostatic discharge test apparatus

    NASA Technical Reports Server (NTRS)

    Smith, William C. (Inventor)

    1989-01-01

    Electrostatic discharge properties of materials are quantitatively measured and ranked. Samples (20) are rotated on a turntable (15) beneath selectable, co-available electrostatic chargers (30/40), one being a corona charging element (30) and the other a sample-engaging triboelectric charging element (40). They then pass under a voltage meter (25) to measure the amount of residual charge on the samples (20). After charging is discontinued, measurements are continued to record the charge decay history over time.

  9. Electrostatic Levitator in Use

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Metal droplet levitated inside the Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  10. Electrostatic Levitator Layout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Electrostatic Levitator (ESL) general layout with captions. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  11. Electrostatic Levitator Layout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    General oayout of Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  12. Electrostatic Levitator Electrode Layout

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  13. Electrostatics in molecular phenomena

    NASA Astrophysics Data System (ADS)

    Náray-Szabó, G.

    1995-04-01

    Molecular electrostatic potentials (MEP) and fields (MEF) became very popular in the last two decades since they offer a pictorial modeling of complicated molecular events. In this paper we give an overview on applications. We can discuss chemical reactivity in terms of MEP maps: negative and positive regions are preferred by electrophilic and nucleophilic reagents, respectively. We may define the concept of electrostatic enzyme catalysis. In cases when the ground-state polarity of the active site essentially increases in the transition state the catalytic rate enhancement is due to electrostatic stabilization by the polar protein and solvent environment. Crystal surfaces provide strong MEF, thus enhanced reactivity, in their vicinity. Hydration depends also on the electrostatic behaviour. It is possible to define the average MEF of a molecule that is an appropriate descriptor of hydration ability to be used in quantitative structure-activity relationships. Molecular recognition has also important electrostatic aspects. Complementarity and similarity are determined beside steric aspects by electrostatic and hydrophobic factors, as well. We may define hydrophilic and hydrophobic regions around a molecule in terms of the MEF and apply this representation to the study of host-guest complementarity, as well as crystal packing.

  14. Electrostatics of DNA complexes with cationic lipids

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey

    2007-03-01

    We present the exact solutions of the linear Poisson-Boltzmann theory for several problems relevant to electrostatics of DNA complexes with cationic lipids. We calculate the electrostatic potential and energy for lamellar and inverted hexagonal phases, concentrating on the effects of water-membrane dielectric boundaries. Our results for the complex energy agree qualitatively well with the known numerical solutions of the nonlinear Poisson-Boltzmann equation. Using the solution for the lamellar phase, we calculate its compressibility modulus and compare our findings with experimental data available suggesting a new scaling dependence on DNA-DNA separations in the complex. Also, we treat analytically charge-charge electrostatic interactions across, along, and in between two low-dielectric membranes. We obtain an estimate for the strength of electrostatic interactions of 1D DNA smectic layers across a lipid membrane. We discuss also some aspects of 2D DNA condensation and DNA-DNA attraction in DNA-lipid lamellar phase in the presence of di- and tri-valent cations and analyze the equilibrium intermolecular separations using the recently developed theory of electrostatic interactions of DNA helical charge motifs.

  15. OPERATION AND MAINTENANCE MANUAL FOR ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    The manual focuses on the operation and maintenance (O/M) of typical electrostatic precipitators (ESPs). It summarizes available information on theory and design in sufficient detail to provide a basic background O/M portions of the manual. Although O/M-related air pollution prob...

  16. Electrostatic potentials of proteins in water: a structured continuum approach.

    PubMed

    Hildebrandt, Andreas; Blossey, Ralf; Rjasanow, Sergej; Kohlbacher, Oliver; Lenhof, Hans-Peter

    2007-01-15

    Electrostatic interactions play a crucial role in many biomolecular processes, including molecular recognition and binding. Biomolecular electrostatics is modulated to a large extent by the water surrounding the molecules. Here, we present a novel approach to the computation of electrostatic potentials which allows the inclusion of water structure into the classical theory of continuum electrostatics. Based on our recent purely differential formulation of nonlocal electrostatics [Hildebrandt, et al. (2004) Phys. Rev. Lett., 93, 108104] we have developed a new algorithm for its efficient numerical solution. The key component of this algorithm is a boundary element solver, having the same computational complexity as established boundary element methods for local continuum electrostatics. This allows, for the first time, the computation of electrostatic potentials and interactions of large biomolecular systems immersed in water including effects of the solvent's structure in a continuum description. We illustrate the applicability of our approach with two examples, the enzymes trypsin and acetylcholinesterase. The approach is applicable to all problems requiring precise prediction of electrostatic interactions in water, such as protein-ligand and protein-protein docking, folding and chromatin regulation. Initial results indicate that this approach may shed new light on biomolecular electrostatics and on aspects of molecular recognition that classical local electrostatics cannot reveal. PMID:17237112

  17. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  18. Electrostatics at the nanoscale.

    PubMed

    Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A

    2011-04-01

    Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.

  19. Electrostatically shaped membranes

    NASA Technical Reports Server (NTRS)

    Silverberg, Larry M. (Inventor)

    1994-01-01

    Disclosed is a method and apparatus for electrostatically shaping a membrane suitable for use in antennas or the like, comprising an electrically conductive thin membrane where the periphery of said membrane is free to move in at least one direction, a first charge on the electrically conductive thin membrane to electrostatically stiffen the membrane, a second charge which shapes the electrostatically stiffened thin membrane and a restraint for limiting the movement of at least one point of the thin membrane relative to the second charge. Also disclosed is a method and apparatus for adaptively controlling the shape of the thin membrane by sensing the shape of the membrane and selectively controlling the first and second charge to achieve a desired performance characteristic of the membrane.

  20. Screened Electrostatic Interactions in Molecular Mechanics.

    PubMed

    Wang, Bo; Truhlar, Donald G

    2014-10-14

    In a typical application of molecular mechanics (MM), the electrostatic interactions are calculated from parametrized partial atomic charges treated as point charges interacting by radial Coulomb potentials. This does not usually yield accurate electrostatic interactions at van der Waals distances, but this is compensated by additional parametrized terms, for example Lennard-Jones potentials. In the present work, we present a scheme involving radial screened Coulomb potentials that reproduces the accurate electrostatics much more accurately. The screening accounts for charge penetration of one subsystem's charge cloud into that of another subsystem, and it is incorporated into the interaction potential in a way similar to what we proposed in a previous article (J. Chem. Theory Comput. 2010, 6, 3330) for combined quantum mechanical and molecular mechanical (QM/MM) simulations, but the screening parameters are reoptimized for MM. The optimization is carried out with electrostatic-potential-fitted partial atomic charges, but the optimized parameters should be useful with any realistic charge model. In the model we employ, the charge density of an atom is approximated as the sum of a point charge representing the nucleus and inner electrons and a smeared charge representing the outermost electrons; in particular, for all atoms except hydrogens, the smeared charge represents the two outermost electrons in the present model. We find that the charge penetration effect can cause very significant deviations from the popular point-charge model, and by comparison to electrostatic interactions calculated by symmetry-adapted perturbation theory, we find that the present results are considerably more accurate than point-charge electrostatic interactions. The mean unsigned error in electrostatics for a large and diverse data set (192 interaction energies) decreases from 9.2 to 3.3 kcal/mol, and the error in the electrostatics for 10 water dimers decreases from 1.7 to 0.5 kcal

  1. Screened Electrostatic Interactions in Molecular Mechanics.

    PubMed

    Wang, Bo; Truhlar, Donald G

    2014-10-14

    In a typical application of molecular mechanics (MM), the electrostatic interactions are calculated from parametrized partial atomic charges treated as point charges interacting by radial Coulomb potentials. This does not usually yield accurate electrostatic interactions at van der Waals distances, but this is compensated by additional parametrized terms, for example Lennard-Jones potentials. In the present work, we present a scheme involving radial screened Coulomb potentials that reproduces the accurate electrostatics much more accurately. The screening accounts for charge penetration of one subsystem's charge cloud into that of another subsystem, and it is incorporated into the interaction potential in a way similar to what we proposed in a previous article (J. Chem. Theory Comput. 2010, 6, 3330) for combined quantum mechanical and molecular mechanical (QM/MM) simulations, but the screening parameters are reoptimized for MM. The optimization is carried out with electrostatic-potential-fitted partial atomic charges, but the optimized parameters should be useful with any realistic charge model. In the model we employ, the charge density of an atom is approximated as the sum of a point charge representing the nucleus and inner electrons and a smeared charge representing the outermost electrons; in particular, for all atoms except hydrogens, the smeared charge represents the two outermost electrons in the present model. We find that the charge penetration effect can cause very significant deviations from the popular point-charge model, and by comparison to electrostatic interactions calculated by symmetry-adapted perturbation theory, we find that the present results are considerably more accurate than point-charge electrostatic interactions. The mean unsigned error in electrostatics for a large and diverse data set (192 interaction energies) decreases from 9.2 to 3.3 kcal/mol, and the error in the electrostatics for 10 water dimers decreases from 1.7 to 0.5 kcal

  2. Electrostatic graphene loudspeaker

    NASA Astrophysics Data System (ADS)

    Zhou, Qin; Zettl, A.

    2013-06-01

    Graphene has extremely low mass density and high mechanical strength, and key qualities for efficient wide-frequency-response electrostatic audio speaker design. Low mass ensures good high frequency response, while high strength allows for relatively large free-standing diaphragms necessary for effective low frequency response. Here, we report on construction and testing of a miniaturized graphene-based electrostatic audio transducer. The speaker/earphone is straightforward in design and operation and has excellent frequency response across the entire audio frequency range (20 Hz-20 kHz), with performance matching or surpassing commercially available audio earphones.

  3. Electrostatic Levitator Inspected

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Larry Savage, Dr. Jan Rogers, Dr. Michael Robinson (All NASA) and Doug Huie (Mevatec) inspect the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  4. Electrostatic Levitator (ESL) Undercooling

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Graph depicting Electrostatic Levitator (ESL) heating and cooling cycle to achieve undercooling of liquid metals. The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. The electrostatic Levitator is one of several tools used in NASA's microgravity matierials sciences program.

  5. Electrostatic Levitator at Work

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A 3 mm drop of nickel-zirconium, heated to incandescence, hovers between electrically charged plates inside the Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  6. Electrostatic Levitator Operations

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Jan Rogers and Dr. Michael Robinson operate the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  7. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  8. Electrostatic doping in oxide heterostructures.

    NASA Astrophysics Data System (ADS)

    Demkov, Alexander A.; Lee, Jaekwang; Sai, Na

    2009-03-01

    Recent experiments on perovskite heterostructures grown by methods ranging from molecular beam epitaxy to pulsed laser deposition suggest the existence of two dimensional electron gas of high mobility at the oxide/oxide interface, and even a possibility of a superconducting state. Both p-type and n-type interfaces have been reported. However, the origin of charge in these insulating materials is still under debate. We report a first-principles study of several heterostructures where we employ the internal filed in a polar oxide LaAlO3 to demonstrate the possibility of the electrostatic doping, an effect similar to a well known polar catastrophe in e.g., III-V semiconductors. We use density functional theory at the LDA+U level. We mainly focus on the electronic structure of the oxide/oxide junctions. The results of our calculations suggest that once the critical thickness of the aluminate layer is reached the internal electric field is sufficient to produce the electrostatic doping. We will discuss simple estimates for the temperature of the superconducting transition and the role of oxygen-related defects such as vacancies in the electronic structure and thermodynamic stability of these fascinating oxide structures.

  9. Electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Wilson, J. W.; Youngquist, R. C.

    For the success of NASA s new vision for space exploration to Moon Mars and beyond exposures from the hazards of severe space radiation in deep space long duration missions is a must solve problem The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions The exploration beyond low Earth orbit LEO to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation Galactic Cosmic Rays GCR and Solar Particle Events SPE and minimizing the production of secondary radiation is a great advantage There is a need to look to new horizons for newer technologies The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies The full space radiation environment has been used for the first time to explore the feasibility of electrostatic shielding The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons Conclusions will be drawn should the electrostatic shielding be successful for the future directions of space radiation protection

  10. An asymmetry in electrostatics

    NASA Astrophysics Data System (ADS)

    Ganci, Salvatore

    2013-11-01

    This paper outlines a misuse of the electrostatic induction concept. A non-symmetrical behaviour was observed in a charge by the induction of an insulated hollow metallic conductor (the Faraday ice pail experiment). The major consequence of this experiment is a quick demonstration that the Earth must have a net negative charge.

  11. Studying Electrostatic Levitator Specimen

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Prof. Kerneth Kelton of Washington University in St. Lous, MO, (L) and Dr. Michael Robinson of NASA's Marshall Space Flight Center (MSFC) examine a titanium-iron silicate (TiFeSiO)sample processed in MSFC's Electrostatic Levitator (ESL) Facility (background). Kelton is investigating undercooling of polytetrahedral phase-forming liquids.

  12. Nanoscale Electrostatics in Mitosis

    NASA Astrophysics Data System (ADS)

    Gagliardi, L. John; West, Patrick Michael

    2001-04-01

    Primitive biological cells had to divide with very little biology. This work simulates a physicochemical mechanism, based upon nanoscale electrostatics, which explains the anaphase A poleward motion of chromosomes. In the cytoplasmic medium that exists in biological cells, electrostatic fields are subject to strong attenuation by Debye screening, and therefore decrease rapidly over a distance equal to several Debye lengths. However, the existence of microtubules within cells changes the situation completely. Microtubule dimer subunits are electric dipolar structures, and can act as intermediaries that extend the reach of the electrostatic interaction over cellular distances. Experimental studies have shown that intracellular pH rises to a peak at mitosis, and decreases through cytokinesis. This result, in conjunction with the electric dipole nature of microtubule subunits and the Debye screened electrostatic force is sufficient to explain and unify the basic events during mitosis and cytokinesis: (1) assembly of asters, (2) motion of the asters to poles, (3) poleward motion of chromosomes (anaphase A), (4) cell elongation, and (5) cytokinesis. This paper will focus on a simulation of the dynamics if anaphase A motion based on this comprehensive model. The physicochemical mechanisms utilized by primitive cells could provide important clues regarding our understanding of cell division in modern eukaryotic cells.

  13. Electrostatics in sandstorms and earthquakes

    NASA Astrophysics Data System (ADS)

    Shinbrot, Troy; Thyagu, Nirmal; Paehtz, Thomas; Herrmann, Hans

    2010-11-01

    We present new data demonstrating (1) that electrostatic charging in sandstorms is a necessary outcome in a class of rapid collisional flows, and (2) that electrostatic precursors to slip events - long reported in earthquakes - can be reproduced in the laboratory.

  14. Antagonistic properties of a natural product - Bicuculline with the gamma-aminobutyric acid receptor: Studied through electrostatic potential mapping, electronic and vibrational spectra using ab initio and density functional theory

    NASA Astrophysics Data System (ADS)

    Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Asthana, B. P.

    2011-12-01

    (+)-Bicuculline (hereinafter referred to as bicuculline), a phthalide isoquinoline alkaloid is of current interest as an antagonist of gamma-aminobutyric acid (GABA). Its inhibitor properties have been studied through molecular electrostatic potential (MEP) mapping of this molecule and GABA receptor. The hot site on the potential surface of bicuculline, which is also isosteric with GABA receptor, has been used to interpret the inhibitor property. A systematic quantum chemical study of the possible conformations, their relative stabilities, FT-Raman, FT-IR and UV-vis spectroscopic analysis of bicuculline has been reported. The optimized geometries, wavenumber and intensity of the vibrational bands of all the conformers of bicuculline have been calculated using ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP functional and 6-311G(d,p) basis set. Mulliken atomic charges, HOMO-LUMO gap Δ E, ionization potential, dipole moments and total energy have also been obtained for the optimized geometries of both the molecules. TD-DFT method is used to calculate the electronic absorption parameters in gas phase as well as in solvent environment using integral equation formalism-polarizable continuum model (IEF-PCM) employing 6-31G basis set and the results thus obtained are compared with the UV absorption spectra. The combination of experimental and calculated results provides an insight into the structural and vibrational spectroscopic properties of bicuculline.

  15. Biobriefcase electrostatic aerosol collector

    DOEpatents

    Bell, Perry M.; Christian, Allen T.; Bailey, Christopher G.; Willis, Ladona; Masquelier, Donald A.; Nasarabadi, Shanavaz L.

    2009-03-17

    A system for sampling air and collecting particles entrained in the air comprising a receiving surface, a liquid input that directs liquid to the receiving surface and produces a liquid surface, an air input that directs the air so that the air with particles entrained in the air impact the liquid surface, and an electrostatic contact connected to the liquid that imparts an electric charge to the liquid. The particles potentially including bioagents become captured in the liquid by the air with particles entrained in the air impacting the liquid surface. Collection efficiency is improved by the electrostatic contact electrically charging the liquid. The effects of impaction and adhesion due to electrically charging the liquid allows a unique combination in a particle capture medium that has a low fluid consumption rate while maintaining high efficiency.

  16. Electrostatic Levitator Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  17. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  18. Electrostatic Levitator Vaccum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), positioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  19. PREFACE: Electrostatics 2015

    NASA Astrophysics Data System (ADS)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical

  20. Electrostatic curtain studies

    SciTech Connect

    Meyer, L C

    1992-05-01

    This report presents the results of experiments using electrostatic curtains (ESCS) as a transuranic (TRU) contamination control technique. The TRU contaminants included small (micrometer to sub micrometer) particles of plutonium and americium compounds associated with defense-related waste. Three series of experiments were conducted. The first was with uncontaminated Idaho National Engineering Laboratory (INEL) soil, the second used contaminated soil containing plutonium-239 (from a mixture of Rocky Flats Plant contaminated soil and INEL uncontaminated soil), and the third was uncontaminated INEL soil spiked with plutonium-239. All experiments with contaminated soil were conducted inside a glove box containing a dust generator, low volume cascade impactor (LVCI), electrostatic separator, and electrostatic materials. The data for these experiments consisted of the mass of dust collected on the various material coupons, plates, and filters; radiochemical analysis of selected samples; and photographs, as well as computer printouts giving particle size distributions and dimensions from the scanning electron microscope (SEM). The following results were found: (a) plutonium content (pCi/g) was found to increase with smaller soil particle sizes and (b) the electrostatic field had a stronger influence on smaller particle sizes compared to larger particle sizes. The SEM analysis indicated that the particle size of the tracer Pu239 used in the spiked soil experiments was below the detectable size limit (0.5 {mu}m) of the SEM and, thus, may not be representative of plutonium particles found in defense-related waste. The use of radiochemical analysis indicated that plutonium could be found on separator plates of both polarities, as well as passing through the electric field and collecting on LVCI filters.

  1. Electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram K.; Wilson, John W.; Youngquist, Robert C.

    2008-09-01

    For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.

  2. Electrostatic containerless processing system

    NASA Astrophysics Data System (ADS)

    Rulison, Aaron J.; Watkins, John L.; Zambrano, Brian

    1997-07-01

    We introduce a materials science tool for investigating refractory solids and melts: the electrostatic containerless processing system (ESCAPES). ESCAPES maintains refractory specimens of materials in a pristine state by levitating and heating them in a vacuum chamber, thereby avoiding the contaminating influences of container walls and ambient gases. ESCAPES is designed for the investigation of thermophysical properties, phase equilibria, metastable phase formation, undercooling and nucleation, time-temperature-transformation diagrams, and other aspects of materials processing. ESCAPES incorporates several design improvements over prior electrostatic levitation technology. It has an informative and responsive computer control system. It has separate light sources for heating and charging, which prevents runaway discharging. Both the heating and charging light sources are narrow band, which allows the use of optical pyrometry and other diagnostics at all times throughout processing. Heat is provided to the levitated specimens by a 50 W Nd:YAG laser operating at 1.064 μm. A deuterium arc lamp charges the specimen through photoelectric emission. ESCAPES can heat metals, ceramics, and semiconductors to temperatures exceeding 2300 K; specimens range in size from 1 to 3 mm diam. This article describes the design, capabilities, and applications of ESCAPES, focusing on improvements over prior electrostatic levitation technology.

  3. Electrostatic modeling for LISA

    NASA Astrophysics Data System (ADS)

    Shaul, Diana N.; Sumner, Timothy J.

    2003-03-01

    LISA employs a capacitive sensing and positioning system to maintain the drag free environment of the test masses acting as interferometer mirror elements. The need for detailed electrostatic modelling of the test mass environment arises because any electric field gradient or variation associated with test mass motion can couple the test mass to its housing, and ultimately the spacecraft. Cross-couplings between components in the system can introduce direct couplings between sensing signals, sensing axes and the drive signal. A variation in cross-couplings or asymmetry in the system can introduce capacitance gradients and second derivatives, giving rise to unwanted forces and spring constant modifications. These effects will vary dependent on the precise geometry of the system and will also tend to increase the sensitivity to accumulated charge on the test-mass. Presented are the results of a systematic study of the effect of the principal geometry elements (e.g. machining imperfections, the caging mechanism) on the test mass electrostatic environment, using the finite element code ANSYS. This work is part of an ongoing ESA study into drag-free control for LISA and the LTP on SMART 2 and ultimately aims to eliminate geometries that introduce too large a disturbance and optimise the electrostatic design.

  4. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  5. Electrostatics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, John

    2004-01-01

    The purpose of the research was to continue developing an understanding of electrostatic phenomena in preparation for any future flight opportunities of the EGM experiment, originally slated for a 2004 Space Station deployment. Work would be based on theoretical assessments, ground-based lab experiments, and reduced-gravity experiments. The ability to examine dipoles in the lab proved to be elusive, and thus, effort was concentrated on monopoles -how materials become charged, the fate of the charge, the role of material type, and so forth. Several significant milestones were achieved in this regard. In regard of the dipoles, experiments were designed in collaboration with the University of Chicago school district who had access to reduced gravity on the KC-135 aircraft. Two experiments were slated to fly last year but were cancelled after the Columbia accident. One of the experiments has been given a second life and will fly sometime in 2005 if the Shuttle flights resume. There remains active interest in the question of electrostatic dipoles within the educational community, and experiments using magnetic dipoles as a substitute are to be examined. The KC-135 experiments will also examine dispersion methods for particles as a verification of possible future techniques in microgravity. Both laboratory and theoretical work established a number of breakthroughs in our understanding of electrostatic phenomena. These breakthroughs are listed in this paper.

  6. Innovative Electrostatic Adhesion Technologies

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  7. Innovative Electrostatic Adhesion Technologies

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  8. Wave-particle transport by weak electrostatic flow shear fluctuations

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Schwartz, S. J.

    1981-01-01

    A description is presented of the first consistent theoretical treatment of transport due to weak electrostatic fluctuations from microinstabilities driven by a shear in plasma flow parallel to a uniform magnetic field. The model used considers electrostatic fluctuations in a Vlasov plasma with sheared bulk velocity parallel to a uniform magnetic field. The linear stability theory for the model has been studied by Gary and Schwartz (1980). In the current investigation, a calculation is performed of the wave-particle transport associated with the electrostatic flow shear instability.

  9. Fast Analytical Methods for Macroscopic Electrostatic Models in Biomolecular Simulations*

    PubMed Central

    Xu, Zhenli; Cai, Wei

    2013-01-01

    We review recent developments of fast analytical methods for macroscopic electrostatic calculations in biological applications, including the Poisson–Boltzmann (PB) and the generalized Born models for electrostatic solvation energy. The focus is on analytical approaches for hybrid solvation models, especially the image charge method for a spherical cavity, and also the generalized Born theory as an approximation to the PB model. This review places much emphasis on the mathematical details behind these methods. PMID:23745011

  10. Electrostatic particle precipitator

    SciTech Connect

    Uchiya, T.; Hikizi, S.; Yabuta, H.

    1984-04-03

    An electrostatic particle precipitator for removing dust particles from a flue gas. The precipitator includes a plurality of collecting electrodes in the shape of plates mounted on endless chains and moving between a first region through which flue gas to be treated flows and a second region where the flow of gas is extremely scarce. A dust removal mechanism is positioned in the second region to remove dust which accumulates on the electrode plates. The moving speed of the collecting electrodes is controlled within a certain range to maintain a prescribed thickness of dust on the electrodes whereby the ocurrence of reverse ionization phenomenon is prevented.

  11. Electrostatic Return of Contaminants

    NASA Technical Reports Server (NTRS)

    Rantanen, R.; Gordon, T.

    2003-01-01

    A Model has been developed capable of calculating the electrostatic return of spacecraft-emitted molecules that are ionized and attracted back to the spacecraft by the spacecraft electric potential on its surfaces. The return of ionized contaminant molecules to charged spacecraft surfaces is very important to all altitudes. It is especially important at geosynchronous and interplanetary environments, since it may be the only mechanism by which contaminants can degrade a surface. This model is applicable to all altitudes and spacecraft geometries. In addition to results of the model will be completed to cover a wide range of potential space systems.

  12. PREFACE: Electrostatics 2015

    NASA Astrophysics Data System (ADS)

    Matthews, James

    2015-10-01

    Electrostatics 2015, supported by the Institute of Physics, was held in the Sir James Matthews building at Southampton Solent University, UK between 12th and 16th April 2015. Southampton is a historic city on the South Coast of England with a strong military and maritime history. Southampton is home to two Universities: Solent University, which hosted the conference, and the University of Southampton, where much work is undertaken related to electrostatics. 37 oral and 44 poster presentations were accepted for the conference, and 60 papers were submitted and accepted for the proceedings. The Bill Bright Memorial Lecture was delivered this year by Professor Mark Horenstein from Boston University who was, until recently, Editor-in-Chief of the Journal of Electrostatics. He spoke on The contribution of surface potential to diverse problems in electrostatics and his thorough knowledge of the subject of electrostatics was evident in the presentation. The first session was chaired by the Conference Chair, Dr Keith Davies, whose experience in the field showed through his frequent contributions to the discussions throughout the conference. Hazards and Electrostatic Discharge have formed a strong core to Electrostatics conferences for many years, and this conference contained sessions on both Hazards and on ESD, including an invited talk from Dr Jeremy Smallwood on ESD in Industry - Present and Future. Another strong theme to emerge from this year's programme was Non-Thermal Plasmas, which was covered in two sessions. There were two invited talks on this subject: Professor Masaaki Okubo gave a talk on Development of super-clean diesel engine and combustor using nonthermal plasma hybrid after treatment and Dr David Go presented a talk on Atmospheric-pressure ionization processes: New approaches and applications for plasmas in contact with liquids. A new innovation to the conference this year was the opportunity for conference sponsors to present to the delegates a technical

  13. Physics of electrostatic lens

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The purpose of this program was to study the physics of the ion-energy boosting electrostatic lens for collective ion acceleration in the Luce diode. Extensive work was done in preparation for experiments on the PI Pulserad 1150. Analytic work was done on the orbit of protons in a mass spectrometer and a copper stack for nuclear activation analysis of proton energy spectrum has been designed. Unfortunately, a parallel program which would provide the Luce diode for the collective ion acceleration experiment never materialized. As a result no experiments were actually performed on the Pulserad 1150.

  14. Electrostatic Suspension Using Variable Capacitors

    NASA Astrophysics Data System (ADS)

    Kato, Takaaki; Tsukada, Shinya; Ishino, Yuji; Takasaki, Masaya; Mizuno, Takeshi

    A new control system for electrostatic actuators was applied to electrostatic suspension. This control system was designed to use a variable capacitor connected with an electrostatic actuator in series. A high voltage was applied to this connection. The voltage applied to the actuator was controlled by varying the capacitance of the variable capacitor. An experimental apparatus was fabricated in order to study the controllability of electrostatic force using this control system. The experimental results show that electrostatic force can be controlled both statically and dynamically. Another experimental apparatus was fabricated for demonstrating the feasibility of electrostatic suspension. This apparatus was able to control the 3-DOF vertical motions of the suspended object. Non-contact suspension was achieved with the developed control system using variable capacitors.

  15. Undamped electrostatic plasma waves

    SciTech Connect

    Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.

    2012-09-15

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.

  16. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  17. Electrostatic precipitator having apparatus for sensing electrostatic field strengths

    SciTech Connect

    Perryman, J.W.

    1984-03-27

    An electrostatic precipitator (10) of the type having a casing (12) defining a precipitation chamber (6) wherein a plurality of discharge electrode frames (32) are disposed alternately between a plurality of collecting electrode plates (20). Paired probe devices (50) are mounted on the collecting electrode plates for sensing the strength of the electrostatic field generated by at least one discharge electrode wire (36) at at least one location on each of the collecting electrode plates (20) disposed adjacent thereto. The electrostatic field strength sensed by the paired probe devices are compared with each other to provide an indication of the degree of imbalance, if any, existing between the sensed electrostatic fields experienced by the bounding electrode plates. The existence of an imbalance and the strength of the electrostatic fields on the bounding collecting electrode plates and the degree of any such imbalance provide an indication of whether or not the discharge electrode frame is properly positioned within the assembly of collecting electrode plates.

  18. Intermolecular electrostatic energies using density fitting.

    PubMed

    Cisneros, G Andrés; Piquemal, Jean-Philip; Darden, Thomas A

    2005-07-22

    A method is presented to calculate the electron-electron and nuclear-electron intermolecular Coulomb interaction energy between two molecules by separately fitting the unperturbed molecular electron density of each monomer. This method is based on the variational Coulomb fitting method which relies on the expansion of the ab initio molecular electron density in site-centered auxiliary basis sets. By expanding the electron density of each monomer in this way the integral expressions for the intermolecular electrostatic calculations are simplified, lowering the operation count as well as the memory usage. Furthermore, this method allows the calculation of intermolecular Coulomb interactions with any level of theory from which a one-electron density matrix can be obtained. Our implementation is initially tested by calculating molecular properties with the density fitting method using three different auxiliary basis sets and comparing them to results obtained from ab initio calculations. These properties include dipoles for a series of molecules, as well as the molecular electrostatic potential and electric field for water. Subsequently, the intermolecular electrostatic energy is tested by calculating ten stationary points on the water dimer potential-energy surface. Results are presented for electron densities obtained at four different levels of theory using two different basis sets, fitted with three auxiliary basis sets. Additionally, a one-dimensional electrostatic energy surface scan is performed for four different systems (H2O dimer, Mg2+-H2O, Cu+-H2O, and n-methyl-formamide dimer). Our results show a very good agreement with ab initio calculations for all properties as well as interaction energies.

  19. Electrostatically Guided Rydberg Positronium.

    PubMed

    Deller, A; Alonso, A M; Cooper, B S; Hogan, S D; Cassidy, D B

    2016-08-12

    We report experiments in which positronium (Ps) atoms were guided using inhomogeneous electric fields. Ps atoms in Rydberg-Stark states with principal quantum number n=10 and electric dipole moments up to 610 D were prepared via two-color two-photon optical excitation in the presence of a 670  V cm^{-1} electric field. The Ps atoms were created at the entrance of a 0.4 m long electrostatic quadrupole guide, and were detected at the end of the guide via annihilation gamma radiation. When the lasers were tuned to excite low-field-seeking Stark states, a fivefold increase in the number of atoms reaching the end of the guide was observed, whereas no signal was detected when high-field-seeking states were produced. The data are consistent with the calculated geometrical guide acceptance. PMID:27563960

  20. ELECTROSTATIC MEMORY SYSTEM

    DOEpatents

    Chu, J.C.

    1958-09-23

    An improved electrostatic memory system is de scribed fer a digital computer wherein a plarality of storage tubes are adapted to operate in either of two possible modes. According to the present irvention, duplicate storage tubes are provided fur each denominational order of the several binary digits. A single discriminator system is provided between corresponding duplicate tubes to determine the character of the infurmation stored in each. If either tube produces the selected type signal, corresponding to binazy "1" in the preferred embodiment, a "1" is regenerated in both tubes. In one mode of operation each bit of information is stored in two corresponding tubes, while in the other mode of operation each bit is stored in only one tube in the conventional manner.

  1. Electrostatically Guided Rydberg Positronium

    NASA Astrophysics Data System (ADS)

    Deller, A.; Alonso, A. M.; Cooper, B. S.; Hogan, S. D.; Cassidy, D. B.

    2016-08-01

    We report experiments in which positronium (Ps) atoms were guided using inhomogeneous electric fields. Ps atoms in Rydberg-Stark states with principal quantum number n =10 and electric dipole moments up to 610 D were prepared via two-color two-photon optical excitation in the presence of a 670 V cm-1 electric field. The Ps atoms were created at the entrance of a 0.4 m long electrostatic quadrupole guide, and were detected at the end of the guide via annihilation gamma radiation. When the lasers were tuned to excite low-field-seeking Stark states, a fivefold increase in the number of atoms reaching the end of the guide was observed, whereas no signal was detected when high-field-seeking states were produced. The data are consistent with the calculated geometrical guide acceptance.

  2. Versatile electrostatic trap

    SciTech Connect

    Veldhoven, Jacqueline van; Bethlem, Hendrick L.; Schnell, Melanie; Meijer, Gerard

    2006-06-15

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of {sup 15}ND{sub 3} molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to create either a double-well or a donut-shaped trapping field. The profile of the {sup 15}ND{sub 3} packet in each of these four trapping potentials is measured, and the dependence of the well-separation and barrier height of the double-well and donut potential on the hexapole and dipole term are discussed.

  3. Teaching Electrostatics in University Courses

    ERIC Educational Resources Information Center

    Hughes, J. F.

    1974-01-01

    Describes an optional course on applied electrostatics that was offered to electrical engineers in their final year. Topics included the determination of electric fields, nature of the charging process, static electricity in liquids, solid state processes, charged particle applications, and electrostatic ignition. (GS)

  4. Formation of electrostatic solitons and hole structures in pair plasmas.

    PubMed

    Jao, C-S; Hau, L-N

    2012-11-01

    In an electron-proton plasma, electrostatic solitary waves and hole structures can easily be generated by streaming instability due to the asymmetric inertia between ions and electrons. It has been argued theoretically whether electrostatic solitons and/or hole structures can form in a pair plasma. This paper presents results on the formation of pair electrostatic hole structure in an electron-positron plasma based on one-dimensional electrostatic particle-in-cell simulations. In particular, we show the feature of interlacing electron and positron holes in phase space generated by current-free electron and positron beams streaming in a stationary electron-positron background plasma. The coexistent electron and positron holes are associated with periodic interlacing of positive and negative potentials, respectively. Detailed comparisons between simulation results and linear theory of streaming instability in pair plasmas are made and the thermodynamic state is inferred. PMID:23214890

  5. Electrostatic Potential of Specific Mineral Faces

    SciTech Connect

    Zarzycki, Piotr P.; Chatman, Shawn ME; Preocanin, Tajana; Rosso, Kevin M.

    2011-07-05

    Reaction rates of environmental processes occurring at hydrated mineral surfaces are primarily controlled by the electrostatic potential that develops at the interface. This potential depends on the structure of exposed crystal faces, as well as the pH and the type of ions and their interactions with these faces. Despite its importance, experimental methods for determining fundamental electrostatic properties of specific crystal faces such as the point of zero charge are few. Here we show that this information may be obtained from simple, cyclic potentiometric titration using a well characterized single-crystal electrode exposing the face of interest. The method exploits the presence of a hysteresis loop in the titration measurements that allows extraction of key electrostatic descriptors using the Maxwell construction. The approach is demonstrated for hematite (α-Fe2O3) (001), and a thermodynamic proof is provided for the resulting estimate of its point of zero charge. Insight gained from this method will aid in predicting the fate of migrating contaminants, mineral growth/dissolution processes, mineral-microbiological interactions, and in testing surface complexation theories.

  6. Electrostatic Tractor Analysis for GEO Debris Remediation

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.

    The high value of operating in the geostationary ring, coupled with increasing numbers of orbital debris, highlights the need for GEO debris remediation techniques. One recent proposed technique for GEO debris mitigation is the electrostatic tractor. Here, a tug vehicle approaches a target debris object and emits a focused electron beam onto it. This results in a negative charge on the debris, and a positive charge on the tug vehicle. Due to the near proximity of the highly charged objects (20 meters or less) an attractive electrostatic force on the order of milliNewtons results. This electrostatic force is used in conjunction with low thrusting by the tug vehicle to tow the debris object into a disposal orbit 200-300 kilometers above the GEO belt. During the tugging period, the charged relative motion between tug and deputy is stabilized through a feedback control law. This is accomplished using a novel relative motion description that isolates separation distance from the relative orientation. The equations of motion for the relative motion description are derived from the Clohessy-Wiltshire equations, assuming the debris object is in a nearly circular orbit. Lyapunov stability theory is used to derive an asymptotically stable control law for the tug thrusters during the towing period. The control law requires an estimate of the electrostatic force magnitude, and the impacts of improperly modeled charging on control response are determined. If the electrostatic force is under-predicted too severely, a collision may result. A bound on the control gains is determined to prevent such a collision. Expected reorbiting performance levels achievable with the electrostatic tractor are computed. An open-loop analytical performance study is performed where variational equations are used to predict how much general orbital elements may be changed using the electrostatic tractor over one orbital period for a towed object at geosynchronous altitude. In contrast to earlier

  7. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  8. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  9. Electrostatic Focusing Lens

    NASA Astrophysics Data System (ADS)

    Thomas, Eric; Hopkins, Demitri

    2011-10-01

    We developed an electrostatic focusing lens capable of generating DD reactions, by focusing deuterium ions generated from a pointed emitter at a frozen heavy water target. Due to difficulty with the pointed emitter, we later switched to a hollow cathode design. To model the lenses, chamber, and calculate the dimensions for the design that would maximize ion energy and density, the program SIMION was used. During stable operation, vacuum was hand adjusted around 10-13 mTorr. To keep stable beam, DC voltage generator was varied between 15-25 kV. Hand adjusting was necessary, because at points in the operation the frozen heavy water would release vapor at an increased rate. This caused the pressure to rise and the beam current to spike, creating instabilities and an arc to the lens. Three methods were used to determine successful DD production. (1) Two differently shielded Geiger counters (unshielded and UHMW-PE insulated tube), (2) Spectrophotometer comparing control peaks with heavy water tests, and (3) a calibrated bubble dosimeter specific to neutrons. Analysis of the results suggest the neutrons flux varied from 532 to 1.4 × 106 neutrons/sec, and require further tests to plot and narrow results.

  10. Using visualizations to teach electrostatics

    NASA Astrophysics Data System (ADS)

    Casperson, Janet M.; Linn, Marcia C.

    2006-04-01

    We investigate the effect of visualizations of electrostatics phenomena on students' ability to integrate microscopic and macroscopic views of electrostatics in the context of a technology-enhanced inquiry project that features particle interactions. We used knowledge integration instructional design patterns to determine activity sequences. A pretest/post-test design was used to assess the students' overall gains. The results from the implementation of the project in two classes demonstrate that it helped students form a more integrated understanding of electrostatics. An analysis of student responses to prompts embedded with the visualizations reveals that interactions with the visualizations played a significant role in increasing understanding.

  11. Characterization of electrostatic glass actuators

    NASA Astrophysics Data System (ADS)

    Moser, R.; Wüthrich, R.; Sache, L.; Higuchi, T.; Bleuler, H.

    2003-06-01

    Electrostatic glass actuators are a promising concept for various applications. The use of the interaction between glassy substances and electrostatic fields allows synchronous propulsion akin to the electret actuator. Even though some properties of electrostatic glass motors have been observed and described, a characterization is still missing. The authors would like to present the experimental work leading to the determination of the optimal glass blend and to the optimal electrode pattern in order to maximize the exploitable forces. An analytical model is also presented, satisfactorily close to the measured data. These measurements and models constitute a tool to design electrostatic glass actuators such as, for example, a miniature disk drive, which is presented as one of several promising applications.

  12. Computational Methods for Biomolecular Electrostatics

    PubMed Central

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  13. Electrostatic prepregging of thermoplastic matrices

    NASA Technical Reports Server (NTRS)

    Muzzy, John D.; Varughese, Babu; Thammongkol, Vivan; Tincher, Wayne

    1989-01-01

    Thermoplastic towpregs of PEEK/AS-4, PEEK/S-2 glass and LaRC-TPI/AS-4, produced by electrostatic deposition of charged and fluidized polymer powders on spread continuous fiber tows, are described. Processing parameters for combining PEEK 150 powder with unsized 3k AS-4 carbon fiber are presented. The experimental results for PEEK 150/AS-4 reveal that electrostatic fluidized bed coating may be an economically attractive process for producing towpreg.

  14. Electrostatic charge bounds for ball lightning models

    NASA Astrophysics Data System (ADS)

    Stephan, Karl D.

    2008-03-01

    Several current theories concerning the nature of ball lightning predict a substantial electrostatic charge in order to account for its observed motion and shape (Turner 1998 Phys. Rep. 293 1; Abrahamson and Dinniss 2000 Nature 403 519). Using charged soap bubbles as a physical model for ball lightning, we show that the magnitude of charge predicted by some of these theories is too high to allow for the types of motion commonly observed in natural ball lightning, which includes horizontal motion above the ground and movement near grounded conductors. Experiments show that at charge levels of only 10-15 nC, 3-cm-diameter soap bubbles tend to be attracted by induced charges to the nearest grounded conductor and rupture. We conclude with a scaling rule that can be used to extrapolate these results to larger objects and surroundings.

  15. Engineering scale electrostatic enclosure demonstration

    SciTech Connect

    Meyer, L.C.

    1993-09-01

    This report presents results from an engineering scale electrostatic enclosure demonstration test. The electrostatic enclosure is part of an overall in-depth contamination control strategy for transuranic (TRU) waste recovery operations. TRU contaminants include small particles of plutonium compounds associated with defense-related waste recovery operations. Demonstration test items consisted of an outer Perma-con enclosure, an inner tent enclosure, and a ventilation system test section for testing electrostatic curtain devices. Three interchangeable test fixtures that could remove plutonium from the contaminated dust were tested in the test section. These were an electret filter, a CRT as an electrostatic field source, and an electrically charged parallel plate separator. Enclosure materials tested included polyethylene, anti-static construction fabric, and stainless steel. The soil size distribution was determined using an eight stage cascade impactor. Photographs of particles containing plutonium were obtained with a scanning electron microscope (SEM). The SEM also provided a second method of getting the size distribution. The amount of plutonium removed from the aerosol by the electrostatic devices was determined by radiochemistry from input and output aerosol samplers. The inner and outer enclosures performed adequately for plutonium handling operations and could be used for full scale operations.

  16. Electrostatic interaction effects on tension-induced pore formation in lipid membranes

    NASA Astrophysics Data System (ADS)

    Karal, Mohammad Abu Sayem; Levadnyy, Victor; Tsuboi, Taka-aki; Belaya, Marina; Yamazaki, Masahito

    2015-07-01

    We investigated the effects of electrostatic interactions on the rate constant (kp) for tension-induced pore formation in lipid membranes of giant unilamellar vesicles under constant applied tension. A decrease in salt concentration in solution as well as an increase in surface charge density of the membranes increased kp. These data indicate that kp increases as the extent of electrostatic interaction increases. We developed a theory on the effect of the electrostatic interactions on the free energy profile of the membrane containing a prepore and also on the values of kp; this theory explains the experimental results and fits the experimental data reasonably well in the presence of weak electrostatic interactions. Based on these results, we conclude that a decrease in the free energy barrier of the prepore state due to electrostatic interactions is the main factor causing an increase in kp.

  17. Electrostatic precipitator construction having spacers

    SciTech Connect

    Jonelis, J.A.

    1984-10-23

    The present invention relates to an improved construction for an electrostatic precipitator. The electrostatic precipitator collects solid particles carried by a flue gas from a source of combustion. The precipitator includes a plurality of spaced plates for collecting solid particles from the flue gas by electrostatic attraction of the solid particles to the plates. A plurality of elongated electrodes is positioned among the plates. Each of the electrodes is mounted between a pair of adjacent plates. Each of the electrodes is parallel to the other electrodes and is parallel to the plates. A plurality of identical spacers is positioned between adjacent plates to hold the plates in a flat attitude and to maintain adjacent surfaces of adjacent plates equidistantly spaced from one another. Each of the spacers is an elongated single unitary member and has one end fixed to a surface of one of a pair of adjacent surfaces of the plates and the other end abutting the other of the adjacent surfaces.

  18. PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)

    NASA Astrophysics Data System (ADS)

    Li, Jie

    2013-03-01

    ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the

  19. Is electrostatics sufficient to describe hydrogen-bonding interactions?

    PubMed

    Hoja, Johannes; Sax, Alexander F; Szalewicz, Krzysztof

    2014-02-17

    The stability and geometry of a hydrogen-bonded dimer is traditionally attributed mainly to the central moiety A-H⋅⋅⋅B, and is often discussed only in terms of electrostatic interactions. The influence of substituents and of interactions other than electrostatic ones on the stability and geometry of hydrogen-bonded complexes has seldom been addressed. An analysis of the interaction energy in the water dimer and several alcohol dimers--performed in the present work by using symmetry-adapted perturbation theory--shows that the size and shape of substituents strongly influence the stabilization of hydrogen-bonded complexes. The larger and bulkier the substituents are, the more important the attractive dispersion interaction is, which eventually becomes of the same magnitude as the total stabilization energy. Electrostatics alone are a poor predictor of the hydrogen-bond stability trends in the sequence of dimers investigated, and in fact, dispersion interactions predict these trends better. PMID:24453112

  20. First-principles simulations of electrostatic interactions between dust grains

    SciTech Connect

    Itou, H. Amano, T.; Hoshino, M.

    2014-12-15

    We investigated the electrostatic interaction between two identical dust grains of an infinite mass immersed in homogeneous plasma by employing first-principles N-body simulations combined with the Ewald method. We specifically tested the possibility of an attractive force due to overlapping Debye spheres (ODSs), as was suggested by Resendes et al. [Phys. Lett. A 239, 181–186 (1998)]. Our simulation results demonstrate that the electrostatic interaction is repulsive and even stronger than the standard Yukawa potential. We showed that the measured electric field acting on the grain is highly consistent with a model electrostatic potential around a single isolated grain that takes into account a correction due to the orbital motion limited theory. Our result is qualitatively consistent with the counterargument suggested by Markes and Williams [Phys. Lett. A 278, 152–158 (2000)], indicating the absence of the ODS attractive force.

  1. Electrostatic disturbances aboard LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Ferroni, Valerio

    Test mass charging and stray electrostatic fields are a potentially important source of force noise for the LISA Pathfinder mission. During the flight we plan to measure the relevant stray electrostatic fields on the surfaces of both the test mass and the electrode housing and compensate them with DC electrode bias voltages. In addition we monitor the charge and reduce it to near zero by UV illumination. We describe the analysis techniques used during the mission and explain the importance of periodic charging/discharging and of long-term charge measurements to limit the force noise at low frequency, which is particularly relevant for the eLISA mission.

  2. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  3. Polarizable multipolar electrostatics for cholesterol

    NASA Astrophysics Data System (ADS)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  4. Charge sniffer for electrostatics demonstrations

    NASA Astrophysics Data System (ADS)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  5. Elasticity and Electrostatics of Plectonemic DNA

    PubMed Central

    Clauvelin, N.; Audoly, B.; Neukirch, S.

    2009-01-01

    We present a self-contained theory for the mechanical response of DNA in single molecule experiments. Our model is based on a one-dimensional continuum description of the DNA molecule and accounts both for its elasticity and for DNA-DNA electrostatic interactions. We consider the classical loading geometry used in experiments where one end of the molecule is attached to a substrate and the other one is pulled by a tensile force and twisted by a given number of turns. We focus on configurations relevant to the limit of a large number of turns, which are made up of two phases, one with linear DNA and the other one with superhelical DNA. The model takes into account thermal fluctuations in the linear phase and electrostatic interactions in the superhelical phase. The values of the torsional stress, of the supercoiling radius and angle, and key features of the experimental extension-rotation curves, namely the slope of the linear region and thermal buckling threshold, are predicted. They are found in good agreement with experimental data. PMID:19413977

  6. Electrostatic Precipitator (ESP) TRAINING MANUAL

    EPA Science Inventory

    The manual assists engineers in using a computer program, the ESPVI 4.0W, that models all elements of an electrostatic precipitator (ESP). The program is a product of the Electric Power Research Institute and runs in the Windows environment. Once an ESP is accurately modeled, the...

  7. Electrostatic precipitator with precipitator electrodes

    SciTech Connect

    Junkers, G.

    1980-12-16

    The invention relates to an electrostatic precipitator with collecting electrodes which are arranged in rows adjacent to each other and in respective pairs at equal distances from a respective discharge electrode with which they cooperate. Spring elements are provided between the collecting electrodes and influence the stiffness and oscillating properties of the array of the collecting electrodes.

  8. Defining protein electrostatic recognition processes

    NASA Astrophysics Data System (ADS)

    Getzoff, Elizabeth D.; Roberts, Victoria A.

    The objective is to elucidate the nature of electrostatic forces controlling protein recognition processes by using a tightly coupled computational and interactive computer graphics approach. The TURNIP program was developed to determine the most favorable precollision orientations for two molecules by systematic search of all orientations and evaluation of the resulting electrostatic interactions. TURNIP was applied to the transient interaction between two electron transfer metalloproteins, plastocyanin and cytochrome c. The results suggest that the productive electron-transfer complex involves interaction of the positive region of cytochrome c with the negative patch of plastocyanin, consistent with experimental data. Application of TURNIP to the formation of the stable complex between the HyHEL-5 antibody and its protein antigen lysozyme showed that long-distance electrostatic forces guide lysozyme toward the HyHEL-5 binding site, but do not fine tune its orientation. Determination of docked antigen/antibody complexes requires including steric as well as electrostatic interactions, as was done for the U10 mutant of the anti-phosphorylcholine antibody S107. The graphics program Flex, a convenient desktop workstation program for visualizing molecular dynamics and normal mode motions, was enhanced. Flex now has a user interface and was rewritten to use standard graphics libraries, so as to run on most desktop workstations.

  9. Resistivity Problems in Electrostatic Precipitation

    ERIC Educational Resources Information Center

    White, Harry J.

    1974-01-01

    The process of electrostatic precipitation has ever-increasing application in more efficient collection of fine particles from industrial air emissions. This article details a large number of new developments in the field. The emphasis is on high resistivity particles which are a common cause of poor precipitator performance. (LS)

  10. Vibrating diaphragm measures high electrostatic field strengths

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Meter with flexible conductive diaphragm measures electrostatic charge density on a conducting surface in a vacuum. The diaphragm is supported from an insulated conductive support ring rigidly attached to the conductive surface whose electrostatic charge density is to be measured.

  11. A Simple Apparatus for Electrostatic Force Measurement.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1981-01-01

    Describes the construction of an apparatus that demonstrates that electrostatic forces can be large and also gives some idea of dependence of electrostatic forces between charged parallel discs on potential differences and separation. (CS)

  12. Electrostatic attraction between overall neutral surfaces

    NASA Astrophysics Data System (ADS)

    Adar, Ram M.; Andelman, David; Diamant, Haim

    2016-08-01

    Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.

  13. Electrostatic attraction between overall neutral surfaces.

    PubMed

    Adar, Ram M; Andelman, David; Diamant, Haim

    2016-08-01

    Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length. PMID:27627373

  14. Turbulence in electrostatic ion acoustic shocks

    NASA Technical Reports Server (NTRS)

    Means, R. W.; Coroniti, F. V.; Wong, A. Y.; White, R. B.

    1973-01-01

    Three types of collisionless electrostatic ion acoustic shocks are investigated using a double plasma (DP) device: (1) laminar shocks; (2) small amplitude turbulent shocks in which the turbulence is confined to be upstream of the shock potential jump; and (3) large amplitude turbulent shocks in which the wave turbulence occurs throughout the shock transition. The wave turbulence is generated by ions which are reflected from the shock potential; linear theory spatial growth increments agree with experimental values. The experimental relationship between the shock Mach number and the shock potential is shown to be inconsistent with theoretical shock models which assume that the electrons are isothermal. Theoretical calculations which assume a trapped electron equation of a state and a turbulently flattened velocity distrubution function for the reflected ions yields a Mach number vs potential relationship in agreement with experiment.

  15. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    SciTech Connect

    Bardhan, J. P.; Knepley, M. G.; Anitescu, M.

    2009-03-01

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  16. Quantitative nanoscale electrostatics of viruses

    NASA Astrophysics Data System (ADS)

    Hernando-Pérez, M.; Cartagena-Rivera, A. X.; Lošdorfer Božič, A.; Carrillo, P. J. P.; San Martín, C.; Mateu, M. G.; Raman, A.; Podgornik, R.; de Pablo, P. J.

    2015-10-01

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of

  17. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  18. Electrostatic Spraying With Conductive Liquids

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Dawn, Frederic S.; Erlandson, Robert E.; Atkins, Loren E.

    1989-01-01

    Thin, uniform polymer coatings applied in water base normally impossible to charge. Electrostatic sprayer modified so applies coatings suspended or dissolved in electrically conductive liquids. Nozzle and gun constructed of nonconductive molded plastic. Liquid passageway made long enough electrical leakage through it low. Coaxial hose for liquid built of polytetrafluoroethylene tube, insulating sleeve, and polyurethane jacket. Sprayer provided with insulated seal at gun-to-hose connection, nonconductive airhose, pressure tank electrically isolated from ground, and special nozzle electrode. Supply of atomizing air reduced so particle momentum controlled by electrostatic field more effectively. Developed to apply water-base polyurethane coating to woven, shaped polyester fabric. Coating provides pressure seal for fabric, which is part of spacesuit. Also useful for applying waterproof, decorative, or protective coatings to fabrics for use on Earth.

  19. Electrostatic Interactions Between Glycosaminoglycan Molecules

    NASA Astrophysics Data System (ADS)

    Song, Fan; Moyne, Christian; Bai, Yi-Long

    2005-02-01

    The electrostatic interactions between nearest-neighbouring chondroitin sulfate glycosaminoglycan (CS-GAG) molecular chains are obtained on the bottle brush conformation of proteoglycan aggrecan based on an asymptotic solution of the Poisson-Boltzmann equation the CS-GAGs satisfy under the physiological conditions of articular cartilage. The present results show that the interactions are associated intimately with the minimum separation distance and mutual angle between the molecular chains themselves. Further analysis indicates that the electrostatic interactions are not only expressed to be purely exponential in separation distance and decrease with the increasing mutual angle but also dependent sensitively on the saline concentration in the electrolyte solution within the tissue, which is in agreement with the existed relevant conclusions.

  20. Electrostatic waves in the magnetosphere.

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Fredricks, R. W.

    1972-01-01

    Electric dipole antennas on magnetospheric spacecraft measure E field components of many kinds of electromagnetic waves. In addition, lower hybrid resonance emissions are frequently observed well above the ionosphere. The Ogo 5 plasma wave experiment has also detected new forms of electrostatic emissions that appear to interact very strongly with the local plasma particles. Greatly enhanced wave amplitudes have been found during the expansion phases of substorms, and analysis indicates that these emissions produce strong pitch angle diffusion. Intense broadband electrostatic turbulence is also detected at current layers containing steep magnetic field gradients. This current-driven instability is operative at the bow shock and also at field null regions just within the magnetosheath, and at the magnetopause near the dayside polar cusp. The plasma turbulence appears to involve ion acoustic waves, and the wave particle scattering provides an important collisionless dissipation mechanism for field merging.

  1. Closed loop electrostatic levitation system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1985-01-01

    An electrostatic levitation system is described, which can closely control the position of objects of appreciable size. A plurality of electrodes surround the desired position of an electrostatically charged object, the position of the objects is monitored, and the voltages applied to the electrodes are varied to hold the object at a desired position. In one system, the object is suspended above a plate-like electrode which has a concave upper face to urge the object toward the vertical axis of the curved plate. An upper electrode that is also curved can be positioned above the object, to assure curvature of the field at any height above the lower plate. In another system, four spherical electrodes are positioned at the points of a tetrahedron, and the voltages applied to the electrodes are varied in accordance with the object position as detected by two sensors.

  2. Electrostatic interactions in molecular materials

    NASA Astrophysics Data System (ADS)

    Painelli, Anna; Terenziani, Francesca

    2004-03-01

    Non-additive collective behavior appears in molecular materials as a result of intermolecular interactions. We present a model for interacting polar and polarizable molecules that applies to different supramolecular architectures of donor-π-acceptor molecules. We follow a bottom-up modeling strategy: the detailed analysis of spectroscopic data of solvated molecules leads to the definition of a simple two-state model for the molecular units. Classical electrostatic interactions are then introduced to model molecular clusters. The molecular properties are strickingly affected by supramolecular interactions, as demonstrated by spectroscopic studies. Brand new phenomena, like phase transitions and multielectron transfer, with no counterpart at the molecular level are observed as direct consequences of electrostatic intermolecular interactions.

  3. Electrostatic forces for personnel restraints

    NASA Technical Reports Server (NTRS)

    Ashby, N.; Ciciora, J.; Gardner, R.; Porter, K.

    1977-01-01

    The feasibility of utilizing electrostatic forces for personnel retention devices on exterior spacecraft surfaces was analyzed. The investigation covered: (1) determination of the state of the art; (2) analysis of potential adhesion surfaces; (3) safety considerations for personnel; (4) electromagnetic force field determination and its effect on spacecraft instrumentation; and (5) proposed advances to current technology based on documentation review, analyses, and experimental test data.

  4. Electrostatic ion thruster optics calculations

    NASA Technical Reports Server (NTRS)

    Whealton, John H.; Kirkman, David A.; Raridon, R. J.

    1992-01-01

    Calculations have been performed which encompass both a self-consistent ion source extraction plasma sheath and the primary ion optics including sheath and electrode-induced aberrations. Particular attention is given to the effects of beam space charge, accelerator geometry, and properties of the downstream plasma sheath on the position of the electrostatic potential saddle point near the extractor electrode. The electron blocking potential blocking is described as a function of electrode thickness and secondary plasma processes.

  5. Electrostatic generator/motor configurations

    SciTech Connect

    Post, Richard F

    2014-02-04

    Electrostatic generators/motors designs are provided that generally may include a first cylindrical stator centered about a longitudinal axis; a second cylindrical stator centered about the axis, a first cylindrical rotor centered about the axis and located between the first cylindrical stator and the second cylindrical stator. The first cylindrical stator, the second cylindrical stator and the first cylindrical rotor may be concentrically aligned. A magnetic field having field lines about parallel with the longitudinal axis is provided.

  6. Stationary electrostatic solitary waves in the auroral plasma

    NASA Technical Reports Server (NTRS)

    Lotko, W.; Kennel, C. F.

    1981-01-01

    Time-stationary fluid equations are used to describe electrostatic solitons in an auroral plasma of cold ionospheric and hot plasma sheet particles. A one-dimensional fluid analysis of the four component model auroral plasma indicates that at least two different, weakly damped, small amplitude electrostatic solitons can propagate along the geomagnetic field. The slower of the two is a generalization of an ion-acoustic solitary wave in a multi-component plasma, and ion inertia is negligible for the faster mode which is supported by the two electron components and resembles a clump of shielded negative space charge convected by the drifting plasma sheet electrons. Some expected features of the large amplitude properties are indicated qualitatively, and an analogy is considered between the theory of ion-acoustic shocks and a theory of double layers.

  7. KSC Electrostatic Discharge (ESD) Issues

    NASA Technical Reports Server (NTRS)

    Buhler, Charles

    2008-01-01

    Discussion of key electrostatic issues that have arisen during the past few years at KSC that the Electrostatics Laboratory has studied. The lab has studied in depth the Space Shuttle's Thermal Control System Blankets, the International Space Station Thermal Blanket, the Pan/Tilt Camera Blankets, the Kapton Purge Barrier Curtain, the Aclar Purge Barrier Curtain, the Thrust Vector Controller Blankets, the Tyvek Reaction Control System covers, the AID-PAK and FLU-9 pyro inflatable devices, the Velostat Solid Rocket Booster mats, and the SCAPE suits. In many cases these materials are insulating meaning that they might be a source of unsafe levels of electrostatic discharge (ESD). For each, the lab provided in-depth testing of each material within its current configuration to ensure that it does not cause an ESD concern that may violate the safety of the astronauts, the workers and equipment for NASA. For example the lab provides unique solutions and testing such as Spark Incendivity Testing that checks whether a material is capable of generating a spark strong enough to ignite a flammable gas. The lab makes recommendations to changes in specifications, procedures, and material if necessary. The lab also consults with a variety of non-safety related ESD issues for the agency.

  8. Quantitative nanoscale electrostatics of viruses.

    PubMed

    Hernando-Pérez, M; Cartagena-Rivera, A X; Lošdorfer Božič, A; Carrillo, P J P; San Martín, C; Mateu, M G; Raman, A; Podgornik, R; de Pablo, P J

    2015-11-01

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed ϕ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material. PMID:26228582

  9. Calculation of electrostatic fields in periodic structures of complex shape

    NASA Technical Reports Server (NTRS)

    Kravchenko, V. F.

    1978-01-01

    A universal algorithm is presented for calculating electrostatic fields in an infinite periodic structure consisting of electrodes of arbitrary shape which are located in mirror-symmetrical manner along the axis of electron-beam propagation. The method is based on the theory of R-functions, and the differential operators which are derived on the basis of the functions. Numerical results are presented and the accuracy of the results is examined.

  10. Computer simulations of isolated conductors in electrostatic equilibrium.

    PubMed

    Chang, Herng-Hua

    2008-11-01

    A computer simulation model is introduced to study the characteristics of isolated conductors in electrostatic equilibrium. Drawing an analogy between electrons and how they move to the surface of isolated conductors, we randomly initialize a large number of particles inside a small region at the center of simulated conductors and advance them according to their forces of repulsion. By use of optimized numerical techniques of the finite-size particle method associated with Poisson's equation, the particles are quickly advanced using a fast Fourier transform and their charge is efficiently shared using the clouds-in-cells method. The particle populations in the simulations range from 50x10;{3} to 1x10;{6} that move in various computation domains equal to 128x128 , 256x256 , and 512x512 grids. When the particles come to an electrostatic equilibrium, they lie on the boundaries of the simulated conductors, from which the equilibrium properties are obtained. Consistent with the theory of electrostatics and charged conductors, we found that the particles move in response to the conductor geometry in such a way that the electrostatic energy is minimized. Good approximation results for the equilibrium properties were obtained using the proposed computer simulation model.

  11. Frequency-dependent electrostatic actuation in microfluidic MEMS.

    SciTech Connect

    Zavadil, Kevin Robert; Michalske, Terry A.; Sounart, Thomas L.

    2003-09-01

    Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

  12. The influence of electrostatic forces on protein adsorption.

    PubMed

    Lubarsky, G V; Browne, M M; Mitchell, S A; Davidson, M R; Bradley, R H

    2005-07-25

    In this paper we investigate the importance of electrostatic double layer forces on the adsorption of human serum albumin by UV-ozone modified polystyrene. Electrostatic forces were measured between oxidized polystyrene surfaces and gold-coated atomic force microscope (AFM) probes in phosphate buffered saline (PBS) solutions. The variation in surface potential with surface oxygen concentration was measured. The observed force characteristics were found to agree with the theory of electrical double layer interaction under the assumption of constant potential. Chemically patterned polystyrene surfaces with adjacent 5 microm x 5 microm polar and non-polar domains have been studied by AFM before and after human serum albumin adsorption. A topographically flat surface is observed before protein adsorption indicating that the patterning process does not physically modify the surface. Friction force imaging clearly reveals the oxidation pattern with the polar domains being characterised by a higher relative friction compared to the non-polar, untreated domains. Far-field force imaging was performed on the patterned surface using the interleave AFM mode to produce two-dimensional plots of the distribution of electrostatic double-layer forces formed when the patterned polystyrene surfaces is immersed in PBS. Imaging of protein layers adsorbed onto the chemically patterned surfaces indicates that the electrostatic double-layer force was a significant driving force in the interaction of protein with the surface.

  13. Construction of the energy matrix for complex atoms. Part V: Electrostatically correlated spin-orbit and electrostatically correlated hyperfine interactions

    NASA Astrophysics Data System (ADS)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Dembczyński, Jerzy

    2016-02-01

    The continuation of the previous series of papers related to the construction of the energy matrix for complex atoms is presented. The contributions from the second-order perturbation theory concerning electrostatically correlated spin-orbit interactions (CSO), as well as electrostatically correlated hyperfine interactions (CHFS) to the atomic structure of nlN, nlNn1l1^{N_1} and nlNn1l1^{N_1}n2l2^{N_2} configurations, are considered. This theory assumes that the electron excitation n0l0→ nl affects spin-orbit splitting and magnetic dipole and electric quadrupole hyperfine structure in the same way which will be discussed below. Part I of the series presented, in general terms, a method allowing the analysis of complex electronic systems. Parts II, III and IV provided a description of an electrostatic interaction up to second-order perturbation theory; they constitute the basis for the design of an efficient computer program package for large-scale calculations of accurate wave functions. Analyses presented in the entire series of our papers clearly demonstrate that obtaining the precise wave functions is impossible without considering the contribution from the second-order effects into fine and hyperfine atomic structure.

  14. Electrostatic ion-cyclotron waves in a two-ion component plasma

    NASA Technical Reports Server (NTRS)

    Suszcynsky, David M.; Merlino, Robert L.; D'Angelo, Nicola

    1988-01-01

    The excitation of electrostatic ion cyclotron (EIC) waves is studied in a single-ended Q machine in a two-ion component plasma (Ca+ and K+). Over a large range of relative concentrations of Cs+ and K+ ions, two modes are excited with frequencies greater than the respective cyclotron frequencies of the ions. The results are discussed in terms of a fluid theory of electrostatic ion cyclotron waves in a two-ion component plasma.

  15. Effects of electrostatic correlations on electrokinetic phenomena.

    PubMed

    Storey, Brian D; Bazant, Martin Z

    2012-11-01

    The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures the essential features in a simple continuum framework. The model is derived as a gradient approximation for nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator, scaled by a correlation length. The theory is able to capture subtle aspects of molecular simulations and allows for simple calculations of electrokinetic flows in correlated ionic fluids. Charge-density oscillations tend to reduce electro-osmotic flow and streaming current, and overscreening of surface charge can lead to flow reversal. These effects also help to explain the suppression of induced-charge electrokinetic phenomena at high salt concentrations. PMID:23214872

  16. Electrostatic potential map modelling with COSY Infinity

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  17. Dual excitation multiphase electrostatic drive

    SciTech Connect

    Niino, Toshiki; Higuchi, Toshiro |; Egawa, Saku

    1995-12-31

    A novel electrostatic drive technology named Dual Excitation Multiphase Electrostatic Drive (DEMED) was presented. A basic DEMED consisted of two plastic films in which 3-phase parallel electrodes were embedded and was driven by a 3-phase ac excitation to the electrodes. Static characteristics of DEMED were calculated and tested and the results agreed very well. Three prototype motors of DEMED were fabricated using commercially available technique. The first prototype consisted of a single slider and stator and generated a linear motion with a slider`s motion range of about 5mm. It weighed 7g and generated a power of 1.6W and a thrust force of 4.4N. The second prototype consisted of 50 layer stack of linear motors, summing their outputs. It weighed 3.6kg and generated a propulsive force of 310N being powered with boosted commercial 3-phase electricity. The third prototype consisted of a rotor and a stator in which electrodes were arranged radially and generated rotational motion. The maximum power of 36mW was generated by the prototype weighing only 260mg for its rotor and stator. From the results of the numerical calculation, a practical design methodology for the motor was determined. An optimal design for a motor employing currently available material and fabrication techniques is provided as an example. Analyses predict that force generation over the interfacial area between the slider and stator of this motor would be 3,900N/m{sup 2}.

  18. Microencapsulation and Electrostatic Processing Device

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  19. Electrostatic charging of lunar dust

    SciTech Connect

    Walch, Bob; Horanyi, Mihaly; Robertson, Scott

    1998-10-21

    Transient dust clouds suspended above the lunar surface were indicated by the horizon glow observed by the Surveyor spacecrafts and the Lunar Ejecta and Meteorite Experiment (Apollo 17), for example. The theoretical models cannot fully explain these observations, but they all suggest that electrostatic charging of the lunar surface due to exposure to the solar wind plasma and UV radiation could result in levitation, transport and ejection of small grains. We report on our experimental studies of the electrostatic charging properties of an Apollo-17 soil sample and two lunar simulants MLS-1 and JSC-1. We have measured their charge after exposing individual grains to a beam of fast electrons with energies in the range of 20{<=}E{<=}90 eV. Our measurements indicate that the secondary electron emission yield of the Apollo-17 sample is intermediate between MLS-1 and JSC-1, closer to that of MLS-1. We will also discuss our plans to develop a laboratory lunar surface model, where time dependent illumination and plasma bombardment will closely emulate the conditions on the surface of the Moon.

  20. Electrostatic discharge concepts and definitions

    SciTech Connect

    Borovina, Dan L

    2008-01-01

    Many objects -like a human body, plastic wrap, or a rolling cart -that are electrically neutral, overall, can gain a net electrostatic charge by means of one of three methods: induction, physical transfer, or triboelectric charging (separation of conductive surfaces). The result is a voltage difference between the charged object and other objects, creating a situation where current flow is likely if two objects come into contact or close proximity. This current flow is known as electrostatic discharge, or ESD. The energy and voltage of the discharge can be influenced by factors such as the temperature and humidity in the room, the types of materials or flooring involved, or the clothing and footwear a person uses. Given the possible ranges of the current and voltage characteristic of an ESD pulse, it is important to consider the safety risks associated with detonator handling, assembly and disassembly, transportation and maintenance. For main charge detonators, these safety risks include high explosive violent reactions (HEVR) as well as inadvertent nuclear detonations (lND).

  1. Electrostatics of deformable lipid membranes.

    PubMed

    Vorobyov, Igor; Bekker, Borislava; Allen, Toby W

    2010-06-16

    It was recently demonstrated that significant local deformations of biological membranes take place due to the fields of charged peptides and ions, challenging the standard model of membrane electrostatics. The ability of ions to retain their immediate hydration environment, combined with the lack of sensitivity of permeability to ion type or even ion pairs, led us to question the extent to which hydration energetics and electrostatics control membrane ion permeation. Using the arginine analog methyl-guanidinium as a test case, we find that although hydrocarbon electronic polarizability causes dramatic changes in ion solvation free energy, as well as a significant change (approximately 0.4 V) in the membrane dipole potential, little change in membrane permeation energetics occurs. We attribute this to compensation of solvation terms from polar and polarizable nonpolar components within the membrane, and explain why the dipole potential is not fully sensed in terms of the locally deformed bilayer interface. Our descriptions provide a deeper understanding of the translocation process and allow predictions for poly-ions, ion pairs, charged lipids, and lipid flip-flop. We also report simulations of large hydrophobic-ion-like membrane defects and the ionophore valinomycin, which exhibit little membrane deformation, as well as hydrophilic defects and the ion channel gramicidin A, to provide parallels to membranes deformed by unassisted ion permeation.

  2. The electrostatic origin of Abraham's solute polarity parameter.

    PubMed

    Arey, J Samuel; Green, William H; Gschwend, Philip M

    2005-04-21

    A computational method was developed which relates the empirical linear solvation energy relationship (LSER) solute polarity parameter, S (formerly denoted ), to two more fundamental quantities: a polarizability term and a computed solvent-accessible-surface electrostatic term. Electrostatics computations were conducted explicitly or with dielectric field polarizable continuum models (PCM, SCIPCM, IPCM), employing a density functional theory (B3LYP/6-311G(2df,2p)) or efficient Hartree-Fock (HF/MIDI!) method for 90 polar and nonpolar organic solutes. Electrostatic parameters calculated at electron isodensity solute surfaces were found to produce significantly better correlations with empirical S values than the same electrostatic parameters deduced from a fixed Bondi atomic radii based surface. The best-fit expression was found employing SCIPCM/IPCM at the 0.0004 e(-)/bohr(3) solvent-accessible-surface: S(fit)() = 0.46E - 0.091SigmaV(s)()(2), with squared correlation coefficient = 0.96 and standard deviation = 0.10, where E is a measured solute excess polarizability scale and SigmaV(s)()(2) is a quantum-calculated solute electrostatic descriptor in kcal A/mol. The resulting model is more accurate than previously developed estimation approaches and relies on only two fitted coefficients; it has the potential advantage of applicability to any solute composed of C, H, N, O, S, F, Cl, and Br. Finally, this investigation offers quantitative insight into the relative contributions of solute polarity and solute polarizability to the empirical LSER polarity parameter, S.

  3. Preconceptual design for the electrostatic enclosure

    SciTech Connect

    Meyer, L.C.

    1992-09-01

    This report presents a preconceptual design (design criteria and assumptions) for electrostatic enclosures to be used during buried transuranic waste recovery operations. These electrostatic enclosures (along with the application of dust control products) will provide an in-depth contamination control strategy. As part of this preconceptual design, options for electrostatic curtain design are given including both hardwall and fabric enclosures. Ventilation systems, doors, air locks, electrostatic curtains, and supporting systems also are discussed. In addition to the conceptual design, engineering scale tests are proposed to be run at the Test Reactor Area. The planned engineering scale tests will give final material specifications for full-scale retrieval demonstrations.

  4. Preventing Electrostatic-Discharge Damage to Electronics

    NASA Technical Reports Server (NTRS)

    Read, W. S.; Dozois, P. C.; Lonborg, J. O.

    1986-01-01

    Booklet discusses damage to electronic components caused by electrostatic discharges during assembly. Describes procedure for setting up static-free workplace for handling and assembling electronic components.

  5. Modeling of particle trajectories in an electrostatically charged channel

    NASA Astrophysics Data System (ADS)

    Wu, Mengbai; Kuznetsov, Andrey V.; Jasper, Warren J.

    2010-04-01

    Modeling and analyses of filtration efficiency in electrostatically charged monolith filters are important for evaluating and designing this class of filters. Unlike traditional fibrous filters which comprise external flow around a fiber, monolith filters are modeled as internal flow through small channels. Analogous to single fiber theory for external flows, single channel theory is used to analyze basic fluid mechanics in monolith filters and predict filtration efficiencies. The model incorporates three forces: hydrodynamic forces, electrostatic forces, and Brownian motion. Fluid velocity within the channels is calculated by using an analytical solution for circular channel flow, within which the slip boundary condition is considered because of small length scales. This velocity field is then used to evaluate the drag force on the particle according to Stokes's law. For this model, a one-way coupling between the fluid flow and the particle motion is assumed due to the fact that the relaxation time for the particles simulated in this paper is very small compared to the time the particles spend in the channel. The electrostatic field is computed assuming a uniform charge distribution on the inner surface of a cylindrical channel of finite length. Using a Monte Carlo simulation, particles are randomly injected into a single channel to determine the filtration efficiency.

  6. Lagrangian simulation of turbulent particle dispersion in electrostatic precipitators

    SciTech Connect

    Soldati, A.; Casal, M.; Andreussi, P.; Banerjee, S.

    1997-06-01

    Industrial design of electrostatic precipitators is based on the transport theory developed by Deutsch (1922), which assumes that transverse turbulent mixing is effective enough to maintain the concentration profile uniform throughout the cross section (i.e., turbulent diffusivity is assumed infinite). To improve understanding of turbulent particle dispersion under the influence of electrostatic forces, a database on particle trajectories was first generated, based on the flow field from a direct numerical simulation of a plate-plate precipitator. The effect of various parameters, such as particle size, charge and particle migration velocity, on dispersion and collection efficiency was investigated. Results show that particle concentration profiles are not uniform due to finite values of turbulent diffusion coefficient. The simulations indicate that the early stages of particle collection are controlled by particle migration velocity, while final stages are controlled by turbulence diffusion mechanisms.

  7. Dispersion properties of electrostatic sound wave modes in carbon nanotubes

    SciTech Connect

    Moradi, Afshin

    2010-01-15

    The theoretical analysis of electrostatic sound wave modes in multiwalled carbon nanotubes is presented within the framework of the fluid theory in conjunction with the Poisson's equation. The electron and ion components of each wall of nanotubes are regarded as two-species plasma system, in which the perturbed electron number density is deduced by means of the quantum hydrodynamic model, while the ion density perturbation follows the classical expression. An analytical expression of the dispersion relation is obtained for the quantum ion-acoustic wave oscillations in the system. Numerical result is prepared for a two-walled carbon nanotube, giving rise to a splitting of the frequencies of the electrostatic oscillations due to the small coupling between the two cylinders.

  8. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides

    SciTech Connect

    Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; Spoerke, Erik D.

    2014-06-19

    Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the design and utility of functional materials based on peptides.

  9. A survey of electrostatic waves in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.; Barbosa, D. D.

    1983-01-01

    The Voyager 1 and 2 plasma wave instruments have provided initial observations of electrostatic waves in Saturn's magnetosphere. In general, the emissions at Saturn are similar to those found at earth and Jupiter, although there are significant differences in some of the detailed characteristics. In this paper an overview is presented of the various types of electrostatic waves in the Saturnian magnetosphere, including Langmuir waves and electron cyclotron harmonic emissions. The temporal and spectral character, amplitude, and regions of occurrence for the various classes of emissions are summarized. These characteristics are compared with those of the terrestrial and Jovian counterparts with the goal of understanding how major differences in the magnetospheric configuration might contribute to the observed differences. Finally, the theory of electron cyclotron harmonic emissions is used to gain an insight into the electron distributions and possible wave-particle interactions in Saturn's magnetosphere.

  10. Effects of RNA branching on the electrostatic stabilization of viruses

    NASA Astrophysics Data System (ADS)

    Erdemci-Tandogan, Gonca; Wagner, Jef; van der Schoot, Paul; Podgornik, Rudolf; Zandi, Roya

    2016-08-01

    Many single-stranded (ss) ribonucleic acid (RNA) viruses self-assemble from capsid protein subunits and the nucleic acid to form an infectious virion. It is believed that the electrostatic interactions between the negatively charged RNA and the positively charged viral capsid proteins drive the encapsidation, although there is growing evidence that the sequence of the viral RNA also plays a role in packaging. In particular, the sequence will determine the possible secondary structures that the ssRNA will take in solution. In this work, we use a mean-field theory to investigate how the secondary structure of the RNA combined with electrostatic interactions affects the efficiency of assembly and stability of the assembled virions. We show that the secondary structure of RNA may result in negative osmotic pressures while a linear polymer causes positive osmotic pressures for the same conditions. This may suggest that the branched structure makes the RNA more effectively packaged and the virion more stable.

  11. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides

    DOE PAGES

    Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; Spoerke, Erik D.

    2014-06-19

    Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less

  12. Parallel-plate and spherical capacitors in Born-Infeld electrostatics: An analytical study

    NASA Astrophysics Data System (ADS)

    Moayedi, S. K.; Shafabakhsh, M.

    2016-03-01

    In 1934, Max Born and Leopold Infeld suggested and developed a nonlinear modification of Maxwell electrodynamics, in which the electrostatic self-energy of an electron was a finite value. In this paper, after a brief introduction to Lagrangian formulation of Born-Infeld electrodynamics with an external source, the explicit forms of Gauss's law and the electrostatic energy density in Born-Infeld theory are obtained. The capacitance and the stored electrostatic energy for a parallel-plate and spherical capacitors are computed in the framework of Born-Infeld electrostatics. We show that the usual relations U=1/2C_{Maxwell}(triangle φ)2 and U=q2/2C_{Maxwell} are not valid for a capacitor in Born-Infeld electrostatics. Numerical estimations in this research show that the nonlinear corrections to the capacitance and the stored electrostatic energy for a capacitor in Born-Infeld electrostatics are considerable when the potential difference between the plates of a capacitor is very large.

  13. Electrostatic generator/motor configurations

    SciTech Connect

    Post, Richard Freeman

    2012-09-11

    Electrostatic generators/motors designs are provided that include a stator fixedly connected to a first central support centered about a central axis. The stator elements are attached to the first central support. Similarly, a second stator is connected to a central support centered about the central axis, and the second stator has stator elements attached to the second central support. A rotor is located between the first stator and the second stator and includes an outer support, where the rotor is rotatably centered about the central axis, the rotor having elements in contact with the outer support, each rotor element having an extending rotor portion that extends radially from the outer support toward the axis of rotation.

  14. Galileo internal electrostatic discharge program

    NASA Technical Reports Server (NTRS)

    Leung, P. L.; Plamp, G. H.; Robinson, P. A., Jr.

    1985-01-01

    The Galileo spacecraft which will orbit Jupiter in 1988 will encounter a very harsh environment of energetic electrons. These electrons will have sufficient energy to penetrate the spacecraft shielding, consequently depositing charges in the dielectric insulating materials or ungrounded conductors. The resulting electric field could exceed the breakdown strength of the insulating materials, producing discharges. The transients produced from these Internal Electrostatic Discharges (IESD) could, depending on their relative location, be coupled to nearby cables and circuits. These transients could change the state of logic circuits or degrade or even damage spacecraft components, consequently disrupting the operation of subsystems and systems of the Galileo spacecraft during its expected mission life. An extensive testing program was initiated for the purpose of understanding the potential threats associated with these IESD events. Data obtained from these tests were used to define design guidelines.

  15. Microencapsulation and Electrostatic Processing Method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  16. SUPER ESP: Ultimate electrostatic precipitation

    SciTech Connect

    Plaks, N.

    1991-01-01

    The paper discusses SUPER ESP, a new electrostatic precipitator (ESP) concept, enabling high collection efficiencies with considerably smaller collection areas than has previously been possible. The new concept allows a major reduction in ESP size by using an alternating sequence of prechargers and short collector sections. The length of the collection section in each precharger/collector pair (module) dominates the optimization. The size reduction is greater for ESPs operating with high resistivity particulate matter than with low resistivity particulate matter. The relationship in number of modules, collector section size, and overall ESP collection is presented and discussed. Comparisons are given of ESP size for both conventional and SUPER ESP technology operating with either high or low resistivity particulate matter. Because of the size reduction, the cost of the SUPER ESP is projected to be lower than that of a conventional ESP of comparable efficiencY. The paper is based on an ESP model, ESPVI 4.0.

  17. An electrostatically rebalanced micromechanical accelerometer

    NASA Astrophysics Data System (ADS)

    Boxenhorn, Burton; Greiff, Paul

    The design and test performance of a low-cost micromechanical accelerometer (MA) with integral electrodes, developed for use with the vibratory micromechanical gyro described by Boxenhorn and Greiff (1988), are reported. The MA is a monolithic Si device of size 300 x 600 microns and comprises a torsional pendulum with capacitive readout and an electrostatic torquer. Data from 360-deg sweep tests performed in a g-field are presented in tables and graphs and discussed in detail. Results include bandwidth about 1 Hz, scale-factor error 480 ppm, stable bias of 260 microg over 203 min, and temperature effect 2100 microg/C on bias and -123 ppm/C on scale factor.

  18. Large Aperture Electrostatic Dust Detector

    SciTech Connect

    C.H. Skinner, R. Hensley, and A.L Roquemore

    2007-10-09

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  19. Portable liquid collection electrostatic precipitator

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.

    2005-10-18

    A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.

  20. Review on the modeling of electrostatic MEMS.

    PubMed

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  1. Review on the Modeling of Electrostatic MEMS

    PubMed Central

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  2. Electrostatics experiments with sharp metal points

    NASA Astrophysics Data System (ADS)

    Ivanov, Dragia; Nikolov, Stefan

    2016-11-01

    In this paper we examine the phenomena that arise around an electrically charged sharp metal spike and present numerous experiments that can be used in the teaching of electrostatics. The experiments are quite spectacular and attention-grabbing while being relatively simple and easy to perform in any decently supplied physics education laboratory that is equipped with an electrostatic machine (like a Wimshurst machine).

  3. Electrostatic Propulsion Using C60 Molecules

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Saunders, Winston A.

    1993-01-01

    Report proposes use of C60 as propellant material in electrostatic propulsion system of spacecraft. C60, C70, and similar molecules, have recently been found to have characteristics proving advantageous in electrostatic propulsion. Report discusses these characteristics and proposes experiments to determine feasibility of concept.

  4. Electrostatics with Computer-Interfaced Charge Sensors

    ERIC Educational Resources Information Center

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  5. Preliminary tests of the electrostatic plasma accelerator

    NASA Technical Reports Server (NTRS)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  6. Electrostatic interactions between charged dielectric particles in an electrolyte solution.

    PubMed

    Derbenev, Ivan N; Filippov, Anatoly V; Stace, Anthony J; Besley, Elena

    2016-08-28

    Theory is developed to address a significant problem of how two charged dielectric particles interact in the presence of a polarizable medium that is a dilute solution of a strong electrolyte. The electrostatic force is defined by characteristic parameters for the interacting particles (charge, radius, and dielectric constant) and for the medium (permittivity and Debye length), and is expressed in the form of a converging infinite series. The limiting case of weak screening and large inter-particle separation is considered, which corresponds to small (macro)ions that carry constant charge. The theory yields a solution in the limit of monopole and dipole terms that agrees exactly with existing analytical expressions, which are generally used to describe ion-ion and ion-molecular interactions in a medium. Results from the theory are compared with DLVO theory and with experimental measurements for the electrostatic force between two PMMA particles contained in a nonpolar solvent (hexadecane) with an added charge control agent. PMID:27586900

  7. Dynamical aspects of electrostatic double layers

    NASA Astrophysics Data System (ADS)

    Raadu, Michael A.; Rasmussen, J. Juul

    1988-05-01

    Electrostatic double layers have been proposed as an acceleration mechanism in solar flares and other astrophysical objects. They have been extensively studied in the laboratory and by means of computer simulations. The theory of steady-state double layers implies several existence criteria, in particular the Bohm criteria, restricting the conditions under which double layers may form. In the present paper several already published theoretical models of different types of double layers are discussed. It is shown that the existence conditions often imply current-driven instabilities in the ambient plasma, at least for strong double layers, and it is argued that such conditions must be used with care when applied to real plasmas. Laboratory double layers, and by implication those arising in astrophysical plasmas, often produce instabilities in the surrounding plasma and are generally time-dependent structures. Naturally occurring double layers should therefore, be far more common than the restrictions deduced from idealized time-independent models would imply. In particular it is necessary to understand more fully the time-dependent behavior of double layers. In the present paper the dynamics of weak double layers is discussed. Also a model for moving a strong double layer, where an associated potential minimum plays a significant role, is presented.

  8. Electrostatic interactions of asymmetrically charged membranes

    NASA Astrophysics Data System (ADS)

    Ben-Yaakov, Dan; Burak, Yoram; Andelman, David; Safran, S. A.

    2007-08-01

    We predict the nature (attractive or repulsive) and range (exponentially screened or long-range power law) of the electrostatic interactions of oppositely charged, planar plates as a function of the salt concentration and surface charge densities (whose absolute magnitudes are not necessarily equal). An analytical expression for the crossover between attractive and repulsive pressure is obtained as a function of the salt concentration. This condition reduces to the high-salt limit of Parsegian and Gingell where the interaction is exponentially screened and to the zero salt limit of Lau and Pincus in which the important length scales are the inter-plate separation and the Gouy-Chapman length. In the regime of low salt and high surface charges we predict —for any ratio of the charges on the surfaces— that the attractive pressure is long-ranged as a function of the spacing. The attractive pressure is related to the decrease in counter-ion concentration as the inter-plate distance is decreased. Our theory predicts several scaling regimes with different scaling expressions for the pressure as a function of salinity and surface charge densities. The pressure predictions can be related to surface force experiments of oppositely charged surfaces that are prepared by coating one of the mica surfaces with an oppositely charged polyelectrolyte.

  9. Electrostatic Exclusion of Neutral Solutes from Condensed DNA and Other Charged Phases

    PubMed Central

    Todd, Brian A.

    2009-01-01

    Abstract Motivated by experiments on condensed DNA phases in binary mixtures of water and a low-dielectric solute, we develop a theory for the electrostatic contribution to solute exclusion from a highly charged phase, within the continuum approximation of the medium. Because the electric field is maximum at the surface of each ion, the electrostatic energy is dominated by the Born energy; interactions between charges are of secondary importance. Neglecting interactions and considering only the competition between the Born energy and the free energy of mixing, we predict that low dielectric solutes are excluded from condensed DNA phases in water-cosolvent mixtures. This suggests that the traditional continuum electrostatic approach of modeling binary mixtures with a uniform dielectric constant needs to be modified. The linking of solute exclusion to solute dielectric properties also suggests a mechanism for predicting the electrostatic contribution to preferential hydration of polar and charged surfaces. PMID:19619468

  10. Control of electrostatic damage to electronic circuits

    SciTech Connect

    Kirk, W.J. Jr.

    1980-03-01

    Static is caused by the flow of materials and people within an environment. The static voltages generated by these movements can degrade or destroy many solid state devices currently being used in sophisticated electronic equipment. Discharge of static voltages through these sensitive devices during assembly operations can lead to a nonfunctional assembly fabricated from parts which previously were acceptable or to later failure of an assembly which was functional after fabrication. Sources of electrostatic charges, equipment and methods for minimizing the generation of electrostatic voltages during the production, assembly and packaging of solid state electronic equipment, and the sensitivity of solid state devices to electrostatic damage are discussed. It is concluded that static awareness is the key to an effective electrostatic damage (ESD) control program, and that production facilities must incorporate electrostatic protection facilities, materials, and processes so that workers can concentrate on producing a high-quality product without having to be overly concerned about ESD procedures. (LCL)

  11. Electrostatic thin film chemical and biological sensor

    DOEpatents

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  12. Assessment and control of electrostatic charges. [hazards to space missions

    NASA Technical Reports Server (NTRS)

    Barrett, M.

    1974-01-01

    The experience is described of NASA and DOD with electrostatic problems, generation mechanisms, and type of electrostatic hazards. Guidelines for judging possible effects of electrostatic charges on space missions are presented along with mathematical formulas and definitions.

  13. Quantum mechanics/molecular mechanics restrained electrostatic potential fitting.

    PubMed

    Burger, Steven K; Schofield, Jeremy; Ayers, Paul W

    2013-12-01

    We present a quantum mechanics/molecular mechanics (QM/MM) method to evaluate the partial charges of amino acid residues for use in MM potentials based on their protein environment. For each residue of interest, the nearby residues are included in the QM system while the rest of the protein is treated at the MM level of theory. After a short structural optimization, the partial charges of the central residue are fit to the electrostatic potential using the restrained electrostatic potential (RESP) method. The resulting charges and electrostatic potential account for the individual environment of the residue, although they lack the transferable nature of library partial charges. To evaluate the quality of the QM/MM RESP charges, thermodynamic integration is used to measure the pKa shift of the aspartic acid residues in three different proteins, turkey egg lysozyme, beta-cryptogein, and Thioredoxin. Compared to the AMBER ff99SB library values, the QM/MM RESP charges show better agreement between the calculated and experimental pK(a) values for almost all of the residues considered.

  14. Electrostatic interaction of neutral semi-permeable membranes

    NASA Astrophysics Data System (ADS)

    Vinogradova, Olga I.; Bocquet, Lyderic; Bogdanov, Artem N.; Tsekov, Roumen; Lobaskin, Vladimir

    2012-01-01

    We consider an osmotic equilibrium between bulk solutions of polyelectrolyte bounded by semi-permeable membranes and separated by a thin film of salt-free liquid. Although the membranes are neutral, the counter-ions of the polyelectrolyte molecules permeate into the gap and lead to a steric charge separation. This gives rise to a distance-dependent membrane potential, which translates into a repulsive electrostatic disjoining pressure. From the solution of the nonlinear Poisson-Boltzmann equation, we obtain the distribution of the potential and of ions. We then derive an explicit formula for the pressure exerted on the membranes and show that it deviates from the classical van't Hoff expression for the osmotic pressure. This difference is interpreted in terms of a repulsive electrostatic disjoining pressure originating from the overlap of counterion clouds inside the gap. We also develop a simplified theory based on a linearized Poisson-Boltzmann approach. A comparison with simulation of a primitive model for the electrolyte is provided and does confirm the validity of the theoretical predictions. Beyond the fundamental result that the neutral surfaces can repel, this mechanism not only helps to control the adhesion and long-range interactions of living cells, bacteria, and vesicles, but also allows us to argue that electrostatic interactions should play enormous role in determining behavior and functions of systems bounded by semi-permeable membranes.

  15. Electrostatic interaction of heterogeneously charged surfaces with semipermeable membranes.

    PubMed

    Maduar, Salim R; Lobaskin, Vladimir; Vinogradova, Olga I

    2013-01-01

    In this paper we study the electrostatic interaction of a heterogeneously charged wall with a neutral semipermeable membrane. The wall consists of periodic stripes, where the charge density varies in one direction. The membrane is in contact with a bulk reservoir of an electrolyte solution and separated from the wall by a thin film of salt-free liquid. One type of ions (small counterions) permeates into the gap. This gives rise to a distance-dependent membrane potential, which translates into a repulsive electrostatic disjoining pressure due to an overlap of counterion clouds in the gap. To quantify it we use two complementary approaches. First, we propose a mean-field theory based on a linearized Poisson-Boltzmann equation and Fourier analysis. These calculations allow us to estimate the effect of a heterogeneous charge pattern at the wall on the induced heterogeneous membrane potential, and the value of the disjoining pressure as a function of the gap. Second, we perform Langevin dynamics simulations of the same system with explicit ions. The results of the two approaches are in good agreement with each other at low surface charges and small gaps, but differ due to nonlinearity at higher charges. These results demonstrate that a heterogeneity of the wall charge can lead to a huge reduction in the electrostatic repulsion, which could dramatically facilitate self-assembly in complex synthetic and biological systems.

  16. Electrostatic interaction of neutral semi-permeable membranes.

    PubMed

    Vinogradova, Olga I; Bocquet, Lyderic; Bogdanov, Artem N; Tsekov, Roumen; Lobaskin, Vladimir

    2012-01-21

    We consider an osmotic equilibrium between bulk solutions of polyelectrolyte bounded by semi-permeable membranes and separated by a thin film of salt-free liquid. Although the membranes are neutral, the counter-ions of the polyelectrolyte molecules permeate into the gap and lead to a steric charge separation. This gives rise to a distance-dependent membrane potential, which translates into a repulsive electrostatic disjoining pressure. From the solution of the nonlinear Poisson-Boltzmann equation, we obtain the distribution of the potential and of ions. We then derive an explicit formula for the pressure exerted on the membranes and show that it deviates from the classical van't Hoff expression for the osmotic pressure. This difference is interpreted in terms of a repulsive electrostatic disjoining pressure originating from the overlap of counterion clouds inside the gap. We also develop a simplified theory based on a linearized Poisson-Boltzmann approach. A comparison with simulation of a primitive model for the electrolyte is provided and does confirm the validity of the theoretical predictions. Beyond the fundamental result that the neutral surfaces can repel, this mechanism not only helps to control the adhesion and long-range interactions of living cells, bacteria, and vesicles, but also allows us to argue that electrostatic interactions should play enormous role in determining behavior and functions of systems bounded by semi-permeable membranes.

  17. Contribution of crosstalk to the uncertainty of electrostatic actuator calibrations.

    PubMed

    Shams, Qamar A; Soto, Hector L; Zuckerwar, Allan J

    2009-09-01

    Crosstalk in electrostatic actuator calibrations is defined as the ratio of the microphone response to the actuator excitation voltage at a given frequency with the actuator polarization voltage turned off to the response, at the excitation frequency, with the polarization voltage turned on. It consequently contributes to the uncertainty of electrostatic actuator calibrations. Two sources of crosstalk are analyzed: the first attributed to the stray capacitance between the actuator electrode and the microphone backplate, and the second to the ground resistance appearing as a common element in the actuator excitation and microphone input loops. Measurements conducted on 1/4, 1/2, and 1 in. air condenser microphones reveal that the crosstalk has no frequency dependence up to the membrane resonance frequency and that the level of crosstalk lies at about -60 dB for all three microphones-conclusions that are consistent with theory. The measurements support the stray capacitance model. The contribution of crosstalk to the measurement standard uncertainty of an electrostatic actuator calibration is therewith 0.01 dB. PMID:19739723

  18. Electrostatics of solvated systems in periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Andreussi, Oliviero; Marzari, Nicola

    2014-12-01

    Continuum solvation methods can provide an accurate and inexpensive embedding of quantum simulations in liquid or complex dielectric environments. Notwithstanding a long history and manifold applications to isolated systems in open boundary conditions, their extension to materials simulations, typically entailing periodic boundary conditions, is very recent, and special care is needed to address correctly the electrostatic terms. We discuss here how periodic boundary corrections developed for systems in vacuum should be modified to take into account solvent effects, using as a general framework the self-consistent continuum solvation model developed within plane-wave density-functional theory [O. Andreussi et al., J. Chem. Phys. 136, 064102 (2012), 10.1063/1.3676407]. A comprehensive discussion of real- and reciprocal-space corrective approaches is presented, together with an assessment of their ability to remove electrostatic interactions between periodic replicas. Numerical results for zero- and two-dimensional charged systems highlight the effectiveness of the different suggestions, and underline the importance of a proper treatment of electrostatic interactions in first-principles studies of charged systems in solution.

  19. Cyclophilin A catalyzes proline isomerization by an electrostatic handle mechanism

    SciTech Connect

    Camilloni, Carlo; Sahakyan, Aleksander B.; Holliday, Michael; Isern, Nancy G.; Zhang, Fengli; Eisenmesser, Elan Z.; Vendruscolo, Michele

    2014-07-15

    Proline isomerization is a ubiquitous process that plays a key role in the folding of proteins and in the regulation of their functions1-3. Different families of enzymes, known as peptidyl-prolyl isomerases (PPIases), catalyse this reaction, which involves the interconversion between the cis and trans isomers of the Nterminal amide bond of the amino acid proline2,3. A complete description of the mechanisms by which these enzymes function, however, has remained elusive. Here, we show that cyclophilin A, one of the most common PPIases4, provides a catalytic environment that acts on the substrate through an electrostatic lever mechanism. In this mechanism, the electrostatic field in the catalytic site turns the electric dipole associated with the carboxylic group of the amino acid preceding the proline in the substrate, thus causing the rotation of the peptide bond between the two residues. This mechanism resulted from the analysis of an ensemble of conformations populated by cyclophilin A during the enzymatic reaction using a combination of NMR measurements, molecular dynamics simulations and density functional theory calculations. We anticipate that this approach will be helpful in elucidating whether the electrostatic lever mechanism that we describe is common to other PPIases, and more generally to characterise other enzymatic processes.

  20. Electrostatics of phosphoinositide bilayer membranes. Theoretical and experimental results.

    PubMed Central

    Langner, M; Cafiso, D; Marcelja, S; McLaughlin, S

    1990-01-01

    We made fluorescence, electron paramagnetic resonance (EPR), electrophoretic mobility, and ionizing electrode measurements to study the effect of the monovalent lipid phosphatidylinositol (PI) and the trivalent lipid phosphatidylinositol 4,5-bisphosphate (PIP2) on the electrostatic potential adjacent to bilayer membranes. When the membranes were formed from mixtures of PI and the zwitterionic lipid phosphatidylcholine (PC), the Gouy-Chapman-Stern (GCS) theory described adequately the dependence of potential on distance (0, 1, 2 nm) from the membrane, mole % negative lipid, and [KCI]. Furthermore, all EPR and fluorescence probes reported identical surface potentials with a PC/PI membrane. With PC/PIP2 membranes, however, the anionic (coion) probes reported less negative potentials than the cationic (counterion) probes; the deviations from the GCS theory were greater for the coions than the counterions. Discreteness-of-charge theories based on the Poisson-Boltzmann equation incorrectly predict that deviations from the GCS theory should be greater for counterions than for coions. We discuss a consistent statistical mechanical theory that takes into account three effects ignored in the GCS theory: the finite size of the ions in the double layer, the electrical interaction between pairs of ions (correlation effects), and the mobile discrete nature of the surface charges. This theory correctly predicts that deviations from GCS theory should be negligible for monovalent lipids, significant for trivalent lipids, and greater for coions than for counterions. PMID:2156577

  1. ELECTROSTATICALLY ENHANCED BARRIER FILTER COLLECTION

    SciTech Connect

    John Erjavec; Michael D. Mann; Ryan Z. Knutson; Michael L. Swanson; Michael E. Collings

    2003-06-01

    This work was performed through the University of North Dakota (UND) Chemical Engineering Department with assistance from UND's Energy & Environmental Research Center. This research was undertaken in response to the U.S. Department of Energy Federal Technology Center Program Solicitation No. DE-PS26-99FT40479, Support of Advanced Coal Research at U.S. Universities and Colleges. Specifically, this research was in support of the UCR Core Program and addressees Topic 1, Improved Hot-Gas Contaminant and Particulate Removal Techniques, introducing an advanced design for particulate removal. Integrated gasification combined cycle (IGCC) offers the potential for very high efficiency and clean electric generation. In IGCC, the product gas from the gasifier needs to be cleaned of particulate matter to avoid erosion and high-temperature corrosion difficulties arising with the turbine blades. Current methods involve cooling the gases to {approx}100 C to condense alkalis and remove sulfur and particulates using conventional scrubber technology. This ''cool'' gas is then directed to a turbine for electric generation. While IGCC has the potential to reach efficiencies of over 50%, the current need to cool the product gas for cleaning prior to firing it in a turbine is keeping IGCC from reaching its full potential. The objective of the current project was to develop a highly reliable particulate collector system that can meet the most stringent turbine requirements and emission standards, can operate at temperatures above 1500 F, is applicable for use with all U.S. coals, is compatible with various sorbent injection schemes for sulfur and alkali control, can be integrated into a variety of configurations for both pressurized gasification and combustion, increases allowable face velocity to reduce filter system capital cost, and is cost-competitive with existing technologies. The collector being developed is a new concept in particulate control called electrostatically enhanced

  2. Electrostatic Changes Observed with Narrow Bipolar Pulses

    NASA Astrophysics Data System (ADS)

    Karunarathne, S.; Marshall, T. C.; Stolzenburg, M.; Karunarathna, N.

    2015-12-01

    Narrow bipolar pulses (NBPs) or compact intracloud discharges are impulsive discharges that are considered to be the strongest natural emitters in the HF radio band; they usually occur at high altitudes in some thunderstorms. In the summer of 2011, we collected E-change data with wideband flat-plate antennas (0.16 Hz - 2.5 MHz) at ten stations covering an area of nearly 70 km x 100 km in and around Kennedy Space Center, Florida, USA. On one thunderstorm day, 14 August 2011, we detected 226 positive NBPs, and some observations of these pulses were published in Karunarathne et al. [2015, JGR-atmospheres]. Of these 226 NBPs, 50 (22.1 %) occurred within 10 km horizontally of at least one sensor. All of these closer sensors show electrostatic changes associated with corresponding NBPs, with a net electrostatic change in the main bipolar pulse and with a slower electrostatic change after the bipolar pulse that seems similar to short continuing current immediately after some cloud-to-ground return strokes. Although NBPs have been considered as short duration pulses (10 - 20 microseconds), the electrostatic changes after the main bipolar pulse ranged from 0.7 ms to 34 ms and associated charge moments were calculated. The total duration of the electrostatic E-change was strongly dependent on the distance to the sensors. In this presentation, we will present data for these electrostatic changes, some statistics, and physical background and reasoning for the electrostatic changes.

  3. Intrinsic electrostatic effects in nanostructured ceramics

    SciTech Connect

    Uberuaga, Blas Pedro; Stanek, Chris R; Nerikar, Pankaj V

    2009-01-01

    Using empirical potentials, we have found that electrostatic dipoles can be created at grain boundaries formed from non-polar surfaces of fluorite-structured materials. In particular, the {Sigma}5(310)/[001] symmetric tilt grain boundary reconstructs to break the symmetry in the atomic structure at the boundary, forming the dipole. This dipole results in an abrupt change in electrostatic potential across the boundary. In multilayered ceramics composed of stacks of grain boundaries, the change in electrostatic potential at the boundary results in profound electrostatic effects within the crystalline layers, the nature of which depends on the electrostatic boundary conditions. For open-circuit boundary conditions, layers with either high or low electrostatic potential are formed. By contrast, for short-circuit boundary conditions, electric fields can be created within each layer, the strength of which then depends on the thickness of the layers. These electrostatic effects may have important consequences for the behavior of defects and dopants within these materials and offer the possibility of interesting technological applications.

  4. Internal Electrostatic Discharge Monitor - IESDM

    NASA Technical Reports Server (NTRS)

    Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.

    2011-01-01

    A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).

  5. Feedback controlled electrostatic and electromagnetic sample positioners

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Elleman, D. D.

    1990-01-01

    Four different sample positioners are discussed. The four systems share a common operating principle in that the sample positioning is achieved by feedback controlled forces which can be electrostatic, dielectrophoretic, or electromagnetic. The first system is the electrostatic liquid drop positioner which operates at the near ambient position. The second system is the tetrahedral electrostatic positioner which is being developed for the high temperature materials processing in vacuum. The third system is essentially the the same tetrahedral system above except that the position control is achieved by dielectrophoretic forces in the pressurized gas environment. Finally, the feasibility of a feedback controlled electromagnetic positioner is discussed.

  6. Electrostatic Stabilization Of Growing Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1991-01-01

    Proposed technique produces large crystals in compact, economical apparatus. Report presents concept for supporting protein crystals during growth in microgravity. Yields crystals larger and more-nearly perfect than those grown on Earth. Combines best features of sandwich-drop and electrostatic-levitation methods of support. Drop of protein solution inserted between pair of glass or plastic plates, as in sandwich-drop-support method. Electrostatically charged ring confines drop laterally and shapes it, as in electrostatic technique. Apparatus also made to accommodate several drops simultaneously between same pair of supporting plates. Drops can be inserted and crystals removed through ducts in plates.

  7. Electrostatic precipitator control for high resistivity particulate

    SciTech Connect

    Bibbo, P.P.; Hankins, F.E.; Jakoplic, R.

    1982-01-19

    A method and apparatus are described for optimizing the operating efficiency of an electrostatic precipitator based on controlling the average input power of the precipitator electrodes in response to control signals derived by sensing changes in specific instantaneous peak voltages associated with the average electrode voltages. The method is particularly well suited for electrostatic precipitators processing high resistivity fly ash and exhibiting an inflection region in its kvmin electrode voltage characteristic. The apparatus is organized to serve as a stand alone control system, or as an adjunct to existing electrostatic precipitator control systems.

  8. A theoretical and experimental investigation of cylindrical electrostatic probes at arbitrary incidence in flowing plasma

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Jones, W. L., Jr.

    1974-01-01

    The theory for calculating the current collected by a negatively biased cylindrical electrostatic probe at an arbitrary angle of attack in a weakley ionized flowing plasma is presented. The theory was constructed by considering both random and directed motion simultaneous with dynamic coupling of the flow properties and of the electric field of the probe. This direct approach yielded a theory that is more general than static plasma theories modified to account for flow. Theoretical calculations are compared with experimental electrostatic probe data obtained in the free stream of an arc-heated hypersonic wind tunnel. The theoretical calculations are based on flow conditions and plasma electron densities measured by an independent microwave interferometer technique. In addition, the theory is compared with laboratory and satellite data previously published by other investigators. In each case the comparison gives good agreement.

  9. Electronic structure calculations in arbitrary electrostatic environments

    NASA Astrophysics Data System (ADS)

    Watson, Mark A.; Rappoport, Dmitrij; Lee, Elizabeth M. Y.; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán

    2012-01-01

    Modeling of electronic structure of molecules in electrostatic environments is of considerable relevance for surface-enhanced spectroscopy and molecular electronics. We have developed and implemented a novel approach to the molecular electronic structure in arbitrary electrostatic environments that is compatible with standard quantum chemical methods and can be applied to medium-sized and large molecules. The scheme denoted CheESE (chemistry in electrostatic environments) is based on the description of molecular electronic structure subject to a boundary condition on the system/environment interface. Thus, it is particularly suited to study molecules on metallic surfaces. The proposed model is capable of describing both electrostatic effects near nanostructured metallic surfaces and image-charge effects. We present an implementation of the CheESE model as a library module and show example applications to neutral and negatively charged molecules.

  10. The Electrocardiogram as an Example of Electrostatics

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    Develops a simplified electrostatic model of the heart with conduction within the torso neglected to relate electrocardiogram patterns to the charge distribution within the myocardium. Suggests its application to explanation of Coulomb's law in general physics. (CC)

  11. Electrostatic discharge control for STDN stations

    NASA Technical Reports Server (NTRS)

    Mckiernan, J.

    1983-01-01

    This manual defines the requirements and control methods necessary to control the effect of electrostatic discharges that damage or destroy electronic equipment components. Test procedures for measuring the effectiveness of the control are included.

  12. Electrostatic Liquid-Drop-Levitation System

    NASA Technical Reports Server (NTRS)

    Rhim, Won Kyu; Chung, San Kun; Hyson, Michael T.; Elleman, Daniel D.

    1988-01-01

    Electrostatic levitator has levitated drops of liquid up to 4 mm in diameter while maintaining spherical drop shapes. Stable levitation of spherical drops valuable in experiments involving super-cooling, solidification, and crystal growth.

  13. Electrostatic Beneficiation of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Captain, James; Captain, Janine; Arens, Ellen; Quinn, Jacqueline; Calle, Carlos

    2006-01-01

    Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (> 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and < 25 pm), where very little difference in surface composition was observed between the sizes. Samples of the smallest (< 25 pm) and largest (> 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.

  14. Miniature Bipolar Electrostatic Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  15. Electrostatic Levitation Furnace for the ISS

    NASA Technical Reports Server (NTRS)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  16. Improved Electronic Control for Electrostatic Precipitators

    NASA Technical Reports Server (NTRS)

    Johnston, D. F.

    1986-01-01

    Electrostatic precipitators remove particulate matter from smoke created by burning refuse. Smoke exposed to electrostatic field, and particles become electrically charged and migrate to electrically charged collecting surfaces. New microprocessor-based electronic control maintains precipitator power at maximum particulate-collection level. Control automatically senses changes in smoke composition due to variations in fuel or combustion and adjusts precipitator voltage and current accordingly. Also, sensitive yet stable fault detection provided.

  17. Electrostatic breakup in a misty plasma.

    PubMed

    Coppins, M

    2010-02-12

    A misty plasma is defined as a plasma containing small liquid droplets. In such a system, the droplets will undergo total electrostatic breakup if their charge exceeds the well-known Rayleigh limit. This imposes a minimum size on the droplets. Electrostatic breakup is a significant mechanism limiting droplet survival in a wide range of plasma applications, including plasma-enhanced chemical vapor deposition and fusion tokamaks. PMID:20366826

  18. Electrostatic camera system functional design study

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Cook, F. J.; Moore, R. F.

    1972-01-01

    A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.

  19. Miniature Electrostatic Ion Thruster With Magnet

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A miniature electrostatic ion thruster is proposed that, with one exception, would be based on the same principles as those of the device described in the previous article, "Miniature Bipolar Electrostatic Ion Thruster". The exceptional feature of this thruster would be that, in addition to using electric fields for linear acceleration of ions and electrons, it would use a magnetic field to rotationally accelerate slow electrons into the ion stream to neutralize the ions.

  20. Electrostatic Breakup in a Misty Plasma

    SciTech Connect

    Coppins, M.

    2010-02-12

    A misty plasma is defined as a plasma containing small liquid droplets. In such a system, the droplets will undergo total electrostatic breakup if their charge exceeds the well-known Rayleigh limit. This imposes a minimum size on the droplets. Electrostatic breakup is a significant mechanism limiting droplet survival in a wide range of plasma applications, including plasma-enhanced chemical vapor deposition and fusion tokamaks.

  1. An improved proximity force approximation for electrostatics

    SciTech Connect

    Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  2. On the electrostatic properties of homodimeric proteins

    PubMed Central

    Campbell, Brandon; Petukh, Marharyta; Alexov, Emil

    2014-01-01

    A large fraction of proteins function as homodimers, but it is not always clear why the dimerization is important for functionality since frequently each monomer possesses a distinctive active site. Recent work (PLoS Computational Biology, 9(2), e1002924) indicates that homodimerization may be important for forming an electrostatic funnel in the spermine synthase homodimer which guides changed substrates toward the active centers. This prompted us to investigate the electrostatic properties of a large set of homodimeric proteins and resulted in an observation that in a vast majority of the cases the dimerization indeed results in specific electrostatic features, although not necessarily in an electrostatic funnel. It is demonstrated that the electrostatic dipole moment of the dimer is predominantly perpendicular to the axis connecting the centers of the mass of the monomers. In addition, the surface points with highest potential are located in the proximity of the interfacial plane of the homodimeric complexes. These findings indicate that frequently homodimerization provides specific electrostatic features needed for the function of proteins. PMID:25419028

  3. Slow electrostatic solitary waves in Earth's plasma sheet boundary layer

    NASA Astrophysics Data System (ADS)

    Kakad, Amar; Kakad, Bharati; Anekallu, Chandrasekhar; Lakhina, Gurbax; Omura, Yoshiharu; Fazakerley, Andrew

    2016-05-01

    We modeled Cluster spacecraft observations of slow electrostatic solitary waves (SESWs) in the Earth's northern plasma sheet boundary layer (PSBL) region on the basis of nonlinear fluid theory and fluid simulation. Various plasma parameters observed by the Cluster satellite at the time of the SESWs were examined to investigate the generation process of the SESWs. The nonlinear fluid model shows the coexistence of slow and fast ion acoustic waves and the presence of electron acoustic waves in the PSBL region. The fluid simulations, performed to examine the evolution of these waves in the PSBL region, showed the presence of an extra mode along with the waves supported by the nonlinear fluid theory. This extra mode is identified as the Buneman mode, which is generated by relative drifts of ions and electrons. A detailed investigation of the characteristics of the SESWs reveals that the SESWs are slow ion acoustic solitary waves.

  4. On the nature of kinetic electrostatic electron nonlinear (KEEN) waves

    SciTech Connect

    Dodin, I. Y.; Fisch, N. J.

    2014-03-15

    An analytical theory is proposed for the kinetic electrostatic electron nonlinear (KEEN) waves originally found in simulations by Afeyan et al. [arXiv:1210.8105]. We suggest that KEEN waves represent saturated states of the negative mass instability (NMI) reported recently by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)]. Due to the NMI, trapped electrons form macroparticles that produce field oscillations at harmonics of the bounce frequency. At large enough amplitudes, these harmonics can phase-lock to the main wave and form stable nonlinear dissipationless structures that are nonstationary but otherwise similar to Bernstein-Greene-Kruskal modes. The theory explains why the formation of KEEN modes is sensitive to the excitation scenario and yields estimates that agree with the numerical results of Afeyan et al. A new type of KEEN wave may be possible at even larger amplitudes of the driving field than those used in simulations so far.

  5. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    SciTech Connect

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-03-15

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (approx3000 km s{sup -1}) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  6. The structure, stability, H-bonding pattern, and electrostatic potential of adenine tetrads

    NASA Astrophysics Data System (ADS)

    Gu, Jiande; Leszczynski, Jerzy

    2001-03-01

    Two conformations of the adenine tetrad were investigated at the HF and B3LYP/6-311G(d,p) levels of theory. Both conformations are predicted to be stable only in the nonplanar form. They adopt the bowl type structure. Since the planar form offers better geometry for stacking with the adjacent G-tetrad, both planar forms are expected to be important in the formation of the tetraplexes. Based on electrostatic potential map the positive electrostatic potential in the central area of both conformations is expected to reinforce the stacking between the A-tetrads and the G-tetrads in the tetraplexes.

  7. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    SciTech Connect

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effect at larger scales, higher impact velocities, or both.

  8. Electrostatic effects on hyaluronic acid configuration

    NASA Astrophysics Data System (ADS)

    Berezney, John; Saleh, Omar

    2015-03-01

    In systems of polyelectrolytes, such as solutions of charged biopolymers, the electrostatic repulsion between charged monomers plays a dominant role in determining the molecular conformation. Altering the ionic strength of the solvent thus affects the structure of such a polymer. Capturing this electrostatically-driven structural dependence is important for understanding many biological systems. Here, we use single molecule manipulation experiments to collect force-extension behavior on hyaluronic acid (HA), a polyanion which is a major component of the extracellular matrix in all vertebrates. By measuring HA elasticity in a variety of salt conditions, we are able to directly assess the contribution of electrostatics to the chain's self-avoidance and local stiffness. Similar to recent results from our group on single-stranded nucleic acids, our data indicate that HA behaves as a swollen chain of electrostatic blobs, with blob size proportional to the solution Debye length. Our data indicate that the chain structure within the blob is not worm-like, likely due to long-range electrostatic interactions. We discuss potential models of this effect.

  9. Physics of collisionless shocks: theory and simulation

    NASA Astrophysics Data System (ADS)

    Stockem Novo, A.; Bret, A.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    Collisionless shocks occur in various fields of physics. In the context of space and astrophysics they have been investigated for many decades. However, a thorough understanding of shock formation and particle acceleration is still missing. Collisionless shocks can be distinguished into electromagnetic and electrostatic shocks. Electromagnetic shocks are of importance mainly in astrophysical environments and they are mediated by the Weibel or filamentation instability. In such shocks, charged particles gain energy by diffusive shock acceleration. Electrostatic shocks are characterized by a strong electrostatic field, which leads to electron trapping. Ions are accelerated by reflection from the electrostatic potential. Shock formation and particle acceleration will be discussed in theory and simulations.

  10. Electrostatic coating technologies for food processing.

    PubMed

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing. PMID:25648420

  11. Electrostatic micromotor based on ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Baginsky, I. L.; Kostsov, E. G.

    2004-11-01

    A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.

  12. Art and the science of electrostatic precipitation

    SciTech Connect

    White, H.J.

    1984-11-01

    An essay on the art and science of electrostatic precipitation was presented by Harry J. White in November 1982 at a symposium in Tokyo for the Institute of Electrostatics Japan. The paper is written in a philosophic rather than a scientific vein in order to express a personal viewpoint distilled over many years on the subject. In examining the roles of art and science in electrostatic precipitation it has been shown how both are operative and essential. The long-term trend is for less dependence on the art phase, and more on the science. But there is no indication that art and intuition will not continue to be very important. This is especially true in precipitator design which even today is almost as much an art as it is a science.

  13. Analytical expressions for electrostatics of graphene structures

    NASA Astrophysics Data System (ADS)

    Georgantzinos, S. K.; Giannopoulos, G. I.; Fatsis, A.; Vlachakis, N. V.

    2016-10-01

    This study focuses on electrostatics of various graphene structures as graphene monolayer, graphene nanoribbons, as well as multi-layer graphene or graphene flakes. An atomistic moment method based on classical electrostatics is utilized in order to evaluate the charge distribution in each nanostructure. Assuming a freestanding graphene structure in an infinite or in a semi-infinite space limited by a grounded infinite plane, the effect of the length, width, number of layers and position of the nanostructure on its electrostatic charge distributions and total charge and capacitance is examined through a parametric analysis. The results of the present show good agreement with corresponding available data in the literature, obtained from different theoretical approaches. Performing nonlinear regression analysis on the numerical results, where it is possible, simple analytical expressions are proposed for the total charge and charge distribution prediction based on structure geometry.

  14. Electrostatic contribution to the bending of DNA.

    PubMed

    Sivolob, A; Khrapunov, S N

    1997-09-01

    A model is derived that accounts for the short-range electrostatic contribution to the bending of DNA molecule in solution and in complexes with proteins in terms of the non-linear Poisson-Boltzmann equation. We defined that the short-range electrostatic interactions depend on the changes of the polyion surface charge density under deformation, while the long-range interactions depend on the bending-induced changes in distances between each two points along the polyion axis. After an appropriate simplification of the Poisson-Boltzmann equation, the short-range term is calculated separately giving the lower limit for the electrostatic contribution to the DNA persistence length. The result is compared with the theoretical approaches developed earlier [M. Fixman, J. Chem. Phys. 76 (1982) 6346; M. Le Bret, J. Chem. Phys. 76 (1982) 6243] and with the experimental data. The conclusion is made that the results of Fixman-Le Bret, which took into account both types of the electrostatic interactions for a uniformly bent polyion, give the upper limit for the electrostatic persistence length at low ionic strength, and the actual behavior of the DNA persistence length lies between two theoretical limits. Only the short-range term is significant at moderate-to-high ionic strength where our results coincide with the predictions of Fixman-Le Bret. The bending of DNA on the protein surface that is accompanied by an asymmetric neutralization of the DNA charge is also analyzed. In this case, the electrostatic bending energy gives a significant favorite contribution to the total bending energy of DNA. Important implications to the mechanisms of DNA-protein interactions, particularly in the nucleosome particle, are discussed.

  15. Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1992-01-01

    The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.

  16. The role of electrostatic effects in determining the structure of LiF-graphene interfaces.

    PubMed

    Panahian Jand, S; Kaghazchi, P

    2014-07-01

    Lithium fluoride (LiF) is a main component of the solid electrolyte interphase (SEI) in Li-ion batteries. Using density functional theory (DFT) calculations and development of a simple electrostatic model we study the structure and mechanism of LiF growth on graphene. We find that, independent of being in contact or not with the graphene surface, crystalline-LiF nanoclusters (NCs) with (100) facets grow in a three-dimensional mode. These findings are in agreement with recent experimental studies on graphene anodes. We also find that the stabilities of LiF NCs can be predicted by a simple electrostatic model for ionic NCs. Since the main components of the SEI layer are ionic compounds, this study shows how electrostatic effects can control the atomic structure of the SEI layer in Li-ion batteries.

  17. Electrostatic formation of liquid marbles and agglomerates

    NASA Astrophysics Data System (ADS)

    Liyanaarachchi, K. R.; Ireland, P. M.; Webber, G. B.; Galvin, K. P.

    2013-07-01

    We report observations of a sudden, explosive release of electrostatically charged 100 μm glass beads from a particle bed. These cross an air gap of several millimeters, are engulfed by an approaching pendant water drop, and form a metastable spherical agglomerate on the bed surface. The stability transition of the particle bed is explained by promotion of internal friction by in-plane electrostatic stresses. The novel agglomerates formed this way resemble the "liquid marbles" formed by coating a drop with hydrophobic particles. Complex multi-layered agglomerates may also be produced by this method, with potential industrial, pharmaceutical, environmental, and biological applications.

  18. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  19. Fabrication of Electrostatically Actuated Microshutters Arrays

    NASA Technical Reports Server (NTRS)

    Oh, L.; Li, M.; Kelly, D.; Kutyrev, A.; Moseley, S.

    2016-01-01

    A new fabrication process has been developed to actuate microshutter arrays (MSA) electrostatically at NASA Goddard Space Flight Center. The microshutters, made with silicon nitride membranes with a pixel size of 100 x 200 sq microns, rotate on torsion bars. The microshutters are actuated, latched, and addressed electrostatically by applying voltages on the electrodes the front and back sides of the microshutters. The atomic layer deposition (ALD) of aluminum oxide was used to insulate electrodes on the back side of walls; the insulation can withstand over 100 V. The ALD aluminum oxide is dry etched, and then the microshutters are released in vapor HF.

  20. Electrostatic precipitator and discharge electrode therefor

    SciTech Connect

    Bojsen, E.M.

    1981-07-07

    A discharge electrode is disclosed for producing ion emission in an electrostatic precipitator. The electrode includes a rigid cylindrical tubular member having a plurality of protrusions extending outwardly therefrom. The protrusions preferably have rounded free end portions and are formed either by individual rods integrally attached to the member or by one or more wires attached to the surface of the member and having folds which are selectively spaced apart to provide the desired dispersion of the ion emission. The wires may also be embedded in depressions defined in the surface of the member. The invention also pertains to an improved electrostatic precipitator incorporating the inventive discharge electrode.

  1. The electrostatic surface term: (I) periodic systems.

    PubMed

    Herce, Henry David; Garcia, Angel Enrique; Darden, Thomas

    2007-03-28

    The authors propose a new approach to understand the electrostatic surface contributions to the interactions of large but finite periodic distributions of charges. They present a simple method to derive and interpret the surface contribution to any electrostatic field produced by a periodic distribution of charges. They discuss the physical and mathematical interpretations of this term. They present several examples and physical details associated with the calculation of the surface term. Finally, they provide a simple derivation of the surface contribution to the virial. This term does not disappear even if tinfoil boundary conditions are applied.

  2. Electrostatic Separation Of Layers In Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    1995-01-01

    Layers in multilayer insulation charged to keep them separated by electrostatic repulsion, eliminating need for spacer nets. Removal of spacer nets reduces conduction of heat between layers. Insulation in question type used to slow leakage of heat into Dewar flasks containing liquid helium. Proposal originally applied to insulation in cryogenic cooling subsystems of infrared-detector systems in outer space, also appears applicable to small panels of insulation for terrestrial cryogenic equipment, provided layers contained in evacuated spaces and weight of each layer small fraction of electrostatic force upon it.

  3. Electrostatic supersolitons in three-species plasmas

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.; Kourakis, Ioannis

    2013-01-15

    Superficially, electrostatic potential profiles of supersolitons look like those of traditional solitons. However, their electric field profiles are markedly different, having additional extrema on the wings of the standard bipolar structure. This new concept was recently pointed out in the literature for a plasma model with five species. Here, it is shown that electrostatic supersolitons are not an artefact of exotic, complicated plasma models, but can exist even in three-species plasmas and are likely to occur in space plasmas. Further, a methodology is given to delineate their existence domains in a systematic fashion by determining the specific limiting factors.

  4. Dr. Jan Rogers with Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Jan Rogers, project scientist for the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center(MSFC). The ESL uses static electricity to suspend an obejct (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials sciences program.

  5. Ultraviolet Lasers Realized via Electrostatic Doping Method

    PubMed Central

    Liu, X. Y.; Shan, C. X.; Zhu, H.; Li, B. H.; Jiang, M. M.; Yu, S. F.; Shen, D. Z.

    2015-01-01

    P-type doping of wide-bandgap semiconductors has long been a challenging issue for the relatively large activation energy and strong compensation of acceptor states in these materials, which hinders their applications in ultraviolet (UV) optoelectronic devices drastically. Here we show that by employing electrostatic doping method, hole-dominant region can be formed in wide bandgap semiconductors, and UV lasing has been achieved through the external injection of electrons into the hole-dominant region, confirming the applicability of the p-type wide bandgap semiconductors realized via the electrostatic doping method in optoelectronic devices. PMID:26324054

  6. A new constituent of electrostatic energy in semiconductors. An attempt to reformulate electrostatic energy in matter

    NASA Astrophysics Data System (ADS)

    Sallese, Jean-Michel

    2016-06-01

    The concept of electric energy is revisited in detail for semiconductors. We come to the conclusion that the main relationship used to calculate the energy related to the penetration of the electric field in semiconductors is missing a fundamental term. For instance, spatial derivate of the electrostatic energy using the traditional formula fails at giving the correct electrostatic force between semiconductor based capacitor plates, and reveals unambiguously the existence of an extra contribution to the standard electrostatic free energy. The additional term is found to be related to the generation of space charge regions which are predicted when combining electrostatics with semiconductor physics laws, such as for accumulation and inversion layers. On the contrary, no such energy is needed when relying on electrostatics only, as for instance when adopting the so-called full depletion approximation. The same holds for neutral and charged insulators that are still consistent with the customary definition, but these two examples are in fact singular cases. In semiconductors for instance, this additional energy can largely exceed the energy gained by the dipoles, thus becoming the dominant term. This unexpected result clearly asks for a generalization of electrostatic energy in matter in order to reconcile basic concepts of electrostatic energy in the framework of classical physics.

  7. Role of the electrostatic depletion attraction on the structure of charged liposome-polymer mixtures.

    PubMed

    Peláez-Fernández, M; Moncho-Jordá, A; García-Jimeno, S; Estelrich, J; Callejas-Fernández, J

    2012-05-01

    The effect of adding charged nonadsorbing polymers to electrostatically structured suspensions of charged liposomes has been experimentally studied by means of light scattering techniques. The static structure factor of the mixtures is analyzed using two polymers of different sizes. As the polymer concentration increases, the main peak of the structure factor decreases and shows an important shift to larger values of the scattering vector. Such displacement is the consequence of the electrostatic-enhanced depletion attraction induced by the polymers that counteracts the electrostatic repulsion. For the shorter polymer, the system remains stable for all studied polymer concentrations. However, for the long polymer chains, the effective attraction induced at the highest polymer density studied is strong enough to destabilize the mixture. In this case, the aggregation of the liposomes leads to clusters of nearly linear morphology. The PRISM theory is employed to calculate the effective pair potential between liposomes. The theoretical predictions are able to support the experimental observations, and provide an explanation of the interplay between the electrostatic repulsive interaction and the depletion attraction. In particular, they show that the depletion attraction is especially long ranged, and is dominated by electrostatic effects rather than entropic. PMID:23004759

  8. Role of the electrostatic depletion attraction on the structure of charged liposome-polymer mixtures.

    PubMed

    Peláez-Fernández, M; Moncho-Jordá, A; García-Jimeno, S; Estelrich, J; Callejas-Fernández, J

    2012-05-01

    The effect of adding charged nonadsorbing polymers to electrostatically structured suspensions of charged liposomes has been experimentally studied by means of light scattering techniques. The static structure factor of the mixtures is analyzed using two polymers of different sizes. As the polymer concentration increases, the main peak of the structure factor decreases and shows an important shift to larger values of the scattering vector. Such displacement is the consequence of the electrostatic-enhanced depletion attraction induced by the polymers that counteracts the electrostatic repulsion. For the shorter polymer, the system remains stable for all studied polymer concentrations. However, for the long polymer chains, the effective attraction induced at the highest polymer density studied is strong enough to destabilize the mixture. In this case, the aggregation of the liposomes leads to clusters of nearly linear morphology. The PRISM theory is employed to calculate the effective pair potential between liposomes. The theoretical predictions are able to support the experimental observations, and provide an explanation of the interplay between the electrostatic repulsive interaction and the depletion attraction. In particular, they show that the depletion attraction is especially long ranged, and is dominated by electrostatic effects rather than entropic.

  9. Electrostatic stabilization in sperm whale and harbor seal myoglobins

    SciTech Connect

    Gurd, F.R.N.; Friend, S.H.; Rothgeb, T.M.; Gurd, R.S.; Scouloudi, H.

    1980-10-01

    The compact, largely helical structure of sperm whale and harbor seal myoglobins undergoes an abrupt one-step transition between pH 4.5 and 3.5 as monitored by changes in either the heme Soret band absorbance or circular dichroism probes of secondary structure, for which a modified Tanford-Kirkwood theory provides identification of certain dominant electrostatic interactions responsible for the loss of stability. A similar treatment permits identification of the electrostatic interactions primarily responsible for a process in which the anchoring of the A helix to other parts of the molecule is weakened. This process is detected with both myoglobins, in a pH range approx. 1 unit higher than the onset of the overall unfolding process, through changes in the circular dichroic spectra near 295 nm which correspond to the L/sub a/O-O band of the only two tryptophan residues in these proteins, residues 7 and 14. In each case protonation of certain sites in neighboring parts of the molecule can be identified as producing destabilizing interactions with components of the A helix, particularly with lysine 16.

  10. On the Electrostatic Born-Infeld Equation with Extended Charges

    NASA Astrophysics Data System (ADS)

    Bonheure, Denis; d'Avenia, Pietro; Pomponio, Alessio

    2016-09-01

    In this paper, we deal with the electrostatic Born-Infeld equation -operatorname{div} (nablaφ/√{1-|nabla φ|^2} )= ρ quad{in} {R}^N, lim_{|x|to ∞} φ(x)= 0,. quad quad quad quad ({{BI}}) where {ρ} is an assigned extended charge density. We are interested in the existence and uniqueness of the potential {φ} and finiteness of the energy of the electrostatic field {-nabla φ}. We first relax the problem and treat it with the direct method of the Calculus of Variations for a broad class of charge densities. Assuming {ρ} is radially distributed, we recover the weak formulation of {({{BI}})} and the regularity of the solution of the Poisson equation (under the same smoothness assumptions). In the case of a locally bounded charge, we also recover the weak formulation without assuming any symmetry. The solution is even classical if {ρ} is smooth. Then we analyze the case where the density {ρ} is a superposition of point charges and discuss the results in (Kiessling, Commun Math Phys 314:509-523, 2012). Other models are discussed, as for instance a system arising from the coupling of the nonlinear Klein-Gordon equation with the Born-Infeld theory.

  11. Effects of RNA branching on the electrostatic stabilization of viruses.

    PubMed

    Erdemci-Tandogan, Gonca; Wagner, Jef; van der Schoot, Paul; Podgornik, Rudolf; Zandi, Roya

    2016-08-01

    Many single-stranded (ss) ribonucleic acid (RNA) viruses self-assemble from capsid protein subunits and the nucleic acid to form an infectious virion. It is believed that the electrostatic interactions between the negatively charged RNA and the positively charged viral capsid proteins drive the encapsidation, although there is growing evidence that the sequence of the viral RNA also plays a role in packaging. In particular, the sequence will determine the possible secondary structures that the ssRNA will take in solution. In this work, we use a mean-field theory to investigate how the secondary structure of the RNA combined with electrostatic interactions affects the efficiency of assembly and stability of the assembled virions. We show that the secondary structure of RNA may result in negative osmotic pressures while a linear polymer causes positive osmotic pressures for the same conditions. This may suggest that the branched structure makes the RNA more effectively packaged and the virion more stable. PMID:27627336

  12. Analysis of an Electrostatic Wobble Motor

    NASA Astrophysics Data System (ADS)

    Sonobe, Tadashi; Fujita, Hiroyuki

    Analysis of an electrostatic wobble motor is first strictly done by conformal mapping, especially by image method. Capacitances and torques calculated theoretically are in very good agreement with those calculated by FEM simulation, ANSYS, whose relative errors are within 1 %. Then, the effectiveness of detection of commutation timing is suggested by some numerical experiment based on this proposed analysis.

  13. Design of an asynchronous electrostatic motor

    NASA Astrophysics Data System (ADS)

    Kobayasi, Syoyu

    1990-02-01

    An asynchronous electrostatic motor that works under a high-voltage pulse controller using LED-phototransistor photosensors is described. The motor produced the torque 1030-dyn-cm at 1500 V and attained the power 0.8 mW at 80 rpm in n-hexane.

  14. Electrostatically biased binding of kinesin to microtubules.

    PubMed

    Grant, Barry J; Gheorghe, Dana M; Zheng, Wenjun; Alonso, Maria; Huber, Gary; Dlugosz, Maciej; McCammon, J Andrew; Cross, Robert A

    2011-11-01

    The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK) in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules. PMID:22140358

  15. Efficient optimization of electrostatic interactions between biomolecules.

    SciTech Connect

    Bardhan, J. P.; Altman, M. D.; White, J. K.; Tidor, B.; Mathematics and Computer Science; MIT

    2007-01-01

    We present a PDE-constrained approach to optimizing the electrostatic interactions between two biomolecules. These interactions play important roles in the determination of binding affinity and specificity, and are therefore of significant interest when designing a ligand molecule to bind tightly to a receptor. Using a popular continuum model and physically reasonable assumptions, the electrostatic component of the binding free energy is a convex, quadratic function of the ligand charge distribution. Traditional optimization methods require exhaustive pre-computation, and the expense has precluded a full exploration of the promise of electrostatic optimization in biomolecule analysis and design. In this paper we describe an approach in which the electrostatic simulations and optimization problem are solved simultaneously; unlike many PDE- constrained optimization frameworks, the proposed method does not incorporate the PDE as a set of equality constraints. This co-optimization approach can be used by itself to solve unconstrained problems or those with linear equality constraints, or in conjunction with primal-dual interior point methods to solve problems with inequality constraints. Model problems demonstrate that the co-optimization method is computationally efficient and can be used to solve realistic problems.

  16. Electrostatic Enhancement of Coagulation in Protoplanetary Nebulae

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Cuzzi, J.

    2001-01-01

    Microgravity experiments suggest that electrostatic forces (overwhelmed by normal Earth gravity) could greatly enhance cohesive strength of preplanetary aggregates. Cohesive forces may be 103 times larger than those for van der Waals adhesion. Additional information is contained in the original extended abstract.

  17. Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.

    PubMed

    Lip Kwok, Philip Chi

    2015-01-01

    This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.

  18. Electrostatically Biased Binding of Kinesin to Microtubules

    PubMed Central

    Zheng, Wenjun; Alonso, Maria; Huber, Gary; Dlugosz, Maciej; McCammon, J. Andrew; Cross, Robert A.

    2011-01-01

    The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK) in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules. PMID:22140358

  19. Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.

    PubMed

    Lip Kwok, Philip Chi

    2015-01-01

    This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery. PMID:26290198

  20. Electrostatic MEMS devices with high reliability

    SciTech Connect

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  1. Collapsible antennae deployed by electrostatic forces

    NASA Astrophysics Data System (ADS)

    Gvamichava, A. S.; Kotik, A. N.; Koshelev, V. A.; Nefedov, S. S.; Patsaeva, V. A.; Rogachev, A. S.; Sokolov, A. G.

    1981-09-01

    Conventional space mirror antennas occupy a substantial volume when folded; the dimensions of antennas, automatically extendable at orbit, may be reduced to magnitudes of about 100-200 m. These large mirror antennas are designed by means of thin films or mesh structures forming a reflecting surface, which are deployed by electrostatic forces. The interaction of charges applied to reflecting and subsidiary surfaces creates the electrostatic forces sustaining the structural form of the antenna. By varying the distribution of charges at the subsidiary shell, it is possible to change the structural form. Electrostatic forces in the shell must exceed outer influences, and the antenna should have a paraboloidal or spherical form and be made of soft materials, which can be extended by the forces of electrostatic charge interaction. Mirrors of considerable dimensions may be formed by combining a shell with stiffness rings; these rings are important factors defining the efficiency of the antenna, since they contribute to both the mass and the dimension of the antenna when packed.

  2. Machined electrostatic sector for mass spectrometer

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    2001-01-01

    An electrostatic sector device for a mass spectrometer is formed from a single piece of machinable ceramic. The machined ceramic is coated with a nickel coating, and a notch is etched in the nickel coating to form two separated portions. The sector can be covered by a cover formed from a separate piece of machined ceramic.

  3. Electrostatic fuel conditioning of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  4. Electrostatic 'bounce' instability in a magnetotail configuration

    SciTech Connect

    Fruit, G.; Louarn, P.; Tur, A.

    2013-02-15

    To understand the possible destabilization of two-dimensional current sheets, a kinetic model is proposed to describe the resonant interaction between electrostatic modes and trapped particles that bounce within the sheet. This work follows the initial investigation by Tur et al.[Phys. Plasmas 17, 102905 (2010)] that is revised and extended. Using a quasi-parabolic equilibrium state, the linearized gyro-kinetic Vlasov equation is solved for electrostatic fluctuations with period of the order of the electron bounce period. Using an appropriated Fourier expansion of the particle motion along the magnetic field, the complete time integration of the non-local perturbed distribution functions is performed. The dispersion relation for electrostatic modes is then obtained through the quasineutrality condition. It is found that strongly unstable electrostatic modes may develop provided that the current sheet is moderately stretched and, more important, that the proportion of passing particle remains small (less than typically 10%). This strong but finely tuned instability may offer opportunities to explain features of magnetospheric substorms.

  5. Electrostatic waves and anomalous transport in the solar wind

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1983-01-01

    In situ measurements of fluctuation spectra and particle distribution functions have now been carried out throughout interplanetary space. The link between these observations is established by theories of wave particle interaction. Linear instability analysis for the actual nonMaxwellian particle distribution functions and an examination of the velocity dependence of microscopic diffusion coefficients form the basis of such an investigation. It is described in more detail for the short wavelength, ion acoustic like turbulence which is found by linear instability analysis to correspond to the observed electrostatic fluctuations. Of the transport processes associated with these fluctuations, electron heat conduction and electron ion energy transfer are of particular importance for macroscopic solar wind expansion. These effects are studied with the aid of an anomalous transport theory. This theory (Dum, 1978 a,b) is based on the dominance of elastic scattering of electrons by fluctuations, similar to (enhanced) electron ion collisions. It has a much wider range of applicability than classical transport theory, which assumes dominance of Coulomb collisions for elastic and inelastic scattering.

  6. Electrostatic waves and anomalous transport in the solar wind

    NASA Astrophysics Data System (ADS)

    Dum, C. T.

    1983-11-01

    In situ measurements of fluctuation spectra and particle distribution functions have now been carried out throughout interplanetary space. The link between these observations is established by theories of wave particle interaction. Linear instability analysis for the actual nonMaxwellian particle distribution functions and an examination of the velocity dependence of microscopic diffusion coefficients form the basis of such an investigation. It is described in more detail for the short wavelength, ion acoustic like turbulence which is found by linear instability analysis to correspond to the observed electrostatic fluctuations. Of the transport processes associated with these fluctuations, electron heat conduction and electron ion energy transfer are of particular importance for macroscopic solar wind expansion. These effects are studied with the aid of an anomalous transport theory. This theory (Dum, 1978 a,b) is based on the dominance of elastic scattering of electrons by fluctuations, similar to (enhanced) electron ion collisions. It has a much wider range of applicability than classical transport theory, which assumes dominance of Coulomb collisions for elastic and inelastic scattering.

  7. Toward high-torque electrostatic tubular motors

    NASA Astrophysics Data System (ADS)

    Helin, Philippe; Bourbon, Gilles; Minotti, Patrice; Fujita, Hiroyuki

    1999-10-01

    A new generation of electrostatic micro-motors is investigated using cooperation of arrayed direct-drive actuators. Electrostatic scratch-drive actuators (SDA), which combine active frictional contact mechanisms with electrostatic actuation, are particularly analyzed. Active polysilicon sheets of 2*3 mm2 that integrate up to several thousands of electrostatic scratch drive actuators are fabricated by silicon surface micro-machining process. Each elementary actuator provides its contribution according to the driving force superposition principle, with internal forces as high as 105uN are available from this sheet. According to their natural flexibility, active polysilicon sheets can be coated onto large surfaces. A new generation of self-assembled tubular electrostatic micromotors is developed using this concept. A prototype of a cylindrical micromotor, whose external diameter and length are 1 mm and 2 mm, respectively, has been realized through the insertion of a flexible active polysilicon sheet at the rotor/motor- frame interface. After final assembling, the sheet has to be jammed onto the chassis, in order to allow the rotor to be moved with respect to the motor frame. Thus, the sheet must be in close contact with both the rotor and the motor frame, whatever the gap, which separates the two macroscopic parts. The problem related to the micro/macro world interfacing is solved during the design of sheet in allowing an out-of- plane motion of SDA in order to provide a self gap compensation, whatever both the thermal expansion effects and the macroscopic machining tolerances. The expected driving characteristics show the interest of both cooperative arrayed microactuators and direct drive frictional mechanisms.

  8. Electrostatic Interactions in Aminoglycoside-RNA Complexes

    PubMed Central

    Kulik, Marta; Goral, Anna M.; Jasiński, Maciej; Dominiak, Paulina M.; Trylska, Joanna

    2015-01-01

    Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity. PMID:25650932

  9. Electrostatic interactions in aminoglycoside-RNA complexes.

    PubMed

    Kulik, Marta; Goral, Anna M; Jasiński, Maciej; Dominiak, Paulina M; Trylska, Joanna

    2015-02-01

    Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity. PMID:25650932

  10. Electrostatic interactions in aminoglycoside-RNA complexes.

    PubMed

    Kulik, Marta; Goral, Anna M; Jasiński, Maciej; Dominiak, Paulina M; Trylska, Joanna

    2015-02-01

    Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity.

  11. Air-fuel mixture ratio control using electrostatic force

    SciTech Connect

    Maruoka, H.

    1981-07-28

    Electrostatically charged liquid fuel is introduced into a venturi to be atomized therein and is then applied to the combustion chamber of an engine under the control of electrostatic force for properly controlling the air-fuel mixture ratio.

  12. Air-fuel mixture ratio control using electrostatic force

    SciTech Connect

    Maruoka, H.

    1980-01-15

    Electrostatically charged liquid fuel is introduced into a venturi to be atomized therein and is then applied to the combustion chambers of an engine under the control of electrostatic force for properly controlling the air-fuel mixture ratio.

  13. Optimization design combined with coupled structural-electrostatic analysis for the electrostatically controlled deployable membrane reflector

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Yang, Guigeng; Zhang, Yiqun

    2015-01-01

    The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.

  14. Nonlinear parallel momentum transport in strong electrostatic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wen, Tiliang; Diamond, P. H.

    2015-05-01

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux- ⟨ v ˜ r n ˜ u ˜ ∥ ⟩ . However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller than the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.

  15. Debye screening versus Gauss law in electrostatics: Finite size effects

    NASA Astrophysics Data System (ADS)

    Dubey, Ritesh Kumar; Menon, V. J.; Mishra, M.; Tripathi, D. N.

    2007-10-01

    We revisit the well-known topics of self- and induced-screening in an otherwise isotropic neutral plasma/colloid. It is pointed out that the standard Debye-Hückel (DH) theory (ignoring finite size effects) suffers from many ambiguities related to net ionic numbers, total charge of the system, role of the electrostatic Gauss law, short-distance behaviour of the potential and incorrectly normalized pair correlation functions. We give a new formulation (incorporating finite size effects) such that ionic numbers are maintained, the total charge of the system has physically correct value, the Gauss law boundary conditions are rigorously obeyed, short-distance behaviour of the potential is guaranteed automatically, and correlation functions are correctly normalized. Numerical differences between the two approaches show up if the screening length μ-1 becomes comparable to the size R of the system.

  16. Electrostatic attraction between neutral microdroplets by ion fluctuations.

    PubMed

    Sheng, Yu-Jane; Tsao, Heng-Kwong

    2004-06-01

    The interaction between two aqueous droplets containing ions is investigated. The ion-fluctuation correlation gives rise to attraction between two neutral microdroplets, similar to the van der Waals interaction between neutral atoms. Electrostatic attraction consists of contributions from various induced multipole-multipole interactions, including dipole-dipole < P(2)(z) >(2) r(-6), dipole-quadrupole < P(2)(z) > < Q (2)(zz ) > r(-8), dipole-octupole < P(2)(z) > < O (2)(zzz ) > r(-10), and quadrupole-quadrupole interactions < Q (2)(zz ) >(2) r(-10). The mean-square multipole moments are determined analytically by linear response theory. The fluctuation-driven attraction is so strong at short distance that it may dominate over the Coulomb repulsion between like-charged droplets. These theoretical results are confirmed by Monte Carlo simulations. PMID:15244532

  17. Electrostatic attraction between neutral microdroplets by ion fluctuations

    NASA Astrophysics Data System (ADS)

    Sheng, Yu-Jane; Tsao, Heng-Kwong

    2004-06-01

    The interaction between two aqueous droplets containing ions is investigated. The ion-fluctuation correlation gives rise to attraction between two neutral microdroplets, similar to the van der Waals interaction between neutral atoms. Electrostatic attraction consists of contributions from various induced multipole-multipole interactions, including dipole-dipole < P2z >2 r-6 , dipole-quadrupole < P2z > < Q 2zz > r-8 , dipole-octupole < P2z > < O 2zzz > r-10 , and quadrupole-quadrupole interactions < Q 2zz >2 r-10 . The mean-square multipole moments are determined analytically by linear response theory. The fluctuation-driven attraction is so strong at short distance that it may dominate over the Coulomb repulsion between like-charged droplets. These theoretical results are confirmed by Monte Carlo simulations.

  18. Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency

    NASA Astrophysics Data System (ADS)

    Madinei, H.; Khodaparast, H. Haddad; Adhikari, S.; Friswell, M. I.

    2016-12-01

    In this paper the analytical analysis of an adaptively tuned piezoelectric vibration based energy harvester is presented. A bimorph piezoelectric energy harvester is suspended between two electrodes, subjected to a same DC voltage. The resonance frequency of the system is controllable by the applied DC voltage, and the harvested power is maximized by controlling the natural frequency of the system to cope with vibration sources which have varying excitation frequencies. The nonlinear governing differential equation of motion is derived based on Euler Bernoulli theory, and due to the softening nonlinearity of the electrostatic force, the harvester is capable of working over a broad frequency range. The steady state harmonic solution is obtained using the harmonic balance method and results are verified numerically. The results show that the harvester can be tuned to give a resonance response over a wide range of frequencies, and shows the great potential of this hybrid system.

  19. PREFACE: 13th International Conference on Electrostatics

    NASA Astrophysics Data System (ADS)

    Taylor, D. Martin

    2011-06-01

    Electrostatics 2011 was held in the city of Bangor which is located in North West Wales in an area of outstanding natural beauty close to the Snowdonia mountain range and bordering the Irish Sea. The history of the area goes back into the mists of times, but a continuous technological thread can be traced from the stone- and bronze-age craftsmen, who inhabited the area several thousand years ago, via the civil engineering and fortifications of the Romans and Edward I of England, through Marconi's long-wave trans-Atlantic transmitter near Caernarfon to the conference host. The School of Electronic Engineering at Bangor University has contributed much to the discipline of Electrostatics not only in teaching and research but also in supporting industry. It was a great pleasure for me, therefore, to have the pleasure of welcoming the world's experts in Electrostatics to Bangor in April 2011. In my preface to the Proceedings of Electrostatics 1999, I reported that almost 90 papers were presented. Interestingly, a similar number were presented in 2011 testifying to the importance and endurance of the subject. The all-embracing nature of electrostatics is captured in the pictorial depiction used for the conference logo: a hand-held plasma ball with its close link to gaseous discharges and the superimposed Antarctic aurora highlighting the featured conference themes of atmospheric, planetary and environmental electrostatics. Leading these themes were three invited contributions, the first by Giles Harrison who delivered the Bill Bright Memorial Lecture 'Fair weather atmospheric electricity', Carlos Calle on 'The electrostatic environments of Mars and the Moon' and Istvan Berta on 'Lightning protection - challenges, solutions and questionable steps in the 21st century'. Leading other key sessions were invited papers by Atsushi Ohsawa on 'Statistical analysis of fires and explosions attributed to static electricity over the last 50 years in Japanese industry' and Antonio

  20. Electrostatic forces in muscle and cylindrical gel systems

    SciTech Connect

    Millman, B.M.; Nickel, B.G.

    1980-10-01

    Repulsive pressure has been measured as a function of lattice spacing in gels of tobacco mosaic virus (TMV) and in the filament lattice of vertebrate striated muscle. External pressures up to ten atm have been applied to these lattices by an osmotic stress method. Numerical solutions to the Poisson-Boltzmann equation in hexagonal lattices have been obtained and compared to the TMV and muscle data. The theoretical curves using values for kappa calculated from the ionic strength give a good fit to experimental data from TMV gels, and an approximate fit to that from the muscle lattice, provided that a charge radius for the muscle thick filaments of approx. 16 nm is assumed. Variations in ionic strength, sarcomere length and state of the muscle give results which agree qualitatively with the theory, though a good fit between experiment and theory in the muscle case will clearly require consideration of other types of forces. We conclude that Poisson-Boltzmann theory can provide a good first approximation to the long-range electrostatic forces operating in such biological gel systems.

  1. Ultrafast collisional ion heating by electrostatic shocks.

    PubMed

    Turrell, A E; Sherlock, M; Rose, S J

    2015-01-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory.

  2. Ultrafast collisional ion heating by electrostatic shocks

    NASA Astrophysics Data System (ADS)

    Turrell, A. E.; Sherlock, M.; Rose, S. J.

    2015-11-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ~keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory.

  3. Teaching Electrostatics and Entropy in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.

  4. Ultrafast collisional ion heating by electrostatic shocks

    PubMed Central

    Turrell, A. E.; Sherlock, M.; Rose, S. J.

    2015-01-01

    High-intensity lasers can be used to generate shockwaves, which have found applications in nuclear fusion, proton imaging, cancer therapies and materials science. Collisionless electrostatic shocks are one type of shockwave widely studied for applications involving ion acceleration. Here we show a novel mechanism for collisionless electrostatic shocks to heat small amounts of solid density matter to temperatures of ∼keV in tens of femtoseconds. Unusually, electrons play no direct role in the heating and it is the ions that determine the heating rate. Ions are heated due to an interplay between the electric field of the shock, the local density increase during the passage of the shock and collisions between different species of ion. In simulations, these factors combine to produce rapid, localized heating of the lighter ion species. Although the heated volume is modest, this would be one of the fastest heating mechanisms discovered if demonstrated in the laboratory. PMID:26563440

  5. Electrostatic Dust Detector with Improved Sensitivity

    SciTech Connect

    D.P. Boyle, C.H. Skinner, and A. L. Roquemore

    2008-06-09

    Methods to measure the inventory of dust particles and to remove dust if it approaches safety limits will be required in next-step tokamaks such as ITER. An electrostatic dust detector, based on a fine grid of interlocking circuit traces, biased to 30 or 50 V, has been developed for the detection of dust on remote surfaces in air and vacuum environments. Gaining operational experience of dust detection on surfaces in tokamaks is important, however the level of dust generated in contemporary short-pulse tokamaks is comparatively low and high sensitivity is necessary to measure dust on a shot-by-shot basis. We report on modifications in the detection electronics that have increased the sensitivity of the electrostatic dust detector by a factor of up to 120, - a level suitable for measurements on contemporary tokamaks.

  6. Isolation of crystallizing droplets by electrostatic levitation

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1990-01-01

    The principles of electrostatic levitation where the positioning and stabilization of a sample are accomplished by applying appropriate electrostatic forces to a charged sample are outlined, and attention is focused on a feedback control algorithm, drop-launching method, and four-drop levitator. Drop levitation in 1-g is discussed, and crystal-growth experiments are presented. An experiment in which the protein concentration of a levitated drop is controlled by a feedback system is described. During levitation, the drop evaporation rate is controlled in a programmed way in order to acquire proper protein concentration levels for both nucleation and growth. The containerless approach of protein crystal growth when applied in the space environment is assessed.

  7. Electrostatic waves in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Barbosa, D. D.; Scarf, F. L.; Gurnett, D. A.

    1980-01-01

    Observations by the plasma wave receivers on Voyagers 1 and 2 show that a wide variety of electrostatic waves are present within the Jovian magnetosphere and that the Jovian electrostatic waves are for the most part very similar to those observed in the terrestrial magnetosphere. Bands of emission near the upper hybrid resonance frequency in the dayside outer magnetosphere are detected between higher harmonics of the electron gyrofrequency. Inside of about 23 Jupiter radii, electron cyclotron harmonic emissions appear to be durable features of the inner Jovian magnetosphere and are extremely well confined to the Jovian magnetic equator. The cyclotron emissions extend from just above the local electron gyrofrequency to the upper hybrid resonance frequency.

  8. Test progress on the electrostatic membrane reflector

    NASA Technical Reports Server (NTRS)

    Mihora, D. J.

    1981-01-01

    An extemely lightweight type of precision reflector antenna, being developed for potential deployment from the space shuttle, uses electrostatic forces to tension a thin membrane and form it into a concave reflector surface. The typical shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center built and is currently testing a subscale (16 foot diameter) model of the membrane reflector portion of such an antenna. Preliminary test results and principal factors affecting surface quality are addressed. Factors included are the effect of the perimeter boundary, splicing of the membrane, the long-scale smoothness of commercial membranes, and the spatial controllability of the membrane using voltage adjustments to alter the electrostatic pressure. Only readily available commercial membranes are considered.

  9. Electrostatic trapping of metastable NH molecules

    SciTech Connect

    Hoekstra, Steven; Metsaelae, Markus; Zieger, Peter C.; Scharfenberg, Ludwig; Gilijamse, Joop J.; Meijer, Gerard; Meerakker, Sebastiaan Y. T. van de

    2007-12-15

    We report on the Stark deceleration and electrostatic trapping of {sup 14}NH (a{sup 1}{delta}) radicals. In the trap, the molecules are excited on the spin-forbidden A{sup 3}{pi}<-a{sup 1}{delta} transition and detected via their subsequent fluorescence to the X{sup 3}{sigma}{sup -} ground state. The 1/e trapping time is 1.4{+-}0.1 s, from which a lower limit of 2.7 s for the radiative lifetime of the a{sup 1}{delta}, v=0, J=2 state is deduced. The spectral profile of the molecules in the trapping field is measured to probe their spatial distribution. Electrostatic trapping of metastable NH followed by optical pumping of the trapped molecules to the electronic ground state is an important step toward accumulation of these radicals in a magnetic trap.

  10. Automatic control and management of electrostatic precipitator

    SciTech Connect

    Durga Prasad, N.V.P.R.; Lakshminarayana, T.; Narasimham, J.R.K.; Verman, T.M.; Krishnam Raju, C.S.R.

    1999-05-01

    The efficient operation of an electrostatic precipitator (ESP) in practice depends upon many variables, such as charging method, particle size, gas flow, temperature, dust resistivity, etc. With the air pollution control requirements becoming increasingly stringent, it is essential to closely monitor and accurately control the key parameters of an ESP control system. The efficient functioning of an ESP normally means minimizing power consumption and maximizing dust collection. Several control strategies can be adopted to meet this broad requirement. In this paper, a distributed control technique of an ESP, which uses the actual dust emission and boiler load as feedback inputs has been explained. The Electrostatic Precipitator Management System, which is a system designed by Bharat Heavy Electricals Ltd., Hyderabad, India, to meet the above control strategies using the distributed architecture to achieve efficient ESP operation is also described.

  11. Electrostatic Characterization of Lunar Dust Simulants

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Ritz, M. L.

    2008-01-01

    Lunar dust can jeopardize exploration activities due to its ability to cling to most surfaces. In this paper, we report on our measurements of the electrostatic properties of the lunar soil simulants. Methods have been developed to measure the volume resistivity, dielectric constant, chargeability, and charge decay of lunar soil. While the first two parameters have been measured in the past [Olhoeft 1974], the last two have never been measured directly on the lunar regolith or on any of the Apollo samples. Measurements of the electrical properties of the lunar samples are being performed in an attempt to answer important problems that must be solved for the development of an effective dust mitigation technology, namely, how much charge can accumulate on the dust and how long does the charge remain on surfaces. The measurements will help develop coatings that are compatible with the intrinsic electrostatic properties of the lunar regolith.

  12. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  13. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  14. Electrostatic demonstration of free-fall weightlessness

    NASA Astrophysics Data System (ADS)

    Balukovic, Jasmina; Slisko, Josip; Corona Cruz, Adrian

    2015-05-01

    The phenomena of free-fall weightlessness have been demonstrated to students for many years in a number of different ways. The essential basis of all these demonstrations is the fact that in free-falling, gravitationally accelerated systems, the weight force and weight-related forces (for example, friction and hydrostatic forces) disappear. In this article, an original electrostatic demonstration of weightlessness is presented. A charged balloon fixed at the opening of a plastic container cannot lift a light styrofoam sphere sitting on the bottom when the container is at rest. However, while the system is in free-fall, the sphere becomes weightless and the charged balloon is able to lift it electrostatically.

  15. Electrostatic-spray ionization mass spectrometry.

    PubMed

    Qiao, Liang; Sartor, Romain; Gasilova, Natalia; Lu, Yu; Tobolkina, Elena; Liu, Baohong; Girault, Hubert H

    2012-09-01

    An electrostatic-spray ionization (ESTASI) method has been used for mass spectrometry (MS) analysis of samples deposited in or on an insulating substrate. The ionization is induced by a capacitive coupling between an electrode and the sample. In practice, a metallic electrode is placed close to but not in direct contact with the sample. Upon application of a high voltage pulse to the electrode, an electrostatic charging of the sample occurs leading to a bipolar spray pulse. When the voltage is positive, the bipolar spray pulse consists first of cations and then of anions. This method has been applied to a wide range of geometries to emit ions from samples in a silica capillary, in a disposable pipet tip, in a polymer microchannel, or from samples deposited as droplets on a polymer plate. Fractions from capillary electrophoresis were collected on a polymer plate for ESTASI MS analysis. PMID:22876737

  16. Electrostatic waves in the magnetosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Kurth, W. S; Gurnett, D. A.; Barbosa, D. D.; Scarf, F. L.

    1987-01-01

    Observations of electrostatic waves in the magnetosphere of Uranus are discussed with attention focused on the Bernstein emissions. The most intense Bernstein waves were observed near the magnetic equator of the planet, even though the tilt of the Uranian magnetic moment is very large relative to the rotational axis. In addition to the Bernstein modes, a number of highly sporadic emissions were detected in the vicinity of the Miranda L shell.

  17. Electrostatic drift modes in quantum pair plasmas

    SciTech Connect

    Ren Haijun; Cao Jintao; Wu Zhengwei

    2008-10-15

    Electrostatic drift waves in a nonuniform quantum magnetized electron-positron (pair) plasma are investigated. An explicit and straightforward analytical expression of the fluctuation frequency is presented. The effects induced by quantum fluctuations, density gradients, and magnetic field inhomogeneity on the wave frequencies are discussed and a purely quantum drift mode appears. The present analytical investigations are relevant to dense astrophysical objects as well as laboratory ultracold plasmas.

  18. Controlling Charged Particles with Inhomogeneous Electrostatic Fields

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A. (Inventor)

    2016-01-01

    An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.

  19. Electrostatic quadrupole DC accelerators for BNCT applications

    SciTech Connect

    Kwan, J.W.; Anderson, O.A.; Reginato, L.L.; Vella, M.C.; Yu, S.S.

    1994-04-01

    A dc electrostatic quadrupole (ESQ) accelerator is capable of producing a 2.5 MeV, 100 mA proton beam for the purpose of generating neutrons for Boron Neutron Capture Therapy. The ESQ accelerator is better than the conventional aperture column in high beam current application due to the presence of stronger transverse field for beam focusing and for suppressing secondary electrons. The major challenge in this type of accelerator is in developing the proper power supply system.

  20. Determination of electrostatic potentials at biological interfaces using electron-electron double resonance.

    PubMed Central

    Shin, Y K; Hubbell, W L

    1992-01-01

    A new general method for the determination of electrostatic potentials at biological surfaces is presented. The approach is based on measurement of the collision frequency of a charged nitroxide in solution with a nitroxide fixed to the surface at the point of interest. The collision frequency is determined with 14N:15N double label electron-electron double resonance (ELDOR). As a test, the method is shown to give values for phospholipid bilayer surface potentials consistent with the Gouy-Chapman theory, a simple model shown by many independent tests to accurately describe charged, planar surfaces. In addition, the method is applied to determine the electrostatic potential near the surface of DNA. The results indicate that the potential is significantly smaller than that predicted from Poisson-Boltzmann analysis, but is in qualitative agreement with that predicted by Manning's theory of counter ion condensation. The method is readily extended to measurement of surface potentials of proteins. PMID:1319760

  1. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  2. Electrostatic separation of brass from industrial wastes

    SciTech Connect

    Iuga, A.; Morar, R.; Samuila, A.; Mihailescu, M.; Cuglesan, I.; Dascalescu, L.

    1999-05-01

    Previous studies have demonstrated that electrostatic separation can be successfully employed for the recycling of nonferrous metals from chopped electric wire and cable scrap. The aim of this paper was to investigate the possibility of using the electric field forces for the selective sorting of other granular mixtures, such as brass dross. Laboratory tests of electrostatic separation were carried out on three samples: 0.08--1 mm, 0.08--0.2 mm, and 0.2--1 mm, containing more than 66% of brass. Sample 1 was separated in a corona-electrostatic field, generated by a standard electrode arrangement: a grounded rotating roll electrode (diameter 150 mm) and two high-voltage electrodes (wire-type dual corona electrode + tubular electrode). Processing of the other two samples was carried out in a custom-designed separator comprising an extended corona field generated between a matrix-type multineedle corona electrode and a roll electrode of large diameter (250 mm). Chemical analysis of the products showed that more than 90% of the brass can be recovered with a purity higher than 95%. The extended corona field electrode arrangement proposed in this paper seems to be a promising solution for the effective recycling of other granular wastes containing copper, aluminum, and their alloys.

  3. Cloverleaf microgyroscope with electrostatic alignment and tuning

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2007-01-01

    A micro-gyroscope (10) having closed loop output operation by a control voltage (V.sub.ty), that is demodulated by a drive axis (x-axis) signal V.sub.thx of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis) V.sub.thy.about.0. Closed loop drive axis torque, V.sub.tx maintains a constant drive axis amplitude signal, V.sub.thx. The present invention provides independent alignment and tuning of the micro-gyroscope by using separate electrodes and electrostatic bias voltages to adjust alignment and tuning. A quadrature amplitude signal, or cross-axis transfer function peak amplitude is used to detect misalignment that is corrected to zero by an electrostatic bias voltage adjustment. The cross-axis transfer function is either V.sub.thy/V.sub.ty or V.sub.tnx/V.sub.tx. A quadrature signal noise level, or difference in natural frequencies estimated from measurements of the transfer functions is used to detect residual mistuning, that is corrected to zero by a second electrostatic bias voltage adjustment.

  4. Fabrication of a New Electrostatic Linear Actuator

    NASA Astrophysics Data System (ADS)

    Matsunaga, Takashi; Kondoh, Kazuya; Kumagae, Michihiro; Kawata, Hiroaki; Yasuda, Masaaki; Murata, Kenji; Yoshitake, Masaaki

    2000-12-01

    We propose a new electrostatic linear actuator with a large stroke and a new process for fabricating the actuator. A moving slider with many teeth on both sides is suspended above lower electrodes on a substrate by two bearings. A photoresist is used as a sacrificial layer. Both the slider and the bearings are fabricated by Ni electroplating. The bearings are fabricated by the self-alignment technique. Bearings with 0.6 μm clearance can be easily fabricated. All processes are performed at low temperatures up to 110°C. It is confirmed that the slider can be moved mechanically, and also can be moved by about 10 μm when a voltage pulse of 50 V is applied between the slider and the lower electrodes when the slider is upside down. However, the slider cannot move continuously because of friction. We also calculate the electrostatic force acting on one slider tooth. The simulation result shows that the reduction of the electrostatic force to the vertical direction is very important for mechanical movement of the actuator.

  5. Discharge electrode structure for electrostatic precipitator

    SciTech Connect

    Michel, T.J.

    1980-10-28

    An electrostatic precipitator is described for extracting particles and other contaminants from a gaseous stream to be purified, the contaminants being ionized by means of a discharge electrode structure which includes a column of dielectric material whose central axis is coincident with the axis of a collector tube within which the column is disposed. The column has a crosssectional geometry that defines a circular series of longitudinally-extending niches. Supported between the ends of the column is a circular array of fine gauge wires each of which is suspended with a respective niche. A high voltage is impressed between the wires in the array and the inner surface of the collector tube to create an electrostatic field in the annular region between the discharge electrode structure and the tube to ionize contaminants in the gaseous stream passing therethrough. The surfaces of the niches acquire bound electrostatic charges whereby the voltage gradient established between the discharge electrode structure and the tube is substantially uniform, thereby attaining optimum collecting and ionization conditions.

  6. Electrostatic precipatator construction having ladder bar spacers

    SciTech Connect

    Jonelis, J.A.

    1984-10-30

    The present invention relates to an improved construction for an electrostatic precipitator having ladder bar spacers. The electrostatic precipitator collects solid particles carried by a flue gas from a source of combustion. The precipitator includes a plurality of spaced plates for collecting solid particles from the flue gas by electrostatic attraction of the solid particles to the plates. A second plurality of elongated electrodes is positioned among the plates. Each of the electrodes is mounted between a pair of adjacent plates. Each of the electrodes is parallel to the other electrodes and is parallel to the plates. A third plurality of ladder bars is positioned between adjacent plates to hold the plates in a flat attitude and to maintain adjacent surfaces of adjacent plates substantially equidistantly spaced from one another. Each of the ladder bars has a connector bar secured to one of the pair of adjacent surfaces. Each of the ladder bars has a fourth plurality of holder bars. Each of the holder bars having one end connected to its respective connector bar and extending outwardly from the connector bar toward the other of the pair of adjacent surfaces. A contact on the other end of each holder bar engages the other of the pair of adjacent surfaces to hold the pair of adjacent surfaces apart.

  7. Electrostatic Surface Modifications to Improve Gene Delivery

    PubMed Central

    Shmueli, Ron B.; Anderson, Daniel G.

    2010-01-01

    Importance of the field Gene therapy has the potential to treat a wide variety of diseases including genetic diseases and cancer. Areas covered in this review This review introduces biomaterials used for gene delivery and then focuses on the use of electrostatic surface modifications to improve gene delivery materials. These modifications have been used to stabilize therapeutics in vivo, add cell-specific targeting ligands, and promote controlled release. Coatings of nanoparticles and microparticles as well as non-particulate surface coatings are covered in this review. Electrostatic principles are crucial for the development of multilayer delivery structures fabricated by the layer-by-layer method. What the reader will gain The reader will gain knowledge about the composition of biomaterials used for surface modifications and how these coatings and multilayers can be utilized to improve spatial control and efficiency of delivery. Examples are shown for the delivery of nucleic acids, including DNA and siRNA, to in vitro and in vivo systems. Take home message The versatile and powerful approach of electrostatic coatings and multilayers will lead to the development of enhanced gene therapies. PMID:20201712

  8. Biomolecular electrostatics and solvation: a computational perspective

    PubMed Central

    Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G.; Schnieders, Michael J.; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A.

    2012-01-01

    An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view towards describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g., solvent structure, polarization, ion binding, and nonpolar behavior) in order to provide a background to understand the different types of solvation models. PMID:23217364

  9. Effect of strong electrostatic interactions of microparticles on the dust acoustic waves

    SciTech Connect

    Yaroshenko, V. V.; Nosenko, V.; Morfill, G. E.

    2010-10-15

    It is shown that strong electrostatic interaction of highly charged microparticles (which is common for many laboratory experiments) can significantly modify the behavior of dust acoustic waves in a complex plasma giving rise to their transition, at large wave numbers, into a new regime similar to the dust thermal mode. Examples of the dispersion curves are calculated for realistic complex plasma parameters and a comparison with a recent experiment is presented. Excellent agreement is found between the theory and the experiment.

  10. Electrostatic fields in a dusty Martian environment

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1991-01-01

    While there have been several studies suggesting the possibility of electrical activity on Mars, to date there have been no measurements to search for evidence of such activity. In the absence of widespread water clouds and convective storm systems similar to those on the Earth and Jupiter, the most likely candidate for the creation of electrostatic charges and fields is triboelectric charging of dust, i.e., the friction between blown dust and the ground, and of dust particles with each other. Terrestrial experience demonstrates that electric fields 5 to 15 kV-m(exp -1) are not uncommon in dust storms and dust devils in desert regions, where the polarity varies according to the chemical composition and grain size. Simple laboratory experiments have demonstrated that modest electrostatic fields of roughly 5,000 V-m(exp -1) may be produced, along with electrical spark discharges and glow discharges, in a simulation of a dusty, turbulent Martian surface environment. While the Viking landers operated for several years with no apparent deleterious effects from electrostatic charging, this may have been at least partly due to good engineering design utilizing pre-1976 electronic circuitry to minimize the possibility of differential charging among the various system components. However, free roaming rovers, astronauts, and airborne probes may conceivably encounter an environment where electrostatic charging is a frequent occurrence, either by way of induction from a static electric field or friction with the dusty surface and atmosphere. This raises the possibility of spark discharges or current surges when subsequent contact is made with other pieces of electrical equipment, and the possibility of damage to modern microelectronic circuitry. Measurements of electrostatic fields on the surface of Mars could therefore be valuable for assessing this danger. Electric field measurements could also be useful for detecting natural discharges that originate in dust storms. This

  11. Electrostatic energy barriers from dielectric membranes upon approach of translocating DNA molecules

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2016-02-01

    We probe the electrostatic cost associated with the approach phase of DNA translocation events. Within an analytical theory at the Debye-Hückel level, we calculate the electrostatic energy of a rigid DNA molecule interacting with a dielectric membrane. For carbon or silicon based low permittivity neutral membranes, the DNA molecule experiences a repulsive energy barrier between 10 kBT and 100 kBT. In the case of engineered membranes with high dielectric permittivities, the membrane surface attracts the DNA with an energy of the same magnitude. Both the repulsive and attractive interactions result from image-charge effects and their magnitude survive even for the thinnest graphene-based membranes of size d ≈ 6 Å. For weakly charged membranes, the electrostatic energy is always attractive at large separation distances but switches to repulsive close to the membrane surface. We also characterise the polymer length dependence of the interaction energy. For specific values of the membrane charge density, low permittivity membranes repel short polymers but attract long polymers. Our results can be used to control the strong electrostatic energy of DNA-membrane interactions prior to translocation events by chemical engineering of the relevant system parameters.

  12. Effect of nanostructures and electrostatic interactions on disjoining pressure of ultra-thin liquid film

    NASA Astrophysics Data System (ADS)

    Hu, Han; Weinberger, Christopher; Sun, Ying

    2014-11-01

    Disjoining pressure, the excess pressure that stems from the long-range intermolecular interactions, plays a key role in the stability of thin films in applications such as lubrication, wetting, boiling, condensation and evaporation. In recent years, nanostructures have been introduced as a means to control the stability of thin films. However, the classic theory of disjoining pressure assumes atomically smooth surface and neglects the electrostatic interactions. In the present study, the effect of nanostructures and electrostatic interactions on disjoining pressure is examined with combined modeling and molecular dynamics simulations. A model of meniscus shape and disjoining pressure for a thin liquid film on a nanostructured surface is derived based on minimization of system free energy and Derjaguin approximation. The scaled healing length ξ / D (D the nanostructure depth) is used to characterize the competition between the liquid surface tension and solid-liquid intermolecular forces. The result shows disjoining pressure increases with D. The model prediction agrees well with molecular dynamics simulations for a water-gold system. The electrostatic interactions enhance the disjoining pressure effect but the strength of the electrostatic interactions becomes weaker as the aspect ratio of the nanostructures increases.

  13. Hyperconjugative and Electrostatic Interactions as Anomeric Triggers in Archetypical 1,4-Dioxane Derivatives.

    PubMed

    Ortega, Pilar Gema Rodríguez; Montejo, Manuel; López González, Juan Jesús

    2016-02-16

    The anomeric effect accounts for the greater thermodynamic stability of axially arranged six-membered heterocycles holding an electronegative substituent at the C1 position. Within a frame of no general consensus, two different theories are typically claimed to justify this effect mostly based on either hyperconjugative or electrostatic factors. Here we report a theoretical-experimental study of the role of both as anomeric triggers in two archetypical 1,4-dioxane derivatives, using a suitable combination of spectroscopic (IR and vibrational circular dichroism) and computational techniques for the analysis of the solvation environment effect in their anomeric choices. VCD and IR spectroscopies are used as conformer-discriminating tools: a detailed analysis of the evolution of the spectral profiles allows assessing the theoretically predicted changes in the experimental α/β ratios when changing the polar solvent, which are fully explained on the basis of an extensive NBO energy partition scheme that provides a detailed view of the role of hyperconjugative and electrostatic interactions as anomeric regulators. Our results suggest that the anomeric equilibrium cannot be described by a single stereoelectronic effect but by the combined contribution of hyperconjugation and electrostatic repulsions, so that the β-anomeric choice in polar solvents is markedly driven by the strong attenuation of electrostatic repulsive interactions that occurs in solution. PMID:26663638

  14. Electromagnetic and electrostatic emissions at the cusp-magnetosphere interface during substorms

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Fairfield, D. H.; Wu, C. S.

    1979-01-01

    Strongly peaked electrostatic emissions near 10.0 kHz and electromagnetic emissions near 0.56 kHz have been observed by the VLF wave detector on board Imp 6 on crossings from the earth's magnetosphere into the polar cusp during the occurrence of large magnetospheric substorms. The electrostatic emissions were observed to be closely confined to the cusp-magnetosphere interface. The electromagnetic emissions were of somewhat broader spatial extent and were seen on higher-latitude field lines within the cusp. Using these plasma wave observations and additional information provided by plasma, magnetometer and particle measurements made simultaneously on Imp 6, theories are constructed to explain each of the two classes of emission. The electromagnetic waves are modeled as whistlers, and the electrostatic waves as electron-cyclotron harmonics. The resulting growth rates predict power spectra similar to those observed for both emission classes. The electrostatic waves may play a significant role via enhanced diffusion in the relaxation of the sharp substorm time cusp-magnetosphere boundary to a more diffuse quiet time boundary.

  15. Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere

    SciTech Connect

    Golovchanskaya, Irina V.; Kozelov, Boris V.; Chernyshov, Alexander A.; Mogilevsky, Mikhail M.; Ilyasov, Askar A.

    2014-08-15

    The excitation of electrostatic turbulence inside space-observed solitary structures is a central topic of this exposition. Three representative solitary structures observed in the topside auroral ionosphere as large-amplitude nonlinear signatures in the electric field and magnetic-field-aligned current on the transverse scales of ∼10{sup 2}–10{sup 3} m are evaluated by the theories of electrostatic wave generation in inhomogeneous background configurations. A quantitative analysis shows that the structures are, in general, effective in destabilizing the inhomogeneous energy-density-driven (IEDD) waves, as well as of the ion acoustic waves modified by a shear in the parallel drift of ions. It is demonstrated that the dominating branch of the electrostatic turbulence is determined by the interplay of various driving sources inside a particular solitary structure. The sources do not generally act in unison, so that their common effect may be inhibiting for excitation of electrostatic waves of a certain type. In the presence of large magnetic-field-aligned current, which is not correlated to the inhomogeneous electric field inside the structure, the ion-acoustic branch becomes dominating. In other cases, the IEDD instability is more central.

  16. Electrostatic dust transport on the surfaces of airless bodies

    NASA Astrophysics Data System (ADS)

    Wang, X.; Schwan, J.; Hsu, H. W.; Horanyi, M.

    2015-12-01

    The surfaces of airless bodies are charged due to the exposure to solar wind plasma and UV radiation. Dust particles on the regolith of these surfaces can become charged, and may move and even get lofted due to electrostatic force. Electrostatic dust transport has been a long-standing problem that may be related to many observed phenomena on the surfaces of airless planetary bodies, including the lunar horizon glow, the dust ponds on asteroid Eros, the spokes in Saturn's rings, and more recently, the collection of dust particles ejected off Comet 67P, observed by Rosetta. In order to resolve these puzzles, a handful of laboratory experiments have been performed in the past and demonstrated that dust indeed moves and lifts from surfaces exposed to plasma. However, the exact mechanisms for the mobilization of dust particles still remain a mystery. Current charging models, including the so-called "shared charge model" and the charge fluctuation theory, will be discussed. It is found that neither of these models can explain the results from either laboratory experiments or in-situ observations. Recently, single dust trajectories were captured with our new dust experiments, enabling novel micro-scale investigations. The particles' initial launch speeds and size distributions are analyzed, and a new so-called "patched charge model" is proposed to explain our findings. We identify the role of plasma micro-cavities that are formed in-between neighboring dust particles. The emitted secondary or photo- electrons are proposed to be absorbed inside the micro-cavities, resulting in significant charge accumulation on the exposed patches of the surfaces of neighboring particles. The resulting enhanced Coulomb force (repulsion) between particles is likely the dominant force to mobilize and lift them off the surface. The role of other properties, including surface morphology, cohesion and photoelectron charging, will also be discussed.

  17. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.

    PubMed

    Bonthuis, Douwe Jan; Netz, Roland R

    2013-10-01

    Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost. PMID:24063251

  18. Chiral electrostatics breaks the mirror symmetry of DNA supercoiling

    NASA Astrophysics Data System (ADS)

    Cortini, R.; Lee, D. J.; Kornyshev, A.

    2012-04-01

    DNA supercoiling plays a fundamental role in regulating cellular activity and in the packaging of genetic material. In this communication, we analyse the effect of attractive chiral forces on the conformation of a closed circular DNA molecule, arising due to the helical patterns of charges on the DNA. We propose a model for closed loop DNA which uses the results of the recent theory of electrostatic interactions of a braid of two free-ended DNA molecules. Our model reproduces the known features of DNA supercoiling in an environment of low ionic strength. In high salt conditions, and in the presence of counterions that have high affinity to the DNA grooves, helix-specific forces significantly affect the conformation of the molecule by favouring a state characterized by a central left-handed braided section where there is close contact between distant portions of the loop. In such an environment we predict a previously unexplored possibility that nicked or topologically relaxed DNA molecules adopt a writhed state. This prediction suggests an alternative explanation for experiments in which it was assumed that the most stable topoisomer is always an open circle. Our results also give the first plausible explanation for the occurrence of tightly interwound molecules observed in cryo-electron microscopy and atomic force microscopy in a high ionic strength environment. We suggest several new experiments to test the predictions of this theory.

  19. Chameleon gravity, electrostatics, and kinematics in the outer galaxy

    SciTech Connect

    Pourhasan, R.; Mann, R.B.; Afshordi, N.; Davis, A.C. E-mail: nafshordi@perimeterinstitute.ca E-mail: A.C.Davis@damtp.cam.ac.uk

    2011-12-01

    Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of the fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude. In this paper, we argue that thin-shell conditions are equivalent to ''conducting'' boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of the equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.

  20. Double nanoplate-based NEMS under hydrostatic and electrostatic actuations

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Hosseini, S. H. S.

    2016-05-01

    Presented herein is a comprehensive investigation on the nonlinear vibration behavior of nanoplate-based nano electromechanical systems (NEMS) under hydrostatic and electrostatic actuations based on nonlocal elasticity and Gurtin-Murdoch theory. Using nonlinear strain-displacement relations, the geometrical nonlinearity is modeled. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. Nonlocal plate theory and Hamilton's principle are utilized for deriving the governing equations. Furthermore, the differential quadrature method (DQM) is employed to compute the nonlinear frequency. In addition, pull-in voltage and hydrostatic pressure are considered by comparing the results obtained from nanoplates made of two different materials including aluminum (Al) and silicon (Si). Finally, the influences of important parameters including the small scale, thickness of the nanoplate, center gap and Winkler coefficient in the actuated nanoplate are thoroughly studied. The plots for the ratio of nonlinear-to-linear frequencies against thickness, maximum transverse amplitude and non-dimensional center gap of nanoplate are also presented.

  1. Freely decaying turbulence in two-dimensional electrostatic gyrokinetics

    SciTech Connect

    Tatsuno, T.; Plunk, G. G.; Barnes, M.; Dorland, W.; Howes, G. G.; Numata, R.

    2012-12-15

    In magnetized plasmas, a turbulent cascade occurs in phase space at scales smaller than the thermal Larmor radius ('sub-Larmor scales') [Tatsuno et al., Phys. Rev. Lett. 103, 015003 (2009)]. When the turbulence is restricted to two spatial dimensions perpendicular to the background magnetic field, two independent cascades may take place simultaneously because of the presence of two collisionless invariants. In the present work, freely decaying turbulence of two-dimensional electrostatic gyrokinetics is investigated by means of phenomenological theory and direct numerical simulations. A dual cascade (forward and inverse cascades) is observed in velocity space as well as in position space, which we diagnose by means of nonlinear transfer functions for the collisionless invariants. We find that the turbulence tends to a time-asymptotic state, dominated by a single scale that grows in time. A theory of this asymptotic state is derived in the form of decay laws. Each case that we study falls into one of three regimes (weakly collisional, marginal, and strongly collisional), determined by a dimensionless number D{sub *}, a quantity analogous to the Reynolds number. The marginal state is marked by a critical number D{sub *}=D{sub 0} that is preserved in time. Turbulence initialized above this value become increasingly inertial in time, evolving toward larger and larger D{sub *}; turbulence initialized below D{sub 0} become more and more collisional, decaying to progressively smaller D{sub *}.

  2. SPARCLE: Electrostatic Tool for Lunar Dust Control

    SciTech Connect

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Cheung, C. Y.; Keller, J. F.; Moore, M.; Calle, C. I.

    2009-03-16

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the dust which could compromise performance and to collect dust for characterization. Solving the dust problem is essential before we return to the Moon. During the Apollo missions, the discovery was made that regolith fines, or dust, behaved like abrasive velcro, coating surfaces, clogging mechanisms, and making movement progressively more difficult as it was mechanically stirred up during surface operations, and abrading surfaces, including spacesuits, when attempts were made to remove it manually. In addition, some of the astronauts experienced breathing difficulties when exposed to dust that got into the crew compartment. The successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Here we will describe the surface properties of dust particles, the basis for their behavior, and an electrostatically-based approach and methodology for addressing this issue confirmed by our preliminary results. Our device concept utilizes a focused electron beam to control the electrostatic potential of the surface. A plate of the opposite potential is then used to induce dust migration in the presence of an electrical field. Our goal is a compact device of <5 kg mass and using <5 watts of power to be operational in <5 years with heritage from ionic sweepers for active spacecraft potential control (e.g., on POLAR). Rovers could be fitted with devices that could harness the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  3. Designing Electrostatic Accelerometers for Next Gravity Missions

    NASA Astrophysics Data System (ADS)

    Huynh, Phuong-Anh; Foulon, Bernard; Christophe, Bruno; Liorzou, Françoise; Boulanger, Damien; Lebat, Vincent

    2016-04-01

    Square cuboid electrostatic accelerometers sensor core have been used in various combinations in recent and still flying missions (CHAMP, GRACE, GOCE). ONERA is now in the process of delivering such accelerometers for the GRACE Follow-On mission. The goal is to demonstrate the performance benefits of an interferometry laser ranging method for future low-low satellite to satellite missions. The electrostatic accelerometer becoming thus the system main performance limiter, we propose for future missions a new symmetry which will allow for three ultrasensitive axes instead of two. This implies no performance ground testing, as the now cubic proof-mass will be too heavy, but only free fall tests in catapult mode, taking advantage of the additional microgravity testing time offered by the updated ZARM tower. The updated mission will be in better adequacy with the requirements of a next generation of smaller and drag compensated micro-satellites. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag and by radiation pressures, the accelerometer will become a major part of the attitude and orbit control system by acting as drag free sensor and by accurately measuring the angular accelerations. ONERA also works on a hybridization of the electrostatic accelerometer with an atomic interferometer to take advantage of the absolute nature of the atomic interferometer acceleration measurement and its great accuracy in the [5-100] mHz bandwidth. After a description of the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development, the presentation will describe the new cubic configuration and how its operations and performances can be verified in the Bremen drop tower.

  4. Sulfur dioxide removal by enhanced electrostatics

    SciTech Connect

    Larkin, K.; Tseng, C.; Keener, T.C.; Khang, S.J.

    1997-12-31

    The economic removal of sulfur dioxide (SO{sub 2}) still represents a significant technical challenge which could determine the use of certain types of fossil fuels for energy production. This paper will present the preliminary results of an innovative research project utilizing a low-cost wet electrostatic precipitator to remove sulfur dioxide. There are many aspects for gas removal in an electrostatic precipitator which are not currently being used. This project utilizes electron attachment of free electrons onto gas molecules and ozone generation to remove sulfur dioxide which is a typical flue gas pollutant. This research was conducted on a bench-scale, wet electrostatic precipitator. A direct-current negative discharge corona is used to generate the ozone in-situ. This ozone will be used to oxidize SO{sub 2} to form sulfuric acid, which is very soluble in water. However, it is believed that the primary removal mechanism is electron attachment of the free electrons from the corona which force the SO{sub 2} to go to equilibrium with the water and be removed from the gas stream. Forcing the equilibrium has been shown to achieve removal efficiencies of up to 70%. The bench scale unit has been designed to operate wet or dry, positive and negative for comparison purposes. The applied dc voltage is variable from 0 to 100 kV, the flow rate is a nominal 7 m{sup 3}/hr and the collecting electrode area is 0.20 m{sup 2}. Tests are conducted on a simulated flue gas stream with SO{sub 2} ranging from 0 to 4,000 ppmv. This paper presents the results of tests conducted to determine the effect of operating conditions on removal efficiency. The removal efficiency was found to vary with gas residence time, water flow rate, inlet concentration, applied power, and the use of corona pulsing.

  5. SPARCLE: Electrostatic Tool for Lunar Dust Control

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Cheung, C. Y.; Keller, J. F.; Moore, M.; Calle, C. I.

    2009-03-01

    Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the dust which could compromise performance and to collect dust for characterization. Solving the dust problem is essential before we return to the Moon. During the Apollo missions, the discovery was made that regolith fines, or dust, behaved like abrasive velcro, coating surfaces, clogging mechanisms, and making movement progressively more difficult as it was mechanically stirred up during surface operations, and abrading surfaces, including spacesuits, when attempts were made to remove it manually. In addition, some of the astronauts experienced breathing difficulties when exposed to dust that got into the crew compartment. The successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Here we will describe the surface properties of dust particles, the basis for their behavior, and an electrostatically-based approach and methodology for addressing this issue confirmed by our preliminary results. Our device concept utilizes a focused electron beam to control the electrostatic potential of the surface. A plate of the opposite potential is then used to induce dust migration in the presence of an electrical field. Our goal is a compact device of <5 kg mass and using <5 watts of power to be operational in <5 years with heritage from ionic sweepers for active spacecraft potential control (e.g., on POLAR). Rovers could be fitted with devices that could harness the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  6. Liquid-immersible electrostatic ultrasonic transducer

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.; Heyman, J. S.; Yost, W. T.; Torbett, M. A.; Breazeale, M. A. (Inventor)

    1982-01-01

    A broadband megahertz range electrostatic acoustic transducer for use in a liquid environment is described. A liquid tight enclosure includes a metallic conducting membrane as part of its outside surface and has a means inside the liquid tight enclosure for applying a tension to the membrane and for mounting an electrode such that the flat end of the electrode is aproximately parallel to the membrane. The invention includes structure and a method for ensuring that the membrane and the flat end of the electrode are exactly parallel and a fixed predetermined distance from each other.

  7. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  8. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning.

  9. Discharge electrode wire assembly for electrostatic precipitator

    SciTech Connect

    Ivester, F. D.; Troulias, J. R.

    1985-03-05

    An electrostatic precipitator having a casing defining a precipitation chamber wherein a plurality of discharge electrode frames are disposed alternately between a plurality of collecting electrode plates. Each discharge electrode frame is comprised of a plurality of individual discharge electrode wires tautly strung across a support frame. Individual discharge electrode wires are maintained in a taut condition during operation by tensioning coil springs which interconnect neighboring discharge electrode wires to take-up any lengthening of the discharge electrode wires in a horizontal direction.

  10. Plate electrode arrangement for an electrostatic precipitator

    SciTech Connect

    Wooldridge, J.E.

    1982-06-01

    An electrode plate arrangement for an electrostatic precipitator including a plurality of essentially identical plate assemblies secured in an opposing fashion to the opposite sides of a gridlike mounting frame extending across the interior of the precipitator. The plate assemblies on the upstream side of the frame include an ionizing zone for the dirty gas stream which feeds into serially aligned collecting zones in the opposing assemblies which in turn feed into a deionizing zone in the plate assemblies on the downstream side of the frame.

  11. Cascaded proton acceleration by collisionless electrostatic shock

    NASA Astrophysics Data System (ADS)

    Xu, T. J.; Shen, B. F.; Zhang, X. M.; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-01

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  12. Electrostatic decay in a weakly magnetized plasma.

    PubMed

    Layden, A; Cairns, Iver H; Li, B; Robinson, P A

    2013-05-01

    The kinematics of the electrostatic (ES) decay of a Langmuir wave into a Langmuir wave and an ion sound wave are generalized to a weakly magnetized plasma. Unlike the unmagnetized case, ES decay in a magnetized plasma is always kinematically permitted and can produce daughter Langmuir waves with very small wave numbers, which we demonstrate by quasilinear simulations. The simulations further show that ES decay in magnetized plasmas is consistent with STEREO spacecraft observations of transversely polarized Langmuir waves in the solar wind. PMID:23683206

  13. Spiderweb deformation induced by electrostatically charged insects

    NASA Astrophysics Data System (ADS)

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-07-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture.

  14. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  15. Nonadiabatic transitions in electrostatically trapped ammonia molecules

    SciTech Connect

    Kirste, Moritz; Schnell, Melanie; Meijer, Gerard; Sartakov, Boris G.

    2009-05-15

    Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps by comparing the trapping times in traps with a zero and a nonzero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for the present samples that are at relatively high temperatures of 30 mK. It is anticipated that losses due to nonadiabatic transitions in electric fields are omnipresent in ongoing experiments on cold molecules.

  16. GRADIO three-axis electrostatic accelerometers

    NASA Technical Reports Server (NTRS)

    Bernard, A.

    1987-01-01

    Dedicated accelerometers for satellite gravity gradiometry (GRADIO project) are described. The design profits from experience acquired with the CACTUS accelerometer payload of the satellite CASTOR-D5B and studies of highly accurate accelerometers for inertial navigation. The principle of operation, based on a three-axis electrostatic suspension of a cubic proof mass, is well suited for the measurements of accelerations less than 0.0001 m/sec/sec. A resolution better than 10 to the minus 11th power m/sec/sec/sq root Hz is expected.

  17. Spiderweb deformation induced by electrostatically charged insects

    PubMed Central

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-01-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture. PMID:23828093

  18. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  19. ELECTROSTATIC AIR CLEANING DEVICE AND METHOD

    DOEpatents

    Silverman, L.; Anderson, D.M.

    1961-07-18

    A method and apparatus for utilizing friction-charged particulate material from an aerosol are described. A bed of the plastic spheres is prepared, and the aerosol is passed upwardly through the bed at a rate just large enough to maintain the bed in a fluidized state wim over-all circulation of the balls. Wire members criss-crossing through the bed rub against the balls and maintain their surfaces with electrostatic charges. The particulate material in the aerosol adheres to the surfaces of the balls.

  20. Electrostatic precipitator performance: Improvement with frame stabilization

    SciTech Connect

    1995-12-31

    Optimum electrostatic precipitator performance depends upon maintaining proper clearances between the high voltage components. Historically, the high voltage discharge electrode systems was either unstabilized and allowed to swing between the collection plate surfaces, or was stabilized with various mechanical methods. Free swinging electric fields will normally result in higher spark rates and reduced available power for collection of dust particles. Various mechanical stabilization methods have produced unsatisfactory results. The subject of this paper discusses an innovative mechanical stabilization method which will provide proper clearance for the high voltage components which will maintain maximum precipitator performance. The end of this report includes actual case studies where stabilization resulted in improved performance and reliability.

  1. Electrostatic gating in carbon nanotube aptasensors

    NASA Astrophysics Data System (ADS)

    Zheng, Han Yue; Alsager, Omar A.; Zhu, Bicheng; Travas-Sejdic, Jadranka; Hodgkiss, Justin M.; Plank, Natalie O. V.

    2016-07-01

    Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10 picomolar. The signal was shown to arise from a specific aptamer-target interaction that stabilises a G-quadruplex structure, bringing high negative charge density near the CNT channel. Electrostatic gating is established via the specificity and the sign of the current response, and by observing its suppression when higher ionic strength decreases the Debye length at the CNT-water interface. Sensitivity towards potassium and selectivity against other ions is demonstrated in both resistive mode and real time transistor mode measurements. The effective device architecture presented, along with the identification of clear response signatures, should inform the development of new electronic biosensors using the growing library of aptamer receptors.Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10

  2. Multiple magnetic microrobot control using electrostatic anchoring

    NASA Astrophysics Data System (ADS)

    Pawashe, Chytra; Floyd, Steven; Sitti, Metin

    2009-04-01

    Addressing power and control to individual untethered microrobots is a challenge for small-scale robotics. We present a 250×130×100 μm3 magnetic robot wirelessly driven by pulsed external magnetic fields. An induced stick-slip motion results in translation speeds over 8 mm/s. Control of multiple robots is achieved by an array of addressable electrostatic anchoring pads on the surface, which selectively fixes microrobots, preventing translation. We demonstrate control of two microrobots in both uncoupled individual motion and coupled symmetric motion. An estimated anchoring force of 23.0 μN is necessary to effectively fix each microrobot.

  3. RNA topology remolds electrostatic stabilization of viruses.

    PubMed

    Erdemci-Tandogan, Gonca; Wagner, Jef; van der Schoot, Paul; Podgornik, Rudolf; Zandi, Roya

    2014-03-01

    Simple RNA viruses efficiently encapsulate their genome into a nano-sized protein shell: the capsid. Spontaneous coassembly of the genome and the capsid proteins is driven predominantly by electrostatic interactions between the negatively charged RNA and the positively charged inner capsid wall. Using field theoretic formulation we show that the inherently branched RNA secondary structure allows viruses to maximize the amount of encapsulated genome and make assembly more efficient, allowing viral RNAs to out-compete cellular RNAs during replication in infected host cells.

  4. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning. PMID:14754117

  5. Magnetospheric electrostatic emissions and cold plasma densities

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1978-01-01

    A synoptic study of electric wave, magnetometer, and plasma data from IMP-6 was carried out for times when banded electrostatic waves are observed between harmonics of the electron gyrofrequency in the earth's outer magnetosphere. Four separate classes of such waves were previously identified. The spatial and temporal occurrences of waves in each class are summarized here, as are correlations of occurrence with geomagnetic activity. Most importantly, associations between the observations of waves of different classes and the relative portions of cold and hot electrons present at the position of the spacecraft are established. Finally, evidence for the signature of the loss cone is sought in the plasma data.

  6. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  7. Electrostatic potential of point charges inside dielectric oblate spheroids

    PubMed Central

    Deng, Shaozhong

    2009-01-01

    As a sequel to a previous paper on electrostatic potential of point charges inside dielectric prolate spheroids [J. Electrostatics 66 (2008) 549-560], this note further presents the exact solution to the electrostatic problem of finding the electric potential of point charges inside a dielectric oblate spheroid that is embedded in a dissimilar dielectric medium. Numerical experiments have demonstrated the convergence of the proposed series solutions. PMID:20160934

  8. Microscopic formulation of nonlocal electrostatics in polar liquids embedding polarizable ions

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2013-06-01

    Nonlocal electrostatic interactions associated with finite solvent size and ion polarizability are investigated within the mean-field linear response theory. To this end, we introduce a field-theoretic model of a polar liquid composed of linear multipole solvent molecules and embedding polarizable ions modeled as Drude oscillators. Unlike previous dipolar Poisson-Boltzmann formulations treating the solvent molecules as point dipoles, our model is able to qualitatively reproduce the non-local dielectric response behavior of polar liquids observed in molecular dynamics simulations and atomic force microscope experiments for water solvent at charged interfaces. The present theory explains the formation of the associated interfacial hydration layers in terms of a cooperative dipolar response mechanism driven by the reaction of the solvent molecules to their own polarization field. We also incorporate into the theory the relative multipole moments of water molecules obtained from quantum mechanical calculations and show that the multipolar contributions to the dielectric permittivity are largely dominated by the dipolar one. We find that this stems from the mutual cancellation of the first two interfacial hydration layers of opposite net charge for multipolar liquids. Within the same nonlocal dielectric response theory, we show that the induced ion polarizability reverses the interfacial ion density trends predicted by the Poisson-Boltzmann theory, resulting in a surface affinity of coions and exclusion of counterions. The results indicate that the consideration of the discrete charge composition of solvent molecules and ions is the key step towards a microscopic understanding of nonlocal electrostatic effects in polar solvents.

  9. Electrostatic control of thermoelectricity in molecular junctions.

    PubMed

    Kim, Youngsang; Jeong, Wonho; Kim, Kyeongtae; Lee, Woochul; Reddy, Pramod

    2014-11-01

    Molecular junctions hold significant promise for efficient and high-power-output thermoelectric energy conversion. Recent experiments have probed the thermoelectric properties of molecular junctions. However, electrostatic control of thermoelectric properties via a gate electrode has not been possible due to technical challenges in creating temperature differentials in three-terminal devices. Here, we show that extremely large temperature gradients (exceeding 1 × 10(9) K m(-1)) can be established in nanoscale gaps bridged by molecules, while simultaneously controlling their electronic structure via a gate electrode. Using this platform, we study prototypical Au-biphenyl-4,4'-dithiol-Au and Au-fullerene-Au junctions to demonstrate that the Seebeck coefficient and the electrical conductance of molecular junctions can be simultaneously increased by electrostatic control. Moreover, from our studies of fullerene junctions, we show that thermoelectric properties can be significantly enhanced when the dominant transport orbital is located close to the chemical potential (Fermi level) of the electrodes. These results illustrate the intimate relationship between the thermoelectric properties and charge transmission characteristics of molecular junctions and should enable systematic exploration of the recent computational predictions that promise extremely efficient thermoelectric energy conversion in molecular junctions. PMID:25282046

  10. Intramembrane electrostatic interactions destabilize lipid vesicles.

    PubMed Central

    Shoemaker, Scott D; Vanderlick, T Kyle

    2002-01-01

    Membrane stability is of central concern in many biology and biotechnology processes. It has been suggested that intramembrane electrostatic interactions play a key role in membrane stability. However, due primarily to a lack of supporting experimental evidence, they are not commonly considered in mechanical analyses of lipid membranes. In this paper, we use the micropipette aspiration technique to characterize the elastic moduli and critical tensions of lipid vesicles with varying surface charge. Charge was induced by doping neutral phosphatidylcholine vesicles with anionic lipids phosphatidylglycerol and phosphatidic acid. Measurements were taken in potassium chloride (moderate ion-lipid binding) and tetramethylammonium chloride (low ion-lipid binding) solutions. We show that inclusion of anionic lipid does not appreciably alter the areal dilation elasticity of lipid vesicles. However, the tension required for vesicle rupture decreases with increasing anionic lipid fraction and is a function of electrolyte composition. Using vesicles with 30% charged (i.e., unbound) anionic lipid, we measured critical tension reductions of 75%, demonstrating the important role of electrostatic interactions in membrane stability. PMID:12324419

  11. Electrostatic Discharge Properties of Fused Silica Coatings

    NASA Astrophysics Data System (ADS)

    Andersen, Allen; Sim, Charles; Dennison, J. R.

    2012-10-01

    The electric field value at which electrostatic discharge (ESD) occurs was studied for thin coatings of fused silica (highly disordered SiO2/SiOx) on conductive substrates, such as those encountered as optical coatings and in Si microfabrication. The electrostatic breakdown field was determined using an increasing voltage, while monitoring the leakage current. A simple parallel-plate capacitor geometry was used, under medium vacuum and at temperatures down to ˜150 K using a liquid N2 reservoir. The breakdown field, pre-breakdown arcing and I-V curves for fused silica samples are compared for ˜60 nm and ˜80 μm thick, room and low temperature, and untreated and irradiated samples. Unlike typical I-V results for polymeric insulators, the thin film silica samples did not exhibit pre-breakdown arcing, displayed transitional resistivity after initial breakdown, and in many cases showed evidence of a second discontinuity in the I-V curves. This diversity of observed discharge phenomena is discussed in terms of breakdown modes and defect generation on a microscopic scale.

  12. Surface micromachined electrostatically actuated micro peristaltic pump.

    PubMed

    Xie, Jun; Shih, Jason; Lin, Qiao; Yang, Bozhi; Tai, Yu-Chong

    2004-10-01

    An electrostatically actuated micro peristaltic pump is reported. The micro pump is entirely surface micromachined using a multilayer parylene technology. Taking advantage of the multilayer technology, the micro pump design enables the pumped fluid to be isolated from the electric field. Electrostatic actuation of the parylene membrane using both DC and AC voltages was demonstrated and applied to fluid pumping based on a 3-phase peristaltic sequence. A maximum flow rate of 1.7 nL min(-1) and an estimated pumping pressure of 1.6 kPa were achieved at 20 Hz phase frequency. A dynamic analysis was also performed with a lumped-parameter model for the peristaltic pump. The analysis results allow a quantitative understanding of the peristaltic pumping operation, and correctly predict the trends exhibited by the experimental data. The small footprint of the micro pump is well suited for large-scale integration of microfluidics. Moreover, because the same platform technology has also been used to fabricate other devices (e.g. valves, electrospray ionization nozzles, filters and flow sensors), the integration of these different devices can potentially lead to versatile and functional micro total analysis systems (microTAS).

  13. Electrostatic testing of thin plastic materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1988-01-01

    Ten thin plastic materials (Velostat, RCAS 1200, Llumalloy, Herculite 80, RCAS 2400, Wrightlon 7000, PVC, Aclar 22A, Mylar, and Polyethylene) were tested for electrostatic properties by four different devices: (1) The static decay meter, (2) the manual triboelectric testing device, (3) the robotic triboelectric testing device, and (4) the resistivity measurement adapter device. The static decay meter measured the electrostatic decay rates in accordance with the Federal Test Method Standard 101B, Method 4046. The manual and the robotic triboelectric devices measured the triboelectric generated peak voltages and the five-second decay voltages in accordance with the criteria for acceptance standards at Kennedy Space Center. The resistivity measurement adapter measured the surface resistivity of each material. An analysis was made to correlate the data among the four testing devices. For the material tested the pass/fail results were compared for the 4046 method and the triboelectric testing devices. For the limited number of materials tested, the relationship between decay rate and surface resistivity was investigated as well as the relationship between triboelectric peak voltage and surface resistivity.

  14. Designing and operating electrostatically driven microengines

    SciTech Connect

    Rodgers, M.S.; Sniegowski, J.J.; Miller, S.L.; LaVigne, G.F.

    1998-02-01

    Microelectromechanical engines that convert the linear outputs from dual orthogonal electrostatic actuators to rotary motion were first developed in 1993. Referred to as microengines, these early devices demonstrated the potential of microelectromechanical technology, but, as expected from any first-of-its-kind device, were not yet optimized. Yield was relatively low, and the 10 micronewtons of force generated by the actuators was not always enough to ensure reliable operation. Since initial development, these engines have undergone a continuous series of significant improvements on three separate fronts: design, fabrication, and electrical activation. Although all three areas will be discussed, emphasis will be on aspects related to mechanical design and generation of the electrical waveforms used to drive these devices. Microtransmissions that dramatically increase torque will also be discussed. Electrostatically driven microengines can be operated at hundreds of thousands of revolutions per minute making large gear reduction ratios feasible; overall ratios of 3,000,000:1 have been successfully demonstrated. Today`s microengines have evolved into high endurance (one test device has seen over 7,000,000,000 revolutions), high yield, robust devices that have become the primary actuation source for MicroElectroMechanical Systems (MEMS) at Sandia National Laboratories.

  15. Electrostatic precipitator having high strength discharge electrode

    SciTech Connect

    Bakke, E.; Willett, H.P.

    1983-06-21

    There is disclosed an electrostatic precipitator with a discharge electrode having dimensional and configuration characteristics which provide high field strength and high current density particularly in a wet electrostatic precipitator. The round cylindrical collector tube of length (L) and with an inner diameter (D) has a coaxially positioned discharge electrode having an electrode supporting mast of a diameter from 0.25 to 40 D with an electrically conducting closed screw fli secured to the mast. The screw flight has an overall diameter (D) of from 0.33 to 0.67 D with a pitch of from d-d/2 to d-d and an overall length of from one screw revolution to l-(D-d), preferably one-half L or less and most preferably one to two revolutions. The short screw flight is economical and readily adjusted. The screw flight has a thickness of from about 0.05 to 15 inch and has a symmetrically curved outer edge. Collector tube is flared at its lower end to direct water away from the electrode mast as the water is discharged from the tube. The discharge electrode is supported from above and centered by means of adjustable tie rods at its lower end.

  16. Microscopic models for bridging electrostatics and currents

    NASA Astrophysics Data System (ADS)

    Borghi, L.; DeAmbrosis, A.; Mascheretti, P.

    2007-03-01

    A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.

  17. Electrostatic gating in carbon nanotube aptasensors.

    PubMed

    Zheng, Han Yue; Alsager, Omar A; Zhu, Bicheng; Travas-Sejdic, Jadranka; Hodgkiss, Justin M; Plank, Natalie O V

    2016-07-14

    Synthetic DNA aptamer receptors could boost the prospects of carbon nanotube (CNT)-based electronic biosensors if signal transduction can be understood and engineered. Here, we report CNT aptasensors for potassium ions that clearly demonstrate aptamer-induced electrostatic gating of electronic conduction. The CNT network devices were fabricated on flexible substrates via a facile solution processing route and non-covalently functionalised with potassium binding aptamers. Monotonic increases in CNT conduction were observed in response to increasing potassium ion concentration, with a level of detection as low as 10 picomolar. The signal was shown to arise from a specific aptamer-target interaction that stabilises a G-quadruplex structure, bringing high negative charge density near the CNT channel. Electrostatic gating is established via the specificity and the sign of the current response, and by observing its suppression when higher ionic strength decreases the Debye length at the CNT-water interface. Sensitivity towards potassium and selectivity against other ions is demonstrated in both resistive mode and real time transistor mode measurements. The effective device architecture presented, along with the identification of clear response signatures, should inform the development of new electronic biosensors using the growing library of aptamer receptors. PMID:27376166

  18. Development of Electrostatically Clean Solar Array Panels

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  19. Miniature Free-Space Electrostatic Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Stephens, James B.

    2006-01-01

    A miniature electrostatic ion thruster is proposed for maneuvering small spacecraft. In a thruster based on this concept, one or more propellant gases would be introduced into an ionizer based on the same principles as those of the device described in an earlier article, "Miniature Bipolar Electrostatic Ion Thruster". On the front side, positive ions leaving an ionizer element would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid around the periphery of the concave laminate structure. On the front side, electrons leaving an ionizer element would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In a thruster design consisting of multiple membrane ionizers in a thin laminate structure with a peripheral accelerator grid, the direction of thrust could then be controlled (without need for moving parts in the thruster) by regulating the supply of gas to specific ionizer.

  20. Pulsed power supply for an electrostatic precipitator

    SciTech Connect

    Santamaria, G.T.

    1986-07-15

    An electrostatic precipitator power supply circuit is described for generating voltage pulses on the precipitator while allowing a residual collection voltage to be retained on the precipitator during intervals between pulses, where the voltage of the pulses is substantially in excess of the residual voltage, the power supply circuit comprising: means for generating the high voltage pulses at the secondary inductance of a step-up transformer by discharging a capacitor through the primary inductance of the step-up transformer; the electrostatic precipitator connected to the secondary inductance of the step-up transformer to receive the high voltage pulses; and means for returning a portion of the high voltage pulses to the capacitor, and for maintaining the residual voltage on the precipitator during interpulse periods including means with a variable impedance adapted for providing a maximum impedance during interpulse periods and a minimum impedance during high voltage pulses and means for causing the variable impedance means to exhibit a minimum impedance during the return of a portion of the high voltage pulses.

  1. Electrostatic precipitator upgrading -- Twelve years of progress

    SciTech Connect

    Grieco, G.J.

    1997-09-01

    In 1984 the author presented a paper entitled ``Electrostatic Precipitator Upgrading: A Technology Overview`` which reviewed various technologies for electrostatic precipitator performance enhancement in the utility industry. This evaluation was based on a set of criteria which included: commercial status; space requirements; required outage time for installation; installed cost; operating cost; range of applicability; and performance enhancement factor. The upgrade technologies discussed and evaluated included: gas/particulate flow upgrade; microprocessor controller retrofit; transformer-rectifier (T/R) set upgrade; pulse energization; electrode rapping modification; flue gas conditioning agents such as sulfur trioxide, ammonia and sodium; pulse energization; precipitator rebuild; and precipitator retrofit. The findings of this 1984 survey are summarized on Table 1. The installed costs listed on this table range from a low end cost associated with large precipitators with 250,000 ft{sup 2} of collecting electrode plate area and above, to a high end cost for small precipitators with only 25,000 ft{sup 2} of plate area. Twelve years later this subject is revisited and, surprisingly, significant progress has been made--this in spite of what some experts would characterize as a mature and somewhat stagnant technology field. Commercially proven techniques such as advanced flue gas conditioning, sonic horns, selective fuel blending using powder river basin coals, prudent selection of electrode geometry, and pulse energization are discussed and evaluated. Updated costs are presented for these technologies.

  2. Electrostatically-driven Dust Motion near Itokawa

    NASA Astrophysics Data System (ADS)

    Hartzell, Christine; Zimmerman, Michael

    2014-11-01

    Electrostatically-dominated dust motion has been hypothesized to occur on the Moon and asteroids. In our previous work, we used a 1-dimensional plasma and gravity model to show that micron-sized dust grains could stably levitate above the surface of Itokawa. However, we have now implemented a 2-dimensional model that more accurately represents the irregular surface of Itokawa, including topographic details important for both gravitational and plasma dynamics. Using this state-of-the-art model, we have discovered equilibria about which dust grains may be able to levitate near the surface of the asteroid. Here, we show trajectories of dust grains about the equilibria. By studying the behavior of dust grains, we will assess whether the identified equilibria are numerical artifacts and, if not, determine the stability of the equilibria. Studying the dynamics of dust grains near the surface of Itokawa will allow us to assess the importance of electrostatically-dominated dust motion in the morphological evolution of this body.

  3. The influence of plasma membrane electrostatic properties on the stability of cell ionic composition.

    PubMed Central

    Genet, S; Costalat, R; Burger, J

    2001-01-01

    An electro-osmotic model is developed to examine the influence of plasma membrane superficial charges on the regulation of cell ionic composition. Assuming membrane osmotic equilibrium, the ion distribution predicted by Gouy-Chapman-Grahame (GCG) theory is introduced into ion transport equations, which include a kinetic model of the Na/K-ATPase based on the stimulation of this ion pump by internal Na(+) ions. The algebro-differential equation system describing dynamics of the cell model has a unique resting state, stable with respect to finite-sized perturbations of various types. Negative charges on the membrane are found to greatly enhance relaxation toward steady state following these perturbations. We show that this heightened stability stems from electrostatic interactions at the inner membrane side that shift resting state coordinates along the sigmoidal activation curve of the sodium pump, thereby increasing the pump sensitivity to internal Na(+) fluctuations. The accuracy of electrostatic potential description with GCG theory is proved using an alternate formalism, based on irreversible thermodynamics, which shows that pressure contribution to ion potential energy is negligible in electrostatic double layers formed at the surfaces of biological membranes. We discuss implications of the results regarding a reliable operation of ionic process coupled to the transmembrane electrochemical gradient of Na(+) ions. PMID:11606261

  4. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    SciTech Connect

    Yigit, Cemil; Dzubiella, Joachim; Heyda, Jan

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  5. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions.

    PubMed

    Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions. PMID:26277163

  6. Dispersion relation of electrostatic ion cyclotron waves in multi-component magneto-plasma

    SciTech Connect

    Khaira, Vibhooti Ahirwar, G.

    2015-07-31

    Electrostatic ion cyclotron waves in multi component plasma composed of electrons (denoted by e{sup −}), hydrogen ions (denoted by H{sup +}), helium ions (denoted by He{sup +}) and positively charged oxygen ions (denoted by O{sup +})in magnetized cold plasma. The wave is assumed to propagate perpendicular to the static magnetic field. It is found that the addition of heavy ions in the plasma dispersion modified the lower hybrid mode and also allowed an ion-ion mode. The frequencies of the lower hybrid and ion- ion hybrid modes are derived using cold plasma theory. It is observed that the effect of multi-ionfor different plasma densities on electrostatic ion cyclotron waves is to enhance the wave frequencies. The results are interpreted for the magnetosphere has been applied parameters by auroral acceleration region.

  7. Fast Calculations of Electrostatic Solvation Free Energy from Reconstructed Solvent Density Using Proximal Radial Distribution Functions

    SciTech Connect

    Lin, Bin; Wong, Ka-Yiu; Hu, Char Y.; Kokubo, Hironori; Pettitt, Bernard M.

    2011-07-07

    Although detailed atomic models may be applied for a full description of solvation, simpler phenomenologicalmodels are particularly useful to interpret the results for scanning many large, complex systems, where a full atomic model is too computationally expensive to use. Among the most costly are solvation free-energy evaluations by simulation. Here we develop a fast way to calculate electrostatic solvation free energy while retaining much of the accuracy of explicit solvent free-energy simulation. The basis of our method is to treat the solvent not as a structureless dielectric continuum but as a structured medium by making use of universal proximal radial distribution functions. Using a deca-alanine peptide as a test case, we compare the use of our theory with free-energy simulations and traditional continuum estimates of the electrostatic solvation free energy.

  8. Enhancement factor, electrostatic force and emission current in a nanoneedle emitter

    NASA Astrophysics Data System (ADS)

    Pogorelov, E. G.; Zhbanov, A. I.; Chang, Y.-C.

    2009-01-01

    We consider field emission from carbon nanotubes and other elongated nanostructures. An exact solution for the electrostatic field between a metallic hemi-ellipsoidal needle on a plate (as a cathode) and a flat anode are presented. The basic idea is to replace the cathode by a linearly charged thread in a uniform electric field and to use a set of "image" charges to reproduce the anode. Exact analytical formulas of the electrical field, field enhancement factor, and electrostatic force are found. Using the Fowler-Nordheim theory we obtain an exact analytical formula for the total current. The field enhancement factor, total force and emission current, as well as their distributions on the top of the needle for a wide range of parameters, have been calculated and analyzed.

  9. Breakup mechanisms of electrostatic atomization of corn oil and diesel fuel

    NASA Astrophysics Data System (ADS)

    Malkawi, G.; Yarin, A. L.; Mashayek, F.

    2010-09-01

    High-viscosity organic oils may be considered as an alternative to the ordinary diesel fuel. These organic oils and the diesel fuel are all Newtonian liquids; however, viscosity values of the organic oils are more than 20 times higher than that of the diesel fuel. In the present work, the electrostatic atomization of corn oil jets is studied and compared to the electrostatic atomization of diesel fuel jets. The experimental data revealed that in addition to the varicose breakup of straight jets, bending modes set in and grow in conjunction with the varicose undulations. Bending instability, kindred to the aerodynamically-driven bending instability of high-speed liquid jets moving in air, and to the electrically-driven bending instability of polymer jets in electrospinning, is significantly more pronounced in the case of the highly-viscous corn oil jets than in diesel jets. The experimental results are interpreted using the theory of bending instability developed previously for electrospinning.

  10. Electrostatic force between a charged sphere and a planar surface: A general solution for dielectric materials

    NASA Astrophysics Data System (ADS)

    Khachatourian, Armik; Chan, Ho-Kei; Stace, Anthony J.; Bichoutskaia, Elena

    2014-02-01

    Using the bispherical coordinate system, an analytical solution describing the electrostatic force between a charged dielectric sphere and a planar dielectric surface is presented. This new solution exhibits excellent numerical convergence, and is sufficiently general as to allow for the presence of charge on both the sphere and the surface. The solution has been applied to two examples of sphere-plane interactions chosen from the literature, namely, (i) a charged lactose sphere interacting with a neutral glass surface and (ii) a charged polystyrene sphere interacting with a neutral graphite surface. Theory suggests that in both cases the electrostatic force makes a major contribution to the experimentally observed attraction at short sphere-plane separations, and that the force is much longer ranged than previously suggested.

  11. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  12. Understanding Chemical versus Electrostatic Shifts in X-ray Photoelectron Spectra of Organic Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    The focus of the present article is on understanding the insight that X-ray photoelectron spectroscopy (XPS) measurements can provide when studying self-assembled monolayers. Comparing density functional theory calculations to experimental data on deliberately chosen model systems, we show that both the chemical environment and electrostatic effects arising from a superposition of molecular dipoles influence the measured core-level binding energies to a significant degree. The crucial role of the often overlooked electrostatic effects in polar self-assembled monolayers (SAMs) is unambiguously demonstrated by changing the dipole density through varying the SAM coverage. As a consequence of this effect, care has to be taken when extracting chemical information from the XP spectra of ordered organic adsorbate layers. Our results, furthermore, imply that XPS is a powerful tool for probing local variations in the electrostatic energy in nanoscopic systems, especially in SAMs. PMID:26937264

  13. Poisson-Boltzmann study of the effective electrostatic interaction between colloids at an electrolyte interface

    NASA Astrophysics Data System (ADS)

    Majee, Arghya; Bier, Markus; Dietrich, S.

    2016-08-01

    The effective electrostatic interaction between a pair of colloids, both of them located close to each other at an electrolyte interface, is studied by employing the full, nonlinear Poisson-Boltzmann (PB) theory within classical density functional theory. Using a simplified yet appropriate model, all contributions to the effective interaction are obtained exactly, albeit numerically. The comparison between our results and those obtained within linearized PB theory reveals that the latter overestimates these contributions significantly at short inter-particle separations. Whereas the surface contributions to the linear and the nonlinear PB results differ only quantitatively, the line contributions show qualitative differences at short separations. Moreover, a dependence of the line contribution on the solvation properties of the two adjacent fluids is found, which is absent within the linear theory. Our results are expected to enrich the understanding of effective interfacial interactions between colloids.

  14. Electrostatic discharge issues in electric vehicles

    SciTech Connect

    Krein, P.T.

    1995-12-31

    Electrostatic discharge (ESD) is an important issue in any motor vehicle. Anecdotal reports abound of cars with spark ignition hazards because of fuel tank designs, and even toll collectors reluctant to collect money by hand from certain late-model cars. As electric vehicles move from the laboratory and test track to the production floor and showroom, ESD concerns take on a new context and become more critical. In this paper, the attributes of electric vehicles that give rise to concerns about ESD are introduced. When the concerns are taken into account, certain basic design constraints become evident. A candidate design is analyzed for its ESD properties. Some common design practices can create reliability problems because of ESD.

  15. Electrostatic discharge issues in electric vehicles

    SciTech Connect

    Krein, P.T.

    1996-11-01

    Electrostatic discharge (ESD) is an important issue in any motor vehicle. Anecdotal reports abound of cars with spark ignition hazards because of fuel tank designs, and even toll collectors reluctant to collect money by hand from certain late-model cars. As electric vehicles move from the laboratory and test track to the production floor and showroom, ESD concerns take on a new context and become more critical. In this paper, the attributes of electric vehicles that give rise to concerns about ESD are introduced. When the concerns are taken into account, certain basic design constraints become evident. A candidate design is analyzed for its ESD properties. Some common design practices, especially the practice of isolating the battery bus, can create reliability problems because of ESD.

  16. Electrostatic PIC with adaptive Cartesian mesh

    NASA Astrophysics Data System (ADS)

    Kolobov, Vladimir; Arslanbekov, Robert

    2016-05-01

    We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.

  17. Rapid Quench in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Michael M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory’s main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, iron-chromium-nickel, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. The system is described and some initial results are presented.

  18. Electrostatic discharge effects on EBW detonators

    SciTech Connect

    Lee, R S; Lee, R E

    1991-04-01

    With appropriate circuit resistance and inductance and sufficient stored energy, discharging a charged human body or component through an exploding bridgewire (EBW) detonator may cause the detonator to function or may damage the detonator. We have studied the effects of electrostatic discharge (ESD) on a number of exploding bridgewire detonators which were subjected to discharges which passed directly through the bridgewires (pin-to-pin), as well as discharges which passed from the bridge to the metal case of the detonator (pin-to-case). We have performed calculations to determine the values of inductance and resistance for which burst and melt may occur for given ESD sources, using a phenomenological model of bridgewire burst in a computer code called FIRESET. Bridge melt was computed using the same computer code, but using experimental values of bridge resistivity and specific heat up to melt. 13 refs., 5 figs.

  19. Electrostatic Modeling of Vacuum Insulator Triple Junctions

    SciTech Connect

    Tully, L K; Goerz, D A; Houck, T L; Javedani, J B

    2006-10-25

    Triple junctions are often initiation points for insulator flashover in pulsed power devices. The two-dimensional finite-element TriComp [1] modeling software suite was utilized for its electrostatic field modeling package to investigate electric field behavior in the anode and cathode triple junctions of a high voltage vacuum-insulator interface. TriComp enables simple extraction of values from a macroscopic solution for use as boundary conditions in a subset solution. Electric fields computed with this zoom capability correlate with theoretical analysis of the anode and cathode triple junctions within submicron distances for nominal electrode spacing of 1.0 cm. This paper will discuss the iterative zoom process with TriComp finite-element software and the corresponding theoretical verification of the results.

  20. Powder electrostatic enamelling of household appliances

    NASA Astrophysics Data System (ADS)

    Bragina, L.; Shalygina, O.; Kuryakin, N.; Annenkov, V.; Guzenko, N.; Kupriyanenko, K.; Hudyakov, V.; Landik, A.

    2011-12-01

    Principles and practices of contemporary resource and energy saving technology of powder electrostatic application (POESTA)of vitreous enamel coatings are described. Its technological, economic and ecological advantages over slip enamelling in household appliances manufacture are discussed. We develop the principles of synthesis of special glass frits with high electric resistivity for POESTA and discuss the results of studies aimed at the development and industrial implementation of ground, direct-on and coloured cover enamels for household appliances and direct-on thermally resistant chemically durable coatings with antibacterial effect for protection of inner tanks of water heaters. Finally, we describe the development of compositions for easy-to-clean, catalytic and pyrolytic coatings.

  1. Universal method for computation of electrostatic potentials.

    PubMed

    Sundholm, D

    2005-05-15

    A computational approach to determine electrostatic interaction and gravitational potentials by performing direct numerical integration is presented. The potential is expanded using finite-element functions of arbitrary order. The method does not involve any solutions of systems of linear equations. The potential is instead obtained as a sum of differential contributions. Thus, no boundary conditions for the potential are needed. It is computationally efficient and well suited for parallel computers, since the innermost loops constitute matrix multiplications and the outer ones can be used as parallel indices. Without using prescreening or other computational tricks to speed up the calculation, the algorithm scales as N4/3 where N denotes the grid size.

  2. Modeling extreme ultraviolet suppression of electrostatic analyzers

    SciTech Connect

    Gershman, Daniel J.; Zurbuchen, Thomas H.

    2010-04-15

    In addition to analyzing energy-per-charge ratios of incident ions, electrostatic analyzers (ESAs) for spaceborne time-of-flight mass spectrometers must also protect detectors from extreme ultraviolet (EUV) photons from the Sun. The required suppression rate often exceeds 1:10{sup 7} and is generally established in tests upon instrument design and integration. This paper describes a novel technique to model the EUV suppression of ESAs using photon ray tracing integrated into SIMION, the most commonly used ion optics design software for such instruments. The paper compares simulation results with measurements taken from the ESA of the Mass instrument flying onboard the Wind spacecraft. This novel technique enables an active inclusion of EUV suppression requirements in the ESA design process. Furthermore, the simulation results also motivate design rules for such instruments.

  3. Electrostatically gated membrane permeability in inorganic protocells.

    PubMed

    Li, Mei; Harbron, Rachel L; Weaver, Jonathan V M; Binks, Bernard P; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization. PMID:23695636

  4. Rapid Quench in an Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  5. Electrode geometry for electrostatic generators and motors

    DOEpatents

    Post, Richard F.

    2016-02-23

    An electrostatic (ES) device is described with electrodes that improve its performance metrics. Devices include ES generators and ES motors, which are comprised of one or more stators (stationary members) and one or more rotors (rotatable members). The stator and rotors are configured as a pair of concentric cylindrical structures and aligned about a common axis. The stator and rotor are comprised of an ensemble of discrete, longitudinal electrodes, which are axially oriented in an annular arrangement. The shape of the electrodes described herein enables the ES device to function at voltages significantly greater than that of the existing art, resulting in devices with greater power-handling capability and overall efficiency. Electrode shapes include, but are not limited to, rods, corrugated sheets and emulations thereof.

  6. Use of membrane collectors in electrostatic precipitators.

    PubMed

    Bayless, D J; Pasic, H; Alam, M K; Shi, L; Haynes, B; Cochran, J; Khan, W

    2001-10-01

    Membrane collection surfaces, developed and patented by researchers at Ohio University, were used to replace steel plates in a dry electrostatic precipitator (ESP). Such replacement facilitates tension-based rapping, which shears the adhered particle layer from the collector surface more effectively than hammer-based rapping. Tests were performed to measure the collection efficiency of the membranes and to quantify the potential improvements of this novel cleaning technique with respect to re-entrainment. Results indicate that even semiconductor materials (e.g., carbon fibers) collect ash nearly as efficiently as steel plates, potentially indicating that collection surface resistivity is primarily dictated by the accumulated ash layer and not by the underlying plate conductivity. In addition, virtually all sheared particles separated from the collecting membranes fell within the boundary layer of the membrane, indicating extremely low potential for re-entrainment.

  7. Electrostatic control of acid mist emissions

    SciTech Connect

    Dahlin, R S; Brown, T D

    1991-01-01

    This paper describes a two-phased study of the control of acid mist emissions using a compact, wet electrostatic precipitator (WESP). The goal of the study was to determine the degree of acid mist control that could be achieved when a compact WESP is used to replace or augment the mist eliminators in a flue gas desulfurization (FGD) system. Phase I of the study examined the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase II, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the model to project the performance of a retrofitted WESP.

  8. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Not Available

    1989-01-01

    The purpose of this project is to develop and demonstrate a compact, wet electrostatic collector for condensed acid mist in power plant flue gas. The following are project objectives: (1) fabrication of laboratory-version of the WESP; (2) optimization of the WESP performance through laboratory tests with a non-volatile simulant aerosol having a size distribution similar to the acid mist; (3) demonstration of adequate collection of actual acid mist in a pilot coal combustion facility under conditions simulating full-scale power plant burning high-sulfur coal; (4) development of computer model of the WESP process must be developed to assist in the process optimization, interpretation of test results, and extrapolation to full scale; and (5) solicitation of utility participation in a follow-on demonstration of the WESP concept at a full-scale power plant. The WESP fabrication, laboratory and pilot combustor testing, and computer modeling is discussed. 5 refs., 5 figs.

  9. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  10. Electrostatic Charging of the Pathfinder Rover

    NASA Technical Reports Server (NTRS)

    Siebert, Mark W.; Kolecki, Joseph C.

    1996-01-01

    The Mars Pathfinder mission will send a lander and a rover to the martian surface. Because of the extremely dry conditions on Mars, electrostatic charging of the rover is expected to occur as it moves about. Charge accumulation may result in high electrical potentials and discharge through the martian atmosphere. Such discharge could interfere with the operation of electrical elements on the rover. A strategy was sought to mitigate this charge accumulation as a precautionary measure. Ground tests were performed to demonstrate charging in laboratory conditions simulating the surface conditions expected at Mars. Tests showed that a rover wheel, driven at typical rover speeds, will accumulate electrical charge and develop significant electrical potentials (average observed, 110 volts). Measurements were made of wheel electrical potential, and wheel capacitance. From these quantities, the amount of absolute charge was estimated. An engineering solution was developed and recommended to mitigate charge accumulation. That solution has been implemented on the actual rover.

  11. Electrostatic Discharge testing of propellants and primers

    SciTech Connect

    Berry, R.B.

    1994-02-01

    This report presents the results of testing of selected propellants and primers to Electrostatic Discharge (ESD) characteristic of the human body. It describes the tests and the fixturing built to accommodate loose material (propellants) and the packed energetic material of the primer. The results indicate that all powders passed and some primers, especially the electric primers, failed to pass established requirements which delineate insensitive energetic components. This report details the testing of components and materials to four ESD environments (Standard ESD, Severe ESD, Modified Standard ESD, and Modified Severe ESD). The purpose of this study was to collect data based on the customer requirements as defined in the Sandia Environmental Safety & Health (ES&H) Manual, Chapter 9, and to define static sensitive and insensitive propellants and primers.

  12. Friction coefficient dependence on electrostatic tribocharging.

    PubMed

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  13. Invited review article: the electrostatic plasma lens.

    PubMed

    Goncharov, Alexey

    2013-02-01

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  14. Electrostatic Discharge Effects on Thin Film Resistors

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  15. Invited Review Article: The electrostatic plasma lens

    SciTech Connect

    Goncharov, Alexey

    2013-02-15

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  16. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  17. Electrostatic Manipulation of Graphene On Graphite

    NASA Astrophysics Data System (ADS)

    Untiedt, Carlos; Rubio-Verdu, Carmen; Saenz-Arce, Giovanni; Martinez-Asencio, Jesús; Milan, David C.; Moaied, Mohamed; Palacios, Juan J.; Caturla, Maria Jose

    2015-03-01

    Here we report the use of a Scanning Tunneling Microscope (STM) under ambient and vacuum conditions to study the controlled exfoliation of the last layer of a graphite surface when an electrostatic force is applied from a STM tip. In this work we have focused on the study of two parameters: the applied voltage needed to compensate the graphite interlayer attractive force and the one needed to break atomic bonds to produce folded structures. Additionally, we have studied the influence of edge structure in the breaking geometry. Independently of the edge orientation the graphite layer is found to tear through the zig-zag direction and the lifled layer shows a zig-zag folding direction. Molecular Dinamics simulations and DFT calculations have been performed to understand our results, showing a strong correlation with the experiments. Comunidad Valenciana through Prometeo project.

  18. Electrostatically gated membrane permeability in inorganic protocells

    NASA Astrophysics Data System (ADS)

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  19. Modeling extreme ultraviolet suppression of electrostatic analyzers.

    PubMed

    Gershman, Daniel J; Zurbuchen, Thomas H

    2010-04-01

    In addition to analyzing energy-per-charge ratios of incident ions, electrostatic analyzers (ESAs) for spaceborne time-of-flight mass spectrometers must also protect detectors from extreme ultraviolet (EUV) photons from the Sun. The required suppression rate often exceeds 1:10(7) and is generally established in tests upon instrument design and integration. This paper describes a novel technique to model the EUV suppression of ESAs using photon ray tracing integrated into SIMION, the most commonly used ion optics design software for such instruments. The paper compares simulation results with measurements taken from the ESA of the Mass instrument flying onboard the Wind spacecraft. This novel technique enables an active inclusion of EUV suppression requirements in the ESA design process. Furthermore, the simulation results also motivate design rules for such instruments.

  20. Electrostatic and electrodynamic response properties of nanostructures

    NASA Astrophysics Data System (ADS)

    Ayaz, Yuksel

    1999-11-01

    This thesis addresses the problem of nanostructure dielectric response to excitation by electric fields, both in the electrostatic c→infinity and the electrodynamic regimes. The nanostructures treated include planar quantum wells and quantum wires embedded in the vicinity of the bounding surface of the host semiconductor medium. Various cases are analyzed, including a single well or wire, a double well or wire, a lattice of N wells or wires and an infinite superlattice of wells or wires. The host medium is considered to have phonons and/or a bulk semiconductor plasma which interact with the plasmons of the embedded quantum wells or wires, and the host plasma is treated in both the local "cold" plasma regime and the nonlocal "hot" plasma regime. New hybridized quantum plasma collective modes emerge from these studies. The techniques employed here include the variational differential formulation of integral equations for the inverse dielectric function (in electrostatic case) and the dyadic Green's function (in the electrodynamic case) for the various systems described above. These integral equations are then solved in frequency-position representation by a variety of techniques depending on the geometrical features of the particular problem. Explicit closed form solutions for the inverse dielectric function or dyadic Green's function facilitate identification of the coupled collective modes in terms of their frequency poles, and the residues at the pole positions provide the relative amplitudes with which these normal modes respond to external excitation. Interesting features found include, for example, explicit formulas showing the transference of coupling of a two dimensional (2D) quantum well plasmon from a surface phonon to a bulk phonon as the 2D quantum well is displaced away from the bounding surface, deeper into the medium.

  1. The Dynamical Theory of X Ray Diffraction

    ERIC Educational Resources Information Center

    Balchin, A. A.; Whitehouse, C. R.

    1974-01-01

    Summarizes the Darwin theory of x-ray diffraction in thin crystals or crystals with a mosaic texture and its modified application to crystals with three-dimensional electrostatic dipoles. Indicates that the dynamical theory is brought into its present relevance by the improvement of single crystal growth techniques. (CC)

  2. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G; Cornil, Jérôme; Beljonne, David

    2016-11-01

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.

  3. Electrostatic waves and the strong diffusion of magnetospheric electrons

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Ashour-Abdalla, M.

    1982-01-01

    A comprehensive review of electron pitch angle scattering in the magnetosphere and the plasma waves responsible for it is presented, emphasizing the strong diffusion of diffuse auroral electrons by electrostatic electron cyclotron harmonic waves. The weak diffusion of energetic radiation belt electrons within the plasmasphere is reviewed briefly. Several new suggestions concerning the quasilinear diffusion from and saturation of electrostatic waves are included.

  4. Electrostatically suspended and sensed micro-mechanical rate gyroscope

    NASA Technical Reports Server (NTRS)

    Torti, R.; Gerver, M.; Gondhalekar, V.; Bart, S.; Maxwell, B.

    1994-01-01

    The goal of this work is development of fully electrostatically suspended and rebalancing angular rate sensing micro-gyroscope fabricated according to standard VLSI techniques. Fabrication of test structures is proceeding. Off chip electronics for the electrostatic sensing and driving circuits has been tested. The prototype device will be assembled in a hybrid construction including the FET input stages of the sensors.

  5. A Bridge between Two Important Problems in Optics and Electrostatics

    ERIC Educational Resources Information Center

    Capelli, R.; Pozzi, G.

    2008-01-01

    It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…

  6. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics

    NASA Astrophysics Data System (ADS)

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G.; Cornil, Jérôme; Beljonne, David

    2016-11-01

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.

  7. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G; Cornil, Jérôme; Beljonne, David

    2016-11-01

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells. PMID:27603960

  8. Electrostatic Levitation of Fines on Asteroids

    NASA Astrophysics Data System (ADS)

    Lee, P.

    1995-09-01

    Electrostatic fields can develop at the surface of resistive asteroids exposed directly to solar radiation and to the solar wind. As on the Moon (e.g., [1-3]), the process may lead to the levitation and transport of charged grains, and contribute to winnowing asteroidal regoliths of their finest particle size fraction. Two commonly proposed mechanisms for the levitation of dust on the Moon are applied to asteroids. The first depends on global scale electrostatic fields and involves the development of a near-surface photoelectron layer over the asteroid's sunlit hemisphere [4,5] ; the second involves local fields near the terminator and particle charging by higher-energy photoelectron emission on the sunlit faces of blocks and other small-scale prominences [6,7]. Preliminary modeling results suggest that on a sufficiently resistive and slow-rotating asteroid at a heliocentric distance of 3 AU, the subsolar region evolves surface electrostatic fields of ~5 V/m^-1, while field intensities in the terminator zone may reach ~10^5 V/m^-1. Charged regolithic fines are easily levitated, their fate being a function of their charge and size. On a 20 km-radius chondritic main belt asteroid, particles up to ~100 microns across may be electro- statically accelerated to escape. Fines <=1 micron across are subject to radiation pressure and/or to solar wind drag as soon as they are lofted, and may be quickly entrained to escape even if initially launched at sub-escape velocities. Larger particles levitated in the sub-escape regime remain gravitationally bound to the asteroid and experience lateral transport along local electrostatic and gravity gradients. The particles may migrate across the asteroid's surface indefinitely or, more likely, until they settle in perenially shadowed areas and/or topographic lows (craters or grooves), thus smoothing the asteroid's topography and minimizing shadows. They will remain on the asteroid until ejected by impacts or until the particles are

  9. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-03-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  10. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2006-10-10

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  11. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    DOEpatents

    Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  12. Control of Flowing Liquid Films By Electrostatic Fields in Space

    NASA Technical Reports Server (NTRS)

    Bankoff, S. George; Miksis, Michael J.; Kim, Hyo

    1996-01-01

    A novel type of lightweight space radiator has been proposed which employs internal electrostatic fields to stop coolant leaks from punctures caused by micrometeorites or space debris. Extensive calculations have indicated the feasibility of leak stoppage without film destabilization for both stationary and rotating designs. Solutions of the evolution equation for a liquid-metal film on an inclined plate, using lubrication theory for low Reynolds numbers, Karman-Pohlhausen quadratic velocity profiles for higher Reynolds numbers, and a direct numerical solution are shown. For verification an earth-based falling-film experiment on a precisely-vertical wall with controllable vacuum on either side of a small puncture is proposed. The pressure difference required to start and to stop the leak, in the presence and absence of a strong electric field, will be measured and compared with calculations. Various parameters, such as field strength, film Reynolds number, contact angle, and hole diameter will be examined. A theoretical analysis will be made of the case where the electrode is close enough to the film surface that the electric field equation and the surface dynamics equations are coupled. Preflight design calculations will be made in order to transfer the modified equipment to a flight experiment.

  13. Apparent electrostatic ion cyclotron waves in the diffuse aurora

    NASA Technical Reports Server (NTRS)

    Bering, E. A.

    1983-01-01

    Emissions that have properties consistent with electrostatic ion cyclotron (EIC) waves have been observed at low altitude in the diffuse aurora by a sounding rocket payload. Peaks were observed in the power spectrum of the electric field near the hydrogen and oxygen ion cyclotron frequencies. Doppler shift and polarization analyses have been performed using EIC wave parameters derived from linear theory. Both analyses indicated that these emissions had properties consistent with those expected for H(+) and O(+) EIC waves. The two analyses indicated that both emission bands were due to waves propagating eastward parallel to the poleward boundary of the diffuse aurora. The large local cold plasma density and resulting Landau damping require that the source be local. Magnetometer data indicated the presence of a downward parallel current density of 5 microamps/sq m. Sufficient free energy for the waves was available from this current, although the waves were observed frequently at altitudes where the ion-neutral collision frequency exceeded the oxygen cyclotron frequency.

  14. Experimental characterization of broadband electrostatic noise due to plasma compression

    NASA Astrophysics Data System (ADS)

    Dubois, Ami M.; Thomas, Edward, Jr.; Amatucci, William E.; Ganguli, Gurudas

    2015-11-01

    For a wide variety of laboratory and space plasma environments, theory states that plasmas are unstable to transverse shear flows over a very broad frequency range, where the shear scale length (LE) compared to the ion gyro-radius (ρi) determines the character of the shear-driven instability that may prevail. During active periods in the Earth's magnetosphere, such sheared flows are intensified and broadband electrostatic noise (BEN) is often observed by satellites traversing natural boundary layers. An interpenetrating magnetized plasma configuration is used to create a transverse velocity shear profile similar to that found at natural space plasma boundary layers. The continuous variation and the associated transition of the instability regimes driven by the shear flow mechanism are demonstrated in a single laboratory experiment. For the first time, broadband wave emission, which is correlated to increasing/decreasing stress (i.e., ρi/LE) on a plasma boundary layer, is found under controlled and repeatable conditions. This result provides evidence that the compression/relaxation of a plasma boundary layer leads to a BEN signature and holds out the promise for understanding the cause and effect of the in situ observation of BEN by satellites. This project was supported with funding from the U.S. Department of Energy, the Defense Threat Reduction Agency, and NRL Base Funds.

  15. Glow Discharge with Confinement of Electrons in an Electrostatic Trap

    NASA Astrophysics Data System (ADS)

    Metel, Alexander

    2013-09-01

    Theory based on the concept of the gas ionization cost W is found to be in a good agreement with experimental study of the glow discharge with electrostatic trap in the gas pressure range 0.001-10 Pa. When the mean ionization length λ of emitted by the cathode electrons exceeds the trap width a = 4 V/ S, where Vis the trap volume and S is area of the trap boundary, and their energy relaxation length Λ = (eUc/ W) λ , where Uc is cathode fall of potential, is lower than the trap length L = 4 V/So, where So is output aperture of the trap, Uc is independent of the pressure p. In this middle pressure range due to multiplication of fast electrons in the cathode sheath Uc diminishes about 2 times from its maximum W/e γ, where γ is coefficient of ion-induced electron emission, with the discharge current reduction. At Λ > L the cathode fall Uc rises from hundreds to thousands of volts and p tends to the discharge extinction pressure pex, at which the ionization length λ of electrons with energy equal to the energy of electrons emitted by the cathode in the middle pressure range is equal to L.

  16. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    NASA Astrophysics Data System (ADS)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.

    2016-06-01

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

  17. Nonlinear parallel momentum transport in strong electrostatic turbulence

    SciTech Connect

    Wang, Lu Wen, Tiliang; Diamond, P. H.

    2015-05-15

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller than the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.

  18. Electrostatically driven spatial patterns at supported lipid membrane junctions

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2005-03-01

    We have recently shown that mobile, membrane-bound proteins sandwiched at simple, cell-free junctions between lipid bilayers can organize themselves into micron-scale spatial patterns. This pattern formation is mechanical in origin, a consequence of the coupling of the lateral mobility of the proteins and inter-membrane adhesion forces. We find that these mechanically driven protein patterns can electrostatically generate patterns of charged membrane lipids. Measuring the magnitude of the electrostatic interaction as a function of lipid composition and ionic strength, and quantitatively analyzing the interplay between thermodynamics and electrostatics via a Poisson-Boltzmann approach, we are able to determine the charge densities and surface potentials of the components of our junctions -- properties that are difficult or impossible to measure by other means. Surprisingly, the electrostatic potential of the proteins is a minor factor in the lipid reorganization; the protein size and its modulation of the junction topography play the dominant role in driving the electrostatic patterns.

  19. Electrostatic forces in wind-pollination—Part 1: Measurement of the electrostatic charge on pollen

    NASA Astrophysics Data System (ADS)

    Bowker, George E.; Crenshaw, Hugh C.

    Under fair weather conditions, a weak electric field exists between negative charge induced on the surface of plants and positive charge in the air. This field is magnified around points (e.g. stigmas) and can reach values up to 3×10 6 V m -1. If wind-dispersed pollen grains are electrically charged, the electrostatic force (which is the product of the pollen's charge and the electric field at the pollen's location) could influence pollen capture. In this article, we report measurements of the electrostatic charge carried by wind-dispersed pollen grains. Pollen charge was measured using an adaptation of the Millikan oil-drop experiment for seven anemophilous plants: Acer rubrum, Cedrus atlantica, Cedrus deodara, Juniperus virginiana, Pinus taeda, Plantago lanceolata and Ulmus alata. All species had charged pollen, some were positive others negative. The distributions (number of pollen grains as a function of charge) were bipolar and roughly centered about zero although some distributions were skewed towards positive charges. Most pollen carried small amounts of charge, 0.8 fC in magnitude, on average. A few carried charges up to 40 fC. For Juniperus, pollen charges were also measured in nature and these results concurred with those found in the laboratory. For nearly all charged pollen grains, the likelihood that electrostatics influence pollen capture is evident.

  20. Polarizable Atomic Multipole X-Ray Refinement: Particle Mesh Ewald Electrostatics for Macromolecular Crystals.

    PubMed

    Schnieders, Michael J; Fenn, Timothy D; Pande, Vijay S

    2011-04-12

    Refinement of macromolecular models from X-ray crystallography experiments benefits from prior chemical knowledge at all resolutions. As the quality of the prior chemical knowledge from quantum or classical molecular physics improves, in principle so will resulting structural models. Due to limitations in computer performance and electrostatic algorithms, commonly used macromolecules X-ray crystallography refinement protocols have had limited support for rigorous molecular physics in the past. For example, electrostatics is often neglected in favor of nonbonded interactions based on a purely repulsive van der Waals potential. In this work we present advanced algorithms for desktop workstations that open the door to X-ray refinement of even the most challenging macromolecular data sets using state-of-the-art classical molecular physics. First we describe theory for particle mesh Ewald (PME) summation that consistently handles the symmetry of all 230 space groups, replicates of the unit cell such that the minimum image convention can be used with a real space cutoff of any size and the combination of space group symmetry with replicates. An implementation of symmetry accelerated PME for the polarizable atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field is presented. Relative to a single CPU core performing calculations on a P1 unit cell, our AMOEBA engine called Force Field X (FFX) accelerates energy evaluations by more than a factor of 24 on an 8-core workstation with a Tesla GPU coprocessor for 30 structures that contain 240 000 atoms on average in the unit cell. The benefit of AMOEBA electrostatics evaluated with PME for macromolecular X-ray crystallography refinement is demonstrated via rerefinement of 10 crystallographic data sets that range in resolution from 1.7 to 4.5 Å. Beginning from structures obtained by local optimization without electrostatics, further optimization using AMOEBA with PME electrostatics improved

  1. Vibration behavior of a viscoelastic composite microbeam under simultaneous electrostatic and piezoelectric actuation

    NASA Astrophysics Data System (ADS)

    Chitsaz Yazdi, F.; Jalali, A.

    2015-08-01

    In this paper, the static and dynamic response of a clamped-clamped viscoelastic nanocomposite microbeam under combined electrostatic and piezoelectric actuations is analyzed. The equations of motion of the system are derived using the Euler-Bernoulli beam theory, Kelvin-Voigt model and Hamilton principle. The nonlinear model for the system is studied by considering stretching of the mid-plane, a DC electrostatic force, an AC harmonic force and a DC piezoelectric actuation. The static deflection and natural frequency of the system is extracted, and the influence of system parameters on the primary resonance behavior of the system is studied. It is shown that, based on various electrostatic and piezoelectric excitations, hardening or softening behavior is expected. So, one can tune these voltages such that this highly nonlinear system behaves linearly close to resonance frequency. Also it is shown that damping characteristics of the system with viscoelastic material not only depends on the damping coefficient of the system, but also on its other parameters.

  2. Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent

    NASA Astrophysics Data System (ADS)

    Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu

    2011-10-01

    A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into "alpha helix" and "beta sheet" structures. The 5-residue polyalanine displays a substantial increase in the "beta strand" fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling.

  3. Modeling electrostatic and heterogeneity effects on proton dissociation from humic substances

    USGS Publications Warehouse

    Tipping, E.; Reddy, M.M.; Hurley, M.A.

    1990-01-01

    The apparent acid dissociation constant of humic substances increases by 2-4 pK units as ionization of the humic carboxylate groups proceeds. This change in apparent acid strength is due in part to the increase in electrical charge on the humic molecules as protons are shed. In addition, proton dissociation reactions are complicated because humic substances are heterogeneous with respect to proton dissociating groups and molecular size. In this paper, we use the Debye-Hu??ckel theory to describe the effects of electrostatic interactions on proton dissociation of humic substances. Simulations show that, for a size-heterogeneous system of molecules, the weight-average molecular weight is preferable to the number-average value for averaging the effects of electrostatic interactions. Analysis of published data on the proton dissociation of fulvic acid from the Suwannee River shows that the electrostatic interactions can be satisfactorily described by a hypothetical homogeneous compound having a molecular weight of 1000 (similar to the experimentally determined weight-average value). Titration data at three ionic strengths, for several fulvic acid concentrations, and in the pH range from 2.9 to 6.4 can be fitted with three adjustable parameters (pK??int values), given information on molecular size and carboxylate group content. ?? 1990 American Chemical Society.

  4. Source Generated Electrostatic Waves in a Plasma - Application to the Earth's Electron Foreshock Region.

    NASA Astrophysics Data System (ADS)

    Pangia, Michael Joseph

    1988-12-01

    The problem of electrostatic waves generated in a collisionless plasma by a source of charged particles is formulated using the Vlasov description with an inhomogeneous term. A formal solution is obtained by use of the Green's function for the linearized case of a Maxwellian background plasma with a low density particle source. Detailed analysis of the Green's function shows the dynamic behavior of the system as time progresses. In particular, in addition to the asymptotic time limit of the Green's function being described by the roots of the dielectric function, two other limits are discussed. The short time limit of the Green's function behaves approximately like a cold plasma, and the intermediate time limit of the Green's behaves approximately like a plasma with thermal electrons and a cold ion distribution. An equation for the discrete Fourier transform coefficients of the electric field is derived without restricting to any particular time limit, and is useful for comparing with measured spectra. The theory is applied to the region deep in the Earth's electron foreshock where electrostatic waves are observed, and yet no beams to cause an instability have been reported. It is postulated that the electrostatic waves in this region are driven by the distribution of electrons coming from the bow shock, and that this distribution varies spatially with a characteristic wavelength. The electric field spectrum is calculated and shown to give agreement with the reported observations.

  5. Electrostatic and hydrophobic interactions involved in CNT biofunctionalization with short ss-DNA.

    PubMed

    Carot, Maria Lucrecia; Torresi, Roberto M; Garcia, Carlos D; Esplandiu, Maria Jose; Giacomelli, Carla E

    2010-03-18

    This work is aimed at studying the adsorption mechanism of short chain 20-mer pyrimidinic homo-ss-DNA (oligodeoxyribonucleotide, ODN: polyC(20) and polyT(20)) onto CNT by reflectometry. To analyze the experimental data, the effective-medium theory using the Bruggemann approximation represents a suitable optical model to account for the surface properties (roughness, thickness and optical constants) and the size of the adsorbate. Systematic information about the involved interactions is obtained by changing the physico-chemical properties of the system. Hydrophobic and electrostatic interactions are evaluated by comparing the adsorption on hydrophobic CNT and on hydrophilic silica and by modulating the ionic strength with and without Mg(2+). The ODN adsorption process on CNT is driven by hydrophobic interactions only when the electrostatic repulsion is suppressed. The adsorption mode results in ODN molecules in a side-on orientation with the bases (non-polar region) towards the surface. This unfavorable orientation is partially reverse by adding Mg(2+). On the other hand, the adsorption on silica is dominated by the strong repulsive electrostatic interaction that is screened at high ionic strength or mediated by Mg(2+). The cation-mediated process induces the interaction of the phosphate backbone (polar region) with the surface, leaving the bases free for hybridization. Although the general adsorption behavior of the pyrimidine bases is the same, polyC(20) presents higher affinity for the CNT surface due to its acid-base properties. PMID:20563224

  6. Electrostatic and hydrophobic interactions involved in CNT biofunctionalization with short ss-DNA

    PubMed Central

    Carot, Maria Lucrecia; Torresi, Roberto M.; Garcia, Carlos D.; Esplandiu, Maria Jose; Giacomelli, Carla E.

    2010-01-01

    This work is aimed at studying the adsorption mechanism of short chain 20-mer pyrimidinic homo-ss-DNA (oligodeoxyribonucleotide, ODN: polyC20 and polyT20) onto CNT by reflectometry. To analyze the experimental data, the effective-medium theory using the Bruggemann approximation represents a suitable optical model to account for the surface properties (roughness, thickness and optical constants) and the size of the adsorbate. Systematic information about the involved interactions is obtained by changing the physico-chemical properties of the system. Hydrophobic and electrostatic interactions are evaluated by comparing the adsorption on hydrophobic CNT and on hydrophilic silica and by modulating the ionic strength with and without Mg2+. The ODN adsorption process on CNT is driven by hydrophobic interactions only when the electrostatic repulsion is suppressed. The adsorption mode results in ODN molecules in a side-on orientation with the bases (non-polar region) towards the surface. This unfavorable orientation is partially reverse by adding Mg2+. On the other hand, the adsorption on silica is dominated by the strong repulsive electrostatic interaction that is screened at high ionic strength or mediated by Mg2+. The cation-mediated process induces the interaction of the phosphate backbone (polar region) with the surface, leaving the bases free for hybridization. Although the general adsorption behavior of the pyrimidine bases is the same, polyC20 presents higher affinity for the CNT surface due to its acid-base properties. PMID:20563224

  7. Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic.

    PubMed

    Fu, Jingcheng; Schlenoff, Joseph B

    2016-01-27

    Driving forces for association between oppositely charged biological or synthetic polymers in aqueous solution have long been identified as electrostatic in origin. This attraction is broken down into an entropic component, due to loss of counterions, and an enthalpic component, stemming from Coulombic attraction between opposite charges. While the balance between entropic and enthalpic contributions shifts according to the conditions, the presence of exotherms or endotherms on mixing, though small, are viewed as signatures of Coulombic interactions which support theories of polyelectrolyte association rooted in continuum electrostatics. Here, a head-to-head comparison is made between mechanisms based on electrostatics and those based on specific ion pairing, or ion exchange. Using a Hofmeister series of counterions for a common polycation, poly(diallyldimethylammonium), enthalpy changes on association with poly(styrenesulfonate) are shown to derive from changes in water perturbation, revealed by Raman scattering studies of water O-H vibrations. The free energy for complexation is almost completely entropic over all salt concentrations. PMID:26771205

  8. Electrostatic Dust Control for Planetary Rovers

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Farrell, W. M.; Nuth, J. A.; Stubbs, T. J.; Rilee, M. L.

    2005-12-01

    Detailed study of the physical and chemical nature of the fine particulate portion of the regoliths of these bodies is a key to understanding micrometeorite bombardment and the nature of regolith formation. Thus, missions to sample the surfaces of atmosphereless bodies, including the Moon, asteroids, and Mercury, have been identified as crucial components of solar system exploration over the next decades. We have proposed autonomous reconfigurable robotic manual assistants and lander/rovers for such missions. On the other hand, dust poses problems for mechanisms and exposed surfaces on landers/rovers sent to such bodies. Compromise of seals and loss of sample material, as well as mechanical damage to systems and surfaces, occurred after hours of operation during the Apollo missions. Thus both dust mitigation and dust collection are issues which must be addressed for sampling missions. Dust activity on atmosphereless bodies is ubiquitous and induced by complex interactions of fine particulates, environmentally-dependent fields, and charged particles with vehicle surfaces and mechanisms. Dust particles are both abrasive and adhesive as a result of the melting and crushing from micrometeorite bombardment. Thus, dust dynamics result from the interplay between mechanical and electrostatic forces and are a critical environmental factor with which all rover technologies must deal. We have considered various strategies for dust mitigation. Passive ones include the use of conducting surfaces and O-ring sealing of all mechanisms. Several active mechanisms for not only removing but collecting dust are under consideration. Our inter-disciplinary team is investigating the feasibility of an electrostatically based concept for a dust control. Relatively little work has been done on empirically simulating what happens when another surface is introduced into a non-conducting, dusty regolith. We plan to test our concept by performing empirical simulations of the interaction between

  9. Flexible electrostatic nanogenerator using graphene oxide film

    NASA Astrophysics Data System (ADS)

    Tian, He; Ma, Shuo; Zhao, Hai-Ming; Wu, Can; Ge, Jie; Xie, Dan; Yang, Yi; Ren, Tian-Ling

    2013-09-01

    Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could significantly enhance the output voltage from 0.1 V to 2.0 V. The mechanism of our nanogenerator can be explained by an electrostatic effect, which is fundamentally different from that of previously reported piezoelectric and triboelectric generators. In this manuscript, we demonstrate flexible nanogenerators with large-area graphene based materials, which may open up new avenues of research with regard to applications in energy harvesting.Recently, graphene oxide (GO) super capacitors with ultra-high energy densities have received significant attention. In addition to their use in energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as energy harvesting. Here, a flexible nanogenerator based on GO film is designed. A multilayer structure Al/PI/GO/PI/ITO is made on a flexible PET substrate. The GO nanogenerator could generate a peak voltage of 2 V with a current of 30 nA upon the repetitive application of a 15 N force with a frequency of 1 Hz. Moreover, the output voltage was increased to 34.4 V upon increasing the frequency of force application to 10 Hz. Compared with control samples, embedding GO film with a release structure into the device could

  10. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  11. Combined electrostatic precipitator and acidic gas removal system

    SciTech Connect

    Sparks, L.E.; Plaks, N.

    1989-12-05

    This patent describes a method of retrofitting an apparatus for removing acidic gas and particulate matter from air. The device to be retrofit including an electrostatic precipitator, lacking a precharger, positioned within a housing, a flue gas generating means outside the housing, an entry port in the housing and upstream of the electrostatic precipitator; an exit port in the housing and downstream of the electrostatic precipitator; and ductwork, outside the housing, leading from the generating means to the entry port. The retrofitting comprising the steps of: substituting electrostatic filtration units, for dry electrostatic precipitation, each comprising a precharger and a downstream particle collector having wires of from 1/4 to 1/2 inch in diameter for the electrostatic precipitator. The substituted units being designed so as to occupy less space in the housing that the electrostatic filter lacking a precharger, thereby leaving free space within the housing between a one of the prechargers which is first downstream from the entry port and the exit port and inserting an acidic gas removal means, within the housing.

  12. Conservation and Role of Electrostatics in Thymidylate Synthase

    PubMed Central

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C.

    2015-01-01

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome. PMID:26612036

  13. Conservation and Role of Electrostatics in Thymidylate Synthase

    NASA Astrophysics Data System (ADS)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C.

    2015-11-01

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  14. Steric, Quantum, and Electrostatic Effects on SN2 Reaction Barriers in Gas Phase

    PubMed Central

    Liu, Shubin; Hu, Hao; Pedersen, Lee G.

    2010-01-01

    Biomolecular nucleophilic substitution reactions, SN2, are fundamental and commonplace in chemistry. It is the well documented experimental finding in the literature that vicinal substitution with bulkier groups near the reaction center significantly slows the reaction due to steric hindrance, but theoretical understanding in the quantitative manner about factors dictating the SN2 reaction barrier height is still controversial. In this work, employing the new quantification approach that we recently proposed for the steric effect from the density functional theory framework, we investigate the relative contribution of three independent effects, steric, electrostatic, and quantum, to the SN2 barrier heights in gas phase for substituted methyl halide systems, R1R2R3CX, reacting with fluorine anion where R1, R2, and R3 denote substituting groups and X=F or Cl. We found that in accordance with the experimental finding, for these systems the steric effect dominates the transition state barrier, contributing positively to barrier heights, but this contribution is largely compensated by the negative, stabilizing contribution from the quantum effect due to the exchange-correlation interactions. Moreover, we find that it is the component from the electrostatic effect that is linearly correlated with the SN2 barrier height for the systems investigated in the present study. In addition, we compared our approach with the conventional method of energy decomposition in density functional theory, as well as examined the steric effect from the wavefunction theory for these systems via the natural bond orbital analysis. PMID:20377265

  15. Electrostatic shape-shifting ion optics

    DOEpatents

    Dahl, David A.; Scott, Jill R.; Appelhans, Anthony D.

    2006-05-02

    Electrostatic shape-shifting ion optics includes an outer electrode that defines an interior region between first and second opposed open ends. A first inner electrode is positioned within the interior region of the outer electrode at about the first open end. A second inner electrode is positioned within the interior region of the outer electrode at about the second open end. A first end cap electrode is positioned at about a first open end of the first inner electrode so that the first end cap electrode substantially encloses the first open end of the first inner electrode. A second end cap electrode is positioned at about a second open end of the second inner electrode so that the second end cap electrode substantially encloses the second open end of the second inner electrode. A voltage source operatively connected to each of the electrodes applies voltage functions to each of the electrodes to produce an electric field within an interior space enclosed by the electrodes.

  16. Functional colloidal trimers by quenched electrostatic assembly.

    PubMed

    McDermott, Joseph J; Chaturvedi, Neetu; Velegol, Darrell

    2010-10-14

    It is shown how to assemble three particles into a single "colloidal trimer". The particles may consist of different materials and be different sizes, and they can be assembled in a particular sequence (i.e. 1-2-3 or 2-1-3 or 2-3-1). Several trimer assemblies are demonstrated, including polystyrene-silica-polystyrene, gold-polystyrene-silver, and gold-silicon-silver. The gold-silicon-silver assembly operates as a catalytic motor, moving rapidly by autoelectrophoresis when placed in a hydrogen peroxide solution. The assemblies are made by allowing oppositely-charged particles to aggregate in a diffusion-limited manner for a time, and then quenching the aggregation by the addition of a nanoparticle coating on one of the particles. We call this method "Quenched Electrostatic Assembly", and it serves as a general, scalable method for synthesizing multi-component colloidal trimers, including those requiring a certain sequential order, but not requiring particular orientations. In addition, when polymer nanoparticles are used to quench the aggregation, they can be fused above their glass transition temperature to produce assemblies that are mechanically stable. PMID:20830380

  17. Electrostatic spray deposition based lithium ion capacitor

    NASA Astrophysics Data System (ADS)

    Agrawal, Richa; Chen, Chunhui; Wang, Chunlei

    2016-05-01

    Conventional Electrochemical double-layer capacitors (EDLCs) are well suited as power devices that can provide large bursts of energy in short time periods. However, their relatively inferior energy densities as compared to their secondary battery counterparts limit their application in devices that require simultaneous supply of both high energy and high power. In the wake of addressing this shortcoming of EDLCs, the concept of hybridization of lithium-ion batteries (LIBs) and EDLCs has attracted significant scientific interest in recent years. Such a device, generally referred to as the "lithium-ion capacitor" typically utilizes a lithium intercalating electrode along with a fast charging capacitor electrode. Herein we have constructed a lithium hybrid electrochemical capacitor comprising a Li4Ti5O12-TiO2 (LTO-TiO2) anode and a reduced graphene oxide and carbon nanotube (rGO-CNT) composite cathode using electrostatic spray deposition (ESD). The electrodes were characterized using scanning electron microscopy and X-ray diffraction studies. Cyclic voltammetry and galvanostatic charge-discharge measurements were carried out to evaluate the electrochemical performance of the individual electrodes and the full hybrid cells.

  18. Modeling of Electrostatic Forces between Glycosaminoglycan Molecules

    NASA Astrophysics Data System (ADS)

    Dean, Delphine; Seog, Joonil; Ortiz, Christine; Grodzinsky, Alan

    2002-03-01

    Repulsive forces between end-grafted chondroitin-4-sulfate glycosaminoglycan (GAG) polymer brushes have been measured and reported by us using the technique of high-resolution force microscopy as a function of pH and ionic strength. To understand the nature of these forces, we have compared our experimental data to three electrostatic double layer models based on the Poisson-Boltzmann equation. The first two models are formulated in the literature and represent the GAG brush as a planar surface of constant charge and as a smoothed volume of known fixed charge density, while the third model is newly developed and represents the GAGs as rods of uniform charge density, which more accurately describes the molecular morphology and nonuniform charge distributions. The GAG brush could not be modeled accurately using a planar charge model, which severely underestimated the magnitude of the intersurface force throughout the distance range measured. The volume charge model fit better to experimental data for reasonable values of the brush height suggesting that the volume distribution of charge on the GAGs leads to a significant increase in repulsive force.

  19. Parametric testing of coal electrostatic precipitator performance

    SciTech Connect

    Canadas, L.; Navarrete, B.; Ollero, P.; Salvador, L.

    1997-12-31

    The effect of internal geometry, electrode type, and operating conditions on the performance of a coal electrostatic precipitator (ESP) has been analyzed by means of an extensive parametric testing program. Tests under different conditions of plate spacing, discharge electrodes, gas velocity, and energization wave form have been performed using two extreme coal types, with very high and low resistivity ashes, respectively. The study was made by means of a pilot installation operating with a flue gas slipstream drawn upstream of a power plant ESP. The experimental plant includes a specifically designed pilot ESP, able to admit an internal modification of plate spacing and electrode type. The ESP is equipped with a microprocessor controlled power supply which can generate both continuous and intermittent rectified current. The measured sensitivity of the precipitation process to the dust properties, filter configuration, electrode type, and energization method is presented, covering both the ESP efficiency evolution and the associated power consumption. The results of this work allow to extract practical conclusions about specification of ESP design and size for a given application, and assess the conditions in which use of wide plate spacing, new electrode geometries, or intermittent current are actually advantageous. 11 refs., 6 figs., 5 tabs.

  20. Electrostatic precipitator having traversing collector washing mechanism

    SciTech Connect

    Bricker, J.C.; Elsbernd, C.A.

    1980-12-23

    An electrostatic precipitator air cleaner is described that includes a number of precipitator cells having spaced parallel plates for collecting dirt particles, and a vertically disposed traversing pipe-like spray header containing a number of spray nozzles for directing a spray of wash or rinse fluid onto the collecting plates in order to remove collected particles. The header is traversed horizontally across the precipitator cells by means of a trolley supported by a rail-like guide member and reciprocated between a home position and an extended position by means of a rotating elongated helical drive screw cooperating with a gear-like follower attached to the trolley, such that the rotation of the screw produces linear motion of the header. The header is connected to a source of wash or rinse fluid by means of swivel connections and a flexible conduit. An elongated flat resilient fluid impervious strip containing a longitudinal slit in sliding sealable engagement with the header is positioned between the traversing mechanism and the spray nozzles to prevent infiltration of the precipitator airstream or wash fluid into the area occupied by the traversing mechanism. The threaded follower may also be disengaged from the helical drive screw and the header moved manually to any position along its length of travel.

  1. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Not Available

    1990-01-01

    This project addresses the acid mist that is formed by condensation of sulfuric acid vapor in flue gas from coal-fired utility boilers. An acid mist can be formed whenever the flue gas temperature approaches the prevailing acid dew point. This commonly occurs when the gas is subjected to rapid adiabatic cooling in a wet scrubber system for flue gas desulfurization. Acid mists can also sometimes result from unexpected temperature excursions caused by air inleakage, load cycling, and start-up operations. A wet electrostatic precipitator (WESP) is the best control option for acid mist. The mist would blind a fabric filter and attach glass fiber fabrics. A wet ESP is required because the acid would quickly corrode the plates in a conventional dry ESP. The wet ESP also offers the advantages of no rapping reentrainment and no sensitivity to fly ash resistivity. Therefore, this program has been structured around the use of a compact, wet ESP to control acid mist emissions. Progress to date is discussed. 7 refs., 1 fig.

  2. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Not Available

    1990-01-01

    This project addresses the problem of acid mist formed by condensation of sulfuric acid vapor in flue gas from coal-fired utility boilers. Acid mists can sometimes constitute a significant portion of the total particulate emissions from power plants burning high-sulfur coals. Complete condensation of 10 ppM of acid vapor produces a condensed acid mass loading of about 0.02 gr/dscf or 0.03 lb/MBtu, equivalent to the total allowable mass emissions under the revised (1979) New Source Performance Standards (2). The purpose of this project is to develop and demonstrated a compact, wet electrostatic collector for condensed acid mist in power plant flue gas. The project is organized in two phases. Phase I involved the WESP fabrication, laboratory and pilot combustor testing, and computer modeling. Phase II involves the solicitation of a utility demonstration site, preliminary site measurements, and planning for the demonstration test program. Only Phase II work will be addressed in this discussion which includes: site selection, site measurements, computer modeling and demonstration plan, and phase II reporting. 9 refs., 11 figs., 7 tabs.

  3. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Dahlin, R.S.

    1989-11-01

    Southern Research Institute is developing a compact, wet electrostatic precipitator (WESP) to control acid mist missions from high-sulfur coal combustion. The WESP is being developed as a retrofit technology for existing coal-fired power plants, particularly those equipped with wet flue gas desulfurization (FGD) scrubbers. Acid mist emissions can be a significant problem at these facilities because the sulfuric acid vapor in the flue gas is converted to a very fine mist that is not collected in the scrubber system. Conventional mist eliminators are not adequate in this application due to the very fine size of the mist droplets. The potential for corrosion also makes it difficult to use a fabric filter or a conventional, dry ESP in this application. Therefore, this research project has been structured around the development of a compact WESP that could be retrofit on top of an existing scrubber or within an existing flue gas duct. This paper describes the development and testing of a prototype WESP for the utility acid mist application. Testing was conducted with combustion of sulfur-doped gas to simulate the acid mist alone, and with a combination of coal and sulfur-doped gas to simulate the mixture of acid mist and fly ash downstream from a scrubber. The performance of the WESP test unit was modeled using two different cylindrical-geometry computer models: a current-seeking'' model and a current-specific'' model. 8 refs., 15 figs., 7 tabs.

  4. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Not Available

    1990-01-01

    This project addresses the acid mist that is formed by condensation of sulfuric acid vapor in flue gas from coal-fired utility boilers. An acid mist can be formed whenever the flue gas temperature approaches the prevailing acid dew point. This commonly occurs when the gas is subjected to rapid adiabatic cooling in a wet scrubber system for flue gas desulfurization. Acid mists can also sometimes result from unexpected temperature excursions caused by air inleakage, load cycling, and start-up operations. A wet electrostatic precipitator (WESP) is the best control option for acid mist. The mist would blind a fabric filter and attack glass fiber fabrics. A wet ESP is required because the acid would quickly corrode the plates in a conventional dry ESP. The wet ESP also offers the advantages of no rapping reentrainment and no sensitivity to fly ash resistivity. Therefore, this program has been structured around the use of a compact, wet ESP to control acid mist emissions. 7 refs.

  5. Heliopause Electrostatic Rapid Transit System (HERTS)

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2015-01-01

    A recent six month investigation focused on: "Determining the benefits of propelling a scientific spacecraft by an 'Electric Sail' propulsion system to the edge of our solar system (the Heliopause), a distance of 100 to 120 AU, in ten years or less" has recently been completed by the Advance Concepts Office at NASA's MSFC. The concept investigated has been named the Heliopause Electrostatic Rapid Transit System (HERTS) by the MSFC team. The HERTS is a revolutionary propellant-less propulsion concept that is ideal for deep space missions to the Outer Planets, Heliopause, and beyond. It is unique in that it uses momentum exchange from naturally occurring solar wind protons to propel a spacecraft within the heliosphere. The propulsion system consists of an array of electrically positively-biased wires that extend outward 20 km from a rotating (one revolution per hour) spacecraft. It was determined that the HERTS system can accelerate a spacecraft to velocities as much as two to three times that possible by any realistic extrapolation of current state-of-the-art propulsion technologies- including solar electric and solar sail propulsion systems. The data produced show that a scientific spacecraft could reach distances of 100AU in less than 10 years. Moreover, it can be reasonably expected that this system could be developed within a decade and provide meaningful Heliophysics Science and Outer Planetary Science returns in the 2025-2035 timeframe.

  6. Tribocharging Lunar Soil for Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.

  7. Achieving low particulate emissions with electrostatic precipitators

    SciTech Connect

    Mastropietro, R.A.

    1994-12-31

    A great deal of literature has been published in recent years maligning electrostatic precipitators (ESP) as not being effective in achieving low emissions, or as being less effective than fabric filters in collecting fine particulate. This observation is not valid, provided the ESP is properly sized. The misconception comes from comparing modern high efficiency fabric filters, with 1950-1970`s vintage ESP`s. ESP`s were sized much smaller in that era, basically just for {open_quotes}good-neighbor{close_quotes} policies. Figure 1 shows the historical sizing practices for coal-fired utility boilers. From this, it can be seen that ESP`s from the 50`s through the early 1970`s were only about one-fourth to one-half the size of modern ESP`s. These undersized ESP`s, often in the presence of a coal switch to low sulfur coal, sometimes perform poorly. When replaced with a fabric filter, the claim is made that the ESP did not work and that a fabric filter does work properly. Had the ESP been increased in size to modern standards, it too would work properly.

  8. Membrane-based wet electrostatic precipitation

    SciTech Connect

    David J. Bayless; Liming Shi; Gregory Kremer; Ben J. Stuart; James Reynolds; John Caine

    2005-06-01

    Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or waterbased) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at First Energy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with {approximately}15% less collecting area. 15 refs., 7 figs., 6 tabs.

  9. Electrostatic Dust Detection and Removal in Tokamaks

    NASA Astrophysics Data System (ADS)

    Hensley, R.; Skinner, C. H.; Roquemore, A. L.

    2006-10-01

    The inventory of in-vessel dust particles in next-step tokamaks will increase with the rise in stored energy and pulse duration. Dust levels will need to be measured and controlled for safety reasons and to avoid plasma contamination. A novel electrostatic dust detector has been developed with a sensitivity appropriate for the carbon dust levels expected in next-step devices.^23 Higher sensitivity is desired for real-time measurements in contemporary tokamaks that have less dust. We report on results from a larger area, more sensitive detector. A 2 x 2 circuit board has two interlocking combs of copper traces spaced by 25 microns and biased at 30-50 V. The carbon test dust is delivered to the circuit board by a mesh tray vibrated at 60 Hz. The impinging dust creates a short circuit and the resulting current pulse is recorded. We will present results on the dust detection sensitivity and dust removal efficiency of these new detectors in three environments: air, vacuum, and inert gas. ^2 C. Voinier et al., J. Nucl. Mater. 346 (2005) 266-271. ^3 C. Parker et al., PPPL Report, PPPL-4169.

  10. Integrating electrostatic adhesion to composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2015-04-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Using a combination of established fabrication techniques, electroadhesive elements are co-cured within a composite host structure during manufacture. This provides an almost symbiotic relationship between the electroadhesive and the composite structure, with the electroadhesive providing an additional functionality, whilst the epoxy matrix material of the composite acts as a dielectric for the high voltage electrodes of the device. Silicone rubber coated devices have been shown to offer high shear load (85kPa) capability for GFRP components held together using this technique. Through careful control of the connection interface, we consider the incorporation of these devices within complete composite structures for additional functionality. The ability to vary the internal connectivity of structural elements could allow for incremental changes in connectivity between discrete sub-structures, potentially introducing variable stiffness to the global structure.

  11. Asymmetric Electrostatic Radiation Shielding for Spacecraft

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Youngquist, Robert C.; Lane, John E.

    2005-01-01

    A paper describes the types, sources, and adverse effects of energetic-particle radiation in interplanetary space, and explores a concept of using asymmetric electrostatic shielding to reduce the amount of such radiation impinging on spacecraft. Typically, such shielding would include a system of multiple inflatable, electrically conductive spheres deployed in clusters in the vicinity of a spacecraft on lightweight structures that would maintain the spheres in a predetermined multipole geometry. High-voltage generators would maintain the spheres at potential differences chosen in conjunction with the multipole geometry so that the resulting multipole field would gradually divert approaching energetic atomic nuclei from a central region occupied by the spacecraft. The spheres nearest the center would be the most positive, so as to repel the positively charged impinging nuclei from the center. At the same time, the monopole potential of the overall spacecraft-and-shielding system would be made negative so as to repel thermal electrons. The paper presents results of computational simulations of energetic-particle trajectories and shield efficiency for a trial system of 21 spheres arranged in three clusters in an overall linear quadrupole configuration. Further development would be necessary to make this shielding concept practical.

  12. Electrostatic comb drive for vertical actuation

    SciTech Connect

    Lee, A. P., LLNL

    1997-07-10

    The electrostatic comb finger drive has become an integral design for microsensor and microactuator applications. This paper reports on utilizing the levitation effect of comb fingers to design vertical-to-the-substrate actuation for interferometric applications. For typical polysilicon comb drives with 2 {micro}m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 {micro}m above the stationary comb fingers. This distance is ideal for many phase shifting interferometric applications. Theoretical calculations of the vertical actuation characteristics are compared with the experimental results, and a general design guideline is derived from these results. The suspension flexure stiffnesses, gravity forces, squeeze film damping, and comb finger thicknesses are parameters investigated which affect the displacement curve of the vertical microactuator. By designing a parallel plate capacitor between the suspended mass and the substrate, in situ position sensing can be used to control the vertical movement, providing a total feedback-controlled system. Fundamentals of various capacitive position sensing techniques are discussed. Experimental verification is carried out by a Zygo distance measurement interferometer.

  13. Electrostatic model for hydrogen bonds in alcohols

    SciTech Connect

    Giguere, P.A.; Pigeon-Gosselin, M.

    1988-11-01

    The authors have measured the Raman spectra of liquid methanol at temperatures between 50/sup 0/ and -77/sup 0/C. The weak O-H stretching bands appear, under amplification, more and more asymmetric as the temperature is lowered. They can be decomposed into three Gaussian components centered at about 3220, 3310, and 3400 cm/sup -1/. The former, predominant at low temperature, corresponds to single, linear hydrogen bonds (LHB) between two molecules. The other two are assigned to branched hydrogen bonds, respectively bifurcated (BHB), between three molecules, and trifurcated (THB), between four molecules. They conclude that the molecular structure of liquid alcohols is not chain-like, as presumed so far, but a three-dimensional network featuring a mixture of single (LBH), and multiple hydrogen bonds (BHB, and THB). They are mainly electrostatic in nature, their relative proportions and geometry governed by the packing conditions for minimum energy. They form distinct trimers and tetramers in dilute solutions of alcohols in inert solvents and frozen matrices, and the latter even in the vapor.

  14. Ferroelectric dipole electrets for output power enhancement in electrostatic vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Asanuma, Haruhiko; Oguchi, Hiroyuki; Hara, Motoaki; Yoshida, Ryo; Kuwano, Hiroki

    2013-10-01

    We propose a ferroelectric dipole electret composed of polarized lead zirconate titanate. Deep insight into the physics behind the parallel plate capacitor theoretically predicts that we can extract large electric field near the surface of the ferroelectric dipole electret by increasing its surface charge density and thickness. Experiment for ferroelectric dipole electret shows good agreement with the theory. The maximum output power density of electrostatic vibration energy harvesters using the ferroelectric dipole electret was 78 μW/cm3, a three-fold increase over a conventional polymer electret. Our results will pave the way for use of ferroelectrics as electrets.

  15. Electrostatic Hellmann-Feynman theorem applied to long-range interatomic forces - The hydrogen molecule.

    NASA Technical Reports Server (NTRS)

    Steiner, E.

    1973-01-01

    The use of the electrostatic Hellmann-Feynman theorem for the calculation of the leading term in the 1/R expansion of the force of interaction between two well-separated hydrogen atoms is discussed. Previous work has suggested that whereas this term is determined wholly by the first-order wavefunction when calculated by perturbation theory, the use of the Hellmann-Feynman theorem apparently requires the wavefunction through second order. It is shown how the two results may be reconciled and that the Hellmann-Feynman theorem may be reformulated in such a way that only the first-order wavefunction is required.

  16. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    SciTech Connect

    Hedditch, John Bowden-Reid, Richard Khachan, Joe

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  17. Ab initio molecular electrostatic potential of hexanuclear Cu, Ag, and Au clusters

    NASA Astrophysics Data System (ADS)

    Posada-Amarillas, Alvaro

    DFT calculations of electrostatic potential (ESP) are carried out under the PBE/SDD theory level. Planar initial structures are given as input to perform DFT optimization with the aim of obtaining ground state structures. ESP is thus calculated and results show the existence of both, nucleophilic and electrophilic sites. In each case, the latter are located over the cluster planes while the former are observed in cluster vertices. Binding energy is provided, as well as structural parameters of ground state structures. CONACyT-México is acknowledged for funding Project No. 180424.

  18. Electrostatic-field-enhanced photoexfoliation of bilayer benzene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Uchida, Kazuki; Silaeva, Elena P.; Watanabe, Kazuyuki

    2016-06-01

    Photoexfoliation of bilayer benzene in an external electrostatic (dc) field is studied using time-dependent density functional theory combined with molecular dynamics. We find that the dc-field-induced force on the upper benzene in addition to the repulsive interaction between the positively charged benzene molecules induced by the laser field leads to fast athermal exfoliation. Thus, we conclude that the dc field enhances the photoexfoliation due to dc-field emission in addition to laser-assisted photoemission. The athermal exfoliation process is shown to depend crucially on the charge state of benzene molecules rather than on the excitation energy supplied by the laser.

  19. Obliquely propagating electrostatic waves in a magnetized plasma for different types of anisotropic kappa distribution

    NASA Astrophysics Data System (ADS)

    Bashir, M. F.; Yoon, P. H.; Murtaza, G.; Aqeel, D.; Javed, S.; Zahra, M.

    2015-12-01

    By using the kinetic theory, the dispersion relation of obliquely propagating electrostatic waves are discussed for three types of kappa distribution function: 1) loss-cone-bi-kappa-Maxwellian distribution, 2) current carrying Bi-kappa-Maxwellian distribution and 3) product-bi-kappa distribution. The effects of kappa-index, loss-cone index, streaming velocity and the temperature anisotropy on the Harris instability is highlighted for their possible application to explain the banded emissions observed in the terrestrial magnetosphere and in the magnetospheres of other planets, e.g., Jupiter, Saturn, Uranus, and in Io's plasma torus.

  20. Atypical gravito-electrostatic fluctuations in the presence of active ion-inertial dynamics

    NASA Astrophysics Data System (ADS)

    Borah, B.; Haloi, A.; Karmakar, P. K.

    2016-04-01

    > The plasmas in space, cosmic and astrophysical environments are long known to consist of numerous massive ionic components contributing to various wave instability fluctuation phenomena. Indeed, the ion-inertial effects need to be incorporated into realistic analyses, rather than treating the gravitating ionic species traditionally as a Boltzmann distributed fluid. Herein, we present an atypical theoretical model setup to study gravito-electrostatic mode-fluctuations in self-gravitating inhomogeneous interstellar dust molecular clouds (DMCs) on the astrophysical fluid scales of space and time. The main goal is focused on investigating the influence of self-consistent dynamic ion-inertial effects on the stability. Methodological application of standard multiple scaling techniques reduces the basic plasma structure equations into a unique pair of decoupled Korteweg-de Vries (KdV) equations for the weak fluctuations. In contrast, the fully nonlinear counterparts are shown to evolve as a new gravito-electrostatically coupled pair of the Sagdeev energy-integral equations. In both the perturbation regimes, excitation of two distinct eigenmode classes - electrostatic compressive solitons and self-gravitational rarefactive solitons with unusual and unique parametric features - is demonstrated and portrayed. The graphical shape analysis reflects new plasma conditions for such eigenspectral patterns to coevolve in realistic interstellar parameter windows hitherto remaining unexplored. It is seen that the inertial ions play a destabilizing influential role leading to enhanced fluctuations toward establishing a reorganized gravito-electrostatic equilibrium structure. Finally, we discuss the consistency of our results in the framework of existing inertialess ion theories, experimental findings and multiple space satellite-based observations, together with new implications.

  1. ELECTROSTATIC MODE ASSOCIATED WITH PINCH VELOCITY IN RFPS

    SciTech Connect

    DELZANNO, GIAN LUCA; FINN, JOHN M.; CHACON, LUIS

    2007-02-08

    The existence of a new electrostatic instability is shown for RFP (reversed field pinch) equilibria. This mode arises due to the non-zero equilibrium radial flow (pinch flow). In RFP simulations with no-stress boundary conditions on the tangential velocity at the radial wall, this electrostatic mode is unstable and dominates the nonlinear dynamics, even in the presence of the MHD modes typically responsible for the reversal of the axial magnetic field at edge. Nonlinearly, this mode leads to two beams moving azimuthally towards each other, which eventually collide. The electrostatic mode can be controlled by using Dirichlet (no-slip) boundary conditions on the azimuthal velocity at the radial wall.

  2. A Feasability Study of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael Ryan; Phillips, James Ralph; Kelley, Joshua David; Mackey, Paul J.; Holbert, Eirik; Clements, Gregory R.; Calle, Carlos I.

    2014-01-01

    Mars rover missions rely on time-consuming, power-exhausting processes to analyze the Martian regolith. A low power electrostatic sensor in the wheels of a future Mars rover could be used to quickly determine when the rover is driving over a different type of regolith. The Electrostatics and Surface Physics Laboratory at NASA's Kennedy Space Center developed the Wheel Electrostatic Spectrometer as a feasibility study to investigate this option. In this paper, we discuss recent advances in this technology to increase the repeatability of the tribocharging experiments, along with supporting data. In addition, we discuss the development of a static elimination tool optimized for Martian conditions.

  3. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.

    PubMed

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-02-15

    Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom-atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom-atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ℓA+ ℓB + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom-atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are only slightly larger than those calculated at HF/6-31G(d,p) level. This convergence behavior is transferable to the well-known amyloid beta polypeptide Aβ1-42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance.

  4. Biofilm formation and local electrostatic force characteristics of Escherichia coli O157:H7 observed by electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Y. J.; Jo, W.; Yang, Y.; Park, S.

    2007-04-01

    The authors report growth media dependence of electrostatic force characteristics in Escherichia coli O157:H7 biofilm through local measurement by electrostatic force microscopy (EFM). The difference values of electrostatic interaction between the bacterial surface and the abiotic surface show an exponential decay behavior during biofilm development. In the EFM data, the biofilm in the low nutrient media shows a faster decay than the biofilm in the rich media. The surface potential in the bacterial cells was changed from 957to149mV. Local characterization of extracellular materials extracted from the bacteria reveals the progress of the biofilm formation and functional complexities.

  5. Rethinking Electrostatic Solvers in Particle Simulations for the Exascale Era

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Markidis, Stefano; Lapenta, Giovanni; Járleberg, Erik; Apostolov, Rossen; Laure, Erwin

    2012-10-01

    In preparation to the exascale era, an alternative approach to calculate the electrostatic forces in Particle Mesh (PM) methods is proposed. While the traditional techniques are based on the calculation of the electrostatic potential by solving the Poisson equation, in the new approach the electric field is calculated by solving Ampère's law. When the Ampere's law is discretized explicitly in time, the electric field values on the mesh are simply updated from the previous values. In this way, the electrostatic solver becomes an embarrassingly parallel problem, making the algorithm extremely scalable and suitable for exascale computing platforms. An implementation PM code with the new electrostatic solver is presented to show that the proposed method produces correct results. It is a very promising algorithm for exascale PM simulations.

  6. Effects of the electrostatic environment on the Majorana nanowire devices

    NASA Astrophysics Data System (ADS)

    Vuik, A.; Eeltink, D.; Akhmerov, A. R.; Wimmer, M.

    2016-03-01

    One of the promising platforms for creating Majorana bound states is a hybrid nanostructure consisting of a semiconducting nanowire covered by a superconductor. We analyze the previously disregarded role of electrostatic interaction in these devices. Our main result is that Coulomb interaction causes the chemical potential to respond to an applied magnetic field, while spin-orbit interaction and screening by the superconducting lead suppress this response. Consequently, the electrostatic environment influences two properties of Majorana devices: the shape of the topological phase boundary and the oscillations of the Majorana splitting energy. We demonstrate that both properties show a non-universal behavior, and depend on the details of the electrostatic environment. We show that when the wire only contains a single electron mode, the experimentally accessible inverse self-capacitance of this mode fully captures the interplay between electrostatics and Zeeman field. This offers a way to compare theoretical predictions with experiments.

  7. Electrostatic aggregation of finely-comminuted geological materials

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, R.

    1986-01-01

    Electrostatic forces are known to have a significant effect on the behavior of finely comminuted particulate material: perhaps the most prevalent expression of this being electrostatic aggregation of particles into relatively coherent clumps. However, the precise role of electrostatic attraction and repulsion in determining the behavior of geological materials (such as volcanic ash and aeolian dust) is poorly understood. Electrostatic aggregation of fine particles is difficult to study on Earth either in the geological or laboratory environment principally because the material in an aggregated state remains airborne for such a short period of time. Experiments conducted in the NASA/JCS - KC135 aircraft are discussed. The aircraft experiments are seen as precursors to more elaborate and scientifically more comprehensive Shuttle or Space Station activities.

  8. Electrostatic aggregation of finely-comminuted geological materials

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Greeley, Ronald

    1987-01-01

    Electrostatic forces are known to have a significant effect on the behavior of finely comminuted particulate material: perhaps the most prevalent expression of this being electrostatic aggregation of particles into relatively coherent clumps. However, the precise role of electrostatic attraction and repulsion in determining the behavior of geological materials (such as volcanic ash and aeolian dust) is poorly understood. Electrostatic aggregation of fine particles is difficult to study on earth either in the geological or laboratory environment principally because the material in an aggregated state remains airborne for such a short period of time. Experiments conducted in the NASA/JSC - KC135 aircraft are discussed. The aircraft experiments are seen as precursors to more elaborate and scientifically more comprehensive Shuttle or Space Station activities.

  9. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    SciTech Connect

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  10. 4. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. 5 (Martin Stupich) - U.S. Steel Homestead Works, Open Hearth Steelmaking Plant, Along Monongahela River, Homestead, Allegheny County, PA

  11. Free base amino alcohols as electrostatic precipitator efficiency enhancers

    SciTech Connect

    Polizzotti, D.M.; Steelhammer, J.C.

    1980-12-16

    A method is disclosed for improving operation of an electrostatic precipitator. By adding free base amino alcohol to a particle-laden gas being treated by the precipitator, the efficiency of particle removal is significantly enhanced.

  12. 5. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EXTERIOR VIEW OF ELECTROSTATIC PRECIPITATORS FOR OPEN HEARTH NO. 5 (Martin Stupich) - U.S. Steel Homestead Works, Open Hearth Steelmaking Plant, Along Monongahela River, Homestead, Allegheny County, PA

  13. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  14. Embedding beyond electrostatics-The role of wave function confinement.

    PubMed

    Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob

    2016-09-14

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods. PMID:27634246

  15. Electrostatic interactions in micro-electro-mechanical resonant oscillators

    NASA Astrophysics Data System (ADS)

    Baskaran, Rajashree; Turner, Kimberly L.

    2001-11-01

    Resonant mode operation is common in many MicroElectroMechanical (MEM) applications including accelerometers, gyroscopes and filters [Kovacs (1998), Nguyen (1999)]. When electrostatic transduction is used in these applications, concerns about cross talk and fringing field effects due to geometry are major issues. In this paper, an electrostatically coupled system is briefly introduced, modeled and the dynamic response due to small parametric (displacement dependant) electrostatic force is analyzed using perturbation methods. The presence of coupled parametric resonance has a very significant effect on the dynamic response. Experimental verification of the occurrence of this phenomenon is also presented here. The coupled oscillator system can also be used as an in situ test device to understand the electrostatic parameters in a system. The method of modeling and analysis presented here is simple, yet captures the dynamic behavior of a system due to a small force. This method can be generalized and will be a useful tool in any resonant MEM system design.

  16. Concurrent droplet charging and sorting by electrostatic actuation.

    PubMed

    Ahn, Byungwook; Lee, Kangsun; Louge, Romain; Oh, Kwang W

    2009-01-01

    This paper presents a droplet-based microfluidic device for concurrent droplet charging and sorting by electrostatic actuation. Water-in-oil droplets can be charged on generation by synchronized electrostatic actuation. Then, simultaneously, the precharged droplets can be electrostatically steered into any designated laminar streamline, thus they can be sorted into one of multiple sorting channels one by one in a controlled fashion. In this paper, we studied the size dependence of the water droplets under various relative flow rates of water and oil. We demonstrated the concurrent charging and sorting of up to 600 dropletss by synchronized electrostatic actuation. Finally, we investigated optimized voltages for stable droplet charging and sorting. This is an essential enabling technology for fast, robust, and multiplexed sorting of microdroplets, and for the droplet-based microfluidic systems.

  17. [Electrostatic protection from cosmic radiation (the current status and prospects)].

    PubMed

    Riabova, T Ia

    1983-01-01

    Conduction currents of the vacuum atmosphere near the spacecraft were measured in an electrostatic shielding and an electrostatic shielding module in electrostatic fields of about 10(7) Wt/m at a voltage of 3 X 10(5) V onboard Cosmos-605, 690, 732 and 936. The resultant conduction currents (less than or equal to 10(-9) A/m2) give evidence that the vacuum environment has high electroinsulation properties which contradicts the concepts derived from ground-based studies. Using up-to-date high-voltage devices, it appears possible to develop an efficient electrostatic shielding which will be of a low weight and a low power consumption.

  18. Fabrication of miniaturized electrostatic deflectors using LIGA

    SciTech Connect

    Jackson, K.H.; Khan-Malek, C.; Muray, L.P.

    1997-04-01

    Miniaturized electron beam columns ({open_quotes}microcolumns{close_quotes}) have been demonstrated to be suitable candidates for scanning electron microscopy (SEM), e-beam lithography and other high resolution, low voltage applications. In the present technology, microcolumns consist of {open_quotes}selectively scaled{close_quotes} micro-sized lenses and apertures, fabricated from silicon membranes with e-beam lithography, reactive ion beam etching and other semiconductor thin-film techniques. These miniaturized electron-optical elements provide significant advantages over conventional optics in performance and ease of fabrication. Since lens aberrations scale roughly with size, it is possible to fabricate simple microcolumns with extremely high brightness sources and electrostatic objective lenses, with resolution and beam current comparable to conventional e-beam columns. Moreover since microcolumns typically operate at low voltages (1 KeV), the proximity effects encountered in e-beam lithography become negligible. For high throughput applications, batch fabrication methods may be used to build large parallel arrays of microcolumns. To date, the best reported performance with a 1 keV cold field emission cathode, is 30 nm resolution at a working distance of 2mm in a 3.5mm column. Fabrication of the microcolumn deflector and stigmator, however, have remained beyond the capabilities of conventional machining operations and semiconductor processing technology. This work examines the LIGA process as a superior alternative to fabrication of the deflectors, especially in terms of degree of miniaturization, dimensional control, placement accuracy, run-out, facet smoothness and choice of suitable materials. LIGA is a combination of deep X-ray lithography, electroplating, and injection molding processes which allow the fabrication of microstructures.

  19. Electrostatic Dust Detection and Removal for ITER

    SciTech Connect

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-09-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 μm spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.

  20. Electrostatic precipitation of condensed acid mist

    SciTech Connect

    Dahlin, R.S.

    1991-04-01

    This report deals with the second part (Phase 2) of a two-phased study of the control of acid mist emissions using a compact, wet electrostatic precipitator (WESP). The goal of the study was to determine the degree of acid mist control that could be achieved when a compact WESP was used to replace or augment the mist eliminators in a flue gas desulfurization (FGD) system. Phase 1 of the study examined the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase 2, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the computer model to project the performance of retrofitted WESPs at both of the utility test sites. Phase 1 results showed that excellent electrical operating conditions could be achieved, but very high loadings of acid mist or the fine fly ash tended to degrade electrical operation because of space charge suppression of the corona current. Measurements made at the utility sites under Phase 2 showed that acid mist accounted for 40 to 57% of the total particulate mass, while fly ash and scrubber solids accounted for 40 to 55% and 1.0 to 3.4%. Impactor samples from both test sites showed an increase in acid content with decreasing particle size. 9 refs., 14 figs., 13 tabs.