Sample records for elegant visual simulation

  1. Virtual reality at work

    NASA Technical Reports Server (NTRS)

    Brooks, Frederick P., Jr.

    1991-01-01

    The utility of virtual reality computer graphics in telepresence applications is not hard to grasp and promises to be great. When the virtual world is entirely synthetic, as opposed to real but remote, the utility is harder to establish. Vehicle simulators for aircraft, vessels, and motor vehicles are proving their worth every day. Entertainment applications such as Disney World's StarTours are technologically elegant, good fun, and economically viable. Nevertheless, some of us have no real desire to spend our lifework serving the entertainment craze of our sick culture; we want to see this exciting technology put to work in medicine and science. The topics covered include the following: testing a force display for scientific visualization -- molecular docking; and testing a head-mounted display for scientific and medical visualization.

  2. Visualizing the spinal neuronal dynamics of locomotion

    NASA Astrophysics Data System (ADS)

    Subramanian, Kalpathi R.; Bashor, D. P.; Miller, M. T.; Foster, J. A.

    2004-06-01

    Modern imaging and simulation techniques have enhanced system-level understanding of neural function. In this article, we present an application of interactive visualization to understanding neuronal dynamics causing locomotion of a single hip joint, based on pattern generator output of the spinal cord. Our earlier work visualized cell-level responses of multiple neuronal populations. However, the spatial relationships were abstract, making communication with colleagues difficult. We propose two approaches to overcome this: (1) building a 3D anatomical model of the spinal cord with neurons distributed inside, animated by the simulation and (2) adding limb movements predicted by neuronal activity. The new system was tested using a cat walking central pattern generator driving a pair of opposed spinal motoneuron pools. Output of opposing motoneuron pools was combined into a single metric, called "Net Neural Drive", which generated angular limb movement in proportion to its magnitude. Net neural drive constitutes a new description of limb movement control. The combination of spatial and temporal information in the visualizations elegantly conveys the neural activity of the output elements (motoneurons), as well as the resulting movement. The new system encompasses five biological levels of organization from ion channels to observed behavior. The system is easily scalable, and provides an efficient interactive platform for rapid hypothesis testing.

  3. Fast animation of lightning using an adaptive mesh.

    PubMed

    Kim, Theodore; Lin, Ming C

    2007-01-01

    We present a fast method for simulating, animating, and rendering lightning using adaptive grids. The "dielectric breakdown model" is an elegant algorithm for electrical pattern formation that we extend to enable animation of lightning. The simulation can be slow, particularly in 3D, because it involves solving a large Poisson problem. Losasso et al. recently proposed an octree data structure for simulating water and smoke, and we show that this discretization can be applied to the problem of lightning simulation as well. However, implementing the incomplete Cholesky conjugate gradient (ICCG) solver for this problem can be daunting, so we provide an extensive discussion of implementation issues. ICCG solvers can usually be accelerated using "Eisenstat's trick," but the trick cannot be directly applied to the adaptive case. Fortunately, we show that an "almost incomplete Cholesky" factorization can be computed so that Eisenstat's trick can still be used. We then present a fast rendering method based on convolution that is competitive with Monte Carlo ray tracing but orders of magnitude faster, and we also show how to further improve the visual results using jittering.

  4. Using CLIPS to represent knowledge in a VR simulation

    NASA Technical Reports Server (NTRS)

    Engelberg, Mark L.

    1994-01-01

    Virtual reality (VR) is an exciting use of advanced hardware and software technologies to achieve an immersive simulation. Until recently, the majority of virtual environments were merely 'fly-throughs' in which a user could freely explore a 3-dimensional world or a visualized dataset. Now that the underlying technologies are reaching a level of maturity, programmers are seeking ways to increase the complexity and interactivity of immersive simulations. In most cases, interactivity in a virtual environment can be specified in the form 'whenever such-and-such happens to object X, it reacts in the following manner.' CLIPS and COOL provide a simple and elegant framework for representing this knowledge-base in an efficient manner that can be extended incrementally. The complexity of a detailed simulation becomes more manageable when the control flow is governed by CLIPS' rule-based inference engine as opposed to by traditional procedural mechanisms. Examples in this paper will illustrate an effective way to represent VR information in CLIPS, and to tie this knowledge base to the input and output C routines of a typical virtual environment.

  5. Elegant Ince—Gaussian breathers in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Yong; Deng, Dong-Mei; Guo, Qi

    2012-06-01

    A novel class of optical breathers, called elegant Ince—Gaussian breathers, are presented in this paper. They are exact analytical solutions to Snyder and Mitchell's mode in an elliptic coordinate system, and their transverse structures are described by Ince-polynomials with complex arguments and a Gaussian function. We provide convincing evidence for the correctness of the solutions and the existence of the breathers via comparing the analytical solutions with numerical simulation of the nonlocal nonlinear Schrödinger equation.

  6. Inhibition of Return and Object-Based Attentional Selection

    ERIC Educational Resources Information Center

    List, Alexandra; Robertson, Lynn C.

    2007-01-01

    Visual attention research has revealed that attentional allocation can occur in space- and/or object-based coordinates. Using the direct and elegant design of R. Egly, J. Driver, and R. Rafal (1994), the present experiments tested whether space- and object-based inhibition of return (IOR) emerge under similar time courses. The experiments were…

  7. Utilizing a Simulation Exercise to Illustrate Critical Inventory Management Concepts

    ERIC Educational Resources Information Center

    Umble, Elisabeth; Umble, Michael

    2013-01-01

    Most undergraduate business students simply do not appreciate the elegant mathematical beauty of inventory models. So how does an instructor capture students' interest and keep them engaged in the learning process when teaching inventory management concepts? This paper describes a competitive and energizing in-class simulation game that introduces…

  8. Anatomy and physiology of the cornea.

    PubMed

    DelMonte, Derek W; Kim, Terry

    2011-03-01

    The importance of the cornea to the ocular structure and visual system is often overlooked because of the cornea's unassuming transparent nature. The cornea lacks the neurobiological sophistication of the retina and the dynamic movement of the lens; yet, without its clarity, the eye would not be able to perform its necessary functions. The complexity of structure and function necessary to maintain such elegant simplicity is the wonder that draws us to one of the most important components of our visual system. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Visual control of prey-capture flight in dragonflies.

    PubMed

    Olberg, Robert M

    2012-04-01

    Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Finding Brown's peony a sweet attraction

    Treesearch

    Nan. Vance

    2012-01-01

    I first encountered Brown’s peony (Paeonia brownie) with its verdant, lavender-tinged leaves and elegantly nodding maroon flowers growing among bitterbrush and bunchgrass on the eastern flank of the Oregon Cascades. My first thought was “What is a plant like you doing in a place like this?” It would be natural to visualize this native wild peony as...

  11. Elegant Shadow Making Tiny Force Visible for Water-Walking Arthropods and Updated Archimedes' Principle.

    PubMed

    Zheng, Yelong; Lu, Hongyu; Yin, Wei; Tao, Dashuai; Shi, Lichun; Tian, Yu

    2016-10-07

    Forces acted on legs of water-walking arthropods with weights in dynes are of great interest for entomologist, physicists, and engineers. While their floating mechanism has been recognized, the in vivo leg forces stationary have not yet been simultaneously achieved. In this study, their elegant bright-edged leg shadows are used to make the tiny forces visible and measurable based on the updated Archimedes' principle. The force was approximately proportional to the shadow area with a resolution from nanonewton to piconewton/pixel. The sum of leg forces agreed well with the body weight measured with an accurate electronic balance, which verified updated Archimedes' principle at the arthropod level. The slight changes of vertical body weight focus position and the body pitch angle have also been revealed for the first time. The visualization of tiny force by shadow is cost-effective and very sensitive and could be used in many other applications.

  12. Application of the Double-Tangent Construction of Coexisting Phases to Any Type of Phase Equilibrium for Binary Systems Modeled with the Gamma-Phi Approach

    ERIC Educational Resources Information Center

    Jaubert, Jean-Noël; Privat, Romain

    2014-01-01

    The double-tangent construction of coexisting phases is an elegant approach to visualize all the multiphase binary systems that satisfy the equality of chemical potentials and to select the stable state. In this paper, we show how to perform the double-tangent construction of coexisting phases for binary systems modeled with the gamma-phi…

  13. The Elegance of Disordered Granular Packings: A Validation of Edwards' Hypothesis

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Donahue, Carly M.

    2004-01-01

    We have found a way to analyze Edwards' density of states for static granular packings in the special case of round, rigid, frictionless grains assuming constant coordination number. It obtains the most entropic density of single grain states, which predicts several observables including the distribution of contact forces. We compare these results against empirical data obtained in dynamic simulations of granular packings. The agreement between theory and the empirics is quite good, helping validate the use of statistical mechanics methods in granular physics. The differences between theory and empirics are mainly due to the variable coordination number, and when the empirical data are sorted by that number we obtain several insights that suggest an underlying elegance in the density of states

  14. Elegant anti-disturbance control for discrete-time stochastic systems with nonlinearity and multiple disturbances

    NASA Astrophysics Data System (ADS)

    Wei, Xinjiang; Sun, Shixiang

    2018-03-01

    An elegant anti-disturbance control (EADC) strategy for a class of discrete-time stochastic systems with both nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors, is proposed in this paper. A stochastic disturbance observer is constructed to estimate the disturbance with partially known information, based on which, an EADC scheme is proposed by combining pole placement and linear matrix inequality methods. It is proved that the two different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete-time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed schemes compared with some existing results.

  15. Domain specific languages for modeling and simulation: use case OMS3

    USDA-ARS?s Scientific Manuscript database

    A domain-specific language (DSL) is usually a concise, declarative language that strongly emphasizes a particular problem domain. DSL methods and implementations in general are widely prototyped and applied in academia for creating elegant ways to express properties, relationships, and behavior of r...

  16. Elegant space systems: How do we get there?

    NASA Astrophysics Data System (ADS)

    Salado, Alejandro; Nilchiani, Roshanak

    Can the space industry produce elegant systems? If so, how? Space systems development has become process-centric, e.g., process creation or modification is the default response to most development and/or operations challenges when problems are encountered. But is that really effective? An increasing number of researchers and practitioners disagree with such an approach and suggest that elegance is as important to a system and its operation as fulfillment of technical and contractual requirements; consequently they are proposing a review and refreshment of the systems engineering practice. Elegance is generally recognizable, but hard to achieve deterministically. The research community has begun an endeavor to define what elegance is in systems engineering terms, find ways to measure or at least characterize it, and create or adapt philosophies and methodologies that promote elegance as a design objective (driver?). This paper asserts that while elegance cannot be engineered in a traditional sense, it can emerge as a natural result of design activity. This needs to be enabled and can be facilitated, but ultimately depends on the talent of the design teams as individuals and as a group. This paper summarizes existing technical definitions of elegance and discusses a) how it can be pursued and b) cultural conditions and habits that help elegance emerge during the development and operation of a space system.

  17. A unified data representation theory for network visualization, ordering and coarse-graining

    PubMed Central

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form. PMID:26348923

  18. A Primer on Applying Monte Carlo Simulation, Real Options Analysis, Knowledge Value Added, Forecasting, and Portfolio Optimization

    DTIC Science & Technology

    2010-02-08

    popular pastime. Even in Biblical accounts, Roman soldiers cast lots for Christ’s robes. In earlier times, chance was something that occurred in nature...with the advent of blazing fast computing technology, our modern world of uncertainty can be explained with much more elegance through

  19. [To explain is to narrate. How to visualize scientific data].

    PubMed

    Hawtin, Nigel

    2014-01-01

    When you try to appeal a vast ranging audience, as it occurs at the New Scientist that addresses scientists as well as the general public, your scientific visual explainer must be succinct, clear, accurate and easily understandable. In order to reach this goal, your message should provide only the main data, the ones that allow you to balance information and clarity: information should be put into context and all the extra details should be cut down. It is very important, then, to know well both your audience and the subject you are going to describe, as graphic masters of the past, like William Playfair and Charles Minard, have taught us. Moreover, you should try to engage your reader connecting the storytelling power of words and the driving force of the graphics: colours, visual elements, typography. To be effective, in fact, an infographic should not only be truthful and functional, but also elegant, having style and legibility.

  20. GRAPHIC SOURCES FOR THE TEACHING OF RESTORATION ACTING STYLE, AN APPROACH TO THE ACTING OF RESTORATION COMEDY. FINAL REPORT.

    ERIC Educational Resources Information Center

    HENSHAW, NANCY WANDALIE

    THIS SOURCE BOOK TRANSLATES THE ELEGANT AND SOMEWHAT ALIEN WORLD OF RESTORATION COMEDY INTO TERMS THAT CAN ENABLE AMERICAN DIRECTORS AND ACTORS--BY EMPLOYING THE ACTING "METHOD" OF CONTEMPORARY PSYCHOLOGICAL REALISM--TO SIMULATE THE EXPERIENCE, PERCEPTION, AND EXPRESSION OF THE 17TH-CENTURY ENGLISH ARISTOCRAT. TO ENCOURAGE DIRECTORS TO IMMERSE…

  1. An elegant access to formation and vaporization enthalpies of ionic liquids by indirect DSC experiment and "in silico" calculations.

    PubMed

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Schick, Christoph; Jayaraman, Saivenkataraman; Maginn, Edward J

    2012-07-14

    We used DSC for determination of the reaction enthalpy of the synthesis of the ionic liquid [C(4)mim][Cl]. A combination of DSC and quantum chemical calculations presents a new, indirect way to study thermodynamics of ionic liquids. The new procedure was validated with two direct experimental measurements and MD simulations.

  2. Virtual reality based surgery simulation for endoscopic gynaecology.

    PubMed

    Székely, G; Bajka, M; Brechbühler, C; Dual, J; Enzler, R; Haller, U; Hug, J; Hutter, R; Ironmonger, N; Kauer, M; Meier, V; Niederer, P; Rhomberg, A; Schmid, P; Schweitzer, G; Thaler, M; Vuskovic, V; Tröster, G

    1999-01-01

    Virtual reality (VR) based surgical simulator systems offer very elegant possibilities to both enrich and enhance traditional education in endoscopic surgery. However, while a wide range of VR simulator systems have been proposed and realized in the past few years, most of these systems are far from able to provide a reasonably realistic surgical environment. We explore the basic approaches to the current limits of realism and ultimately seek to extend these based on our description and analysis of the most important components of a VR-based endoscopic simulator. The feasibility of the proposed techniques is demonstrated on a first modular prototype system implementing the basic algorithms for VR-training in gynaecologic laparoscopy.

  3. Contact Angle of Drops Measured on Nontransparent Surfaces and Capillary Flow Visualized

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Nengli

    2003-01-01

    The spreading of a liquid on a solid surface is important for various practical processes, and contact-angle measurements provide an elegant method to characterize the interfacial properties of the liquid with the solid substrates. The complex physical processes occurring when a liquid contacts a solid play an important role in determining the performance of chemical processes and materials. Applications for these processes are in printing, coating, gluing, textile dyeing, and adhesives and in the pharmaceutical industry, biomedical research, adhesives, flat panel display manufacturing, surfactant chemistry, and thermal engineering.

  4. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  5. “Elegant Tool” Delivers Genome-Level Science for Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith Arterburn

    Now, a ‘disruptive, virtual scientific simulation tool’ delivers a new, genome-level investigation for electrolytes to develop better, more efficient batteries. Dr. Kevin Gering, an Idaho National Laboratory researcher, has developed the Advanced Electrolyte Model (AEM), a copyrighted molecular-based simulation tool that has been scientifically proven and validated using at least a dozen ‘real-world’ physical metrics. Nominated for the 2014 international R&D 100 Award, AEM revolutionizes electrolyte materials selection, optimizing combinations and key design elements to make battery design and experimentation quick, accurate and responsive to specific needs.

  6. Elegant Gaussian beams for enhanced optical manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpmann, Christina, E-mail: c.alpmann@uni-muenster.de; Schöler, Christoph; Denz, Cornelia

    2015-06-15

    Generation of micro- and nanostructured complex light beams attains increasing impact in photonics and laser applications. In this contribution, we demonstrate the implementation and experimental realization of the relatively unknown, but highly versatile class of complex-valued Elegant Hermite- and Laguerre-Gaussian beams. These beams create higher trapping forces compared to standard Gaussian light fields due to their propagation changing properties. We demonstrate optical trapping and alignment of complex functional particles as nanocontainers with standard and Elegant Gaussian light beams. Elegant Gaussian beams will inspire manifold applications in optical manipulation, direct laser writing, or microscopy, where the design of the point-spread functionmore » is relevant.« less

  7. Python-Based Applications for Hydrogeological Modeling

    NASA Astrophysics Data System (ADS)

    Khambhammettu, P.

    2013-12-01

    Python is a general-purpose, high-level programming language whose design philosophy emphasizes code readability. Add-on packages supporting fast array computation (numpy), plotting (matplotlib), scientific /mathematical Functions (scipy), have resulted in a powerful ecosystem for scientists interested in exploratory data analysis, high-performance computing and data visualization. Three examples are provided to demonstrate the applicability of the Python environment in hydrogeological applications. Python programs were used to model an aquifer test and estimate aquifer parameters at a Superfund site. The aquifer test conducted at a Groundwater Circulation Well was modeled with the Python/FORTRAN-based TTIM Analytic Element Code. The aquifer parameters were estimated with PEST such that a good match was produced between the simulated and observed drawdowns. Python scripts were written to interface with PEST and visualize the results. A convolution-based approach was used to estimate source concentration histories based on observed concentrations at receptor locations. Unit Response Functions (URFs) that relate the receptor concentrations to a unit release at the source were derived with the ATRANS code. The impact of any releases at the source could then be estimated by convolving the source release history with the URFs. Python scripts were written to compute and visualize receptor concentrations for user-specified source histories. The framework provided a simple and elegant way to test various hypotheses about the site. A Python/FORTRAN-based program TYPECURVEGRID-Py was developed to compute and visualize groundwater elevations and drawdown through time in response to a regional uniform hydraulic gradient and the influence of pumping wells using either the Theis solution for a fully-confined aquifer or the Hantush-Jacob solution for a leaky confined aquifer. The program supports an arbitrary number of wells that can operate according to arbitrary schedules. The python wrapper invokes the underlying FORTRAN layer to compute transient groundwater elevations and processes this information to create time-series and 2D plots.

  8. An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilie, Ioana M.; Briels, Wim J.; MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede

    2015-03-21

    Brownian Dynamics is the designated technique to simulate the collective dynamics of colloidal particles suspended in a solution, e.g., the self-assembly of patchy particles. Simulating the rotational dynamics of anisotropic particles by a first-order Langevin equation, however, gives rise to a number of complications, ranging from singularities when using a set of three rotational coordinates to subtle metric and drift corrections. Here, we derive and numerically validate a quaternion-based Rotational Brownian Dynamics algorithm that handles these complications in a simple and elegant way. The extension to hydrodynamic interactions is also discussed.

  9. Modelling giant radio halos. Doctoral Thesis Award Lecture 2012

    NASA Astrophysics Data System (ADS)

    Donnert, J. M. F.

    2013-06-01

    We review models for giant radio halos in clusters of galaxies, with a focus on numerical and theoretical work. After summarising the most important observations of these objects, we present an introduction to the theoretical aspects of hadronic models. We compare these models with observations using simulations and find severe problems for hadronic models. We give a short introduction to reacceleration models and show results from the first simulation of CRe reacceleration in cluster mergers. We find that in-line with previous theoretical work, reacceleration models are able to elegantly explain main observables of giant radio halos.

  10. Generalized Sheet Transition Condition FDTD Simulation of Metasurface

    NASA Astrophysics Data System (ADS)

    Vahabzadeh, Yousef; Chamanara, Nima; Caloz, Christophe

    2018-01-01

    We propose an FDTD scheme based on Generalized Sheet Transition Conditions (GSTCs) for the simulation of polychromatic, nonlinear and space-time varying metasurfaces. This scheme consists in placing the metasurface at virtual nodal plane introduced between regular nodes of the staggered Yee grid and inserting fields determined by GSTCs in this plane in the standard FDTD algorithm. The resulting update equations are an elegant generalization of the standard FDTD equations. Indeed, in the limiting case of a null surface susceptibility ($\\chi_\\text{surf}=0$), they reduce to the latter, while in the next limiting case of a time-invariant metasurface $[\\chi_\\text{surf}\

  11. Gene therapy for inherited retinal degenerations: initial successes and future challenges

    NASA Astrophysics Data System (ADS)

    Gupta, Priya R.; Huckfeldt, Rachel M.

    2017-10-01

    Inherited retinal degenerations are a clinically and genetically heterogeneous group of conditions that have historically shared an untreatable course. In recent years, however, a wide range of therapeutic strategies have demonstrated efficacy in preclinical studies and entered clinical trials with a common goal of improving visual function for patients affected with these conditions. Gene therapy offers a particularly elegant and precise opportunity to target the causative genetic mutations underlying these monogenic diseases. The present review will provide an overview of gene therapy with particular emphasis on key clinical results to date and challenges for the future.

  12. Elegant Ince-Gaussian beams in a quadratic-index medium

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Yong; Deng, Dong-Mei; Guo, Qi

    2011-09-01

    Elegant Ince—Gaussian beams, which are the exact solutions of the paraxial wave equation in a quadratic-index medium, are derived in elliptical coordinates. These kinds of beams are the alternative form of standard Ince—Gaussian beams and they display better symmetry between the Ince-polynomials and the Gaussian function in mathematics. The transverse intensity distribution and the phase of the elegant Ince—Gaussian beams are discussed.

  13. Generative Topographic Mapping (GTM): Universal Tool for Data Visualization, Structure-Activity Modeling and Dataset Comparison.

    PubMed

    Kireeva, N; Baskin, I I; Gaspar, H A; Horvath, D; Marcou, G; Varnek, A

    2012-04-01

    Here, the utility of Generative Topographic Maps (GTM) for data visualization, structure-activity modeling and database comparison is evaluated, on hand of subsets of the Database of Useful Decoys (DUD). Unlike other popular dimensionality reduction approaches like Principal Component Analysis, Sammon Mapping or Self-Organizing Maps, the great advantage of GTMs is providing data probability distribution functions (PDF), both in the high-dimensional space defined by molecular descriptors and in 2D latent space. PDFs for the molecules of different activity classes were successfully used to build classification models in the framework of the Bayesian approach. Because PDFs are represented by a mixture of Gaussian functions, the Bhattacharyya kernel has been proposed as a measure of the overlap of datasets, which leads to an elegant method of global comparison of chemical libraries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Platform-Independence and Scheduling In a Multi-Threaded Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    Sugden, Paul P.; Rau, Melissa A.; Kenney, P. Sean

    2001-01-01

    Aviation research often relies on real-time, pilot-in-the-loop flight simulation as a means to develop new flight software, flight hardware, or pilot procedures. Often these simulations become so complex that a single processor is incapable of performing the necessary computations within a fixed time-step. Threads are an elegant means to distribute the computational work-load when running on a symmetric multi-processor machine. However, programming with threads often requires operating system specific calls that reduce code portability and maintainability. While a multi-threaded simulation allows a significant increase in the simulation complexity, it also increases the workload of a simulation operator by requiring that the operator determine which models run on which thread. To address these concerns an object-oriented design was implemented in the NASA Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. The design provides a portable and maintainable means to use threads and also provides a mechanism to automatically load balance the simulation models.

  15. A gradual update method for simulating the steady-state solution of stiff differential equations in metabolic circuits.

    PubMed

    Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki

    2009-02-01

    Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.

  16. SIMULATIONS OF BOOSTER INJECTION EFFICIENCY FOR THE APS-UPGRADE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvey, J.; Borland, M.; Harkay, K.

    2017-06-25

    The APS-Upgrade will require the injector chain to provide high single bunch charge for swap-out injection. One possible limiting factor to achieving this is an observed reduction of injection efficiency into the booster synchrotron at high charge. We have simulated booster injection using the particle tracking code elegant, including a model for the booster impedance and beam loading in the RF cavities. The simulations point to two possible causes for reduced efficiency: energy oscillations leading to losses at high dispersion locations, and a vertical beam size blowup caused by ions in the Particle Accumulator Ring. We also show that themore » efficiency is much higher in an alternate booster lattice with smaller vertical beta function and zero dispersion in the straight sections.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaunak, S.K.; Soni, B.K.

    With research interests shifting away from primarily military or industrial applications to more environmental applications, the area of ocean modelling has become an increasingly popular and exciting area of research. This paper presents a CIPS (Computation Field Simulation) system customized for the solution of oceanographic problems. This system deals primarily with the generation of simple, yet efficient grids for coastal areas. The two primary grid approaches are both structured in methodology. The first approach is a standard approach which is used in such popular grid generation softwares as GE-NIE++, EAGLEVIEW, and TIGER, where the user defines boundaries via points, lines,more » or curves, varies the distribution of points along these boundaries and then creates the interior grid. The second approach is to allow the user to interactively select points on the screen to form the boundary curves and then create the interior grid from these spline curves. The program has been designed with the needs of the ocean modeller in mind so that the modeller can obtain results in a timely yet elegant manner. The modeller performs four basic steps in using the program. First, he selects a region of interest from a popular database. Then, he creates a grid for that region. Next, he sets up boundary and input conditions and runs a circulation model. Finally, the modeller visualizes the output.« less

  18. Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.

    PubMed

    Havel, T F; Najfeld, I; Yang, J X

    1994-08-16

    Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given.

  19. Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.

    PubMed Central

    Havel, T F; Najfeld, I; Yang, J X

    1994-01-01

    Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given. PMID:8058742

  20. Self-testing properties of Gisin's elegant Bell inequality

    NASA Astrophysics Data System (ADS)

    Andersson, Ole; Badzi&aogo; g, Piotr; Bengtsson, Ingemar; Dumitru, Irina; Cabello, Adán

    2017-09-01

    An experiment in which the Clauser-Horne-Shimony-Holt inequality is maximally violated is self-testing (i.e., it certifies in a device-independent way both the state and the measurements). We prove that an experiment maximally violating Gisin's elegant Bell inequality is not similarly self-testing. The reason can be traced back to the problem of distinguishing an operator from its complex conjugate. We provide a complete and explicit characterization of all scenarios in which the elegant Bell inequality is maximally violated. This enables us to see exactly how the problem plays out.

  1. The Rapid Disaster Evaluation System (RaDES): A Plan to Improve Global Disaster Response by Privatizing the Assessment Component.

    PubMed

    Iserson, Kenneth V

    2017-09-01

    Emergency medicine personnel frequently respond to major disasters. They expect to have an effective and efficient management system to elegantly allocate available resources. Despite claims to the contrary, experience demonstrates this rarely occurs. This article describes privatizing disaster assessment using a single-purposed, accountable, and well-trained organization. The goal is to achieve elegant disaster assessment, rather than repeatedly exhorting existing groups to do it. The Rapid Disaster Evaluation System (RaDES) would quickly and efficiently assess a postdisaster population's needs. It would use an accountable nongovernmental agency's teams with maximal training, mobility, and flexibility. Designed to augment the Inter-Agency Standing Committee's 2015 Emergency Response Preparedness Plan, RaDES would provide the initial information needed to avoid haphazard and overlapping disaster responses. Rapidly deployed teams would gather information from multiple sources and continually communicate those findings to their base, which would then disseminate them to disaster coordinators in a concise, coherent, and transparent way. The RaDES concept represents an elegant, minimally bureaucratic, and effective rapid response to major disasters. However, its implementation faces logistical, funding, and political obstacles. Developing and maintaining RaDES would require significant funding and political commitment to coordinate the numerous agencies that claim to be performing the same tasks. Although simulations can demonstrate efficacy and deficiencies, only field tests will demonstrate RaDES' power to improve interagency coordination and decrease the cost of major disaster response. At the least, the RaDES concept should serve as a model for discussing how to practicably improve our current chaotic disaster responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Engineering Elegant Systems: Postulates, Principles, and Hypotheses of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.

    2018-01-01

    Definition: System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system; Elegant System - A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation. Primary Focus: System Design and Integration: Identify system couplings and interactions; Identify system uncertainties and sensitivities; Identify emergent properties; Manage the effectiveness of the system. Engineering Discipline Integration: Manage flow of information for system development and/or operations; Maintain system activities within budget and schedule. Supporting Activities: Process application and execution.

  3. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening.

    PubMed

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong

    2016-01-01

    Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential "new use" drugs. Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential "new use" drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2, FDA: Food and Drug Administration, PDB: Protein Database Bank, RMSDs: Root mean square deviations, SPC: Single point charge, PME: Particle mesh Ewald, NVT: Constant volume, NPT: Constant pressure, RMSF: Root-mean-square fluctuation.

  4. Power-law scaling of plasma pressure on laser-ablated tin microdroplets

    NASA Astrophysics Data System (ADS)

    Kurilovich, Dmitry; Basko, Mikhail M.; Kim, Dmitrii A.; Torretti, Francesco; Schupp, Ruben; Visschers, Jim C.; Scheers, Joris; Hoekstra, Ronnie; Ubachs, Wim; Versolato, Oscar O.

    2018-01-01

    The measurement of the propulsion of metallic microdroplets exposed to nanosecond laser pulses provides an elegant method for probing the ablation pressure in a dense laser-produced plasma. We present the measurements of the propulsion velocity over three decades in the driving Nd:YAG laser pulse energy and observe a near-perfect power law dependence. Simulations performed with the RALEF-2D radiation-hydrodynamic code are shown to be in good agreement with the power law above a specific threshold energy. The simulations highlight the importance of radiative losses which significantly modify the power of the pressure scaling. Having found a good agreement between the experiment and the simulations, we investigate the analytic origins of the obtained power law and conclude that none of the available analytic theories is directly applicable for explaining our power exponent.

  5. Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing

    NASA Astrophysics Data System (ADS)

    Duan, Ling-Yu; Sun, Wei; Zhang, Xinfeng; Wang, Shiqi; Chen, Jie; Yin, Jianxiong; See, Simon; Huang, Tiejun; Kot, Alex C.; Gao, Wen

    2018-05-01

    The compact descriptors for visual search (CDVS) standard from ISO/IEC moving pictures experts group (MPEG) has succeeded in enabling the interoperability for efficient and effective image retrieval by standardizing the bitstream syntax of compact feature descriptors. However, the intensive computation of CDVS encoder unfortunately hinders its widely deployment in industry for large-scale visual search. In this paper, we revisit the merits of low complexity design of CDVS core techniques and present a very fast CDVS encoder by leveraging the massive parallel execution resources of GPU. We elegantly shift the computation-intensive and parallel-friendly modules to the state-of-the-arts GPU platforms, in which the thread block allocation and the memory access are jointly optimized to eliminate performance loss. In addition, those operations with heavy data dependence are allocated to CPU to resolve the extra but non-necessary computation burden for GPU. Furthermore, we have demonstrated the proposed fast CDVS encoder can work well with those convolution neural network approaches which has harmoniously leveraged the advantages of GPU platforms, and yielded significant performance improvements. Comprehensive experimental results over benchmarks are evaluated, which has shown that the fast CDVS encoder using GPU-CPU hybrid computing is promising for scalable visual search.

  6. Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.

  7. A model study on the circuit mechanism underlying decision-making in Drosophila.

    PubMed

    Wu, Zhihua; Guo, Aike

    2011-05-01

    Previous elegant experiments in a flight simulator showed that conditioned Drosophila is able to make a clear-cut decision to avoid potential danger. When confronted with conflicting visual cues, the relative saliency of two competing cues is found to be a sensory ruler for flies to judge which cue should be used for decision-making. Further genetic manipulations and immunohistological analysis revealed that the dopamine system and mushroom bodies are indispensable for such a clear-cut or nonlinear decision. The neural circuit mechanism, however, is far from being clear. In this paper, we adopt a computational modeling approach to investigate how different brain areas and the dopamine system work together to drive a fly to make a decision. By developing a systems-level neural network, a two-pathway circuit is proposed. Besides a direct pathway from a feature binding area to the motor center, another connects two areas via the mushroom body, a target of dopamine release. A raised dopamine level is hypothesized to be induced by complex choice tasks and to enhance lateral inhibition and steepen the units' response gain in the mushroom body. Simulations show that training helps to assign values to formerly neutral features. For a circuit model with a blocked mushroom body, the direct pathway passes all alternatives to the motor center without changing original values, giving rise to a simple choice characterized by a linear choice curve. With respect to an intact circuit, enhanced lateral inhibition dependent on dopamine critically promotes competition between alternatives, turning the linear- into nonlinear choice behavior. Results account well for experimental data, supporting the reasonableness of model working hypotheses. Several testable predictions are made for future studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Intra-Beam and Touschek Scattering Computations for Beam with Non-Gaussian Longitudinal Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, A.; Borland, M.

    Both intra-beamscattering (IBS) and the Touschek effect become prominent formulti-bend-achromat- (MBA-) based ultra-low-emittance storage rings. To mitigate the transverse emittance degradation and obtain a reasonably long beam lifetime, a higher harmonic rf cavity (HHC) is often proposed to lengthen the bunch. The use of such a cavity results in a non-gaussian longitudinal distribution. However, common methods for computing IBS and Touschek scattering assume Gaussian distributions. Modifications have been made to several simulation codes that are part of the elegant [1] toolkit to allow these computations for arbitrary longitudinal distributions. After describing thesemodifications, we review the results of detailed simulations formore » the proposed hybrid seven-bend-achromat (H7BA) upgrade lattice [2] for the Advanced Photon Source.« less

  9. Harnessing molecular excited states with Lanczos chains.

    PubMed

    Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O; Saad, Yousef; Umari, Paolo; Xian, Jiawei

    2010-02-24

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  10. Propagation of elliptic-Gaussian beams in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Deng, Dongmei; Guo, Qi

    2011-10-01

    The propagation of the elliptic-Gaussian beams is studied in strongly nonlocal nonlinear media. The elliptic-Gaussian beams and elliptic-Gaussian vortex beams are obtained analytically and numerically. The patterns of the elegant Ince-Gaussian and the generalized Ince-Gaussian beams are varied periodically when the input power is equal to the critical power. The stability is verified by perturbing the initial beam by noise. By simulating the propagation of the elliptic-Gaussian beams in liquid crystal, we find that when the mode order is not big enough, there exists the quasi-elliptic-Gaussian soliton states.

  11. Harnessing molecular excited states with Lanczos chains

    NASA Astrophysics Data System (ADS)

    Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O.; Saad, Yousef; Umari, Paolo; Xian, Jiawei

    2010-02-01

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  12. Design and construction of a telescope simulator for LISA optical bench testing

    NASA Astrophysics Data System (ADS)

    Bogenstahl, J.; Tröbs, M.; d'Arcio, L.; Diekmann, C.; Fitzsimons, E. D.; Hennig, J. S.; Hey, F. G.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Taylor, A.; Ward, H.; Weise, D.; Heinzel, G.; Danzmann, K.

    2017-11-01

    LISA (Laser Interferometer Space Antenna) is a proposed space-based instrument for astrophysical observations via the measurement of gravitational waves at mHz frequencies. The triangular constellation of the three LISA satellites will allow interferometric measurement of the changes in distance along the arms. On board each LISA satellite there will be two optical benches, one for each testmass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. For technology development, an Optical Bench Elegant Bread Board (OB EBB) is currently under construction. To verify the performance of the EBB, another optical bench - the so-called telescope simulator bench - will be constructed to simulate the beam coming from the far spacecraft. The optical beam from the telescope simulator will be superimposed with the light on the LISA OB, in order to simulate the link between two LISA satellites. Similarly in reverse, the optical beam from the LISA OB will be picked up and measured on the telescope simulator bench. Furthermore, the telescope simulator houses a test mass simulator. A gold coated mirror which can be manipulated by an actuator simulates the test mass movements. This paper presents the layout and design of the bench for the telescope simulator and test mass simulator.

  13. Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing.

    PubMed

    Duan, Ling-Yu; Sun, Wei; Zhang, Xinfeng; Wang, Shiqi; Chen, Jie; Yin, Jianxiong; See, Simon; Huang, Tiejun; Kot, Alex C; Gao, Wen

    2018-05-01

    The compact descriptors for visual search (CDVS) standard from ISO/IEC moving pictures experts group has succeeded in enabling the interoperability for efficient and effective image retrieval by standardizing the bitstream syntax of compact feature descriptors. However, the intensive computation of a CDVS encoder unfortunately hinders its widely deployment in industry for large-scale visual search. In this paper, we revisit the merits of low complexity design of CDVS core techniques and present a very fast CDVS encoder by leveraging the massive parallel execution resources of graphics processing unit (GPU). We elegantly shift the computation-intensive and parallel-friendly modules to the state-of-the-arts GPU platforms, in which the thread block allocation as well as the memory access mechanism are jointly optimized to eliminate performance loss. In addition, those operations with heavy data dependence are allocated to CPU for resolving the extra but non-necessary computation burden for GPU. Furthermore, we have demonstrated the proposed fast CDVS encoder can work well with those convolution neural network approaches which enables to leverage the advantages of GPU platforms harmoniously, and yield significant performance improvements. Comprehensive experimental results over benchmarks are evaluated, which has shown that the fast CDVS encoder using GPU-CPU hybrid computing is promising for scalable visual search.

  14. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish.

    PubMed

    Oteiza, Pablo; Odstrcil, Iris; Lauder, George; Portugues, Ruben; Engert, Florian

    2017-07-27

    When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal's frame of reference. Despite this, many aquatic animals consistently orient and swim against oncoming flows (a behaviour known as rheotaxis) even in the absence of visual cues. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that, in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioural data that support a novel algorithm based on such local velocity gradients that fish use to avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, to measure its temporal change after swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioural algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviours in moving fluids.

  15. Visual selective attention is equally functional for individuals with low and high working memory capacity: evidence from accuracy and eye movements.

    PubMed

    Mall, Jonathan T; Morey, Candice C; Wolff, Michael J; Lehnert, Franziska

    2014-10-01

    Selective attention and working memory capacity (WMC) are related constructs, but debate about the manner in which they are related remains active. One elegant explanation of variance in WMC is that the efficiency of filtering irrelevant information is the crucial determining factor, rather than differences in capacity per se. We examined this hypothesis by relating WMC (as measured by complex span tasks) to accuracy and eye movements during visual change detection tasks with different degrees of attentional filtering and allocation requirements. Our results did not indicate strong filtering differences between high- and low-WMC groups, and where differences were observed, they were counter to those predicted by the strongest attentional filtering hypothesis. Bayes factors indicated evidence favoring positive or null relationships between WMC and correct responses to unemphasized information, as well as between WMC and the time spent looking at unemphasized information. These findings are consistent with the hypothesis that individual differences in storage capacity, not only filtering efficiency, underlie individual differences in working memory.

  16. Investigating implicit statistical learning mechanisms through contextual cueing.

    PubMed

    Goujon, Annabelle; Didierjean, André; Thorpe, Simon

    2015-09-01

    Since its inception, the contextual cueing (CC) paradigm has generated considerable interest in various fields of cognitive sciences because it constitutes an elegant approach to understanding how statistical learning (SL) mechanisms can detect contextual regularities during a visual search. In this article we review and discuss five aspects of CC: (i) the implicit nature of learning, (ii) the mechanisms involved in CC, (iii) the mediating factors affecting CC, (iv) the generalization of CC phenomena, and (v) the dissociation between implicit and explicit CC phenomena. The findings suggest that implicit SL is an inherent component of ongoing processing which operates through clustering, associative, and reinforcement processes at various levels of sensory-motor processing, and might result from simple spike-timing-dependent plasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The ambiguity of simplicity in quantum and classical simulation

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, Cina; Mahoney, John R.; Crutchfield, James P.

    2017-04-01

    A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the ;elegance; of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  18. Contact Trees: Network Visualization beyond Nodes and Edges

    PubMed Central

    Sallaberry, Arnaud; Fu, Yang-chih; Ho, Hwai-Chung; Ma, Kwan-Liu

    2016-01-01

    Node-Link diagrams make it possible to take a quick glance at how nodes (or actors) in a network are connected by edges (or ties). A conventional network diagram of a “contact tree” maps out a root and branches that represent the structure of nodes and edges, often without further specifying leaves or fruits that would have grown from small branches. By furnishing such a network structure with leaves and fruits, we reveal details about “contacts” in our ContactTrees upon which ties and relationships are constructed. Our elegant design employs a bottom-up approach that resembles a recent attempt to understand subjective well-being by means of a series of emotions. Such a bottom-up approach to social-network studies decomposes each tie into a series of interactions or contacts, which can help deepen our understanding of the complexity embedded in a network structure. Unlike previous network visualizations, ContactTrees highlight how relationships form and change based upon interactions among actors, as well as how relationships and networks vary by contact attributes. Based on a botanical tree metaphor, the design is easy to construct and the resulting tree-like visualization can display many properties at both tie and contact levels, thus recapturing a key ingredient missing from conventional techniques of network visualization. We demonstrate ContactTrees using data sets consisting of up to three waves of 3-month contact diaries over the 2004-2012 period, and discuss how this design can be applied to other types of datasets. PMID:26784350

  19. Visual Elements in Flight Simulation

    DTIC Science & Technology

    1975-07-01

    control. In consequence, current efforts tc create appropriate visual simulations run the gamut from efforts toward almost complete replication of the...create appropriate visual simulations run the gamut from efforts to create appropriate visual simulations run the gamut from efforts toward almost

  20. Coupled simulation of the propulsion system and vehicle using the ESPSS satellite library

    NASA Astrophysics Data System (ADS)

    Koppel, C. R.; Di Matteo, F.; Moral, J.; Steelant, J.

    2018-06-01

    The paper documents the implementation and validation of the coupled simulation of the propulsion system and vehicle performed during the 4th development phase of the ESPSS (European Space Propulsion System Simulation) library running on the existing platform EcosimPro®. This covers a significant update of the spacecraft propulsion system modeling: the Fluid flow, Tanks and Combustion chamber components are updated to allow coupling to the vehicle's motion, the Archimedes pressure coming from acceleration and rotations given by the vehicle or by any perturbation forces are taken into account, several new features are added to the Satellite library along with new components enabling full attitude control of a platform. A new powerful compact equation is presented for solving elegantly the Archimedes pressure coming from combined acceleration and rotation in the most general case (noncollinear). Eventually, a propulsion system is modeled to check the correct implementation of the new components especially those dealing with the effects of the mission on the propulsion subsystem.

  1. Generalized Stoner-Wohlfarth model accurately describing the switching processes in pseudo-single ferromagnetic particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cimpoesu, Dorin, E-mail: cdorin@uaic.ro; Stoleriu, Laurentiu; Stancu, Alexandru

    2013-12-14

    We propose a generalized Stoner-Wohlfarth (SW) type model to describe various experimentally observed angular dependencies of the switching field in non-single-domain magnetic particles. Because the nonuniform magnetic states are generally characterized by complicated spin configurations with no simple analytical description, we maintain the macrospin hypothesis and we phenomenologically include the effects of nonuniformities only in the anisotropy energy, preserving as much as possible the elegance of SW model, the concept of critical curve and its geometric interpretation. We compare the results obtained with our model with full micromagnetic simulations in order to evaluate the performance and limits of our approach.

  2. Groundwater flow and solute transport modelling from within R: Development of the RMODFLOW and RMT3DMS packages.

    NASA Astrophysics Data System (ADS)

    Rogiers, Bart

    2015-04-01

    Since a few years, an increasing number of contributed R packages is becoming available, in the field of hydrology. Hydrological time series analysis packages, lumped conceptual rainfall-runoff models, distributed hydrological models, weather generators, and different calibration and uncertainty estimation methods are all available. Also a few packages are available for solving partial differential equations. Subsurface hydrological modelling is however still seldomly performed in R, or with codes interfaced with R, despite the fact that excellent geostatistical packages, model calibration/inversion options and state-of-the-art visualization libraries are available. Moreover, other popular scientific programming languages like matlab and python have packages for pre- and post-processing files of MODFLOW (Harbaugh 2005) and MT3DMS (Zheng 2010) models. To fill this gap, we present here the development versions of the RMODFLOW and RMT3DMS packages, which allow pre- and post-processing MODFLOW and MT3DMS input and output files from within R. File reading and writing functions are currently available for different packages, and plotting functions are foreseen making use of the ggplot2 package (plotting system based on the grammar of graphics; Wickham 2009). The S3 generic-function object oriented programming style is used for this. An example is provided, making modifications to an existing model, and visualization of the model output. References Harbaugh, A. (2005). MODFLOW-2005: The US Geological Survey Modular Ground-water Model--the Ground-water Flow Process, U.S. Geological Survey Techniques and Methods 6-A16 (p. 253). Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York, 2009. Zheng, C. (2010). MT3DMS v5.3, a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Supplemental User's Guide. (p. 56).

  3. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish

    PubMed Central

    Oteiza, Pablo; Odstrcil, Iris; Lauder, George; Portugues, Ruben; Engert, Florian

    2017-01-01

    When flying or swimming, animals must adjust their own movement to compensate for displacements induced by the flow of the surrounding air or water1. These flow-induced displacements can most easily be detected as visual whole-field motion with respect to the animal’s frame of reference2. In spite of this, many aquatic animals consistently orient and swim against oncoming flows (a behavior known as rheotaxis) even in the absence of visual cues3,4. How animals achieve this task, and its underlying sensory basis, is still unknown. Here we show that in the absence of visual information, larval zebrafish (Danio rerio) perform rheotaxis by using flow velocity gradients as navigational cues. We present behavioral data that support a novel algorithm based on such local velocity gradients that fish use to efficiently avoid getting dragged by flowing water. Specifically, we show that fish use their mechanosensory lateral line to first sense the curl (or vorticity) of the local velocity vector field to detect the presence of flow and, second, measure its temporal change following swim bouts to deduce flow direction. These results reveal an elegant navigational strategy based on the sensing of flow velocity gradients and provide a comprehensive behavioral algorithm, also applicable for robotic design, that generalizes to a wide range of animal behaviors in moving fluids. PMID:28700578

  4. Color visual simulation applications at the Defense Mapping Agency

    NASA Astrophysics Data System (ADS)

    Simley, J. D.

    1984-09-01

    The Defense Mapping Agency (DMA) produces the Digital Landmass System data base to provide culture and terrain data in support of numerous aircraft simulators. In order to conduct data base and simulation quality control and requirements analysis, DMA has developed the Sensor Image Simulator which can rapidly generate visual and radar static scene digital simulations. The use of color in visual simulation allows the clear portrayal of both landcover and terrain data, whereas the initial black and white capabilities were restricted in this role and thus found limited use. Color visual simulation has many uses in analysis to help determine the applicability of current and prototype data structures to better meet user requirements. Color visual simulation is also significant in quality control since anomalies can be more easily detected in natural appearing forms of the data. The realism and efficiency possible with advanced processing and display technology, along with accurate data, make color visual simulation a highly effective medium in the presentation of geographic information. As a result, digital visual simulation is finding increased potential as a special purpose cartographic product. These applications are discussed and related simulation examples are presented.

  5. Object-based attention benefits reveal selective abnormalities of visual integration in autism.

    PubMed

    Falter, Christine M; Grant, Kate C Plaisted; Davis, Greg

    2010-06-01

    A pervasive integration deficit could provide a powerful and elegant account of cognitive processing in autism spectrum disorders (ASD). However, in the case of visual Gestalt grouping, typically assessed by tasks that require participants explicitly to introspect on their own grouping perception, clear evidence for such a deficit remains elusive. To resolve this issue, we adopt an index of Gestalt grouping from the object-based attention literature that does not require participants to assess their own grouping perception. Children with ASD and mental- and chronological-age matched typically developing children (TD) performed speeded orientation discriminations of two diagonal lines. The lines were superimposed on circles that were either grouped together or segmented on the basis of color, proximity or these two dimensions in competition. The magnitude of performance benefits evident for grouped circles, relative to ungrouped circles, provided an index of grouping under various conditions. Children with ASD showed comparable grouping by proximity to the TD group, but reduced grouping by similarity. ASD seems characterized by a selective bias away from grouping by similarity combined with typical levels of grouping by proximity, rather than by a pervasive integration deficit.

  6. Inhibition of Return and Object-based Attentional Selection

    PubMed Central

    List, Alexandra; Robertson, Lynn C.

    2008-01-01

    Visual attention research has revealed that attentional allocation can occur in space- and/or object-based coordinates. Using the direct and elegant design of R. Egly, J. Driver and R. Rafal (1994), we examine whether space- and object-based inhibition of return (IOR) emerge under similar time courses. The present experiments were capable of isolating both space- and object-based effects induced by peripheral and back-to-center cues. They generally support the contention that spatially non-predictive cues are effective in producing space-based IOR at a variety of SOAs, and under a variety of stimulus conditions. Whether facilitatory or inhibitory in direction, the object-based effects occurred over a very different time course than did the space-based effects. Reliable object-based IOR was only found under limited conditions and was tied to the time since the most recent cue (peripheral or central). The finding that object-based effects are generally determined by SOA from the most recent cue may help to resolve discrepancies in the IOR literature. These findings also have implications for the search facilitator role IOR is purported to play in the guidance of visual attention. PMID:18085946

  7. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  8. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    NASA Technical Reports Server (NTRS)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amalraj, Rex; Sambandan, Sanjiv, E-mail: sanjiv@iap.iisc.ernet.in

    Thin film transistors (TFTs) on elastomers promise flexible electronics with stretching and bending. Recently, there have been several experimental studies reporting the behavior of TFTs under bending and buckling. In the presence of stress, the insulator capacitance is influenced due to two reasons. The first is the variation in insulator thickness depending on the Poisson ratio and strain. The second is the geometric influence of the curvature of the insulator-semiconductor interface during bending or buckling. This paper models the role of curvature on TFT performance and brings to light an elegant result wherein the TFT characteristics is dependent on themore » area under the capacitance-distance curve. The paper compares models with simulations and explains several experimental findings reported in literature.« less

  10. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  11. The MeqTrees software system and its use for third-generation calibration of radio interferometers

    NASA Astrophysics Data System (ADS)

    Noordam, J. E.; Smirnov, O. M.

    2010-12-01

    Context. The formulation of the radio interferometer measurement equation (RIME) for a generic radio telescope by Hamaker et al. has provided us with an elegant mathematical apparatus for better understanding, simulation and calibration of existing and future instruments. The calibration of the new radio telescopes (LOFAR, SKA) would be unthinkable without the RIME formalism, and new software to exploit it. Aims: The MeqTrees software system is designed to implement numerical models, and to solve for arbitrary subsets of their parameters. It may be applied to many problems, but was originally geared towards implementing Measurement Equations in radio astronomy for the purposes of simulation and calibration. The technical goal of MeqTrees is to provide a tool for rapid implementation of such models, while offering performance comparable to hand-written code. We are also pursuing the wider goal of increasing the rate of evolution of radio astronomical software, by offering a tool that facilitates rapid experimentation, and exchange of ideas (and scripts). Methods: MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time (hours rather than weeks or months) for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all final and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code. Results: MeqTrees is already widely used as the simulation tool for new instruments (LOFAR, SKA) and technologies (focal plane arrays). It has demonstrated that it can achieve a noise-limited dynamic range in excess of a million, on WSRT data. It is the only package that is specifically designed to handle what we propose to call third-generation calibration (3GC), which is needed for the new generation of giant radio telescopes, but can also improve the calibration of existing instruments.

  12. Facial recognition using enhanced pixelized image for simulated visual prosthesis.

    PubMed

    Li, Ruonan; Zhhang, Xudong; Zhang, Hui; Hu, Guanshu

    2005-01-01

    A simulated face recognition experiment using enhanced pixelized images is designed and performed for the artificial visual prosthesis. The results of the simulation reveal new characteristics of visual performance in an enhanced pixelization condition, and then new suggestions on the future design of visual prosthesis are provided.

  13. 3D visualization of additive occlusion and tunable full-spectrum fluorescence in calcite

    PubMed Central

    Green, David C.; Ihli, Johannes; Thornton, Paul D.; Holden, Mark A.; Marzec, Bartosz; Kim, Yi-Yeoun; Kulak, Alex N.; Levenstein, Mark A.; Tang, Chiu; Lynch, Christophe; Webb, Stephen E. D.; Tynan, Christopher J.; Meldrum, Fiona C.

    2016-01-01

    From biomineralization to synthesis, organic additives provide an effective means of controlling crystallization processes. There is growing evidence that these additives are often occluded within the crystal lattice. This promises an elegant means of creating nanocomposites and tuning physical properties. Here we use the incorporation of sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite (CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that these additives are incorporated within specific zones, as defined by the growth conditions, and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and lifetime imaging microscopy also show that the dyes experience unique local environments within different zones. Our strategy is then extended to simultaneously incorporate mixtures of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles whose output can be tuned as required. PMID:27857076

  14. Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli.

    PubMed

    Garcia, Jair E; Hung, Yu-Shan; Greentree, Andrew D; Rosa, Marcello G P; Endler, John A; Dyer, Adrian G

    2017-07-18

    How can a pollinator, like the honey bee, perceive the same colors on visited flowers, despite continuous and rapid changes in ambient illumination and background color? A hundred years ago, von Kries proposed an elegant solution to this problem, color constancy, which is currently incorporated in many imaging and technological applications. However, empirical evidence on how this method can operate on animal brains remains tenuous. Our mathematical modeling proposes that the observed spectral tuning of simple ocellar photoreceptors in the honey bee allows for the necessary input for an optimal color constancy solution to most natural light environments. The model is fully supported by our detailed description of a neural pathway allowing for the integration of signals originating from the ocellar photoreceptors to the information processing regions in the bee brain. These findings reveal a neural implementation to the classic color constancy problem that can be easily translated into artificial color imaging systems.

  15. Person detection, tracking and following using stereo camera

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Zhang, Lilian; Wang, Duo; Hu, Xiaoping

    2018-04-01

    Person detection, tracking and following is a key enabling technology for mobile robots in many human-robot interaction applications. In this article, we present a system which is composed of visual human detection, video tracking and following. The detection is based on YOLO(You only look once), which applies a single convolution neural network(CNN) to the full image, thus can predict bounding boxes and class probabilities directly in one evaluation. Then the bounding box provides initial person position in image to initialize and train the KCF(Kernelized Correlation Filter), which is a video tracker based on discriminative classifier. At last, by using a stereo 3D sparse reconstruction algorithm, not only the position of the person in the scene is determined, but also it can elegantly solve the problem of scale ambiguity in the video tracker. Extensive experiments are conducted to demonstrate the effectiveness and robustness of our human detection and tracking system.

  16. A compact CCD-monitored atomic force microscope with optical vision and improved performances.

    PubMed

    Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang

    2013-09-01

    A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.

  17. Interactive visualization of numerical simulation results: A tool for mission planning and data analysis

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Walker, R. J.; Ashour-Abdalla, M.

    1995-01-01

    We report on the development of an interactive system for visualizing and analyzing numerical simulation results. This system is based on visualization modules which use the Application Visualization System (AVS) and the NCAR graphics packages. Examples from recent simulations are presented to illustrate how these modules can be used for displaying and manipulating simulation results to facilitate their comparison with phenomenological model results and observations.

  18. Analytical and finite element simulation of a three-bar torsion spring

    NASA Astrophysics Data System (ADS)

    Rădoi, M.; Cicone, T.

    2016-08-01

    The present study is dedicated to the innovative 3-bar torsion spring used as suspension solution for the first time at Lunokhod-1, the first autonomous vehicle sent for the exploration of the Moon in the early 70-ies by the former USSR. The paper describes a simple analytical model for calculation of spring static characteristics, taking into account both torsion and bending effects. Closed form solutions of this model allows quick and elegant parametric analysis. A comparison with a single torsion bar with the same stiffness reveal an increase of the maximum stress with more than 50%. A 3D finite element (FE) simulation is proposed to evaluate the accuracy of the analytical model. The model was meshed in an automated pattern (sweep for hubs and tetrahedrons for bars) with mesh morphing. Very close results between analytical and numerical solutions have been found, concluding that the analytical model is accurate. The 3-D finite element simulation was used to evaluate the effects of design details like fillet radius of the bars or contact stresses in the hex hub.

  19. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A recommendation and a specification for the visual simulation system design for the space shuttle mission simulator are presented. A recommended visual system is described which most nearly meets the visual design requirements. The cost analysis of the recommended system covering design, development, manufacturing, and installation is reported. Four alternate systems are analyzed.

  20. Reducing Modeling Error of Graphical Methods for Estimating Volume of Distribution Measurements in PIB-PET study

    PubMed Central

    Guo, Hongbin; Renaut, Rosemary A; Chen, Kewei; Reiman, Eric M

    2010-01-01

    Graphical analysis methods are widely used in positron emission tomography quantification because of their simplicity and model independence. But they may, particularly for reversible kinetics, lead to bias in the estimated parameters. The source of the bias is commonly attributed to noise in the data. Assuming a two-tissue compartmental model, we investigate the bias that originates from modeling error. This bias is an intrinsic property of the simplified linear models used for limited scan durations, and it is exaggerated by random noise and numerical quadrature error. Conditions are derived under which Logan's graphical method either over- or under-estimates the distribution volume in the noise-free case. The bias caused by modeling error is quantified analytically. The presented analysis shows that the bias of graphical methods is inversely proportional to the dissociation rate. Furthermore, visual examination of the linearity of the Logan plot is not sufficient for guaranteeing that equilibrium has been reached. A new model which retains the elegant properties of graphical analysis methods is presented, along with a numerical algorithm for its solution. We perform simulations with the fibrillar amyloid β radioligand [11C] benzothiazole-aniline using published data from the University of Pittsburgh and Rotterdam groups. The results show that the proposed method significantly reduces the bias due to modeling error. Moreover, the results for data acquired over a 70 minutes scan duration are at least as good as those obtained using existing methods for data acquired over a 90 minutes scan duration. PMID:20493196

  1. Motion/visual cueing requirements for vortex encounters during simulated transport visual approach and landing

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Bowles, R. L.

    1983-01-01

    This paper addresses the issues of motion/visual cueing fidelity requirements for vortex encounters during simulated transport visual approaches and landings. Four simulator configurations were utilized to provide objective performance measures during simulated vortex penetrations, and subjective comments from pilots were collected. The configurations used were as follows: fixed base with visual degradation (delay), fixed base with no visual degradation, moving base with visual degradation (delay), and moving base with no visual degradation. The statistical comparisons of the objective measures and the subjective pilot opinions indicated that although both minimum visual delay and motion cueing are recommended for the vortex penetration task, the visual-scene delay characteristics were not as significant a fidelity factor as was the presence of motion cues. However, this indication was applicable to a restricted task, and to transport aircraft. Although they were statistically significant, the effects of visual delay and motion cueing on the touchdown-related measures were considered to be of no practical consequence.

  2. The contribution of visual and proprioceptive information to the perception of leaning in a dynamic motorcycle simulator.

    PubMed

    Lobjois, Régis; Dagonneau, Virginie; Isableu, Brice

    2016-11-01

    Compared with driving or flight simulation, little is known about self-motion perception in riding simulation. The goal of this study was to examine whether or not continuous roll motion supports the sensation of leaning into bends in dynamic motorcycle simulation. To this end, riders were able to freely tune the visual scene and/or motorcycle simulator roll angle to find a pattern that matched their prior knowledge. Our results revealed idiosyncrasy in the combination of visual and proprioceptive information. Some subjects relied more on the visual dimension, but reported increased sickness symptoms with the visual roll angle. Others relied more on proprioceptive information, tuning the direction of the visual scenery to match three possible patterns. Our findings also showed that these two subgroups tuned the motorcycle simulator roll angle in a similar way. This suggests that sustained inertially specified roll motion have contributed to the sensation of leaning in spite of the occurrence of unexpected gravito-inertial stimulation during the tilt. Several hypotheses are discussed. Practitioner Summary: Self-motion perception in motorcycle simulation is a relatively new research area. We examined how participants combined visual and proprioceptive information. Findings revealed individual differences in the visual dimension. However, participants tuned the simulator roll angle similarly, supporting the hypothesis that sustained inertially specified roll motion contributes to a leaning sensation.

  3. Just-in-time Time Data Analytics and Visualization of Climate Simulations using the Bellerophon Framework

    NASA Astrophysics Data System (ADS)

    Anantharaj, V. G.; Venzke, J.; Lingerfelt, E.; Messer, B.

    2015-12-01

    Climate model simulations are used to understand the evolution and variability of earth's climate. Unfortunately, high-resolution multi-decadal climate simulations can take days to weeks to complete. Typically, the simulation results are not analyzed until the model runs have ended. During the course of the simulation, the output may be processed periodically to ensure that the model is preforming as expected. However, most of the data analytics and visualization are not performed until the simulation is finished. The lengthy time period needed for the completion of the simulation constrains the productivity of climate scientists. Our implementation of near real-time data visualization analytics capabilities allows scientists to monitor the progress of their simulations while the model is running. Our analytics software executes concurrently in a co-scheduling mode, monitoring data production. When new data are generated by the simulation, a co-scheduled data analytics job is submitted to render visualization artifacts of the latest results. These visualization output are automatically transferred to Bellerophon's data server located at ORNL's Compute and Data Environment for Science (CADES) where they are processed and archived into Bellerophon's database. During the course of the experiment, climate scientists can then use Bellerophon's graphical user interface to view animated plots and their associated metadata. The quick turnaround from the start of the simulation until the data are analyzed permits research decisions and projections to be made days or sometimes even weeks sooner than otherwise possible! The supercomputer resources used to run the simulation are unaffected by co-scheduling the data visualization jobs, so the model runs continuously while the data are visualized. Our just-in-time data visualization software looks to increase climate scientists' productivity as climate modeling moves into exascale era of computing.

  4. The Effects of Asynchronous Visual Delays on Simulator Flight Performance and the Development of Simulator Sickness Symptomatology

    DTIC Science & Technology

    1986-12-26

    NAVAL TRAINING SYSTEMS CENTER ORLANDO. FLORIDA IT FILE COPY THE EFFECTS OF ASYNCHRONOUS VISUAL DELAYS ON SIMULATOR FLIGHT PERFORMANCE AND THE...ASYNCHRONOUS VISUAL. DELAYS ON SI.WLATOR FLIGHT PERF OMANCE AND THE DEVELOPMENT OF SIMLATOR SICKNESS SYMPTOMATOLOGY K. C. Uliano, E. Y. Lambert, R. S. Kennedy...ACCESSION NO. N63733N SP-01 0785-7P6 I. 4780 11. TITLE (Include Security Classification) The Effects of Asynchronous Visual Delays on Simulator Flight

  5. Analytic Interatomic Forces in the Random Phase Approximation

    NASA Astrophysics Data System (ADS)

    Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg

    2017-03-01

    We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the G W approximation. This relationship allows us to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.

  6. Research on metallic material defect detection based on bionic sensing of human visual properties

    NASA Astrophysics Data System (ADS)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  7. Driving with visual field loss : an exploratory simulation study

    DOT National Transportation Integrated Search

    2009-01-01

    The goal of this study was to identify the influence of peripheral visual field loss (VFL) on driving performance in a motion-based driving simulator. Sixteen drivers (6 with VFL and 10 with normal visual fields) completed a 14 km simulated drive. Th...

  8. The Unique Propulsive Wake Pattern of the Swimming Sea Slug Aplysia

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuoyu; Mittal, Rajat

    2017-11-01

    The Aplysia, also sometimes referred to as the `Sea Hare,' is a sea slug that swims elegantly using large-amplitude flapping of its mantle. The Sea Hare has become a very valuable laboratory animal for investigation into nervous systems and brain behavior due to its simple neural system with large neurons and axons. Recently, attempts have also been made to develop biohybrid robots with both organic actuation and organic motor-pattern control inspired by the locomotion of Aplysia. While extensive works have been done to investigate this animal's neurobiology, relatively little is known about its propulsive mechanisms and swimming energetics. In this study, incompressible flow simulations with a simple kinematical model are used to gain insights into vortex dynamics, thrust generation and energetics of locomotion. The effect of mantle kinematics on the propulsive performance is examined, and simulations indicate a unique vortex wake pattern that is responsible for thrust generation. The research is supported by NSF Grant PLR-1246317 and NSF XSEDE Grant TG-CTS100002.

  9. Effects of visual and motion simulation cueing systems on pilot performance during takeoffs with engine failures

    NASA Technical Reports Server (NTRS)

    Parris, B. L.; Cook, A. M.

    1978-01-01

    Data are presented that show the effects of visual and motion during cueing on pilot performance during takeoffs with engine failures. Four groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The most basic of these systems was of the instrument-only type. Visual scene simulation and/or motion simulation was added to produce the other systems. Learning curves, mean performance, and subjective data are examined. The results show that the addition of visual cueing results in significant improvement in pilot performance, but the combined use of visual and motion cueing results in far better performance.

  10. Helmet-mounted display systems for flight simulation

    NASA Technical Reports Server (NTRS)

    Haworth, Loren A.; Bucher, Nancy M.

    1989-01-01

    Simulation scientists are continually improving simulation technology with the goal of more closely replicating the physical environment of the real world. The presentation or display of visual information is one area in which recent technical improvements have been made that are fundamental to conducting simulated operations close to the terrain. Detailed and appropriate visual information is especially critical for nap-of-the-earth helicopter flight simulation where the pilot maintains an 'eyes-out' orientation to avoid obstructions and terrain. This paper describes visually coupled wide field of view helmet-mounted display (WFOVHMD) system technology as a viable visual presentation system for helicopter simulation. Tradeoffs associated with this mode of presentation as well as research and training applications are discussed.

  11. Design by Dragging: An Interface for Creative Forward and Inverse Design with Simulation Ensembles

    PubMed Central

    Coffey, Dane; Lin, Chi-Lun; Erdman, Arthur G.; Keefe, Daniel F.

    2014-01-01

    We present an interface for exploring large design spaces as encountered in simulation-based engineering, design of visual effects, and other tasks that require tuning parameters of computationally-intensive simulations and visually evaluating results. The goal is to enable a style of design with simulations that feels as-direct-as-possible so users can concentrate on creative design tasks. The approach integrates forward design via direct manipulation of simulation inputs (e.g., geometric properties, applied forces) in the same visual space with inverse design via “tugging” and reshaping simulation outputs (e.g., scalar fields from finite element analysis (FEA) or computational fluid dynamics (CFD)). The interface includes algorithms for interpreting the intent of users’ drag operations relative to parameterized models, morphing arbitrary scalar fields output from FEA and CFD simulations, and in-place interactive ensemble visualization. The inverse design strategy can be extended to use multi-touch input in combination with an as-rigid-as-possible shape manipulation to support rich visual queries. The potential of this new design approach is confirmed via two applications: medical device engineering of a vacuum-assisted biopsy device and visual effects design using a physically based flame simulation. PMID:24051845

  12. Validating Visual Cues In Flight Simulator Visual Displays

    NASA Astrophysics Data System (ADS)

    Aronson, Moses

    1987-09-01

    Currently evaluation of visual simulators are performed by either pilot opinion questionnaires or comparison of aircraft terminal performance. The approach here is to compare pilot performance in the flight simulator with a visual display to his performance doing the same visual task in the aircraft as an indication that the visual cues are identical. The A-7 Night Carrier Landing task was selected. Performance measures which had high pilot performance prediction were used to compare two samples of existing pilot performance data to prove that the visual cues evoked the same performance. The performance of four pilots making 491 night landing approaches in an A-7 prototype part task trainer were compared with the performance of 3 pilots performing 27 A-7E carrier landing qualification approaches on the CV-60 aircraft carrier. The results show that the pilots' performances were similar, therefore concluding that the visual cues provided in the simulator were identical to those provided in the real world situation. Differences between the flight simulator's flight characteristics and the aircraft have less of an effect than the pilots individual performances. The measurement parameters used in the comparison can be used for validating the visual display for adequacy for training.

  13. A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei; Liu, Cheng; Thomas, Neil

    2015-01-01

    Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. Formore » left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.« less

  14. Visualization of simulated urban spaces: inferring parameterized generation of streets, parcels, and aerial imagery.

    PubMed

    Vanegas, Carlos A; Aliaga, Daniel G; Benes, Bedrich; Waddell, Paul

    2009-01-01

    Urban simulation models and their visualization are used to help regional planning agencies evaluate alternative transportation investments, land use regulations, and environmental protection policies. Typical urban simulations provide spatially distributed data about number of inhabitants, land prices, traffic, and other variables. In this article, we build on a synergy of urban simulation, urban visualization, and computer graphics to automatically infer an urban layout for any time step of the simulation sequence. In addition to standard visualization tools, our method gathers data of the original street network, parcels, and aerial imagery and uses the available simulation results to infer changes to the original urban layout and produce a new and plausible layout for the simulation results. In contrast with previous work, our approach automatically updates the layout based on changes in the simulation data and thus can scale to a large simulation over many years. The method in this article offers a substantial step forward in building integrated visualization and behavioral simulation systems for use in community visioning, planning, and policy analysis. We demonstrate our method on several real cases using a 200 GB database for a 16,300 km2 area surrounding Seattle.

  15. Aesthetics by Numbers: Links between Perceived Texture Qualities and Computed Visual Texture Properties.

    PubMed

    Jacobs, Richard H A H; Haak, Koen V; Thumfart, Stefan; Renken, Remco; Henson, Brian; Cornelissen, Frans W

    2016-01-01

    Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed-and presumably for this reason-the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities-including the aesthetic appreciation-are sufficiently universal to be predicted-with reasonable accuracy-based on the computed feature content of the textures.

  16. Aesthetics by Numbers: Links between Perceived Texture Qualities and Computed Visual Texture Properties

    PubMed Central

    Jacobs, Richard H. A. H.; Haak, Koen V.; Thumfart, Stefan; Renken, Remco; Henson, Brian; Cornelissen, Frans W.

    2016-01-01

    Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed—and presumably for this reason—the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities—including the aesthetic appreciation—are sufficiently universal to be predicted—with reasonable accuracy—based on the computed feature content of the textures. PMID:27493628

  17. Low-Visibility Visual Simulation with Real Fog

    NASA Technical Reports Server (NTRS)

    Chase, Wendell D.

    1982-01-01

    An environmental fog simulation (EFS) attachment was developed to aid in the study of natural low-visibility visual cues and subsequently used to examine the realism effect upon the aircraft simulator visual scene. A review of the basic fog equations indicated that the two major factors must be accounted for in the simulation of low visibility-one due to atmospheric attenuation and one due to veiling luminance. These factors are compared systematically by: comparing actual measurements lo those computed from the Fog equations, and comparing runway-visual-range-related visual-scene contrast values with the calculated values. These values are also compared with the simulated equivalent equations and with contrast measurements obtained from a current electronic fog synthesizer to help identify areas in which improvements are needed. These differences in technique, the measured values, the Features of both systems, a pilot opinion survey of the EFS fog, and improvements (by combining features of both systems) that are expected to significantly increase the potential as well as flexibility for producing a very high-fidelity, low-visibility visual simulation are discussed.

  18. Low-visibility visual simulation with real fog

    NASA Technical Reports Server (NTRS)

    Chase, W. D.

    1981-01-01

    An environmental fog simulation (EFS) attachment was developed to aid in the study of natural low-visibility visual cues and subsequently used to examine the realism effect upon the aircraft simulator visual scene. A review of the basic fog equations indicated that two major factors must be accounted for in the simulation of low visibility - one due to atmospheric attenuation and one due to veiling luminance. These factors are compared systematically by (1) comparing actual measurements to those computed from the fog equations, and (2) comparing runway-visual-range-related visual-scene contrast values with the calculated values. These values are also compared with the simulated equivalent equations and with contrast measurements obtained from a current electronic fog synthesizer to help identify areas in which improvements are needed. These differences in technique, the measured values, the features of both systems, a pilot opinion survey of the EFS fog, and improvements (by combining features of both systems) that are expected to significantly increase the potential as well as flexibility for producing a very high-fidelity low-visibility visual simulation are discussed.

  19. Simulating storage part of application with Simgrid

    NASA Astrophysics Data System (ADS)

    Wang, Cong

    2017-10-01

    Design of a file system simulation and visualization system, using simgrid API and visualization techniques to help users understanding and improving the file system portion of their application. The core of the simulator is the API provided by simgrid, cluefs tracks and catches the procedure of the I/O operation. Run the simulator simulating this application to generate the output visualization file, which can visualize the I/O action proportion and time series. Users can also change the parameters in the configuration file to change the parameters of the storage system such as reading and writing bandwidth, users can also adjust the storage strategy, test the performance, getting reference to be much easier to optimize the storage system. We have tested all the aspects of the simulator, the results suggest that the simulator performance can be believable.

  20. Surgical simulation tasks challenge visual working memory and visual-spatial ability differently.

    PubMed

    Schlickum, Marcus; Hedman, Leif; Enochsson, Lars; Henningsohn, Lars; Kjellin, Ann; Felländer-Tsai, Li

    2011-04-01

    New strategies for selection and training of physicians are emerging. Previous studies have demonstrated a correlation between visual-spatial ability and visual working memory with surgical simulator performance. The aim of this study was to perform a detailed analysis on how these abilities are associated with metrics in simulator performance with different task content. The hypothesis is that the importance of visual-spatial ability and visual working memory varies with different task contents. Twenty-five medical students participated in the study that involved testing visual-spatial ability using the MRT-A test and visual working memory using the RoboMemo computer program. Subjects were also trained and tested for performance in three different surgical simulators. The scores from the psychometric tests and the performance metrics were then correlated using multivariate analysis. MRT-A score correlated significantly with the performance metrics Efficiency of screening (p = 0.006) and Total time (p = 0.01) in the GI Mentor II task and Total score (p = 0.02) in the MIST-VR simulator task. In the Uro Mentor task, both the MRT-A score and the visual working memory 3-D cube test score as presented in the RoboMemo program (p = 0.02) correlated with Total score (p = 0.004). In this study we have shown that some differences exist regarding the impact of visual abilities and task content on simulator performance. When designing future cognitive training programs and testing regimes, one might have to consider that the design must be adjusted in accordance with the specific surgical task to be trained in mind.

  1. Extending the range of real time density matrix renormalization group simulations

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; Karrasch, C.

    2016-03-01

    We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.

  2. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    NASA Astrophysics Data System (ADS)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-01

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  3. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

    PubMed

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  4. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE PAGES

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; ...

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  5. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  6. [Review of visual display system in flight simulator].

    PubMed

    Xie, Guang-hui; Wei, Shao-ning

    2003-06-01

    Visual display system is the key part and plays a very important role in flight simulators and flight training devices. The developing history of visual display system is recalled and the principle and characters of some visual display systems including collimated display systems and back-projected collimated display systems are described. The future directions of visual display systems are analyzed.

  7. Reconfigurable Image Generator

    NASA Technical Reports Server (NTRS)

    Archdeacon, John L. (Inventor); Iwai, Nelson H. (Inventor); Kato, Kenji H. (Inventor); Sweet, Barbara T. (Inventor)

    2017-01-01

    A RiG may simulate visual conditions of a real world environment, and generate the necessary amount of pixels in a visual simulation at rates up to 120 frames per second. RiG may also include a database generation system capable of producing visual databases suitable to drive the visual fidelity required by the RiG.

  8. The Shuttle Mission Simulator computer generated imagery

    NASA Technical Reports Server (NTRS)

    Henderson, T. H.

    1984-01-01

    Equipment available in the primary training facility for the Space Transportation System (STS) flight crews includes the Fixed Base Simulator, the Motion Base Simulator, the Spacelab Simulator, and the Guidance and Navigation Simulator. The Shuttle Mission Simulator (SMS) consists of the Fixed Base Simulator and the Motion Base Simulator. The SMS utilizes four visual Computer Generated Image (CGI) systems. The Motion Base Simulator has a forward crew station with six-degrees of freedom motion simulation. Operation of the Spacelab Simulator is planned for the spring of 1983. The Guidance and Navigation Simulator went into operation in 1982. Aspects of orbital visual simulation are discussed, taking into account the earth scene, payload simulation, the generation and display of 1079 stars, the simulation of sun glare, and Reaction Control System jet firing plumes. Attention is also given to landing site visual simulation, and night launch and landing simulation.

  9. Integration of visual and motion cues for flight simulator requirements and ride quality investigation

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1976-01-01

    Investigations for the improvement of flight simulators are reported. Topics include: visual cues in landing, comparison of linear and nonlinear washout filters using a model of the vestibular system, and visual vestibular interactions (yaw axis). An abstract is given for a thesis on the applications of human dynamic orientation models to motion simulation.

  10. An information model for managing multi-dimensional gridded data in a GIS

    NASA Astrophysics Data System (ADS)

    Xu, H.; Abdul-Kadar, F.; Gao, P.

    2016-04-01

    Earth observation agencies like NASA and NOAA produce huge volumes of historical, near real-time, and forecasting data representing terrestrial, atmospheric, and oceanic phenomena. The data drives climatological and meteorological studies, and underpins operations ranging from weather pattern prediction and forest fire monitoring to global vegetation analysis. These gridded data sets are distributed mostly as files in HDF, GRIB, or netCDF format and quantify variables like precipitation, soil moisture, or sea surface temperature, along one or more dimensions like time and depth. Although the data cube is a well-studied model for storing and analyzing multi-dimensional data, the GIS community remains in need of a solution that simplifies interactions with the data, and elegantly fits with existing database schemas and dissemination protocols. This paper presents an information model that enables Geographic Information Systems (GIS) to efficiently catalog very large heterogeneous collections of geospatially-referenced multi-dimensional rasters—towards providing unified access to the resulting multivariate hypercubes. We show how the implementation of the model encapsulates format-specific variations and provides unified access to data along any dimension. We discuss how this framework lends itself to familiar GIS concepts like image mosaics, vector field visualization, layer animation, distributed data access via web services, and scientific computing. Global data sources like MODIS from USGS and HYCOM from NOAA illustrate how one would employ this framework for cataloging, querying, and intuitively visualizing such hypercubes. ArcGIS—an established platform for processing, analyzing, and visualizing geospatial data—serves to demonstrate how this integration brings the full power of GIS to the scientific community.

  11. Spatial Language Processing in the Blind: Evidence for a Supramodal Representation and Cortical Reorganization

    PubMed Central

    Struiksma, Marijn E.; Noordzij, Matthijs L.; Neggers, Sebastiaan F. W.; Bosker, Wendy M.; Postma, Albert

    2011-01-01

    Neuropsychological and imaging studies have shown that the left supramarginal gyrus (SMG) is specifically involved in processing spatial terms (e.g. above, left of), which locate places and objects in the world. The current fMRI study focused on the nature and specificity of representing spatial language in the left SMG by combining behavioral and neuronal activation data in blind and sighted individuals. Data from the blind provide an elegant way to test the supramodal representation hypothesis, i.e. abstract codes representing spatial relations yielding no activation differences between blind and sighted. Indeed, the left SMG was activated during spatial language processing in both blind and sighted individuals implying a supramodal representation of spatial and other dimensional relations which does not require visual experience to develop. However, in the absence of vision functional reorganization of the visual cortex is known to take place. An important consideration with respect to our finding is the amount of functional reorganization during language processing in our blind participants. Therefore, the participants also performed a verb generation task. We observed that only in the blind occipital areas were activated during covert language generation. Additionally, in the first task there was functional reorganization observed for processing language with a high linguistic load. As the visual cortex was not specifically active for spatial contents in the first task, and no reorganization was observed in the SMG, the latter finding further supports the notion that the left SMG is the main node for a supramodal representation of verbal spatial relations. PMID:21935391

  12. What's in a Typeface? Evidence of the Existence of Print Personalities in Arabic.

    PubMed

    Jordan, Timothy R; AlShamsi, Alya S; Yekani, Hajar A K; AlJassmi, Maryam; Al Dosari, Nada; Hermena, Ehab W; Sheen, Mercedes

    2017-01-01

    Previous research suggests that different typefaces can be perceived as having distinct personality characteristics (such as strength, elegance, friendliness, romance, and humor) and that these "print personalities" elicit information in the reader that is in addition to the meaning conveyed linguistically by words. However, research in this area has previously been conducted using only English stimuli and so it may be that typefaces in English, and other languages using the Latinate alphabet, lend themselves unusually well to eliciting perception of print personalities, and the phenomenon is not a language universal. But not all written languages are Latinate languages, and one language that is especially visually distinct is Arabic. In particular, apart from being read from right to left, Arabic is formed in a cursive script in which the visual appearance of letters contrasts strongly with those used for Latinate languages. In addition, spaces between letters seldom exist in Arabic and the visual appearance of even the same letters can vary considerably within the same typeface depending on their contextual location within a word. Accordingly, the purpose of the present study was to investigate whether, like English, different Arabic typefaces inspire the attribution of print personalities. Eleven different typefaces were presented in Arabic sentences to skilled readers of Arabic and participants rated each typeface according to 20 different personality characteristics. The results showed that each typeface produced a different pattern of ratings of personality characteristics and suggest that, like English, Arabic typefaces are perceived as having distinct print personalities. Some of the implications of these results for the processes involved in reading are discussed.

  13. Linear perspective limitations on virtual reality and realistic displays

    NASA Astrophysics Data System (ADS)

    Temme, Leonard A.

    2007-04-01

    The visual images of the natural world, with their immediate intuitive appeal, seem like the logical gold standard for evaluating displays. After all, since photorealistic displays look so increasingly like the real world, what could be better? Part of the shortcoming of this intuitive appeal for displays is its naivete. Realism itself is full of potential illusions that we do not notice because, most of the time, realism is good enough for our everyday tasks. But when confronted with tasks that go beyond those for which our visual system has evolved, we may be blindsided. If we survive, blind to our erroneous perceptions and oblivious to our good fortune at having survived, we will not be any wiser next time. Realist displays depend on linear perspective (LP), the mathematical mapping of three dimensions onto two. Despite the fact that LP is a seductively elegant system that predicts results with defined mathematical procedures, artists do not stick to the procedures, not because they are math-phobic but because LP procedures, if followed explicitly, produce ugly, limited, and distorted images. If artists bother with formal LP procedures at all, they invariably temper the renderings by eye. The present paper discusses LP assumptions, limitations, and distortions. It provides examples of kluges to cover some of these LP shortcomings. It is important to consider the limitations of LP so that we do not let either naive assumptions or the seductive power of LP guide our thinking or expectations unrealistically as we consider its possible uses in advanced visual displays.

  14. In situ visualization and data analysis for turbidity currents simulation

    NASA Astrophysics Data System (ADS)

    Camata, Jose J.; Silva, Vítor; Valduriez, Patrick; Mattoso, Marta; Coutinho, Alvaro L. G. A.

    2018-01-01

    Turbidity currents are underflows responsible for sediment deposits that generate geological formations of interest for the oil and gas industry. LibMesh-sedimentation is an application built upon the libMesh library to simulate turbidity currents. In this work, we present the integration of libMesh-sedimentation with in situ visualization and in transit data analysis tools. DfAnalyzer is a solution based on provenance data to extract and relate strategic simulation data in transit from multiple data for online queries. We integrate libMesh-sedimentation and ParaView Catalyst to perform in situ data analysis and visualization. We present a parallel performance analysis for two turbidity currents simulations showing that the overhead for both in situ visualization and in transit data analysis is negligible. We show that our tools enable monitoring the sediments appearance at runtime and steer the simulation based on the solver convergence and visual information on the sediment deposits, thus enhancing the analytical power of turbidity currents simulations.

  15. Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-06-01

    Longitudinal space-charge (LSC) effects are generally considered as detrimental in free-electron lasers as they can seed instabilities. Such “microbunching instabilities” were recently shown to be potentially useful to support the generation of broadband coherent radiation pulses [1, 2]. Therefore there has been an increasing interest in devising accelerator beamlines capable of sustaining this LSC instability as a mechanism to produce a coherent light source. To date most of these studies have been carried out with a one-dimensional impedance model for the LSC. In this paper we use a N-body “Barnes-Hut” algorithm [3] to simulate the 3D space charge force inmore » the beam combined with elegant [4] and explore the limitation of the 1D model often used« less

  16. Simulation and visualization of energy-related occupant behavior in office buildings

    DOE PAGES

    Chen, Yixing; Liang, Xin; Hong, Tianzhen; ...

    2017-03-15

    In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less

  17. Simulation and visualization of energy-related occupant behavior in office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Liang, Xin; Hong, Tianzhen

    In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less

  18. ESA web mapping activities applied to Earth observation

    NASA Astrophysics Data System (ADS)

    Caspar, C.; Petiteville, I.; Kohlhammer, G.; Tandurella, G.

    2002-05-01

    Thousands of Earth Observation satellite instrument products are generated daily, in a multitude of formats, using a variety of projection coordinate sytems. This diversity is a barrier to the development of EO multi-mission-based applications and prevents the merging of EO data with GIS data, which is requested by the user community (value-added companies, serivce providers, scientists, institutions, commercial users, and academic users). The web mapping technologies introduced in this article represent an elegant and low-technologies introduced in this article represent an elegant and low-cost solution. The extraordinary added value that is achieved may be considered a revolution in the use of EO data products.

  19. Verifying the Modal Logic Cube Is an Easy Task (For Higher-Order Automated Reasoners)

    NASA Astrophysics Data System (ADS)

    Benzmüller, Christoph

    Prominent logics, including quantified multimodal logics, can be elegantly embedded in simple type theory (classical higher-order logic). Furthermore, off-the-shelf reasoning systems for simple type type theory exist that can be uniformly employed for reasoning within and about embedded logics. In this paper we focus on reasoning about modal logics and exploit our framework for the automated verification of inclusion and equivalence relations between them. Related work has applied first-order automated theorem provers for the task. Our solution achieves significant improvements, most notably, with respect to elegance and simplicity of the problem encodings as well as with respect to automation performance.

  20. Assessing Visual Delays using Pupil Oscillations

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2012-01-01

    Stark (1962) demonstrated vigorous pupil oscillations by illuminating the retina with a beam of light focussed to a small spot near the edge of the pupil. Small constrictions of the pupil then are sufficient to completely block the beam, amplifying the normal relationship between pupil area and retinal illuminance. In addition to this simple and elegant method, Stark also investigated more complex feedback systems using an electronic "clamping box" which provided arbitrary gain and phase delay between a measurement of pupil area and an electronically controlled light source. We have replicated Stark's results using a video-based pupillometer to control the luminance of a display monitor. Pupil oscillations were induced by imposing a linear relationship between pupil area and display luminance, with a variable delay. Slopes of the period-vs-delay function for 3 subjects are close to the predicted value of 2 (1.96-2.39), and the implied delays range from 254 to 376 508 to 652 milliseconds. Our setup allows us to extend Stark's work by investigating a broader class of stimuli.

  1. Edward Burne-Jones' Heavenly Conception: A Biblical Cosmos

    NASA Astrophysics Data System (ADS)

    Cheney, L. D. G.

    2016-01-01

    Edward Burne-Jones was a Pre-Raphaelite artist and designer, who collaborated with William Morris on many decorative arts (stained glass windows, book illustrations, ceramic and tapestry designs). He was a founding partner in the firm Morris, Marshall, Faulkner & Company. Burne-Jones composed The Days of Creation between 1870 and 1876 for the Morris firm. These paintings were executed in gouache and gold paint, and cartoons were made for tile and in stained glass, for the Church of St. Editha at Tamworth in Staffordshire. Burne-Jones' creation was highly praised and elegantly described by Oscar Wilde: “The picture is divided into six compartments, each representing a day in the Creation of the World, under the symbol of an angel holding a crystal globe, within which is shown the work of a day.” This paper will examine how Burne-Jones visualized an unusual celestial creation where angels holding magical spheres unveil the divine manifestation for the creation of a terrestrial realm. He created a cosmic utopia of the natural world.

  2. Effect of Iron Oxide and Phase Separation on the Color of Blue Jun Ware Glaze.

    PubMed

    Wang, Fen; Yang, Changan; Zhu, Jianfeng; Lin, Ying

    2015-09-01

    Based on the traditional Jun ware glaze, the imitated Jun ware glazes were prepared by adding iron oxide and introducing phase separation agent apatite through four-angle-method. The effect of iron oxide contents, phase separation and the firing temperature on the color of Jun ware glazes were investigated by a neutral atmosphere experiment, optical microscope and scanning electronic microscope. The results showed that the colorant, mainly Fe2O3, contributed to the Jun ware glaze blue and cyan colors of Jun ware glaze. The light scatter caused by the small droplets in phase separation structure only influenced the shade of the glaze color, intensify or weaken the color, and thus made the glaze perfect and elegant opal visual effects, but was not the origin of general blue or cyan colors of Jun ware glaze. In addition, the firing temperature and the basic glaze composition affected the glaze colors to some extent.

  3. TECHNIQUES AND OUTCOMES OF MINIMALLY-INVASIVE TRABECULAR ABLATION AND BYPASS SURGERY

    PubMed Central

    Kaplowitz, Kevin; Schuman, Joel S.; Loewen, Nils A.

    2014-01-01

    Minimally invasive glaucoma surgeries (MIGS) can improve the conventional, pressure dependent outflow by bypassing or ablating the trabecular meshwork or create alternative drainage routes into the suprachoroidal or subconjunctival space. They have a highly favorable risk profile compared to penetrating surgeries and lower intraocular pressure with variable efficacy that may depend on the extent of outflow segments accessed. Since they are highly standardized procedures that use clear corneal incisions, they can elegantly be combined with cataract and refractive procedures to improve vision in the same session. There is a growing need for surgeons to become proficient in MIGS to address the increasing prevalence of glaucoma and cataracts in a well-informed, aging population. Techniques of visualization and instrumentation in an anatomically highly confined space with semi-transparent tissues are fundamentally different from other anterior segment surgeries and present even experienced surgeons with a substantial learning curve. Here, we provide practical tips and review techniques and outcomes of TM bypass and ablation MIGS. PMID:24338085

  4. Tools for 3D scientific visualization in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.

  5. Analysis and design of lean direct injection fuel nozzles by eddy resolved turbulence simulation

    NASA Astrophysics Data System (ADS)

    Ryon, Jason Allen

    Combustion systems in gas turbine engines are subjected to particular scrutiny in regards to the emissions which they produce. Of special interest are the emissions of Oxides of Nitrogen (NOx), which have a direct impact on air quality as well as health aspects. There is a need in the industry for elegant designs for these combustion systems which reduce the formation of NOx. The present study includes an in depth analysis of a state-of-the art prefilming airblast injector which is designed for achieving low NOx. The design has been studied through the use of turbulence resolving simulation to differentiate what is important for the design of this system. The OpenFOAM CFD software, with a Delayed Detached Eddy Simulation (DDES) model recently developed at Iowa State University, is shown to provide a suitable design tool which has been used to accurately predict a variety of parameters important to this combustion system. Of particular interest are the mixing characteristics of the atomizer, which have been studied through a series of CFD simulations including single-phase, multi-species, and multi-phase simulations. Turbulence simulations are validated by comparison to United Technologies Aerospace Systems (UTAS) data with air only. It is shown how DDES is able to capture the downstream mixing of air streams. Finally, a novel atomizer has been designed with these methods which is intended to promote thorough mixing. The CFD mixing characteristics are described and compared to the existing injector.

  6. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    PubMed Central

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  7. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    PubMed

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  8. Effects of simulator motion and visual characteristics on rotorcraft handling qualities evaluations

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Hart, Daniel C.

    1993-01-01

    The pilot's perceptions of aircraft handling qualities are influenced by a combination of the aircraft dynamics, the task, and the environment under which the evaluation is performed. When the evaluation is performed in a groundbased simulator, the characteristics of the simulation facility also come into play. Two studies were conducted on NASA Ames Research Center's Vertical Motion Simulator to determine the effects of simulator characteristics on perceived handling qualities. Most evaluations were conducted with a baseline set of rotorcraft dynamics, using a simple transfer-function model of an uncoupled helicopter, under different conditions of visual time delays and motion command washout filters. Differences in pilot opinion were found as the visual and motion parameters were changed, reflecting a change in the pilots' perceptions of handling qualities, rather than changes in the aircraft model itself. The results indicate a need for tailoring the motion washout dynamics to suit the task. Visual-delay data are inconclusive but suggest that it may be better to allow some time delay in the visual path to minimize the mismatch between visual and motion, rather than eliminate the visual delay entirely through lead compensation.

  9. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.

    PubMed

    Rocha, Karolinne Maia; Vabre, Laurent; Chateau, Nicolas; Krueger, Ronald R

    2010-01-01

    To evaluate the changes in visual acuity and visual perception generated by correcting higher order aberrations in highly aberrated eyes using a large-stroke adaptive optics visual simulator. A crx1 Adaptive Optics Visual Simulator (Imagine Eyes) was used to correct and modify the wavefront aberrations in 12 keratoconic eyes and 8 symptomatic postoperative refractive surgery (LASIK) eyes. After measuring ocular aberrations, the device was programmed to compensate for the eye's wavefront error from the second order to the fifth order (6-mm pupil). Visual acuity was assessed through the adaptive optics system using computer-generated ETDRS opto-types and the Freiburg Visual Acuity and Contrast Test. Mean higher order aberration root-mean-square (RMS) errors in the keratoconus and symptomatic LASIK eyes were 1.88+/-0.99 microm and 1.62+/-0.79 microm (6-mm pupil), respectively. The visual simulator correction of the higher order aberrations present in the keratoconus eyes improved their visual acuity by a mean of 2 lines when compared to their best spherocylinder correction (mean decimal visual acuity with spherocylindrical correction was 0.31+/-0.18 and improved to 0.44+/-0.23 with higher order aberration correction). In the symptomatic LASIK eyes, the mean decimal visual acuity with spherocylindrical correction improved from 0.54+/-0.16 to 0.71+/-0.13 with higher order aberration correction. The visual perception of ETDRS letters was improved when correcting higher order aberrations. The adaptive optics visual simulator can effectively measure and compensate for higher order aberrations (second to fifth order), which are associated with diminished visual acuity and perception in highly aberrated eyes. The adaptive optics technology may be of clinical benefit when counseling patients with highly aberrated eyes regarding their maximum subjective potential for vision correction. Copyright 2010, SLACK Incorporated.

  10. [Inverted meiosis and its place in the evolution of sexual reproduction pathways].

    PubMed

    Bogdanov, Yu F

    2016-05-01

    Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.

  11. Real-Time Visualization of an HPF-based CFD Simulation

    NASA Technical Reports Server (NTRS)

    Kremenetsky, Mark; Vaziri, Arsi; Haimes, Robert; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Current time-dependent CFD simulations produce very large multi-dimensional data sets at each time step. The visual analysis of computational results are traditionally performed by post processing the static data on graphics workstations. We present results from an alternate approach in which we analyze the simulation data in situ on each processing node at the time of simulation. The locally analyzed results, usually more economical and in a reduced form, are then combined and sent back for visualization on a graphics workstation.

  12. Learning Reverse Engineering and Simulation with Design Visualization

    NASA Technical Reports Server (NTRS)

    Hemsworth, Paul J.

    2018-01-01

    The Design Visualization (DV) group supports work at the Kennedy Space Center by utilizing metrology data with Computer-Aided Design (CAD) models and simulations to provide accurate visual representations that aid in decision-making. The capability to measure and simulate objects in real time helps to predict and avoid potential problems before they become expensive in addition to facilitating the planning of operations. I had the opportunity to work on existing and new models and simulations in support of DV and NASA’s Exploration Ground Systems (EGS).

  13. Spacecraft Guidance, Navigation, and Control Visualization Tool

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Blackmore, Lars

    2011-01-01

    G-View is a 3D visualization tool for supporting spacecraft guidance, navigation, and control (GN&C) simulations relevant to small-body exploration and sampling (see figure). The tool is developed in MATLAB using Virtual Reality Toolbox and provides users with the ability to visualize the behavior of their simulations, regardless of which programming language (or machine) is used to generate simulation results. The only requirement is that multi-body simulation data is generated and placed in the proper format before applying G-View.

  14. Visual cues in low-level flight - Implications for pilotage, training, simulation, and enhanced/synthetic vision systems

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Kaiser, Mary K.; Johnson, Walter W.

    1992-01-01

    This paper reviews some of the sources of visual information that are available in the out-the-window scene and describes how these visual cues are important for routine pilotage and training, as well as the development of simulator visual systems and enhanced or synthetic vision systems for aircraft cockpits. It is shown how these visual cues may change or disappear under environmental or sensor conditions, and how the visual scene can be augmented by advanced displays to capitalize on the pilot's excellent ability to extract visual information from the visual scene.

  15. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The current and near-future state-of-the-art in visual simulation equipment technology is related to the requirements of the space shuttle visual system. Image source, image sensing, and displays are analyzed on a subsystem basis, and the principal conclusions are used in the formulation of a recommended baseline visual system. Perceptibility and visibility are also analyzed.

  16. Conceptual design study for an advanced cab and visual system, volume 2

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation.

  17. Visual performance modeling in the human operator simulator

    NASA Technical Reports Server (NTRS)

    Strieb, M. I.

    1979-01-01

    A brief description of the history of the development of the human operator simulator (HOS) model is presented. Features of the HOS micromodels that impact on the obtainment of visual performance data are discussed along with preliminary details on a HOS pilot model designed to predict the results of visual performance workload data obtained through oculometer studies on pilots in real and simulated approaches and landings.

  18. Visualization and simulation techniques for surgical simulators using actual patient's data.

    PubMed

    Radetzky, Arne; Nürnberger, Andreas

    2002-11-01

    Because of the increasing complexity of surgical interventions research in surgical simulation became more and more important over the last years. However, the simulation of tissue deformation is still a challenging problem, mainly due to the short response times that are required for real-time interaction. The demands to hard and software are even larger if not only the modeled human anatomy is used but the anatomy of actual patients. This is required if the surgical simulator should be used as training medium for expert surgeons rather than students. In this article, suitable visualization and simulation methods for surgical simulation utilizing actual patient's datasets are described. Therefore, the advantages and disadvantages of direct and indirect volume rendering for the visualization are discussed and a neuro-fuzzy system is described, which can be used for the simulation of interactive tissue deformations. The neuro-fuzzy system makes it possible to define the deformation behavior based on a linguistic description of the tissue characteristics or to learn the dynamics by using measured data of real tissue. Furthermore, a simulator for minimally-invasive neurosurgical interventions is presented that utilizes the described visualization and simulation methods. The structure of the simulator is described in detail and the results of a system evaluation by an experienced neurosurgeon--a quantitative comparison between different methods of virtual endoscopy as well as a comparison between real brain images and virtual endoscopies--are given. The evaluation proved that the simulator provides a higher realism of the visualization and simulation then other currently available simulators. Copyright 2002 Elsevier Science B.V.

  19. Visualization and Tracking of Parallel CFD Simulations

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kremenetsky, Mark

    1995-01-01

    We describe a system for interactive visualization and tracking of a 3-D unsteady computational fluid dynamics (CFD) simulation on a parallel computer. CM/AVS, a distributed, parallel implementation of a visualization environment (AVS) runs on the CM-5 parallel supercomputer. A CFD solver is run as a CM/AVS module on the CM-5. Data communication between the solver, other parallel visualization modules, and a graphics workstation, which is running AVS, are handled by CM/AVS. Partitioning of the visualization task, between CM-5 and the workstation, can be done interactively in the visual programming environment provided by AVS. Flow solver parameters can also be altered by programmable interactive widgets. This system partially removes the requirement of storing large solution files at frequent time steps, a characteristic of the traditional 'simulate (yields) store (yields) visualize' post-processing approach.

  20. Pilot performance during simulated approaches and landings made with various computer-generated visual glidepath indicators.

    DOT National Transportation Integrated Search

    1979-01-01

    Two simulator experiments were conducted to quantify the effectiveness, in terms of pilot performance, of four different visual glidepath indicator systems in the severely reduced nighttime visual environment often referred to as the 'black hole'. A ...

  1. Recent Advances in Visualizing 3D Flow with LIC

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1998-01-01

    Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.

  2. Semi-automated image analysis: detecting carbonylation in subcellular regions of skeletal muscle

    PubMed Central

    Kostal, Vratislav; Levar, Kiara; Swift, Mark; Skillrud, Erik; Chapman, Mark; Thompson, LaDora V.

    2011-01-01

    The level of carbonylation in skeletal muscle is a marker of oxidative damage associated with disease and aging. While immunofluorescence microscopy is an elegant method to identify carbonylation sites in muscle cross-sections, imaging analysis is manual, tedious, and time consuming, especially when the goal is to characterize carbonyl contents in subcellular regions. In this paper, we present a semi-automated method for the analysis of carbonylation in subcellular regions of skeletal muscle cross-sections visualized with dual fluorescent immunohistochemistry. Carbonyls were visualized by their reaction with 2,4-dinitrophenylhydrazine (DNPH) followed by immunolabeling with an Alexa488-tagged anti-DNP antibody. Mitochondria were probed with an anti-COXI primary antibody followed by the labeling with an Alexa568-tagged secondary antibody. After imaging, muscle fibers were individually analyzed using a custom-designed, lab-written, computer-aided procedure to measure carbonylation levels in subsarcolemmal and interfibrillar mitochondrial regions, and in the cytoplasmic and extracellular regions. Using this procedure, we were able to decrease the time necessary for the analysis of a single muscle fiber from 45 min to about 1 min. The procedure was tested by four independent analysts and found to be independent on inter-person and intra-person variations. This procedure will help increase highly needed throughput in muscle studies related to ageing, disease, physical performance, and inactivity that use carbonyl levels as markers of oxidative damage. PMID:21327623

  3. Hybrid region merging method for segmentation of high-resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi; Wang, Jiangeng; Wang, Zuo

    2014-12-01

    Image segmentation remains a challenging problem for object-based image analysis. In this paper, a hybrid region merging (HRM) method is proposed to segment high-resolution remote sensing images. HRM integrates the advantages of global-oriented and local-oriented region merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region, which provides an elegant way to avoid the problem of starting point assignment and to enhance the optimization ability for local-oriented region merging. During the region growing procedure, the merging iterations are constrained within the local vicinity, so that the segmentation is accelerated and can reflect the local context, as compared with the global-oriented method. A set of high-resolution remote sensing images is used to test the effectiveness of the HRM method, and three region-based remote sensing image segmentation methods are adopted for comparison, including the hierarchical stepwise optimization (HSWO) method, the local-mutual best region merging (LMM) method, and the multiresolution segmentation (MRS) method embedded in eCognition Developer software. Both the supervised evaluation and visual assessment show that HRM performs better than HSWO and LMM by combining both their advantages. The segmentation results of HRM and MRS are visually comparable, but HRM can describe objects as single regions better than MRS, and the supervised and unsupervised evaluation results further prove the superiority of HRM.

  4. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  5. WarpIV: In situ visualization and analysis of ion accelerator simulations

    DOE PAGES

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  6. Design and Development of Emittance Measurement Device by Using the Pepper-pot Technique

    NASA Astrophysics Data System (ADS)

    Pakluea, S.; Rimjaem, S.

    2017-09-01

    Transverse emittance of a charged particle beam is one of the most important properties that reveals the quality of the beam. It is related to charge density, transvers size and angular displacement of the beam in transverse phase space. There are several techniques to measure the transverse emittance value. One of practical methods is the pepper-pot technique, which can measure both horizontal and vertical emittance value in a single measurement. This research concentrates on development of a pepper-pot device to measure the transverse emittance of electron beam produced from an accelerator injector system, which consists of a thermionic cathode RF electron gun and an alpha magnet, at the Plasma and Beam Physics Research Facility, Chiang Mai University. Simulation of beam dynamics was conducted with programs PARMELA, ELEGANT and self-developed codes using C and MATLAB. The geometry, dimensions and location of the pepper-pot as well as its corresponding screen station position were included in the simulation. The result from this study will be used to design and develop a practical pepper-pot experimental station.

  7. Unique Association of Rare Cardiovascular Disease in an Athlete With Ventricular Arrhythmias.

    PubMed

    Santomauro, V; Contursi, M; Dellegrottaglie, S; Borsellino, G

    2015-01-01

    Ventricular arrhythmias are a leading cause of non-elegibility to competitive sport. The failure to detect a significant organic substrate in the initial stage of screening does not preclude the identification of structural pathologies in the follow-up by using advanced imaging techniques. Here we report the case of a senior athlete judged not elegible because an arrhythmia with the morphology consistent with the origin of the left ventricle, in which subsequent execution of a cardiac MR and a thoracic CT scan has allowed the identification of an unique association between an area of myocardial damage, probable site of origine of the arrhythma, and a rare aortic malformation.

  8. Scientific Visualization and Computational Science: Natural Partners

    NASA Technical Reports Server (NTRS)

    Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization research because the results vary so widely and include things that have no known appearance. The amount of data creates additional challenges for both hardware and software systems. Evaluations of visualization should ultimately reflect the insight gained into the scientific phenomena. So making good visualizations requires consideration of characteristics of the user and the purpose of the visualization. Knowledge about human perception and graphic design is also relevant. It is this breadth of knowledge that stimulates proposals for multidisciplinary visualization teams and intelligent visualization assistant software. Visualization is an immature field, but computational science is stimulating research on a broad front.

  9. Modern Scientific Visualization is more than Just Pretty Pictures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E Wes; Rubel, Oliver; Wu, Kesheng

    2008-12-05

    While the primary product of scientific visualization is images and movies, its primary objective is really scientific insight. Too often, the focus of visualization research is on the product, not the mission. This paper presents two case studies, both that appear in previous publications, that focus on using visualization technology to produce insight. The first applies"Query-Driven Visualization" concepts to laser wakefield simulation data to help identify and analyze the process of beam formation. The second uses topological analysis to provide a quantitative basis for (i) understanding the mixing process in hydrodynamic simulations, and (ii) performing comparative analysis of data frommore » two different types of simulations that model hydrodynamic instability.« less

  10. Man-systems evaluation of moving base vehicle simulation motion cues. [human acceleration perception involving visual feedback

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M.; Brye, R. G.

    1974-01-01

    A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.

  11. Visualization and classification of physiological failure modes in ensemble hemorrhage simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Pruett, William Andrew; Hester, Robert

    2015-01-01

    In an emergency situation such as hemorrhage, doctors need to predict which patients need immediate treatment and care. This task is difficult because of the diverse response to hemorrhage in human population. Ensemble physiological simulations provide a means to sample a diverse range of subjects and may have a better chance of containing the correct solution. However, to reveal the patterns and trends from the ensemble simulation is a challenging task. We have developed a visualization framework for ensemble physiological simulations. The visualization helps users identify trends among ensemble members, classify ensemble member into subpopulations for analysis, and provide prediction to future events by matching a new patient's data to existing ensembles. We demonstrated the effectiveness of the visualization on simulated physiological data. The lessons learned here can be applied to clinically-collected physiological data in the future.

  12. Visualizing the ground motions of the 1906 San Francisco earthquake

    USGS Publications Warehouse

    Chourasia, A.; Cutchin, S.; Aagaard, Brad T.

    2008-01-01

    With advances in computational capabilities and refinement of seismic wave-propagation models in the past decade large three-dimensional simulations of earthquake ground motion have become possible. The resulting datasets from these simulations are multivariate, temporal and multi-terabyte in size. Past visual representations of results from seismic studies have been largely confined to static two-dimensional maps. New visual representations provide scientists with alternate ways of viewing and interacting with these results potentially leading to new and significant insight into the physical phenomena. Visualizations can also be used for pedagogic and general dissemination purposes. We present a workflow for visual representation of the data from a ground motion simulation of the great 1906 San Francisco earthquake. We have employed state of the art animation tools for visualization of the ground motions with a high degree of accuracy and visual realism. ?? 2008 Elsevier Ltd.

  13. Optimizing Cognitive Load for Learning from Computer-Based Science Simulations

    ERIC Educational Resources Information Center

    Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.

    2006-01-01

    How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…

  14. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    DOE PAGES

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; ...

    2016-08-01

    An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less

  15. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.

    An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less

  16. Impact of Sleep and Circadian Disruption on Energy Balance and Diabetes: A Summary of Workshop Discussions.

    PubMed

    Arble, Deanna M; Bass, Joseph; Behn, Cecilia Diniz; Butler, Matthew P; Challet, Etienne; Czeisler, Charles; Depner, Christopher M; Elmquist, Joel; Franken, Paul; Grandner, Michael A; Hanlon, Erin C; Keene, Alex C; Joyner, Michael J; Karatsoreos, Ilia; Kern, Philip A; Klein, Samuel; Morris, Christopher J; Pack, Allan I; Panda, Satchidananda; Ptacek, Louis J; Punjabi, Naresh M; Sassone-Corsi, Paolo; Scheer, Frank A; Saxena, Richa; Seaquest, Elizabeth R; Thimgan, Matthew S; Van Cauter, Eve; Wright, Kenneth P

    2015-12-01

    A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice. © 2015 Associated Professional Sleep Societies, LLC.

  17. Comparison of vision through surface modulated and spatial light modulated multifocal optics.

    PubMed

    Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana

    2017-04-01

    Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near.

  18. Comparison of vision through surface modulated and spatial light modulated multifocal optics

    PubMed Central

    Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana

    2017-01-01

    Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near. PMID:28736655

  19. A visual-environment simulator with variable contrast

    NASA Astrophysics Data System (ADS)

    Gusarova, N. F.; Demin, A. V.; Polshchikov, G. V.

    1987-01-01

    A visual-environment simulator is proposed in which the image contrast can be varied continuously up to the reversal of the image. Contrast variability can be achieved by using two independently adjustable light sources to simultaneously illuminate the carrier of visual information (e.g., a slide or a cinematographic film). It is shown that such a scheme makes it possible to adequately model a complex visual environment.

  20. Visualizing Energy on Target: Molecular Dynamics Simulations

    DTIC Science & Technology

    2017-12-01

    ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target

  1. Energy and enthalpy distribution functions for a few physical systems.

    PubMed

    Wu, K L; Wei, J H; Lai, S K; Okabe, Y

    2007-08-02

    The present work is devoted to extracting the energy or enthalpy distribution function of a physical system from the moments of the distribution using the maximum entropy method. This distribution theory has the salient traits that it utilizes only the experimental thermodynamic data. The calculated distribution functions provide invaluable insight into the state or phase behavior of the physical systems under study. As concrete evidence, we demonstrate the elegance of the distribution theory by studying first a test case of a two-dimensional six-state Potts model for which simulation results are available for comparison, then the biphasic behavior of the binary alloy Na-K whose excess heat capacity, experimentally observed to fall in a narrow temperature range, has yet to be clarified theoretically, and finally, the thermally induced state behavior of a collection of 16 proteins.

  2. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Weilun; Huang, S.; Liu, K.X.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flatmore » energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.« less

  3. Efficient massively parallel simulation of dynamic channel assignment schemes for wireless cellular communications

    NASA Technical Reports Server (NTRS)

    Greenberg, Albert G.; Lubachevsky, Boris D.; Nicol, David M.; Wright, Paul E.

    1994-01-01

    Fast, efficient parallel algorithms are presented for discrete event simulations of dynamic channel assignment schemes for wireless cellular communication networks. The driving events are call arrivals and departures, in continuous time, to cells geographically distributed across the service area. A dynamic channel assignment scheme decides which call arrivals to accept, and which channels to allocate to the accepted calls, attempting to minimize call blocking while ensuring co-channel interference is tolerably low. Specifically, the scheme ensures that the same channel is used concurrently at different cells only if the pairwise distances between those cells are sufficiently large. Much of the complexity of the system comes from ensuring this separation. The network is modeled as a system of interacting continuous time automata, each corresponding to a cell. To simulate the model, conservative methods are used; i.e., methods in which no errors occur in the course of the simulation and so no rollback or relaxation is needed. Implemented on a 16K processor MasPar MP-1, an elegant and simple technique provides speedups of about 15 times over an optimized serial simulation running on a high speed workstation. A drawback of this technique, typical of conservative methods, is that processor utilization is rather low. To overcome this, new methods were developed that exploit slackness in event dependencies over short intervals of time, thereby raising the utilization to above 50 percent and the speedup over the optimized serial code to about 120 times.

  4. Visualization-based decision support for value-driven system design

    NASA Astrophysics Data System (ADS)

    Tibor, Elliott

    In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations with a Value-Driven Design formulation. The visualization methods are also used to assist in the decomposition of a value function, by representing attribute sensitivities to aid with trade-off studies. Lastly, visualization is used to enable greater understanding of the subsystem relationships, by displaying derivative-based couplings, and the design uncertainties, through implementation of utility theory. The use of these visualization methods is shown to enhance the decision-making capabilities of the designer by granting them a more holistic view of the complex design space.

  5. Identifying Secondary-School Students' Difficulties When Reading Visual Representations Displayed in Physics Simulations

    ERIC Educational Resources Information Center

    López, Víctor; Pintó, Roser

    2017-01-01

    Computer simulations are often considered effective educational tools, since their visual and communicative power enable students to better understand physical systems and phenomena. However, previous studies have found that when students read visual representations some reading difficulties can arise, especially when these are complex or dynamic…

  6. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  7. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study.

    PubMed

    Schlickum, Marcus; Hedman, Leif; Felländer-Tsai, Li

    2016-02-21

    To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.

  8. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    NASA Astrophysics Data System (ADS)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.

  9. SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S; Dolly, S; Cai, B

    Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deepmore » modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification. Structured with MVVM pattern, it is highly maintainable and extensible, and support smooth connections with other clinical software tools.« less

  10. Towards an integrative model of visual short-term memory maintenance: Evidence from the effects of attentional control, load, decay, and their interactions in childhood.

    PubMed

    Shimi, Andria; Scerif, Gaia

    2017-12-01

    Over the past decades there has been a surge of research aiming to shed light on the nature of capacity limits to visual short-term memory (VSTM). However, an integrative account of this evidence is currently missing. We argue that investigating parameters constraining VSTM in childhood suggests a novel integrative model of VSTM maintenance, and that this in turn informs mechanisms of VSTM maintenance in adulthood. Over 3 experiments with 7-year-olds and young adults (total N=206), we provide evidence for multiple cognitive processes interacting to constrain VSTM performance. While age-related increases in storage capacity are undisputable, we replicate the finding that attentional processes control what information will be encoded and maintained in VSTM in the face of increased competition. Therefore, a central process to the current model is attentional refreshment, a mechanism that it is thought to reactivate and strengthen the signal of the visual representations. Critically, here we also show that attentional influences on VSTM are further constrained by additional factors, traditionally studied to the exclusion of each other, such as memory load and temporal decay. We propose that these processes work synergistically in an elegant manner to capture the adult-end state, whereas their less refined efficiency and modulations in childhood account for the smaller VSTM capacity that 7-year-olds demonstrate compared to older individuals. We conclude that going beyond the investigation of single cognitive mechanisms, to their interactions, holds the promise to understand both developing and fully developed maintenance in VSTM. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. SpectralNET – an application for spectral graph analysis and visualization

    PubMed Central

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-01-01

    Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from . Source code is available upon request. PMID:16236170

  12. SpectralNET--an application for spectral graph analysis and visualization.

    PubMed

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-10-19

    Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is available upon request.

  13. Longitudinal chromatic aberration and emmetropization: results from the chicken eye.

    PubMed Central

    Rohrer, B; Schaeffel, F; Zrenner, E

    1992-01-01

    1. Due to the chromatic dispersion of the ocular media, the focal length of the optics of the eye is about 3 diopters longer for red light than for blue light. Because emmetropization in the chicken (Gallus domesticus) does not require colour cues and operates properly in monochromatic light, one can, therefore, expect that chickens raised in red light become more myopic (with longer eyes) than chicks raised in short wavelength light. Prior to conducting this experiment, we matched the brightness of both light conditions by means of flicker electroretinograms such that equiluminance was obtained for the chickens. 2. Unexpectedly, refractive development was not different from controls in white light for either red or near-ultraviolet light. 3. We tested whether the visual mechanisms guiding refractive development were still sensitive to defocus under both illuminations by treating the chicks with spectacle lenses. 4. Similar to a previous experiment in white light, the growth of the eye in red light also changed such that it compensated for the imposed defocus. It failed to do so, however, in near-ultraviolet light. 5. A histological analysis of the sampling intervals for the ultraviolet receptor system revealed that its spatial resolving power was too low to detect the defocus imposed by the lenses, whereas the long wavelength receptors provided sufficiently good visual acuity. 6. The results show that, during emmetropization, the chicken eye elegantly bypasses the problem of multiple chromatic focal planes by having a low sensitivity to defocus in the blue end of the spectrum. Because the chromatic dispersion function is steep in the blue range but flat at the red end of the spectrum, the remaining chromatic defocus in the spectral range of high visual acuity is low and may match the depth of field of the eye. PMID:1522513

  14. Development of a Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chen, Ronnie; Kenney, Patrick S.; Koval, Christopher M.; Hutchinson, Brian K.

    1996-01-01

    Today's moderm flight simulation research produces vast amounts of time sensitive data. The meaning of this data can be difficult to assess while in its raw format . Therefore, a method of breaking the data down and presenting it to the user in a graphical format is necessary. Simulation Graphics (SimGraph) is intended as a data visualization software package that will incorporate simulation data into a variety of animated graphical displays for easy interpretation by the simulation researcher. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper traces the design, development and implementation of the SimGraph program, and is intended to be a programmer's reference guide.

  15. Vestibular-visual interactions in flight simulators

    NASA Technical Reports Server (NTRS)

    Clark, B.

    1977-01-01

    The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.

  16. Visualization Improves Supraclavicular Access to the Subclavian Vein in a Mixed Reality Simulator.

    PubMed

    Sappenfield, Joshua Warren; Smith, William Brit; Cooper, Lou Ann; Lizdas, David; Gonsalves, Drew B; Gravenstein, Nikolaus; Lampotang, Samsun; Robinson, Albert R

    2018-07-01

    We investigated whether visual augmentation (3D, real-time, color visualization) of a procedural simulator improved performance during training in the supraclavicular approach to the subclavian vein, not as widely known or used as its infraclavicular counterpart. To train anesthesiology residents to access a central vein, a mixed reality simulator with emulated ultrasound imaging was created using an anatomically authentic, 3D-printed, physical mannequin based on a computed tomographic scan of an actual human. The simulator has a corresponding 3D virtual model of the neck and upper chest anatomy. Hand-held instruments such as a needle, an ultrasound probe, and a virtual camera controller are directly manipulated by the trainee and tracked and recorded with submillimeter resolution via miniature, 6 degrees of freedom magnetic sensors. After Institutional Review Board approval, 69 anesthesiology residents and faculty were enrolled and received scripted instructions on how to perform subclavian venous access using the supraclavicular approach based on anatomic landmarks. The volunteers were randomized into 2 cohorts. The first used real-time 3D visualization concurrently with trial 1, but not during trial 2. The second did not use real-time 3D visualization concurrently with trial 1 or 2. However, after trial 2, they observed a 3D visualization playback of trial 2 before performing trial 3 without visualization. An automated scoring system based on time, success, and errors/complications generated objective performance scores. Nonparametric statistical methods were used to compare the scores between subsequent trials, differences between groups (real-time visualization versus no visualization versus delayed visualization), and improvement in scores between trials within groups. Although the real-time visualization group demonstrated significantly better performance than the delayed visualization group on trial 1 (P = .01), there was no difference in gain scores, between performance on the first trial and performance on the final trial, that were dependent on group (P = .13). In the delayed visualization group, the difference in performance between trial 1 and trial 2 was not significant (P = .09); reviewing performance on trial 2 before trial 3 resulted in improved performance when compared to trial 1 (P < .0001). There was no significant difference in median scores (P = .13) between the real-time visualization and delayed visualization groups for the last trial after both groups had received visualization. Participants reported a significant improvement in confidence in performing supraclavicular access to the subclavian vein. Standard deviations of scores, a measure of performance variability, decreased in the delayed visualization group after viewing the visualization. Real-time visual augmentation (3D visualization) in the mixed reality simulator improved performance during supraclavicular access to the subclavian vein. No difference was seen in the final trial of the group that received real-time visualization compared to the group that had delayed visualization playback of their prior attempt. Training with the mixed reality simulator improved participant confidence in performing an unfamiliar technique.

  17. 3D visualization of ultra-fine ICON climate simulation data

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Spickermann, Dela; Böttinger, Michael

    2016-04-01

    Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (<10km) ocean simulations, as well as for ultra-fine cloud resolving (120m) atmospheric simulations. This results in very large 3D time dependent multi-variate data that need to be displayed and analyzed. We have developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.

  18. Measuring Visual Displays’ Effect on Novice Performance in Door Gunnery

    DTIC Science & Technology

    2014-12-01

    training in a mixed reality simulation. Specifically, we examined the effect that different visual displays had on novice soldier performance; qualified...there was a main effect of visual display on performance. However, both visual treatment groups experienced the same degree of presence and simulator... The purpose of this paper is to present the results of our recent experimentation involving a novice population performing aerial door gunnery

  19. The Mission Planning Lab: A Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Daugherty, Sarah C.; Cervantes, Benjamin W.

    2009-01-01

    Simulation and visualization are powerful decision making tools that are time-saving and cost-effective. Space missions pose testing and e valuation challenges that can be overcome through modeling, simulatio n, and visualization of mission parameters. The National Aeronautics and Space Administration?s (NASA) Wallops Flight Facility (WFF) capi talizes on the benefits of modeling, simulation, and visualization to ols through a project initiative called The Mission Planning Lab (MPL ).

  20. Comprehensive Modeling and Visualization of Cardiac Anatomy and Physiology from CT Imaging and Computer Simulations

    PubMed Central

    Sun, Peng; Zhou, Haoyin; Ha, Seongmin; Hartaigh, Bríain ó; Truong, Quynh A.; Min, James K.

    2016-01-01

    In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. CT imaging and computer simulations provide valuable and complementary data for this purpose. However, it remains challenging to gain useful information from the large amount of high-dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and physiologic data from a complete yet focused perspective. We introduce a new computer-aided diagnosis framework, which allows for comprehensive modeling and visualization of cardiac anatomy and physiology from CT imaging data and computer simulations, with a primary focus on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from CT imaging: quantification and visualization of myocardial perfusion and contextual integration with coronary artery anatomy; (4) Physiology from computer simulation: computation and visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart disease. PMID:26863663

  1. Characteristics of flight simulator visual systems

    NASA Technical Reports Server (NTRS)

    Statler, I. C. (Editor)

    1981-01-01

    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality.

  2. Oculo-vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness.

    PubMed

    Cevette, Michael J; Stepanek, Jan; Cocco, Daniela; Galea, Anna M; Pradhan, Gaurav N; Wagner, Linsey S; Oakley, Sarah R; Smith, Benn E; Zapala, David A; Brookler, Kenneth H

    2012-06-01

    Despite improvement in the computational capabilities of visual displays in flight simulators, intersensory visual-vestibular conflict remains the leading cause of simulator sickness (SS). By using galvanic vestibular stimulation (GVS), the vestibular system can be synchronized with a moving visual field in order to lessen the mismatch of sensory inputs thought to result in SS. A multisite electrode array was used to deliver combinations of GVS in 21 normal subjects. Optimal electrode combinations were identified and used to establish GVS dose-response predictions for the perception of roll, pitch, and yaw. Based on these data, an algorithm was then implemented in flight simulator hardware in order to synchronize visual and GVS-induced vestibular sensations (oculo-vestibular-recoupled or OVR simulation). Subjects were then randomly exposed to flight simulation either with or without OVR simulation. A self-report SS checklist was administered to all subjects after each session. An overall SS score was calculated for each category of symptoms for both groups. The analysis of GVS stimulation data yielded six unique combinations of electrode positions inducing motion perceptions in the three rotational axes. This provided the algorithm used for OVR simulation. The overall SS scores for gastrointestinal, central, and peripheral categories were 17%, 22.4%, and 20% for the Control group and 6.3%, 20%, and 8% for the OVR group, respectively. When virtual head signals produced by GVS are synchronized to the speed and direction of a moving visual field, manifestations of induced SS in a cockpit flight simulator are significantly reduced.

  3. 'I didn't see that coming': simulated visual fields and driving hazard perception test performance.

    PubMed

    Glen, Fiona C; Smith, Nicholas D; Jones, Lee; Crabb, David P

    2016-09-01

    Evidence is limited regarding specific types of visual field loss associated with unsafe driving. We use novel gaze-contingent software to examine the effect of simulated visual field loss on computer-based driving hazard detection with the specific aim of testing the impact of scotomata located to the right and left of fixation. The 'hazard perception test' is a component of the UK driving licence examination, which measures speed of detecting 15 different hazards in a series of real-life driving films. We have developed a novel eye-tracking and computer set up capable of generating a realistic gaze-contingent scotoma simulation (GazeSS) overlaid on film content. Thirty drivers with healthy vision completed three versions of the hazard perception test in a repeated measures experiment. In two versions, GazeSS simulated a scotoma in the binocular field of view to the left or right of fixation. A third version was unmodified to establish baseline performance. Participants' mean baseline hazard perception test score was 51 ± 7 (out of 75). This reduced to 46 ± 9 and 46 ± 11 when completing the task with a binocular visual field defect located to the left and right of fixation, respectively. While the main effect of simulated visual field loss on performance was statistically significant (p = 0.007), there were no average differences in the experimental conditions where a scotoma was located in the binocular visual field to the right or left of fixation. Simulated visual field loss impairs driving hazard detection on a computer-based test. There was no statistically significant difference in average performance when the simulated scotoma was located to the right or left of fixation of the binocular visual field, but certain types of hazard caused more difficulties than others. © 2016 Optometry Australia.

  4. The Diffusion Simulator - Teaching Geomorphic and Geologic Problems Visually.

    ERIC Educational Resources Information Center

    Gilbert, R.

    1979-01-01

    Describes a simple hydraulic simulator based on more complex models long used by engineers to develop approximate solutions. It allows students to visualize non-steady transfer, to apply a model to solve a problem, and to compare experimentally simulated information with calculated values. (Author/MA)

  5. Efficacy of Simulation-Based Learning of Electronics Using Visualization and Manipulation

    ERIC Educational Resources Information Center

    Chen, Yu-Lung; Hong, Yu-Ru; Sung, Yao-Ting; Chang, Kuo-En

    2011-01-01

    Software for simulation-based learning of electronics was implemented to help learners understand complex and abstract concepts through observing external representations and exploring concept models. The software comprises modules for visualization and simulative manipulation. Differences in learning performance of using the learning software…

  6. Using Visual Simulation Tools And Learning Outcomes-Based Curriculum To Help Transportation Engineering Students And Practitioners To Better Understand And Design Traffic Signal Control Systems

    DOT National Transportation Integrated Search

    2012-06-01

    The use of visual simulation tools to convey complex concepts has become a useful tool in education as well as in research. : This report describes a project that developed curriculum and visualization tools to train transportation engineering studen...

  7. Three-Dimension Visualization for Primary Wheat Diseases Based on Simulation Model

    NASA Astrophysics Data System (ADS)

    Shijuan, Li; Yeping, Zhu

    Crop simulation model has been becoming the core of agricultural production management and resource optimization management. Displaying crop growth process makes user observe the crop growth and development intuitionisticly. On the basis of understanding and grasping the occurrence condition, popularity season, key impact factors for main wheat diseases of stripe rust, leaf rust, stem rust, head blight and powdery mildew from research material and literature, we designed 3D visualization model for wheat growth and diseases occurrence. The model system will help farmer, technician and decision-maker to use crop growth simulation model better and provide decision-making support. Now 3D visualization model for wheat growth on the basis of simulation model has been developed, and the visualization model for primary wheat diseases is in the process of development.

  8. Effects of Spatio-Temporal Aliasing on Out-the-Window Visual Systems

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.; Stone, Leland S.; Liston, Dorion B.; Hebert, Tim M.

    2014-01-01

    Designers of out-the-window visual systems face a challenge when attempting to simulate the outside world as viewed from a cockpit. Many methodologies have been developed and adopted to aid in the depiction of particular scene features, or levels of static image detail. However, because aircraft move, it is necessary to also consider the quality of the motion in the simulated visual scene. When motion is introduced in the simulated visual scene, perceptual artifacts can become apparent. A particular artifact related to image motion, spatiotemporal aliasing, will be addressed. The causes of spatio-temporal aliasing will be discussed, and current knowledge regarding the impact of these artifacts on both motion perception and simulator task performance will be reviewed. Methods of reducing the impact of this artifact are also addressed

  9. Visual enhancements in pick-and-place tasks: Human operators controlling a simulated cylindrical manipulator

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tendick, Frank; Stark, Lawrence

    1989-01-01

    A teleoperation simulator was constructed with vector display system, joysticks, and a simulated cylindrical manipulator, in order to quantitatively evaluate various display conditions. The first of two experiments conducted investigated the effects of perspective parameter variations on human operators' pick-and-place performance, using a monoscopic perspective display. The second experiment involved visual enhancements of the monoscopic perspective display, by adding a grid and reference lines, by comparison with visual enhancements of a stereoscopic display; results indicate that stereoscopy generally permits superior pick-and-place performance, but that monoscopy nevertheless allows equivalent performance when defined with appropriate perspective parameter values and adequate visual enhancements.

  10. Analysis procedures and subjective flight results of a simulator validation and cue fidelity experiment

    NASA Technical Reports Server (NTRS)

    Carr, Peter C.; Mckissick, Burnell T.

    1988-01-01

    A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.

  11. Towards Infusing Giovanni with a Semantic and Provenance Aware Visualization System

    NASA Astrophysics Data System (ADS)

    Del Rio, N.; Pinheiro da Silva, P.; Leptoukh, G. G.; Lynnes, C.

    2011-12-01

    Giovanni is a Web-based application developed by GES DISC that provides simple and intuitive ways to visualize, analyze, and access vast amounts of Earth science remote sensed data. Currently, the Giovanni visualization module is only aware of the physical links (i.e., hard-coded) between data and services and consequently cannot be easily adapted to new visualization scenarios. VisKo, a semantically enabled visualization framework, can be leveraged by Giovanni as a semantic bridge between data and visualization. VisKo relates data and visualization services at conceptual (i.e., ontological) levels and relies on reasoning systems to leverage the conceptual relationships to automatically infer physical links, facilitating an adaptable environment for new visualization scenarios. This is particularly useful for Giovanni, which has been constantly retrofitted with new visualization software packages to keep up with advancement in visualization capabilities. During our prototype integration of Giovanni with VisKo, a number of future steps were identified that if implemented could cement the integration and promote our prototype to operational status. A number of integration issues arose including the mediation of different languages used by each system to characterize datasets; VisKo relies on semantic data characterization to "match-up" data with visualization processes. It was necessary to identify mappings between Giovanni XML provenance and Proof Markup Language, which is understood by VisKo. Although a translator was implemented based on identified mappings, a more elegant solution is to develop a domain data ontology specific to Giovanni and to "align" this ontology with PML, enabling VisKo to directly ingest the semantic descriptions of Giovanni data. Additionally, the relationship between dataset components (e.g., variables and attributes) and visualization plot components (e.g., geometries, axes, titles) should also be modeled. In Giovanni, meta-data descriptions are used to configure the different properties of the plots such as titles, color-tables, and variable-to-axis bindings. Giovanni services rely on a set of custom attributes and naming conventions that help identify the relationships between dataset components and plot properties. VisKo visualization services however are generic modules that do not rely on any domain specific conventions for identifying relationships between dataset attributes and plot configuration. Rather, VisKo services rely on parameters to configure specific behaviors of the generic services. The relationship between VisKo parameters and plot properties however has yet to formally documented, partly because VisKo regards plots as holistic entities without any internal structure from which to relate parameters. We understand the need for a visualization plot ontology that defines plot components, their retinal properties, such as position and color, and the relationship between the plot properties to controlling service parameter sets. The plot ontology would also be linked to our domain data ontology, providing VisKo with the comprehensive understanding about how data attributes can cue the configuration of plots, and how a specific plot configuration relates to service parameters.

  12. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  13. pV3-Gold Visualization Environment for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa L.

    1997-01-01

    A new visualization environment, pV3-Gold, can be used during and after a computer simulation to extract and visualize the physical features in the results. This environment, which is an extension of the pV3 visualization environment developed at the Massachusetts Institute of Technology with guidance and support by researchers at the NASA Lewis Research Center, features many tools that allow users to display data in various ways.

  14. Voxel Datacubes for 3D Visualization in Blender

    NASA Astrophysics Data System (ADS)

    Gárate, Matías

    2017-05-01

    The growth of computational astrophysics and the complexity of multi-dimensional data sets evidences the need for new versatile visualization tools for both the analysis and presentation of the data. In this work, we show how to use the open-source software Blender as a three-dimensional (3D) visualization tool to study and visualize numerical simulation results, focusing on astrophysical hydrodynamic experiments. With a datacube as input, the software can generate a volume rendering of the 3D data, show the evolution of a simulation in time, and do a fly-around camera animation to highlight the points of interest. We explain the process to import simulation outputs into Blender using the voxel data format, and how to set up a visualization scene in the software interface. This method allows scientists to perform a complementary visual analysis of their data and display their results in an appealing way, both for outreach and science presentations.

  15. Use of a Computer Simulation To Develop Mental Simulations for Understanding Relative Motion Concepts.

    ERIC Educational Resources Information Center

    Monaghan, James M.; Clement, John

    1999-01-01

    Presents evidence for students' qualitative and quantitative difficulties with apparently simple one-dimensional relative-motion problems, students' spontaneous visualization of relative-motion problems, the visualizations facilitating solution of these problems, and students' memories of the online computer simulation used as a framework for…

  16. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study

    PubMed Central

    Hedman, Leif; Felländer-Tsai, Li

    2016-01-01

    Objectives To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Methods Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience.  Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. Results A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). Conclusions This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.  PMID:26897701

  17. Measuring the Influence of Galilean Loupe System on Near Visual Acuity of Dentists under Simulated Clinical Conditions

    PubMed Central

    Urlic, Iris; Verzak, Željko; Vranic, Dubravka Negovetic

    2016-01-01

    Aim The purpose of this study was to compare near visual acuity of dentists without optical aids (VSC) with near visual acuity of those using the Galilean telescope system (VGA2) with magnification of x 2.5, and the distance of 350 mm in simulated clinical conditions. Methods The study included 46 dentists (visual acuity 1.0 without correction). A visual acuity testing was carried out using a miniaturized Snellen visual acuity chart which was placed in the cavity of molar teeth mounted in a phantom head in simulated clinical conditions. Near visual acuity for the vicinity was examined: 1) without correction at a distance of 300-400 mm (VSC); 2) with Galilean loupes with magnification of x2.5, focal length of 350mm. Results The distributions of near visual acuity recorded using VSC and VGA2, 5 systems were compared by the Wilcoxon Signed Rank test. The results obtained by Wilcoxon Signed Rank test pointed to a statistically significant difference in the distribution of recorded visual acuity between the VSC and VGA2 optical systems (W = - 403.5; p <0.001). Conclusion If using the VGA2, 5 systems, higher values of the near visual acuity were recorded and subsequently compared to near visual acuity without magnifying aids (VSC). PMID:27847397

  18. Measuring the Influence of Galilean Loupe System on Near Visual Acuity of Dentists under Simulated Clinical Conditions.

    PubMed

    Urlic, Iris; Verzak, Željko; Vranic, Dubravka Negovetic

    2016-09-01

    The purpose of this study was to compare near visual acuity of dentists without optical aids (VSC) with near visual acuity of those using the Galilean telescope system (VGA2) with magnification of x 2.5, and the distance of 350 mm in simulated clinical conditions. The study included 46 dentists (visual acuity 1.0 without correction). A visual acuity testing was carried out using a miniaturized Snellen visual acuity chart which was placed in the cavity of molar teeth mounted in a phantom head in simulated clinical conditions. Near visual acuity for the vicinity was examined: 1) without correction at a distance of 300-400 mm (VSC); 2) with Galilean loupes with magnification of x2.5, focal length of 350mm. The distributions of near visual acuity recorded using VSC and VGA2, 5 systems were compared by the Wilcoxon Signed Rank test. The results obtained by Wilcoxon Signed Rank test pointed to a statistically significant difference in the distribution of recorded visual acuity between the VSC and VGA2 optical systems (W = - 403.5; p <0.001). If using the VGA2, 5 systems, higher values of the near visual acuity were recorded and subsequently compared to near visual acuity without magnifying aids (VSC).

  19. Simulating the role of visual selective attention during the development of perceptual completion

    PubMed Central

    Schlesinger, Matthew; Amso, Dima; Johnson, Scott P.

    2014-01-01

    We recently proposed a multi-channel, image-filtering model for simulating the development of visual selective attention in young infants (Schlesinger, Amso & Johnson, 2007). The model not only captures the performance of 3-month-olds on a visual search task, but also implicates two cortical regions that may play a role in the development of visual selective attention. In the current simulation study, we used the same model to simulate 3-month-olds’ performance on a second measure, the perceptual unity task. Two parameters in the model – corresponding to areas in the occipital and parietal cortices – were systematically varied while the gaze patterns produced by the model were recorded and subsequently analyzed. Three key findings emerged from the simulation study. First, the model successfully replicated the performance of 3-month-olds on the unity perception task. Second, the model also helps to explain the improved performance of 2-month-olds when the size of the occluder in the unity perception task is reduced. Third, in contrast to our previous simulation results, variation in only one of the two cortical regions simulated (i.e. recurrent activity in posterior parietal cortex) resulted in a performance pattern that matched 3-month-olds. These findings provide additional support for our hypothesis that the development of perceptual completion in early infancy is promoted by progressive improvements in visual selective attention and oculomotor skill. PMID:23106728

  20. Simulating the role of visual selective attention during the development of perceptual completion.

    PubMed

    Schlesinger, Matthew; Amso, Dima; Johnson, Scott P

    2012-11-01

    We recently proposed a multi-channel, image-filtering model for simulating the development of visual selective attention in young infants (Schlesinger, Amso & Johnson, 2007). The model not only captures the performance of 3-month-olds on a visual search task, but also implicates two cortical regions that may play a role in the development of visual selective attention. In the current simulation study, we used the same model to simulate 3-month-olds' performance on a second measure, the perceptual unity task. Two parameters in the model - corresponding to areas in the occipital and parietal cortices - were systematically varied while the gaze patterns produced by the model were recorded and subsequently analyzed. Three key findings emerged from the simulation study. First, the model successfully replicated the performance of 3-month-olds on the unity perception task. Second, the model also helps to explain the improved performance of 2-month-olds when the size of the occluder in the unity perception task is reduced. Third, in contrast to our previous simulation results, variation in only one of the two cortical regions simulated (i.e. recurrent activity in posterior parietal cortex) resulted in a performance pattern that matched 3-month-olds. These findings provide additional support for our hypothesis that the development of perceptual completion in early infancy is promoted by progressive improvements in visual selective attention and oculomotor skill. © 2012 Blackwell Publishing Ltd.

  1. The Galaxy Menagerie from WISE

    NASA Image and Video Library

    2011-05-25

    A colorful collection of galaxy specimens from NASA Wide-field Infrared Survey Explorer mission showcases galaxies of several types, from elegant grand design spirals to more patchy flocculent spirals.

  2. Multimillion Atom Simulations and Visualization of Hypervelocity Impact Damage and Oxidation

    DTIC Science & Technology

    2004-01-01

    MULTIMILLION ATOM SIMULATIONS AND VISUALIZATION OF HYPERVELOCITY IMPACT DAMAGE AND OXIDATION Priya Vashishta*, Rajiv K. Kalia, and Aiichiro Nakano...number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 00 DEC 2004 N/A 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multimillion Atom Simulations And...Collaboratory for Advanced Computing and Simulations Department of Materials Science & Engineering, Department of Physics & Astronomy, Department of

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzi, Silvio; Hereld, Mark; Insley, Joseph

    In this work we perform in-situ visualization of molecular dynamics simulations, which can help scientists to visualize simulation output on-the-fly, without incurring storage overheads. We present a case study to couple LAMMPS, the large-scale molecular dynamics simulation code with vl3, our parallel framework for large-scale visualization and analysis. Our motivation is to identify effective approaches for covisualization and exploration of large-scale atomistic simulations at interactive frame rates.We propose a system of coupled libraries and describe its architecture, with an implementation that runs on GPU-based clusters. We present the results of strong and weak scalability experiments, as well as future researchmore » avenues based on our results.« less

  4. A comparison of results from two simulators used for studies of astronaut maneuvering units. [with application to Skylab program

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Cannaday, R. L.

    1973-01-01

    A comparison of the results from a fixed-base, six-degree-of -freedom simulator and a moving-base, three-degree-of-freedom simulator was made for a close-in, EVA-type maneuvering task in which visual cues of a target spacecraft were used for guidance. The maneuvering unit (the foot-controlled maneuvering unit of Skylab Experiment T020) employed an on-off acceleration command control system operated entirely by the feet. Maneuvers by two test subjects were made for the fixed-base simulator in six and three degrees of freedom and for the moving-base simulator in uncontrolled and controlled, EVA-type visual cue conditions. Comparisons of pilot ratings and 13 different quantitative parameters from the two simulators are made. Different results were obtained from the two simulators, and the effects of limited degrees of freedom and uncontrolled visual cues are discussed.

  5. Pilot/vehicle model analysis of visual and motion cue requirements in flight simulation. [helicopter hovering

    NASA Technical Reports Server (NTRS)

    Baron, S.; Lancraft, R.; Zacharias, G.

    1980-01-01

    The optimal control model (OCM) of the human operator is used to predict the effect of simulator characteristics on pilot performance and workload. The piloting task studied is helicopter hover. Among the simulator characteristics considered were (computer generated) visual display resolution, field of view and time delay.

  6. Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics. Final Report.

    ERIC Educational Resources Information Center

    Stenger, Anthony J.; And Others

    This study suggests and identifies computer image generation (CIG) algorithms for visual simulation that improve the training effectiveness of CIG simulators and identifies areas of basic research in visual perception that are significant for improving CIG technology. The first phase of the project entailed observing three existing CIG simulators.…

  7. Choosing Your Poison: Optimizing Simulator Visual System Selection as a Function of Operational Tasks

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara T.; Kaiser, Mary K.

    2013-01-01

    Although current technology simulator visual systems can achieve extremely realistic levels they do not completely replicate the experience of a pilot sitting in the cockpit, looking at the outside world. Some differences in experience are due to visual artifacts, or perceptual features that would not be present in a naturally viewed scene. Others are due to features that are missing from the simulated scene. In this paper, these differences will be defined and discussed. The significance of these differences will be examined as a function of several particular operational tasks. A framework to facilitate the choice of visual system characteristics based on operational task requirements will be proposed.

  8. Real-Time Agent-Based Modeling Simulation with in-situ Visualization of Complex Biological Systems: A Case Study on Vocal Fold Inflammation and Healing.

    PubMed

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K

    2016-05-01

    We present an efficient and scalable scheme for implementing agent-based modeling (ABM) simulation with In Situ visualization of large complex systems on heterogeneous computing platforms. The scheme is designed to make optimal use of the resources available on a heterogeneous platform consisting of a multicore CPU and a GPU, resulting in minimal to no resource idle time. Furthermore, the scheme was implemented under a client-server paradigm that enables remote users to visualize and analyze simulation data as it is being generated at each time step of the model. Performance of a simulation case study of vocal fold inflammation and wound healing with 3.8 million agents shows 35× and 7× speedup in execution time over single-core and multi-core CPU respectively. Each iteration of the model took less than 200 ms to simulate, visualize and send the results to the client. This enables users to monitor the simulation in real-time and modify its course as needed.

  9. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system exergy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modelling, System Robustness, and Value Modelling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  10. NASA Systems Engineering Research Consortium: Defining the Path to Elegance in Systems

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Farrington, Phillip A.

    2016-01-01

    The NASA Systems Engineering Research Consortium was formed at the end of 2010 to study the approaches to producing elegant systems on a consistent basis. This has been a transformative study looking at the engineering and organizational basis of systems engineering. The consortium has engaged in a variety of research topics to determine the path to elegant systems. In the second year of the consortium, a systems engineering framework emerged which structured the approach to systems engineering and guided our research. This led in the third year to set of systems engineering postulates that the consortium is continuing to refine. The consortium has conducted several research projects that have contributed significantly to the understanding of systems engineering. The consortium has surveyed the application of the NASA 17 systems engineering processes, explored the physics and statistics of systems integration, and considered organizational aspects of systems engineering discipline integration. The systems integration methods have included system energy analysis, Akaike Information Criteria (AIC), State Variable Analysis, Multidisciplinary Coupling Analysis (MCA), Multidisciplinary Design Optimization (MDO), System Cost Modeling, System Robustness, and Value Modeling. Organizational studies have included the variability of processes in change evaluations, margin management within the organization, information theory of board structures, social categorization of unintended consequences, and initial looks at applying cognitive science to systems engineering. Consortium members have also studied the bidirectional influence of policy and law with systems engineering.

  11. New comparison of psychological meaning of colors in samples and objects with semantic ratings

    NASA Astrophysics Data System (ADS)

    Lee, Tien-Rein

    2002-06-01

    In color preference and color-meaning research, color chips are widely used as stimuli. Are meanings of isolated color chips generalizeable to contextualized colors? According to Taft (1996), few significant differences exist between chip and object ratings for the same color. A similar survey was performed on 192 college students. This article reports the results of the study comparing semantic rating of color applied to a variety of familiar objects. The objects were a cup, T-shirt, sofa, car, notebook, and MP3 player, all images that represent daily life familiar objects. Subjects rated a set of 16 color chips, against 6 bipolar, 7-step semantic differential scales. The scales consisted of beautiful-ugly, soft-hard, warm-cool, elegant-vulgar, loud- discreet, and masculine-feminine. Analyses performed on the data indicated that unlike Taft's findings on 1996, significant differences existed between chip and object rating for the same color in every scale. The results of the study have implications for the use of color chips in color planning which suggest they are not compatible with the generality of results of the earlier color meaning research. Generally, a color judged to be beautiful, elegant and warm when presented as a chip does not equal beautiful, elegant, and warm when applied to the surface of an object such as a cup, T-shirt, sofa, car.

  12. Elegant Hermite-Airy beams

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Zhang, Lijun; Ru, Guoyun

    2015-09-01

    As Ai(x)Ai(-x) can be approximated by \\text{exp}≤ft(-{{x}2}/2\\right) , a kind of elegant Hermite-Airy (EHA) beam that is similar to the elegant Hermite-Gaussian (EHG) beam is introduced in this paper. Analytical expression of the EHA beams passing through an ABCD paraxial optical system is derived. By using the method of numerical fitting, the approximate expressions of 02> , 04> , <\\Thetaj2> , <\\Thetaj4> , and 02\\Thetaj2> for an EHA beam are presented, respectively. When the transverse mode number is larger than 2, 02> , 04> , <\\Thetaj2> , <\\Thetaj4> , and 02\\Thetaj2> of an EHA beam are all larger than those of the EHG beam. Based on the higher-order intensity moments, one can calculate the beam propagation factor, the beam half width, and the kurtosis parameter of the EHA beam passing through an ABCD paraxial optical system. As a numerical example, the propagation characteristics of the EHA beam are demonstrated in free space. Moreover, the propagation properties of the EHA beam are compared with those of the corresponding EHG beam. The evolutionary process of the EHA beam is far slower than that of the corresponding EHG beam. The research denotes that the EHA beams can be used to describe specially distributed optical beams that can not be characterized by the existing EHG beam model. The EHA beam model enriches and replenishes the existing beam model.

  13. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  14. Identifying secondary-school students' difficulties when reading visual representations displayed in physics simulations

    NASA Astrophysics Data System (ADS)

    López, Víctor; Pintó, Roser

    2017-07-01

    Computer simulations are often considered effective educational tools, since their visual and communicative power enable students to better understand physical systems and phenomena. However, previous studies have found that when students read visual representations some reading difficulties can arise, especially when these are complex or dynamic representations. We have analyzed how secondary-school students read the visual representations displayed in two PhET simulations (one addressing the friction-heating at microscopic level, and the other addressing the electromagnetic induction), and different typologies of reading difficulties have been identified: when reading the compositional structure of the representation, when giving appropriate relevance and semantic meaning to each visual element, and also when dealing with multiple representations and dynamic information. All students experienced at least one of these difficulties, and very similar difficulties appeared in the two groups of students, despite the different scientific content of the simulations. In conclusion, visualisation does not imply a full comprehension of the content of scientific simulations per se, and an effective reading process requires a set of reading skills, previous knowledge, attention, and external supports. Science teachers should bear in mind these issues in order to help students read images to take benefit of their educational potential.

  15. Bio-inspired motion detection in an FPGA-based smart camera module.

    PubMed

    Köhler, T; Röchter, F; Lindemann, J P; Möller, R

    2009-03-01

    Flying insects, despite their relatively coarse vision and tiny nervous system, are capable of carrying out elegant and fast aerial manoeuvres. Studies of the fly visual system have shown that this is accomplished by the integration of signals from a large number of elementary motion detectors (EMDs) in just a few global flow detector cells. We developed an FPGA-based smart camera module with more than 10,000 single EMDs, which is closely modelled after insect motion-detection circuits with respect to overall architecture, resolution and inter-receptor spacing. Input to the EMD array is provided by a CMOS camera with a high frame rate. Designed as an adaptable solution for different engineering applications and as a testbed for biological models, the EMD detector type and parameters such as the EMD time constants, the motion-detection directions and the angle between correlated receptors are reconfigurable online. This allows a flexible and simultaneous detection of complex motion fields such as translation, rotation and looming, such that various tasks, e.g., obstacle avoidance, height/distance control or speed regulation can be performed by the same compact device.

  16. Visual and motion cueing in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1985-01-01

    Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.

  17. Visualization of Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.

  18. Toroidal magnetized iron neutrino detector for a neutrino factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bross, A.; Wands, R.; Bayes, R.

    2013-08-01

    A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of largemore » $$\\theta_{13}$$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $$\\delta_{CP}$$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $$\\delta_{CP}$$.« less

  19. COMBINATION OF DENSITY AND ENERGY MODULATION IN MICROBUNCHING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Cheng Ying; Li, Rui

    2016-05-01

    Microbunching instability (MBI) has been one of the most challenging issues in the transport of high-brightness electron beams for modern recirculating or energy recovery linac machines. Recently we have developed and implemented a Vlasov solver [1] to calculate the microbunching gain for an arbitrary beamline lattice, based on the extension of existing theoretical formulation [2-4] for the microbunching amplification from an initial density perturbation to the final density modulation. For more thorough analyses, in addition to the case of (initial) density to (final) density amplification, we extend in this paper the previous formulation to more general cases, including energy tomore » density, density to energy and energy to energy amplifications for a recirculation machine. Such semi-analytical formulae are then incorporated into our Vlasov solver, and qualitative agreement is obtained when the semi-analytical Vlasov results are compared with particle tracking simulation using ELEGANT [5].« less

  20. Site-Mutation of Hydrophobic Core Residues Synchronically Poise Super Interleukin 2 for Signaling: Identifying Distant Structural Effects through Affordable Computations.

    PubMed

    Mei, Longcan; Zhou, Yanping; Zhu, Lizhe; Liu, Changlin; Wu, Zhuo; Wang, Fangkui; Hao, Gefei; Yu, Di; Yuan, Hong; Cui, Yanfang

    2018-03-20

    A superkine variant of interleukin-2 with six site mutations away from the binding interface developed from the yeast display technique has been previously characterized as undergoing a distal structure alteration which is responsible for its super-potency and provides an elegant case study with which to get insight about how to utilize allosteric effect to achieve desirable protein functions. By examining the dynamic network and the allosteric pathways related to those mutated residues using various computational approaches, we found that nanosecond time scale all-atom molecular dynamics simulations can identify the dynamic network as efficient as an ensemble algorithm. The differentiated pathways for the six core residues form a dynamic network that outlines the area of structure alteration. The results offer potentials of using affordable computing power to predict allosteric structure of mutants in knowledge-based mutagenesis.

  1. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    DOE PAGES

    Halavanau, A.; Piot, P.

    2016-03-03

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge ismore » used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.« less

  2. Data-Rate Estimation for Autonomous Receiver Operation

    NASA Technical Reports Server (NTRS)

    Tkacenko, A.; Simon, M. K.

    2005-01-01

    In this article, we present a series of algorithms for estimating the data rate of a signal whose admissible data rates are integer base, integer powered multiples of a known basic data rate. These algorithms can be applied to the Electra radio currently used in the Deep Space Network (DSN), which employs data rates having the above relationship. The estimation is carried out in an autonomous setting in which very little a priori information is assumed. It is done by exploiting an elegant property of the split symbol moments estimator (SSME), which is traditionally used to estimate the signal-to-noise ratio (SNR) of the received signal. By quantizing the assumed symbol-timing error or jitter, we present an all-digital implementation of the SSME which can be used to jointly estimate the data rate, SNR, and jitter. Simulation results presented show that these joint estimation algorithms perform well, even in the low SNR regions typically encountered in the DSN.

  3. Simulating the Role of Visual Selective Attention during the Development of Perceptual Completion

    ERIC Educational Resources Information Center

    Schlesinger, Matthew; Amso, Dima; Johnson, Scott P.

    2012-01-01

    We recently proposed a multi-channel, image-filtering model for simulating the development of visual selective attention in young infants (Schlesinger, Amso & Johnson, 2007). The model not only captures the performance of 3-month-olds on a visual search task, but also implicates two cortical regions that may play a role in the development of…

  4. Visualizing Structure and Dynamics of Disaccharide Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  5. Interactive Exploration of Cosmological Dark-Matter Simulation Data.

    PubMed

    Scherzinger, Aaron; Brix, Tobias; Drees, Dominik; Volker, Andreas; Radkov, Kiril; Santalidis, Niko; Fieguth, Alexander; Hinrichs, Klaus H

    2017-01-01

    The winning entry of the 2015 IEEE Scientific Visualization Contest, this article describes a visualization tool for cosmological data resulting from dark-matter simulations. The proposed system helps users explore all aspects of the data at once and receive more detailed information about structures of interest at any time. Moreover, novel methods for visualizing and interactively exploring dark-matter halo substructures are proposed.

  6. Visualization of reservoir simulation data with an immersive virtual reality system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, B.K.

    1996-10-01

    This paper discusses an investigation into the use of an immersive virtual reality (VR) system to visualize reservoir simulation output data. The hardware and software configurations of the test-immersive VR system are described and compared to a nonimmersive VR system and to an existing workstation screen-based visualization system. The structure of 3D reservoir simulation data and the actions to be performed on the data within the VR system are discussed. The subjective results of the investigation are then presented, followed by a discussion of possible future work.

  7. Data Presentation and Visualization (DPV) Interface Control Document

    NASA Technical Reports Server (NTRS)

    Mazzone, Rebecca A.; Conroy, Michael P.

    2015-01-01

    Data Presentation and Visualization (DPV) is a subset of the modeling and simulation (M&S) capabilities at Kennedy Space Center (KSC) that endeavors to address the challenges of how to present and share simulation output for analysts, stakeholders, decision makers, and other interested parties. DPV activities focus on the development and provision of visualization tools to meet the objectives identified above, as well as providing supporting tools and capabilities required to make its visualization products available and accessible across NASA.

  8. What's crucial in night vision goggle simulation?

    NASA Astrophysics Data System (ADS)

    Kooi, Frank L.; Toet, Alexander

    2005-05-01

    Training is required to correctly interpret NVG imagery. Training night operations with simulated intensified imagery has great potential. Compared to direct viewing with the naked eye, intensified imagery is relatively easy to simulate and the cost of real NVG training is high (logistics, risk, civilian sleep deprivation, pollution). On the surface NVG imagery appears to have a structure similar to daylight imagery. However, in actuality its characteristics differ significantly from those of daylight imagery. As a result, NVG imagery frequently induces visual illusions. To achieve realistic training, simulated NVG imagery should at least reproduce the essential visual limitations of real NVG imagery caused by reduced resolution, reduced contrast, limited field-of-view, the absence of color, and the systems sensitivity to nearby infrared radiation. It is particularly important that simulated NVG imagery represents essential NVG visual characteristics, such as the high reflection of chlorophyll and halos. Current real-time simulation software falls short for training purposes because of an incorrect representation of shadow effects. We argue that the development of shading and shadowing merits priority to close the gap between real and simulated NVG flight conditions. Visual conspicuity can be deployed as an efficient metric to measure the 'perceptual distance' between the real NVG and the simulated NVG image.

  9. The search for instantaneous vection: An oscillating visual prime reduces vection onset latency.

    PubMed

    Palmisano, Stephen; Riecke, Bernhard E

    2018-01-01

    Typically it takes up to 10 seconds or more to induce a visual illusion of self-motion ("vection"). However, for this vection to be most useful in virtual reality and vehicle simulation, it needs to be induced quickly, if not immediately. This study examined whether vection onset latency could be reduced towards zero using visual display manipulations alone. In the main experiments, visual self-motion simulations were presented to observers via either a large external display or a head-mounted display (HMD). Priming observers with visually simulated viewpoint oscillation for just ten seconds before the main self-motion display was found to markedly reduce vection onset latencies (and also increase ratings of vection strength) in both experiments. As in earlier studies, incorporating this simulated viewpoint oscillation into the self-motion displays themselves was also found to improve vection. Average onset latencies were reduced from 8-9s in the no oscillating control condition to as little as 4.6 s (for external displays) or 1.7 s (for HMDs) in the combined oscillation condition (when both the visual prime and the main self-motion display were oscillating). As these display manipulations did not appear to increase the likelihood or severity of motion sickness in the current study, they could possibly be used to enhance computer generated simulation experiences and training in the future, at no additional cost.

  10. The search for instantaneous vection: An oscillating visual prime reduces vection onset latency

    PubMed Central

    Riecke, Bernhard E.

    2018-01-01

    Typically it takes up to 10 seconds or more to induce a visual illusion of self-motion (“vection”). However, for this vection to be most useful in virtual reality and vehicle simulation, it needs to be induced quickly, if not immediately. This study examined whether vection onset latency could be reduced towards zero using visual display manipulations alone. In the main experiments, visual self-motion simulations were presented to observers via either a large external display or a head-mounted display (HMD). Priming observers with visually simulated viewpoint oscillation for just ten seconds before the main self-motion display was found to markedly reduce vection onset latencies (and also increase ratings of vection strength) in both experiments. As in earlier studies, incorporating this simulated viewpoint oscillation into the self-motion displays themselves was also found to improve vection. Average onset latencies were reduced from 8-9s in the no oscillating control condition to as little as 4.6 s (for external displays) or 1.7 s (for HMDs) in the combined oscillation condition (when both the visual prime and the main self-motion display were oscillating). As these display manipulations did not appear to increase the likelihood or severity of motion sickness in the current study, they could possibly be used to enhance computer generated simulation experiences and training in the future, at no additional cost. PMID:29791445

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  12. Integrating Visualizations into Modeling NEST Simulations

    PubMed Central

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  13. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  14. Application of visualization and simulation program to improve work zone safety and mobility.

    DOT National Transportation Integrated Search

    2010-01-01

    A previous study sponsored by the Smart Work Zone Deployment Initiative, Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility, demonstrated the feasibility of combining readily available, inexpensive...

  15. Application of visualization and simulation program to improve work zone safety and mobility.

    DOT National Transportation Integrated Search

    2010-01-01

    "A previous study sponsored by the Smart Work Zone Deployment Initiative, Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility, demonstrated the feasibility of combining readily available, inexpensiv...

  16. Simulation and Visualization of Chaos in a Driven Nonlinear Pendulum -- An Aid to Introducing Chaotic Systems in Physics

    NASA Astrophysics Data System (ADS)

    Akpojotor, Godfrey; Ehwerhemuepha, Louis; Amromanoh, Ogheneriobororue

    2013-03-01

    The presence of physical systems whose characteristics change in a seemingly erratic manner gives rise to the study of chaotic systems. The characteristics of these systems are due to their hypersensitivity to changes in initial conditions. In order to understand chaotic systems, some sort of simulation and visualization is pertinent. Consequently, in this work, we have simulated and graphically visualized chaos in a driven nonlinear pendulum as a means of introducing chaotic systems. The results obtained which highlight the hypersensitivity of the pendulum are used to discuss the effectiveness of teaching and learning the physics of chaotic system using Python. This study is one of the many studies under the African Computational Science and Engineering Tour Project (PASET) which is using Python to model, simulate and visualize concepts, laws and phenomena in Science and Engineering to compliment the teaching/learning of theory and experiment.

  17. VIPER: Virtual Intelligent Planetary Exploration Rover

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Flueckiger, Lorenzo; Nguyen, Laurent; Washington, Richard

    2001-01-01

    Simulation and visualization of rover behavior are critical capabilities for scientists and rover operators to construct, test, and validate plans for commanding a remote rover. The VIPER system links these capabilities. using a high-fidelity virtual-reality (VR) environment. a kinematically accurate simulator, and a flexible plan executive to allow users to simulate and visualize possible execution outcomes of a plan under development. This work is part of a larger vision of a science-centered rover control environment, where a scientist may inspect and explore the environment via VR tools, specify science goals, and visualize the expected and actual behavior of the remote rover. The VIPER system is constructed from three generic systems, linked together via a minimal amount of customization into the integrated system. The complete system points out the power of combining plan execution, simulation, and visualization for envisioning rover behavior; it also demonstrates the utility of developing generic technologies. which can be combined in novel and useful ways.

  18. User's Guide for Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chen, Ronnie; Kenney, Patrick S.; Koval, Christopher M.; Hutchinson, Brian K.

    1996-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data. The meaning of this data can be difficult to assess while in its raw format. Therefore, a method of breaking the data down and presenting it to the user in a graphical format is necessary. Simulation Graphics (SimGraph) is intended as a data visualization software package that will incorporate simulation data into a variety of animated graphical displays for easy interpretation by the simulation researcher. This document is intended as an end user's guide.

  19. Games, Simulations, and Visual Metaphors in Education: Antagonism between Enjoyment and Learning

    ERIC Educational Resources Information Center

    Rieber, Lloyd P.; Noah, David

    2008-01-01

    The purpose of this study was to investigate the influence of game-like activities on adult learning during a computer-based simulation. This research also studied the use of visual metaphors as graphic organizers to help make the underlying science principles explicit without interfering with the interactive nature of the simulation. A total of…

  20. Integration of visual and motion cues for simulator requirements and ride quality investigation

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1976-01-01

    Practical tools which can extend the state of the art of moving base flight simulation for research and training are developed. Main approaches to this research effort include: (1) application of the vestibular model for perception of orientation based on motion cues: optimum simulator motion controls; and (2) visual cues in landing.

  1. IViPP: A Tool for Visualization in Particle Physics

    NASA Astrophysics Data System (ADS)

    Tran, Hieu; Skiba, Elizabeth; Baldwin, Doug

    2011-10-01

    Experiments and simulations in physics generate a lot of data; visualization is helpful to prepare that data for analysis. IViPP (Interactive Visualizations in Particle Physics) is an interactive computer program that visualizes results of particle physics simulations or experiments. IViPP can handle data from different simulators, such as SRIM or MCNP. It can display relevant geometry and measured scalar data; it can do simple selection from the visualized data. In order to be an effective visualization tool, IViPP must have a software architecture that can flexibly adapt to new data sources and display styles. It must be able to display complicated geometry and measured data with a high dynamic range. We therefore organize it in a highly modular structure, we develop libraries to describe geometry algorithmically, use rendering algorithms running on the powerful GPU to display 3-D geometry at interactive rates, and we represent scalar values in a visual form of scientific notation that shows both mantissa and exponent. This work was supported in part by the US Department of Energy through the Laboratory for Laser Energetics (LLE), with special thanks to Craig Sangster at LLE.

  2. Perceptual learning in a non-human primate model of artificial vision

    PubMed Central

    Killian, Nathaniel J.; Vurro, Milena; Keith, Sarah B.; Kyada, Margee J.; Pezaris, John S.

    2016-01-01

    Visual perceptual grouping, the process of forming global percepts from discrete elements, is experience-dependent. Here we show that the learning time course in an animal model of artificial vision is predicted primarily from the density of visual elements. Three naïve adult non-human primates were tasked with recognizing the letters of the Roman alphabet presented at variable size and visualized through patterns of discrete visual elements, specifically, simulated phosphenes mimicking a thalamic visual prosthesis. The animals viewed a spatially static letter using a gaze-contingent pattern and then chose, by gaze fixation, between a matching letter and a non-matching distractor. Months of learning were required for the animals to recognize letters using simulated phosphene vision. Learning rates increased in proportion to the mean density of the phosphenes in each pattern. Furthermore, skill acquisition transferred from trained to untrained patterns, not depending on the precise retinal layout of the simulated phosphenes. Taken together, the findings suggest that learning of perceptual grouping in a gaze-contingent visual prosthesis can be described simply by the density of visual activation. PMID:27874058

  3. Use of an adjustable hand plate in studying the perceived horizontal plane during simulated flight.

    PubMed

    Tribukait, Arne; Eiken, Ola; Lemming, Dag; Levin, Britta

    2013-07-01

    Quantitative data on spatial orientation would be valuable not only in assessing the fidelity of flight simulators, but also in evaluation of spatial orientation training. In this study a manual indicator was used for recording the subjective horizontal plane during simulated flight. In a six-degrees-of-freedom hexapod hydraulic motion platform simulator, simulating an F-16 aircraft, seven fixed-wing student pilots were passively exposed to two flight sequences. The first consisted in a number of coordinated turns with visual contact with the landscape below. The visually presented roll tilt was up to a maximum 670. The second was a takeoff with a cabin pitch up of 100, whereupon external visual references were lost. The subjects continuously indicated, with the left hand on an adjustable plate, what they perceived as horizontal in roll and pitch. There were two test occasions separated by a 3-d course on spatial disorientation. Responses to changes in simulated roll were, in general, instantaneous. The indicated roll tilt was approximately 30% of the visually presented roll. There was a considerable interindividual variability. However, for the roll response there was a correlation between the two occasions. The amplitude of the response to the pitch up of the cabin was approximately 75%; the response decayed much more slowly than the stimulus. With a manual indicator for recording the subjective horizontal plane, individual characteristics in the response to visual tilt stimuli may be detected, suggesting a potential for evaluation of simulation algorithms or training programs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorier, Matthieu; Sisneros, Roberto; Bautista Gomez, Leonard

    While many parallel visualization tools now provide in situ visualization capabilities, the trend has been to feed such tools with large amounts of unprocessed output data and let them render everything at the highest possible resolution. This leads to an increased run time of simulations that still have to complete within a fixed-length job allocation. In this paper, we tackle the challenge of enabling in situ visualization under performance constraints. Our approach shuffles data across processes according to its content and filters out part of it in order to feed a visualization pipeline with only a reorganized subset of themore » data produced by the simulation. Our framework leverages fast, generic evaluation procedures to score blocks of data, using information theory, statistics, and linear algebra. It monitors its own performance and adapts dynamically to achieve appropriate visual fidelity within predefined performance constraints. Experiments on the Blue Waters supercomputer with the CM1 simulation show that our approach enables a 5 speedup with respect to the initial visualization pipeline and is able to meet performance constraints.« less

  5. The change in critical technologies for computational physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1990-01-01

    It is noted that the types of technology required for computational physics are changing as the field matures. Emphasis has shifted from computer technology to algorithm technology and, finally, to visual analysis technology as areas of critical research for this field. High-performance graphical workstations tied to a supercommunicator with high-speed communications along with the development of especially tailored visualization software has enabled analysis of highly complex fluid-dynamics simulations. Particular reference is made here to the development of visual analysis tools at NASA's Numerical Aerodynamics Simulation Facility. The next technology which this field requires is one that would eliminate visual clutter by extracting key features of simulations of physics and technology in order to create displays that clearly portray these key features. Research in the tuning of visual displays to human cognitive abilities is proposed. The immediate transfer of technology to all levels of computers, specifically the inclusion of visualization primitives in basic software developments for all work stations and PCs, is recommended.

  6. Interactive Visualization of Large-Scale Hydrological Data using Emerging Technologies in Web Systems and Parallel Programming

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2013-12-01

    As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools developed within the light of these challenges.

  7. Quantum metrology: Beauty and the noisy beast

    NASA Astrophysics Data System (ADS)

    Maccone, Lorenzo; Giovannetti, Vittorio

    2011-05-01

    Elegant but extremely delicate quantum procedures can increase the precision of measurements. Characterizing how they cope with the detrimental effects of noise is essential for deployment to the real world.

  8. Tolerating Toxins: Grasshoppers that Feast on Pyrrolizidine Alkaloids §.

    PubMed

    Housecroft, Catherine E

    2018-03-30

    The elegant grasshopper (Zonocerus elegans) and the variegated grasshopper (Z. variegatus) are among insects that deliberately consume and store pyrrolizidine alkaloids which are subsequently used in defence mechanisms.

  9. The force pyramid: a spatial analysis of force application during virtual reality brain tumor resection.

    PubMed

    Azarnoush, Hamed; Siar, Samaneh; Sawaya, Robin; Zhrani, Gmaan Al; Winkler-Schwartz, Alexander; Alotaibi, Fahad Eid; Bugdadi, Abdulgadir; Bajunaid, Khalid; Marwa, Ibrahim; Sabbagh, Abdulrahman Jafar; Del Maestro, Rolando F

    2017-07-01

    OBJECTIVE Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors? METHODS Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip. RESULTS Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D "force pyramid fingerprints." Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns. CONCLUSIONS Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force application and improving patient safety during tumor resection.

  10. Aviation spatial orientation in relationship to head position and attitude interpretation.

    PubMed

    Patterson, F R; Cacioppo, A J; Gallimore, J J; Hinman, G E; Nalepka, J P

    1997-06-01

    Conventional wisdom describing aviation spatial awareness assumes that pilots view a moving horizon through the windscreen. This assumption presupposes head alignment with the cockpit "Z" axis during both visual (VMC) and instrument (IMC) maneuvers. Even though this visual paradigm is widely accepted, its accuracy has not been verified. The purpose of this research was to determine if a visually induced neck reflex causes pilots to align their heads toward the horizon, rather than the cockpit vertical axis. Based on literature describing reflexive head orientation in terrestrial environments it was hypothesized that during simulated VMC aircraft maneuvers, pilots would align their heads toward the horizon. Some 14 military pilots completed two simulated flights in a stationary dome simulator. The flight profile consisted of five separate tasks, four of which evaluated head tilt during exposure to unique visual conditions and one examined occurrences of disorientation during unusual attitude recovery. During simulated visual flight maneuvers, pilots tilted their heads toward the horizon (p < 0.0001). Under IMC, pilots maintained head alignment with the vertical axis of the aircraft. During VMC maneuvers pilots reflexively tilt their heads toward the horizon, away from the Gz axis of the cockpit. Presumably, this behavior stabilizes the retinal image of the horizon (1 degree visual-spatial cue), against which peripheral images of the cockpit (2 degrees visual-spatial cue) appear to move. Spatial disorientation, airsickness, and control reversal error may be related to shifts in visual-vestibular sensory alignment during visual transitions between VMC (head tilt) and IMC (Gz head stabilized) conditions.

  11. Can thermal instabilities drive galactic precipitation and explain observed circumgalactic structure?

    NASA Astrophysics Data System (ADS)

    Silvia, Devin

    2015-10-01

    Understanding the complex nature of the circumgalactic medium (CGM) has been a target of numerous research efforts, both observationally and theoretically. While significant progress has been made in probing the structure and thermodynamic state of the CGM through the detection of metal line absorption systems using the Hubble Space Telescope (HST), a complete picture of the physical mechanisms that produce the observed properties does not yet exist. Recent theoretical work has suggested that a delicate balance between radiative cooling and thermal feedback detemines whether or not the CGM is capable of sustaining a stable, multiphase medium that would allow cool clouds to precipitate out of the galactic halo. This new theoretical framework may provide the explanation for many observational results. In this project, we will detemine whether or not this elegant and simple precipitation model can be supported by physics-rich numerical simulations of isolated galaxies. We will use our simulations to gain a deeper understanding of the precipitation model and explore the ionization and temperature stucture of the CGM. Our analysis will include the comparison of realistic synthetic spectra to those produced by HST, using the newly-developed Trident software package.

  12. Double emulsion formation through hierarchical flow-focusing microchannel

    NASA Astrophysics Data System (ADS)

    Azarmanesh, Milad; Farhadi, Mousa; Azizian, Pooya

    2016-03-01

    A microfluidic device is presented for creating double emulsions, controlling their sizes and also manipulating encapsulation processes. As a result of three immiscible liquids' interaction using dripping instability, double emulsions can be produced elegantly. Effects of dimensionless numbers are investigated which are Weber number of the inner phase (Wein), Capillary number of the inner droplet (Cain), and Capillary number of the outer droplet (Caout). They affect the formation process, inner and outer droplet size, and separation frequency. Direct numerical simulation of governing equations was done using volume of fluid method and adaptive mesh refinement technique. Two kinds of double emulsion formation, the two-step and the one-step, were simulated in which the thickness of the sheath of double emulsions can be adjusted. Altering each dimensionless number will change detachment location, outer droplet size and droplet formation period. Moreover, the decussate regime of the double-emulsion/empty-droplet is observed in low Wein. This phenomenon can be obtained by adjusting the Wein in which the maximum size of the sheath is discovered. Also, the results show that Cain has significant influence on the outer droplet size in the two-step process, while Caout affects the sheath in the one-step formation considerably.

  13. Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms

    NASA Astrophysics Data System (ADS)

    Kengne, J.; Jafari, S.; Njitacke, Z. T.; Yousefi Azar Khanian, M.; Cheukem, A.

    2017-11-01

    Mathematical models (ODEs) describing the dynamics of almost all continuous time chaotic nonlinear systems (e.g. Lorenz, Rossler, Chua, or Chen system) involve at least a nonlinear term in addition to linear terms. In this contribution, a novel (and singular) 3D autonomous chaotic system without linear terms is introduced. This system has an especial feature of having two twin strange attractors: one ordinary and one symmetric strange attractor when the time is reversed. The complex behavior of the model is investigated in terms of equilibria and stability, bifurcation diagrams, Lyapunov exponent plots, time series and Poincaré sections. Some interesting phenomena are found including for instance, period-doubling bifurcation, antimonotonicity (i.e. the concurrent creation and annihilation of periodic orbits) and chaos while monitoring the system parameters. Compared to the (unique) case previously reported by Xu and Wang (2014) [31], the system considered in this work displays a more 'elegant' mathematical expression and experiences richer dynamical behaviors. A suitable electronic circuit (i.e. the analog simulator) is designed and used for the investigations. Pspice based simulation results show a very good agreement with the theoretical analysis.

  14. Optimization of the LCLS X-Ray FEL Output Performance in the Presence of Strong Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, S.; /UCLA; Bane, K.L.F.

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of start-to-end simulations with tracking codes PARMELAmore » and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch charge or increasing the vacuum chamber radius. We also compare our results to those predicted in concurrent analytical work.« less

  15. Development of a 3-D Nuclear Event Visualization Program Using Unity

    NASA Astrophysics Data System (ADS)

    Kuhn, Victoria

    2017-09-01

    Simulations have become increasingly important for science and there is an increasing emphasis on the visualization of simulations within a Virtual Reality (VR) environment. Our group is exploring this capability as a visualization tool not just for those curious about science, but also for educational purposes for K-12 students. Using data collected in 3-D by a Time Projection Chamber (TPC), we are able to visualize nuclear and cosmic events. The Unity game engine was used to recreate the TPC to visualize these events and construct a VR application. The methods used to create these simulations will be presented along with an example of a simulation. I will also present on the development and testing of this program, which I carried out this past summer at MSU as part of an REU program. We used data from the S πRIT TPC, but the software can be applied to other 3-D detectors. This work is supported by the U.S. Department of Energy under Grant Nos. DE-SC0014530, DE-NA0002923 and US NSF under Grant No. PHY-1565546.

  16. A framework for stochastic simulations and visualization of biological electron-transfer dynamics

    NASA Astrophysics Data System (ADS)

    Nakano, C. Masato; Byun, Hye Suk; Ma, Heng; Wei, Tao; El-Naggar, Mohamed Y.

    2015-08-01

    Electron transfer (ET) dictates a wide variety of energy-conversion processes in biological systems. Visualizing ET dynamics could provide key insight into understanding and possibly controlling these processes. We present a computational framework named VizBET to visualize biological ET dynamics, using an outer-membrane Mtr-Omc cytochrome complex in Shewanella oneidensis MR-1 as an example. Starting from X-ray crystal structures of the constituent cytochromes, molecular dynamics simulations are combined with homology modeling, protein docking, and binding free energy computations to sample the configuration of the complex as well as the change of the free energy associated with ET. This information, along with quantum-mechanical calculations of the electronic coupling, provides inputs to kinetic Monte Carlo (KMC) simulations of ET dynamics in a network of heme groups within the complex. Visualization of the KMC simulation results has been implemented as a plugin to the Visual Molecular Dynamics (VMD) software. VizBET has been used to reveal the nature of ET dynamics associated with novel nonequilibrium phase transitions in a candidate configuration of the Mtr-Omc complex due to electron-electron interactions.

  17. Immersive visualization of rail simulation data.

    DOT National Transportation Integrated Search

    2016-01-01

    The prime objective of this project was to create scientific, immersive visualizations of a Rail-simulation. This project is a part of a larger initiative that consists of three distinct parts. The first step consists of performing a finite element a...

  18. Analysis and Selection of a Remote Docking Simulation Visual Display System

    NASA Technical Reports Server (NTRS)

    Shields, N., Jr.; Fagg, M. F.

    1984-01-01

    The development of a remote docking simulation visual display system is examined. Video system and operator performance are discussed as well as operator command and control requirements and a design analysis of the reconfigurable work station.

  19. MEVA--An Interactive Visualization Application for Validation of Multifaceted Meteorological Data with Multiple 3D Devices.

    PubMed

    Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf

    2015-01-01

    To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results.

  20. MEVA - An Interactive Visualization Application for Validation of Multifaceted Meteorological Data with Multiple 3D Devices

    PubMed Central

    Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf

    2015-01-01

    Background To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Methods and Results Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results. PMID:25915061

  1. Do Fluoride Ions Protect Teeth?

    ERIC Educational Resources Information Center

    Parkin, Christopher

    1998-01-01

    Begins with the procedure and results from an investigation on the effect of fluoride on the reaction between eggshell (substitute teeth) and dilute ethanoic acid. Describes an elegantly modified and improvised apparatus. (DDR)

  2. A Graphics Design Framework to Visualize Multi-Dimensional Economic Datasets

    ERIC Educational Resources Information Center

    Chandramouli, Magesh; Narayanan, Badri; Bertoline, Gary R.

    2013-01-01

    This study implements a prototype graphics visualization framework to visualize multidimensional data. This graphics design framework serves as a "visual analytical database" for visualization and simulation of economic models. One of the primary goals of any kind of visualization is to extract useful information from colossal volumes of…

  3. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Han; Sharma, Diksha; Badano, Aldo, E-mail: aldo.badano@fda.hhs.gov

    2014-12-15

    Purpose: Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridMANTIS, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webMANTIS and visualMANTIS to facilitate the setup of computational experiments via hybridMANTIS. Methods: Themore » visualization tools visualMANTIS and webMANTIS enable the user to control simulation properties through a user interface. In the case of webMANTIS, control via a web browser allows access through mobile devices such as smartphones or tablets. webMANTIS acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. Results: The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridMANTIS. The users can download the output images and statistics through a zip file for future reference. In addition, webMANTIS provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. Conclusions: The visualization tools visualMANTIS and webMANTIS provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.« less

  4. Impact of audio-visual storytelling in simulation learning experiences of undergraduate nursing students.

    PubMed

    Johnston, Sandra; Parker, Christina N; Fox, Amanda

    2017-09-01

    Use of high fidelity simulation has become increasingly popular in nursing education to the extent that it is now an integral component of most nursing programs. Anecdotal evidence suggests that students have difficulty engaging with simulation manikins due to their unrealistic appearance. Introduction of the manikin as a 'real patient' with the use of an audio-visual narrative may engage students in the simulated learning experience and impact on their learning. A paucity of literature currently exists on the use of audio-visual narratives to enhance simulated learning experiences. This study aimed to determine if viewing an audio-visual narrative during a simulation pre-brief altered undergraduate nursing student perceptions of the learning experience. A quasi-experimental post-test design was utilised. A convenience sample of final year baccalaureate nursing students at a large metropolitan university. Participants completed a modified version of the Student Satisfaction with Simulation Experiences survey. This 12-item questionnaire contained questions relating to the ability to transfer skills learned in simulation to the real clinical world, the realism of the simulation and the overall value of the learning experience. Descriptive statistics were used to summarise demographic information. Two tailed, independent group t-tests were used to determine statistical differences within the categories. Findings indicated that students reported high levels of value, realism and transferability in relation to the viewing of an audio-visual narrative. Statistically significant results (t=2.38, p<0.02) were evident in the subscale of transferability of learning from simulation to clinical practice. The subgroups of age and gender although not significant indicated some interesting results. High satisfaction with simulation was indicated by all students in relation to value and realism. There was a significant finding in relation to transferability on knowledge and this is vital to quality educational outcomes. Copyright © 2017. Published by Elsevier Ltd.

  5. A Summary of Proceedings for the Advanced Deployable Day/Night Simulation Symposium

    DTIC Science & Technology

    2009-07-01

    initiated to design , develop, and deliver transportable visual simulations that jointly provide night-vision and high-resolution daylight capability. The...Deployable Day/Night Simulation (ADDNS) Technology Demonstration Project was initiated to design , develop, and deliver transportable visual...was Dr. Richard Wildes (York University); Mr. Vitaly Zholudev (Department of Computer Science, York University), Mr. X. Zhu (Neptec Design Group), and

  6. SimGraph: A Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Kenney, Patrick S.

    1997-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data, making a qualitative analysis of the data difficult while it remains in a numerical representation. Therefore, a method of merging related data together and presenting it to the user in a more comprehensible format is necessary. Simulation Graphics (SimGraph) is an object-oriented data visualization software package that presents simulation data in animated graphical displays for easy interpretation. Data produced from a flight simulation is presented by SimGraph in several different formats, including: 3-Dimensional Views, Cockpit Control Views, Heads-Up Displays, Strip Charts, and Status Indicators. SimGraph can accommodate the addition of new graphical displays to allow the software to be customized to each user s particular environment. A new display can be developed and added to SimGraph without having to design a new application, allowing the graphics programmer to focus on the development of the graphical display. The SimGraph framework can be reused for a wide variety of visualization tasks. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper describes the capabilities and operations of SimGraph.

  7. Simulation and animation of sensor-driven robots.

    PubMed

    Chen, C; Trivedi, M M; Bidlack, C R

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.

  8. Integration of visual and motion cues for simulator requirements and ride quality investigation. [computerized simulation of aircraft landing, visual perception of aircraft pilots

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1975-01-01

    Preliminary tests and evaluation are presented of pilot performance during landing (flight paths) using computer generated images (video tapes). Psychophysiological factors affecting pilot visual perception were measured. A turning flight maneuver (pitch and roll) was specifically studied using a training device, and the scaling laws involved were determined. Also presented are medical studies (abstracts) on human response to gravity variations without visual cues, acceleration stimuli effects on the semicircular canals, and neurons affecting eye movements, and vestibular tests.

  9. Use of Linear Perspective Scene Cues in a Simulated Height Regulation Task

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Warren, R.

    1984-01-01

    As part of a long-term effort to quantify the effects of visual scene cuing and non-visual motion cuing in flight simulators, an experimental study of the pilot's use of linear perspective cues in a simulated height-regulation task was conducted. Six test subjects performed a fixed-base tracking task with a visual display consisting of a simulated horizon and a perspective view of a straight, infinitely-long roadway of constant width. Experimental parameters were (1) the central angle formed by the roadway perspective and (2) the display gain. The subject controlled only the pitch/height axis; airspeed, bank angle, and lateral track were fixed in the simulation. The average RMS height error score for the least effective display configuration was about 25% greater than the score for the most effective configuration. Overall, larger and more highly significant effects were observed for the pitch and control scores. Model analysis was performed with the optimal control pilot model to characterize the pilot's use of visual scene cues, with the goal of obtaining a consistent set of independent model parameters to account for display effects.

  10. Visualization Co-Processing of a CFD Simulation

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    1999-01-01

    OVERFLOW, a widely used CFD simulation code, is combined with a visualization system, pV3, to experiment with an environment for simulation/visualization co-processing on a SGI Origin 2000 computer(O2K) system. The shared memory version of the solver is used with the O2K 'pfa' preprocessor invoked to automatically discover parallelism in the source code. No other explicit parallelism is enabled. In order to study the scaling and performance of the visualization co-processing system, sample runs are made with different processor groups in the range of 1 to 254 processors. The data exchange between the visualization system and the simulation system is rapid enough for user interactivity when the problem size is small. This shared memory version of OVERFLOW, with minimal parallelization, does not scale well to an increasing number of available processors. The visualization task takes about 18 to 30% of the total processing time and does not appear to be a major contributor to the poor scaling. Improper load balancing and inter-processor communication overhead are contributors to this poor performance. Work is in progress which is aimed at obtaining improved parallel performance of the solver and removing the limitations of serial data transfer to pV3 by examining various parallelization/communication strategies, including the use of the explicit message passing.

  11. Fluid Simulation in the Movies: Navier and Stokes Must Be Circulating in Their Graves

    NASA Astrophysics Data System (ADS)

    Tessendorf, Jerry

    2010-11-01

    Fluid simulations based on the Incompressible Navier-Stokes equations are commonplace computer graphics tools in the visual effects industry. These simulations mostly come from custom C++ code written by the visual effects companies. Their significant impact in films was recognized in 2008 with Academy Awards to four visual effects companies for their technical achievement. However artists are not fluid dynamicists, and fluid dynamics simulations are expensive to use in a deadline-driven production environment. As a result, the simulation algorithms are modified to limit the computational resources, adapt them to production workflow, and to respect the client's vision of the film plot. Eulerian solvers on fixed rectangular grids use a mix of momentum solvers, including Semi-Lagrangian, FLIP, and QUICK. Incompressibility is enforced with FFT, Conjugate Gradient, and Multigrid methods. For liquids, a levelset field tracks the free surface. Smooth Particle Hydrodynamics is also used, and is part of a hybrid Eulerian-SPH liquid simulator. Artists use all of them in a mix and match fashion to control the appearance of the simulation. Specially designed forces and boundary conditions control the flow. The simulation can be an input to artistically driven procedural particle simulations that enhance the flow with more detail and drama. Post-simulation processing increases the visual detail beyond the grid resolution. Ultimately, iterative simulation methods that fit naturally in the production workflow are extremely desirable but not yet successful. Results from some efforts for iterative methods are shown, and other approaches motivated by the history of production are proposed.

  12. Combining patient journey modelling and visual multi-agent computer simulation: a framework to improving knowledge translation in a healthcare environment.

    PubMed

    Curry, Joanne; Fitzgerald, Anneke; Prodan, Ante; Dadich, Ann; Sloan, Terry

    2014-01-01

    This article focuses on a framework that will investigate the integration of two disparate methodologies: patient journey modelling and visual multi-agent simulation, and its impact on the speed and quality of knowledge translation to healthcare stakeholders. Literature describes patient journey modelling and visual simulation as discrete activities. This paper suggests that their combination and their impact on translating knowledge to practitioners are greater than the sum of the two technologies. The test-bed is ambulatory care and the goal is to determine if this approach can improve health services delivery, workflow, and patient outcomes and satisfaction. The multidisciplinary research team is comprised of expertise in patient journey modelling, simulation, and knowledge translation.

  13. CyberMedVPS: visual programming for development of simulators.

    PubMed

    Morais, Aline M; Machado, Liliane S

    2011-01-01

    Computer applications based on Virtual Reality (VR) has been outstanding in training and teaching in the medical filed due to their ability to simulate realistic in which users can practice skills and decision making in different situations. But was realized in these frameworks a hard interaction of non-programmers users. Based on this problematic will be shown the CyberMedVPS, a graphical module which implement Visual Programming concepts to solve an interaction trouble. Frameworks to develop such simulators are available but their use demands knowledge of programming. Based on this problematic will be shown the CyberMedVPS, a graphical module for the CyberMed framework, which implements Visual Programming concepts to allow the development of simulators by non-programmers professionals of the medical field.

  14. Optimizing Scientist Time through In Situ Visualization and Analysis.

    PubMed

    Patchett, John; Ahrens, James

    2018-01-01

    In situ processing produces reduced size persistent representations of a simulations state while the simulation is running. The need for in situ visualization and data analysis is usually described in terms of supercomputer size and performance in relation to available storage size.

  15. Dynamic simulation of the effect of soft toric contact lenses movement on retinal image quality.

    PubMed

    Niu, Yafei; Sarver, Edwin J; Stevenson, Scott B; Marsack, Jason D; Parker, Katrina E; Applegate, Raymond A

    2008-04-01

    To report the development of a tool designed to dynamically simulate the effect of soft toric contact lens movement on retinal image quality, initial findings on three eyes, and the next steps to be taken to improve the utility of the tool. Three eyes of two subjects wearing soft toric contact lenses were cyclopleged with 1% cyclopentolate and 2.5% phenylephrine. Four hundred wavefront aberration measurements over a 5-mm pupil were recorded during soft contact lens wear at 30 Hz using a complete ophthalmic analysis system aberrometer. Each wavefront error measurement was input into Visual Optics Laboratory (version 7.15, Sarver and Associates, Inc.) to generate a retinal simulation of a high contrast log MAR visual acuity chart. The individual simulations were combined into a single dynamic movie using a custom MatLab PsychToolbox program. Visual acuity was measured for each eye reading the movie with best cycloplegic spectacle correction through a 3-mm artificial pupil to minimize the influence of the eyes' uncorrected aberrations. Comparison of the simulated acuity was made to values recorded while the subject read unaberrated charts with contact lenses through a 5-mm artificial pupil. For one study eye, average acuity was the same as the natural contact lens viewing condition. For the other two study eyes visual acuity of the best simulation was more than one line worse than natural viewing conditions. Dynamic simulation of retinal image quality, although not yet perfect, is a promising technique for visually illustrating the optical effects on image quality because of the movements of alignment-sensitive corrections.

  16. Celeris: A GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization

    NASA Astrophysics Data System (ADS)

    Tavakkol, Sasan; Lynett, Patrick

    2017-08-01

    In this paper, we introduce an interactive coastal wave simulation and visualization software, called Celeris. Celeris is an open source software which needs minimum preparation to run on a Windows machine. The software solves the extended Boussinesq equations using a hybrid finite volume-finite difference method and supports moving shoreline boundaries. The simulation and visualization are performed on the GPU using Direct3D libraries, which enables the software to run faster than real-time. Celeris provides a first-of-its-kind interactive modeling platform for coastal wave applications and it supports simultaneous visualization with both photorealistic and colormapped rendering capabilities. We validate our software through comparison with three standard benchmarks for non-breaking and breaking waves.

  17. Working the truth and perfecting the moment for physicians and patients: a serious challenge for information systems.

    PubMed

    Garling, A C

    1994-01-01

    Most of us can remember the crowning sense of elegance we occasionally felt when we solved a very difficult geometry problem. We linked the proof to the postulates. It was almost like calling on history or the elders to stand silently with us in the flurry of our moment. We "worked truth." I'd like to capture a little of that same "working truth" and apply it in a very unlikely spot: information systems and information technology. It is time to go back and look at the basic postulates of knowledge and responsibility and truthfully apply them in the health care interchange between doctor and patient and make sure that our systems add to and even create an elegance so that the basic relationship of physician and patient in healing can flourish.

  18. High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair.

    PubMed

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y K

    2018-01-01

    Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed.

  19. High-Performance Agent-Based Modeling Applied to Vocal Fold Inflammation and Repair

    PubMed Central

    Seekhao, Nuttiiya; Shung, Caroline; JaJa, Joseph; Mongeau, Luc; Li-Jessen, Nicole Y. K.

    2018-01-01

    Fast and accurate computational biology models offer the prospect of accelerating the development of personalized medicine. A tool capable of estimating treatment success can help prevent unnecessary and costly treatments and potential harmful side effects. A novel high-performance Agent-Based Model (ABM) was adopted to simulate and visualize multi-scale complex biological processes arising in vocal fold inflammation and repair. The computational scheme was designed to organize the 3D ABM sub-tasks to fully utilize the resources available on current heterogeneous platforms consisting of multi-core CPUs and many-core GPUs. Subtasks are further parallelized and convolution-based diffusion is used to enhance the performance of the ABM simulation. The scheme was implemented using a client-server protocol allowing the results of each iteration to be analyzed and visualized on the server (i.e., in-situ) while the simulation is running on the same server. The resulting simulation and visualization software enables users to interact with and steer the course of the simulation in real-time as needed. This high-resolution 3D ABM framework was used for a case study of surgical vocal fold injury and repair. The new framework is capable of completing the simulation, visualization and remote result delivery in under 7 s per iteration, where each iteration of the simulation represents 30 min in the real world. The case study model was simulated at the physiological scale of a human vocal fold. This simulation tracks 17 million biological cells as well as a total of 1.7 billion signaling chemical and structural protein data points. The visualization component processes and renders all simulated biological cells and 154 million signaling chemical data points. The proposed high-performance 3D ABM was verified through comparisons with empirical vocal fold data. Representative trends of biomarker predictions in surgically injured vocal folds were observed. PMID:29706894

  20. Modeling of Explorative Procedures for Remote Object Identification

    DTIC Science & Technology

    1991-09-01

    haptic sensory system and the simulated foveal component of the visual system. Eventually it will allow multiple applications in remote sensing and...superposition of sensory channels. The use of a force reflecting telemanipulator and computer simulated visual foveal component are the tools which...representation of human search models is achieved by using the proprioceptive component of the haptic sensory system and the simulated foveal component of the

  1. NAVO MSRC Navigator. Fall 2001

    DTIC Science & Technology

    2001-01-01

    of the CAVE. A view from the VR Juggler simulator . The particles indicate snow (white) & ice (blue). Rainfall is shown on the terrain, and clouds as...the Cover: Virtual environment built by the NAVO MSRC Visualization Center for the Concurrent Computing Laboratory for Materials Simulation at...Louisiana State University. This application allows the researchers to visualize a million atom simulation of an indentor puncturing a block of gallium

  2. Visual Occlusion Decreases Motion Sickness in a Flight Simulator.

    PubMed

    Ishak, Shaziela; Bubka, Andrea; Bonato, Frederick

    2018-05-01

    Sensory conflict theories of motion sickness (MS) assert that symptoms may result when incoming sensory inputs (e.g., visual and vestibular) contradict each other. Logic suggests that attenuating input from one sense may reduce conflict and hence lessen MS symptoms. In the current study, it was hypothesized that attenuating visual input by blocking light entering the eye would reduce MS symptoms in a motion provocative environment. Participants sat inside an aircraft cockpit mounted onto a motion platform that simultaneously pitched, rolled, and heaved in two conditions. In the occluded condition, participants wore "blackout" goggles and closed their eyes to block light. In the control condition, participants opened their eyes and had full view of the cockpit's interior. Participants completed separate Simulator Sickness Questionnaires before and after each condition. The posttreatment total Simulator Sickness Questionnaires and subscores for nausea, oculomotor, and disorientation in the control condition were significantly higher than those in the occluded condition. These results suggest that under some conditions attenuating visual input may delay the onset of MS or weaken the severity of symptoms. Eliminating visual input may reduce visual/nonvisual sensory conflict by weakening the influence of the visual channel, which is consistent with the sensory conflict theory of MS.

  3. Visualization for Molecular Dynamics Simulation of Gas and Metal Surface Interaction

    NASA Astrophysics Data System (ADS)

    Puzyrkov, D.; Polyakov, S.; Podryga, V.

    2016-02-01

    The development of methods, algorithms and applications for visualization of molecular dynamics simulation outputs is discussed. The visual analysis of the results of such calculations is a complex and actual problem especially in case of the large scale simulations. To solve this challenging task it is necessary to decide on: 1) what data parameters to render, 2) what type of visualization to choose, 3) what development tools to use. In the present work an attempt to answer these questions was made. For visualization it was offered to draw particles in the corresponding 3D coordinates and also their velocity vectors, trajectories and volume density in the form of isosurfaces or fog. We tested the way of post-processing and visualization based on the Python language with use of additional libraries. Also parallel software was developed that allows processing large volumes of data in the 3D regions of the examined system. This software gives the opportunity to achieve desired results that are obtained in parallel with the calculations, and at the end to collect discrete received frames into a video file. The software package "Enthought Mayavi2" was used as the tool for visualization. This visualization application gave us the opportunity to study the interaction of a gas with a metal surface and to closely observe the adsorption effect.

  4. Py-SPHViewer: Cosmological simulations using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Alejandro

    2017-12-01

    Py-SPHViewer visualizes and explores N-body + Hydrodynamics simulations. The code interpolates the underlying density field (or any other property) traced by a set of particles, using the Smoothed Particle Hydrodynamics (SPH) interpolation scheme, thus producing not only beautiful but also useful scientific images. Py-SPHViewer enables the user to explore simulated volumes using different projections. Py-SPHViewer also provides a natural way to visualize (in a self-consistent fashion) gas dynamical simulations, which use the same technique to compute the interactions between particles.

  5. Dynamic Interactions for Network Visualization and Simulation

    DTIC Science & Technology

    2009-03-01

    projects.htm, Site accessed January 5, 2009. 12. John S. Weir, Major, USAF, Mediated User-Simulator Interactive Command with Visualization ( MUSIC -V). Master’s...Computing Sciences in Colleges, December 2005). 14. Enrique Campos -Nanez, “nscript user manual,” Department of System Engineer- ing University of

  6. Deficits in Attention and Visual Processing but not Global Cognition Predict Simulated Driving Errors in Drivers Diagnosed With Mild Alzheimer's Disease.

    PubMed

    Yamin, Stephanie; Stinchcombe, Arne; Gagnon, Sylvain

    2016-06-01

    This study sought to predict driving performance of drivers with Alzheimer's disease (AD) using measures of attention, visual processing, and global cognition. Simulated driving performance of individuals with mild AD (n = 20) was contrasted with performance of a group of healthy controls (n = 21). Performance on measures of global cognitive function and specific tests of attention and visual processing were examined in relation to simulated driving performance. Strong associations were observed between measures of attention, notably the Test of Everyday Attention (sustained attention; r = -.651, P = .002) and the Useful Field of View (r = .563, P = .010), and driving performance among drivers with mild AD. The Visual Object and Space Perception Test-object was significantly correlated with the occurrence of crashes (r = .652, P = .002). Tests of global cognition did not correlate with simulated driving outcomes. The results suggest that professionals exercise caution when extrapolating driving performance based on global cognitive indicators. © The Author(s) 2015.

  7. Physically-based in silico light sheet microscopy for visualizing fluorescent brain models

    PubMed Central

    2015-01-01

    Background We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. Results We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. AMS subject classification Modelling and simulation PMID:26329404

  8. EnsembleGraph: Interactive Visual Analysis of Spatial-Temporal Behavior for Ensemble Simulation Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Qingya; Guo, Hanqi; Che, Limei

    We present a novel visualization framework—EnsembleGraph— for analyzing ensemble simulation data, in order to help scientists understand behavior similarities between ensemble members over space and time. A graph-based representation is used to visualize individual spatiotemporal regions with similar behaviors, which are extracted by hierarchical clustering algorithms. A user interface with multiple-linked views is provided, which enables users to explore, locate, and compare regions that have similar behaviors between and then users can investigate and analyze the selected regions in detail. The driving application of this paper is the studies on regional emission influences over tropospheric ozone, which is based onmore » ensemble simulations conducted with different anthropogenic emission absences using the MOZART-4 (model of ozone and related tracers, version 4) model. We demonstrate the effectiveness of our method by visualizing the MOZART-4 ensemble simulation data and evaluating the relative regional emission influences on tropospheric ozone concentrations. Positive feedbacks from domain experts and two case studies prove efficiency of our method.« less

  9. Conceptual design study for an advanced cab and visual system, volume 1

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    A conceptual design study was conducted to define requirements for an advanced cab and visual system. The rotorcraft system integration simulator is for engineering studies in the area of mission associated vehicle handling qualities. Principally a technology survey and assessment of existing and proposed simulator visual display systems, image generation systems, modular cab designs, and simulator control station designs were performed and are discussed. State of the art survey data were used to synthesize a set of preliminary visual display system concepts of which five candidate display configurations were selected for further evaluation. Basic display concepts incorporated in these configurations included: real image projection, using either periscopes, fiber optic bundles, or scanned laser optics; and virtual imaging with helmet mounted displays. These display concepts were integrated in the study with a simulator cab concept employing a modular base for aircraft controls, crew seating, and instrumentation (or other) displays. A simple concept to induce vibration in the various modules was developed and is described. Results of evaluations and trade offs related to the candidate system concepts are given, along with a suggested weighting scheme for numerically comparing visual system performance characteristics.

  10. Flight Simulator Visual-Display Delay Compensation

    NASA Technical Reports Server (NTRS)

    Crane, D. Francis

    1981-01-01

    A piloted aircraft can be viewed as a closed-loop man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability. The changes in pilot dynamic response and performance bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. The study reported here evaluated an approach to visual-display delay compensation. The objective of the compensation was to minimize delay-induced change in pilot performance and workload, The compensation was effective. Because the compensation design approach is based on well-established control-system design principles, prospects are favorable for successful application of the approach in other simulations.

  11. Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques.

    PubMed

    Rajendiran, Nivedita; Durrant, Jacob D

    2018-05-05

    Molecular dynamics (MD) simulations provide critical insights into many biological mechanisms. Programs such as VMD, Chimera, and PyMOL can produce impressive simulation visualizations, but they lack many advanced rendering algorithms common in the film and video-game industries. In contrast, the modeling program Blender includes such algorithms but cannot import MD-simulation data. MD trajectories often require many gigabytes of memory/disk space, complicating Blender import. We present Pyrite, a Blender plugin that overcomes these limitations. Pyrite allows researchers to visualize MD simulations within Blender, with full access to Blender's cutting-edge rendering techniques. We expect Pyrite-generated images to appeal to students and non-specialists alike. A copy of the plugin is available at http://durrantlab.com/pyrite/, released under the terms of the GNU General Public License Version 3. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Relationship Between Optimal Gain and Coherence Zone in Flight Simulation

    NASA Technical Reports Server (NTRS)

    Gracio, Bruno Jorge Correia; Pais, Ana Rita Valente; vanPaassen, M. M.; Mulder, Max; Kely, Lon C.; Houck, Jacob A.

    2011-01-01

    In motion simulation the inertial information generated by the motion platform is most of the times different from the visual information in the simulator displays. This occurs due to the physical limits of the motion platform. However, for small motions that are within the physical limits of the motion platform, one-to-one motion, i.e. visual information equal to inertial information, is possible. It has been shown in previous studies that one-to-one motion is often judged as too strong, causing researchers to lower the inertial amplitude. When trying to measure the optimal inertial gain for a visual amplitude, we found a zone of optimal gains instead of a single value. Such result seems related with the coherence zones that have been measured in flight simulation studies. However, the optimal gain results were never directly related with the coherence zones. In this study we investigated whether the optimal gain measurements are the same as the coherence zone measurements. We also try to infer if the results obtained from the two measurements can be used to differentiate between simulators with different configurations. An experiment was conducted at the NASA Langley Research Center which used both the Cockpit Motion Facility and the Visual Motion Simulator. The results show that the inertial gains obtained with the optimal gain are different than the ones obtained with the coherence zone measurements. The optimal gain is within the coherence zone.The point of mean optimal gain was lower and further away from the one-to-one line than the point of mean coherence. The zone width obtained for the coherence zone measurements was dependent on the visual amplitude and frequency. For the optimal gain, the zone width remained constant when the visual amplitude and frequency were varied. We found no effect of the simulator configuration in both the coherence zone and optimal gain measurements.

  13. ELEGANT ENVIRONMENTAL IMMUNOASSAYS

    EPA Science Inventory

    Immunochemical methods are based on selective antibodies directed to a particular target analyte. The specific binding between antibody and analyte can be used for detection and quantitation. Methods such as the enzyme-linked immunosorbent assay (ELISA) can provide a sensitiv...

  14. Visual Simulation The Old Way

    NASA Astrophysics Data System (ADS)

    Gomes, Gary G.

    1986-05-01

    A cost effective and supportable color visual system has been developed to provide the necessary visual cues to United States Air Force B-52 bomber pilots training to become proficient at the task of inflight refueling. This camera model visual system approach is not suitable for all simulation applications, but provides a cost effective alternative to digital image generation systems when high fidelity of a single movable object is required. The system consists of a three axis gimballed KC-l35 tanker model, a range carriage mounted color augmented monochrome television camera, interface electronics, a color light valve projector and an infinity optics display system.

  15. Large Terrain Modeling and Visualization for Planets

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Cameron, Jonathan; Lim, Christopher

    2011-01-01

    Physics-based simulations are actively used in the design, testing, and operations phases of surface and near-surface planetary space missions. One of the challenges in realtime simulations is the ability to handle large multi-resolution terrain data sets within models as well as for visualization. In this paper, we describe special techniques that we have developed for visualization, paging, and data storage for dealing with these large data sets. The visualization technique uses a real-time GPU-based continuous level-of-detail technique that delivers multiple frames a second performance even for planetary scale terrain model sizes.

  16. VISUALIZATION AND SIMULATION OF NON-AQUEOUS PHASE LIQUIDS SOLUBILIZATION IN PORE NETWORKS

    EPA Science Inventory

    The design of in-situ remediation of contaminated soils is mostly based on a description at the macroscopic scale using a averaged quantities. These cannot address issues at the pore and pore network scales. In this paper, visualization experiments and numerical simulations in ...

  17. Analysis, simulation and visualization of 1D tapping via reduced dynamical models

    NASA Astrophysics Data System (ADS)

    Blackmore, Denis; Rosato, Anthony; Tricoche, Xavier; Urban, Kevin; Zou, Luo

    2014-04-01

    A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately predicting some important aspects of the motion of a vertical column comprised of a large number of particles subjected to gravity and periodic vertical tapping. This model is investigated first as a continuous dynamical system using analytical, simulation and visualization techniques. Then, by employing an approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions to chaotic motion along with other properties. The predictions of the analysis are then compared-primarily qualitatively-with visualization and simulation results of the reduced continuous model, and ultimately with simulations of the complete system dynamics.

  18. Applying Open Source Game Engine for Building Visual Simulation Training System of Fire Fighting

    NASA Astrophysics Data System (ADS)

    Yuan, Diping; Jin, Xuesheng; Zhang, Jin; Han, Dong

    There's a growing need for fire departments to adopt a safe and fair method of training to ensure that the firefighting commander is in a position to manage a fire incident. Visual simulation training systems, with their ability to replicate and interact with virtual fire scenarios through the use of computer graphics or VR, become an effective and efficient method for fire ground education. This paper describes the system architecture and functions of a visual simulated training system of fire fighting on oil storage, which adopting Delat3D, a open source game and simulation engine, to provide realistic 3D views. It presents that using open source technology provides not only the commercial-level 3D effects but also a great reduction of cost.

  19. Tests for malingering in ophthalmology

    PubMed Central

    Incesu, Ali Ihsan

    2013-01-01

    Simulation can be defined as malingering, or sometimes functional visual loss (FVL). It manifests as either simulating an ophthalmic disease (positive simulation), or denial of ophthalmic disease (negative simulation). Conscious behavior and compensation or indemnity claims are prominent features of simulation. Since some authors suggest that this is a manifestation of underlying psychopathology, even conversion is included in this context. In today's world, every ophthalmologist can face with simulation of ophthalmic disease or disorder. In case of simulation suspect, the physician's responsibility is to prove the simulation considering the disease/disorder first, and simulation as an exclusion. In simulation examinations, the physician should be firm and smart to select appropriate test(s) to convince not only the subject, but also the judge in case of indemnity or compensation trials. Almost all ophthalmic sensory and motor functions including visual acuity, visual field, color vision and night vision can be the subject of simulation. Examiner must be skillful in selecting the most appropriate test. Apart from those in the literature, we included all kinds of simulation in ophthalmology. In addition, simulation examination techniques, such as, use of optical coherence tomography, frequency doubling perimetry (FDP), and modified polarization tests were also included. In this review, we made a thorough literature search, and added our experiences to give the readers up-to-date information on malingering or simulation in ophthalmology. PMID:24195054

  20. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    PubMed

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P

    2014-12-18

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  1. Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis

    PubMed Central

    Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.

    2014-01-01

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300

  2. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.

  3. Simulation Exploration through Immersive Parallel Planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas J; Bush, Brian W; Gruchalla, Kenny M

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less

  4. Simulation Exploration through Immersive Parallel Planes: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, eachmore » individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.« less

  5. Interactive Particle Visualization

    NASA Astrophysics Data System (ADS)

    Gribble, Christiaan P.

    Particle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. This chapter discusses two approaches to interactive particle visualization that satisfy these goals: one targeting desktop systems equipped with programmable graphics hardware, and the other targeting moderately sized multicore systems using packet-based ray tracing.

  6. Dissociation of visual associative and motor learning in Drosophila at the flight simulator.

    PubMed

    Wang, Shunpeng; Li, Yan; Feng, Chunhua; Guo, Aike

    2003-08-29

    Ever since operant conditioning was studied experimentally, the relationship between associative learning and possible motor learning has become controversial. Although motor learning and its underlying neural substrates have been extensively studied in mammals, it is still poorly understood in invertebrates. The visual discriminative avoidance paradigm of Drosophila at the flight simulator has been widely used to study the flies' visual associative learning and related functions, but it has not been used to study the motor learning process. In this study, newly-designed data analysis was employed to examine the flies' solitary behavioural variable that was recorded at the flight simulator-yaw torque. Analysis was conducted to explore torque distributions of both wild-type and mutant flies in conditioning, with the following results: (1) Wild-type Canton-S flies had motor learning performance in conditioning, which was proved by modifications of the animal's behavioural mode in conditioning. (2) Repetition of training improved the motor learning performance of wild-type Canton-S flies. (3) Although mutant dunce(1) flies were defective in visual associative learning, they showed essentially normal motor learning performance in terms of yaw torque distribution in conditioning. Finally, we tentatively proposed that both visual associative learning and motor learning were involved in the visual operant conditioning of Drosophila at the flight simulator, that the two learning forms could be dissociated and they might have different neural bases.

  7. Web-based Visual Analytics for Extreme Scale Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Evans, Katherine J; Harney, John F

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less

  8. Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Lane, David A.

    1996-01-01

    Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.

  9. Cyclic density functional theory: A route to the first principles simulation of bending in nanostructures

    NASA Astrophysics Data System (ADS)

    Banerjee, Amartya S.; Suryanarayana, Phanish

    2016-11-01

    We formulate and implement Cyclic Density Functional Theory (Cyclic DFT) - a self-consistent first principles simulation method for nanostructures with cyclic symmetries. Using arguments based on Group Representation Theory, we rigorously demonstrate that the Kohn-Sham eigenvalue problem for such systems can be reduced to a fundamental domain (or cyclic unit cell) augmented with cyclic-Bloch boundary conditions. Analogously, the equations of electrostatics appearing in Kohn-Sham theory can be reduced to the fundamental domain augmented with cyclic boundary conditions. By making use of this symmetry cell reduction, we show that the electronic ground-state energy and the Hellmann-Feynman forces on the atoms can be calculated using quantities defined over the fundamental domain. We develop a symmetry-adapted finite-difference discretization scheme to obtain a fully functional numerical realization of the proposed approach. We verify that our formulation and implementation of Cyclic DFT is both accurate and efficient through selected examples. The connection of cyclic symmetries with uniform bending deformations provides an elegant route to the ab-initio study of bending in nanostructures using Cyclic DFT. As a demonstration of this capability, we simulate the uniform bending of a silicene nanoribbon and obtain its energy-curvature relationship from first principles. A self-consistent ab-initio simulation of this nature is unprecedented and well outside the scope of any other systematic first principles method in existence. Our simulations reveal that the bending stiffness of the silicene nanoribbon is intermediate between that of graphene and molybdenum disulphide - a trend which can be ascribed to the variation in effective thickness of these materials. We describe several future avenues and applications of Cyclic DFT, including its extension to the study of non-uniform bending deformations and its possible use in the study of the nanoscale flexoelectric effect.

  10. Experiments in cooperative-arm object manipulation with a two-armed free-flying robot. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Koningstein, Ross

    1990-01-01

    Developing computed-torque controllers for complex manipulator systems using current techniques and tools is difficult because they address the issues pertinent to simulation, as opposed to control. A new formulation of computed-torque (CT) control that leads to an automated computer-torque robot controller program is presented. This automated tool is used for simulations and experimental demonstrations of endpoint and object control from a free-flying robot. A new computed-torque formulation states the multibody control problem in an elegant, homogeneous, and practical form. A recursive dynamics algorithm is presented that numerically evaluates kinematics and dynamics terms for multibody systems given a topological description. Manipulators may be free-flying, and may have closed-chain constraints. With the exception of object squeeze-force control, the algorithm does not deal with actuator redundancy. The algorithm is used to implement an automated 2D computed-torque dynamics and control package that allows joint, endpoint, orientation, momentum, and object squeeze-force control. This package obviates the need for hand-derivation of kinematics and dynamics, and is used for both simulation and experimental control. Endpoint control experiments are performed on a laboratory robot that has two arms to manipulate payloads, and uses an air bearing to achieve very-low drag characteristics. Simulations and experimental data for endpoint and object controllers are presented for the experimental robot - a complex dynamic system. There is a certain rather wide set of conditions under which CT endpoint controllers can neglect robot base accelerations (but not motions) and achieve comparable performance including base accelerations in the model. The regime over which this simplification holds is explored by simulation and experiment.

  11. Myopic astigmatism correction: comparison of a Toric Implantable Collamer Lens and a bioptics technique by an adaptive optics visual simulator.

    PubMed

    Pérez-Vives, Cari; Domínguez-Vicent, Alberto; Madrid-Costa, David; Ferrer-Blasco, Teresa; Montés-Micó, Robert

    2013-03-01

    To compare the optical and visual quality of a simulated Toric Implantable Collamer Lens (TICL) and a bioptics technique to treat high myopic astigmatism. An adaptive optics visual simulator was used to simulate the vision after TICL implantation and a bioptics procedure from the wavefront aberration pattern for moderate and high-myopic astigmatism. Visual acuity (VA) at different contrasts and contrast sensitivity (CS) at 10, 20 and 25 cycles degree(-1) were measured for 3 and 5-mm pupils. Modulation Transfer Function (MTF) and Point Spread Function (PSF) were calculated for a 5-mm pupil. At a 3-mm pupil we only found statistically significant differences in VA between the two simulated surgeries at low-contrast for moderate- and high-myopic astigmatism (p < 0.05). Statistically significant differences were found in CS at 3-mm pupil between both procedures at the highest spatial frequency for moderate-myopic astigmatism and at all frequencies for high-myopic astigmatism (p < 0.05). At a 5-mm pupil we found statistically significant differences in VA and CS between both simulated surgeries at all contrasts and frequencies evaluated for both groups (p < 0.05). In all cases VA and CS were better with the TICL than with the bioptics technique. MTFs for the bioptics technique were worse than those computed for the TICL. The TICL showed less spread out of the PSF than the bioptics procedure. Simulated TICL and bioptics procedures provided good optical and visual quality, although TICL implantation provided slightly better outcomes than the bioptics procedure, especially when the pupil diameter was increased. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  12. Simulation and animation of sensor-driven robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Trivedi, M.M.; Bidlack, C.R.

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less

  13. SimilarityExplorer: A visual inter-comparison tool for multifaceted climate data

    Treesearch

    J. Poco; A. Dasgupta; Y. Wei; W. Hargrove; C. Schwalm; R. Cook; E. Bertini; C. Silva

    2014-01-01

    Inter-comparison and similarity analysis to gauge consensus among multiple simulation models is a critical visualization problem for understanding climate change patterns. Climate models, specifically, Terrestrial Biosphere Models (TBM) represent time and space variable ecosystem processes, for example, simulations of photosynthesis and respiration, using algorithms...

  14. In situ visualization for large-scale combustion simulations.

    PubMed

    Yu, Hongfeng; Wang, Chaoli; Grout, Ray W; Chen, Jacqueline H; Ma, Kwan-Liu

    2010-01-01

    As scientific supercomputing moves toward petascale and exascale levels, in situ visualization stands out as a scalable way for scientists to view the data their simulations generate. This full picture is crucial particularly for capturing and understanding highly intermittent transient phenomena, such as ignition and extinction events in turbulent combustion.

  15. Future directions in flight simulation: A user perspective

    NASA Technical Reports Server (NTRS)

    Jackson, Bruce

    1993-01-01

    Langley Research Center was an early leader in simulation technology, including a special emphasis in space vehicle simulations such as the rendezvous and docking simulator for the Gemini program and the lunar landing simulator used before Apollo. In more recent times, Langley operated the first synergistic six degree of freedom motion platform (the Visual Motion Simulator, or VMS) and developed the first dual-dome air combat simulator, the Differential Maneuvering Simulator (DMS). Each Langley simulator was developed more or less independently from one another with different programming support. At present time, the various simulation cockpits, while supported by the same host computer system, run dissimilar software. The majority of recent investments in Langley's simulation facilities have been hardware procurements: host processors, visual systems, and most recently, an improved motion system. Investments in software improvements, however, have not been of the same order.

  16. Visualizing and understanding vortex and tendex lines of colliding black holes

    NASA Astrophysics Data System (ADS)

    Khan, Haroon; Lovelace, Geoffery; Rodriguez, Samuel

    2017-01-01

    Gravitational waves (GWs) are ripples of spacetime. In order to detect and physically study the GW emitted by merging black holes with ground based detectors such as aLIGO, we must accurately predict how the waves look and behave. This requires numerical simulations of black hole (BH) mergers on supercomputers, because all analytical approximations fail near the time of merger. These simulations also reveal how BHs warp space and time. My project focuses on using these simulations to visualize the strongly curved space time in simulations of merging BHs. I have visualized the vortex and tendex lines for a binary BH system, using the Spectral Einstein Code. Vortex lines describe how an observer would be twisted by the curvature, and the tendex lines describe an observer would be stretched at squeezed by it. These lines are analogous to how electric and magnetic field lines describe the electromagnetic forces on an observer. Visualizing these will provide a more intuitive understanding of the nonlinear dynamics of the spacetime of merging BHs. I am exploring how these lines change with time during a simulation, to see whether they vary smoothly in time and how they depend on where they are seeded.

  17. The ability of healthy volunteers to simulate a neurologic field defect on automated perimetry.

    PubMed

    Ghate, Deepta; Bodnarchuk, Brian; Sanders, Sheila; Deokule, Sunil; Kedar, Sachin

    2014-03-01

    To determine if volunteers can simulate and reproduce 3 types of neurologic field defects: hemianopia, quadrantanopia, and central scotoma. Cross-sectional study. Thirty healthy volunteers new to perimetry (including automated perimetry). After informed consent, volunteers were randomized to 1 of the 3 visual field defects listed above. All visual field testing was performed on the right eye using the Humphrey Field Analyzer (HFA; Carl Zeiss Meditec, Dublin, CA) SITA Fast 24-2 protocol. Each volunteer was provided with standard new patient instructions and was shown a diagram of the defect to be simulated. Two sets of visual fields were performed on the right eye with 10 minutes between tests. Three experts used the Ocular Hypertension Treatment Study reading center criteria and determined if the simulation was successful. Proportion of volunteers able to simulate the assigned visual field. All 10 volunteers (100%) successfully simulated a hemianopia on the first and second fields. All 10 volunteers (100%) simulated a quadrantanopia on the first field and 9 (90%) did so on the second field. Eight volunteers (80%) successfully simulated a central scotoma in the first field and all 10 (100%) did so on in the second field. Reliability criteria were excellent. Forty-seven fields (78%) had 0 fixation losses, 48 (80%) had 0 false-positive results, and 44 (73%) had 0 false-negative results. It is easy to simulate reproducible and reliable neurologic field defects on automated perimetry using HFA. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  18. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.

    PubMed

    Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T

    2007-07-01

    Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.

  19. The Product and Quotient Rules Revisited

    ERIC Educational Resources Information Center

    Eggleton, Roger; Kustov, Vladimir

    2011-01-01

    Mathematical elegance is illustrated by strikingly parallel versions of the product and quotient rules of basic calculus, with some applications. Corresponding rules for second derivatives are given: the product rule is familiar, but the quotient rule is less so.

  20. Visual wetness perception based on image color statistics.

    PubMed

    Sawayama, Masataka; Adelson, Edward H; Nishida, Shin'ya

    2017-05-01

    Color vision provides humans and animals with the abilities to discriminate colors based on the wavelength composition of light and to determine the location and identity of objects of interest in cluttered scenes (e.g., ripe fruit among foliage). However, we argue that color vision can inform us about much more than color alone. Since a trichromatic image carries more information about the optical properties of a scene than a monochromatic image does, color can help us recognize complex material qualities. Here we show that human vision uses color statistics of an image for the perception of an ecologically important surface condition (i.e., wetness). Psychophysical experiments showed that overall enhancement of chromatic saturation, combined with a luminance tone change that increases the darkness and glossiness of the image, tended to make dry scenes look wetter. Theoretical analysis along with image analysis of real objects indicated that our image transformation, which we call the wetness enhancing transformation, is consistent with actual optical changes produced by surface wetting. Furthermore, we found that the wetness enhancing transformation operator was more effective for the images with many colors (large hue entropy) than for those with few colors (small hue entropy). The hue entropy may be used to separate surface wetness from other surface states having similar optical properties. While surface wetness and surface color might seem to be independent, there are higher order color statistics that can influence wetness judgments, in accord with the ecological statistics. The present findings indicate that the visual system uses color image statistics in an elegant way to help estimate the complex physical status of a scene.

  1. Visual acuity with simulated and real astigmatic defocus.

    PubMed

    Ohlendorf, Arne; Tabernero, Juan; Schaeffel, Frank

    2011-05-01

    To compare the effects of "simulated" and "real" spherical and astigmatic defocus on visual acuity (VA). VA was determined with letter charts that were blurred by calculated spherical or astigmatic defocus (simulated defocus) or were seen through spherical or astigmatic trial lenses (real defocus). Defocus was simulated using ZEMAX and the Liou-Brennan eye model. Nine subjects participated [mean age, 27.2 ± 1.8 years; logarithm of the minimum angle of resolution (logMAR), -0.1]. Three different experiments were conducted in which VA was reduced by 20% (logMAR 0.0), 50% (logMAR 0.2), or 75% (logMAR 0.5) by either (1) imposing positive spherical defocus, (2) imposing positive and negative astigmatic defocus in three axes (0, 45, and 90°), and (3) imposing cross-cylinder defocus in the same three axes as in (2). Experiment (1): there were only minor differences in VA with simulated and real positive spherical defocus. Experiment (2): simulated astigmatic defocus reduced VA twice as much as real astigmatic defocus in all tested axes (p < 0.01 in all cases). Experiment (3): simulated cross-cylinder defocus reduced VA much more than real cross-cylinder defocus (p < 0.01 in all cases), similarly for all three tested axes. The visual system appears more tolerant against "real" spherical, astigmatic, and cross-cylinder defocus than against "simulated" blur. Possible reasons could be (1) limitations in the modeling procedures to simulate defocus, (2) higher ocular aberrations, and (3) fluctuations of accommodation. However, the two optical explanations (2) and (3) cannot account for the magnitude of the effect, and (1) was carefully analyzed. It is proposed that something may be special about the visual processing of real astigmatic and cross-cylinder defocus-because they have less effect on VA than simulations predict.

  2. Simulators for training in ultrasound guided procedures.

    PubMed

    Farjad Sultan, Syed; Shorten, George; Iohom, Gabrielle

    2013-06-01

    The four major categories of skill sets associated with proficiency in ultrasound guided regional anaesthesia are 1) understanding device operations, 2) image optimization, 3) image interpretation and 4) visualization of needle insertion and injection of the local anesthetic solution. Of these, visualization of needle insertion and injection of local anaesthetic solution can be practiced using simulators and phantoms. This survey of existing simulators summarizes advantages and disadvantages of each. Current deficits pertain to the validation process.

  3. Python-based geometry preparation and simulation visualization toolkits for STEPS

    PubMed Central

    Chen, Weiliang; De Schutter, Erik

    2014-01-01

    STEPS is a stochastic reaction-diffusion simulation engine that implements a spatial extension of Gillespie's Stochastic Simulation Algorithm (SSA) in complex tetrahedral geometries. An extensive Python-based interface is provided to STEPS so that it can interact with the large number of scientific packages in Python. However, a gap existed between the interfaces of these packages and the STEPS user interface, where supporting toolkits could reduce the amount of scripting required for research projects. This paper introduces two new supporting toolkits that support geometry preparation and visualization for STEPS simulations. PMID:24782754

  4. Visualization of 3D elbow kinematics using reconstructed bony surfaces

    NASA Astrophysics Data System (ADS)

    Lalone, Emily A.; McDonald, Colin P.; Ferreira, Louis M.; Peters, Terry M.; King, Graham J. W.; Johnson, James A.

    2010-02-01

    An approach for direct visualization of continuous three-dimensional elbow kinematics using reconstructed surfaces has been developed. Simulation of valgus motion was achieved in five cadaveric specimens using an upper arm simulator. Direct visualization of the motion of the ulna and humerus at the ulnohumeral joint was obtained using a contact based registration technique. Employing fiducial markers, the rendered humerus and ulna were positioned according to the simulated motion. The specific aim of this study was to investigate the effect of radial head arthroplasty on restoring elbow joint stability after radial head excision. The position of the ulna and humerus was visualized for the intact elbow and following radial head excision and replacement. Visualization of the registered humerus/ulna indicated an increase in valgus angulation of the ulna with respect to the humerus after radial head excision. This increase in valgus angulation was restored to that of an elbow with a native radial head following radial head arthroplasty. These findings were consistent with previous studies investigating elbow joint stability following radial head excision and arthroplasty. The current technique was able to visualize a change in ulnar position in a single DoF. Using this approach, the coupled motion of ulna undergoing motion in all 6 degrees-of-freedom can also be visualized.

  5. Hierarchical Modelling Of Mobile, Seeing Robots

    NASA Astrophysics Data System (ADS)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1990-03-01

    This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.

  6. Hierarchical modelling of mobile, seeing robots

    NASA Technical Reports Server (NTRS)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1990-01-01

    This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.

  7. Simulation and visualization of fundamental optics phenomenon by LabVIEW

    NASA Astrophysics Data System (ADS)

    Lyu, Bohan

    2017-08-01

    Most instructors teach complex phenomenon by equation and static illustration without interactive multimedia. Students usually memorize phenomenon by taking note. However, only note or complex formula can not make user visualize the phenomenon of the photonics system. LabVIEW is a good tool for in automatic measurement. However, the simplicity of coding in LabVIEW makes it not only suit for automatic measurement, but also suitable for simulation and visualization of fundamental optics phenomenon. In this paper, five simple optics phenomenon will be discuss and simulation with LabVIEW. They are Snell's Law, Hermite-Gaussian beam transverse mode, square and circular aperture diffraction, polarization wave and Poincare sphere, and finally Fabry-Perrot etalon in spectrum domain.

  8. Multi-Mission Simulation and Visualization for Real-Time Telemetry Display, Playback and EDL Event Reconstruction

    NASA Technical Reports Server (NTRS)

    Pomerantz, M. I.; Lim, C.; Myint, S.; Woodward, G.; Balaram, J.; Kuo, C.

    2012-01-01

    he Jet Propulsion Laboratory's Entry, Descent and Landing (EDL) Reconstruction Task has developed a software system that provides mission operations personnel and analysts with a real time telemetry-based live display, playback and post-EDL reconstruction capability that leverages the existing high-fidelity, physics-based simulation framework and modern game engine-derived 3D visualization system developed in the JPL Dynamics and Real Time Simulation (DARTS) Lab. Developed as a multi-mission solution, the EDL Telemetry Visualization (ETV) system has been used for a variety of projects including NASA's Mars Science Laboratory (MSL), NASA'S Low Density Supersonic Decelerator (LDSD) and JPL's MoonRise Lunar sample return proposal.

  9. System description and analysis. Part 1: Feasibility study for helicopter/VTOL wide-angle simulation image generation display system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A preliminary design for a helicopter/VSTOL wide angle simulator image generation display system is studied. The visual system is to become part of a simulator capability to support Army aviation systems research and development within the near term. As required for the Army to simulate a wide range of aircraft characteristics, versatility and ease of changing cockpit configurations were primary considerations of the study. Due to the Army's interest in low altitude flight and descents into and landing in constrained areas, particular emphasis is given to wide field of view, resolution, brightness, contrast, and color. The visual display study includes a preliminary design, demonstrated feasibility of advanced concepts, and a plan for subsequent detail design and development. Analysis and tradeoff considerations for various visual system elements are outlined and discussed.

  10. Retinal Image Simulation of Subjective Refraction Techniques.

    PubMed

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training.

  11. eLoom and Flatland: specification, simulation and visualization engines for the study of arbitrary hierarchical neural architectures.

    PubMed

    Caudell, Thomas P; Xiao, Yunhai; Healy, Michael J

    2003-01-01

    eLoom is an open source graph simulation software tool, developed at the University of New Mexico (UNM), that enables users to specify and simulate neural network models. Its specification language and libraries enables users to construct and simulate arbitrary, potentially hierarchical network structures on serial and parallel processing systems. In addition, eLoom is integrated with UNM's Flatland, an open source virtual environments development tool to provide real-time visualizations of the network structure and activity. Visualization is a useful method for understanding both learning and computation in artificial neural networks. Through 3D animated pictorially representations of the state and flow of information in the network, a better understanding of network functionality is achieved. ART-1, LAPART-II, MLP, and SOM neural networks are presented to illustrate eLoom and Flatland's capabilities.

  12. Network visualization of conformational sampling during molecular dynamics simulation.

    PubMed

    Ahlstrom, Logan S; Baker, Joseph Lee; Ehrlich, Kent; Campbell, Zachary T; Patel, Sunita; Vorontsov, Ivan I; Tama, Florence; Miyashita, Osamu

    2013-11-01

    Effective data reduction methods are necessary for uncovering the inherent conformational relationships present in large molecular dynamics (MD) trajectories. Clustering algorithms provide a means to interpret the conformational sampling of molecules during simulation by grouping trajectory snapshots into a few subgroups, or clusters, but the relationships between the individual clusters may not be readily understood. Here we show that network analysis can be used to visualize the dominant conformational states explored during simulation as well as the connectivity between them, providing a more coherent description of conformational space than traditional clustering techniques alone. We compare the results of network visualization against 11 clustering algorithms and principal component conformer plots. Several MD simulations of proteins undergoing different conformational changes demonstrate the effectiveness of networks in reaching functional conclusions. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A review of flight simulation techniques

    NASA Astrophysics Data System (ADS)

    Baarspul, Max

    After a brief historical review of the evolution of flight simulation techniques, this paper first deals with the main areas of flight simulator applications. Next, it describes the main components of a piloted flight simulator. Because of the presence of the pilot-in-the-loop, the digital computer driving the simulator must solve the aircraft equations of motion in ‘real-time’. Solutions to meet the high required computer power of todays modern flight simulator are elaborated. The physical similarity between aircraft and simulator in cockpit layout, flight instruments, flying controls etc., is discussed, based on the equipment and environmental cue fidelity required for training and research simulators. Visual systems play an increasingly important role in piloted flight simulation. The visual systems now available and most widely used are described, where image generators and display devices will be distinguished. The characteristics of out-of-the-window visual simulation systems pertaining to the perceptual capabilities of human vision are discussed. Faithful reproduction of aircraft motion requires large travel, velocity and acceleration capabilities of the motion system. Different types and applications of motion systems in e.g. airline training and research are described. The principles of motion cue generation, based on the characteristics of the non-visual human motion sensors, are described. The complete motion system, consisting of the hardware and the motion drive software, is discussed. The principles of mathematical modelling of the aerodynamic, flight control, propulsion, landing gear and environmental characteristics of the aircraft are reviewed. An example of the identification of an aircraft mathematical model, based on flight and taxi tests, is presented. Finally, the paper deals with the hardware and software integration of the flight simulator components and the testing and acceptance of the complete flight simulator. Examples of the so-called ‘Computer Generated Checkout’ and ‘Proof of Match’ are presented. The concluding remarks briefly summarize the status of flight simulator technology and consider possibilities for future research.

  14. BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory

    PubMed Central

    Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David

    2017-01-01

    Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution, and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, EM fields are high-dimensional, making them time-consuming to simulate, and difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system. PMID:29170738

  15. Virtual Earth System Laboratory (VESL): Effective Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.

    2016-12-01

    The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.

  16. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  17. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  18. Verifying visual properties in sentence verification facilitates picture recognition memory.

    PubMed

    Pecher, Diane; Zanolie, Kiki; Zeelenberg, René

    2007-01-01

    According to the perceptual symbols theory (Barsalou, 1999), sensorimotor simulations underlie the representation of concepts. We investigated whether recognition memory for pictures of concepts was facilitated by earlier representation of visual properties of those concepts. During study, concept names (e.g., apple) were presented in a property verification task with a visual property (e.g., shiny) or with a nonvisual property (e.g., tart). Delayed picture recognition memory was better if the concept name had been presented with a visual property than if it had been presented with a nonvisual property. These results indicate that modality-specific simulations are used for concept representation.

  19. Flight simulator with spaced visuals

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)

    1980-01-01

    A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.

  20. Are Hemianopic Reading and Visual Exploration Impairments Visually Elicited? New Insights from Eye Movements in Simulated Hemianopia

    ERIC Educational Resources Information Center

    Schuett, Susanne; Kentridge, Robert W.; Zihl, Josef; Heywood, Charles A.

    2009-01-01

    Hemianopic reading and visual exploration impairments are well-known clinical phenomena. Yet, it is unclear whether they are primarily caused by the hemianopic visual field defect itself or by additional brain injury preventing efficient spontaneous oculomotor adaptation. To establish the extent to which these impairments are visually elicited we…

  1. Media/Device Configurations for Platoon Leader Tactical Training

    DTIC Science & Technology

    1985-02-01

    munication and visual communication sig- na ls, VInputs to the The device should simulate the real- Platoon Leader time receipt of all tactical voice...communication, audio and visual battle- field cues, and visual communication signals. 14- Table 4 (Continued) Functional Capability Categories and...battlefield cues, and visual communication signals. 0.8 Receipt of limited tactical voice communication, plus audio and visual battlefield cues, and visual

  2. Evaluation of Visual Computer Simulator for Computer Architecture Education

    ERIC Educational Resources Information Center

    Imai, Yoshiro; Imai, Masatoshi; Moritoh, Yoshio

    2013-01-01

    This paper presents trial evaluation of a visual computer simulator in 2009-2011, which has been developed to play some roles of both instruction facility and learning tool simultaneously. And it illustrates an example of Computer Architecture education for University students and usage of e-Learning tool for Assembly Programming in order to…

  3. Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots.

    PubMed

    Wang, Junpeng; Liu, Xiaotong; Shen, Han-Wei; Lin, Guang

    2017-01-01

    Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.

  4. A Responsive Client for Distributed Visualization

    NASA Astrophysics Data System (ADS)

    Bollig, E. F.; Jensen, P. A.; Erlebacher, G.; Yuen, D. A.; Momsen, A. R.

    2006-12-01

    As grids, web services and distributed computing continue to gain popularity in the scientific community, demand for virtual laboratories likewise increases. Today organizations such as the Virtual Laboratory for Earth and Planetary Sciences (VLab) are dedicated to developing web-based portals to perform various simulations remotely while abstracting away details of the underlying computation. Two of the biggest challenges in portal- based computing are fast visualization and smooth interrogation without over taxing clients resources. In response to this challenge, we have expanded on our previous data storage strategy and thick client visualization scheme [1] to develop a client-centric distributed application that utilizes remote visualization of large datasets and makes use of the local graphics processor for improved interactivity. Rather than waste precious client resources for visualization, a combination of 3D graphics and 2D server bitmaps are used to simulate the look and feel of local rendering. Java Web Start and Java Bindings for OpenGL enable install-on- demand functionality as well as low level access to client graphics for all platforms. Powerful visualization services based on VTK and auto-generated by the WATT compiler [2] are accessible through a standard web API. Data is permanently stored on compute nodes while separate visualization nodes fetch data requested by clients, caching it locally to prevent unnecessary transfers. We will demonstrate application capabilities in the context of simulated charge density visualization within the VLab portal. In addition, we will address generalizations of our application to interact with a wider number of WATT services and performance bottlenecks. [1] Ananthuni, R., Karki, B.B., Bollig, E.F., da Silva, C.R.S., Erlebacher, G., "A Web-Based Visualization and Reposition Scheme for Scientific Data," In Press, Proceedings of the 2006 International Conference on Modeling Simulation and Visualization Methods (MSV'06) (2006). [2] Jensen, P.A., Yuen, D.A., Erlebacher, G., Bollig, E.F., Kigelman, D.G., Shukh, E.A., Automated Generation of Web Services for Visualization Toolkits, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract IN42A-06, 2005.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne

    A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing jointmore » visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less

  6. RVA: A Plugin for ParaView 3.14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-04

    RVA is a plugin developed for the 64-bit Windows version of the ParaView 3.14 visualization package. RVA is designed to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed onmore » enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less

  7. New NASA 3D Animation Shows Seven Days of Simulated Earth Weather

    NASA Image and Video Library

    2014-08-11

    This visualization shows early test renderings of a global computational model of Earth's atmosphere based on data from NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5). This particular run, called Nature Run 2, was run on a supercomputer, spanned 2 years of simulation time at 30 minute intervals, and produced Petabytes of output. The visualization spans a little more than 7 days of simulation time which is 354 time steps. The time period was chosen because a simulated category-4 typhoon developed off the coast of China. The 7 day period is repeated several times during the course of the visualization. Credit: NASA's Scientific Visualization Studio Read more or download here: svs.gsfc.nasa.gov/goto?4180 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Virtual Observatories for Space Physics Observations and Simulations: New Routes to Efficient Access and Visualization

    NASA Technical Reports Server (NTRS)

    Roberts, Aaron

    2005-01-01

    New tools for data access and visualization promise to make the analysis of space plasma data both more efficient and more powerful, especially for answering questions about the global structure and dynamics of the Sun-Earth system. We will show how new existing tools (particularly the Virtual Space Physics Observatory-VSPO-and the Visual System for Browsing, Analysis and Retrieval of Data-ViSBARD; look for the acronyms in Google) already provide rapid access to such information as spacecraft orbits, browse plots, and detailed data, as well as visualizations that can quickly unite our view of multispacecraft observations. We will show movies illustrating multispacecraft observations of the solar wind and magnetosphere during a magnetic storm, and of simulations of 3 0-spacecraft observations derived from MHD simulations of the magnetosphere sampled along likely trajectories of the spacecraft for the MagCon mission. An important issue remaining to be solved is how best to integrate simulation data and services into the Virtual Observatory environment, and this talk will hopefully stimulate further discussion along these lines.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.

    Real-time terrain rendering for interactive visualization remains a demanding task. We present a novel algorithm with several advantages over previous methods: our method is unusually stingy with polygons yet achieves real-time performance and is scalable to arbitrary regions and resolutions. The method provides a continuous terrain mesh of specified triangle count having provably minimum error in restricted but reasonably general classes of permissible meshes and error metrics. Our method provides an elegant solution to guaranteeing certain elusive types of consistency in scenes produced by multiple scene generators which share a common finest-resolution database but which otherwise operate entirely independently. Thismore » consistency is achieved by exploiting the freedom of choice of error metric allowed by the algorithm to provide, for example, multiple exact lines-of-sight in real-time. Our methods rely on an off-line pre-processing phase to construct a multi-scale data structure consisting of triangular terrain approximations enhanced ({open_quotes}thickened{close_quotes}) with world-space error information. In real time, this error data is efficiently transformed into screen-space where it is used to guide a greedy top-down triangle subdivision algorithm which produces the desired minimal error continuous terrain mesh. Our algorithm has been implemented and it operates at real-time rates.« less

  10. Adaptive Neuromorphic Circuit for Stereoscopic Disparity Using Ocular Dominance Map

    PubMed Central

    Sharma, Sheena; Gupta, Priti; Markan, C. M.

    2016-01-01

    Stereopsis or depth perception is a critical aspect of information processing in the brain and is computed from the positional shift or disparity between the images seen by the two eyes. Various algorithms and their hardware implementation that compute disparity in real time have been proposed; however, most of them compute disparity through complex mathematical calculations that are difficult to realize in hardware and are biologically unrealistic. The brain presumably uses simpler methods to extract depth information from the environment and hence newer methodologies that could perform stereopsis with brain like elegance need to be explored. This paper proposes an innovative aVLSI design that leverages the columnar organization of ocular dominance in the brain and uses time-staggered Winner Take All (ts-WTA) to adaptively create disparity tuned cells. Physiological findings support the presence of disparity cells in the visual cortex and show that these cells surface as a result of binocular stimulation received after birth. Therefore, creating in hardware cells that can learn different disparities with experience not only is novel but also is biologically more realistic. These disparity cells, when allowed to interact diffusively on a larger scale, can be used to adaptively create stable topological disparity maps in silicon. PMID:27243029

  11. Full-scale high-speed ``Edgerton'' retroreflective shadowgraphy of gunshots

    NASA Astrophysics Data System (ADS)

    Settles, Gary

    2005-11-01

    Almost 1/2 century ago, H. E. ``Doc'' Edgerton demonstrated a simple and elegant direct-shadowgraph technique for imaging large-scale events like explosions and gunshots. Only a retroreflective screen, flashlamp illumination, and an ordinary view camera were required. Retroreflective shadowgraphy has seen occasional use since then, but its unique combination of large scale, simplicity and portability has barely been tapped. It functions well in environments hostile to most optical diagnostics, such as full-scale outdoor daylight ballistics and explosives testing. Here, shadowgrams cast upon a 2.4 m square retroreflective screen are imaged by a Photron Fastcam APX-RS digital camera that is capable of megapixel image resolution at 3000 frames/sec up to 250,000 frames/sec at lower resolution. Microsecond frame exposures are used to examine the external ballistics of several firearms, including a high-powered rifle, an AK-47 submachine gun, and several pistols and revolvers. Muzzle blast phenomena and the mechanism of gunpowder residue deposition on the shooter's hands are clearly visualized. In particular, observing the firing of a pistol with and without a silencer (suppressor) suggests that some of the muzzle blast energy is converted by the silencer into supersonic jet noise.

  12. Animal navigation: a galaxy of cues.

    PubMed

    Gould, James L

    2013-02-18

    Elegant new experiments show that on clear nights and in the absence of other celestial cues, dung beetles can orient their routes to the band of stars known as the Milky Way. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Infórmese sobre el programa de WIFIA

    EPA Pesticide Factsheets

    La Ley de finanzas e innovación de la infraestructura del agua de 2014 estableció el programa de WIFIA, un programa federal crediticio administrado por la EPA para proyectos elegibles de infraestructura de agua y aguas sanitarias.

  14. Magnetically Retrievable Catalysts for Asymmetric Synthesis

    EPA Science Inventory

    Surface modification of magnetic nanoparticles with chiral scaffolds for asymmetric catalytic applications is an elegant way of providing a special pseudo homogenous phase which could be separated using an external magnet. In this review, we summarize the use of magnetic nanopart...

  15. Verification and Planning Based on Coinductive Logic Programming

    NASA Technical Reports Server (NTRS)

    Bansal, Ajay; Min, Richard; Simon, Luke; Mallya, Ajay; Gupta, Gopal

    2008-01-01

    Coinduction is a powerful technique for reasoning about unfounded sets, unbounded structures, infinite automata, and interactive computations [6]. Where induction corresponds to least fixed point's semantics, coinduction corresponds to greatest fixed point semantics. Recently coinduction has been incorporated into logic programming and an elegant operational semantics developed for it [11, 12]. This operational semantics is the greatest fix point counterpart of SLD resolution (SLD resolution imparts operational semantics to least fix point based computations) and is termed co- SLD resolution. In co-SLD resolution, a predicate goal p( t) succeeds if it unifies with one of its ancestor calls. In addition, rational infinite terms are allowed as arguments of predicates. Infinite terms are represented as solutions to unification equations and the occurs check is omitted during the unification process. Coinductive Logic Programming (Co-LP) and Co-SLD resolution can be used to elegantly perform model checking and planning. A combined SLD and Co-SLD resolution based LP system forms the common basis for planning, scheduling, verification, model checking, and constraint solving [9, 4]. This is achieved by amalgamating SLD resolution, co-SLD resolution, and constraint logic programming [13] in a single logic programming system. Given that parallelism in logic programs can be implicitly exploited [8], complex, compute-intensive applications (planning, scheduling, model checking, etc.) can be executed in parallel on multi-core machines. Parallel execution can result in speed-ups as well as in larger instances of the problems being solved. In the remainder we elaborate on (i) how planning can be elegantly and efficiently performed under real-time constraints, (ii) how real-time systems can be elegantly and efficiently model- checked, as well as (iii) how hybrid systems can be verified in a combined system with both co-SLD and SLD resolution. Implementations of co-SLD resolution as well as preliminary implementations of the planning and verification applications have been developed [4]. Co-LP and Model Checking: The vast majority of properties that are to be verified can be classified into safety properties and liveness properties. It is well known within model checking that safety properties can be verified by reachability analysis, i.e, if a counter-example to the property exists, it can be finitely determined by enumerating all the reachable states of the Kripke structure.

  16. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance.

    PubMed

    Dong, Han; Sharma, Diksha; Badano, Aldo

    2014-12-01

    Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridmantis, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webmantis and visualmantis to facilitate the setup of computational experiments via hybridmantis. The visualization tools visualmantis and webmantis enable the user to control simulation properties through a user interface. In the case of webmantis, control via a web browser allows access through mobile devices such as smartphones or tablets. webmantis acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridmantis. The users can download the output images and statistics through a zip file for future reference. In addition, webmantis provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. The visualization tools visualmantis and webmantis provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.

  17. Informing Hospital Change Processes through Visualization and Simulation: A Case Study at a Children's Emergency Clinic.

    PubMed

    Persson, Johanna; Dalholm, Elisabeth Hornyánszky; Johansson, Gerd

    2014-01-01

    To demonstrate the use of visualization and simulation tools in order to involve stakeholders and inform the process in hospital change processes, illustrated by an empirical study from a children's emergency clinic. Reorganization and redevelopment of a hospital is a complex activity that involves many stakeholders and demands. Visualization and simulation tools have proven useful for involving practitioners and eliciting relevant knowledge. More knowledge is desired about how these tools can be implemented in practice for hospital planning processes. A participatory planning process including practitioners and researchers was executed over a 3-year period to evaluate a combination of visualization and simulation tools to involve stakeholders in the planning process and to elicit knowledge about needs and requirements. The initial clinic proposal from the architect was discarded as a result of the empirical study. Much general knowledge about the needs of the organization was extracted by means of the adopted tools. Some of the tools proved to be more accessible than others for the practitioners participating in the study. The combination of tools added value to the process by presenting information in alternative ways and eliciting questions from different angles. Visualization and simulation tools inform a planning process (or other types of change processes) by providing the means to see beyond present demands and current work structures. Long-term involvement in combination with accessible tools is central for creating a participatory setting where the practitioners' knowledge guides the process. © 2014 Vendome Group, LLC.

  18. Visuo-spatial ability in colonoscopy simulator training.

    PubMed

    Luursema, Jan-Maarten; Buzink, Sonja N; Verwey, Willem B; Jakimowicz, J J

    2010-12-01

    Visuo-spatial ability is associated with a quality of performance in a variety of surgical and medical skills. However, visuo-spatial ability is typically assessed using Visualization tests only, which led to an incomplete understanding of the involvement of visuo-spatial ability in these skills. To remedy this situation, the current study investigated the role of a broad range of visuo-spatial factors in colonoscopy simulator training. Fifteen medical trainees (no clinical experience in colonoscopy) participated in two psycho-metric test sessions to assess four visuo-spatial ability factors. Next, participants trained flexible endoscope manipulation, and navigation to the cecum on the GI Mentor II simulator, for four sessions within 1 week. Visualization, and to a lesser degree Spatial relations were the only visuo-spatial ability factors to correlate with colonoscopy simulator performance. Visualization additionally covaried with learning rate for time on task on both simulator tasks. High Visualization ability indicated faster exercise completion. Similar to other endoscopic procedures, performance in colonoscopy is positively associated with Visualization, a visuo-spatial ability factor characterized by the ability to mentally manipulate complex visuo-spatial stimuli. The complexity of the visuo-spatial mental transformations required to successfully perform colonoscopy is likely responsible for the challenging nature of this technique, and should inform training- and assessment design. Long term training studies, as well as studies investigating the nature of visuo-spatial complexity in this domain are needed to better understand the role of visuo-spatial ability in colonoscopy, and other endoscopic techniques.

  19. Guidance for Development of a Flight Simulator Specification

    DTIC Science & Technology

    2007-05-01

    the simulated line of sight to the moon is less than one degree, and that the moon appears to move smoothly across the visual scene. The phase of the...Agencies have adopted the definition used by Optics Companies (this definition has also been adopted in this revision of the Air Force Guide...simulators that require tracking the target as it slues across the displayed scene, such as with air -to-ground or air -to- air combat tasks. Visual systems

  20. Convergent-Discriminant Validity of the Jewish Employment Vocational System (JEVS).

    ERIC Educational Resources Information Center

    Tryjankowski, Elaine M.

    This study investigated the construct validity of five perceptual traits (auditory discrimination, visual discrimination, visual memory, visual-motor coordination, and auditory to visual-motor coordination) with five simulated work samples (union assembly, resistor reading, budgette assembly, lock assembly, and nail and screw sort) from the Jewish…

  1. Visual Programming: A Programming Tool for Increasing Mathematics Achivement

    ERIC Educational Resources Information Center

    Swanier, Cheryl A.; Seals, Cheryl D.; Billionniere, Elodie V.

    2009-01-01

    This paper aims to address the need of increasing student achievement in mathematics using a visual programming language such as Scratch. This visual programming language facilitates creating an environment where students in K-12 education can develop mathematical simulations while learning a visual programming language at the same time.…

  2. Dynamical computation of constrained flexible systems using a modal Udwadia-Kalaba formulation: Application to musical instruments.

    PubMed

    Antunes, J; Debut, V

    2017-02-01

    Most musical instruments consist of dynamical subsystems connected at a number of constraining points through which energy flows. For physical sound synthesis, one important difficulty deals with enforcing these coupling constraints. While standard techniques include the use of Lagrange multipliers or penalty methods, in this paper, a different approach is explored, the Udwadia-Kalaba (U-K) formulation, which is rooted on analytical dynamics but avoids the use of Lagrange multipliers. This general and elegant formulation has been nearly exclusively used for conceptual systems of discrete masses or articulated rigid bodies, namely, in robotics. However its natural extension to deal with continuous flexible systems is surprisingly absent from the literature. Here, such a modeling strategy is developed and the potential of combining the U-K equation for constrained systems with the modal description is shown, in particular, to simulate musical instruments. Objectives are twofold: (1) Develop the U-K equation for constrained flexible systems with subsystems modelled through unconstrained modes; and (2) apply this framework to compute string/body coupled dynamics. This example complements previous work [Debut, Antunes, Marques, and Carvalho, Appl. Acoust. 108, 3-18 (2016)] on guitar modeling using penalty methods. Simulations show that the proposed technique provides similar results with a significant improvement in computational efficiency.

  3. Avoiding numerical pitfalls in social force models

    NASA Astrophysics Data System (ADS)

    Köster, Gerta; Treml, Franz; Gödel, Marion

    2013-06-01

    The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.

  4. Coherent states field theory in supramolecular polymer physics

    NASA Astrophysics Data System (ADS)

    Fredrickson, Glenn H.; Delaney, Kris T.

    2018-05-01

    In 1970, Edwards and Freed presented an elegant representation of interacting branched polymers that resembles the coherent states (CS) formulation of second-quantized field theory. This CS polymer field theory has been largely overlooked during the intervening period in favor of more conventional "auxiliary field" (AF) interacting polymer representations that form the basis of modern self-consistent field theory (SCFT) and field-theoretic simulation approaches. Here we argue that the CS representation provides a simpler and computationally more efficient framework than the AF approach for broad classes of reversibly bonding polymers encountered in supramolecular polymer science. The CS formalism is reviewed, initially for a simple homopolymer solution, and then extended to supramolecular polymers capable of forming reversible linkages and networks. In the context of the Edwards model of a non-reacting homopolymer solution and one and two-component models of telechelic reacting polymers, we discuss the structure of CS mean-field theory, including the equivalence to SCFT, and show how weak-amplitude expansions (random phase approximations) can be readily developed without explicit enumeration of all reaction products in a mixture. We further illustrate how to analyze CS field theories beyond SCFT at the level of Gaussian field fluctuations and provide a perspective on direct numerical simulations using a recently developed complex Langevin technique.

  5. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.; /LBL, Berkeley; Bane, K.L.F.

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 fs). To study themore » expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].« less

  6. LCLS X-Ray FEL Output Performance in the Presence of HighlyTime-Dependent Undulator Wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 0fs). To study themore » expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].« less

  7. Highly accurate analytic formulae for projectile motion subjected to quadratic drag

    NASA Astrophysics Data System (ADS)

    Turkyilmazoglu, Mustafa

    2016-05-01

    The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.

  8. S2PLOT: Three-dimensional (3D) Plotting Library

    NASA Astrophysics Data System (ADS)

    Barnes, D. G.; Fluke, C. J.; Bourke, P. D.; Parry, O. T.

    2011-03-01

    We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - S2PLOT - is written in C and can be used by C, C++ and FORTRAN programs on GNU/Linux and Apple/OSX systems. S2PLOT draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a PGPLOT inspired interface, S2PLOT provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The S2PLOT architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce S2PLOT to the astronomical community, describe its potential applications, and present some example uses of the library.

  9. An Advanced, Three-Dimensional Plotting Library for Astronomy

    NASA Astrophysics Data System (ADS)

    Barnes, David G.; Fluke, Christopher J.; Bourke, Paul D.; Parry, Owen T.

    2006-07-01

    We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - s2plot - is written in c and can be used by c, c++, and fortran programs on GNU/Linux and Apple/OSX systems. s2plot draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a pgplot-inspired interface, s2plot provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The s2plot architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce s2plot to the astronomical community, describe its potential applications, and present some example uses of the library.

  10. Mapping the force field of a hydrogen-bonded assembly

    NASA Astrophysics Data System (ADS)

    Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2014-05-01

    Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism.

  11. Design of 3 GeV booster ring lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etisken, O., E-mail: ozgur.etisken@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    2016-03-25

    The aim of this study is to design of a 3 GeV booster ring for the 3 GeV storage ring. Electrons are needed to be accelerated to 3.0 GeV from 0.15 GeV energy. In this frame, we studied on two options for booster ring; a compact booster and the booster that shares the same tunnel with the storage ring. The lattice type has been chosen FODO for both options, lattice parameters are calculated, sextupole magnets are used to decrease dynamic aperture problem and dynamic aperture calculations are also made with considering of the necessary conditions. After designing and calculating ofmore » the parameters, these designs have been compared with each other. In addition to this comparison, these booster design parameters have been compared with some world centers design parameters and the reliability of the booster design is seen. Beam optics, OPA and Elegant simulation programs have been used in the study calculations.« less

  12. Development of a morphing structure with the incorporation of central pattern generators

    NASA Astrophysics Data System (ADS)

    Bliss, Thomas K.; Bart-Smith, Hilary; Iwasaki, Tetsuya

    2006-03-01

    The Manta Ray, Manta birostris, is an amazing creature, propelling itself through the water with the elegant and complex flapping of its wings. Achieving outstanding efficiencies, engineers are looking for ways to mimic its flight through the water and harness its propulsive techniques. This study combines two biologically inspired aspects to achieve this goal: morphing structures actuated with a biomimetic neural network control system. It is believed that this combination will prove capable of producing the oscillatory motions necessary for locomotion. In this paper, a four-truss structure with three actuators is chosen and its performance capabilities are analyzed. A synthetic central pattern generator, which provides the fundamental control mechanisms for rhythmic motion in animals, is designed to realize an oscillatory control of the three actuators. The control system is simulated using Matlab, then combined with LabVIEW to control the four-truss structure. The system's performance is analyzed, with specific attention to both transient and steady-state behavior.

  13. Earth's field NMR detection of oil under arctic ice-water suppression

    NASA Astrophysics Data System (ADS)

    Conradi, Mark S.; Altobelli, Stephen A.; Sowko, Nicholas J.; Conradi, Susan H.; Fukushima, Eiichi

    2018-03-01

    Earth's field NMR has been developed to detect oil trapped under or in Arctic sea-ice. A large challenge, addressed here, is the suppression of the water signal that dominates the oil signal. Selective suppression of water is based on relaxation time T1 because of the negligible chemical shifts in the weak earth's magnetic field, making all proton signals overlap spectroscopically. The first approach is inversion-null recovery, modified for use with pre-polarization. The requirements for efficient inversion over a wide range of B1 and subsequent adiabatic reorientation of the magnetization to align with the static field are stressed. The second method acquires FIDs at two durations of pre-polarization and cancels the water component of the signal after the data are acquired. While less elegant, this technique imposes no stringent requirements. Similar water suppression is found in simulations for the two methods. Oil detection in the presence of water is demonstrated experimentally with both techniques.

  14. Earth's field NMR detection of oil under arctic ice-water suppression.

    PubMed

    Conradi, Mark S; Altobelli, Stephen A; Sowko, Nicholas J; Conradi, Susan H; Fukushima, Eiichi

    2018-03-01

    Earth's field NMR has been developed to detect oil trapped under or in Arctic sea-ice. A large challenge, addressed here, is the suppression of the water signal that dominates the oil signal. Selective suppression of water is based on relaxation time T 1 because of the negligible chemical shifts in the weak earth's magnetic field, making all proton signals overlap spectroscopically. The first approach is inversion-null recovery, modified for use with pre-polarization. The requirements for efficient inversion over a wide range of B 1 and subsequent adiabatic reorientation of the magnetization to align with the static field are stressed. The second method acquires FIDs at two durations of pre-polarization and cancels the water component of the signal after the data are acquired. While less elegant, this technique imposes no stringent requirements. Similar water suppression is found in simulations for the two methods. Oil detection in the presence of water is demonstrated experimentally with both techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Real-time software-based end-to-end wireless visual communications simulation platform

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell

    1995-04-01

    Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.

  16. GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.

    PubMed

    Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu

    2010-12-01

    In actual surgery, smoke and bleeding due to cauterization processes provide important visual cues to the surgeon, which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated the effects of bleeding and smoke generation, they are not realistic due to the requirement of real-time performance. To be interactive, visual update must be performed at at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques, since other computationally intensive processes compete for the available Central Processing Unit (CPU) resources. In this study we developed a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators, which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. The smoke and bleeding simulation were implemented as part of a laparoscopic adjustable gastric banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur noticeable overhead. However, for smoke generation, an input/output (I/O) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be efficient, highly realistic and well suited to VR-based surgical simulators. Copyright © 2010 John Wiley & Sons, Ltd.

  17. GPU-based Efficient Realistic Techniques for Bleeding and Smoke Generation in Surgical Simulators

    PubMed Central

    Halic, Tansel; Sankaranarayanan, Ganesh; De, Suvranu

    2010-01-01

    Background In actual surgery, smoke and bleeding due to cautery processes, provide important visual cues to the surgeon which have been proposed as factors in surgical skill assessment. While several virtual reality (VR)-based surgical simulators have incorporated effects of bleeding and smoke generation, they are not realistic due to the requirement of real time performance. To be interactive, visual update must be performed at least 30 Hz and haptic (touch) information must be refreshed at 1 kHz. Simulation of smoke and bleeding is, therefore, either ignored or simulated using highly simplified techniques since other computationally intensive processes compete for the available CPU resources. Methods In this work, we develop a novel low-cost method to generate realistic bleeding and smoke in VR-based surgical simulators which outsources the computations to the graphical processing unit (GPU), thus freeing up the CPU for other time-critical tasks. This method is independent of the complexity of the organ models in the virtual environment. User studies were performed using 20 subjects to determine the visual quality of the simulations compared to real surgical videos. Results The smoke and bleeding simulation were implemented as part of a Laparoscopic Adjustable Gastric Banding (LAGB) simulator. For the bleeding simulation, the original implementation using the shader did not incur in noticeable overhead. However, for smoke generation, an I/O (Input/Output) bottleneck was observed and two different methods were developed to overcome this limitation. Based on our benchmark results, a buffered approach performed better than a pipelined approach and could support up to 15 video streams in real time. Human subject studies showed that the visual realism of the simulations were as good as in real surgery (median rating of 4 on a 5-point Likert scale). Conclusions Based on the performance results and subject study, both bleeding and smoke simulations were concluded to be efficient, highly realistic and well suited in VR-based surgical simulators. PMID:20878651

  18. Helicopter flight simulation motion platform requirements

    NASA Astrophysics Data System (ADS)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  19. Coupling Visualization, Simulation, and Deep Learning for Ensemble Steering of Complex Energy Models: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Kristin C; Brunhart-Lupo, Nicholas J; Bush, Brian W

    We have developed a framework for the exploration, design, and planning of energy systems that combines interactive visualization with machine-learning based approximations of simulations through a general purpose dataflow API. Our system provides a visual inter- face allowing users to explore an ensemble of energy simulations representing a subset of the complex input parameter space, and spawn new simulations to 'fill in' input regions corresponding to new enegery system scenarios. Unfortunately, many energy simula- tions are far too slow to provide interactive responses. To support interactive feedback, we are developing reduced-form models via machine learning techniques, which provide statistically soundmore » esti- mates of the full simulations at a fraction of the computational cost and which are used as proxies for the full-form models. Fast com- putation and an agile dataflow enhance the engagement with energy simulations, and allow researchers to better allocate computational resources to capture informative relationships within the system and provide a low-cost method for validating and quality-checking large-scale modeling efforts.« less

  20. PetriScape - A plugin for discrete Petri net simulations in Cytoscape.

    PubMed

    Almeida, Diogo; Azevedo, Vasco; Silva, Artur; Baumbach, Jan

    2016-06-04

    Systems biology plays a central role for biological network analysis in the post-genomic era. Cytoscape is the standard bioinformatics tool offering the community an extensible platform for computational analysis of the emerging cellular network together with experimental omics data sets. However, only few apps/plugins/tools are available for simulating network dynamics in Cytoscape 3. Many approaches of varying complexity exist but none of them have been integrated into Cytoscape as app/plugin yet. Here, we introduce PetriScape, the first Petri net simulator for Cytoscape. Although discrete Petri nets are quite simplistic models, they are capable of modeling global network properties and simulating their behaviour. In addition, they are easily understood and well visualizable. PetriScape comes with the following main functionalities: (1) import of biological networks in SBML format, (2) conversion into a Petri net, (3) visualization as Petri net, and (4) simulation and visualization of the token flow in Cytoscape. PetriScape is the first Cytoscape plugin for Petri nets. It allows a straightforward Petri net model creation, simulation and visualization with Cytoscape, providing clues about the activity of key components in biological networks.

  1. PetriScape - A plugin for discrete Petri net simulations in Cytoscape.

    PubMed

    Almeida, Diogo; Azevedo, Vasco; Silva, Artur; Baumbach, Jan

    2016-03-01

    Systems biology plays a central role for biological network analysis in the post-genomic era. Cytoscape is the standard bioinformatics tool offering the community an extensible platform for computational analysis of the emerging cellular network together with experimental omics data sets. However, only few apps/plugins/tools are available for simulating network dynamics in Cytoscape 3. Many approaches of varying complexity exist but none of them have been integrated into Cytoscape as app/plugin yet. Here, we introduce PetriScape, the first Petri net simulator for Cytoscape. Although discrete Petri nets are quite simplistic models, they are capable of modeling global network properties and simulating their behaviour. In addition, they are easily understood and well visualizable. PetriScape comes with the following main functionalities: (1) import of biological networks in SBML format, (2) conversion into a Petri net, (3) visualization as Petri net, and (4) simulation and visualization of the token flow in Cytoscape. PetriScape is the first Cytoscape plugin for Petri nets. It allows a straightforward Petri net model creation, simulation and visualization with Cytoscape, providing clues about the activity of key components in biological networks.

  2. Dynamic and predictive links between touch and vision.

    PubMed

    Gray, Rob; Tan, Hong Z

    2002-07-01

    We investigated crossmodal links between vision and touch for moving objects. In experiment 1, observers discriminated visual targets presented randomly at one of five locations on their forearm. Tactile pulses simulating motion along the forearm preceded visual targets. At short tactile-visual ISIs, discriminations were more rapid when the final tactile pulse and visual target were at the same location. At longer ISIs, discriminations were more rapid when the visual target was offset in the motion direction and were slower for offsets opposite to the motion direction. In experiment 2, speeded tactile discriminations at one of three random locations on the forearm were preceded by a visually simulated approaching object. Discriminations were more rapid when the object approached the location of the tactile stimulation and discrimination performance was dependent on the approaching object's time to contact. These results demonstrate dynamic links in the spatial mapping between vision and touch.

  3. Scientific Visualization in High Speed Network Environments

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  4. A systematic review of phacoemulsification cataract surgery in virtual reality simulators.

    PubMed

    Lam, Chee Kiang; Sundaraj, Kenneth; Sulaiman, Mohd Nazri

    2013-01-01

    The aim of this study was to review the capability of virtual reality simulators in the application of phacoemulsification cataract surgery training. Our review included the scientific publications on cataract surgery simulators that had been developed by different groups of researchers along with commercialized surgical training products, such as EYESI® and PhacoVision®. The review covers the simulation of the main cataract surgery procedures, i.e., corneal incision, capsulorrhexis, phacosculpting, and intraocular lens implantation in various virtual reality surgery simulators. Haptics realism and visual realism of the procedures are the main elements in imitating the actual surgical environment. The involvement of ophthalmology in research on virtual reality since the early 1990s has made a great impact on the development of surgical simulators. Most of the latest cataract surgery training systems are able to offer high fidelity in visual feedback and haptics feedback, but visual realism, such as the rotational movements of an eyeball with response to the force applied by surgical instruments, is still lacking in some of them. The assessment of the surgical tasks carried out on the simulators showed a significant difference in the performance before and after the training.

  5. An Experimental Study of the Effect of Out-of-the-Window Cues on Training Novice Pilots on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Khan, M. Javed; Rossi, Marcia; Heath, Bruce; Ali, Syed F.; Ward, Marcus

    2006-01-01

    The effects of out-of-the-window cues on learning a straight-in landing approach and a level 360deg turn by novice pilots on a flight simulator have been investigated. The treatments consisted of training with and without visual cues as well as density of visual cues. The performance of the participants was then evaluated through similar but more challenging tasks. It was observed that the participants in the landing study who trained with visual cues performed poorly than those who trained without the cues. However the performance of those who trained with a faded-cues sequence performed slightly better than those who trained without visual cues. In the level turn study it was observed that those who trained with the visual cues performed better than those who trained without visual cues. The study also showed that those participants who trained with a lower density of cues performed better than those who trained with a higher density of visual cues.

  6. Visualization and simulated surgery of the left ventricle in the virtual pathological heart of the Virtual Physiological Human

    PubMed Central

    McFarlane, N. J. B.; Lin, X.; Zhao, Y.; Clapworthy, G. J.; Dong, F.; Redaelli, A.; Parodi, O.; Testi, D.

    2011-01-01

    Ischaemic heart failure remains a significant health and economic problem worldwide. This paper presents a user-friendly software system that will form a part of the virtual pathological heart of the Virtual Physiological Human (VPH2) project, currently being developed under the European Commission Virtual Physiological Human (VPH) programme. VPH2 is an integrated medicine project, which will create a suite of modelling, simulation and visualization tools for patient-specific prediction and planning in cases of post-ischaemic left ventricular dysfunction. The work presented here describes a three-dimensional interactive visualization for simulating left ventricle restoration surgery, comprising the operations of cutting, stitching and patching, and for simulating the elastic deformation of the ventricle to its post-operative shape. This will supply the quantitative measurements required for the post-operative prediction tools being developed in parallel in the same project. PMID:22670207

  7. Retinal Image Simulation of Subjective Refraction Techniques

    PubMed Central

    Perches, Sara; Collados, M. Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient’s response-guided refraction) is the most commonly used approach. In this context, this paper’s main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques—including Jackson’s Cross-Cylinder test (JCC)—relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software’s usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648

  8. Big Memory Elegance: HyperCard Information Processing and Desktop Publishing.

    ERIC Educational Resources Information Center

    Bitter, Gary G.; Gerson, Charles W., Jr.

    1991-01-01

    Discusses hardware requirements, functions, and applications of five information processing and desktop publishing software packages for the Macintosh: HyperCard, PageMaker, Cricket Presents, Power Point, and Adobe illustrator. Benefits of these programs for schools are considered. (MES)

  9. "High Stage" Organizing.

    ERIC Educational Resources Information Center

    Torbert, William R.

    Although a psychological theory of stages of transformation in human development currently exists, organizational researchers have yet to elaborate and test any theory of organizational transformation of comparable elegance. According to the organizational stage theory being developed since 1974 by William Torbert, bureaucratic organization, which…

  10. Validation of the Passenger Ride Quality Apparatus (PRQA) for simulation of aircraft motions for ride-quality research

    NASA Technical Reports Server (NTRS)

    Bigler, W. B., II

    1977-01-01

    The NASA passenger ride quality apparatus (PRQA), a ground based motion simulator, was compared to the total in flight simulator (TIFS). Tests were made on PRQA with varying stimuli: motions only; motions and noise; motions, noise, and visual; and motions and visual. Regression equations for the tests were obtained and subsequent t-testing of the slopes indicated that ground based simulator tests produced comfort change rates similar to actual flight data. It was recommended that PRQA be used in the ride quality program for aircraft and that it be validated for other transportation modes.

  11. Algodoo: A Tool for Encouraging Creativity in Physics Teaching and Learning

    ERIC Educational Resources Information Center

    Gregorcic, Bor; Bodin, Madelen

    2017-01-01

    Algodoo (http://www.algodoo.com) is a digital sandbox for physics 2D simulations. It allows students and teachers to easily create simulated "scenes" and explore physics through a user-friendly and visually attractive interface. In this paper, we present different ways in which students and teachers can use Algodoo to visualize and solve…

  12. A report documenting the completion of the Los Alamos National Laboratory portion of the ASC level II milestone ""Visualization on the supercomputing platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, James P; Patchett, John M; Lo, Li - Ta

    2011-01-24

    This report provides documentation for the completion of the Los Alamos portion of the ASC Level II 'Visualization on the Supercomputing Platform' milestone. This ASC Level II milestone is a joint milestone between Sandia National Laboratory and Los Alamos National Laboratory. The milestone text is shown in Figure 1 with the Los Alamos portions highlighted in boldfaced text. Visualization and analysis of petascale data is limited by several factors which must be addressed as ACES delivers the Cielo platform. Two primary difficulties are: (1) Performance of interactive rendering, which is the most computationally intensive portion of the visualization process. Formore » terascale platforms, commodity clusters with graphics processors (GPUs) have been used for interactive rendering. For petascale platforms, visualization and rendering may be able to run efficiently on the supercomputer platform itself. (2) I/O bandwidth, which limits how much information can be written to disk. If we simply analyze the sparse information that is saved to disk we miss the opportunity to analyze the rich information produced every timestep by the simulation. For the first issue, we are pursuing in-situ analysis, in which simulations are coupled directly with analysis libraries at runtime. This milestone will evaluate the visualization and rendering performance of current and next generation supercomputers in contrast to GPU-based visualization clusters, and evaluate the perfromance of common analysis libraries coupled with the simulation that analyze and write data to disk during a running simulation. This milestone will explore, evaluate and advance the maturity level of these technologies and their applicability to problems of interest to the ASC program. In conclusion, we improved CPU-based rendering performance by a a factor of 2-10 times on our tests. In addition, we evaluated CPU and CPU-based rendering performance. We encourage production visualization experts to consider using CPU-based rendering solutions when it is appropriate. For example, on remote supercomputers CPU-based rendering can offer a means of viewing data without having to offload the data or geometry onto a CPU-based visualization system. In terms of comparative performance of the CPU and CPU we believe that further optimizations of the performance of both CPU or CPU-based rendering are possible. The simulation community is currently confronting this reality as they work to port their simulations to different hardware architectures. What is interesting about CPU rendering of massive datasets is that for part two decades CPU performance has significantly outperformed CPU-based systems. Based on our advancements, evaluations and explorations we believe that CPU-based rendering has returned as one viable option for the visualization of massive datasets.« less

  13. Advanced in Visualization of 3D Time-Dependent CFD Solutions

    NASA Technical Reports Server (NTRS)

    Lane, David A.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.

  14. Intubation simulation with a cross-sectional visual guidance.

    PubMed

    Rhee, Chi-Hyoung; Kang, Chul Won; Lee, Chang Ha

    2013-01-01

    We present an intubation simulation with deformable objects and a cross-sectional visual guidance using a general haptic device. Our method deforms the tube model when it collides with the human model. Mass-Spring model with the Euler integration is used for the tube deformation. For the trainee's more effective understanding of the intubation process, we provide a cross-sectional view of the oral cavity and the tube. Our system also applies a stereoscopic rendering to improve the depth perception and the reality of the simulation.

  15. When the Wheels Touch Earth and the Flight is Through, Pilots Find One Eye is Better Than Two?

    NASA Technical Reports Server (NTRS)

    Valimont, Brian; Wise, John A.; Nichols, Troy; Best, Carl; Suddreth, John; Cupero, Frank

    2009-01-01

    This study investigated the impact of near to eye displays on both operational and visual performance by employing a human-in-the-loop simulation of straight-in ILS approaches while using a near to eye (NTE) display. The approaches were flown in simulated visual and instrument conditions while using either a biocular NTE or a monocular NTE display on either the dominant or non dominant eye. The pilot s flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested.

  16. Efficient LBM visual simulation on face-centered cubic lattices.

    PubMed

    Petkov, Kaloian; Qiu, Feng; Fan, Zhe; Kaufman, Arie E; Mueller, Klaus

    2009-01-01

    The Lattice Boltzmann method (LBM) for visual simulation of fluid flow generally employs cubic Cartesian (CC) lattices such as the D3Q13 and D3Q19 lattices for the particle transport. However, the CC lattices lead to suboptimal representation of the simulation space. We introduce the face-centered cubic (FCC) lattice, fD3Q13, for LBM simulations. Compared to the CC lattices, the fD3Q13 lattice creates a more isotropic sampling of the simulation domain and its single lattice speed (i.e., link length) simplifies the computations and data storage. Furthermore, the fD3Q13 lattice can be decomposed into two independent interleaved lattices, one of which can be discarded, which doubles the simulation speed. The resulting LBM simulation can be efficiently mapped to the GPU, further increasing the computational performance. We show the numerical advantages of the FCC lattice on channeled flow in 2D and the flow-past-a-sphere benchmark in 3D. In both cases, the comparison is against the corresponding CC lattices using the analytical solutions for the systems as well as velocity field visualizations. We also demonstrate the performance advantages of the fD3Q13 lattice for interactive simulation and rendering of hot smoke in an urban environment using thermal LBM.

  17. Investigation of roughing machining simulation by using visual basic programming in NX CAM system

    NASA Astrophysics Data System (ADS)

    Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed

    2018-03-01

    This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.

  18. Modeling human pilot cue utilization with applications to simulator fidelity assessment.

    PubMed

    Zeyada, Y; Hess, R A

    2000-01-01

    An analytical investigation to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator was undertaken. Data from a NASA Ames Research Center vertical motion simulator study of a simple, single-degree-of-freedom rotorcraft bob-up/down maneuver were employed in the investigation. The study was part of a larger research effort that has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system that included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle, and the motion system. With the exception of time delays that accrued in visual scene production in the simulator, visual scene effects were not included in this study. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity that occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots who participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to identify changes in simulator fidelity for the task examined.

  19. A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators

    NASA Technical Reports Server (NTRS)

    Zeyada, Y.; Hess, R. A.

    1999-01-01

    An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations i The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzyinference identification can be used to reflect changes in simulator fidelity for the task examined.

  20. A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators

    NASA Technical Reports Server (NTRS)

    Zeyada, Y.; Hess, R. A.

    1999-01-01

    An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to reflect changes in simulator fidelity for the task examined.

  1. Modeling of pilot's visual behavior for low-level flight

    NASA Astrophysics Data System (ADS)

    Schulte, Axel; Onken, Reiner

    1995-06-01

    Developers of synthetic vision systems for low-level flight simulators deal with the problem to decide which features to incorporate in order to achieve most realistic training conditions. This paper supports an approach to this problem on the basis of modeling the pilot's visual behavior. This approach is founded upon the basic requirement that the pilot's mechanisms of visual perception should be identical in simulated and real low-level flight. Flight simulator experiments with pilots were conducted for knowledge acquisition. During the experiments video material of a real low-level flight mission containing different situations was displayed to the pilot who was acting under a realistic mission assignment in a laboratory environment. Pilot's eye movements could be measured during the replay. The visual mechanisms were divided into rule based strategies for visual navigation, based on the preflight planning process, as opposed to skill based processes. The paper results in a model of the pilot's planning strategy of a visual fixing routine as part of the navigation task. The model is a knowledge based system based upon the fuzzy evaluation of terrain features in order to determine the landmarks used by pilots. It can be shown that a computer implementation of the model selects those features, which were preferred by trained pilots, too.

  2. Web-Based Model Visualization Tools to Aid in Model Optimization and Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Alder, J.; van Griensven, A.; Meixner, T.

    2003-12-01

    Individuals applying hydrologic models have a need for a quick easy to use visualization tools to permit them to assess and understand model performance. We present here the Interactive Hydrologic Modeling (IHM) visualization toolbox. The IHM utilizes high-speed Internet access, the portability of the web and the increasing power of modern computers to provide an online toolbox for quick and easy model result visualization. This visualization interface allows for the interpretation and analysis of Monte-Carlo and batch model simulation results. Often times a given project will generate several thousands or even hundreds of thousands simulations. This large number of simulations creates a challenge for post-simulation analysis. IHM's goal is to try to solve this problem by loading all of the data into a database with a web interface that can dynamically generate graphs for the user according to their needs. IHM currently supports: a global samples statistics table (e.g. sum of squares error, sum of absolute differences etc.), top ten simulations table and graphs, graphs of an individual simulation using time step data, objective based dotty plots, threshold based parameter cumulative density function graphs (as used in the regional sensitivity analysis of Spear and Hornberger) and 2D error surface graphs of the parameter space. IHM is ideal for the simplest bucket model to the largest set of Monte-Carlo model simulations with a multi-dimensional parameter and model output space. By using a web interface, IHM offers the user complete flexibility in the sense that they can be anywhere in the world using any operating system. IHM can be a time saving and money saving alternative to spending time producing graphs or conducting analysis that may not be informative or being forced to purchase or use expensive and proprietary software. IHM is a simple, free, method of interpreting and analyzing batch model results, and is suitable for novice to expert hydrologic modelers.

  3. Visual Computing Environment

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Putt, Charles W.

    1997-01-01

    The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.

  4. 10 Passed Technologies.

    ERIC Educational Resources Information Center

    Montfort, Nick

    2001-01-01

    Argues that not every disappearing technology deserves that fate and presents 10 technologies that have an elegance and simplicity the winners lack such as the electric trolley, pneumatic post, Amiga, ribbon microphone, WordStar, Edison's wax cylinder, slide rule, reel mover, automatic watch, and airship. (Author/ASK)

  5. Y chromothripsis?

    PubMed

    Hatch, Emily M

    2016-12-23

    Micronucleation of missegregated chromatin can lead to substantial chromosome rearrangements via chromothripsis. However, the molecular details of micronucleus-based chromothripsis are still unclear. Now, an elegant system that specifically induces missegregation of the Y chromosome provides insight into this process, including a role for non-homologous end joining.

  6. Center for Clinical Services Research, California.

    ERIC Educational Resources Information Center

    Findley, Foster

    2001-01-01

    Highlights Stanford University's 220,000 square-foot Center for Clinical Sciences, the design of which represents a high-quality architectural departure from the old building styles and creates an elegant, solar-protected gathering place for scientists. Includes photographs, sectional drawing, and site plan. (GR)

  7. Validation of a low dose simulation technique for computed tomography images.

    PubMed

    Muenzel, Daniela; Koehler, Thomas; Brown, Kevin; Zabić, Stanislav; Fingerle, Alexander A; Waldt, Simone; Bendik, Edgar; Zahel, Tina; Schneider, Armin; Dobritz, Martin; Rummeny, Ernst J; Noël, Peter B

    2014-01-01

    Evaluation of a new software tool for generation of simulated low-dose computed tomography (CT) images from an original higher dose scan. Original CT scan data (100 mAs, 80 mAs, 60 mAs, 40 mAs, 20 mAs, 10 mAs; 100 kV) of a swine were acquired (approved by the regional governmental commission for animal protection). Simulations of CT acquisition with a lower dose (simulated 10-80 mAs) were calculated using a low-dose simulation algorithm. The simulations were compared to the originals of the same dose level with regard to density values and image noise. Four radiologists assessed the realistic visual appearance of the simulated images. Image characteristics of simulated low dose scans were similar to the originals. Mean overall discrepancy of image noise and CT values was -1.2% (range -9% to 3.2%) and -0.2% (range -8.2% to 3.2%), respectively, p>0.05. Confidence intervals of discrepancies ranged between 0.9-10.2 HU (noise) and 1.9-13.4 HU (CT values), without significant differences (p>0.05). Subjective observer evaluation of image appearance showed no visually detectable difference. Simulated low dose images showed excellent agreement with the originals concerning image noise, CT density values, and subjective assessment of the visual appearance of the simulated images. An authentic low-dose simulation opens up opportunity with regard to staff education, protocol optimization and introduction of new techniques.

  8. Visibility and Visual Characteristics of the Ivanpah Solar Electric Generating System Power Tower Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Robert; Abplanalp, Jennifer M.

    2015-03-01

    This report presents the results of a study conducted to document the visibility and visual characteristics of the Ivanpah Solar Electric Generating System (ISEGS), a utility-scale solar power tower facility located on land administered by the U.S. Department of the Interior Bureau of Land Management in southern California. Study activities consisted of field observations of the ISEGS facility and comparison of the observations made in the field with the visual contrast assessments and visual simulations in the ISEGS Final Environmental Impact Statement (Final EIS) and supporting documents created prior to ISEGS construction. Field observations of ISEGS were made from 19more » locations within 35 mi (56 km) of the facility in the course of one week in September 2014. The study results established that reflected sunlight from the receivers was the primary source of visual contrast from the operating ISEGS facility. The ISEGS facility was found to be a major source of visual contrast for all observations up to 20 mi (32 km), and was easily visible at 35 mi. Glare from individual heliostats was frequently visible, and often brighter than the reflected light from the receivers. Heliostat glare caused discomfort for one or more viewers at distances up to 20 mi. The ISEGS power blocks were brightly lit at night, and were conspicuous at the observation distance of approximately 6 mi (10 km). The facility is substantially brighter and is seen more clearly in the field than in photographs of the facility or in the prepared simulations, which were based on photographs. The simulations of the ISEGS facility in the Final EIS, which were evaluated as part of this study, sometimes lacked spatial accuracy and realism. The evaluated simulations generally under-represented the actual visual contrast from the project, and some of the contrast ratings in the Final EIS predicted substantially lower levels of visual contrast than were actually observed for the operating facility.« less

  9. Optimization of Visual Information Presentation for Visual Prosthesis.

    PubMed

    Guo, Fei; Yang, Yuan; Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.

  10. Optimization of Visual Information Presentation for Visual Prosthesis

    PubMed Central

    Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis. PMID:29731769

  11. A high-quality high-fidelity visualization of the September 11 attack on the World Trade Center.

    PubMed

    Rosen, Paul; Popescu, Voicu; Hoffmann, Christoph; Irfanoglu, Ayhan

    2008-01-01

    In this application paper, we describe the efforts of a multidisciplinary team towards producing a visualization of the September 11 Attack on the North Tower of New York's World Trade Center. The visualization was designed to meet two requirements. First, the visualization had to depict the impact with high fidelity, by closely following the laws of physics. Second, the visualization had to be eloquent to a nonexpert user. This was achieved by first designing and computing a finite-element analysis (FEA) simulation of the impact between the aircraft and the top 20 stories of the building, and then by visualizing the FEA results with a state-of-the-art commercial animation system. The visualization was enabled by an automatic translator that converts the simulation data into an animation system 3D scene. We built upon a previously developed translator. The translator was substantially extended to enable and control visualization of fire and of disintegrating elements, to better scale with the number of nodes and number of states, to handle beam elements with complex profiles, and to handle smoothed particle hydrodynamics liquid representation. The resulting translator is a powerful automatic and scalable tool for high-quality visualization of FEA results.

  12. The Role of Visual Occlusion in Altitude Maintenance during Simulated Flight

    ERIC Educational Resources Information Center

    Gray, R.; Geri, G. A.; Akhtar, S. C.; Covas, C. M.

    2008-01-01

    The use of visual occlusion as a cue to altitude maintenance in low-altitude flight (LAF) was investigated. The extent to which the ground surface is occluded by 3-D objects varies with altitude and depends on the height, radius, and density of the objects. Participants attempted to maintain a constant altitude during simulated flight over an…

  13. The Effects of Various Fidelity Factors on Simulated Helicopter Hover

    DTIC Science & Technology

    1981-01-01

    18 VISUAL DISPLAY ....... ....................... ... 20 §. AUDITORY CUES ........... ........................ 23 • SHIP MOTION MODEL...and DiCarlo, 1974), the evaluation of visual, auditory , and motion cues for helicopter simulation (Parrish, Houck, and Martin, 1977), and the...supply the cue. As the tilt should be supplied subliminally , a forward/aft translation must be used to cue the acceleration’s onset. If only rotation

  14. Computer Generated Image: Relative Training Effectiveness of Day Versus Night Visual Scenes. Final Report.

    ERIC Educational Resources Information Center

    Martin, Elizabeth L.; Cataneo, Daniel F.

    A study was conducted by the Air Force to determine the extent to which takeoff/landing skills learned in a simulator equipped with a night visual system would transfer to daytime performance in the aircraft. A transfer-of-training design was used to assess the differential effectiveness of simulator training with a day versus a night…

  15. Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides.

    PubMed

    Grottel, S; Beck, P; Muller, C; Reina, G; Roth, J; Trebin, H-R; Ertl, T

    2012-12-01

    Metal oxides are important for many technical applications. For example alumina (aluminum oxide) is the most commonly-used ceramic in microelectronic devices thanks to its excellent properties. Experimental studies of these materials are increasingly supplemented with computer simulations. Molecular dynamics (MD) simulations can reproduce the material behavior very well and are now reaching time scales relevant for interesting processes like crack propagation. In this work we focus on the visualization of induced electric dipole moments on oxygen atoms in crack propagation simulations. The straightforward visualization using glyphs for the individual atoms, simple shapes like spheres or arrows, is insufficient for providing information about the data set as a whole. As our contribution we show for the first time that fractional anisotropy values computed from the local neighborhood of individual atoms of MD simulation data depict important information about relevant properties of the field of induced electric dipole moments. Iso surfaces in the field of fractional anisotropy as well as adjustments of the glyph representation allow the user to identify regions of correlated orientation. We present novel and relevant findings for the application domain resulting from these visualizations, like the influence of mechanical forces on the electrostatic properties.

  16. The Efficacy of Haptic Simulations to Teach Students with Visual Impairments about Temperature and Pressure

    ERIC Educational Resources Information Center

    Jones, M. Gail; Childers, Gina; Emig, Brandon; Chevrier, Joël; Tan, Hong; Stevens, Vanessa; List, Jonathan

    2014-01-01

    Traditional science instruction is typically reliant on visual modes of learning, such as textbooks and graphs. Furthermore, since science instruction is often heavily dependent upon visual cues, students with visual impairment often do not have access to the same educational opportunities in most science classes (Jones, Minogue, Oppewal, Cook,…

  17. Visual Analysis among Novices: Training and Trend Lines as Graphic Aids

    ERIC Educational Resources Information Center

    Nelson, Peter M.; Van Norman, Ethan R.; Christ, Theodore J.

    2017-01-01

    The current study evaluated the degree to which novice visual analysts could discern trends in simulated time-series data across differing levels of variability and extreme values. Forty-five novice visual analysts were trained in general principles of visual analysis. One group received brief training on how to identify and omit extreme values.…

  18. Multimode simulations of a wide field of view double-Fourier far-infrared spatio-spectral interferometer

    NASA Astrophysics Data System (ADS)

    Bracken, Colm P.; Lightfoot, John; O'Sullivan, Creidhe; Murphy, J. Anthony; Donohoe, Anthony; Savini, Giorgio; Juanola-Parramon, Roser; The Fisica Consortium, On Behalf Of

    2018-01-01

    In the absence of 50-m class space-based observatories, subarcsecond astronomy spanning the full far-infrared wavelength range will require space-based long-baseline interferometry. The long baselines of up to tens of meters are necessary to achieve subarcsecond resolution demanded by science goals. Also, practical observing times command a field of view toward an arcminute (1‧) or so, not achievable with a single on-axis coherent detector. This paper is concerned with an application of an end-to-end instrument simulator PyFIInS, developed as part of the FISICA project under funding from the European Commission's seventh Framework Programme for Research and Technological Development (FP7). Predicted results of wide field of view spatio-spectral interferometry through simulations of a long-baseline, double-Fourier, far-infrared interferometer concept are presented and analyzed. It is shown how such an interferometer, illuminated by a multimode detector can recover a large field of view at subarcsecond angular resolution, resulting in similar image quality as that achieved by illuminating the system with an array of coherent detectors. Through careful analysis, the importance of accounting for the correct number of higher-order optical modes is demonstrated, as well as accounting for both orthogonal polarizations. Given that it is very difficult to manufacture waveguide and feed structures at sub-mm wavelengths, the larger multimode design is recommended over the array of smaller single mode detectors. A brief note is provided in the conclusion of this paper addressing a more elegant solution to modeling far-infrared interferometers, which holds promise for improving the computational efficiency of the simulations presented here.

  19. Perception and performance in flight simulators: The contribution of vestibular, visual, and auditory information

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.

  20. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  1. Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.

    PubMed

    Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M

    2014-12-01

    In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.

  2. A Method for Measuring the Effective Throughput Time Delay in Simulated Displays Involving Manual Control

    NASA Technical Reports Server (NTRS)

    Jewell, W. F.; Clement, W. F.

    1984-01-01

    The advent and widespread use of the computer-generated image (CGI) device to simulate visual cues has a mixed impact on the realism and fidelity of flight simulators. On the plus side, CGIs provide greater flexibility in scene content than terrain boards and closed circuit television based visual systems, and they have the potential for a greater field of view. However, on the minus side, CGIs introduce into the visual simulation relatively long time delays. In many CGIs, this delay is as much as 200 ms, which is comparable to the inherent delay time of the pilot. Because most GCIs use multiloop processing and smoothing algorithms and are linked to a multiloop host computer, it is seldom possible to identify a unique throughput time delay, and it is therefore difficult to quantify the performance of the closed loop pilot simulator system relative to the real world task. A method to address these issues using the critical task tester is described. Some empirical results from applying the method are presented, and a novel technique for improving the performance of GCIs is discussed.

  3. Compensation for time delay in flight simulator visual-display systems

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1983-01-01

    A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.

  4. Scientific Assistant Virtual Laboratory (SAVL)

    NASA Astrophysics Data System (ADS)

    Alaghband, Gita; Fardi, Hamid; Gnabasik, David

    2007-03-01

    The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.

  5. Visualization of spatial-temporal data based on 3D virtual scene

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Liu, Jiping; Wang, Yong; Bi, Junfang

    2009-10-01

    The main purpose of this paper is to realize the expression of the three-dimensional dynamic visualization of spatialtemporal data based on three-dimensional virtual scene, using three-dimensional visualization technology, and combining with GIS so that the people's abilities of cognizing time and space are enhanced and improved by designing dynamic symbol and interactive expression. Using particle systems, three-dimensional simulation, virtual reality and other visual means, we can simulate the situations produced by changing the spatial location and property information of geographical entities over time, then explore and analyze its movement and transformation rules by changing the interactive manner, and also replay history and forecast of future. In this paper, the main research object is the vehicle track and the typhoon path and spatial-temporal data, through three-dimensional dynamic simulation of its track, and realize its timely monitoring its trends and historical track replaying; according to visualization techniques of spatialtemporal data in Three-dimensional virtual scene, providing us with excellent spatial-temporal information cognitive instrument not only can add clarity to show spatial-temporal information of the changes and developments in the situation, but also be used for future development and changes in the prediction and deduction.

  6. CETA--Uses and Abuses.

    ERIC Educational Resources Information Center

    Mehallis, Mantha Vlahos

    1979-01-01

    The Director of Institutional Research and Systems Planning at Broward Community College (Fort Lauderdale, Florida) describes examples of the Comprehensive Employment and Training Act (CETA) projects. Also noted are some negative aspects of the CETA process (e.g., reporting requirements, hiring elegibility regulations, etc.) and tips on seeking…

  7. Notes on Experiments.

    ERIC Educational Resources Information Center

    Physics Education, 1985

    1985-01-01

    Describes: (1) two experiments using a laser (resonant cavity for light and pinhole camera effect with a hologram); (2) optical differaction patterns displayed by microcomputer; and (3) automating the Hall effect (with comments on apparatus needed and computer program used); and (4) an elegant experiment in mechanical equilibrium. (JN)

  8. Giftedness and Aesthetics: Perspectives of Expert Mathematicians and Mathematically Gifted Students

    ERIC Educational Resources Information Center

    Tjoe, Hartono

    2015-01-01

    Giftedness in mathematics has been characterized by exceptional attributes including strong mathematical memory, formalizing perception, generalization, curtailment, flexibility, and elegance. Focusing on the last attribute, this study examined the following: (a) the criteria which expert mathematicians and mathematically gifted students fleshed…

  9. Dark focus of accommodation as dependent and independent variables in visual display technology

    NASA Technical Reports Server (NTRS)

    Jones, Sherrie; Kennedy, Robert; Harm, Deborah

    1992-01-01

    When independent stimuli are available for accommodation, as in the dark or under low contrast conditions, the lens seeks its resting position. Individual differences in resting positions are reliable, under autonomic control, and can change with visual task demands. We hypothesized that motion sickness in a flight simulator might result in dark focus changes. Method: Subjects received training flights in three different Navy flight simulators. Two were helicopter simulators entailed CRT presentation using infinity optics, one involved a dome presentation of a computer graphic visual projection system. Results: In all three experiments there were significant differences between dark focus activity before and after simulator exposure when comparisons were made between sick and not-sick pilot subjects. In two of these experiments, the average shift in dark focus for the sick subjects was toward increased myopia when each subject was compared to his own baseline. In the third experiment, the group showed an average shift outward of small amount and the subjects who were sick showed significantly less outward movement than those who were symptom free. Conclusions: Although the relationship is not a simple one, dark focus changes in simulator sickness imply parasympathetic activity. Because changes can occur in relation to endogenous and exogenous events, such measurement may have useful applications as dependent measures in studies of visually coupled systems, virtual reality systems, and space adaptation syndrome.

  10. The cultural and ecological impacts of aboriginal tourism: a case study on Taiwan's Tao tribe.

    PubMed

    Liu, Tzu-Ming; Lu, Dau-Jye

    2014-01-01

    We show that tourism activities severely impact the ecology of Orchid Island, its natural resources, and the culture of the Tao tribe. For example, highway widening, in response to the increased traffic volumes caused by tourism, required many Pandanus trees to be cut and removed, which has placed the coconut crabs in danger of extinction. To promote eco-tourism, observation trips to observe Elegant Scops owls and Birdwing butterflies have taken place, which has affected the breeding of these two protected species. The Elegant Scops owls- and Birdwing butterflies-related tourism activities also break the "evil spirits" taboo of the Tao people and have caused the disappearance of the specifications for using traditional natural resources, causing natural ecosystems to face the threat of excessive use. In addition to promoting and advocating aboriginal tourism of the Tao people on Orchid Island, the Taiwanese government should help the Tao people to develop a management model that combines traditional regulations and tourism activities.

  11. Symmetry Breaking, Unification, and Theories Beyond the Standard Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Yasunori

    2009-07-31

    A model was constructed in which the supersymmetric fine-tuning problem is solved without extending the Higgs sector at the weak scale. We have demonstrated that the model can avoid all the phenomenological constraints, while avoiding excessive fine-tuning. We have also studied implications of the model on dark matter physics and collider physics. I have proposed in an extremely simple construction for models of gauge mediation. We found that the {mu} problem can be simply and elegantly solved in a class of models where the Higgs fields couple directly to the supersymmetry breaking sector. We proposed a new way of addressingmore » the flavor problem of supersymmetric theories. We have proposed a new framework of constructing theories of grand unification. We constructed a simple and elegant model of dark matter which explains excess flux of electrons/positrons. We constructed a model of dark energy in which evolving quintessence-type dark energy is naturally obtained. We studied if we can find evidence of the multiverse.« less

  12. An elegant Breadboard of the optical bench for eLISA/NGO

    NASA Astrophysics Data System (ADS)

    d'Arcio, Luigi; Bogenstahl, Johanna; Diekmann, Christian; Fitzsimons, Ewan D.; Heinzel, Gerhard; Hogenhuis, Harm; Killow, Christian J.; Lieser, Maike; Nikolov, Susanne; Perreur-Lloyd, Michael; Pijnenburg, Joep; Robertson, David I.; Taylor, Alasdair; Tröbs, Michael; Ward, Harry; Weise, Dennis

    2017-11-01

    The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10-5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels.

  13. A simple rule of thumb for elegant prehension.

    PubMed

    Mon-Williams, M; Tresilian, J R

    2001-07-10

    Reaching out to grasp an object (prehension) is a deceptively elegant and skilled behavior. The movement prior to object contact can be described as having two components, the movement of the hand to an appropriate location for gripping the object, the "transport" component, and the opening and closing of the aperture between the fingers as they prepare to grip the target, the "grasp" component. The grasp component is sensitive to the size of the object, so that a larger grasp aperture is formed for wider objects; the maximum grasp aperture (MGA) is a little wider than the width of the target object and occurs later in the movement for larger objects. We present a simple model that can account for the temporal relationship between the transport and grasp components. We report the results of an experiment providing empirical support for our "rule of thumb." The model provides a simple, but plausible, account of a neural control strategy that has been the center of debate over the last two decades.

  14. Reproduction and organochlorine contaminants in terns at San Diego Bay

    USGS Publications Warehouse

    Ohlendorf, H.M.; Schaffner, F.C.; Custer, T.W.; Stafford, C.J.

    1985-01-01

    In 1981, we studied Caspian Terns (Sterna caspia) and Elegant Terns (S. elegans) nesting at the south end of San Diego Bay, California. Randomly collected Caspian Tern eggs contained signficantly (P < 0.05) higher mean concentrations of DDE (9.30 ppm) than did Elegant Tern eggs (3.79 ppm). DDE may have had an adverse effect on Caspian Tern reproduction but the relationship between hatching success and DDE concentration was not clear. We found an unusually high incidence of chicks (4.6%) that died in hatching. Caspian Tern eggs that broke during incubation or contained chicks that died while hatching had shells that were significantly (P < 0.05) thinner than eggs collected before 1947, and DDE was associated with reductions in shell thickness index (i.e., lowered eggshell density). Fish brought to Caspian Tern chicks contained up to 3.0 ppm DDE and 1.1 ppm PCBs. Organochlorine concentration brains of terns found dead were not high enough to suggest such poisoning as a cause of death.

  15. VASA: Interactive Computational Steering of Large Asynchronous Simulation Pipelines for Societal Infrastructure.

    PubMed

    Ko, Sungahn; Zhao, Jieqiong; Xia, Jing; Afzal, Shehzad; Wang, Xiaoyu; Abram, Greg; Elmqvist, Niklas; Kne, Len; Van Riper, David; Gaither, Kelly; Kennedy, Shaun; Tolone, William; Ribarsky, William; Ebert, David S

    2014-12-01

    We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and parameter exchange format. At the heart of VASA is the Workbench, a visual analytics application providing three distinct features: (1) low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components; and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run. We showcase the utility of the platform using examples involving supply chains during a hurricane as well as food contamination in a fast food restaurant chain.

  16. Real-time visual simulation of APT system based on RTW and Vega

    NASA Astrophysics Data System (ADS)

    Xiong, Shuai; Fu, Chengyu; Tang, Tao

    2012-10-01

    The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.

  17. Radio Frequency Ablation Registration, Segmentation, and Fusion Tool

    PubMed Central

    McCreedy, Evan S.; Cheng, Ruida; Hemler, Paul F.; Viswanathan, Anand; Wood, Bradford J.; McAuliffe, Matthew J.

    2008-01-01

    The Radio Frequency Ablation Segmentation Tool (RFAST) is a software application developed using NIH's Medical Image Processing Analysis and Visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented 3D surface models enables the physician to interactively position the ablation probe to simulate burns and to semi-manually simulate sphere packing in an attempt to optimize probe placement. PMID:16871716

  18. PAVA: Physiological and Anatomical Visual Analytics for Mapping of Tissue-Specific Concentration and Time-Course Data

    EPA Science Inventory

    We describe the development and implementation of a Physiological and Anatomical Visual Analytics tool (PAVA), a web browser-based application, used to visualize experimental/simulated chemical time-course data (dosimetry), epidemiological data and Physiologically-Annotated Data ...

  19. Conceptual design study of a visual system for a rotorcraft simulator and some advances in platform motion utilization

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.

    1980-01-01

    A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.

  20. The determination of some requirements for a helicopter flight research simulation facility

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.

    1977-01-01

    Important requirements were defined for a flight simulation facility to support Army helicopter development. In particular requirements associated with the visual and motion subsystems of the planned simulator were studied. The method used in the motion requirements study is presented together with the underlying assumptions and a description of the supporting data. Results are given in a form suitable for use in a preliminary design. Visual requirements associated with a television camera/model concept are related. The important parameters are described together with substantiating data and assumptions. Research recommendations are given.

  1. Ethereal presences in holography and photography

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Byrne, Kay

    2007-02-01

    This paper examines the concept of the 'Presence of Absence' in post-mortem photography and holography, drawing upon both historical and lesser-known images as reference. To create a photographic negative one needs the presence of light to expose the light sensitive surface, be it glass, a polished plate or plastic. A hologram may also be created when a coherent light source, for example from a Laser, travels through a light sensitive material and falls upon the subject to be recorded. A holograph however, retains the optical qualities of both phase and amplitude, the memory of light. Both mediums recall, as it were, 'now absent moments', and confronts us with what is 'not there' as much as 'what is'. This paper examines the exploration of absence and presence in post-mortem photography and holography and it's a richly visceral visual language. A photonic syntax can interpret death as an elegant yet horrific aesthetic, the photograph may be beautify screened and yet obscene in its content. In essence one can be a voyeur, experiencing a mere visual whisper of the true nature of the subject. Our Victorian forefathers explored postmortem photography as an object of mourning, and at the close of the nineteenth century when Jack the Ripper had the inhabitants of White Chapel in a grip of fear, photography made its mark as a documentation of violent crime. Today, within contemporary photography, death is now presented within the confines of the 'Art Gallery', as a sensual, and at times, sensationalised art form. In exploring post-mortem imagery, both in holography and conventional photography, absence presents an aspect of death as startling in its unanimated form and detailed in its finite examination of mortality.

  2. 3D Visualization of Global Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.

    2015-12-01

    Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.

  3. High-resolution remotely sensed small target detection by imitating fly visual perception mechanism.

    PubMed

    Huang, Fengchen; Xu, Lizhong; Li, Min; Tang, Min

    2012-01-01

    The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  4. Beyond the cockpit: The visual world as a flight instrument

    NASA Technical Reports Server (NTRS)

    Johnson, W. W.; Kaiser, M. K.; Foyle, D. C.

    1992-01-01

    The use of cockpit instruments to guide flight control is not always an option (e.g., low level rotorcraft flight). Under such circumstances the pilot must use out-the-window information for control and navigation. Thus it is important to determine the basis of visually guided flight for several reasons: (1) to guide the design and construction of the visual displays used in training simulators; (2) to allow modeling of visibility restrictions brought about by weather, cockpit constraints, or distortions introduced by sensor systems; and (3) to aid in the development of displays that augment the cockpit window scene and are compatible with the pilot's visual extraction of information from the visual scene. The authors are actively pursuing these questions. We have on-going studies using both low-cost, lower fidelity flight simulators, and state-of-the-art helicopter simulation research facilities. Research results will be presented on: (1) the important visual scene information used in altitude and speed control; (2) the utility of monocular, stereo, and hyperstereo cues for the control of flight; (3) perceptual effects due to the differences between normal unaided daylight vision, and that made available by various night vision devices (e.g., light intensifying goggles and infra-red sensor displays); and (4) the utility of advanced contact displays in which instrument information is made part of the visual scene, as on a 'scene linked' head-up display (e.g., displaying altimeter information on a virtual billboard located on the ground).

  5. Using Open Source Software in Visual Simulation Development

    DTIC Science & Technology

    2005-09-01

    increased the use of the technology in training activities. Using open source/free software tools in the process can expand these possibilities...resulting in even greater cost reduction and allowing the flexibility needed in a training environment. This thesis presents a configuration and architecture...to be used when developing training visual simulations using both personal computers and open source tools. Aspects of the requirements needed in a

  6. Teaching Strategies for Using Projected Images to Develop Conceptual Understanding: Exploring Discussion Practices in Computer Simulation and Static Image-Based Lessons

    ERIC Educational Resources Information Center

    Price, Norman T.

    2013-01-01

    The availability and sophistication of visual display images, such as simulations, for use in science classrooms has increased exponentially however, it can be difficult for teachers to use these images to encourage and engage active student thinking. There is a need to describe flexible discussion strategies that use visual media to engage active…

  7. From Newton's Second Law to Huygens's Principle: Visualizing Waves in a Large Array of Masses Joined by Springs

    ERIC Educational Resources Information Center

    Dolinko, A. E.

    2009-01-01

    By simulating the dynamics of a bidimensional array of springs and masses, the propagation of conveniently generated waves is visualized. The simulation is exclusively based on Newton's second law and was made to provide insight into the physics of wave propagation. By controlling parameters such as the magnitude of the mass and the elastic…

  8. Vestibular-visual interactions in flight simulators

    NASA Technical Reports Server (NTRS)

    Clark, B.

    1977-01-01

    All 139 research papers published under this ten-year program are listed. Experimental work was carried out at the Ames Research Center involving man's sensitivity to rotational acceleration, and psychophysical functioning of the semicircular canals; vestibular-visual interactions and effects of other sensory systems were studied in flight simulator environments. Experiments also dealt with the neurophysiological vestibular functions of animals, and flight management investigations of man-vehicle interactions.

  9. Neuronal adaptation to simulated and optically-induced astigmatic defocus.

    PubMed

    Ohlendorf, Arne; Tabernero, Juan; Schaeffel, Frank

    2011-03-25

    It is well established that spatial adaptation can improve visual acuity over time in the presence of spherical defocus. It is less well known how far adaptation to astigmatic defocus can enhance visual acuity. We adapted subjects to "simulated" and optically-induced "real" astigmatic defocus, and studied how much they adapt and how selective adaptation was for the axis of astigmatism. Ten subjects with a mean age of 26.7±2.4years (range 23-30) were enrolled in the study, three of them myopic (average spherical equivalent (SE)±SD: -3.08±1.42D) and seven emmetropic (average SE±SD: -0.11±0.18D). All had a corrected minimum visual acuity (VA) of logVA 0.0. For adaptation, subjects watched a movie at 4m distance for 10min that was convolved frame-by-frame with an astigmatic point spread function, equivalent to +3D defocus, or they watched an unfiltered movie but with spectacle frames with a 0/+3D astigmatic trial lenses. Subsequently, visual acuity was determined at the same distance, using high contrast letter acuity charts. Four experiments were performed. In experiment (1), simulated astigmatic defocus was presented both for adaptation and testing, in experiment (2) optically-induced astigmatic defocus was presented both for adaptation and testing of visual acuity. In all these cases, the +3D power meridian was at 0°. In experiments (3) and (4), the +3D power meridian was at 0° during adaptation but rotated to 90° during testing. Astigmatic defocus was simulated in experiment (3) but optically-induced in experiment (4). Experiments 1 and 2: adaptation to either simulated or real astigmatic defocus increased visual acuity in both test paradigms, simulated (change in VA 0.086±0.069 log units; p<0.01) and lens-induced astigmatic defocus (change in VA 0.068±0.031 log units; p<0.001). Experiments 3 and 4: when the axis was rotated, the improvement in visual acuity failed to reach significance, both for simulated (change in VA 0.042±0.079 log units; p=0.13) and lens-induced astigmatic defocus (change in VA 0.038±0.086 log units; p=0.19). Adaptation to astigmatic defocus occurs for both simulated and real defocus, and the effects of adaptation seem to be selective for the axis of astigmatism. These observations suggest that adaptation involves a re-adjustment of the spatial filters selectively for astigmatic meridians, although the underlying mechanism must be more complicated than just changes in shapes of the receptive fields of retinal or cortical neurons. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Experiences in using DISCUS for visualizing human communication

    NASA Astrophysics Data System (ADS)

    Groehn, Matti; Nieminen, Marko; Haho, Paeivi; Smeds, Riitta

    2000-02-01

    In this paper, we present further improvement to the DISCUS software that can be used to record and analyze the flow and constants of business process simulation session discussion. The tool was initially introduced in 'visual data exploration and analysis IV' conference. The initial features of the tool enabled the visualization of discussion flow in business process simulation sessions and the creation of SOM analyses. The improvements of the tool consists of additional visualization possibilities that enable quick on-line analyses and improved graphical statistics. We have also created the very first interface to audio data and implemented two ways to visualize it. We also outline additional possibilities to use the tool in other application areas: these include usability testing and the possibility to use the tool for capturing design rationale in a product development process. The data gathered with DISCUS may be used in other applications, and further work may be done with data ming techniques.

  11. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  12. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 03: visualizing forest structure and fuels

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The software described in this fact sheet provides managers with tools for visualizing forest and fuels information. Computer-based landscape simulations can help visualize stand and landscape conditions and the effects of different management treatments and fuel changes over time. These visualizations can assist forest planning by considering a range of management...

  13. CTViz: A tool for the visualization of transport in nanocomposites.

    PubMed

    Beach, Benjamin; Brown, Joshua; Tarlton, Taylor; Derosa, Pedro A

    2016-05-01

    A visualization tool (CTViz) for charge transport processes in 3-D hybrid materials (nanocomposites) was developed, inspired by the need for a graphical application to assist in code debugging and data presentation of an existing in-house code. As the simulation code grew, troubleshooting problems grew increasingly difficult without an effective way to visualize 3-D samples and charge transport in those samples. CTViz is able to produce publication and presentation quality visuals of the simulation box, as well as static and animated visuals of the paths of individual carriers through the sample. CTViz was designed to provide a high degree of flexibility in the visualization of the data. A feature that characterizes this tool is the use of shade and transparency levels to highlight important details in the morphology or in the transport paths by hiding or dimming elements of little relevance to the current view. This is fundamental for the visualization of 3-D systems with complex structures. The code presented here provides these required capabilities, but has gone beyond the original design and could be used as is or easily adapted for the visualization of other particulate transport where transport occurs on discrete paths. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Consistent design schematics for biological systems: standardization of representation in biological engineering

    PubMed Central

    Matsuoka, Yukiko; Ghosh, Samik; Kitano, Hiroaki

    2009-01-01

    The discovery by design paradigm driving research in synthetic biology entails the engineering of de novo biological constructs with well-characterized input–output behaviours and interfaces. The construction of biological circuits requires iterative phases of design, simulation and assembly, leading to the fabrication of a biological device. In order to represent engineered models in a consistent visual format and further simulating them in silico, standardization of representation and model formalism is imperative. In this article, we review different efforts for standardization, particularly standards for graphical visualization and simulation/annotation schemata adopted in systems biology. We identify the importance of integrating the different standardization efforts and provide insights into potential avenues for developing a common framework for model visualization, simulation and sharing across various tools. We envision that such a synergistic approach would lead to the development of global, standardized schemata in biology, empowering deeper understanding of molecular mechanisms as well as engineering of novel biological systems. PMID:19493898

  15. Simulation Study of Impact of Aeroelastic Characteristics on Flying Qualities of a High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Jackson, E. Bruce; Buttrill, Carey S.

    2002-01-01

    A piloted simulation study conducted in NASA Langley Visual Motion Simulator addressed the impact of dynamic aero- servoelastic effects on flying qualities of a High Speed Civil Transport. The intent was to determine effectiveness of measures to reduce the impact of aircraft flexibility on piloting tasks. Potential solutions examined were increasing frequency of elastic modes through structural stiffening, increasing damping of elastic modes through active control, elimination of control effector excitation of the lowest frequency elastic modes, and elimination of visual cues associated with elastic modes. Six test pilots evaluated and performed simulated maneuver tasks, encountering incidents wherein cockpit vibrations due to elastic modes fed back into the control stick through involuntary vibrations of the pilots upper body and arm. Structural stiffening and compensation of the visual display were of little benefit in alleviating this impact, while increased damping and elimination of control effector excitation of the elastic modes both offered great improvements when applied in sufficient degree.

  16. Evaluating methods to visualize patterns of genetic differentiation on a landscape.

    PubMed

    House, Geoffrey L; Hahn, Matthew W

    2018-05-01

    With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model-based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long-distance migration, EEMS' model is more sensitive to short-distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un-intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un-PC), a fast, model-free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un-PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape-scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un-PC, SpaceMix and EEMS. © 2017 John Wiley & Sons Ltd.

  17. Simulation services and analysis tools at the CCMC to study multi-scale structure and dynamics of Earth's magnetopause

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Liu, Y. H.; Rastaetter, L.; Pembroke, A. D.; Chen, L. J.; Hesse, M.; Glocer, A.; Komar, C. M.; Dorelli, J.; Roytershteyn, V.

    2016-12-01

    The presentation will provide overview of new tools, services and models implemented at the Community Coordinated Modeling Center (CCMC) to facilitate MMS dayside results analysis. We will provide updates on implementation of Particle-in-Cell (PIC) simulations at the CCMC and opportunities for on-line visualization and analysis of results of PIC simulations of asymmetric magnetic reconnection for different guide fields and boundary conditions. Fields, plasma parameters, particle distribution moments as well as particle distribution functions calculated in selected regions of the vicinity of reconnection sites can be analyzed through the web-based interactive visualization system. In addition there are options to request distribution functions in user selected regions of interest and to fly through simulated magnetic reconnection configurations and a map of distributions to facilitate comparisons with observations. A broad collection of global magnetosphere models hosted at the CCMC provide opportunity to put MMS observations and local PIC simulations into global context. We recently implemented the RECON-X post processing tool (Glocer et al, 2016) which allows users to determine the location of separator surface around closed field lines and between open field lines and solar wind field lines. The tool also finds the separatrix line where the two surfaces touch and positions of magnetic nulls. The surfaces and the separatrix line can be visualized relative to satellite positions in the dayside magnetosphere using an interactive HTML-5 visualization for each time step processed. To validate global magnetosphere models' capability to simulate locations of dayside magnetosphere boundaries we will analyze the proximity of MMS to simulated separatrix locations for a set of MMS diffusion region crossing events.

  18. Visualization of 3D CT-based anatomical models

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    Biomedical volumetric data visualization techniques for the exploration purposes are well developed. Most of the known methods are inappropriate for surgery simulation systems due to lack of realism. A segmented data visualization is a well-known approach for the visualization of the structured volumetric data. The research is focused on improvement of the segmented data visualization technique by the aliasing problems resolution and the use of material transparency modeling for better semitransparent structures rendering.

  19. Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers

    DTIC Science & Technology

    2013-09-01

    right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event detected by the filter. (d) A mild curse word...experimental conditions were chosen to simulate testing cognitively impaired observers. Reflex Stimulus Functions Visual Nystagmus luminance grating low-level...developed a new stimulus for visual nystagmus to 8 test visual motion processing in the presence of incoherent motion noise. The drifting equiluminant

  20. Validation of a Low Dose Simulation Technique for Computed Tomography Images

    PubMed Central

    Muenzel, Daniela; Koehler, Thomas; Brown, Kevin; Žabić, Stanislav; Fingerle, Alexander A.; Waldt, Simone; Bendik, Edgar; Zahel, Tina; Schneider, Armin; Dobritz, Martin; Rummeny, Ernst J.; Noël, Peter B.

    2014-01-01

    Purpose Evaluation of a new software tool for generation of simulated low-dose computed tomography (CT) images from an original higher dose scan. Materials and Methods Original CT scan data (100 mAs, 80 mAs, 60 mAs, 40 mAs, 20 mAs, 10 mAs; 100 kV) of a swine were acquired (approved by the regional governmental commission for animal protection). Simulations of CT acquisition with a lower dose (simulated 10–80 mAs) were calculated using a low-dose simulation algorithm. The simulations were compared to the originals of the same dose level with regard to density values and image noise. Four radiologists assessed the realistic visual appearance of the simulated images. Results Image characteristics of simulated low dose scans were similar to the originals. Mean overall discrepancy of image noise and CT values was −1.2% (range −9% to 3.2%) and −0.2% (range −8.2% to 3.2%), respectively, p>0.05. Confidence intervals of discrepancies ranged between 0.9–10.2 HU (noise) and 1.9–13.4 HU (CT values), without significant differences (p>0.05). Subjective observer evaluation of image appearance showed no visually detectable difference. Conclusion Simulated low dose images showed excellent agreement with the originals concerning image noise, CT density values, and subjective assessment of the visual appearance of the simulated images. An authentic low-dose simulation opens up opportunity with regard to staff education, protocol optimization and introduction of new techniques. PMID:25247422

  1. Dynamic registration of an optical see-through HMD into a wide field-of-view rotorcraft flight simulation environment

    NASA Astrophysics Data System (ADS)

    Viertler, Franz; Hajek, Manfred

    2015-05-01

    To overcome the challenge of helicopter flight in degraded visual environments, current research considers headmounted displays with 3D-conformal (scene-linked) visual cues as most promising display technology. For pilot-in-theloop simulations with HMDs, a highly accurate registration of the augmented visual system is required. In rotorcraft flight simulators the outside visual cues are usually provided by a dome projection system, since a wide field-of-view (e.g. horizontally > 200° and vertically > 80°) is required, which can hardly be achieved with collimated viewing systems. But optical see-through HMDs do mostly not have an equivalent focus compared to the distance of the pilot's eye-point position to the curved screen, which is also dependant on head motion. Hence, a dynamic vergence correction has been implemented to avoid binocular disparity. In addition, the parallax error induced by even small translational head motions is corrected with a head-tracking system to be adjusted onto the projected screen. For this purpose, two options are presented. The correction can be achieved by rendering the view with yaw and pitch offset angles dependent on the deviating head position from the design eye-point of the spherical projection system. Furthermore, it can be solved by implementing a dynamic eye-point in the multi-channel projection system for the outside visual cues. Both options have been investigated for the integration of a binocular HMD into the Rotorcraft Simulation Environment (ROSIE) at the Technische Universitaet Muenchen. Pros and cons of both possibilities with regard on integration issues and usability in flight simulations will be discussed.

  2. Instructor and student pilots' subjective evaluation of a general aviation simulator with a terrain visual system

    NASA Technical Reports Server (NTRS)

    Kiteley, G. W.; Harris, R. L., Sr.

    1978-01-01

    Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.

  3. A probabilistic model for analysing the effect of performance levels on visual behaviour patterns of young sailors in simulated navigation.

    PubMed

    Manzanares, Aarón; Menayo, Ruperto; Segado, Francisco; Salmerón, Diego; Cano, Juan Antonio

    2015-01-01

    The visual behaviour is a determining factor in sailing due to the influence of the environmental conditions. The aim of this research was to determine the visual behaviour pattern in sailors with different practice time in one star race, applying a probabilistic model based on Markov chains. The sample of this study consisted of 20 sailors, distributed in two groups, top ranking (n = 10) and bottom ranking (n = 10), all of them competed in the Optimist Class. An automated system of measurement, which integrates the VSail-Trainer sail simulator and the Eye Tracking System(TM) was used. The variables under consideration were the sequence of fixations and the fixation recurrence time performed on each location by the sailors. The event consisted of one of simulated regatta start, with stable conditions of wind, competitor and sea. Results show that top ranking sailors perform a low recurrence time on relevant locations and higher on irrelevant locations while bottom ranking sailors make a low recurrence time in most of the locations. The visual pattern performed by bottom ranking sailors is focused around two visual pivots, which does not happen in the top ranking sailor's pattern. In conclusion, the Markov chains analysis has allowed knowing the visual behaviour pattern of the top and bottom ranking sailors and its comparison.

  4. Eugene Wigner - A Gedanken Pioneer of the Second Quantum Revolution

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    2014-09-01

    Eugene Wigner pointed out very interesting consequences of quantum physics in elegant gedanken experiments. As a result of technical progress, these gedanken experiments have become real experiments and contribute to the development of novel concepts in quantum information science, often called the second quantum revolution.

  5. Elegant Grapheme-Phoneme Correspondence: A Periodic Chart and Singularity Generalization Unify Decoding

    ERIC Educational Resources Information Center

    Gates, Louis

    2018-01-01

    The accompanying article introduces highly transparent grapheme-phoneme relationships embodied within a Periodic table of decoding cells, which arguably presents the quintessential transparent decoding elements. The study then folds these cells into one highly transparent but simply stated singularity generalization--this generalization unifies…

  6. Kaleidoscopes and Mathematics: An Elegant Connection

    ERIC Educational Resources Information Center

    Miller, Catherine M.

    2017-01-01

    This article describes a project in which students investigate the question: What dihedral angles between pairs of mirrors in a kaleidoscope result in perfectly symmetric images? The unit culminates with students building their own kaleidoscopes. This content aligns with parts of the Common Core's standards for fifth grade (classify…

  7. How to avoid simulation sickness in virtual environments during user displacement

    NASA Astrophysics Data System (ADS)

    Kemeny, A.; Colombet, F.; Denoual, T.

    2015-03-01

    Driving simulation (DS) and Virtual Reality (VR) share the same technologies for visualization and 3D vision and may use the same technics for head movement tracking. They experience also similar difficulties when rendering the displacements of the observer in virtual environments, especially when these displacements are carried out using driver commands, including steering wheels, joysticks and nomad devices. High values for transport delay, the time lag between the action and the corresponding rendering cues and/or visual-vestibular conflict, due to the discrepancies perceived by the human visual and vestibular systems when driving or displacing using a control device, induces the so-called simulation sickness. While the visual transport delay can be efficiently reduced using high frequency frame rate, the visual-vestibular conflict is inherent to VR, when not using motion platforms. In order to study the impact of displacements on simulation sickness, we have tested various driving scenarios in Renault's 5-sided ultra-high resolution CAVE. First results indicate that low speed displacements with longitudinal and lateral accelerations under a given perception thresholds are well accepted by a large number of users and relatively high values are only accepted by experienced users and induce VR induced symptoms and effects (VRISE) for novice users, with a worst case scenario corresponding to rotational displacements. These results will be used for optimization technics at Arts et Métiers ParisTech for motion sickness reduction in virtual environments for industrial, research, educational or gaming applications.

  8. Forecasting and visualization of wildfires in a 3D geographical information system

    NASA Astrophysics Data System (ADS)

    Castrillón, M.; Jorge, P. A.; López, I. J.; Macías, A.; Martín, D.; Nebot, R. J.; Sabbagh, I.; Quintana, F. M.; Sánchez, J.; Sánchez, A. J.; Suárez, J. P.; Trujillo, A.

    2011-03-01

    This paper describes a wildfire forecasting application based on a 3D virtual environment and a fire simulation engine. A novel open-source framework is presented for the development of 3D graphics applications over large geographic areas, offering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community. The application includes a remote module that allows simultaneous connections of several users for monitoring a real wildfire event. The system is able to make a realistic composition of what is really happening in the area of the wildfire with dynamic 3D objects and location of human and material resources in real time, providing a new perspective to analyze the wildfire information. The user is enabled to simulate and visualize the propagation of a fire on the terrain integrating at the same time spatial information on topography and vegetation types with weather and wind data. The application communicates with a remote web service that is in charge of the simulation task. The user may specify several parameters through a friendly interface before the application sends the information to the remote server responsible of carrying out the wildfire forecasting using the FARSITE simulation model. During the process, the server connects to different external resources to obtain up-to-date meteorological data. The client application implements a realistic 3D visualization of the fire evolution on the landscape. A Level Of Detail (LOD) strategy contributes to improve the performance of the visualization system.

  9. Quantitative computer simulations of extraterrestrial processing operations

    NASA Technical Reports Server (NTRS)

    Vincent, T. L.; Nikravesh, P. E.

    1989-01-01

    The automation of a small, solid propellant mixer was studied. Temperature control is under investigation. A numerical simulation of the system is under development and will be tested using different control options. Control system hardware is currently being put into place. The construction of mathematical models and simulation techniques for understanding various engineering processes is also studied. Computer graphics packages were utilized for better visualization of the simulation results. The mechanical mixing of propellants is examined. Simulation of the mixing process is being done to study how one can control for chaotic behavior to meet specified mixing requirements. An experimental mixing chamber is also being built. It will allow visual tracking of particles under mixing. The experimental unit will be used to test ideas from chaos theory, as well as to verify simulation results. This project has applications to extraterrestrial propellant quality and reliability.

  10. Environmental fog/rain visual display system for aircraft simulators

    NASA Technical Reports Server (NTRS)

    Chase, W. D. (Inventor)

    1982-01-01

    An environmental fog/rain visual display system for aircraft simulators is described. The electronic elements of the system include a real time digital computer, a caligraphic color display which simulates landing lights of selective intensity, and a color television camera for producing a moving color display of the airport runway as depicted on a model terrain board. The mechanical simulation elements of the system include an environmental chamber which can produce natural fog, nonhomogeneous fog, rain and fog combined, or rain only. A pilot looking through the aircraft wind screen will look through the fog and/or rain generated in the environmental chamber onto a viewing screen with the simulated color image of the airport runway thereon, and observe a very real simulation of actual conditions of a runway as it would appear through actual fog and/or rain.

  11. Fixed-base simulator study of the effect of time delays in visual cues on pilot tracking performance

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, D. R.

    1975-01-01

    Factors were examined which determine the amount of time delay acceptable in the visual feedback loop in flight simulators. Acceptable time delays are defined as delays which significantly affect neither the results nor the manner in which the subject 'flies' the simulator. The subject tracked a target aircraft as it oscillated sinusoidally in a vertical plane only. The pursuing aircraft was permitted five degrees of freedom. Time delays of from 0.047 to 0.297 second were inserted in the visual feedback loop. A side task was employed to maintain the workload constant and to insure that the pilot was fully occupied during the experiment. Tracking results were obtained for 17 aircraft configurations having different longitudinal short-period characteristics. Results show a positive correlation between improved handling qualities and a longer acceptable time delay.

  12. Damaris: Addressing performance variability in data management for post-petascale simulations

    DOE PAGES

    Dorier, Matthieu; Antoniu, Gabriel; Cappello, Franck; ...

    2016-10-01

    With exascale computing on the horizon, reducing performance variability in data management tasks (storage, visualization, analysis, etc.) is becoming a key challenge in sustaining high performance. Here, this variability significantly impacts the overall application performance at scale and its predictability over time. In this article, we present Damaris, a system that leverages dedicated cores in multicore nodes to offload data management tasks, including I/O, data compression, scheduling of data movements, in situ analysis, and visualization. We evaluate Damaris with the CM1 atmospheric simulation and the Nek5000 computational fluid dynamic simulation on four platforms, including NICS’s Kraken and NCSA’s Blue Waters.more » Our results show that (1) Damaris fully hides the I/O variability as well as all I/O-related costs, thus making simulation performance predictable; (2) it increases the sustained write throughput by a factor of up to 15 compared with standard I/O approaches; (3) it allows almost perfect scalability of the simulation up to over 9,000 cores, as opposed to state-of-the-art approaches that fail to scale; and (4) it enables a seamless connection to the VisIt visualization software to perform in situ analysis and visualization in a way that impacts neither the performance of the simulation nor its variability. In addition, we extended our implementation of Damaris to also support the use of dedicated nodes and conducted a thorough comparison of the two approaches—dedicated cores and dedicated nodes—for I/O tasks with the aforementioned applications.« less

  13. Damaris: Addressing performance variability in data management for post-petascale simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorier, Matthieu; Antoniu, Gabriel; Cappello, Franck

    With exascale computing on the horizon, reducing performance variability in data management tasks (storage, visualization, analysis, etc.) is becoming a key challenge in sustaining high performance. Here, this variability significantly impacts the overall application performance at scale and its predictability over time. In this article, we present Damaris, a system that leverages dedicated cores in multicore nodes to offload data management tasks, including I/O, data compression, scheduling of data movements, in situ analysis, and visualization. We evaluate Damaris with the CM1 atmospheric simulation and the Nek5000 computational fluid dynamic simulation on four platforms, including NICS’s Kraken and NCSA’s Blue Waters.more » Our results show that (1) Damaris fully hides the I/O variability as well as all I/O-related costs, thus making simulation performance predictable; (2) it increases the sustained write throughput by a factor of up to 15 compared with standard I/O approaches; (3) it allows almost perfect scalability of the simulation up to over 9,000 cores, as opposed to state-of-the-art approaches that fail to scale; and (4) it enables a seamless connection to the VisIt visualization software to perform in situ analysis and visualization in a way that impacts neither the performance of the simulation nor its variability. In addition, we extended our implementation of Damaris to also support the use of dedicated nodes and conducted a thorough comparison of the two approaches—dedicated cores and dedicated nodes—for I/O tasks with the aforementioned applications.« less

  14. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebel, Oliver

    2009-11-20

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research coveredmore » in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle acceleration, physicists model LWFAs computationally. The datasets produced by LWFA simulations are (i) extremely large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making analysis and knowledge discovery from complex LWFA simulation data a challenging task. To address these challenges this thesis describes the integration of the visualization system VisIt and the state-of-the-art index/query system FastBit, enabling interactive visual exploration of extremely large three-dimensional particle datasets. Researchers are especially interested in beams of high-energy particles formed during the course of a simulation. This thesis describes novel methods for automatic detection and analysis of particle beams enabling a more accurate and efficient data analysis process. By integrating these automated analysis methods with visualization, this research enables more accurate, efficient, and effective analysis of LWFA simulation data than previously possible.« less

  15. Gemini Simulator and Neil Armstrong

    NASA Image and Video Library

    1963-11-06

    Astronaut Neil Armstrong (left) was one of 14 astronauts, 8 NASA test pilots, and 2 McDonnell test pilots who took part in simulator studies. Armstrong was the first astronaut to participate (November 6, 1963). A.W. Vogeley described the simulator in his paper "Discussion of Existing and Planned Simulators For Space Research," "Many of the astronauts have flown this simulator in support of the Gemini studies and they, without exception, appreciated the realism of the visual scene. The simulator has also been used in the development of pilot techniques to handle certain jet malfunctions in order that aborts could be avoided. In these situations large attitude changes are sometimes necessary and the false motion cues that were generated due to earth gravity were somewhat objectionable; however, the pilots were readily able to overlook these false motion cues in favor of the visual realism." Roy F. Brissenden, noted in his paper "Initial Operations with Langley's Rendezvous Docking Facility," "The basic Gemini control studies developed the necessary techniques and demonstrated the ability of human pilots to perform final space docking with the specified Gemini-Agena systems using only visual references. ... Results... showed that trained astronauts can effect the docking with direct acceleration control and even with jet malfunctions as long as good visual conditions exist.... Probably more important than data results was the early confidence that the astronauts themselves gained in their ability to perform the maneuver in the ultimate flight mission." Francis B. Smith, noted in his paper "Simulators for Manned Space Research," "Some major areas of interest in these flights were fuel requirements, docking accuracies, the development of visual aids to assist alignment of the vehicles, and investigation of alternate control techniques with partial failure modes. However, the familiarization and confidence developed by the astronaut through flying and safely docking the simulator during these tests was one of the major contributions. For example, it was found that fuel used in docking from 200 feet typically dropped from about 20 pounds to 7 pounds after an astronaut had made a few training flights." -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203; A.W. Vogeley, "Discussion of Existing and Planned Simulators For Space Research," Paper presented at the Conference on the Role of Simulation in Space Technology, August 17-21, 1964; Roy F. Brissenden, "Initial Operations with Langley's Rendezvous Docking Facility," Langley Working Paper, LWP-21, 1964; Francis B. Smith, "Simulators for Manned Space Research," Paper presented at the 1966 IEEE International convention, March 21-25, 1966.

  16. Visual perception of axes of head rotation

    PubMed Central

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into the SCC frame. PMID:23919087

  17. Visual Complexity in Orthographic Learning: Modeling Learning across Writing System Variations

    ERIC Educational Resources Information Center

    Chang, Li-Yun; Plaut, David C.; Perfetti, Charles A.

    2016-01-01

    The visual complexity of orthographies varies across writing systems. Prior research has shown that complexity strongly influences the initial stage of reading development: the perceptual learning of grapheme forms. This study presents a computational simulation that examines the degree to which visual complexity leads to grapheme learning…

  18. Managing Construction Operations Visually: 3-D Techniques for Complex Topography and Restricted Visibility

    ERIC Educational Resources Information Center

    Rodriguez, Walter; Opdenbosh, Augusto; Santamaria, Juan Carlos

    2006-01-01

    Visual information is vital in planning and managing construction operations, particularly, where there is complex terrain topography and salvage operations with limited accessibility and visibility. From visually-assessing site operations and preventing equipment collisions to simulating material handling activities to supervising remotes sites…

  19. A biologically inspired neural model for visual and proprioceptive integration including sensory training.

    PubMed

    Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi

    2013-12-01

    Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model simulation.

  20. Physics-based interactive volume manipulation for sharing surgical process.

    PubMed

    Nakao, Megumi; Minato, Kotaro

    2010-05-01

    This paper presents a new set of techniques by which surgeons can interactively manipulate patient-specific volumetric models for sharing surgical process. To handle physical interaction between the surgical tools and organs, we propose a simple surface-constraint-based manipulation algorithm to consistently simulate common surgical manipulations such as grasping, holding and retraction. Our computation model is capable of simulating soft-tissue deformation and incision in real time. We also present visualization techniques in order to rapidly visualize time-varying, volumetric information on the deformed image. This paper demonstrates the success of the proposed methods in enabling the simulation of surgical processes, and the ways in which this simulation facilitates preoperative planning and rehearsal.

  1. Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics.

    PubMed

    Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad

    2013-12-01

    Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.

  2. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  3. The effect of concentric constriction of the visual field to 10 and 15 degrees on simulated motor vehicle accidents

    PubMed Central

    Udagawa, Sachiko; Iwase, Aiko; Susuki, Yuto; Kunimatsu-Sanuki, Shiho; Fukuchi, Takeo; Matsumoto, Chota; Ohno, Yuko; Ono, Hiroshi; Sugiyama, Kazuhisa; Araie, Makoto

    2018-01-01

    Purpose Traffic accidents are associated with the visual function of drivers, as well as many other factors. Driving simulator systems have the advantage of controlling for traffic- and automobile-related conditions, and using pinhole glasses can control the degree of concentric concentration of the visual field. We evaluated the effect of concentric constriction of the visual field on automobile driving, using driving simulator tests. Methods Subjects meeting criteria for normal eyesight were included in the study. Pinhole glasses with variable aperture sizes were adjusted to mimic the conditions of concentric visual field constrictions of 10° and 15°, using a CLOCK CHART®. The test contained 8 scenarios (2 oncoming right-turning cars and 6 jump-out events from the side). Results Eighty-eight subjects were included in the study; 37 (mean age = 52.9±15.8 years) subjects were assigned to the 15° group, and 51 (mean = 48.6±15.5 years) were assigned to the 10° group. For all 8 scenarios, the number of accidents was significantly higher among pinhole wearing subjects. The average number of all types of accidents per person was significantly higher in the pinhole 10° group (4.59±1.81) than the pinhole 15° group (3.68±1.49) (P = 0.032). The number of accidents associated with jump-out scenarios, in which a vehicle approaches from the side on a straight road with a good view, was significantly higher in the pinhole 10° group than in the pinhole 15° group. Conclusions Concentric constriction of the visual field was associated with increased number of traffic accidents. The simulation findings indicated that a visual field of 10° to 15° may be important for avoiding collisions in places where there is a straight road with a good view. PMID:29538425

  4. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  5. Interactive Correlation Analysis and Visualization of Climate Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Kwan-Liu

    The relationship between our ability to analyze and extract insights from visualization of climate model output and the capability of the available resources to make those visualizations has reached a crisis point. The large volume of data currently produced by climate models is overwhelming the current, decades-old visualization workflow. The traditional methods for visualizing climate output also have not kept pace with changes in the types of grids used, the number of variables involved, and the number of different simulations performed with a climate model or the feature-richness of high-resolution simulations. This project has developed new and faster methods formore » visualization in order to get the most knowledge out of the new generation of high-resolution climate models. While traditional climate images will continue to be useful, there is need for new approaches to visualization and analysis of climate data if we are to gain all the insights available in ultra-large data sets produced by high-resolution model output and ensemble integrations of climate models such as those produced for the Coupled Model Intercomparison Project. Towards that end, we have developed new visualization techniques for performing correlation analysis. We have also introduced highly scalable, parallel rendering methods for visualizing large-scale 3D data. This project was done jointly with climate scientists and visualization researchers at Argonne National Laboratory and NCAR.« less

  6. 3D Simulation of External Flooding Events for the RISMC Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, Steven; Mandelli, Diego; Sampath, Ramprasad

    2015-09-01

    Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to themore » design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.« less

  7. Visual Computing Environment Workshop

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles (Compiler)

    1998-01-01

    The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.

  8. Visual Data-Analytics of Large-Scale Parallel Discrete-Event Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Caitlin; Carothers, Christopher D.; Mubarak, Misbah

    Parallel discrete-event simulation (PDES) is an important tool in the codesign of extreme-scale systems because PDES provides a cost-effective way to evaluate designs of highperformance computing systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow events to be processed without global synchronization among the processing elements. A rollback mechanism is provided when events are processed out of timestamp order. Although optimistic synchronization protocols enable the scalability of large-scale PDES, the performance of the simulations must be tuned to reduce the number of rollbacks and provide an improved simulation runtime. To enable efficient large-scale optimistic simulations, one has tomore » gain insight into the factors that affect the rollback behavior and simulation performance. We developed a tool for ROSS model developers that gives them detailed metrics on the performance of their large-scale optimistic simulations at varying levels of simulation granularity. Model developers can use this information for parameter tuning of optimistic simulations in order to achieve better runtime and fewer rollbacks. In this work, we instrument the ROSS optimistic PDES framework to gather detailed statistics about the simulation engine. We have also developed an interactive visualization interface that uses the data collected by the ROSS instrumentation to understand the underlying behavior of the simulation engine. The interface connects real time to virtual time in the simulation and provides the ability to view simulation data at different granularities. We demonstrate the usefulness of our framework by performing a visual analysis of the dragonfly network topology model provided by the CODES simulation framework built on top of ROSS. The instrumentation needs to minimize overhead in order to accurately collect data about the simulation performance. To ensure that the instrumentation does not introduce unnecessary overhead, we perform a scaling study that compares instrumented ROSS simulations with their noninstrumented counterparts in order to determine the amount of perturbation when running at different simulation scales.« less

  9. Cost-Effective Magnetoencephalography Based on Time Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus

    DTIC Science & Technology

    2016-09-01

    Thanks to the elegant reciprocal geometry of the Sagnac interferometer, many sources of drift that would present in other polarimetry techniques were...interferometers. And is 2 orders of magnitude better than competing polarimetry -based Faraday techniques. Couple a Rb Vapor cell to the Sagnac interferometer

  10. Collateral DNA damage produced by genome-editing drones: exception or rule?

    PubMed

    Canela, Andres; Stanlie, Andre; Nussenzweig, André

    2015-05-21

    In the recent issue of Nature Biotechnology, Frock et al. (2015) developed an elegant technique to capture translocation partners that can be utilized to determine off-target regions of genome-editing endonucleases as well as endogenous mutators at nucleotide resolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Timber and Amenities on Nonindustrial Private Forest Land

    Treesearch

    Subhrendu K. Pattanayak; Karen Lee Abt; Thomas P. Holmes

    2003-01-01

    Economic analyses of the joint production timber and amenities from nonindustrial private forest lands (NIPF) have been conducted for several decades. Binkley (1981) summarized this strand of research and elegantly articulated a microeconomic household model in which NIPF owners maximize utility by choosing optimal combinations of timber income and amenities. Most...

  12. Product and Quotient Rules from Logarithmic Differentiation

    ERIC Educational Resources Information Center

    Chen, Zhibo

    2012-01-01

    A new application of logarithmic differentiation is presented, which provides an alternative elegant proof of two basic rules of differentiation: the product rule and the quotient rule. The proof can intrigue students, help promote their critical thinking and rigorous reasoning and deepen their understanding of previously encountered concepts. The…

  13. Wise Men and Elegant Speakers: Reflecting on Traditional Assiniboine Leadership.

    ERIC Educational Resources Information Center

    Shanley, Jim; Ryan, Ken

    1993-01-01

    Provides a conversation between Jim Shanley, president of Fort Peck Community College (FPCC) in Montana, and Ken Ryan, chair of FPCC's Native Studies Department. Discusses traditional concepts of leadership in prereservation Assiniboine life, the impact of religion on tribal leadership, men's and women's traditional leadership roles, nepotism, and…

  14. FAST TRACK COMMUNICATION: Open string pair creation from worldsheet instantons

    NASA Astrophysics Data System (ADS)

    Schubert, Christian; Torrielli, Alessandro

    2010-10-01

    Worldline instantons provide a particularly elegant way to derive Schwinger's well-known formula for the pair creation rate due to a constant electric field in quantum electrodynamics. In this communication, we show how to extend this method to the corresponding problem of open string pair creation.

  15. Audience, Elegance, and Learning via the Internet.

    ERIC Educational Resources Information Center

    Lafer, Stephen

    1997-01-01

    Discusses the need for educational environments that allow for authentic learning. Shows how the Internet enables practice in which students are able to manipulate concepts for the sake of getting things done and receiving feedback regarding how well the application of an understanding worked. Provides examples of three learning activities on the…

  16. Commentary: Connecting Social and Cognitive Embodiment--A New Way to Tailor Educational Programs?

    ERIC Educational Resources Information Center

    Cohen Kadosh, Roi; Sella, Francesco

    2017-01-01

    Immordino-Yang and Gotlieb provide an elegant and helpful framework that integrates neuroscientific and education research on social affective development in their article, "Embodied Brains, Social Minds, Cultural Meaning: Integrating Neuroscientific and Educational Research on Social-Affective Development." Based on previous research,…

  17. 50 CFR 15.33 - Species included in the approved list.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... elegans Elegant Parrot. Neophema pulchella 1 Turquoise parrot. Neophema splendida 1 Scarlet-chested parrot... rosella. Platycercus elegans Crimson rosella. Platycercus eximius Eastern rosella Platycercus icterotis... under a permit issued pursuant to subpart C of this part. [59 FR 62262, Dec. 2, 1994, as amended at 61...

  18. On the Beauty of Mathematics as Exemplified by a Problem in Combinatorics.

    ERIC Educational Resources Information Center

    Dence, Thomas P.

    1982-01-01

    The beauty of discovering some simple yet elegant proof either to something new or to an already established fact is discussed. A combinatorial problem that deals with covering a checkerboard with dominoes is presented as a starting point for individual investigation of similar problems. (MP)

  19. Teaching People to Manage Constraints: Effects on Creative Problem-Solving

    ERIC Educational Resources Information Center

    Peterson, David R.; Barrett, Jamie D.; Hester, Kimberly S.; Robledo, Issac C.; Hougen, Dean F.; Day, Eric A.; Mumford, Michael D.

    2013-01-01

    Constraints often inhibit creative problem-solving. This study examined the impact of training strategies for managing constraints on creative problem-solving. Undergraduates, 218 in all, were asked to work through 1 to 4 self-paced instructional programs focused on constraint management strategies. The quality, originality, and elegance of…

  20. MADS-box out of the black box

    USDA-ARS?s Scientific Manuscript database

    The compelling elegance of using genome-wide scans to detect the signature of selection is difficult to resist, but is countered by the low demonstrated efficacy of pinpointing the actual genes and traits that are the targets of selection in non-model species. While the difficulty of going from a s...

Top