Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich
2013-12-01
This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.
An emulator for minimizing computer resources for finite element analysis
NASA Technical Reports Server (NTRS)
Melosh, R.; Utku, S.; Islam, M.; Salama, M.
1984-01-01
A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).
Mohammadi, Amrollah; Ahmadian, Alireza; Rabbani, Shahram; Fattahi, Ehsan; Shirani, Shapour
2017-12-01
Finite element models for estimation of intraoperative brain shift suffer from huge computational cost. In these models, image registration and finite element analysis are two time-consuming processes. The proposed method is an improved version of our previously developed Finite Element Drift (FED) registration algorithm. In this work the registration process is combined with the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is iteratively calculated by geometrical extension of a local load vector which is computed by FED. While the processing time of the FED-based method including registration and finite element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The computational cost of CFED is almost 50% less than similar state of the art brain shift estimators based on finite element models. The proposed combination of registration and structural analysis can make the calculation of brain deformation much faster. Copyright © 2016 John Wiley & Sons, Ltd.
Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment
Imai, Kazuhiro
2015-01-01
Finite element analysis (FEA) is a computer technique of structural stress analysis and developed in engineering mechanics. FEA has developed to investigate structural behavior of human bones over the past 40 years. When the faster computers have acquired, better FEA, using 3-dimensional computed tomography (CT) has been developed. This CT-based finite element analysis (CT/FEA) has provided clinicians with useful data. In this review, the mechanism of CT/FEA, validation studies of CT/FEA to evaluate accuracy and reliability in human bones, and clinical application studies to assess fracture risk and effects of osteoporosis medication are overviewed. PMID:26309819
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy; Muramoto, Kyle M.
1990-01-01
Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.
NASA Technical Reports Server (NTRS)
Walston, W. H., Jr.
1986-01-01
The comparative computational efficiencies of the finite element (FEM), boundary element (BEM), and hybrid boundary element-finite element (HVFEM) analysis techniques are evaluated for representative bounded domain interior and unbounded domain exterior problems in elastostatics. Computational efficiency is carefully defined in this study as the computer time required to attain a specified level of solution accuracy. The study found the FEM superior to the BEM for the interior problem, while the reverse was true for the exterior problem. The hybrid analysis technique was found to be comparable or superior to both the FEM and BEM for both the interior and exterior problems.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
An emulator for minimizing finite element analysis implementation resources
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Utku, S.; Salama, M.; Islam, M.
1982-01-01
A finite element analysis emulator providing a basis for efficiently establishing an optimum computer implementation strategy when many calculations are involved is described. The SCOPE emulator determines computer resources required as a function of the structural model, structural load-deflection equation characteristics, the storage allocation plan, and computer hardware capabilities. Thereby, it provides data for trading analysis implementation options to arrive at a best strategy. The models contained in SCOPE lead to micro-operation computer counts of each finite element operation as well as overall computer resource cost estimates. Application of SCOPE to the Memphis-Arkansas bridge analysis provides measures of the accuracy of resource assessments. Data indicate that predictions are within 17.3 percent for calculation times and within 3.2 percent for peripheral storage resources for the ELAS code.
A new parallel-vector finite element analysis software on distributed-memory computers
NASA Technical Reports Server (NTRS)
Qin, Jiangning; Nguyen, Duc T.
1993-01-01
A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.
Analysis of rocket engine injection combustion processes
NASA Technical Reports Server (NTRS)
Salmon, J. W.; Saltzman, D. H.
1977-01-01
Mixing methodology improvement for the JANNAF DER and CICM injection/combustion analysis computer programs was accomplished. ZOM plane prediction model development was improved for installation into the new standardized DER computer program. An intra-element mixing model developing approach was recommended for gas/liquid coaxial injection elements for possible future incorporation into the CICM computer program.
Modeling of rolling element bearing mechanics. Computer program user's manual
NASA Technical Reports Server (NTRS)
Greenhill, Lyn M.; Merchant, David H.
1994-01-01
This report provides the user's manual for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings, duplex angular contact ball bearings, and cylindrical roller bearings. The model includes the defects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program, and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. This report addresses input instructions for and features of the computer codes. A companion report addresses the theoretical basis for the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.
Computer aided stress analysis of long bones utilizing computer tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marom, S.A.
1986-01-01
A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less
Efficient Computation Of Behavior Of Aircraft Tires
NASA Technical Reports Server (NTRS)
Tanner, John A.; Noor, Ahmed K.; Andersen, Carl M.
1989-01-01
NASA technical paper discusses challenging application of computational structural mechanics to numerical simulation of responses of aircraft tires during taxing, takeoff, and landing. Presents details of three main elements of computational strategy: use of special three-field, mixed-finite-element models; use of operator splitting; and application of technique reducing substantially number of degrees of freedom. Proposed computational strategy applied to two quasi-symmetric problems: linear analysis of anisotropic tires through use of two-dimensional-shell finite elements and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry and combinations exhibited by response of tire identified.
Determination of apparent coupling factors for adhesive bonded acrylic plates using SEAL approach
NASA Astrophysics Data System (ADS)
Pankaj, Achuthan. C.; Shivaprasad, M. V.; Murigendrappa, S. M.
2018-04-01
Apparent coupling loss factors (CLF) and velocity responses has been computed for two lap joined adhesive bonded plates using finite element and experimental statistical energy analysis like approach. A finite element model of the plates has been created using ANSYS software. The statistical energy parameters have been computed using the velocity responses obtained from a harmonic forced excitation analysis. Experiments have been carried out for two different cases of adhesive bonded joints and the results have been compared with the apparent coupling factors and velocity responses obtained from finite element analysis. The results obtained from the studies signify the importance of modeling of adhesive bonded joints in computation of the apparent coupling factors and its further use in computation of energies and velocity responses using statistical energy analysis like approach.
Coupled Aerodynamic and Structural Sensitivity Analysis of a High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Mason, B. H.; Walsh, J. L.
2001-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite-element structural analysis and computational fluid dynamics aerodynamic analysis. In a previous study, a multi-disciplinary analysis system for a high-speed civil transport was formulated to integrate a set of existing discipline analysis codes, some of them computationally intensive, This paper is an extension of the previous study, in which the sensitivity analysis for the coupled aerodynamic and structural analysis problem is formulated and implemented. Uncoupled stress sensitivities computed with a constant load vector in a commercial finite element analysis code are compared to coupled aeroelastic sensitivities computed by finite differences. The computational expense of these sensitivity calculation methods is discussed.
Adaptation of a program for nonlinear finite element analysis to the CDC STAR 100 computer
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Ogilvie, P. L.
1978-01-01
The conversion of a nonlinear finite element program to the CDC STAR 100 pipeline computer is discussed. The program called DYCAST was developed for the crash simulation of structures. Initial results with the STAR 100 computer indicated that significant gains in computation time are possible for operations on gloval arrays. However, for element level computations that do not lend themselves easily to long vector processing, the STAR 100 was slower than comparable scalar computers. On this basis it is concluded that in order for pipeline computers to impact the economic feasibility of large nonlinear analyses it is absolutely essential that algorithms be devised to improve the efficiency of element level computations.
Computational models for the nonlinear analysis of reinforced concrete plates
NASA Technical Reports Server (NTRS)
Hinton, E.; Rahman, H. H. A.; Huq, M. M.
1980-01-01
A finite element computational model for the nonlinear analysis of reinforced concrete solid, stiffened and cellular plates is briefly outlined. Typically, Mindlin elements are used to model the plates whereas eccentric Timoshenko elements are adopted to represent the beams. The layering technique, common in the analysis of reinforced concrete flexural systems, is incorporated in the model. The proposed model provides an inexpensive and reasonably accurate approach which can be extended for use with voided plates.
NASA Technical Reports Server (NTRS)
Gupta, Kajal K.
1991-01-01
The details of an integrated general-purpose finite element structural analysis computer program which is also capable of solving complex multidisciplinary problems is presented. Thus, the SOLIDS module of the program possesses an extensive finite element library suitable for modeling most practical problems and is capable of solving statics, vibration, buckling, and dynamic response problems of complex structures, including spinning ones. The aerodynamic module, AERO, enables computation of unsteady aerodynamic forces for both subsonic and supersonic flow for subsequent flutter and divergence analysis of the structure. The associated aeroservoelastic analysis module, ASE, effects aero-structural-control stability analysis yielding frequency responses as well as damping characteristics of the structure. The program is written in standard FORTRAN to run on a wide variety of computers. Extensive graphics, preprocessing, and postprocessing routines are also available pertaining to a number of terminals.
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.; Tanner, J. A.
1984-01-01
An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
Improving finite element results in modeling heart valve mechanics.
Earl, Emily; Mohammadi, Hadi
2018-06-01
Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX-80
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.; Watson, Brian C.
1992-11-01
The finite element method has proven to be an invaluable tool for analysis and design of complex, high performance systems, such as bladed-disk assemblies in aircraft turbofan engines. However, as the problem size increase, the computation time required by conventional computers can be prohibitively high. Parallel processing computers provide the means to overcome these computation time limits. This report summarizes the results of a research activity aimed at providing a finite element capability for analyzing turbomachinery bladed-disk assemblies in a vector/parallel processing environment. A special purpose code, named with the acronym SAPNEW, has been developed to perform static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements. SAPNEW provides a stand alone capability for static and eigen analysis on the Alliant FX/80, a parallel processing computer. A preprocessor, named with the acronym NTOS, has been developed to accept NASTRAN input decks and convert them to the SAPNEW format to make SAPNEW more readily used by researchers at NASA Lewis Research Center.
PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.
1977-01-01
The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.
A comparison between different finite elements for elastic and aero-elastic analyses.
Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani
2017-11-01
In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, Carl M.; Tanner, John A.
1987-01-01
A simple and efficient computational strategy for reducing both the size of a tire model and the cost of the analysis of tires in the presence of symmetry-breaking conditions (unsymmetry in the tire material, geometry, or loading) is presented. The strategy is based on approximating the unsymmetric response of the tire with a linear combination of symmetric and antisymmetric global approximation vectors (or modes). Details are presented for the three main elements of the computational strategy, which include: use of special three-field mixed finite-element models, use of operator splitting, and substantial reduction in the number of degrees of freedom. The proposed computational stategy is applied to three quasi-symmetric problems of tires: linear analysis of anisotropic tires, through use of semianalytic finite elements, nonlinear analysis of anisotropic tires through use of two-dimensional shell finite elements, and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry (and their combinations) exhibited by the tire response are identified.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
Static aeroelastic analysis and tailoring of a single-element racing car wing
NASA Astrophysics Data System (ADS)
Sadd, Christopher James
This thesis presents the research from an Engineering Doctorate research programme in collaboration with Reynard Motorsport Ltd, a manufacturer of racing cars. Racing car wing design has traditionally considered structures to be rigid. However, structures are never perfectly rigid and the interaction between aerodynamic loading and structural flexibility has a direct impact on aerodynamic performance. This interaction is often referred to as static aeroelasticity and the focus of this research has been the development of a computational static aeroelastic analysis method to improve the design of a single-element racing car wing. A static aeroelastic analysis method has been developed by coupling a Reynolds-Averaged Navier-Stokes CFD analysis method with a Finite Element structural analysis method using an iterative scheme. Development of this method has included assessment of CFD and Finite Element analysis methods and development of data transfer and mesh deflection methods. Experimental testing was also completed to further assess the computational analyses. The computational and experimental results show a good correlation and these studies have also shown that a Navier-Stokes static aeroelastic analysis of an isolated wing can be performed at an acceptable computational cost. The static aeroelastic analysis tool was used to assess methods of tailoring the structural flexibility of the wing to increase its aerodynamic performance. These tailoring methods were then used to produce two final wing designs to increase downforce and reduce drag respectively. At the average operating dynamic pressure of the racing car, the computational analysis predicts that the downforce-increasing wing has a downforce of C[1]=-1.377 in comparison to C[1]=-1.265 for the original wing. The computational analysis predicts that the drag-reducing wing has a drag of C[d]=0.115 in comparison to C[d]=0.143 for the original wing.
Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Fuentes, Alfonso; Mullins, Baxter R.; Woods, Ron
2002-01-01
An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact has been developed. The computation procedure is an iterative process, requiring four separate steps that provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis permits the contact and bending stresses to be determined and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require an intermediate CAD computer program. A commercially available finite element analysis computer program with contact capability was used to conduct the stress analysis. The theory developed is illustrated with numerical examples.
Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Fuentes, A.; Litvin, F. L.; Mullins, B. R.; Woods, R.; Handschuh, R. F.; Lewicki, David G.
2002-01-01
An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact is proposed. The procedure of computations is an iterative process that requires four separate procedures and provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment on noise and vibration, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis enables us to determine the contact and bending stresses and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require intermediate CAD computer programs for application of general purpose computer program for finite element analysis.
NASA Technical Reports Server (NTRS)
Crouse, J. E.
1974-01-01
A method is presented for designing axial-flow compressor blading from blade elements defined on cones which pass through the blade-edge streamline locations. Each blade-element centerline is composed of two segments which are tangent to each other. The centerline and surfaces of each segment have constant change of angle with path distance. The stacking line for the blade elements can be leaned in both the axial and tangential directions. The output of the computer program gives coordinates for fabrication and properties for aeroelastic analysis for planar blade sections. These coordinates and properties are obtained by interpolation across conical blade elements. The program is structured to be coupled with an aerodynamic design program.
Introduction to the computational structural mechanics testbed
NASA Technical Reports Server (NTRS)
Lotts, C. G.; Greene, W. H.; Mccleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; Gillian, R. E.
1987-01-01
The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Editor)
1986-01-01
The papers contained in this volume provide an overview of the advances made in a number of aspects of computational mechanics, identify some of the anticipated industry needs in this area, discuss the opportunities provided by new hardware and parallel algorithms, and outline some of the current government programs in computational mechanics. Papers are included on advances and trends in parallel algorithms, supercomputers for engineering analysis, material modeling in nonlinear finite-element analysis, the Navier-Stokes computer, and future finite-element software systems.
Finite element analysis of helicopter structures
NASA Technical Reports Server (NTRS)
Rich, M. J.
1978-01-01
Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.
Analysis and synthesis of distributed-lumped-active networks by digital computer
NASA Technical Reports Server (NTRS)
1973-01-01
The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.
NASA Technical Reports Server (NTRS)
Bratanow, T.; Ecer, A.
1973-01-01
A general computational method for analyzing unsteady flow around pitching and plunging airfoils was developed. The finite element method was applied in developing an efficient numerical procedure for the solution of equations describing the flow around airfoils. The numerical results were employed in conjunction with computer graphics techniques to produce visualization of the flow. The investigation involved mathematical model studies of flow in two phases: (1) analysis of a potential flow formulation and (2) analysis of an incompressible, unsteady, viscous flow from Navier-Stokes equations.
ERIC Educational Resources Information Center
Zaidel, Mark; Luo, XiaoHui
2010-01-01
This study investigates the efficiency of multimedia instruction at the college level by comparing the effectiveness of multimedia elements used in the computer supported learning with the cost of their preparation. Among the various technologies that advance learning, instructors and students generally identify interactive multimedia elements as…
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavic, I.; Draskovic, R.; Tasovac, T.
1973-03-01
A computer program for the determination of trace elements in components of the water systems bed material, suspended material, dissolved substances, plankton, algae) by nondestructive activation analysis was developed. Results of the determination of Cr, Sb, Sc, Fe, Co, Na, and La concentrations in suspended materials from the Danube river, obtained by interpretation of data with a CDC- 3600 computer (64 k words), are presented. (auth)
Initial dynamic load estimates during configuration design
NASA Technical Reports Server (NTRS)
Schiff, Daniel
1987-01-01
This analysis includes the structural response to shock and vibration and evaluates the maximum deflections and material stresses and the potential for the occurrence of elastic instability, fatigue and fracture. The required computations are often performed by means of finite element analysis (FEA) computer programs in which the structure is simulated by a finite element model which may contain thousands of elements. The formulation of a finite element model can be time consuming, and substantial additional modeling effort may be necessary if the structure requires significant changes after initial analysis. Rapid methods for obtaining rough estimates of the structural response to shock and vibration are presented for the purpose of providing guidance during the initial mechanical design configuration stage.
Parallel processing in finite element structural analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1987-01-01
A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).
Imai, Kazuhiro
2015-01-01
Finite element analysis (FEA) is an advanced computer technique of structural stress analysis developed in engineering mechanics. Because the compressive behavior of vertebral bone shows nonlinear behavior, a nonlinear FEA should be utilized to analyze the clinical vertebral fracture. In this article, a computed tomography-based nonlinear FEA (CT/FEA) to analyze the vertebral bone strength, fracture pattern, and fracture location is introduced. The accuracy of the CT/FEA was validated by performing experimental mechanical testing with human cadaveric specimens. Vertebral bone strength and the minimum principal strain at the vertebral surface were accurately analyzed using the CT/FEA. The experimental fracture pattern and fracture location were also accurately simulated. Optimization of the element size was performed by assessing the accuracy of the CT/FEA, and the optimum element size was assumed to be 2 mm. It is expected that the CT/FEA will be valuable in analyzing vertebral fracture risk and assessing therapeutic effects on osteoporosis. PMID:26029476
Energy and technology review: Engineering modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabayan, H.S.; Goudreau, G.L.; Ziolkowski, R.W.
1986-10-01
This report presents information concerning: Modeling Canonical Problems in Electromagnetic Coupling Through Apertures; Finite-Element Codes for Computing Electrostatic Fields; Finite-Element Modeling of Electromagnetic Phenomena; Modeling Microwave-Pulse Compression in a Resonant Cavity; Lagrangian Finite-Element Analysis of Penetration Mechanics; Crashworthiness Engineering; Computer Modeling of Metal-Forming Processes; Thermal-Mechanical Modeling of Tungsten Arc Welding; Modeling Air Breakdown Induced by Electromagnetic Fields; Iterative Techniques for Solving Boltzmann's Equations for p-Type Semiconductors; Semiconductor Modeling; and Improved Numerical-Solution Techniques in Large-Scale Stress Analysis.
Boundary element analysis of post-tensioned slabs
NASA Astrophysics Data System (ADS)
Rashed, Youssef F.
2015-06-01
In this paper, the boundary element method is applied to carry out the structural analysis of post-tensioned flat slabs. The shear-deformable plate-bending model is employed. The effect of the pre-stressing cables is taken into account via the equivalent load method. The formulation is automated using a computer program, which uses quadratic boundary elements. Verification samples are presented, and finally a practical application is analyzed where results are compared against those obtained from the finite element method. The proposed method is efficient in terms of computer storage and processing time as well as the ease in data input and modifications.
Exploiting parallel computing with limited program changes using a network of microcomputers
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.; Sobieszczanski-Sobieski, J.
1985-01-01
Network computing and multiprocessor computers are two discernible trends in parallel processing. The computational behavior of an iterative distributed process in which some subtasks are completed later than others because of an imbalance in computational requirements is of significant interest. The effects of asynchronus processing was studied. A small existing program was converted to perform finite element analysis by distributing substructure analysis over a network of four Apple IIe microcomputers connected to a shared disk, simulating a parallel computer. The substructure analysis uses an iterative, fully stressed, structural resizing procedure. A framework of beams divided into three substructures is used as the finite element model. The effects of asynchronous processing on the convergence of the design variables are determined by not resizing particular substructures on various iterations.
Plane stress analysis of wood members using isoparametric finite elements, a computer program
Gary D. Gerhardt
1983-01-01
A finite element program is presented which computes displacements, strains, and stresses in wood members of arbitrary shape which are subjected to plane strain/stressloading conditions. This report extends a program developed by R. L. Taylor in 1977, by adding both the cubic isoparametric finite element and the capability to analyze nonisotropic materials. The...
NASA Technical Reports Server (NTRS)
Fallon, D. J.; Thornton, E. A.
1983-01-01
Documentation for the computer program FLUTTER is presented. The theory of aerodynamic instability with thermal prestress is discussed. Theoretical aspects of the finite element matrices required in the aerodynamic instability analysis are also discussed. General organization of the computer program is explained, and instructions are then presented for the execution of the program.
TAP 2: A finite element program for thermal analysis of convectively cooled structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1980-01-01
A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.
Computational strategies for tire monitoring and analysis
NASA Technical Reports Server (NTRS)
Danielson, Kent T.; Noor, Ahmed K.; Green, James S.
1995-01-01
Computational strategies are presented for the modeling and analysis of tires in contact with pavement. A procedure is introduced for simple and accurate determination of tire cross-sectional geometric characteristics from a digitally scanned image. Three new strategies for reducing the computational effort in the finite element solution of tire-pavement contact are also presented. These strategies take advantage of the observation that footprint loads do not usually stimulate a significant tire response away from the pavement contact region. The finite element strategies differ in their level of approximation and required amount of computer resources. The effectiveness of the strategies is demonstrated by numerical examples of frictionless and frictional contact of the space shuttle Orbiter nose-gear tire. Both an in-house research code and a commercial finite element code are used in the numerical studies.
Cost Considerations in Nonlinear Finite-Element Computing
NASA Technical Reports Server (NTRS)
Utku, S.; Melosh, R. J.; Islam, M.; Salama, M.
1985-01-01
Conference paper discusses computational requirements for finiteelement analysis using quasi-linear approach to nonlinear problems. Paper evaluates computational efficiency of different computer architecturtural types in terms of relative cost and computing time.
WALSH, TIMOTHY F.; JONES, ANDREA; BHARDWAJ, MANOJ; ...
2013-04-01
Finite element analysis of transient acoustic phenomena on unbounded exterior domains is very common in engineering analysis. In these problems there is a common need to compute the acoustic pressure at points outside of the acoustic mesh, since meshing to points of interest is impractical in many scenarios. In aeroacoustic calculations, for example, the acoustic pressure may be required at tens or hundreds of meters from the structure. In these cases, a method is needed for post-processing the acoustic results to compute the response at far-field points. In this paper, we compare two methods for computing far-field acoustic pressures, onemore » derived directly from the infinite element solution, and the other from the transient version of the Kirchhoff integral. Here, we show that the infinite element approach alleviates the large storage requirements that are typical of Kirchhoff integral and related procedures, and also does not suffer from loss of accuracy that is an inherent part of computing numerical derivatives in the Kirchhoff integral. In order to further speed up and streamline the process of computing the acoustic response at points outside of the mesh, we also address the nonlinear iterative procedure needed for locating parametric coordinates within the host infinite element of far-field points, the parallelization of the overall process, linear solver requirements, and system stability considerations.« less
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas
2005-01-01
The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.
Application of Finite Element Method in Traffic Injury and Its Prospect in Forensic Science.
Liu, C G; Lu, Y J; Gao, J; Liu, Q
2016-06-01
The finite element method (FEM) is a numerical computation method based on computer technology, and has been gradually applied in the fields of medicine and biomechanics. The finite element analysis can be used to explore the loading process and injury mechanism of human body in traffic injury. FEM is also helpful for the forensic investigation in traffic injury. This paper reviews the development of the finite element models and analysis of brain, cervical spine, chest and abdomen, pelvis, limbs at home and aboard in traffic injury in recent years. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Analysis of Software Systems for Specialized Computers,
computer) with given computer hardware and software . The object of study is the software system of a computer, designed for solving a fixed complex of...purpose of the analysis is to find parameters that characterize the system and its elements during operation, i.e., when servicing the given requirement flow. (Author)
Preliminary structural sizing of a Mach 3.0 high-speed civil transport model
NASA Technical Reports Server (NTRS)
Blackburn, Charles L.
1992-01-01
An analysis has been performed pertaining to the structural resizing of a candidate Mach 3.0 High Speed Civil Transport (HSCT) conceptual design using a computer program called EZDESIT. EZDESIT is a computer program which integrates the PATRAN finite element modeling program to the COMET finite element analysis program for the purpose of calculating element sizes or cross sectional dimensions. The purpose of the present report is to document the procedure used in accomplishing the preliminary structural sizing and to present the corresponding results.
Computing Reliabilities Of Ceramic Components Subject To Fracture
NASA Technical Reports Server (NTRS)
Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.
1992-01-01
CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.
On 3-D inelastic analysis methods for hot section components (base program)
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.
1986-01-01
A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.
On modelling three-dimensional piezoelectric smart structures with boundary spectral element method
NASA Astrophysics Data System (ADS)
Zou, Fangxin; Aliabadi, M. H.
2017-05-01
The computational efficiency of the boundary element method in elastodynamic analysis can be significantly improved by employing high-order spectral elements for boundary discretisation. In this work, for the first time, the so-called boundary spectral element method is utilised to formulate the piezoelectric smart structures that are widely used in structural health monitoring (SHM) applications. The resultant boundary spectral element formulation has been validated by the finite element method (FEM) and physical experiments. The new formulation has demonstrated a lower demand on computational resources and a higher numerical stability than commercial FEM packages. Comparing to the conventional boundary element formulation, a significant reduction in computational expenses has been achieved. In summary, the boundary spectral element formulation presented in this paper provides a highly efficient and stable mathematical tool for the development of SHM applications.
NASA Technical Reports Server (NTRS)
Voigt, S.
1975-01-01
The use of software engineering aids in the design of a structural finite-element analysis computer program for the STAR-100 computer is described. Nested functional diagrams to aid in communication among design team members were used, and a standardized specification format to describe modules designed by various members was adopted. This is a report of current work in which use of the functional diagrams provided continuity and helped resolve some of the problems arising in this long-running part-time project.
Advances and trends in the development of computational models for tires
NASA Technical Reports Server (NTRS)
Noor, A. K.; Tanner, J. A.
1985-01-01
Status and some recent developments of computational models for tires are summarized. Discussion focuses on a number of aspects of tire modeling and analysis including: tire materials and their characterization; evolution of tire models; characteristics of effective finite element models for analyzing tires; analysis needs for tires; and impact of the advances made in finite element technology, computational algorithms, and new computing systems on tire modeling and analysis. An initial set of benchmark problems has been proposed in concert with the U.S. tire industry. Extensive sets of experimental data will be collected for these problems and used for evaluating and validating different tire models. Also, the new Aircraft Landing Dynamics Facility (ALDF) at NASA Langley Research Center is described.
NASA Technical Reports Server (NTRS)
Ecer, A.; Akay, H. U.
1981-01-01
The finite element method is applied for the solution of transonic potential flows through a cascade of airfoils. Convergence characteristics of the solution scheme are discussed. Accuracy of the numerical solutions is investigated for various flow regions in the transonic flow configuration. The design of an efficient finite element computational grid is discussed for improving accuracy and convergence.
A Finite Element Analysis of a Class of Problems in Elasto-Plasticity with Hidden Variables.
1985-09-01
RD-R761 642 A FINITE ELEMENT ANALYSIS OF A CLASS OF PROBLEMS IN 1/2 ELASTO-PLASTICITY MIlT (U) TEXAS INST FOR COMPUTATIONAL MECHANICS AUSTIN J T ODEN...end Subtitle) S. TYPE OF REPORT & PERIOD COVERED A FINITE ELEMENT ANALYSIS OF A CLASS OF PROBLEMS Final Report IN ELASTO-PLASTICITY WITH HIDDEN...aieeoc ede It neceeeary nd Identify by block number) ;"Elastoplasticity, finite deformations; non-convex analysis ; finite element methods, metal forming
Zhan, Yijian; Meschke, Günther
2017-07-08
The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.
Zhan, Yijian
2017-01-01
The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense. PMID:28773130
ERIC Educational Resources Information Center
Nee, John G.; Kare, Audhut P.
1987-01-01
Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)
Computational methods for global/local analysis
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.; Knight, Norman F., Jr.
1992-01-01
Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods.
Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Tessler, Alexander
2007-01-01
Two finite element based computational methods, Smoothing Element Analysis (SEA) and the inverse Finite Element Method (iFEM), are reviewed, and examples of their use for structural health monitoring are discussed. Due to their versatility, robustness, and computational efficiency, the methods are well suited for real-time structural health monitoring of future space vehicles, large space structures, and habitats. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future Structural Health Management (SHM) systems.
Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.
Composite Failures: A Comparison of Experimental Test Results and Computational Analysis Using XFEM
2016-09-30
NUWC-NPT Technical Report 12,218 30 September 2016 Composite Failures: A Comparison of Experimental Test Results and Computational Analysis...A Comparison of Experimental Test Results and Computational Analysis Using XFEM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...availability of measurement techniques, experimental testing of composite materials has largely outpaced the computational modeling ability, forcing
NASA Astrophysics Data System (ADS)
Sivasubramaniam, Kiruba
This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is explored and implemented.
DOT National Transportation Integrated Search
1976-07-01
Several new capabilities have been added to the DYNALIST II computer program. These include: (1) a component matrix generator that operates as a 3-D finite element modeling program where elements consist of rigid bodies, flexural bodies, wheelsets, s...
Development of non-linear finite element computer code
NASA Technical Reports Server (NTRS)
Becker, E. B.; Miller, T.
1985-01-01
Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.
NASA Workshop on Computational Structural Mechanics 1987, part 3
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Computational Structural Mechanics (CSM) topics are explored. Algorithms and software for nonlinear structural dynamics, concurrent algorithms for transient finite element analysis, computational methods and software systems for dynamics and control of large space structures, and the use of multi-grid for structural analysis are discussed.
On numerically accurate finite element
NASA Technical Reports Server (NTRS)
Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.
1974-01-01
A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.; Li, G., E-mail: gli@clemson.edu
2014-08-28
An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO{sub 2} interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as amore » function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.« less
Cost-effective use of minicomputers to solve structural problems
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Foster, E. P.
1978-01-01
Minicomputers are receiving increased use throughout the aerospace industry. Until recently, their use focused primarily on process control and numerically controlled tooling applications, while their exposure to and the opportunity for structural calculations has been limited. With the increased availability of this computer hardware, the question arises as to the feasibility and practicality of carrying out comprehensive structural analysis on a minicomputer. This paper presents results on the potential for using minicomputers for structural analysis by (1) selecting a comprehensive, finite-element structural analysis system in use on large mainframe computers; (2) implementing the system on a minicomputer; and (3) comparing the performance of the minicomputers with that of a large mainframe computer for the solution to a wide range of finite element structural analysis problems.
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
NASA Technical Reports Server (NTRS)
Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.
1997-01-01
A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.
A computer program for the design and analysis of low-speed airfoils, supplement
NASA Technical Reports Server (NTRS)
Eppler, R.; Somers, D. M.
1980-01-01
Three new options were incorporated into an existing computer program for the design and analysis of low speed airfoils. These options permit the analysis of airfoils having variable chord (variable geometry), a boundary layer displacement iteration, and the analysis of the effect of single roughness elements. All three options are described in detail and are included in the FORTRAN IV computer program.
Some Observations on the Current Status of Performing Finite Element Analyses
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Knight, Norman F., Jr; Shivakumar, Kunigal N.
2015-01-01
Aerospace structures are complex high-performance structures. Advances in reliable and efficient computing and modeling tools are enabling analysts to consider complex configurations, build complex finite element models, and perform analysis rapidly. Many of the early career engineers of today are very proficient in the usage of modern computers, computing engines, complex software systems, and visualization tools. These young engineers are becoming increasingly efficient in building complex 3D models of complicated aerospace components. However, the current trends demonstrate blind acceptance of the results of the finite element analysis results. This paper is aimed at raising an awareness of this situation. Examples of the common encounters are presented. To overcome the current trends, some guidelines and suggestions for analysts, senior engineers, and educators are offered.
Integrated computer-aided design using minicomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.
1980-01-01
Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.
Difference-Equation/Flow-Graph Circuit Analysis
NASA Technical Reports Server (NTRS)
Mcvey, I. M.
1988-01-01
Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.
NASA Astrophysics Data System (ADS)
Sizov, Gennadi Y.
In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.
NASA Astrophysics Data System (ADS)
Kalinkina, M. E.; Kozlov, A. S.; Labkovskaia, R. I.; Pirozhnikova, O. I.; Tkalich, V. L.; Shmakov, N. A.
2018-05-01
The object of research is the element base of devices of control and automation systems, including in its composition annular elastic sensitive elements, methods of their modeling, calculation algorithms and software complexes for automation of their design processes. The article is devoted to the development of the computer-aided design system of elastic sensitive elements used in weight- and force-measuring automation devices. Based on the mathematical modeling of deformation processes in a solid, as well as the results of static and dynamic analysis, the calculation of elastic elements is given using the capabilities of modern software systems based on numerical simulation. In the course of the simulation, the model was a divided hexagonal grid of finite elements with a maximum size not exceeding 2.5 mm. The results of modal and dynamic analysis are presented in this article.
Stress analysis under component relative interference fit
NASA Technical Reports Server (NTRS)
Taylor, C. M.
1978-01-01
Finite-element computer program enables analysis of distortions and stresses occurring in components having relative interference. Program restricts itself to simple elements and axisymmetric loading situations. External inertial and thermal loads may be applied in addition to forces arising from interference conditions.
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Pike, William A; Riensche, Roderick M; Best, Daniel M; Roberts, Ian E; Whyatt, Marie V; Hart, Michelle L; Carr, Norman J; Thomas, James J
2012-09-18
Systems and computer-implemented processes for storage and management of information artifacts collected by information analysts using a computing device. The processes and systems can capture a sequence of interactive operation elements that are performed by the information analyst, who is collecting an information artifact from at least one of the plurality of software applications. The information artifact can then be stored together with the interactive operation elements as a snippet on a memory device, which is operably connected to the processor. The snippet comprises a view from an analysis application, data contained in the view, and the sequence of interactive operation elements stored as a provenance representation comprising operation element class, timestamp, and data object attributes for each interactive operation element in the sequence.
STARS: A general-purpose finite element computer program for analysis of engineering structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1984-01-01
STARS (Structural Analysis Routines) is primarily an interactive, graphics-oriented, finite-element computer program for analyzing the static, stability, free vibration, and dynamic responses of damped and undamped structures, including rotating systems. The element library consists of one-dimensional (1-D) line elements, two-dimensional (2-D) triangular and quadrilateral shell elements, and three-dimensional (3-D) tetrahedral and hexahedral solid elements. These elements enable the solution of structural problems that include truss, beam, space frame, plane, plate, shell, and solid structures, or any combination thereof. Zero, finite, and interdependent deflection boundary conditions can be implemented by the program. The associated dynamic response analysis capability provides for initial deformation and velocity inputs, whereas the transient excitation may be either forces or accelerations. An effective in-core or out-of-core solution strategy is automatically employed by the program, depending on the size of the problem. Data input may be at random within a data set, and the program offers certain automatic data-generation features. Input data are formatted as an optimal combination of free and fixed formats. Interactive graphics capabilities enable convenient display of nodal deformations, mode shapes, and element stresses.
Towards practical multiscale approach for analysis of reinforced concrete structures
NASA Astrophysics Data System (ADS)
Moyeda, Arturo; Fish, Jacob
2017-12-01
We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.
1992-01-01
Phase 2+ Space Shuttle Main Engine powerheads, E0209 and E0215 degraded their main combustion chamber (MCC) liners at a faster rate than is normal for phase 2 powerheads. One possible cause of the accelerated degradation was a reduction of coolant flow through the MCC. Hardware changes were made to the preburner fuel leg which may have reduced the resistance and, therefore, pulled some of the hydrogen from the MCC coolant leg. A computational fluid dynamics (CFD) analysis was performed to determine hydrogen flow path resistances of the phase 2+ fuel preburner injector elements relative to the phase 2 element. FDNS was implemented on axisymmetric grids with the hydrogen assumed to be incompressible. The analysis was performed in two steps: the first isolated the effect of the different inlet areas and the second modeled the entire injector element hydrogen flow path.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.; Watson, Brian C.
1992-02-01
The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80
NASA Technical Reports Server (NTRS)
Kamat, Manohar P.; Watson, Brian C.
1992-01-01
The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.
Toward automatic finite element analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Perucchio, Renato; Voelcker, Herbert
1987-01-01
Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.
Research and the Personal Computer.
ERIC Educational Resources Information Center
Blackburn, D. A.
1989-01-01
Discussed is the history and elements of the personal computer. Its uses as a laboratory assistant and generic toolkit for mathematical analysis and modeling are included. The future of the personal computer in research is addressed. (KR)
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.
Process for computing geometric perturbations for probabilistic analysis
Fitch, Simeon H. K. [Charlottesville, VA; Riha, David S [San Antonio, TX; Thacker, Ben H [San Antonio, TX
2012-04-10
A method for computing geometric perturbations for probabilistic analysis. The probabilistic analysis is based on finite element modeling, in which uncertainties in the modeled system are represented by changes in the nominal geometry of the model, referred to as "perturbations". These changes are accomplished using displacement vectors, which are computed for each node of a region of interest and are based on mean-value coordinate calculations.
Impact of solids on composite materials
NASA Technical Reports Server (NTRS)
Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.
1987-01-01
The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1997-01-01
A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.
Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.
SAVLOC, computer program for automatic control and analysis of X-ray fluorescence experiments
NASA Technical Reports Server (NTRS)
Leonard, R. F.
1977-01-01
A program for a PDP-15 computer is presented which provides for control and analysis of trace element determinations by using X-ray fluorescence. The program simultaneously handles data accumulation for one sample and analysis of data from previous samples. Data accumulation consists of sample changing, timing, and data storage. Analysis requires the locating of peaks in X-ray spectra, determination of intensities of peaks, identification of origins of peaks, and determination of a real density of the element responsible for each peak. The program may be run in either a manual (supervised) mode or an automatic (unsupervised) mode.
On a 3-D singularity element for computation of combined mode stress intensities
NASA Technical Reports Server (NTRS)
Atluri, S. N.; Kathiresan, K.
1976-01-01
A special three-dimensional singularity element is developed for the computation of combined modes 1, 2, and 3 stress intensity factors, which vary along an arbitrarily curved crack front in three dimensional linear elastic fracture problems. The finite element method is based on a displacement-hybrid finite element model, based on a modified variational principle of potential energy, with arbitrary element interior displacements, interelement boundary displacements, and element boundary tractions as variables. The special crack-front element used in this analysis contains the square root singularity in strains and stresses, where the stress-intensity factors K(1), K(2), and K(3) are quadratically variable along the crack front and are solved directly along with the unknown nodal displacements.
Stability assessment of structures under earthquake hazard through GRID technology
NASA Astrophysics Data System (ADS)
Prieto Castrillo, F.; Boton Fernandez, M.
2009-04-01
This work presents a GRID framework to estimate the vulnerability of structures under earthquake hazard. The tool has been designed to cover the needs of a typical earthquake engineering stability analysis; preparation of input data (pre-processing), response computation and stability analysis (post-processing). In order to validate the application over GRID, a simplified model of structure under artificially generated earthquake records has been implemented. To achieve this goal, the proposed scheme exploits the GRID technology and its main advantages (parallel intensive computing, huge storage capacity and collaboration analysis among institutions) through intensive interaction among the GRID elements (Computing Element, Storage Element, LHC File Catalogue, federated database etc.) The dynamical model is described by a set of ordinary differential equations (ODE's) and by a set of parameters. Both elements, along with the integration engine, are encapsulated into Java classes. With this high level design, subsequent improvements/changes of the model can be addressed with little effort. In the procedure, an earthquake record database is prepared and stored (pre-processing) in the GRID Storage Element (SE). The Metadata of these records is also stored in the GRID federated database. This Metadata contains both relevant information about the earthquake (as it is usual in a seismic repository) and also the Logical File Name (LFN) of the record for its later retrieval. Then, from the available set of accelerograms in the SE, the user can specify a range of earthquake parameters to carry out a dynamic analysis. This way, a GRID job is created for each selected accelerogram in the database. At the GRID Computing Element (CE), displacements are then obtained by numerical integration of the ODE's over time. The resulting response for that configuration is stored in the GRID Storage Element (SE) and the maximum structure displacement is computed. Then, the corresponding Metadata containing the response LFN, earthquake magnitude and maximum structure displacement is also stored. Finally, the displacements are post-processed through a statistically-based algorithm from the available Metadata to obtain the probability of collapse of the structure for different earthquake magnitudes. From this study, it is possible to build a vulnerability report for the structure type and seismic data. The proposed methodology can be combined with the on-going initiatives to build a European earthquake record database. In this context, Grid enables collaboration analysis over shared seismic data and results among different institutions.
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, C. M.; Tanner, John A.
1989-01-01
A computational procedure is presented for reducing the size of the analysis models of tires having unsymmetric material, geometry and/or loading. The two key elements of the procedure when applied to anisotropic tires are: (1) decomposition of the stiffness matrix into the sum of an orthotropic and nonorthotropic parts; and (2) successive application of the finite-element method and the classical Rayleigh-Ritz technique. The finite-element method is first used to generate few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The proposed technique has high potential for handling practical tire problems with anisotropic materials, unsymmetric imperfections and asymmetric loading. It is also particularly useful for use with three-dimensional finite-element models of tires.
A method for determining spiral-bevel gear tooth geometry for finite element analysis
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Litvin, Faydor L.
1991-01-01
An analytical method was developed to determine gear tooth surface coordinates of face-milled spiral bevel gears. The method uses the basic gear design parameters in conjunction with the kinematical aspects of spiral bevel gear manufacturing machinery. A computer program, SURFACE, was developed. The computer program calculates the surface coordinates and outputs 3-D model data that can be used for finite element analysis. Development of the modeling method and an example case are presented. This analysis method could also find application for gear inspection and near-net-shape gear forging die design.
Aeroelastic analysis of bridge girder section using computer modeling
DOT National Transportation Integrated Search
2001-05-01
This report describes the numerical simulation of wind flow around bridges using the Finite Element Method (FEM) and the principles of Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD). Since, the suspension bridges are p...
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.
1989-01-01
The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.
Finotello, Alice; Morganti, Simone; Auricchio, Ferdinando
2017-09-01
In the last few years, several studies, each with different aim and modeling detail, have been proposed to investigate transcatheter aortic valve implantation (TAVI) with finite elements. The present work focuses on the patient-specific finite element modeling of the aortic valve complex. In particular, we aim at investigating how different modeling strategies in terms of material models/properties and discretization procedures can impact analysis results. Four different choices both for the mesh size (from 20 k elements to 200 k elements) and for the material model (from rigid to hyperelastic anisotropic) are considered. Different approaches for modeling calcifications are also taken into account. Post-operative CT data of the real implant are used as reference solution with the aim of outlining a trade-off between computational model complexity and reliability of the results. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue
NASA Technical Reports Server (NTRS)
Miller, R. W.
1974-01-01
A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.
Structural Optimization Methodology for Rotating Disks of Aircraft Engines
NASA Technical Reports Server (NTRS)
Armand, Sasan C.
1995-01-01
In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.
Addition of higher order plate and shell elements into NASTRAN computer program
NASA Technical Reports Server (NTRS)
Narayanaswami, R.; Goglia, G. L.
1976-01-01
Two higher order plate elements, the linear strain triangular membrane element and the quintic bending element, along with a shallow shell element, suitable for inclusion into the NASTRAN (NASA Structural Analysis) program are described. Additions to the NASTRAN Theoretical Manual, Users' Manual, Programmers' Manual and the NASTRAN Demonstration Problem Manual, for inclusion of these elements into the NASTRAN program are also presented.
NASA Technical Reports Server (NTRS)
Raju, I. S.
1986-01-01
The Q3DG is a computer program developed to perform a quasi-three-dimensional stress analysis for composite laminates which may contain delaminations. The laminates may be subjected to mechanical, thermal, and hygroscopic loads. The program uses the finite element method and models the laminates with eight-noded parabolic isoparametric elements. The program computes the strain-energy-release components and the total strain-energy release in all three modes for delamination growth. A rectangular mesh and data file generator, DATGEN, is included. The DATGEN program can be executed interactively and is user friendly. The documentation includes sections dealing with the Q3D analysis theory, derivation of element stiffness matrices and consistent load vectors for the parabolic element. Several sample problems with the input for Q3DG and output from the program are included. The capabilities of the DATGEN program are illustrated with examples of interactive sessions. A microfiche of all the examples is included. The Q3DG and DATGEN programs have been implemented on CYBER 170 class computers. Q3DG and DATGEN were developed at the Langley Research Center during the early eighties and documented in 1984 to 1985.
Sato, Y; Wadamoto, M; Tsuga, K; Teixeira, E R
1999-04-01
More validity of finite element analysis in implant biomechanics requires element downsizing. However, excess downsizing needs computer memory and calculation time. To investigate the effectiveness of element downsizing on the construction of a three-dimensional finite element bone trabeculae model, with different element sizes (600, 300, 150 and 75 microm) models were constructed and stress induced by vertical 10 N loading was analysed. The difference in von Mises stress values between the models with 600 and 300 microm element sizes was larger than that between 300 and 150 microm. On the other hand, no clear difference of stress values was detected among the models with 300, 150 and 75 microm element sizes. Downsizing of elements from 600 to 300 microm is suggested to be effective in the construction of a three-dimensional finite element bone trabeculae model for possible saving of computer memory and calculation time in the laboratory.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.
2004-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.
Eleventh NASTRAN User's Colloquium
NASA Technical Reports Server (NTRS)
1983-01-01
NASTRAN (NASA STRUCTURAL ANALYSIS) is a large, comprehensive, nonproprietary, general purpose finite element computer code for structural analysis which was developed under NASA sponsorship. The Eleventh Colloquium provides some comprehensive general papers on the application of finite element methods in engineering, comparisons with other approaches, unique applications, pre- and post-processing or auxiliary programs, and new methods of analysis with NASTRAN.
Structural Acoustic Physics Based Modeling of Curved Composite Shells
2017-09-19
Results show that the finite element computational models accurately match analytical calculations, and that the composite material studied in this...products. 15. SUBJECT TERMS Finite Element Analysis, Structural Acoustics, Fiber-Reinforced Composites, Physics-Based Modeling 16. SECURITY...2 4 FINITE ELEMENT MODEL DESCRIPTION
Computational Understanding: Analysis of Sentences and Context
1974-05-01
Computer Science Department Stanford, California 9430b 10- PROGRAM ELEMENT. PROJECT. TASK AREA « WORK UNIT NUMBERS II. CONTROLLING OFFICE NAME...these is the need tor programs that can respond in useful ways to information expressed in a natural language. However a computational understanding...buying structure because "Mary" appears where it does. But the time for analysis was rarely over five seconds of computer time, when the Lisp program
State-variable analysis of non-linear circuits with a desk computer
NASA Technical Reports Server (NTRS)
Cohen, E.
1981-01-01
State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.
Development and verification of local/global analysis techniques for laminated composites
NASA Technical Reports Server (NTRS)
Griffin, O. Hayden, Jr.
1989-01-01
Analysis and design methods for laminated composite materials have been the subject of considerable research over the past 20 years, and are currently well developed. In performing the detailed three-dimensional analyses which are often required in proximity to discontinuities, however, analysts often encounter difficulties due to large models. Even with the current availability of powerful computers, models which are too large to run, either from a resource or time standpoint, are often required. There are several approaches which can permit such analyses, including substructuring, use of superelements or transition elements, and the global/local approach. This effort is based on the so-called zoom technique to global/local analysis, where a global analysis is run, with the results of that analysis applied to a smaller region as boundary conditions, in as many iterations as is required to attain an analysis of the desired region. Before beginning the global/local analyses, it was necessary to evaluate the accuracy of the three-dimensional elements currently implemented in the Computational Structural Mechanics (CSM) Testbed. It was also desired to install, using the Experimental Element Capability, a number of displacement formulation elements which have well known behavior when used for analysis of laminated composites.
Twelfth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1984-01-01
NASTRAN is a large, comprehensive, nonproprietary, general purpose finite element computer code for structural analysis. The Twelfth Users' Colloquim provides some comprehensive papers on the application of finite element methods in engineering, comparisons with other approaches, unique applications, pre and post processing or auxiliary programs, and new methods of analysis with NASTRAN.
Computational plasticity algorithm for particle dynamics simulations
NASA Astrophysics Data System (ADS)
Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.
2018-01-01
The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1989-01-01
A computational procedure is presented for the nonlinear dynamic analysis of unsymmetric structures on vector multiprocessor systems. The procedure is based on a novel hierarchical partitioning strategy in which the response of the unsymmetric and antisymmetric response vectors (modes), each obtained by using only a fraction of the degrees of freedom of the original finite element model. The three key elements of the procedure which result in high degree of concurrency throughout the solution process are: (1) mixed (or primitive variable) formulation with independent shape functions for the different fields; (2) operator splitting or restructuring of the discrete equations at each time step to delineate the symmetric and antisymmetric vectors constituting the response; and (3) two level iterative process for generating the response of the structure. An assessment is made of the effectiveness of the procedure on the CRAY X-MP/4 computers.
Zhang, Meng; Gao, Jiazi; Huang, Xu; Zhang, Min; Liu, Bei
2017-01-01
Quantitative computed tomography-based finite element analysis (QCT/FEA) has been developed to predict vertebral strength. However, QCT/FEA models may be different with scan resolutions and element sizes. The aim of this study was to explore the effects of scan resolutions and element sizes on QCT/FEA outcomes. Nine bovine vertebral bodies were scanned using the clinical CT scanner and reconstructed from datasets with the two-slice thickness, that is, 0.6 mm (PA resolution) and 1 mm (PB resolution). There were significantly linear correlations between the predicted and measured principal strains (R2 > 0.7, P < 0.0001), and the predicted vertebral strength and stiffness were modestly correlated with the experimental values (R2 > 0.6, P < 0.05). Two different resolutions and six different element sizes were combined in pairs, and finite element (FE) models of bovine vertebral cancellous bones in the 12 cases were obtained. It showed that the mechanical parameters of FE models with the PB resolution were similar to those with the PA resolution. The computational accuracy of FE models with the element sizes of 0.41 × 0.41 × 0.6 mm3 and 0.41 × 0.41 × 1 mm3 was higher by comparing the apparent elastic modulus and yield strength. Therefore, scan resolution and element size should be chosen optimally to improve the accuracy of QCT/FEA. PMID:29065624
Computational Methods for Structural Mechanics and Dynamics
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.
Probabilistic Structural Analysis Program
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
Study of propellant dynamics in a shuttle type launch vehicle
NASA Technical Reports Server (NTRS)
Jones, C. E.; Feng, G. C.
1972-01-01
A method and an associated digital computer program for evaluating the vibrational characteristics of large liquid-filled rigid wall tanks of general shape are presented. A solution procedure was developed in which slosh modes and frequencies are computed for systems mathematically modeled as assemblages of liquid finite elements. To retain sparsity in the assembled system mass and stiffness matrices, a compressible liquid element formulation was incorporated in the program. The approach taken in the liquid finite element formulation is compatible with triangular and quadrilateral structural finite elements so that the analysis of liquid motion can be coupled with flexible tank wall motion at some future time. The liquid element repertoire developed during the course of this study consists of a two-dimensional triangular element and a three-dimensional tetrahedral element.
NASA Astrophysics Data System (ADS)
Sawicki, J.; Siedlaczek, P.; Staszczyk, A.
2018-03-01
A numerical three-dimensional model for computing residual stresses generated in cross section of steel 42CrMo4 after nitriding is presented. The diffusion process is analyzed by the finite-element method. The internal stresses are computed using the obtained profile of the distribution of the nitrogen concentration. The special features of the intricate geometry of the treated articles including edges and angles are considered. Comparative analysis of the results of the simulation and of the experimental measurement of residual stresses is performed by the Waisman-Philips method.
Development of a Aerothermoelastic-Acoustics Simulation Capability of Flight Vehicles
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Choi, S. B.; Ibrahim, A.
2010-01-01
A novel numerical, finite element based analysis methodology is presented in this paper suitable for accurate and efficient simulation of practical, complex flight vehicles. An associated computer code, developed in this connection, is also described in some detail. Thermal effects of high speed flow obtained from a heat conduction analysis are incorporated in the modal analysis which in turn affects the unsteady flow arising out of interaction of elastic structures with the air. Numerical examples pertaining to representative problems are given in much detail testifying to the efficacy of the advocated techniques. This is a unique implementation of temperature effects in a finite element CFD based multidisciplinary simulation analysis capability involving large scale computations.
NASA Astrophysics Data System (ADS)
Avitabile, Peter; O'Callahan, John
2009-01-01
Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.
NASA Technical Reports Server (NTRS)
Heinmiller, J. P.
1971-01-01
This document is the programmer's guide for the GNAT computer program developed under MSC/TRW Task 705-2, Apollo cryogenic storage system analysis, subtask 2, is reported. Detailed logic flow charts and compiled program listings are provided for all program elements.
The NASA NASTRAN structural analysis computer program - New content
NASA Technical Reports Server (NTRS)
Weidman, D. J.
1978-01-01
Capabilities of a NASA-developed structural analysis computer program, NASTRAN, are evaluated with reference to finite-element modelling. Applications include the automotive industry as well as aerospace. It is noted that the range of sub-programs within NASTRAN has expanded, while keeping user cost low.
NASA Technical Reports Server (NTRS)
Robinson, J. C.
1979-01-01
Two methods for determining stresses and internal forces in geometrically nonlinear structural analysis are presented. The simplified approach uses the mid-deformed structural position to evaluate strains when rigid body rotation is present. The important feature of this approach is that it can easily be used with a general-purpose finite-element computer program. The refined approach uses element intrinsic or corotational coordinates and a geometric transformation to determine element strains from joint displacements. Results are presented which demonstrate the capabilities of these potentially useful approaches for geometrically nonlinear structural analysis.
Combining Thermal And Structural Analyses
NASA Technical Reports Server (NTRS)
Winegar, Steven R.
1990-01-01
Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.
Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González
2016-01-01
Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering. PMID:27872840
Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González
2016-01-01
Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.
Adaptation of a Control Center Development Environment for Industrial Process Control
NASA Technical Reports Server (NTRS)
Killough, Ronnie L.; Malik, James M.
1994-01-01
In the control center, raw telemetry data is received for storage, display, and analysis. This raw data must be combined and manipulated in various ways by mathematical computations to facilitate analysis, provide diversified fault detection mechanisms, and enhance display readability. A development tool called the Graphical Computation Builder (GCB) has been implemented which provides flight controllers with the capability to implement computations for use in the control center. The GCB provides a language that contains both general programming constructs and language elements specifically tailored for the control center environment. The GCB concept allows staff who are not skilled in computer programming to author and maintain computer programs. The GCB user is isolated from the details of external subsystem interfaces and has access to high-level functions such as matrix operators, trigonometric functions, and unit conversion macros. The GCB provides a high level of feedback during computation development that improves upon the often cryptic errors produced by computer language compilers. An equivalent need can be identified in the industrial data acquisition and process control domain: that of an integrated graphical development tool tailored to the application to hide the operating system, computer language, and data acquisition interface details. The GCB features a modular design which makes it suitable for technology transfer without significant rework. Control center-specific language elements can be replaced by elements specific to industrial process control.
TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1976-01-01
The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.
Sensitivity analysis of bridge health index to element failure and element conditions.
DOT National Transportation Integrated Search
2009-11-01
Bridge Health Index (BHI) is a bridge performance measure based on the condition of the bridge elements. It : is computed as the ratio of remaining value of the bridge structure to the initial value of the structure. Since it : is expressed as a perc...
Finite element meshing of ANSYS (trademark) solid models
NASA Technical Reports Server (NTRS)
Kelley, F. S.
1987-01-01
A large scale, general purpose finite element computer program, ANSYS, developed and marketed by Swanson Analysis Systems, Inc. is discussed. ANSYS was perhaps the first commercially available program to offer truly interactive finite element model generation. ANSYS's purpose is for solid modeling. This application is briefly discussed and illustrated.
NASA Technical Reports Server (NTRS)
1994-01-01
General Purpose Boundary Element Solution Technology (GPBEST) software employs the boundary element method of mechanical engineering analysis, as opposed to finite element. It is, according to one of its developers, 10 times faster in data preparation and more accurate than other methods. Its use results in less expensive products because the time between design and manufacturing is shortened. A commercial derivative of a NASA-developed computer code, it is marketed by Best Corporation to solve problems in stress analysis, heat transfer, fluid analysis and yielding and cracking of solids. Other applications include designing tractor and auto parts, household appliances and acoustic analysis.
NASTRAN: User's Experiences. [conference
NASA Technical Reports Server (NTRS)
1975-01-01
Papers given at the colloquium are presented. Topics discussed include NASTRAN status and plans, computer operations, thermal analysis, NASTRAN applications, vibrations, dynamics, and finite element analysis.
Simplified and refined structural modeling for economical flutter analysis and design
NASA Technical Reports Server (NTRS)
Ricketts, R. H.; Sobieszczanski, J.
1977-01-01
A coordinated use of two finite-element models of different levels of refinement is presented to reduce the computer cost of the repetitive flutter analysis commonly encountered in structural resizing to meet flutter requirements. One model, termed a refined model (RM), represents a high degree of detail needed for strength-sizing and flutter analysis of an airframe. The other model, called a simplified model (SM), has a relatively much smaller number of elements and degrees-of-freedom. A systematic method of deriving an SM from a given RM is described. The method consists of judgmental and numerical operations to make the stiffness and mass of the SM elements equivalent to the corresponding substructures of RM. The structural data are automatically transferred between the two models. The bulk of analysis is performed on the SM with periodical verifications carried out by analysis of the RM. In a numerical example of a supersonic cruise aircraft with an arrow wing, this approach permitted substantial savings in computer costs and acceleration of the job turn-around.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syring, R.P.; Grubb, R.L.
1979-09-30
This document reports on the following: (1) experimental determination of the response of 16 basic structural elements and 7 B-52 components to simulated nuclear overpressure environments (utilizing Sandia Corporation's Thunderpipe Shock Tube), (2) analysis of these test specimens utilizing the NOVA-2 computer program, and (3) correlation of test and analysis results.
Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure
NASA Astrophysics Data System (ADS)
Szafran, J.; Juszczyk, K.; Kamiński, M.
2017-12-01
The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.
CFD Analysis of the SBXC Glider Airframe
2016-06-01
mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the previous research data...greater than 15 m/s. 14. SUBJECT TERMS finite element method, computational fluid dynamics, Y Plus, mesh element quality, aerodynamic data, fluid...based mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
NASA Technical Reports Server (NTRS)
Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard
1991-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/ mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
NASA Technical Reports Server (NTRS)
Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.
1992-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
Wang, Wansheng; Chen, Long; Zhou, Jie
2015-01-01
A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures. PMID:27110063
Geometrically nonlinear analysis of layered composite plates and shells
NASA Technical Reports Server (NTRS)
Chao, W. C.; Reddy, J. N.
1983-01-01
A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion.
Finite element modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.
1983-01-01
Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.
Iso-geometric analysis for neutron diffusion problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, S. K.; Eaton, M. D.; Williams, M. M. R.
Iso-geometric analysis can be viewed as a generalisation of the finite element method. It permits the exact representation of a wider range of geometries including conic sections. This is possible due to the use of concepts employed in computer-aided design. The underlying mathematical representations from computer-aided design are used to capture both the geometry and approximate the solution. In this paper the neutron diffusion equation is solved using iso-geometric analysis. The practical advantages are highlighted by looking at the problem of a circular fuel pin in a square moderator. For this problem the finite element method requires the geometry tomore » be approximated. This leads to errors in the shape and size of the interface between the fuel and the moderator. In contrast to this iso-geometric analysis allows the interface to be represented exactly. It is found that, due to a cancellation of errors, the finite element method converges more quickly than iso-geometric analysis for this problem. A fuel pin in a vacuum was then considered as this problem is highly sensitive to the leakage across the interface. In this case iso-geometric analysis greatly outperforms the finite element method. Due to the improvement in the representation of the geometry iso-geometric analysis can outperform traditional finite element methods. It is proposed that the use of iso-geometric analysis on neutron transport problems will allow deterministic solutions to be obtained for exact geometries. Something that is only currently possible with Monte Carlo techniques. (authors)« less
NASA Technical Reports Server (NTRS)
Hua, Chongyu; Volakis, John L.
1990-01-01
AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.
NASA Technical Reports Server (NTRS)
Hou, Gene
1998-01-01
Sensitivity analysis is a technique for determining derivatives of system responses with respect to design parameters. Among many methods available for sensitivity analysis, automatic differentiation has been proven through many applications in fluid dynamics and structural mechanics to be an accurate and easy method for obtaining derivatives. Nevertheless, the method can be computational expensive and can require a high memory space. This project will apply an automatic differentiation tool, ADIFOR, to a p-version finite element code to obtain first- and second- order then-nal derivatives, respectively. The focus of the study is on the implementation process and the performance of the ADIFOR-enhanced codes for sensitivity analysis in terms of memory requirement, computational efficiency, and accuracy.
Thermal-stress analysis for a wood composite blade
NASA Technical Reports Server (NTRS)
Fu, K. C.; Harb, A.
1984-01-01
A thermal-stress analysis of a wind turbine blade made of wood composite material is reported. First, the governing partial differential equation on heat conduction is derived, then, a finite element procedure using variational approach is developed for the solution of the governing equation. Thus, the temperature distribution throughout the blade is determined. Next, based on the temperature distribution, a finite element procedure using potential energy approach is applied to determine the thermal-stress distribution. A set of results is obtained through the use of a computer, which is considered to be satisfactory. All computer programs are contained in the report.
CFD Methods and Tools for Multi-Element Airfoil Analysis
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; George, Michael W. (Technical Monitor)
1995-01-01
This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.
NASA Technical Reports Server (NTRS)
Caruso, J. J.
1984-01-01
Finite element substructuring is used to predict unidirectional fiber composite hygral (moisture), thermal, and mechanical properties. COSMIC NASTRAN and MSC/NASTRAN are used to perform the finite element analysis. The results obtained from the finite element model are compared with those obtained from the simplified composite micromechanics equations. A unidirectional composite structure made of boron/HM-epoxy, S-glass/IMHS-epoxy and AS/IMHS-epoxy are studied. The finite element analysis is performed using three dimensional isoparametric brick elements and two distinct models. The first model consists of a single cell (one fiber surrounded by matrix) to form a square. The second model uses the single cell and substructuring to form a nine cell square array. To compare computer time and results with the nine cell superelement model, another nine cell model is constructed using conventional mesh generation techniques. An independent computer program consisting of the simplified micromechanics equation is developed to predict the hygral, thermal, and mechanical properties for this comparison. The results indicate that advanced techniques can be used advantageously for fiber composite micromechanics.
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.
1984-01-01
A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described.
Application of numerical methods to heat transfer and thermal stress analysis of aerospace vehicles
NASA Technical Reports Server (NTRS)
Wieting, A. R.
1979-01-01
The paper describes a thermal-structural design analysis study of a fuel-injection strut for a hydrogen-cooled scramjet engine for a supersonic transport, utilizing finite-element methodology. Applications of finite-element and finite-difference codes to the thermal-structural design-analysis of space transports and structures are discussed. The interaction between the thermal and structural analyses has led to development of finite-element thermal methodology to improve the integration between these two disciplines. The integrated thermal-structural analysis capability developed within the framework of a computer code is outlined.
Liver CT image processing: a short introduction of the technical elements.
Masutani, Y; Uozumi, K; Akahane, Masaaki; Ohtomo, Kuni
2006-05-01
In this paper, we describe the technical aspects of image analysis for liver diagnosis and treatment, including the state-of-the-art of liver image analysis and its applications. After discussion on modalities for liver image analysis, various technical elements for liver image analysis such as registration, segmentation, modeling, and computer-assisted detection are covered with examples performed with clinical data sets. Perspective in the imaging technologies is also reviewed and discussed.
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.
1998-01-01
An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syring, R.P.; Grubb, R.L.
1979-09-30
This document reports on the following: (1) experimental determination of the response of 16 basic structural elements and 7 B-52 components to simulated nuclear overpressure environments (utilizing Sandia Corporation's Thunderpipe Shock Tube), (2) analysis of these test specimens utilizing the NOVA-2 computer program, and (3) correlation of test and analysis results.
The finite element method in low speed aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1975-01-01
The finite element procedure is shown to be of significant impact in design of the 'computational wind tunnel' for low speed aerodynamics. The uniformity of the mathematical differential equation description, for viscous and/or inviscid, multi-dimensional subsonic flows about practical aerodynamic system configurations, is utilized to establish the general form of the finite element algorithm. Numerical results for inviscid flow analysis, as well as viscous boundary layer, parabolic, and full Navier Stokes flow descriptions verify the capabilities and overall versatility of the fundamental algorithm for aerodynamics. The proven mathematical basis, coupled with the distinct user-orientation features of the computer program embodiment, indicate near-term evolution of a highly useful analytical design tool to support computational configuration studies in low speed aerodynamics.
Application of Dynamic Analysis in Semi-Analytical Finite Element Method.
Liu, Pengfei; Xing, Qinyan; Wang, Dawei; Oeser, Markus
2017-08-30
Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement's state.
2010-02-27
investigated in more detail. The intermediate level of fidelity, though more expensive, is then used to refine the analysis , add geometric detail, and...design stage is used to further refine the analysis , narrowing the design to a handful of options. Figure 1. Integrated Hierarchical Framework. In...computational structural and computational fluid modeling. For the structural analysis tool we used McIntosh Structural Dynamics’ finite element code CNEVAL
The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.
Ene, Florentina; Delassus, Patrick; Morris, Liam
2014-08-01
The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.
Three-dimensional computation of laser cavity eigenmodes by the use of finite element analysis (FEA)
NASA Astrophysics Data System (ADS)
Altmann, Konrad; Pflaum, Christoph; Seider, David
2004-06-01
A new method for computing eigenmodes of a laser resonator by the use of finite element analysis (FEA) is presented. For this purpose, the scalar wave equation [Δ + k2]E(x,y,z) = 0 is transformed into a solvable 3D eigenvalue problem by separating out the propagation factor exp(-ikz) from the phasor amplitude E(x,y,z) of the time-harmonic electrical field. For standing wave resonators, the beam inside the cavity is represented by a two-wave ansatz. For cavities with parabolic optical elements the new approach has successfully been verified by the use of the Gaussian mode algorithm. For a DPSSL with a thermally lensing crystal inside the cavity the expected deviation between Gaussian approximation and numerical solution could be demonstrated clearly.
Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Witmer, E. A.; Rodal, J. J. A.
1979-01-01
Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions.
Advances and trends in computational structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1986-01-01
Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.
Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications
NASA Astrophysics Data System (ADS)
Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan
2006-06-01
In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.
Modeling of rolling element bearing mechanics. Theoretical manual
NASA Technical Reports Server (NTRS)
Merchant, David H.; Greenhill, Lyn M.
1994-01-01
This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
Sato, Y; Teixeira, E R; Tsuga, K; Shindoi, N
1999-08-01
More validity of finite element analysis (FEA) in implant biomechanics requires element downsizing. However, excess downsizing needs computer memory and calculation time. To evaluate the effectiveness of a new algorithm established for more valid FEA model construction without downsizing, three-dimensional FEA bone trabeculae models with different element sizes (300, 150 and 75 micron) were constructed. Four algorithms of stepwise (1 to 4 ranks) assignment of Young's modulus accorded with bone volume in the individual cubic element was used and then stress distribution against vertical loading was analysed. The model with 300 micron element size, with 4 ranks of Young's moduli accorded with bone volume in each element presented similar stress distribution to the model with the 75 micron element size. These results show that the new algorithm was effective, and the use of the 300 micron element for bone trabeculae representation was proposed, without critical changes in stress values and for possible savings on computer memory and calculation time in the laboratory.
NASA Technical Reports Server (NTRS)
Vos, R. G.; Straayer, J. W.
1975-01-01
The BOPACE 3-D is a finite element computer program, which provides a general family of three-dimensional isoparametric solid elements, and includes a new algorithm for improving the efficiency of the elastic-plastic-creep solution procedure. Theoretical, user, and programmer oriented sections are presented to describe the program.
The Automated Logistics Element Planning System (ALEPS)
NASA Technical Reports Server (NTRS)
Schwaab, Douglas G.
1991-01-01
The design and functions of ALEPS (Automated Logistics Element Planning System) is a computer system that will automate planning and decision support for Space Station Freedom Logistical Elements (LEs) resupply and return operations. ALEPS provides data management, planning, analysis, monitoring, interfacing, and flight certification for support of LE flight load planning activities. The prototype ALEPS algorithm development is described.
Integrated command, control, communications and computation system functional architecture
NASA Technical Reports Server (NTRS)
Cooley, C. G.; Gilbert, L. E.
1981-01-01
The functional architecture for an integrated command, control, communications, and computation system applicable to the command and control portion of the NASA End-to-End Data. System is described including the downlink data processing and analysis functions required to support the uplink processes. The functional architecture is composed of four elements: (1) the functional hierarchy which provides the decomposition and allocation of the command and control functions to the system elements; (2) the key system features which summarize the major system capabilities; (3) the operational activity threads which illustrate the interrelationahip between the system elements; and (4) the interfaces which illustrate those elements that originate or generate data and those elements that use the data. The interfaces also provide a description of the data and the data utilization and access techniques.
Fluid-structure finite-element vibrational analysis
NASA Technical Reports Server (NTRS)
Feng, G. C.; Kiefling, L.
1974-01-01
A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane strain elements as well as three different generalized plane strain type approaches were performed. The computed deflections, skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with lamination length. For more accurate predictions, however, a three-dimensional analysis is required.
NASA Technical Reports Server (NTRS)
Sainsbury-Carter, J. B.; Conaway, J. H.
1973-01-01
The development and implementation of a preprocessor system for the finite element analysis of helicopter fuselages is described. The system utilizes interactive graphics for the generation, display, and editing of NASTRAN data for fuselage models. It is operated from an IBM 2250 cathode ray tube (CRT) console driven by an IBM 370/145 computer. Real time interaction plus automatic data generation reduces the nominal 6 to 10 week time for manual generation and checking of data to a few days. The interactive graphics system consists of a series of satellite programs operated from a central NASTRAN Systems Monitor. Fuselage structural models including the outer shell and internal structure may be rapidly generated. All numbering systems are automatically assigned. Hard copy plots of the model labeled with GRID or elements ID's are also available. General purpose programs for displaying and editing NASTRAN data are included in the system. Utilization of the NASTRAN interactive graphics system has made possible the multiple finite element analysis of complex helicopter fuselage structures within design schedules.
Mixed time integration methods for transient thermal analysis of structures, appendix 5
NASA Technical Reports Server (NTRS)
Liu, W. K.
1982-01-01
Mixed time integration methods for transient thermal analysis of structures are studied. An efficient solution procedure for predicting the thermal behavior of aerospace vehicle structures was developed. A 2D finite element computer program incorporating these methodologies is being implemented. The performance of these mixed time finite element algorithms can then be evaluated employing the proposed example problem.
Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Schiller, Noah H.
2011-01-01
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.
Chen, W P; Tang, F T; Ju, C W
2001-08-01
To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.
Vauhkonen, P J; Vauhkonen, M; Kaipio, J P
2000-02-01
In electrical impedance tomography (EIT), an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. The currents spread out in three dimensions and therefore off-plane structures have a significant effect on the reconstructed images. A question arises: how far from the current carrying electrodes should the discretized model of the object be extended? If the model is truncated too near the electrodes, errors are produced in the reconstructed images. On the other hand if the model is extended very far from the electrodes the computational time may become too long in practice. In this paper the model truncation problem is studied with the extended finite element method. Forward solutions obtained using so-called infinite elements, long finite elements and separable long finite elements are compared to the correct solution. The effects of the truncation of the computational domain on the reconstructed images are also discussed and results from the three-dimensional (3D) sensitivity analysis are given. We show that if the finite element method with ordinary elements is used in static 3D EIT, the dimension of the problem can become fairly large if the errors associated with the domain truncation are to be avoided.
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
Townsend, Kevin C; Thomas-Aitken, Holly D; Rudert, M James; Kern, Andrew M; Willey, Michael C; Anderson, Donald D; Goetz, Jessica E
2018-01-23
Evaluation of abnormalities in joint contact stress that develop after inaccurate reduction of an acetabular fracture may provide a potential means for predicting the risk of developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational technique for calculating intra-articular contact stress distributions in a fraction of the time required to obtain the same information using the more commonly employed finite element analysis technique. The goal of this work was to validate the accuracy of DEA-computed contact stress against physical measurements of contact stress made in cadaveric hips using Tekscan sensors. Four static loading tests in a variety of poses from heel-strike to toe-off were performed in two different cadaveric hip specimens with the acetabulum intact and again with an intentionally malreduced posterior wall acetabular fracture. DEA-computed contact stress was compared on a point-by-point basis to stress measured from the physical experiments. There was good agreement between computed and measured contact stress over the entire contact area (correlation coefficients ranged from 0.88 to 0.99). DEA-computed peak contact stress was within an average of 0.5 MPa (range 0.2-0.8 MPa) of the Tekscan peak stress for intact hips, and within an average of 0.6 MPa (range 0-1.6 MPa) for fractured cases. DEA-computed contact areas were within an average of 33% of the Tekscan-measured areas (range: 1.4-60%). These results indicate that the DEA methodology is a valid method for accurately estimating contact stress in both intact and fractured hips. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tenth NASTRAN User's Colloquium
NASA Technical Reports Server (NTRS)
1982-01-01
The development of the NASTRAN computer program, a general purpose finite element computer code for structural analysis, was discussed. The application and development of NASTRAN is presented in the following topics: improvements and enhancements; developments of pre and postprocessors; interactive review system; the use of harmonic expansions in magnetic field problems; improving a dynamic model with test data using Linwood; solution of axisymmetric fluid structure interaction problems; large displacements and stability analysis of nonlinear propeller structures; prediction of bead area contact load at the tire wheel interface; elastic plastic analysis of an overloaded breech ring; finite element solution of torsion and other 2-D Poisson equations; new capability for elastic aircraft airloads; usage of substructuring analysis in the get away special program; solving symmetric structures with nonsymmetric loads; evaluation and reduction of errors induced by Guyan transformation.
Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code
NASA Astrophysics Data System (ADS)
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.
2017-10-01
A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.
Simultaneous analysis and design
NASA Technical Reports Server (NTRS)
Haftka, R. T.
1984-01-01
Optimization techniques are increasingly being used for performing nonlinear structural analysis. The development of element by element (EBE) preconditioned conjugate gradient (CG) techniques is expected to extend this trend to linear analysis. Under these circumstances the structural design problem can be viewed as a nested optimization problem. There are computational benefits to treating this nested problem as a large single optimization problem. The response variables (such as displacements) and the structural parameters are all treated as design variables in a unified formulation which performs simultaneously the design and analysis. Two examples are used for demonstration. A seventy-two bar truss is optimized subject to linear stress constraints and a wing box structure is optimized subject to nonlinear collapse constraints. Both examples show substantial computational savings with the unified approach as compared to the traditional nested approach.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
Probabilistic finite elements for fatigue and fracture analysis
NASA Astrophysics Data System (ADS)
Belytschko, Ted; Liu, Wing Kam
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1992-01-01
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Finite-element reentry heat-transfer analysis of space shuttle Orbiter
NASA Technical Reports Server (NTRS)
Ko, William L.; Quinn, Robert D.; Gong, Leslie
1986-01-01
A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.
Air Vehicles Division Computational Structural Analysis Facilities Policy and Guidelines for Users
2005-05-01
34 Thermal " as appropriate and the tolerance set to "default". b) Create the model geometry. c) Create the finite elements. d) Create the...linear, non-linear, dynamic, thermal , acoustic analysis. The modelling of composite materials, creep, fatigue and plasticity are also covered...perform professional, high quality finite element analysis (FEA). FE analysts from many tasks within AVD are using the facilities to conduct FEA with
CFD Evaluation of a 3rd Generation LDI Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Mongia, Hukam; Lee, Phil
2017-01-01
An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a nineteen-element injector array arranged in a three-module, 7-5-7 element configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that meets effective area and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.
The physical vulnerability of elements at risk: a methodology based on fluid and classical mechanics
NASA Astrophysics Data System (ADS)
Mazzorana, B.; Fuchs, S.; Levaggi, L.
2012-04-01
The impacts of the flood events occurred in autumn 2011 in the Italian regions Liguria and Tuscany revived the engagement of the public decision makers to enhance in synergy flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of both, the immobile and mobile elements at risk potentially exposed to flood hazards. Based on fluid and classical mechanics notions we developed computation schemes enabling for a dynamic vulnerability and risk analysis facing a broad typological variety of elements at risk. The methodological skeleton consists of (1) hydrodynamic computation of the time-varying flood intensities resulting for each element at risk in a succession of loading configurations; (2) modelling the mechanical response of the impacted elements through static, elasto-static and dynamic analyses; (3) characterising the mechanical response through proper structural damage variables and (4) economic valuation of the expected losses as a function of the quantified damage variables. From a computational perspective we coupled the description of the hydrodynamic flow behaviour and the induced structural modifications of the elements at risk exposed. Valuation methods, suitable to support a correct mapping from the value domains of the physical damage variables to the economic loss values are discussed. In such a way we target to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches to refine the conceptual framework of the cost-benefit analysis. Moreover, we aim to support the design of effective flood risk mitigation strategies by diminishing the main criticalities within the systems prone to flood risk.
NASA Technical Reports Server (NTRS)
Nakazawa, S.
1988-01-01
This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.
NASA Technical Reports Server (NTRS)
Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.
2000-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.
Brigham, John C.; Aquino, Wilkins; Aguilo, Miguel A.; Diamessis, Peter J.
2010-01-01
An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402
A Study on Urban Road Traffic Safety Based on Matter Element Analysis
Hu, Qizhou; Zhou, Zhuping; Sun, Xu
2014-01-01
This paper examines a new evaluation of urban road traffic safety based on a matter element analysis, avoiding the difficulties found in other traffic safety evaluations. The issue of urban road traffic safety has been investigated through the matter element analysis theory. The chief aim of the present work is to investigate the features of urban road traffic safety. Emphasis was placed on the construction of a criterion function by which traffic safety achieved a hierarchical system of objectives to be evaluated. The matter element analysis theory was used to create the comprehensive appraisal model of urban road traffic safety. The technique was used to employ a newly developed and versatile matter element analysis algorithm. The matter element matrix solves the uncertainty and incompatibility of the evaluated factors used to assess urban road traffic safety. The application results showed the superiority of the evaluation model and a didactic example was included to illustrate the computational procedure. PMID:25587267
A new implementation of the programming system for structural synthesis (PROSSS-2)
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.
1984-01-01
This new implementation of the PROgramming System for Structural Synthesis (PROSSS-2) combines a general-purpose finite element computer program for structural analysis, a state-of-the-art optimization program, and several user-supplied, problem-dependent computer programs. The results are flexibility of the optimization procedure, organization, and versatility of the formulation of constraints and design variables. The analysis-optimization process results in a minimized objective function, typically the mass. The analysis and optimization programs are executed repeatedly by looping through the system until the process is stopped by a user-defined termination criterion. However, some of the analysis, such as model definition, need only be one time and the results are saved for future use. The user must write some small, simple FORTRAN programs to interface between the analysis and optimization programs. One of these programs, the front processor, converts the design variables output from the optimizer into the suitable format for input into the analyzer. Another, the end processor, retrieves the behavior variables and, optionally, their gradients from the analysis program and evaluates the objective function and constraints and optionally their gradients. These quantities are output in a format suitable for input into the optimizer. These user-supplied programs are problem-dependent because they depend primarily upon which finite elements are being used in the model. PROSSS-2 differs from the original PROSSS in that the optimizer and front and end processors have been integrated into the finite element computer program. This was done to reduce the complexity and increase portability of the system, and to take advantage of the data handling features found in the finite element program.
Coupled Structural, Thermal, Phase-change and Electromagnetic Analysis for Superconductors, Volume 2
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.
1996-01-01
Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromag subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermel and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. Volume 1 describes mostly formulation specific problems. Volume 2 describes generalization of those formulations.
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.
Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments
NASA Astrophysics Data System (ADS)
Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak
2015-10-01
The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
Boundary formulations for sensitivity analysis without matrix derivatives
NASA Technical Reports Server (NTRS)
Kane, J. H.; Guru Prasad, K.
1993-01-01
A new hybrid approach to continuum structural shape sensitivity analysis employing boundary element analysis (BEA) is presented. The approach uses iterative reanalysis to obviate the need to factor perturbed matrices in the determination of surface displacement and traction sensitivities via a univariate perturbation/finite difference (UPFD) step. The UPFD approach makes it possible to immediately reuse existing subroutines for computation of BEA matrix coefficients in the design sensitivity analysis process. The reanalysis technique computes economical response of univariately perturbed models without factoring perturbed matrices. The approach provides substantial computational economy without the burden of a large-scale reprogramming effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Yu-Hong; Pothen, Alex; Halappanavar, Mahantesh
We present an augmented matrix approach to update the solution to a linear system of equations when the coefficient matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, where operators need to performmore » $N-x$ contingency analysis, i.e., determine the state of the system when up to $x$ links from $N$ fail. Our algorithms augment the coefficient matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the coefficient matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing $N-x$ contingency analysis on a $778K$ bus grid, updating a solution with $x=20$ elements in $$1.6 \\times 10^{-2}$$ seconds on an Intel Xeon processor.« less
NASA Astrophysics Data System (ADS)
Kim, Euiyoung; Cho, Maenghyo
2017-11-01
In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.
Computing Operating Characteristics Of Bearing/Shaft Systems
NASA Technical Reports Server (NTRS)
Moore, James D.
1996-01-01
SHABERTH computer program predicts operating characteristics of bearings in multibearing load-support system. Lubricated and nonlubricated bearings modeled. Calculates loads, torques, temperatures, and fatigue lives of ball and/or roller bearings on single shaft. Provides for analysis of reaction of system to termination of supply of lubricant to bearings and other lubricated mechanical elements. Valuable in design and analysis of shaft/bearing systems. Two versions of SHABERTH available. Cray version (LEW-14860), "Computing Thermal Performances Of Shafts and Bearings". IBM PC version (MFS-28818), written for IBM PC-series and compatible computers running MS-DOS.
Structural analysis of natural textures.
Vilnrotter, F M; Nevatia, R; Price, K E
1986-01-01
Many textures can be described structurally, in terms of the individual textural elements and their spatial relationships. This paper describes a system to generate useful descriptions of natural textures in these terms. The basic approach is to determine an initial, partial description of the elements using edge features. This description controls the extraction of the texture elements. The elements are grouped by type, and spatial relationships between elements are computed. The descriptions are shown to be useful for recognition of the textures, and for reconstruction of periodic textures.
Better Finite-Element Analysis of Composite Shell Structures
NASA Technical Reports Server (NTRS)
Clarke, Gregory
2007-01-01
A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.
The computational structural mechanics testbed generic structural-element processor manual
NASA Technical Reports Server (NTRS)
Stanley, Gary M.; Nour-Omid, Shahram
1990-01-01
The usage and development of structural finite element processors based on the CSM Testbed's Generic Element Processor (GEP) template is documented. By convention, such processors have names of the form ESi, where i is an integer. This manual is therefore intended for both Testbed users who wish to invoke ES processors during the course of a structural analysis, and Testbed developers who wish to construct new element processors (or modify existing ones).
NASA Technical Reports Server (NTRS)
Taylor, C. M.
1977-01-01
A finite element computer program which enables the analysis of distortions and stresses occurring in compounds having a relative interference is presented. The program is limited to situations in which the loading is axisymmetric. Loads arising from the interference fit(s) and external, inertial, and thermal loadings are accommodated. The components comprise several different homogeneous isotropic materials whose properties may be a function of temperature. An example illustrating the data input and program output is given.
Correlation of predicted and measured thermal stresses on a truss-type aircraft structure
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Schuster, L. S.; Carter, A. L.
1978-01-01
A test structure representing a portion of a hypersonic vehicle was instrumented with strain gages and thermocouples. This test structure was then subjected to laboratory heating representative of supersonic and hypersonic flight conditions. A finite element computer model of this structure was developed using several types of elements with the NASA structural analysis (NASTRAN) computer program. Temperature inputs from the test were used to generate predicted model thermal stresses and these were correlated with the test measurements.
Pre- and post-processing for Cosmic/NASTRAN on personal computers and mainframes
NASA Technical Reports Server (NTRS)
Kamel, H. A.; Mobley, A. V.; Nagaraj, B.; Watkins, K. W.
1986-01-01
An interface between Cosmic/NASTRAN and GIFTS has recently been released, combining the powerful pre- and post-processing capabilities of GIFTS with Cosmic/NASTRAN's analysis capabilities. The interface operates on a wide range of computers, even linking Cosmic/NASTRAN and GIFTS when the two are on different computers. GIFTS offers a wide range of elements for use in model construction, each translated by the interface into the nearest Cosmic/NASTRAN equivalent; and the options of automatic or interactive modelling and loading in GIFTS make pre-processing easy and effective. The interface itself includes the programs GFTCOS, which creates the Cosmic/NASTRAN input deck (and, if desired, control deck) from the GIFTS Unified Data Base, COSGFT, which translates the displacements from the Cosmic/NASTRAN analysis back into GIFTS; and HOSTR, which handles stress computations for a few higher-order elements available in the interface, but not supported by the GIFTS processor STRESS. Finally, the versatile display options in GIFTS post-processing allow the user to examine the analysis results through an especially wide range of capabilities, including such possibilities as creating composite loading cases, plotting in color and animating the analysis.
Liu, Xiaona; Zhang, Qiao; Wu, Zhisheng; Shi, Xinyuan; Zhao, Na; Qiao, Yanjiang
2015-01-01
Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera. PMID:25558999
NASA Technical Reports Server (NTRS)
Fleming, David P.; Poplawski, J. V.
2002-01-01
Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2008-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.
Evaluation of the finite element fuel rod analysis code (FRANCO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Feltus, M.A.
1994-12-31
Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less
NASA Astrophysics Data System (ADS)
Khalili, Ashkan; Jha, Ratneshwar; Samaratunga, Dulip
2016-11-01
Wave propagation analysis in 2-D composite structures is performed efficiently and accurately through the formulation of a User-Defined Element (UEL) based on the wavelet spectral finite element (WSFE) method. The WSFE method is based on the first-order shear deformation theory which yields accurate results for wave motion at high frequencies. The 2-D WSFE model is highly efficient computationally and provides a direct relationship between system input and output in the frequency domain. The UEL is formulated and implemented in Abaqus (commercial finite element software) for wave propagation analysis in 2-D composite structures with complexities. Frequency domain formulation of WSFE leads to complex valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Five numerical examples are presented in this article, namely undamaged plate, impacted plate, plate with ply drop, folded plate and plate with stiffener. Wave motions predicted by the developed UEL correlate very well with Abaqus simulations. The results also show that the UEL largely retains computational efficiency of the WSFE method and extends its ability to model complex features.
Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation
NASA Technical Reports Server (NTRS)
Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.
2000-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.
CZAEM USER'S GUIDE: MODELING CAPTURE ZONES OF GROUND-WATER WELLS USING ANALYTIC ELEMENTS
The computer program CZAEM is designed for elementary capture zone analysis, and is based on the analytic element method. CZAEM is applicable to confined and/or unconfined low in shallow aquifers; the Dupuit-Forchheimer assumption is adopted. CZAEM supports the following analyt...
Application of Dynamic Analysis in Semi-Analytical Finite Element Method
Oeser, Markus
2017-01-01
Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement’s state. PMID:28867813
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
The internal structure is discussed of the MHOST finite element program designed for 3-D inelastic analysis of gas turbine hot section components. The computer code is the first implementation of the mixed iterative solution strategy for improved efficiency and accuracy over the conventional finite element method. The control structure of the program is covered along with the data storage scheme and the memory allocation procedure and the file handling facilities including the read and/or write sequences.
Fourier analysis of finite element preconditioned collocation schemes
NASA Technical Reports Server (NTRS)
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
Wang, Monan; Zhang, Kai; Yang, Ning
2018-04-09
To help doctors decide their treatment from the aspect of mechanical analysis, the work built a computer assisted optimal system for treatment of femoral neck fracture oriented to clinical application. The whole system encompassed the following three parts: Preprocessing module, finite element mechanical analysis module, post processing module. Preprocessing module included parametric modeling of bone, parametric modeling of fracture face, parametric modeling of fixed screw and fixed position and input and transmission of model parameters. Finite element mechanical analysis module included grid division, element type setting, material property setting, contact setting, constraint and load setting, analysis method setting and batch processing operation. Post processing module included extraction and display of batch processing operation results, image generation of batch processing operation, optimal program operation and optimal result display. The system implemented the whole operations from input of fracture parameters to output of the optimal fixed plan according to specific patient real fracture parameter and optimal rules, which demonstrated the effectiveness of the system. Meanwhile, the system had a friendly interface, simple operation and could improve the system function quickly through modifying single module.
Generic element processor (application to nonlinear analysis)
NASA Technical Reports Server (NTRS)
Stanley, Gary
1989-01-01
The focus here is on one aspect of the Computational Structural Mechanics (CSM) Testbed: finite element technology. The approach involves a Generic Element Processor: a command-driven, database-oriented software shell that facilitates introduction of new elements into the testbed. This shell features an element-independent corotational capability that upgrades linear elements to geometrically nonlinear analysis, and corrects the rigid-body errors that plague many contemporary plate and shell elements. Specific elements that have been implemented in the Testbed via this mechanism include the Assumed Natural-Coordinate Strain (ANS) shell elements, developed with Professor K. C. Park (University of Colorado, Boulder), a new class of curved hybrid shell elements, developed by Dr. David Kang of LPARL (formerly a student of Professor T. Pian), other shell and solid hybrid elements developed by NASA personnel, and recently a repackaged version of the workhorse shell element used in the traditional STAGS nonlinear shell analysis code. The presentation covers: (1) user and developer interfaces to the generic element processor, (2) an explanation of the built-in corotational option, (3) a description of some of the shell-elements currently implemented, and (4) application to sample nonlinear shell postbuckling problems.
Wieding, Jan; Souffrant, Robert; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer
2012-01-01
The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations. PMID:22470474
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
Progressive fracture of fiber composites
NASA Technical Reports Server (NTRS)
Irvin, T. B.; Ginty, C. A.
1983-01-01
Refined models and procedures are described for determining progressive composite fracture in graphite/epoxy angleplied laminates. Lewis Research Center capabilities are utilized including the Real Time Ultrasonic C Scan (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. The CODSTRAN computer code is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites.
CFD-Based Design of a Filming Injector for N+3 Combustors
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Mongia, Hukam; Lee, Phil
2016-01-01
An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements coupled with a new fuel-filming injector design for next-generation N+3 combustors. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations on a N+3 injector configuration, in a single-element and a five-element injector array. All computations were performed with a consistent approach towards mesh-generation, spray-, ignition- and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that met effective area, aerodynamics, and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.
NASA Technical Reports Server (NTRS)
Sharma, Naveen
1992-01-01
In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1981-01-01
The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.
NASA Technical Reports Server (NTRS)
Camarda, C. J.; Adelman, H. M.
1984-01-01
The implementation of static and dynamic structural-sensitivity derivative calculations in a general purpose, finite-element computer program denoted the Engineering Analysis Language (EAL) System is described. Derivatives are calculated with respect to structural parameters, specifically, member sectional properties including thicknesses, cross-sectional areas, and moments of inertia. Derivatives are obtained for displacements, stresses, vibration frequencies and mode shapes, and buckling loads and mode shapes. Three methods for calculating derivatives are implemented (analytical, semianalytical, and finite differences), and comparisons of computer time and accuracy are made. Results are presented for four examples: a swept wing, a box beam, a stiffened cylinder with a cutout, and a space radiometer-antenna truss.
The control data "GIRAFFE" system for interactive graphic finite element analysis
NASA Technical Reports Server (NTRS)
Park, S.; Brandon, D. M., Jr.
1975-01-01
The Graphical Interface for Finite Elements (GIRAFFE) general purpose interactive graphics application package was described. This system may be used as a pre/post processor for structural analysis computer programs. It facilitates the operations of creating, editing, or reviewing all the structural input/output data on a graphics terminal in a time-sharing mode of operation. An application program for a simple three-dimensional plate problem was illustrated.
Probabilistic finite elements for fatigue and fracture analysis
NASA Astrophysics Data System (ADS)
Belytschko, Ted; Liu, Wing Kam
1993-04-01
An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.
Quantification of Processing Effects on Filament Wound Pressure Vessels
NASA Technical Reports Server (NTRS)
Aiello, Robert A.; Chamis, Christos C.
1999-01-01
A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the C C! end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be sued to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament would pressure vessels of all types of shells-of-revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.
Quantification of Processing Effects on Filament Wound Pressure Vessels. Revision
NASA Technical Reports Server (NTRS)
Aiello, Robert A.; Chamis, Christos C.
2002-01-01
A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be used to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament wound pressure vessels of all types of shells-of -revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.
The Role of Multiphysics Simulation in Multidisciplinary Analysis
NASA Technical Reports Server (NTRS)
Rifai, Steven M.; Ferencz, Robert M.; Wang, Wen-Ping; Spyropoulos, Evangelos T.; Lawrence, Charles; Melis, Matthew E.
1998-01-01
This article describes the applications of the Spectrum(Tm) Solver in Multidisciplinary Analysis (MDA). Spectrum, a multiphysics simulation software based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling as well as the interaction between these disciplines. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena. Interaction constraints are enforced in a fully-coupled manner using the augmented-Lagrangian method. Within the multiphysics framework, the finite element treatment of fluids is based on Galerkin-Least-Squares (GLS) method with discontinuity capturing operators. The arbitrary-Lagrangian-Eulerian method is utilized to account for deformable fluid domains. The finite element treatment of solids and structures is based on the Hu-Washizu variational principle. The multiphysics architecture lends itself naturally to high-performance parallel computing. Aeroelastic, propulsion, thermal management and manufacturing applications are presented.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1993-01-01
An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.
NASA Astrophysics Data System (ADS)
Schröder, Jörg; Viebahn, Nils; Wriggers, Peter; Auricchio, Ferdinando; Steeger, Karl
2017-09-01
In this work we investigate different mixed finite element formulations for the detection of critical loads for the possible occurrence of bifurcation and limit points. In detail, three- and two-field formulations for incompressible and quasi-incompressible materials are analyzed. In order to apply various penalty functions for the volume dilatation in displacement/pressure mixed elements we propose a new consistent scheme capturing the non linearities of the penalty constraints. It is shown that for all mixed formulations, which can be reduced to a generalized displacement scheme, a straight forward stability analysis is possible. However, problems based on the classical saddle-point structure require a different analyses based on the change of the signature of the underlying matrix system. The basis of these investigations is the work from Auricchio et al. (Comput Methods Appl Mech Eng 194:1075-1092, 2005, Comput Mech 52:1153-1167, 2013).
Rapid solution of large-scale systems of equations
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The worldwide semisubmersible drilling rig fleet is approaching retirement. But replacement is not an attractive option even though dayrates are reaching record highs. In 1991, Schlumberger Sedco Forex managers decided that an alternative might exist if regulators and insurers could be convinced to extend rig life expectancy through restoration. Sedco Forex chose their No. 704 semisubmersible, an 18-year North Sea veteran, to test their process. The first step was to determine what required restoration, meaning fatigue life analysis of each weld on the huge vessel. If inspected, the task would be unacceptably time-consuming and of questionable accuracy. Instead a suitemore » of computer programs modeled the stress seen by each weld, statistically estimated the sea states seen by the rig throughout its North Sea service and calibrated a beam-element model on which to run their computer simulations. The elastic stiffness of the structure and detailed stress analysis of each weld was performed with ANSYS, a commercially available finite-element analysis program. The use of computer codes to evaluate service life extension is described.« less
A Rocket Engine Design Expert System
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1989-01-01
The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state of the art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the H2-O2 coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One dimensional equilibrium chemistry was used in the energy release analysis of the combustion chamber. A 3-D conduction and/or 1-D advection analysis is used to predict heat transfer and coolant channel wall temperature distributions, in addition to coolant temperature and pressure drop. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.
A rocket engine design expert system
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1989-01-01
The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state-of-the-art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the hydrogen-oxygen coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One-dimensional equilibrium chemistry was employed in the energy release analysis of the combustion chamber and three-dimensional finite-difference analysis of the regenerative cooling channels was used to calculate the pressure drop along the channels and the coolant temperature as it exits the coolant circuit. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.
USDA-ARS?s Scientific Manuscript database
Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...
Astronomical Catalogues - Definition Elements and Afterlife
NASA Astrophysics Data System (ADS)
Jaschek, C.
1984-09-01
Based on a look at the different meanings of the term catalogue (or catalog), a definition is proposed. In an analysis of the main elements, a number of requirements that catalogues should satisfy are pointed out. A section is devoted to problems connected with computer-readable versions of printed catalogues.
PATRAN-STAGS translator (PATSTAGS)
NASA Technical Reports Server (NTRS)
Otte, Neil
1990-01-01
A a computer program used to translate PATRAN finite element model data into Structural Analysis of General Shells (STAGS) input data is presented. The program supports translation of nodal, nodal constraints, element, force, and pressure data. The subroutine UPRESS required for the readings of live pressure data into STAGS is also presented.
Development and analysis of a finite element model to simulate pulmonary emphysema in CT imaging.
Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo
2015-01-01
In CT imaging, pulmonary emphysema appears as lung regions with Low-Attenuation Areas (LAA). In this study we propose a finite element (FE) model of lung parenchyma, based on a 2-D grid of beam elements, which simulates pulmonary emphysema related to smoking in CT imaging. Simulated LAA images were generated through space sampling of the model output. We employed two measurements of emphysema extent: Relative Area (RA) and the exponent D of the cumulative distribution function of LAA clusters size. The model has been used to compare RA and D computed on the simulated LAA images with those computed on the models output. Different mesh element sizes and various model parameters, simulating different physiological/pathological conditions, have been considered and analyzed. A proper mesh element size has been determined as the best trade-off between reliable results and reasonable computational cost. Both RA and D computed on simulated LAA images were underestimated with respect to those calculated on the models output. Such underestimations were larger for RA (≈ -44 ÷ -26%) as compared to those for D (≈ -16 ÷ -2%). Our FE model could be useful to generate standard test images and to design realistic physical phantoms of LAA images for the assessment of the accuracy of descriptors for quantifying emphysema in CT imaging.
High temperature composite analyzer (HITCAN) user's manual, version 1.0
NASA Technical Reports Server (NTRS)
Lackney, J. J.; Singhal, S. N.; Murthy, P. L. N.; Gotsis, P.
1993-01-01
This manual describes 'how-to-use' the computer code, HITCAN (HIgh Temperature Composite ANalyzer). HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. This code combines composite mechanics and laminate theory with an internal data base for material properties of the constituents (matrix, fiber and interphase). The thermo-mechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress and stress rate. The computation procedure for the analysis of the composite structures uses the finite element method. HITCAN is written in FORTRAN 77 computer language and at present has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. This manual describes HlTCAN's capabilities and limitations followed by input/execution/output descriptions and example problems. The input is described in detail including (1) geometry modeling, (2) types of finite elements, (3) types of analysis, (4) material data, (5) types of loading, (6) boundary conditions, (7) output control, (8) program options, and (9) data bank.
NASA Technical Reports Server (NTRS)
Foley, Michael J.
1989-01-01
The primary nozzle diffuser routes fuel from the main fuel valve on the Space Shuttle Main Engine (SSME) to the nozzle coolant inlet mainfold, main combustion chamber coolant inlet mainfold, chamber coolant valve, and the augmented spark igniters. The diffuser also includes the fuel system purge check valve connection. A static stress analysis was performed on the diffuser because no detailed analysis was done on this part in the past. Structural concerns were in the area of the welds because approximately 10 percent are in areas inaccessible by X-ray testing devices. Flow dynamics and thermodynamics were not included in the analysis load case. Constant internal pressure at maximum SSME power was used instead. A three-dimensional, finite element method was generated using ANSYS version 4.3A on the Lockheed VAX 11/785 computer to perform the stress computations. IDEAS Supertab on a Sun 3/60 computer was used to create the finite element model. Rocketdyne drawing number RS009156 was used for the model interpretation. The flight diffuser is denoted as -101. A description of the model, boundary conditions/load case, material properties, structural analysis/results, and a summary are included for documentation.
Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements
NASA Technical Reports Server (NTRS)
Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.
1988-01-01
The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.
LATDYN - PROGRAM FOR SIMULATION OF LARGE ANGLE TRANSIENT DYNAMICS OF FLEXIBLE AND RIGID STRUCTURES
NASA Technical Reports Server (NTRS)
Housner, J. M.
1994-01-01
LATDYN is a computer code for modeling the Large Angle Transient DYNamics of flexible articulating structures and mechanisms involving joints about which members rotate through large angles. LATDYN extends and brings together some of the aspects of Finite Element Structural Analysis, Multi-Body Dynamics, and Control System Analysis; three disciplines that have been historically separate. It combines significant portions of their distinct capabilities into one single analysis tool. The finite element formulation for flexible bodies in LATDYN extends the conventional finite element formulation by using a convected coordinate system for constructing the equation of motion. LATDYN's formulation allows for large displacements and rotations of finite elements subject to the restriction that deformations within each are small. Also, the finite element approach implemented in LATDYN provides a convergent path for checking solutions simply by increasing mesh density. For rigid bodies and joints LATDYN borrows extensively from methodology used in multi-body dynamics where rigid bodies may be defined and connected together through joints (hinges, ball, universal, sliders, etc.). Joints may be modeled either by constraints or by adding joint degrees of freedom. To eliminate error brought about by the separation of structural analysis and control analysis, LATDYN provides symbolic capabilities for modeling control systems which are integrated with the structural dynamic analysis itself. Its command language contains syntactical structures which perform symbolic operations which are also interfaced directly with the finite element structural model, bypassing the modal approximation. Thus, when the dynamic equations representing the structural model are integrated, the equations representing the control system are integrated along with them as a coupled system. This procedure also has the side benefit of enabling a dramatic simplification of the user interface for modeling control systems. Three FORTRAN computer programs, the LATDYN Program, the Preprocessor, and the Postprocessor, make up the collective LATDYN System. The Preprocessor translates user commands into a form which can be used while the LATDYN program provides the computational core. The Postprocessor allows the user to interactively plot and manage a database of LATDYN transient analysis results. It also includes special facilities for modeling control systems and for programming changes to the model which take place during analysis sequence. The documentation includes a Demonstration Problem Manual for the evaluation and verification of results and a Postprocessor guide. Because the program should be viewed as a byproduct of research on technology development, LATDYN's scope is limited. It does not have a wide library of finite elements, and 3-D Graphics are not available. Nevertheless, it does have a measure of "user friendliness". The LATDYN program was developed over a period of several years and was implemented on a CDC NOS/VE & Convex Unix computer. It is written in FORTRAN 77 and has a virtual memory requirement of 1.46 MB. The program was validated on a DEC MICROVAX operating under VMS 5.2.
NASA Technical Reports Server (NTRS)
Raju, I. S.
1992-01-01
A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.
Finite-element modelling of multilayer X-ray optics.
Cheng, Xianchao; Zhang, Lin
2017-05-01
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7 ) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6 ), which causes low solution accuracy; and the number of elements is still very large (10 6 ). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.
Finite-element modelling of multilayer X-ray optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xianchao; Zhang, Lin
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical sizemore » 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6), which causes low solution accuracy; and the number of elements is still very large (10 6). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.« less
On 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.
1986-01-01
Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
The 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.
1992-01-01
A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
Plastic and Large-Deflection Analysis of Nonlinear Structures
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.; Robinson, M. P.; Durling, B. J.; Pifko, A.; Levine, H. S.; Armen, H. J.; Levy, A.; Ogilvie, P.
1982-01-01
Plastic and Large Deflection Analysis of Nonlinear Structures (PLANS) system is collection of five computer programs for finite-element static-plastic and large deflection analysis of variety of nonlinear structures. System considers bending and membrane stresses, general three-dimensional bodies, and laminated composites.
A finite element analysis of viscoelastically damped sandwich plates
NASA Astrophysics Data System (ADS)
Ma, B.-A.; He, J.-F.
1992-01-01
A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.
Scalable Implementation of Finite Elements by NASA _ Implicit (ScIFEi)
NASA Technical Reports Server (NTRS)
Warner, James E.; Bomarito, Geoffrey F.; Heber, Gerd; Hochhalter, Jacob D.
2016-01-01
Scalable Implementation of Finite Elements by NASA (ScIFEN) is a parallel finite element analysis code written in C++. ScIFEN is designed to provide scalable solutions to computational mechanics problems. It supports a variety of finite element types, nonlinear material models, and boundary conditions. This report provides an overview of ScIFEi (\\Sci-Fi"), the implicit solid mechanics driver within ScIFEN. A description of ScIFEi's capabilities is provided, including an overview of the tools and features that accompany the software as well as a description of the input and output le formats. Results from several problems are included, demonstrating the efficiency and scalability of ScIFEi by comparing to finite element analysis using a commercial code.
Ceramic component reliability with the restructured NASA/CARES computer program
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Starlinger, Alois; Gyekenyesi, John P.
1992-01-01
The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors).
3-D Electromagnetic field analysis of wireless power transfer system using K computer
NASA Astrophysics Data System (ADS)
Kawase, Yoshihiro; Yamaguchi, Tadashi; Murashita, Masaya; Tsukada, Shota; Ota, Tomohiro; Yamamoto, Takeshi
2018-05-01
We analyze the electromagnetic field of a wireless power transfer system using the 3-D parallel finite element method on K computer, which is a super computer in Japan. It is clarified that the electromagnetic field of the wireless power transfer system can be analyzed in a practical time using the parallel computation on K computer, moreover, the accuracy of the loss calculation becomes better as the mesh division of the shield becomes fine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gartling, D.K.
The theoretical and numerical background for the finite element computer program, TORO II, is presented in detail. TORO II is designed for the multi-dimensional analysis of nonlinear, electromagnetic field problems described by the quasi-static form of Maxwell`s equations. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in TORO II are also outlined. Instructions for the use of the code are documented in SAND96-0903; examples of problems analyzed with the code are also provided in the user`s manual. 24 refs., 8 figs.
A SINDA thermal model using CAD/CAE technologies
NASA Technical Reports Server (NTRS)
Rodriguez, Jose A.; Spencer, Steve
1992-01-01
The approach to thermal analysis described by this paper is a technique that incorporates Computer Aided Design (CAD) and Computer Aided Engineering (CAE) to develop a thermal model that has the advantages of Finite Element Methods (FEM) without abandoning the unique advantages of Finite Difference Methods (FDM) in the analysis of thermal systems. The incorporation of existing CAD geometry, the powerful use of a pre and post processor and the ability to do interdisciplinary analysis, will be described.
DOT National Transportation Integrated Search
2001-02-01
A new version of the CRCP computer program, CRCP-9, has been developed in this study. The numerical model of the CRC pavements was developed using finite element theories, the crack spacing prediction model was developed using the Monte Carlo method,...
NASA Astrophysics Data System (ADS)
Sengupta, A.; Kletzing, C.; Howk, R.; Kurth, W. S.
2017-12-01
An important goal of the Van Allen Probes mission is to understand wave particle interactions that can energize relativistic electron in the Earth's Van Allen radiation belts. The EMFISIS instrumentation suite provides measurements of wave electric and magnetic fields of wave features such as chorus that participate in these interactions. Geometric signal processing discovers structural relationships, e.g. connectivity across ridge-like features in chorus elements to reveal properties such as dominant angles of the element (frequency sweep rate) and integrated power along the a given chorus element. These techniques disambiguate these wave features against background hiss-like chorus. This enables autonomous discovery of chorus elements across the large volumes of EMFISIS data. At the scale of individual or overlapping chorus elements, topological pattern recognition techniques enable interpretation of chorus microstructure by discovering connectivity and other geometric features within the wave signature of a single chorus element or between overlapping chorus elements. Thus chorus wave features can be quantified and studied at multiple scales of spectral geometry using geometric signal processing techniques. We present recently developed computational techniques that exploit spectral geometry of chorus elements and whistlers to enable large-scale automated discovery, detection and statistical analysis of these events over EMFISIS data. Specifically, we present different case studies across a diverse portfolio of chorus elements and discuss the performance of our algorithms regarding precision of detection as well as interpretation of chorus microstructure. We also provide large-scale statistical analysis on the distribution of dominant sweep rates and other properties of the detected chorus elements.
Multiscale Multifunctional Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Minnetyan, L.
2012-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.
Coupled Structural, Thermal, Phase-Change and Electromagnetic Analysis for Superconductors. Volume 1
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.
1996-01-01
Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermal and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. This volume, Volume 1, describes mostly formulations for specific problems. Volume 2 describes generalization of those formulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokhari, Ishtiaq H.
2004-12-15
The Pakistan Research Reactor-1 (PARR-1) was converted from highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel in 1991. The reactor is running successfully, with an upgraded power level of 10 MW. To save money on the purchase of costly fresh LEU fuel elements, the use of less burnt HEU spent fuel elements along with the present LEU fuel elements is being considered. The proposal calls for the HEU fuel elements to be placed near the thermal column to gain the required excess reactivity. In the present study the safety analysis of a proposed mixed-fuel core has been carried outmore » at a calculated steady-state power level of 9.8 MW. Standard computer codes and correlations were employed to compute various parameters. Initiating events in reactivity-induced accidents involve various modes of reactivity insertion, namely, start-up accident, accidental drop of a fuel element on the core, flooding of a beam tube with water, and removal of an in-pile experiment during reactor operation. For each of these transients, time histories of reactor power, energy released, temperature, and reactivity were determined.« less
BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0
NASA Technical Reports Server (NTRS)
1991-01-01
The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.
Receive Mode Analysis and Design of Microstrip Reflectarrays
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2011-01-01
Traditionally microstrip or printed reflectarrays are designed using the transmit mode technique. In this method, the size of each printed element is chosen so as to provide the required value of the reflection phase such that a collimated beam results along a given direction. The reflection phase of each printed element is approximated using an infinite array model. The infinite array model is an excellent engineering approximation for a large microstrip array since the size or orientation of elements exhibits a slow spatial variation. In this model, the reflection phase from a given printed element is approximated by that of an infinite array of elements of the same size and orientation when illuminated by a local plane wave. Thus the reflection phase is a function of the size (or orientation) of the element, the elevation and azimuth angles of incidence of a local plane wave, and polarization. Typically, one computes the reflection phase of the infinite array as a function of several parameters such as size/orientation, elevation and azimuth angles of incidence, and in some cases for vertical and horizontal polarization. The design requires the selection of the size/orientation of the printed element to realize the required phase by interpolating or curve fitting all the computed data. This is a substantially complicated problem, especially in applications requiring a computationally intensive commercial code to determine the reflection phase. In dual polarization applications requiring rectangular patches, one needs to determine the reflection phase as a function of five parameters (dimensions of the rectangular patch, elevation and azimuth angles of incidence, and polarization). This is an extremely complex problem. The new method employs the reciprocity principle and reaction concept, two well-known concepts in electromagnetics to derive the receive mode analysis and design techniques. In the "receive mode design" technique, the reflection phase is computed for a plane wave incident on the reflectarray from the direction of the beam peak. In antenna applications with a single collimated beam, this method is extremely simple since all printed elements see the same angles of incidence. Thus the number of parameters is reduced by two when compared to the transmit mode design. The reflection phase computation as a function of five parameters in the rectangular patch array discussed previously is reduced to a computational problem with three parameters in the receive mode. Furthermore, if the beam peak is in the broadside direction, the receive mode design is polarization independent and the reflection phase computation is a function of two parameters only. For a square patch array, it is a function of the size, one parameter only, thus making it extremely simple.
How to determine spiral bevel gear tooth geometry for finite element analysis
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Litvin, Faydor L.
1991-01-01
An analytical method was developed to determine gear tooth surface coordinates of face milled spiral bevel gears. The method combines the basic gear design parameters with the kinematical aspects for spiral bevel gear manufacturing. A computer program was developed to calculate the surface coordinates. From this data a 3-D model for finite element analysis can be determined. Development of the modeling method and an example case are presented.
NASA Technical Reports Server (NTRS)
Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.
1991-01-01
An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.
NASA Technical Reports Server (NTRS)
Baker, A. J.; Iannelli, G. S.; Manhardt, Paul D.; Orzechowski, J. A.
1993-01-01
This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.
An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 2: FEMNAS user guide
NASA Technical Reports Server (NTRS)
Manhardt, Paul D.; Orzechowski, J. A.; Baker, A. J.
1992-01-01
This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.
Khashan, S. A.; Alazzam, A.; Furlani, E. P.
2014-01-01
A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437
Coupled dynamics analysis of wind energy systems
NASA Technical Reports Server (NTRS)
Hoffman, J. A.
1977-01-01
A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.
Radiation and scattering from printed antennas on cylindrically conformal platforms
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.; Bindiganavale, Sunil
1994-01-01
The goal was to develop suitable methods and software for the analysis of antennas on cylindrical coated and uncoated platforms. Specifically, the finite element boundary integral and finite element ABC methods were employed successfully and associated software were developed for the analysis and design of wraparound and discrete cavity-backed arrays situated on cylindrical platforms. This work led to the successful implementation of analysis software for such antennas. Developments which played a role in this respect are the efficient implementation of the 3D Green's function for a metallic cylinder, the incorporation of the fast Fourier transform in computing the matrix-vector products executed in the solver of the finite element-boundary integral system, and the development of a new absorbing boundary condition for terminating the finite element mesh on cylindrical surfaces.
Computing element evolution towards Exascale and its impact on legacy simulation codes
NASA Astrophysics Data System (ADS)
Colin de Verdière, Guillaume J. L.
2015-12-01
In the light of the current race towards the Exascale, this article highlights the main features of the forthcoming computing elements that will be at the core of next generations of supercomputers. The market analysis, underlying this work, shows that computers are facing a major evolution in terms of architecture. As a consequence, it is important to understand the impacts of those evolutions on legacy codes or programming methods. The problems of dissipated power and memory access are discussed and will lead to a vision of what should be an exascale system. To survive, programming languages had to respond to the hardware evolutions either by evolving or with the creation of new ones. From the previous elements, we elaborate why vectorization, multithreading, data locality awareness and hybrid programming will be the key to reach the exascale, implying that it is time to start rewriting codes.
Integrated Nondestructive Evaluation and Finite Element Analysis Predicts Crack Location and Shape
NASA Technical Reports Server (NTRS)
Abdul-Azia, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2002-01-01
This study describes the finite-element analyses and the NDE modality undertaken on two flywheel rotors that were spun to burst speed. Computed tomography and dimensional measurements were used to nondestructively evaluate the rotors before and/or after they were spun to the first crack detection. Computed tomography data findings of two- and three-dimensional crack formation were used to conduct finite-element (FEA) and fracture mechanics analyses. A procedure to extend these analyses to estimate the life of these components is also outlined. NDE-FEA results for one of the rotors are presented in the figures. The stress results, which represent the radial stresses in the rim, clearly indicate that the maximum stress region is within the section defined by the computed tomography scan. Furthermore, the NDE data correlate well with the FEA results. In addition, the measurements reported show that the NDE and FEA data are in parallel.
Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers
NASA Technical Reports Server (NTRS)
Guruswamy, Guru; VanDalsem, William (Technical Monitor)
1994-01-01
Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.
Modal strain energies in COSMIC NASTRAN
NASA Technical Reports Server (NTRS)
Snyder, B. D.; Venkayya, V. B.
1989-01-01
A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.
PATSTAGS: PATRAN-To-STAGSC-1 Translator
NASA Technical Reports Server (NTRS)
Otte, Neil
1993-01-01
PATSTAGS computer program translates data from PATRAN finite-element mathematical model into STAGS input records used for engineering analysis. Reads data from PATRAN neutral file and writes STAGS input records into STAGS input file and UPRESS data file. Supports translations of nodal constraints, and of nodal, element, force, and pressure data. Written in FORTRAN 77.
Computational simulation of progressive fracture in fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1986-01-01
Computational methods for simulating and predicting progressive fracture in fiber composite structures are presented. These methods are integrated into a computer code of modular form. The modules include composite mechanics, finite element analysis, and fracture criteria. The code is used to computationally simulate progressive fracture in composite laminates with and without defects. The simulation tracks the fracture progression in terms of modes initiating fracture, damage growth, and imminent global (catastrophic) laminate fracture.
NASA Technical Reports Server (NTRS)
Chan, S. T. K.; Lee, C. H.; Brashears, M. R.
1975-01-01
A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Thermal finite-element analysis of space shuttle main engine turbine blade
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert
1987-01-01
Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.
NASA Technical Reports Server (NTRS)
Nakazawa, S.
1987-01-01
This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.
RNA-Seq Analysis to Measure the Expression of SINE Retroelements.
Román, Ángel Carlos; Morales-Hernández, Antonio; Fernández-Salguero, Pedro M
2016-01-01
The intrinsic features of retroelements, like their repetitive nature and disseminated presence in their host genomes, demand the use of advanced methodologies for their bioinformatic and functional study. The short length of SINE (short interspersed elements) retrotransposons makes such analyses even more complex. Next-generation sequencing (NGS) technologies are currently one of the most widely used tools to characterize the whole repertoire of gene expression in a specific tissue. In this chapter, we will review the molecular and computational methods needed to perform NGS analyses on SINE elements. We will also describe new methods of potential interest for researchers studying repetitive elements. We intend to outline the general ideas behind the computational analyses of NGS data obtained from SINE elements, and to stimulate other scientists to expand our current knowledge on SINE biology using RNA-seq and other NGS tools.
Finite element analysis of low speed viscous and inviscid aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1977-01-01
A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC.
Three-dimensional structural analysis using interactive graphics
NASA Technical Reports Server (NTRS)
Biffle, J.; Sumlin, H. A.
1975-01-01
The application of computer interactive graphics to three-dimensional structural analysis was described, with emphasis on the following aspects: (1) structural analysis, and (2) generation and checking of input data and examination of the large volume of output data (stresses, displacements, velocities, accelerations). Handling of three-dimensional input processing with a special MESH3D computer program was explained. Similarly, a special code PLTZ may be used to perform all the needed tasks for output processing from a finite element code. Examples were illustrated.
NASA Technical Reports Server (NTRS)
1992-01-01
The technical effort and computer code developed during the first year are summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis.
Structures and Dynamics Division research and technology plans, FY 1982
NASA Technical Reports Server (NTRS)
Bales, K. S.
1982-01-01
Computational devices to improve efficiency for structural calculations are assessed. The potential of large arrays of microprocessors operating in parallel for finite element analysis is defined, and the impact of specialized computer hardware on static, dynamic, thermal analysis in the optimization of structural analysis and design calculations is determined. General aviation aircraft crashworthiness and occupant survivability is also considered. Mechanics technology required for design coefficient, fault tolerant advanced composite aircraft components subject to combined loads, impact, postbuckling effects and local discontinuities are developed.
Blade loss transient dynamics analysis, volume 1. Task 2: TETRA 2 theoretical development
NASA Technical Reports Server (NTRS)
Gallardo, Vincente C.; Black, Gerald
1986-01-01
The theoretical development of the forced steady state analysis of the structural dynamic response of a turbine engine having nonlinear connecting elements is discussed. Based on modal synthesis, and the principle of harmonic balance, the governing relations are the compatibility of displacements at the nonlinear connecting elements. There are four displacement compatibility equations at each nonlinear connection, which are solved by iteration for the principle harmonic of the excitation frequency. The resulting computer program, TETRA 2, combines the original TETRA transient analysis (with flexible bladed disk) with the steady state capability. A more versatile nonlinear rub or bearing element which contains a hardening (or softening) spring, with or without deadband, is also incorporated.
NASA Astrophysics Data System (ADS)
Sotokoba, Yasumasa; Okajima, Kenji; Iida, Toshiaki; Tanaka, Tadatsugu
We propose the trenchless box culvert construction method to construct box culverts in small covering soil layers while keeping roads or tracks open. When we use this construction method, it is necessary to clarify deformation and shear failure by excavation of grounds. In order to investigate the soil behavior, model experiments and elasto-plactic finite element analysis were performed. In the model experiments, it was shown that the shear failure was developed from the end of the roof to the toe of the boundary surface. In the finite element analysis, a shear band effect was introduced. Comparing the observed shear bands in model experiments with computed maximum shear strain contours, it was found that the observed direction of the shear band could be simulated reasonably by the finite element analysis. We may say that the finite element method used in this study is useful tool for this construction method.
NASA Technical Reports Server (NTRS)
Hanley, G.
1979-01-01
Computer assisted design of a gallium arsenide solid state dc-to-RF converter with supportive fabrication data was investigated. Specific tasks performed include: computer program checkout; amplifier comparisons; computer design analysis of GaSa solar cells; and GaAs diode evaluation. Results obtained in the design and evaluation of transistors for the microwave space power system are presented.
NASA Technical Reports Server (NTRS)
Mangalgiri, P. D.; Prabhakaran, R.
1986-01-01
An algorithm for vectorized computation of stiffness matrices of an 8 noded isoparametric hexahedron element for geometric nonlinear analysis was developed. This was used in conjunction with the earlier 2-D program GAMNAS to develop the new program NAS3D for geometric nonlinear analysis. A conventional, modified Newton-Raphson process is used for the nonlinear analysis. New schemes for the computation of stiffness and strain energy release rates is presented. The organization the program is explained and some results on four sample problems are given. The study of CPU times showed that savings by a factor of 11 to 13 were achieved when vectorized computation was used for the stiffness instead of the conventional scalar one. Finally, the scheme of inputting data is explained.
NASA Astrophysics Data System (ADS)
Schmidt, Peter; Lund, Björn; Hieronymus, Christoph
2012-03-01
When general-purpose finite element analysis software is used to model glacial isostatic adjustment (GIA), the first-order effect of prestress advection has to be accounted for by the user. We show here that the common use of elastic foundations at boundaries between materials of different densities will produce incorrect displacements, unless the boundary is perpendicular to the direction of gravity. This is due to the foundations always acting perpendicular to the surface to which they are attached, while the body force they represent always acts in the direction of gravity. If prestress advection is instead accounted for by the use of elastic spring elements in the direction of gravity, the representation will be correct. The use of springs adds a computation of the spring constants to the analysis. The spring constant for a particular node is defined by the product of the density contrast at the boundary, the gravitational acceleration, and the area supported by the node. To be consistent with the finite element formulation, the area is evaluated by integration of the nodal shape functions. We outline an algorithm for the calculation and include a Python script that integrates the shape functions over a bilinear quadrilateral element. For linear rectangular and triangular elements, the area supported by each node is equal to the element area divided the number of defining nodes, thereby simplifying the computation. This is, however, not true in the general nonrectangular case, and we demonstrate this with a simple 1-element model. The spring constant calculation is simple and performed in the preprocessing stage of the analysis. The time spent on the calculation is more than compensated for by a shorter analysis time, compared to that for a model with foundations. We illustrate the effects of using springs versus foundations with a simple two-dimensional GIA model of glacial loading, where the Earth model has an inclined boundary between the overlying elastic layer and the lower viscoelastic layer. Our example shows that the error introduced by the use of foundations is large enough to affect an analysis based on high-accuracy geodetic data.
Equilibrium paths analysis of materials with rheological properties by using the chaos theory
NASA Astrophysics Data System (ADS)
Bednarek, Paweł; Rządkowski, Jan
2018-01-01
The numerical equilibrium path analysis of the material with random rheological properties by using standard procedures and specialist computer programs was not successful. The proper solution for the analysed heuristic model of the material was obtained on the base of chaos theory elements and neural networks. The paper deals with mathematical reasons of used computer programs and also are elaborated the properties of the attractor used in analysis. There are presented results of conducted numerical analysis both in a numerical and in graphical form for the used procedures.
Probabilistic finite elements for transient analysis in nonlinear continua
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics
NASA Technical Reports Server (NTRS)
Roe, P. L.
1984-01-01
A possible technique is explored for extending to multidimensional flows some of the upwind-differencing methods that are highly successful in the one-dimensional case. Emphasis is on the two-dimensional case, and the flow domain is assumed to be divided into polygonal computational elements. Inside each element, the flow is represented by a local superposition of elementary solutions consisting of plane waves not necessarily aligned with the element boundaries.
Chain Dynamic Formulations for Multibody System Tracked Vehicles
2012-08-01
CONTRACT NUMBER W911NF-07-D-0001 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paramsothy Jayakumar ; Michael Letherwood; Michael Wallin...Hamed, M. A., Shabana, A. A., Jayakumar , P., and Letherwood, M. D., 2011, “Nonstructural geometric discontinuities in finite element/multibody system... Jayakumar , P., and Letherwood, M. D. 2012, “Use of B- Spline in the Finite Element Analysis: Comparison with ANCF Geometry,” Journal of Computational and
NASA Technical Reports Server (NTRS)
Hashemi-Kia, Mostafa; Toossi, Mostafa
1990-01-01
A computational procedure for the reduction of large finite element models was developed. This procedure is used to obtain a significantly reduced model while retaining the essential global dynamic characteristics of the full-size model. This reduction procedure is applied to the airframe finite element model of AH-64A Attack Helicopter. The resulting reduced model is then validated by application to a vibration reduction study.
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Rogers, David
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Rogers, David
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.
2000-01-01
Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.
NASA Astrophysics Data System (ADS)
Jia, Xin; Huang, Zhengxiang; Zu, Xudong; Gu, Xiaohui; Xiao, Qiangqiang
2013-12-01
In this study, an optimal finite element model of Kevlar woven fabric that is more computational efficient compared with existing models was developed to simulate ballistic impact onto fabric. Kevlar woven fabric was modeled to yarn level architecture by using the hybrid elements analysis (HEA), which uses solid elements in modeling the yarns at the impact region and uses shell elements in modeling the yarns away from the impact region. Three HEA configurations were constructed, in which the solid element region was set as about one, two, and three times that of the projectile's diameter with impact velocities of 30 m/s (non-perforation case) and 200 m/s (perforation case) to determine the optimal ratio between the solid element region and the shell element region. To further reduce computational time and to maintain the necessary accuracy, three multiscale models were presented also. These multiscale models combine the local region with the yarn level architecture by using the HEA approach and the global region with homogenous level architecture. The effect of the varying ratios of the local and global area on the ballistic performance of fabric was discussed. The deformation and damage mechanisms of fabric were analyzed and compared among numerical models. Simulation results indicate that the multiscale model based on HEA accurately reproduces the baseline results and obviously decreases computational time.
NASA Technical Reports Server (NTRS)
vanDam, C. P.; Los, S. M.; Miley, S. J.; Yip, L. P.; Banks, D. W.; Roback, V. E.; Bertelrud, A.
1995-01-01
Flight experiments on NASA Langley's B737-100 (TSRV) airplane have been conducted to document flow characteristics in order to further the understanding of high-lift flow physics, and to correlate and validate computational predictions and wind-tunnel measurements. The project is a cooperative effort involving NASA, industry, and universities. In addition to focusing on in-flight measurements, the project includes extensive application of various computational techniques, and correlation of flight data with computational results and wind-tunnel measurements. Results obtained in the most recent phase of flight experiments are analyzed and presented in this paper. In-flight measurements include surface pressure distributions, measured using flush pressure taps and pressure belts on the slats, main element, and flap elements; surface shear stresses, measured using Preston tubes; off-surface velocity distributions, measured using shear-layer rakes; aeroelastic deformations of the flap elements, measured using an optical positioning system; and boundary-layer transition phenomena, measured using hot-film anemometers and an infrared imaging system. The analysis in this paper primarily focuses on changes in the boundary-layer state that occurred on the slats, main element, and fore flap as a result of changes in flap setting and/or flight condition. Following a detailed description of the experiment, the boundary-layer state phenomenon will be discussed based on data measured during these recent flight experiments.
Elastic-plastic analysis of a propagating crack under cyclic loading
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Armen, H., Jr.
1974-01-01
Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.
A Method for Calculating the Mean Orbits of Meteor Streams
NASA Astrophysics Data System (ADS)
Voloshchuk, Yu. I.; Kashcheev, B. L.
An examination of the published catalogs of orbits of meteor streams and of a large number of works devoted to the selection of streams, their analysis and interpretation, showed that elements of stream orbits are calculated, as a rule, as arithmetical (sometimes, weighed) sample means. On the basis of these means, a search for parent bodies, a study of the evolution of swarms generating these streams, an analysis of one-dimensional and multidimensional distributions of these elements, etc., are performed. We show that systematic errors in the estimates of elements of the mean orbits are present in each of the catalogs. These errors are caused by the formal averaging of orbital elements over the sample, while ignoring the fact that they represent not only correlated, but dependent quantities, with nonlinear, in most cases, interrelations between them. Numerous examples are given of such inaccuracies, in particular, the cases where the "mean orbit of the stream" recorded by ground-based techniques does not cross the Earth's orbit. We suggest the computation algorithm, in which the averaging over the sample is carried out at the initial stage of the calculation of the mean orbit, and only for the variables required for subsequent calculations. After this, the known astrometric formulas are used to sequentially calculate all other parameters of the stream, considered now as a standard orbit. Variance analysis is used to estimate the errors in orbital elements of the streams, in the case that their orbits are obtained by averaging the orbital elements of meteoroids forming the stream, without taking into account their interdependence. The results obtained in this analysis indicate the behavior of systematic errors in the elements of orbits of meteor streams. As an example, the effect of the incorrect computation method on the distribution of elements of the stream orbits close to the orbits of asteroids of the Apollo, Aten, and Amor groups (AAA asteroids) is examined.
Interactive Analysis of General Beam Configurations using Finite Element Methods and JavaScript
NASA Astrophysics Data System (ADS)
Hernandez, Christopher
Advancements in computer technology have contributed to the widespread practice of modelling and solving engineering problems through the use of specialized software. The wide use of engineering software comes with the disadvantage to the user of costs from the required purchase of software licenses. The creation of accurate, trusted, and freely available applications capable of conducting meaningful analysis of engineering problems is a way to mitigate to the costs associated with every-day engineering computations. Writing applications in the JavaScript programming language allows the applications to run within any computer browser, without the need to install specialized software, since all internet browsers are equipped with virtual machines (VM) that allow the browsers to execute JavaScript code. The objective of this work is the development of an application that performs the analysis of a completely general beam through use of the finite element method. The app is written in JavaScript and embedded in a web page so it can be downloaded and executed by a user with an internet connection. This application allows the user to analyze any uniform or non-uniform beam, with any combination of applied forces, moments, distributed loads, and boundary conditions. Outputs for this application include lists the beam deformations and slopes, as well as lateral and slope deformation graphs, bending stress distributions, and shear and a moment diagrams. To validate the methodology of the GBeam finite element app, its results are verified using the results from obtained from two other established finite element solvers for fifteen separate test cases.
Kraft, Reuben H.; Mckee, Phillip Justin; Dagro, Amy M.; Grafton, Scott T.
2012-01-01
This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to impact with degradation in the structural connectome for a single individual. The finite element model incorporates various length scales into the full head simulations by including anisotropic constitutive laws informed by diffusion tensor imaging. Coupling between the finite element analysis and network-based tools is established through experimentally-based cellular injury thresholds for white matter regions. Once edges are degraded, graph theoretical measures are computed on the “damaged” network. For a frontal impact, the simulations predict that the temporal and occipital regions undergo the most axonal strain and strain rate at short times (less than 24 hrs), which leads to cellular death initiation, which results in damage that shows dependence on angle of impact and underlying microstructure of brain tissue. The monotonic cellular death relationships predict a spatiotemporal change of structural damage. Interestingly, at 96 hrs post-impact, computations predict no network nodes were completely disconnected from the network, despite significant damage to network edges. At early times () network measures of global and local efficiency were degraded little; however, as time increased to 96 hrs the network properties were significantly reduced. In the future, this computational framework could help inform functional networks from physics-based structural brain biomechanics to obtain not only a biomechanics-based understanding of injury, but also neurophysiological insight. PMID:22915997
Finite element Compton tomography
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Amouzou, Pauline; Menon, Naresh; Gertsenshteyn, Michael
2007-09-01
In this paper a new approach to 3D Compton imaging is presented, based on a kind of finite element (FE) analysis. A window for X-ray incoherent scattering (or Compton scattering) attenuation coefficients is identified for breast cancer diagnosis, for hard X-ray photon energy of 100-300 keV. The point-by-point power/energy budget is computed, based on a 2D array of X-ray pencil beams, scanned vertically. The acceptable medical doses are also computed. The proposed finite element tomography (FET) can be an alternative to X-ray mammography, tomography, and tomosynthesis. In experiments, 100 keV (on average) X-ray photons are applied, and a new type of pencil beam collimation, based on a Lobster-Eye Lens (LEL), is proposed.
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
Structural behavior of composites with progressive fracture
NASA Technical Reports Server (NTRS)
Minnetyan, L.; Murthy, P. L. N.; Chamis, C. C.
1989-01-01
The objective of the study is to unify several computational tools developed for the prediction of progressive damage and fracture with efforts for the prediction of the overall response of damaged composite structures. In particular, a computational finite element model for the damaged structure is developed using a computer program as a byproduct of the analysis of progressive damage and fracture. Thus, a single computational investigation can predict progressive fracture and the resulting variation in structural properties of angleplied composites.
NASA Astrophysics Data System (ADS)
Carrera; Valvano; Kulikov
2018-01-01
In this work, a new class of finite elements for the analysis of composite and sandwich shells embedding piezoelectric skins and patches is proposed. The main idea of models coupling is developed by presenting the concept of nodal dependent kinematics where the same finite element can present at each node a different approximation of the main unknowns by setting a node-wise through-the-thickness approximation base. In a global/local approach scenario, the computational costs can be reduced drastically by assuming refined theories only in those zones/nodes of the structural domain where the resulting strain and stress states, and their electro-mechanical coupling present a complex distribution. Several numerical investigations are carried out to validate the accuracy and efficiency of the present shell element. An accurate representation of mechanical stresses and electric displacements in localized zones is possible with reduction of the computational costs if an accurate distribution of the higher-order kinematic capabilities is performed. On the contrary, the accuracy of the solution in terms of mechanical displacements and electric potential values depends on the global approximation over the whole structure. The efficacy of the present node-dependent variable kinematic models, thus, depends on the characteristics of the problem under consideration as well as on the required analysis type.
Patient-specific finite element modeling of bones.
Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A
2013-04-01
Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.
Air Defense: A Computer Game for Research in Human Performance.
1981-07-01
warfare (ANW) threat analysis. M’ajor elements of the threat analysis problem \\\\,erc eoibedded in an interactive air detoense game controlled by a...The game requires sustained attention to a complex and interactive "hostile" environment, provides proper experimental control of relevant variables...AD-A102 725 NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER SAN DETC F/6 5/10 AIR DEFENSE: A COMPUTER GAME FOR RESEARCH IN HUMAN PERFORMANCE.(U) JUL
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.
Finite-Element Methods for Real-Time Simulation of Surgery
NASA Technical Reports Server (NTRS)
Basdogan, Cagatay
2003-01-01
Two finite-element methods have been developed for mathematical modeling of the time-dependent behaviors of deformable objects and, more specifically, the mechanical responses of soft tissues and organs in contact with surgical tools. These methods may afford the computational efficiency needed to satisfy the requirement to obtain computational results in real time for simulating surgical procedures as described in Simulation System for Training in Laparoscopic Surgery (NPO-21192) on page 31 in this issue of NASA Tech Briefs. Simulation of the behavior of soft tissue in real time is a challenging problem because of the complexity of soft-tissue mechanics. The responses of soft tissues are characterized by nonlinearities and by spatial inhomogeneities and rate and time dependences of material properties. Finite-element methods seem promising for integrating these characteristics of tissues into computational models of organs, but they demand much central-processing-unit (CPU) time and memory, and the demand increases with the number of nodes and degrees of freedom in a given finite-element model. Hence, as finite-element models become more realistic, it becomes more difficult to compute solutions in real time. In both of the present methods, one uses approximate mathematical models trading some accuracy for computational efficiency and thereby increasing the feasibility of attaining real-time up36 NASA Tech Briefs, October 2003 date rates. The first of these methods is based on modal analysis. In this method, one reduces the number of differential equations by selecting only the most significant vibration modes of an object (typically, a suitable number of the lowest-frequency modes) for computing deformations of the object in response to applied forces.
Elements of a modern turbomachinery design system
NASA Astrophysics Data System (ADS)
Jennions, Ian K.
1994-05-01
The aerodynamic design system at GE Aircraft Engines (GEAE) consists of many parts: throughflow, secondary flow, geometry generators, blade-to-blade and fully three-dimensional (3D) analysis. This paper describes each of these elements and discusses optimization and computer architecture issues. Emphasis is placed on those areas in which the company is thought to have special capability.
Bird impact analysis package for turbine engine fan blades
NASA Technical Reports Server (NTRS)
Hirschbein, M. S.
1982-01-01
A computer program has been developed to analyze the gross structural response of turbine engine fan blades subjected to bird strikes. The program couples a NASTRAN finite element model and modal analysis of a fan blade with a multi-mode bird impact analysis computer program. The impact analysis uses the NASTRAN blade model and a fluid jet model of the bird to interactively calculate blade loading during a bird strike event. The analysis package is computationaly efficient, easy to use and provides a comprehensive history of the gross structual blade response. Example cases are presented for a representative fan blade.
Integration of rocket turbine design and analysis through computer graphics
NASA Technical Reports Server (NTRS)
Hsu, Wayne; Boynton, Jim
1988-01-01
An interactive approach with engineering computer graphics is used to integrate the design and analysis processes of a rocket engine turbine into a progressive and iterative design procedure. The processes are interconnected through pre- and postprocessors. The graphics are used to generate the blade profiles, their stacking, finite element generation, and analysis presentation through color graphics. Steps of the design process discussed include pitch-line design, axisymmetric hub-to-tip meridional design, and quasi-three-dimensional analysis. The viscous two- and three-dimensional analysis codes are executed after acceptable designs are achieved and estimates of initial losses are confirmed.
Asteroid orbital inversion using uniform phase-space sampling
NASA Astrophysics Data System (ADS)
Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.
2014-07-01
We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in a set of virtual observations; second, corresponding virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method; third, repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements; and, fourth, this orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm, avoiding the explicit computation of the proposal p.d.f. In a discrete approximation, the allowed proposals coincide with the differences that are based on a large number of pre-computed sets of virtual least-squares orbital elements. The virtual-observation MCMC method is thus based on the characterization of the relevant volume in the orbital-element phase space. Here we utilize MCMC to map the phase-space domain of acceptable solutions. We can make use of the proposal p.d.f.s from the MCMC ranging and virtual-observation methods. The present phase-space mapping produces, upon convergence, a uniform sampling of the solution space within a pre-defined χ^2-value. The weights of the sampled orbital elements are then computed on the basis of the corresponding χ^2-values. The present method resembles the original ranging method. On one hand, MCMC mapping is insensitive to local extrema in the phase space and efficiently maps the solution space. This is somewhat contrary to the MCMC methods described above. On the other hand, MCMC mapping can suffer from producing a small number of sample elements with small χ^2-values, in resemblance to the original ranging method. We apply the methods to example near-Earth, main-belt, and transneptunian objects, and highlight the utilization of the methods in the data processing and analysis pipeline of the ESA Gaia space mission.
SNAP: A computer program for generating symbolic network functions
NASA Technical Reports Server (NTRS)
Lin, P. M.; Alderson, G. E.
1970-01-01
The computer program SNAP (symbolic network analysis program) generates symbolic network functions for networks containing R, L, and C type elements and all four types of controlled sources. The program is efficient with respect to program storage and execution time. A discussion of the basic algorithms is presented, together with user's and programmer's guides.
Lee, Ki-Sun; Shin, Sang-Wan; Lee, Sang-Pyo; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Jeong-Yol
The purpose of this pilot study was to evaluate and compare polyetherketoneketone (PEKK) with different framework materials for implant-supported prostheses by means of a three-dimensional finite element analysis (3D-FEA) based on cone beam computed tomography (CBCT) and computer-aided design (CAD) data. A geometric model that consisted of four maxillary implants supporting a prosthesis framework was constructed from CBCT and CAD data of a treated patient. Three different materials (zirconia, titanium, and PEKK) were selected, and their material properties were simulated using FEA software in the generated geometric model. In the PEKK framework (ie, low elastic modulus) group, the stress transferred to the implant and simulated adjacent tissue was reduced when compressive stress was dominant, but increased when tensile stress was dominant. This study suggests that the shock-absorbing effects of a resilient implant-supported framework are limited in some areas and that rigid framework material shows a favorable stress distribution and safety of overall components of the prosthesis.
Parallel Finite Element Domain Decomposition for Structural/Acoustic Analysis
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Tungkahotara, Siroj; Watson, Willie R.; Rajan, Subramaniam D.
2005-01-01
A domain decomposition (DD) formulation for solving sparse linear systems of equations resulting from finite element analysis is presented. The formulation incorporates mixed direct and iterative equation solving strategics and other novel algorithmic ideas that are optimized to take advantage of sparsity and exploit modern computer architecture, such as memory and parallel computing. The most time consuming part of the formulation is identified and the critical roles of direct sparse and iterative solvers within the framework of the formulation are discussed. Experiments on several computer platforms using several complex test matrices are conducted using software based on the formulation. Small-scale structural examples are used to validate thc steps in the formulation and large-scale (l,000,000+ unknowns) duct acoustic examples are used to evaluate the ORIGIN 2000 processors, and a duster of 6 PCs (running under the Windows environment). Statistics show that the formulation is efficient in both sequential and parallel computing environmental and that the formulation is significantly faster and consumes less memory than that based on one of the best available commercialized parallel sparse solvers.
Lee, Chi-Seung; Lee, Jae-Myung; Youn, BuHyun; Kim, Hyung-Sik; Shin, Jong Ki; Goh, Tae Sik; Lee, Jung Sub
2017-01-01
A new type of constitutive model and its computational implementation procedure for the simulation of a trabecular bone are proposed in the present study. A yield surface-independent Frank-Brockman elasto-viscoplastic model is introduced to express the nonlinear material behavior such as softening beyond yield point, plateau, and densification under compressive loads. In particular, the hardening- and softening-dominant material functions are introduced and adopted in the plastic multiplier to describe each nonlinear material behavior separately. In addition, the elasto-viscoplastic model is transformed into an implicit type discrete model, and is programmed as a user-defined material subroutine in commercial finite element analysis code. In particular, the consistent tangent modulus method is proposed to improve the computational convergence and to save computational time during finite element analysis. Through the developed material library, the nonlinear stress-strain relationship is analyzed qualitatively and quantitatively, and the simulation results are compared with the results of compression test on the trabecular bone to validate the proposed constitutive model, computational method, and material library. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brand, Richard A; Stanford, Clark M; Swan, Colby C
2003-01-01
Joint implant design clearly affects long-term outcome. While many implant designs have been empirically-based, finite element analysis has the potential to identify beneficial and deleterious features prior to clinical trials. Finite element analysis is a powerful analytic tool allowing computation of the stress and strain distribution throughout an implant construct. Whether it is useful depends upon many assumptions and details of the model. Since ultimate failure is related to biological factors in addition to mechanical, and since the mechanical causes of failure are related to load history, rather than a few loading conditions, chief among them is whether the stresses or strains under limited loading conditions relate to outcome. Newer approaches can minimize this and the many other model limitations. If the surgeon is to critically and properly interpret the results in scientific articles and sales literature, he or she must have a fundamental understanding of finite element analysis. We outline here the major capabilities of finite element analysis, as well as the assumptions and limitations. PMID:14575244
Finite Element Analysis of Flexural Vibrations in Hard Disk Drive Spindle Systems
NASA Astrophysics Data System (ADS)
LIM, SEUNGCHUL
2000-06-01
This paper is concerned with the flexural vibration analysis of the hard disk drive (HDD) spindle system by means of the finite element method. In contrast to previous research, every system component is here analytically modelled taking into account its structural flexibility and also the centrifugal effect particularly on the disk. To prove the effectiveness and accuracy of the formulated models, commercial HDD systems with two and three identical disks are selected as examples. Then their major natural modes are computed with only a small number of element meshes as the shaft rotational speed is varied, and subsequently compared with the existing numerical results obtained using other methods and newly acquired experimental ones. Based on such a series of studies, the proposed method can be concluded as a very promising tool for the design of HDDs and various other high-performance computer disk drives such as floppy disk drives, CD ROM drives, and their variations having spindle mechanisms similar to those of HDDs.
Advance finite element modeling of rotor blade aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Sangha, K. B.; Panda, B.
1994-01-01
An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.
Shape design sensitivity analysis and optimal design of structural systems
NASA Technical Reports Server (NTRS)
Choi, Kyung K.
1987-01-01
The material derivative concept of continuum mechanics and an adjoint variable method of design sensitivity analysis are used to relate variations in structural shape to measures of structural performance. A domain method of shape design sensitivity analysis is used to best utilize the basic character of the finite element method that gives accurate information not on the boundary but in the domain. Implementation of shape design sensitivty analysis using finite element computer codes is discussed. Recent numerical results are used to demonstrate the accuracy obtainable using the method. Result of design sensitivity analysis is used to carry out design optimization of a built-up structure.
NASA Astrophysics Data System (ADS)
Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.
2018-05-01
A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.
Computer architecture evaluation for structural dynamics computations: Project summary
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1989-01-01
The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.
A Novel Shape Parameterization Approach
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1999-01-01
This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
Finite Element Analysis of a NASA National Transonic Facility Wind Tunnel Balance
NASA Technical Reports Server (NTRS)
Lindell, Michael C.
1996-01-01
This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.
Finite Element Analysis of a NASA National Transonic Facility Wide Tunnel Balance
NASA Technical Reports Server (NTRS)
Lindell, Michael C. (Editor)
1999-01-01
This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.
Zaba: a novel miniature transposable element present in genomes of legume plants.
Macas, J; Neumann, P; Pozárková, D
2003-08-01
A novel family of miniature transposable elements, named Zaba, was identified in pea (Pisum sativum) and subsequently also in other legume species using computer analysis of their DNA sequences. Zaba elements are 141-190 bp long, generate 10-bp target site duplications, and their terminal inverted repeats make up most of the sequence. Zaba elements thus resemble class 3 foldback transposons. The elements are only moderately repetitive in pea (tens to hundreds copies per haploid genome), but they are present in up to thousands of copies in the genomes of several Medicago and Vicia species. More detailed analysis of the elements from pea, including isolation of new sequences from a genomic library, revealed that a fraction of these elements are truncated, and that their last transposition probably did not occur recently. A search for Zaba sequences in EST databases showed that at least some elements are transcribed, most probably due to their association with genic regions.
Sadofsky, M; Connelly, S; Manley, J L; Alwine, J C
1985-01-01
Our previous studies of the 3'-end processing of simian virus 40 late mRNAs indicated the existence of an essential element (or elements) downstream of the AAUAAA signal. We report here the use of transient expression analysis to study a functional element which we located within the sequence AGGUUUUUU, beginning 59 nucleotides downstream of the recognized signal AAUAAA. Deletion of this element resulted in (i) at least a 75% drop in 3'-end processing at the normal site and (ii) appearance of readthrough transcripts with alternate 3' ends. Some flexibility in the downstream position of this element relative to the AAUAAA was noted by deletion analysis. Using computer sequence comparison, we located homologous regions within downstream sequences of other genes, suggesting a generalized sequence element. In addition, specific complementarity is noted between the downstream element and U4 RNA. The possibility that this complementarity could participate in 3'-end site selection is discussed. Images PMID:3016512
NASA Technical Reports Server (NTRS)
Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo
2015-01-01
Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.
Nelson, D A; Curlee, J S; Curran, A R; Ziriax, J M; Mason, P A
2005-12-01
The localized thermal insulation value expresses a garment's thermal resistance over the region which is covered by the garment, rather than over the entire surface of a subject or manikin. The determination of localized garment insulation values is critical to the development of high-resolution models of sensible heat exchange. A method is presented for determining and validating localized garment insulation values, based on whole-body insulation values (clo units) and using computer-aided design and thermal analysis software. Localized insulation values are presented for a catalog consisting of 106 garments and verified using computer-generated models. The values presented are suitable for use on volume element-based or surface element-based models of heat transfer involving clothed subjects.
Analytical Prediction of Damage Growth in Notched Composite Panels Loaded in Axial Compression
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; McGowan, David M.; Davila, Carlos G.
1999-01-01
A progressive failure analysis method based on shell elements is developed for the computation of damage initiation and growth in stiffened thick-skin stitched graphite-epoxy panels loaded in axial compression. The analysis method involves a step-by-step simulation of material degradation based on ply-level failure mechanisms. High computational efficiency is derived from the use of superposed layers of shell elements to model each ply orientation in the laminate. Multiple integration points through the thickness are used to obtain the correct bending effects through the thickness without the need for ply-by-ply evaluations of the state of the material. The analysis results are compared with experimental results for three stiffened panels with notches oriented at 0, 15 and 30 degrees to the panel width dimension. A parametric study is performed to investigate the damage growth retardation characteristics of the Kevlar stitch lines in the pan
Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities
NASA Astrophysics Data System (ADS)
Romero, Ignacio; Segurado, Javier; LLorca, Javier
2008-04-01
The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.
Calculation of skin-stiffener interface stresses in stiffened composite panels
NASA Technical Reports Server (NTRS)
Cohen, David; Hyer, Michael W.
1987-01-01
A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. Accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. Using this analysis procedure, the influence of geometric nonlinearities and stiffener parameters on the skin-stiffener interface stresses is evaluated.
A novel approach in formulation of special transition elements: Mesh interface elements
NASA Technical Reports Server (NTRS)
Sarigul, Nesrin
1991-01-01
The objective of this research program is in the development of more accurate and efficient methods for solution of singular problems encountered in various branches of mechanics. The research program can be categorized under three levels. The first two levels involve the formulation of a new class of elements called 'mesh interface elements' (MIE) to connect meshes of traditional elements either in three dimensions or in three and two dimensions. The finite element formulations are based on boolean sum and blending operators. MEI are being formulated and tested in this research to account for the steep gradients encountered in aircraft and space structure applications. At present, the heat transfer and structural analysis problems are being formulated from uncoupled theory point of view. The status report: (1) summarizes formulation for heat transfer and structural analysis; (2) explains formulation of MEI; (3) examines computational efficiency; and (4) shows verification examples.
NASA Technical Reports Server (NTRS)
Ghista, D. N.; Hamid, M. S.
1977-01-01
The three-dimensional left ventricular chamber geometrical model is developed from single plane cineangiocardiogram. This left ventricular model is loaded by an internal pressure monitored by cardiac catheterization. The resulting stresses in the left ventricular model chamber's wall are determined by computerized finite element procedure. For the discretization of this left ventricular model structure, a 20-node, isoparametric finite element is employed. The analysis and formulation of the computerised procedure is presented in the paper, along with the detailed algorithms and computer programs. The procedure is applied to determine the stresses in a left ventricle at an instant, during systole. Next, a portion (represented by a finite element) of this left ventricular chamber is simulated as being infarcted by making its active-state modulus value equal to its passive-state value; the neighbouring elements are shown to relieve the 'infarcted' element of stress by themselves taking on more stress.
FIESTA ROC: A new finite element analysis program for solar cell simulation
NASA Technical Reports Server (NTRS)
Clark, Ralph O.
1991-01-01
The Finite Element Semiconductor Three-dimensional Analyzer by Ralph O. Clark (FIESTA ROC) is a computational tool for investigating in detail the performance of arbitrary solar cell structures. As its name indicates, it uses the finite element technique to solve the fundamental semiconductor equations in the cell. It may be used for predicting the performance (thereby dictating the design parameters) of a proposed cell or for investigating the limiting factors in an established design.
NASA Astrophysics Data System (ADS)
Cerwin, Steve; Barnes, Julie; Kell, Scott; Walters, Mark
2003-09-01
This paper describes development and application of a novel method to accomplish real-time solid angle acoustic direction finding using two 8-element orthogonal microphone arrays. The developed prototype system was intended for localization and signature recognition of ground-based sounds from a small UAV. Recent advances in computer speeds have enabled the implementation of microphone arrays in many audio applications. Still, the real-time presentation of a two-dimensional sound field for the purpose of audio target localization is computationally challenging. In order to overcome this challenge, a crosspower spectrum phase1 (CSP) technique was applied to each 8-element arm of a 16-element cross array to provide audio target localization. In this paper, we describe the technique and compare it with two other commonly used techniques; Cross-Spectral Matrix2 and MUSIC3. The results show that the CSP technique applied to two 8-element orthogonal arrays provides a computationally efficient solution with reasonable accuracy and tolerable artifacts, sufficient for real-time applications. Additional topics include development of a synchronized 16-channel transmitter and receiver to relay the airborne data to the ground-based processor and presentation of test data demonstrating both ground-mounted operation and airborne localization of ground-based gunshots and loud engine sounds.
Deep convolutional networks for automated detection of posterior-element fractures on spine CT
NASA Astrophysics Data System (ADS)
Roth, Holger R.; Wang, Yinong; Yao, Jianhua; Lu, Le; Burns, Joseph E.; Summers, Ronald M.
2016-03-01
Injuries of the spine, and its posterior elements in particular, are a common occurrence in trauma patients, with potentially devastating consequences. Computer-aided detection (CADe) could assist in the detection and classification of spine fractures. Furthermore, CAD could help assess the stability and chronicity of fractures, as well as facilitate research into optimization of treatment paradigms. In this work, we apply deep convolutional networks (ConvNets) for the automated detection of posterior element fractures of the spine. First, the vertebra bodies of the spine with its posterior elements are segmented in spine CT using multi-atlas label fusion. Then, edge maps of the posterior elements are computed. These edge maps serve as candidate regions for predicting a set of probabilities for fractures along the image edges using ConvNets in a 2.5D fashion (three orthogonal patches in axial, coronal and sagittal planes). We explore three different methods for training the ConvNet using 2.5D patches along the edge maps of `positive', i.e. fractured posterior-elements and `negative', i.e. non-fractured elements. An experienced radiologist retrospectively marked the location of 55 displaced posterior-element fractures in 18 trauma patients. We randomly split the data into training and testing cases. In testing, we achieve an area-under-the-curve of 0.857. This corresponds to 71% or 81% sensitivities at 5 or 10 false-positives per patient, respectively. Analysis of our set of trauma patients demonstrates the feasibility of detecting posterior-element fractures in spine CT images using computer vision techniques such as deep convolutional networks.
Quantitative analysis of biomedical samples using synchrotron radiation microbeams
NASA Astrophysics Data System (ADS)
Ektessabi, Ali; Shikine, Shunsuke; Yoshida, Sohei
2001-07-01
X-ray fluorescence (XRF) using a synchrotron radiation (SR) microbeam was applied to investigate distributions and concentrations of elements in single neurons of patients with neurodegenerative diseases. In this paper we introduce a computer code that has been developed to quantify the trace elements and matrix elements at the single cell level. This computer code has been used in studies of several important neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and parkinsonism-dementia complex (PDC), as well as in basic biological experiments to determine the elemental changes in cells due to incorporation of foreign metal elements. The substantial nigra (SN) tissue obtained from the autopsy specimens of patients with Guamanian parkinsonism-dementia complex (PDC) and control cases were examined. Quantitative XRF analysis showed that neuromelanin granules of Parkinsonian SN contained higher levels of Fe than those of the control. The concentrations were in the ranges of 2300-3100 ppm and 2000-2400 ppm respectively. On the contrary, Zn and Ni in neuromelanin granules of SN tissue from the PDC case were lower than those of the control. Especially Zn was less than 40 ppm in SN tissue from the PDC case while it was 560-810 ppm in the control. These changes are considered to be closely related to the neuro-degeneration and cell death.
Geometrically nonlinear analysis of laminated elastic structures
NASA Technical Reports Server (NTRS)
Reddy, J. N.
1984-01-01
Laminated composite plates and shells that can be used to model automobile bodies, aircraft wings and fuselages, and pressure vessels among many other were analyzed. The finite element method, a numerical technique for engineering analysis of structures, is used to model the geometry and approximate the solution. Various alternative formulations for analyzing laminated plates and shells are developed and their finite element models are tested for accuracy and economy in computation. These include the shear deformation laminate theory and degenerated 3-D elasticity theory for laminates.
On the Exploitation of Sensitivity Derivatives for Improving Sampling Methods
NASA Technical Reports Server (NTRS)
Cao, Yanzhao; Hussaini, M. Yousuff; Zang, Thomas A.
2003-01-01
Many application codes, such as finite-element structural analyses and computational fluid dynamics codes, are capable of producing many sensitivity derivatives at a small fraction of the cost of the underlying analysis. This paper describes a simple variance reduction method that exploits such inexpensive sensitivity derivatives to increase the accuracy of sampling methods. Three examples, including a finite-element structural analysis of an aircraft wing, are provided that illustrate an order of magnitude improvement in accuracy for both Monte Carlo and stratified sampling schemes.
2015-07-01
circular hole in an aluminium plate fitted with a titanium fastener that were computed using two-dimensional finite element contact analysis. By...used to validate the contact stress distributions associated with a circular hole in an aluminium plate fitted with a titanium fastener that were...fatigue life and aircraft structural integrity management of RAAF airframes. An aluminium coupon has been previously designed in support of the
Efficient 3-D finite element failure analysis of compression loaded angle-ply plates with holes
NASA Technical Reports Server (NTRS)
Burns, S. W.; Herakovich, C. T.; Williams, J. G.
1987-01-01
Finite element stress analysis and the tensor polynomial failure criterion predict that failure always initiates at the interface between layers on the hole edge for notched angle-ply laminates loaded in compression. The angular location of initial failure is a function of the fiber orientation in the laminate. The dominant stress components initiating failure are shear. It is shown that approximate symmetry can be used to reduce the computer resources required for the case of unaxial loading.
New computing systems and their impact on structural analysis and design
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1989-01-01
A review is given of the recent advances in computer technology that are likely to impact structural analysis and design. The computational needs for future structures technology are described. The characteristics of new and projected computing systems are summarized. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed, and a novel partitioning strategy is outlined for maximizing the degree of parallelism. The strategy is designed for computers with a shared memory and a small number of powerful processors (or a small number of clusters of medium-range processors). It is based on approximating the response of the structure by a combination of symmetric and antisymmetric response vectors, each obtained using a fraction of the degrees of freedom of the original finite element model. The strategy was implemented on the CRAY X-MP/4 and the Alliant FX/8 computers. For nonlinear dynamic problems on the CRAY X-MP with four CPUs, it resulted in an order of magnitude reduction in total analysis time, compared with the direct analysis on a single-CPU CRAY X-MP machine.
Finite element solution of low bond number sloshing
NASA Technical Reports Server (NTRS)
Wohlen, R. L.; Park, A. C.; Warner, D. M.
1975-01-01
The dynamics of liquid propellant in a low Bond number environment which are critical to the design of spacecraft systems with respect to orbital propellant transfer and attitude control system were investigated. Digital computer programs were developed for the determination of liquid free surface equilibrium shape, lateral slosh natural vibration mode shapes, and frequencies for a liquid in a container of arbitrary axisymmetric shape with surface tension forces the same order of magnitude as acceleration forces. A finite volume element representation of the liquid was used for the vibration analysis. The liquid free surface equilibrium shapes were computed for several tanks at various contact angles and ullage volumes. A configuration was selected for vibration analysis and lateral slosh mode shapes and natural frequencies were obtained. Results are documented.
Adaptive computational methods for aerothermal heating analysis
NASA Technical Reports Server (NTRS)
Price, John M.; Oden, J. Tinsley
1988-01-01
The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated.
Error estimation and adaptive mesh refinement for parallel analysis of shell structures
NASA Technical Reports Server (NTRS)
Keating, Scott C.; Felippa, Carlos A.; Park, K. C.
1994-01-01
The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.
Computer Analysis Of High-Speed Roller Bearings
NASA Technical Reports Server (NTRS)
Coe, H.
1988-01-01
High-speed cylindrical roller-bearing analysis program (CYBEAN) developed to compute behavior of cylindrical rolling-element bearings at high speeds and with misaligned shafts. With program, accurate assessment of geometry-induced roller preload possible for variety of out-ring and housing configurations and loading conditions. Enables detailed examination of bearing performance and permits exploration of causes and consequences of bearing skew. Provides general capability for assessment of designs of bearings supporting main shafts of engines. Written in FORTRAN IV.
Antenna analysis using neural networks
NASA Technical Reports Server (NTRS)
Smith, William T.
1992-01-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern shaping. The interesting thing about D-C synthesis is that the side lobes have the same amplitude. Five-element arrays were used. Again, 41 pattern samples were used for the input. Nine actual D-C patterns ranging from -10 dB to -30 dB side lobe levels were used to train the network. A comparison between simulated and actual D-C techniques for a pattern with -22 dB side lobe level is shown. The goal for this research was to evaluate the performance of neural network computing with antennas. Future applications will employ the backpropagation training algorithm to drastically reduce the computational complexity involved in performing EM compensation for surface errors in large space reflector antennas.
Antenna analysis using neural networks
NASA Astrophysics Data System (ADS)
Smith, William T.
1992-09-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary).
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.
1990-01-01
Practical engineering application can often be formulated in the form of a constrained optimization problem. There are several solution algorithms for solving a constrained optimization problem. One approach is to convert a constrained problem into a series of unconstrained problems. Furthermore, unconstrained solution algorithms can be used as part of the constrained solution algorithms. Structural optimization is an iterative process where one starts with an initial design, a finite element structure analysis is then performed to calculate the response of the system (such as displacements, stresses, eigenvalues, etc.). Based upon the sensitivity information on the objective and constraint functions, an optimizer such as ADS or IDESIGN, can be used to find the new, improved design. For the structural analysis phase, the equation solver for the system of simultaneous, linear equations plays a key role since it is needed for either static, or eigenvalue, or dynamic analysis. For practical, large-scale structural analysis-synthesis applications, computational time can be excessively large. Thus, it is necessary to have a new structural analysis-synthesis code which employs new solution algorithms to exploit both parallel and vector capabilities offered by modern, high performance computers such as the Convex, Cray-2 and Cray-YMP computers. The objective of this research project is, therefore, to incorporate the latest development in the parallel-vector equation solver, PVSOLVE into the widely popular finite-element production code, such as the SAP-4. Furthermore, several nonlinear unconstrained optimization subroutines have also been developed and tested under a parallel computer environment. The unconstrained optimization subroutines are not only useful in their own right, but they can also be incorporated into a more popular constrained optimization code, such as ADS.
Selection of finite-element mesh parameters in modeling the growth of hydraulic fracturing cracks
NASA Astrophysics Data System (ADS)
Kurguzov, V. D.
2016-12-01
The effect of the mesh geometry on the accuracy of solutions obtained by the finite-element method for problems of linear fracture mechanics is investigated. The guidelines have been formulated for constructing an optimum mesh for several routine problems involving elements with linear and quadratic approximation of displacements. The accuracy of finite-element solutions is estimated based on the degree of the difference between the calculated stress-intensity factor (SIF) and its value obtained analytically. In problems of hydrofracturing of oil-bearing formation, the pump-in pressure of injected water produces a distributed load on crack flanks as opposed to standard fracture mechanics problems that have analytical solutions, where a load is applied to the external boundaries of the computational region and the cracks themselves are kept free from stresses. Some model pressure profiles, as well as pressure profiles taken from real hydrodynamic computations, have been considered. Computer models of cracks with allowance for the pre-stressed state, fracture toughness, and elastic properties of materials are developed in the MSC.Marc 2012 finite-element analysis software. The Irwin force criterion is used as a criterion of brittle fracture and the SIFs are computed using the Cherepanov-Rice invariant J-integral. The process of crack propagation in a linearly elastic isotropic body is described in terms of the elastic energy release rate G and modeled using the VCCT (Virtual Crack Closure Technique) approach. It has been found that the solution accuracy is sensitive to the mesh configuration. Several parameters that are decisive in constructing effective finite-element meshes, namely, the minimum element size, the distance between mesh nodes in the vicinity of a crack tip, and the ratio of the height of an element to its length, have been established. It has been shown that a mesh that consists of only small elements does not improve the accuracy of the solution.
MAGNA (Materially and Geometrically Nonlinear Analysis). Part I. Finite Element Analysis Manual.
1982-12-01
provided for operating the program, modifying storage caoacity, preparing input data, estimating computer run times , and interpreting the output...7.1.3 Reserved File Names 7.1.16 7.1.4 Typical Execution Times on CDC Computers 7.1.18 7.2 CRAY PROGRAM VERSION 7.2.1 7.2.1 Job Control Language 7.2.1...7.2.2 Modification of Storage Capacity 7.2.8 7.2.3 Execution Times on the CRAY-I Computer 7.2.12 7.3 VAX PROGRAM VERSION 7.3.1 8 INPUT DATA 8.0.1 8.1
Reanalysis, compatibility and correlation in analysis of modified antenna structures
NASA Technical Reports Server (NTRS)
Levy, R.
1989-01-01
A simple computational procedure is synthesized to process changes in the microwave-antenna pathlength-error measure when there are changes in the antenna structure model. The procedure employs structural modification reanalysis methods combined with new extensions of correlation analysis to provide the revised rms pathlength error. Mainframe finite-element-method processing of the structure model is required only for the initial unmodified structure, and elementary postprocessor computations develop and deal with the effects of the changes. Several illustrative computational examples are included. The procedure adapts readily to processing spectra of changes for parameter studies or sensitivity analyses.
Symbolic-numeric interface: A review
NASA Technical Reports Server (NTRS)
Ng, E. W.
1980-01-01
A survey of the use of a combination of symbolic and numerical calculations is presented. Symbolic calculations primarily refer to the computer processing of procedures from classical algebra, analysis, and calculus. Numerical calculations refer to both numerical mathematics research and scientific computation. This survey is intended to point out a large number of problem areas where a cooperation of symbolic and numerical methods is likely to bear many fruits. These areas include such classical operations as differentiation and integration, such diverse activities as function approximations and qualitative analysis, and such contemporary topics as finite element calculations and computation complexity. It is contended that other less obvious topics such as the fast Fourier transform, linear algebra, nonlinear analysis and error analysis would also benefit from a synergistic approach.
Structural mode significance using INCA. [Interactive Controls Analysis computer program
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.
1990-01-01
Structural finite element models are often too large to be used in the design and analysis of control systems. Model reduction techniques must be applied to reduce the structural model to manageable size. In the past, engineers either performed the model order reduction by hand or used distinct computer programs to retrieve the data, to perform the significance analysis and to reduce the order of the model. To expedite this process, the latest version of INCA has been expanded to include an interactive graphical structural mode significance and model order reduction capability.
DOT National Transportation Integrated Search
1978-01-01
A system analysis was completed of the general deterrence of driving while intoxicated (DWI). Elements which influence DWI decisions were identified and interrelated in a system model; then, potential countermeasures which might be employed in DWI ge...
Computational aspects of helicopter trim analysis and damping levels from Floquet theory
NASA Technical Reports Server (NTRS)
Gaonkar, Gopal H.; Achar, N. S.
1992-01-01
Helicopter trim settings of periodic initial state and control inputs are investigated for convergence of Newton iteration in computing the settings sequentially and in parallel. The trim analysis uses a shooting method and a weak version of two temporal finite element methods with displacement formulation and with mixed formulation of displacements and momenta. These three methods broadly represent two main approaches of trim analysis: adaptation of initial-value and finite element boundary-value codes to periodic boundary conditions, particularly for unstable and marginally stable systems. In each method, both the sequential and in-parallel schemes are used and the resulting nonlinear algebraic equations are solved by damped Newton iteration with an optimally selected damping parameter. The impact of damped Newton iteration, including earlier-observed divergence problems in trim analysis, is demonstrated by the maximum condition number of the Jacobian matrices of the iterative scheme and by virtual elimination of divergence. The advantages of the in-parallel scheme over the conventional sequential scheme are also demonstrated.
Significance of Strain in Formulation in Theory of Solid Mechanics
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.
2003-01-01
The basic theory of solid mechanics was deemed complete circa 1860 when St. Venant provided the strain formulation or the field compatibility condition. The strain formulation was incomplete. The missing portion has been formulated and identified as the boundary compatibility condition (BCC). The BCC, derived through a variational formulation, has been verified through integral theorem and solution of problems. The BCC, unlike the field counterpart, do not trivialize when expressed in displacements. Navier s method and the stiffness formulation have to account for the extra conditions especially at the inter-element boundaries in a finite element model. Completion of the strain formulation has led to the revival of the direct force calculation methods: the Integrated Force Method (IFM) and its dual (IFMD) for finite element analysis, and the completed Beltrami-Michell formulation (CBMF) in elasticity. The benefits from the new methods in elasticity, in finite element analysis, and in design optimization are discussed. Existing solutions and computer codes may have to be adjusted for the compliance of the new conditions. Complacency because the discipline is over a century old and computer codes have been developed for half a century can lead to stagnation of the discipline.
Testing a Wheeled Landing Gear System for the TH-57 Helicopter
1992-12-01
initial comparison was done using a structural analysis program, GIFTS , to simultaneously analyze an~i compare the gear systems. Experimental data was used...15 B. GIFTS PROGRAM RESULTS ............................ 15 1. Model...Element Total System ( GIFTS ) structural analysis program, which is resident oin the Aeiunauimia Euginme1ing Department computer system, an analysis
Combining analysis with optimization at Langley Research Center. An evolutionary process
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1982-01-01
The evolutionary process of combining analysis and optimization codes was traced with a view toward providing insight into the long term goal of developing the methodology for an integrated, multidisciplinary software system for the concurrent analysis and optimization of aerospace structures. It was traced along the lines of strength sizing, concurrent strength and flutter sizing, and general optimization to define a near-term goal for combining analysis and optimization codes. Development of a modular software system combining general-purpose, state-of-the-art, production-level analysis computer programs for structures, aerodynamics, and aeroelasticity with a state-of-the-art optimization program is required. Incorporation of a modular and flexible structural optimization software system into a state-of-the-art finite element analysis computer program will facilitate this effort. This effort results in the software system used that is controlled with a special-purpose language, communicates with a data management system, and is easily modified for adding new programs and capabilities. A 337 degree-of-freedom finite element model is used in verifying the accuracy of this system.
Analysis of a High-Lift Multi-Element Airfoil using a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Whitlock, Mark E.
1995-01-01
A thin-layer Navier-Stokes code, CFL3D, was utilized to compute the flow over a high-lift multi-element airfoil. This study was conducted to improve the prediction of high-lift flowfields using various turbulence models and improved glidding techniques. An overset Chimera grid system is used to model the three element airfoil geometry. The effects of wind tunnel wall modeling, changes to the grid density and distribution, and embedded grids are discussed. Computed pressure and lift coefficients using Spalart-Allmaras, Baldwin-Barth, and Menter's kappa-omega - Shear Stress Transport (SST) turbulence models are compared with experimental data. The ability of CFL3D to predict the effects on lift coefficient due to changes in Reynolds number changes is also discussed.
Călin, Bogdan-Ştefăniţă; Preda, Liliana; Jipa, Florin; Zamfirescu, Marian
2018-02-20
We have designed, fabricated, and tested an amplitude diffractive optical element for generation of two-dimensional (2D) Airy beams. The design is based on a detour-phase computer-generated hologram. Using laser ablation of metallic films, we obtained a 2 mm×2 mm diffractive optical element with a pixel of 5 μm×5 μm and demonstrated a fast, cheap, and reliable fabrication process. This device can modulate 2D Airy beams or it can be used as a UV lithography mask to fabricate a series of phase holograms for higher energy efficiency. Tests according to the premise and an analysis of the transverse profile and propagation are presented.
14 CFR 1214.801 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... customer's pro rata share of Shuttle services and used to compute the Shuttle charge factor. Means of... compute the customer's pro rata share of each element's services and used to compute the element charge... element charge factor. Parameters used in computation of the customer's flight price. Means of computing...
14 CFR 1214.801 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... customer's pro rata share of Shuttle services and used to compute the Shuttle charge factor. Means of... compute the customer's pro rata share of each element's services and used to compute the element charge... element charge factor. Parameters used in computation of the customer's flight price. Means of computing...
14 CFR 1214.801 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... customer's pro rata share of Shuttle services and used to compute the Shuttle charge factor. Means of... compute the customer's pro rata share of each element's services and used to compute the element charge... element charge factor. Parameters used in computation of the customer's flight price. Means of computing...
14 CFR 1214.801 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... customer's pro rata share of Shuttle services and used to compute the Shuttle charge factor. Means of... compute the customer's pro rata share of each element's services and used to compute the element charge... element charge factor. Parameters used in computation of the customer's flight price. Means of computing...
14 CFR § 1214.801 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... customer's pro rata share of Shuttle services and used to compute the Shuttle charge factor. Means of... compute the customer's pro rata share of each element's services and used to compute the element charge... element charge factor. Parameters used in computation of the customer's flight price. Means of computing...
Flow induction by pressure forces
NASA Technical Reports Server (NTRS)
Garris, C. A.; Toh, K. H.; Amin, S.
1992-01-01
A dual experimental/computational approach to the fluid mechanics of complex interactions that take place in a rotary-jet ejector is presented. The long-range goal is to perform both detailed flow mapping and finite element computational analysis. The described work represents an initial finding on the experimental mapping program. Test results on the hubless rotary-jet are discussed.
NASA Technical Reports Server (NTRS)
Martin, C. Wayne; Breiner, David M.; Gupta, Kajal K. (Technical Monitor)
2004-01-01
Mathematical development and some computed results are presented for Mindlin plate and shell elements, suitable for analysis of laminated composite and sandwich structures. These elements use the conventional 3 (plate) or 5 (shell) nodal degrees of freedom, have no communicable mechanisms, have no spurious shear energy (no shear locking), have no spurious membrane energy (no membrane locking) and do not require arbitrary reduction of out-of-plane shear moduli or under-integration. Artificial out-of-plane rotational stiffnesses are added at the element level to avoid convergence problems or singularity due to flat spots in shells. This report discusses a 6-node curved triangular element and a 4-node quadrilateral element. Findings show that in regular rectangular meshes, the Martin-Breiner 6-node triangular curved shell (MB6) is approximately equivalent to the conventional 8-node quadrilateral with integration. The 4-node quadrilateral (MB4) has very good accuracy for a 4-node element, and may be preferred in vibration analysis because of narrower bandwidth. The mathematical developments used in these elements, those discussed in the seven appendices, have been applied to elements with 3, 4, 6, and 10 nodes and can be applied to other nodal configurations.
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Brogan, F. A.
1978-01-01
Basic information about the computer code STAGS (Structural Analysis of General Shells) is presented to describe to potential users the scope of the code and the solution procedures that are incorporated. Primarily, STAGS is intended for analysis of shell structures, although it has been extended to more complex shell configurations through the inclusion of springs and beam elements. The formulation is based on a variational approach in combination with local two dimensional power series representations of the displacement components. The computer code includes options for analysis of linear or nonlinear static stress, stability, vibrations, and transient response. Material as well as geometric nonlinearities are included. A few examples of applications of the code are presented for further illustration of its scope.
Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) for a 3-D Flexible Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) are extended from single discipline analysis (aerodynamics only) to multidisciplinary analysis - in this case, static aero-structural analysis - and applied to a simple 3-D wing problem. The method aims to reduce the computational expense incurred in performing shape optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, Finite Element Method (FEM) structural analysis and sensitivity analysis tools. Results for this small problem show that the method reaches the same local optimum as conventional optimization. However, unlike its application to the win,, (single discipline analysis), the method. as I implemented here, may not show significant reduction in the computational cost. Similar reductions were seen in the two-design-variable (DV) problem results but not in the 8-DV results given here.
OpenSeesPy: Python library for the OpenSees finite element framework
NASA Astrophysics Data System (ADS)
Zhu, Minjie; McKenna, Frank; Scott, Michael H.
2018-01-01
OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.
Analysis of helium-ion scattering with a desktop computer
NASA Astrophysics Data System (ADS)
Butler, J. W.
1986-04-01
This paper describes a program written in an enhanced BASIC language for a desktop computer, for simulating the energy spectra of high-energy helium ions scattered into two concurrent detectors (backward and glancing). The program is designed for 512-channel spectra from samples containing up to 8 elements and 55 user-defined layers. The program is intended to meet the needs of analyses in materials sciences, such as metallurgy, where more than a few elements may be present, where several elements may be near each other in the periodic table, and where relatively deep structure may be important. These conditions preclude the use of completely automatic procedures for obtaining the sample composition directly from the scattered ion spectrum. Therefore, efficient methods are needed for entering and editing large amounts of composition data, with many iterations and with much feedback of information from the computer to the user. The internal video screen is used exclusively for verbal and numeric communications between user and computer. The composition matrix is edited on screen with a two-dimension forms-fill-in text editor and with many automatic procedures, such as doubling the number of layers with appropriate interpolations and extrapolations. The control center of the program is a bank of 10 keys that initiate on-event branching of program flow. The experimental and calculated spectra, including those of individual elements if desired, are displayed on an external color monitor, with an optional inset plot of the depth concentration profiles of the elements in the sample.
IMP: Interactive mass properties program. Volume 1: Program description
NASA Technical Reports Server (NTRS)
Stewart, W. A.
1976-01-01
A method of computing a weights and center of gravity analysis of a flight vehicle using interactive graphical capabilities of the Adage 340 computer is described. The equations used to calculate area, volume, and mass properties are based on elemental surface characteristics. The input/output methods employ the graphic support of the Adage computer. Several interactive program options are available for analyzing the mass properties of a vehicle. These options are explained.
Development of a realistic stress analysis for fatigue analysis of notched composite laminates
NASA Technical Reports Server (NTRS)
Humphreys, E. A.; Rosen, B. W.
1979-01-01
A finite element stress analysis which consists of a membrane and interlaminar shear spring analysis was developed. This approach was utilized in order to model physically realistic failure mechanisms while maintaining a high degree of computational economy. The accuracy of the stress analysis predictions is verified through comparisons with other solutions to the composite laminate edge effect problem. The stress analysis model was incorporated into an existing fatigue analysis methodology and the entire procedure computerized. A fatigue analysis is performed upon a square laminated composite plate with a circular central hole. A complete description and users guide for the computer code FLAC (Fatigue of Laminated Composites) is included as an appendix.
Finite-element analysis of dynamic fracture
NASA Technical Reports Server (NTRS)
Aberson, J. A.; Anderson, J. M.; King, W. W.
1976-01-01
Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Smith, D. B. S.
1979-01-01
Production and support equipment specifications are described for the space manufacturing facility (SMF). Defined production equipment includes electromagnetic pumps for liquid metal, metal alloying furnaces, die casters, electron beam welders and cutters, glass forming for structural elements, and rolling. A cost analysis is presented which includes the development, the aquisition of all SMF elements, initial operating cost, maintenance and logistics cost, cost of terrestrial materials, and transportation cost for each major element. Computer program listings and outputs are appended.
Rigorous GNSS network solutions of unlimited size
NASA Astrophysics Data System (ADS)
Boomkamp, H.; Iag Working Group 1. 1. 1
2010-12-01
The session description states that rigorous estimation processes for millions of parameters are computationally impossible. A more accurate observation would be that such solutions exceed the capacity of current Analysis Centres by several orders of magnitude, as was already discussed during the IGS Workshop of 2004. We can however make processing elements that are smaller and simpler than conventional Analysis Centres, until we have a “centre” that can be replicated in arbitrary amounts, at zero cost. In practice this means that the processing element is reduced to a single, automated computer application that can run anywhere. These analysis elements are connected via the internet into a scalable grid computing scheme that can handle GNSS networks of any size. The approach is not fundamentally different from current combination solutions among a network of Analysis Centres, but refines the granularity of the network elements in order to reduce system complexity and eliminate cost. The Dancer project of IAG Working Group 1 has developed a JXTA peer-to-peer application to this purpose. Dancer splits a conventional batch least squares process into as many interacting subtasks as there are receivers. Each task can then run on a local PC of a permanent GNSS site, or anywhere else. All Dancer instances find the same global solution for satellite orbits, clocks and Earth rotation parameters via an efficient vector averaging method called square dancing. The hardware requirements for a single Dancer process do not exceed those of e.g. current mobile phone applications, so that future generations of GNSS receivers may be able to run such a task as an embedded process. This leads to the concept of “smart receivers” that no longer require any post-processing infrastructure. Instead they need an internet connection to join thousands of other smart receivers in a global network solution. The key algorithms, project status and further deployment of the Dancer system will be presented. A brief summary is also given of two follow-on projects, called Digger (distributed computing for global geodetic reprocessing) and Dart (Dancer real-time). For more details, see www.GPSdancer.com.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
NASA Technical Reports Server (NTRS)
Osias, J. R.
1974-01-01
Computer programs are presented which provide incremental finite-element analysis capability for problems of quasi-static, finite, elastoplastic deformation in two spatial dimensions (plane strain, plane stress, axisymmetric). Monotonic or cyclic loading of isotropic hardening materials is considered. The only restriction on the form of the stress-strain curve is that the rate of work hardening exceed some small positive value. The user's guide assumes familiarity with both finite-element analysis and FORTRAN IV programming for the CDC 6600. Sufficient information is provided to support problem solving ultization of the programs.
Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples
NASA Astrophysics Data System (ADS)
Hsu, Liang-Yi; Tsai, Mi-Ching
2004-11-01
This paper presents a tooth shape optimization method based on a generic algorithm to reduce the torque ripple of brushless permanent magnet motors under two different magnetization directions. The analysis of this design method mainly focuses on magnetic saturation and cogging torque and the computation of the optimization process is based on an equivalent magnetic network circuit. The simulation results, obtained from the finite element analysis, are used to confirm the accuracy and performance. Finite element analysis results from different tooth shapes are compared to show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Krejsa, M.; Brozovsky, J.; Mikolasek, D.; Parenica, P.; Koubova, L.
2018-04-01
The paper is focused on the numerical modeling of welded steel bearing elements using commercial software system ANSYS, which is based on the finite element method - FEM. It is important to check and compare the results of FEM analysis with the results of physical verification test, in which the real behavior of the bearing element can be observed. The results of the comparison can be used for calibration of the computational model. The article deals with the physical test of steel supporting elements, whose main purpose is obtaining of material, geometry and strength characteristics of the fillet and butt welds including heat affected zone in the basic material of welded steel bearing element. The pressure test was performed during the experiment, wherein the total load value and the corresponding deformation of the specimens under the load was monitored. Obtained data were used for the calibration of numerical models of test samples and they are necessary for further stress and strain analysis of steel supporting elements.
Weltert, Luca; de Tullio, Marco D.; Afferrante, Luciano; Salica, Andrea; Scaffa, Raffaele; Maselli, Daniele; Verzicco, Roberto; De Paulis, Ruggero
2013-01-01
OBJECTIVES In the belief that stress is the main determinant of leaflet quality deterioration, we sought to evaluate the effect of annular and/or sino-tubular junction dilatation on leaflet stress. A finite element computer-assisted stress analysis was used to model four different anatomic conditions and analyse the consequent stress pattern on the aortic valve. METHODS Theoretical models of four aortic root configurations (normal, with dilated annulus, with loss of sino-tubular junction and with both dilatation simultaneously) were created with computer-aided design technique. The pattern of stress and strain was then analysed by means of finite elements analysis, when a uniform pressure of 100 mmHg was applied to the model. Analysis produced von Mises charts (colour-coded, computational, three-dimensional stress-pattern graphics) and bidimensional plots of compared stress on arc-linear line, which allowed direct comparison of stress in the four different conditions. RESULTS Stresses both on the free margin and on the ‘belly’ of the leaflet rose from 0.28 MPa (normal conditions) to 0.32 MPa (+14%) in case of isolated dilatation of the sino-tubular junction, while increased to 0.42 MPa (+67%) in case of isolated annular dilatation, with no substantial difference whether sino-tubular junction dilatation was present or not. CONCLUSIONS Annular dilatation is the key element determining an increased stress on aortic leaflets independently from an associated sino-tubular junction dilatation. The presence of annular dilatation associated with root aneurysm greatly decreases the chance of performing a valve sparing procedure without the need for additional manoeuvres on leaflet tissue. This information may lead to a refinement in the optimal surgical strategy. PMID:23536020
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.
NASA Astrophysics Data System (ADS)
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G
2004-02-01
The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.
Fiber pushout test: A three-dimensional finite element computational simulation
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Chamis, Christos C.
1990-01-01
A fiber pushthrough process was computationally simulated using three-dimensional finite element method. The interface material is replaced by an anisotropic material with greatly reduced shear modulus in order to simulate the fiber pushthrough process using a linear analysis. Such a procedure is easily implemented and is computationally very effective. It can be used to predict fiber pushthrough load for a composite system at any temperature. The average interface shear strength obtained from pushthrough load can easily be separated into its two components: one that comes from frictional stresses and the other that comes from chemical adhesion between fiber and the matrix and mechanical interlocking that develops due to shrinkage of the composite because of phase change during the processing. Step-by-step procedures are described to perform the computational simulation, to establish bounds on interfacial bond strength and to interpret interfacial bond quality.
NASA Technical Reports Server (NTRS)
Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.
2012-01-01
Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.
Dual-scale Galerkin methods for Darcy flow
NASA Astrophysics Data System (ADS)
Wang, Guoyin; Scovazzi, Guglielmo; Nouveau, Léo; Kees, Christopher E.; Rossi, Simone; Colomés, Oriol; Main, Alex
2018-02-01
The discontinuous Galerkin (DG) method has found widespread application in elliptic problems with rough coefficients, of which the Darcy flow equations are a prototypical example. One of the long-standing issues of DG approximations is the overall computational cost, and many different strategies have been proposed, such as the variational multiscale DG method, the hybridizable DG method, the multiscale DG method, the embedded DG method, and the Enriched Galerkin method. In this work, we propose a mixed dual-scale Galerkin method, in which the degrees-of-freedom of a less computationally expensive coarse-scale approximation are linked to the degrees-of-freedom of a base DG approximation. We show that the proposed approach has always similar or improved accuracy with respect to the base DG method, with a considerable reduction in computational cost. For the specific definition of the coarse-scale space, we consider Raviart-Thomas finite elements for the mass flux and piecewise-linear continuous finite elements for the pressure. We provide a complete analysis of stability and convergence of the proposed method, in addition to a study on its conservation and consistency properties. We also present a battery of numerical tests to verify the results of the analysis, and evaluate a number of possible variations, such as using piecewise-linear continuous finite elements for the coarse-scale mass fluxes.
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...
2018-03-15
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
The role of continuity in residual-based variational multiscale modeling of turbulence
NASA Astrophysics Data System (ADS)
Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.
2008-02-01
This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhangxing; Huang, Tianyu; Shao, Yimin
Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Application of NASTRAN for stress analysis of left ventricle of the heart
NASA Technical Reports Server (NTRS)
Pao, Y. C.; Ritman, E. L.; Wang, H. C.
1975-01-01
Knowing the stress and strain distributions in the left ventricular wall of the heart is a prerequisite for the determination of the muscle elasticity and contractility in the process of assessing the functional status of the heart. NASTRAN was applied for the calculation of these stresses and strains and to help in verifying the results obtained by the computer program FEAMPS which was specifically designed for the plane-strain finite-element analysis of the left ventricular cross sections. Adopted for the analysis are the true shape and dimensions of the cross sections reconstructed from multiplanar X-ray views of a left ventricle which was surgically isolated from a dog's heart but metabolically supported to sustain its beating. A preprocessor was prepared to accommodate both FEAMPS and NASTRAN, and it has also facilitated the application of both the triangular element and isoparameteric quadrilateral element versions of NASTRAN. The stresses in several crucial regions of the left ventricular wall calculated by these two independently developed computer programs are found to be in good agreement. Such confirmation of the results is essential in the development of a method which assesses the heart performance.
Coupled 2D-3D finite element method for analysis of a skin panel with a discontinuous stiffener
NASA Technical Reports Server (NTRS)
Wang, J. T.; Lotts, C. G.; Davis, D. D., Jr.; Krishnamurthy, T.
1992-01-01
This paper describes a computationally efficient analysis method which was used to predict detailed stress states in a typical composite compression panel with a discontinuous hat stiffener. A global-local approach was used. The global model incorporated both 2D shell and 3D brick elements connected by newly developed transition elements. Most of the panel was modeled with 2D elements, while 3D elements were employed to model the stiffener flange and the adjacent skin. Both linear and geometrically nonlinear analyses were performed on the global model. The effect of geometric nonlinearity induced by the eccentric load path due to the discontinuous hat stiffener was significant. The local model used a fine mesh of 3D brick elements to model the region at the end of the stiffener. Boundary conditions of the local 3D model were obtained by spline interpolation of the nodal displacements from the global analysis. Detailed in-plane and through-the-thickness stresses were calculated in the flange-skin interface near the end of the stiffener.
Analysis of reinforced concrete structures with occurrence of discrete cracks at arbitrary positions
NASA Technical Reports Server (NTRS)
Blaauwendraad, J.; Grootenboer, H. J.; Bouma, A. L.; Reinhardt, H. W.
1980-01-01
A nonlinear analysis of in-plane loaded plates is presented, which eliminates the disadvantages of the smeared crack approach. The elements used and the computational method are discussed. An example is shown in which one or more discrete cracks are dominant.
Distributed Finite Element Analysis Using a Transputer Network
NASA Technical Reports Server (NTRS)
Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy
1989-01-01
The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.
NASA Astrophysics Data System (ADS)
Urquiza, Eugenio
This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an iterative design process which will lead to a design with a reduced pressure drop, increased thermal effectiveness, and improved mechanical performance as it relates to creep deformation and transient thermal stresses.
Combining elements of information fusion and knowledge-based systems to support situation analysis
NASA Astrophysics Data System (ADS)
Roy, Jean
2006-04-01
Situation awareness has emerged as an important concept in military and public security environments. Situation analysis is defined as a process, the examination of a situation, its elements, and their relations, to provide and maintain a product, i.e., a state of situation awareness for the decision maker(s). It is well established that information fusion, defined as the process of utilizing one or more information sources over time to assemble a representation of aspects of interest in an environment, is a key enabler to meeting the demanding requirements of situation analysis. However, although information fusion is important, developing and adopting a knowledge-centric view of situation analysis should provide a more holistic perspective of this process. This is based on the notion that awareness ultimately has to do with having knowledge of something. Moreover, not all of the situation elements and relationships of interest are directly observable. Those aspects of interest that cannot be observed must be inferred, i.e., derived as a conclusion from facts or premises, or by reasoning from evidence. This paper discusses aspects of knowledge, and how it can be acquired from experts, formally represented and stored in knowledge bases to be exploited by computer programs, and validated. Knowledge engineering is reviewed, with emphasis given to cognitive and ontological engineering. Facets of reasoning are discussed, along with inferencing methods that can be used in computer applications. Finally, combining elements of information fusion and knowledge-based systems, an overall approach and framework for the building of situation analysis support systems is presented.
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin; Krueger, Ronald
2001-01-01
Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.
Begum, M. Sameena; Dinesh, M. R.; Tan, Kenneth F. H.; Jairaj, Vani; Md Khalid, K.; Singh, Varun Pratap
2015-01-01
The finite element method (FEM) is a powerful computational tool for solving stress-strain problems; its ability to handle material inhomogeneity and complex shapes makes the FEM, the most suitable method for the analysis of internal stress levels in the tooth, periodontium, and alveolar bone. This article intends to explain the steps involved in the generation of a three-dimensional finite element model of tooth, periodontal ligament (PDL) and alveolar bone, as the procedure of modeling is most important because the result is based on the nature of the modeling systems. Finite element analysis offers a means of determining strain-stress levels in the tooth, ligament, and bone structures for a broad range of orthodontic loading scenarios without producing tissue damage. PMID:26538895
Linear combination reading program for capture gamma rays
Tanner, Allan B.
1971-01-01
This program computes a weighting function, Qj, which gives a scalar output value of unity when applied to the spectrum of a desired element and a minimum value (considering statistics) when applied to spectra of materials not containing the desired element. Intermediate values are obtained for materials containing the desired element, in proportion to the amount of the element they contain. The program is written in the BASIC language in a format specific to the Hewlett-Packard 2000A Time-Sharing System, and is an adaptation of an earlier program for linear combination reading for X-ray fluorescence analysis (Tanner and Brinkerhoff, 1971). Following the program is a sample run from a study of the application of the linear combination technique to capture-gamma-ray analysis for calcium (report in preparation).
A Galleria Boundary Element Method for two-dimensional nonlinear magnetostatics
NASA Astrophysics Data System (ADS)
Brovont, Aaron D.
The Boundary Element Method (BEM) is a numerical technique for solving partial differential equations that is used broadly among the engineering disciplines. The main advantage of this method is that one needs only to mesh the boundary of a solution domain. A key drawback is the myriad of integrals that must be evaluated to populate the full system matrix. To this day these integrals have been evaluated using numerical quadrature. In this research, a Galerkin formulation of the BEM is derived and implemented to solve two-dimensional magnetostatic problems with a focus on accurate, rapid computation. To this end, exact, closed-form solutions have been derived for all the integrals comprising the system matrix as well as those required to compute fields in post-processing; the need for numerical integration has been eliminated. It is shown that calculation of the system matrix elements using analytical solutions is 15-20 times faster than with numerical integration of similar accuracy. Furthermore, through the example analysis of a c-core inductor, it is demonstrated that the present BEM formulation is a competitive alternative to the Finite Element Method (FEM) for linear magnetostatic analysis. Finally, the BEM formulation is extended to analyze nonlinear magnetostatic problems via the Dual Reciprocity Method (DRBEM). It is shown that a coarse, meshless analysis using the DRBEM is able to achieve RMS error of 3-6% compared to a commercial FEM package in lightly saturated conditions.
Evaluation of two models for predicting elemental accumulation by arthropods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, J.R.; Crossley, D.A. Jr.
1978-06-15
Two different models have been proposed for predicting elemental accumulation by arthropods. Parameters of both models can be quantified from radioisotope elimination experiments. Our analysis of the 2 models shows that both predict identical elemental accumulation for a whole organism, though differing in the accumulation in body and gut. We quantified both models with experimental data from /sup 134/Cs and /sup 85/Sr elimination by crickets. Computer simulations of radioisotope accumulation were then compared with actual accumulation experiments. Neither model showed exact fit to the experimental data, though both showed the general pattern of elemental accumulation.
NASA Astrophysics Data System (ADS)
Nehm, Ross H.; Haertig, Hendrik
2012-02-01
Our study examines the efficacy of Computer Assisted Scoring (CAS) of open-response text relative to expert human scoring within the complex domain of evolutionary biology. Specifically, we explored whether CAS can diagnose the explanatory elements (or Key Concepts) that comprise undergraduate students' explanatory models of natural selection with equal fidelity as expert human scorers in a sample of >1,000 essays. We used SPSS Text Analysis 3.0 to perform our CAS and measure Kappa values (inter-rater reliability) of KC detection (i.e., computer-human rating correspondence). Our first analysis indicated that the text analysis functions (or extraction rules) developed and deployed in SPSSTA to extract individual Key Concepts (KCs) from three different items differing in several surface features (e.g., taxon, trait, type of evolutionary change) produced "substantial" (Kappa 0.61-0.80) or "almost perfect" (0.81-1.00) agreement. The second analysis explored the measurement of human-computer correspondence for KC diversity (the number of different accurate knowledge elements) in the combined sample of all 827 essays. Here we found outstanding correspondence; extraction rules generated using one prompt type are broadly applicable to other evolutionary scenarios (e.g., bacterial resistance, cheetah running speed, etc.). This result is encouraging, as it suggests that the development of new item sets may not necessitate the development of new text analysis rules. Overall, our findings suggest that CAS tools such as SPSS Text Analysis may compensate for some of the intrinsic limitations of currently used multiple-choice Concept Inventories designed to measure student knowledge of natural selection.
An evaluation of four single element airfoil analytic methods
NASA Technical Reports Server (NTRS)
Freuler, R. J.; Gregorek, G. M.
1979-01-01
A comparison of four computer codes for the analysis of two-dimensional single element airfoil sections is presented for three classes of section geometries. Two of the computer codes utilize vortex singularities methods to obtain the potential flow solution. The other two codes solve the full inviscid potential flow equation using finite differencing techniques, allowing results to be obtained for transonic flow about an airfoil including weak shocks. Each program incorporates boundary layer routines for computing the boundary layer displacement thickness and boundary layer effects on aerodynamic coefficients. Computational results are given for a symmetrical section represented by an NACA 0012 profile, a conventional section illustrated by an NACA 65A413 profile, and a supercritical type section for general aviation applications typified by a NASA LS(1)-0413 section. The four codes are compared and contrasted in the areas of method of approach, range of applicability, agreement among each other and with experiment, individual advantages and disadvantages, computer run times and memory requirements, and operational idiosyncrasies.
Matoso, Rodrigo Ivo; Freire, Alexandre Rodrigues; Santos, Leonardo Soriano de Mello; Daruge Junior, Eduardo; Rossi, Ana Claudia; Prado, Felippe Bevilacqua
2014-01-01
Firearms can cause fatal wounds, which can be identified by traces on or around the body. However, there are cases where neither the bullet nor gun is found at the crime scene. Ballistic research involving finite element models can reproduce computational biomechanical conditions, without compromising bioethics, as they involve no direct tests on animals or humans. This study aims to compare the morphologies of gunshot entrance holes caused by.40-caliber Smith & Wesson (S&W), .380-caliber, and 9×19-mm Luger bullets. A fully metal-jacketed.40 S&W projectile, a fully metal-jacketed.380 projectile, and a fully metal-jacketed 9×19-mm Luger projectile were computationally fired at the glabellar region of the finite element model from a distance of 10 cm, at perpendicular incidence. The results show different morphologies in the entrance holes produced by the three bullets, using the same skull at the same shot distance. The results and traits of the entrance holes are discussed. Finite element models allow feasible computational ballistic research, which may be useful to forensic experts when comparing and analyzing data related to gunshot wounds in the forehead. PMID:25343337
Shang, Eric K; Nathan, Derek P; Sprinkle, Shanna R; Fairman, Ronald M; Bavaria, Joseph E; Gorman, Robert C; Gorman, Joseph H; Jackson, Benjamin M
2013-09-10
Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic aortic aneurysms. Computed tomographic angiography of descending thoracic aortic aneurysms (n=10 total, 5 fusiform and 5 saccular) underwent 3-dimensional reconstruction with custom algorithms. For each aneurysm, an initial model was constructed with uniform wall thickness. Experimental models explored the addition of variable wall thickness, calcifications, and intraluminal thrombus. Each model was loaded with 120 mm Hg pressure, and von Mises PWS was computed. The mean PWS of uniform wall thickness models was 410 ± 111 kPa. The imposition of variable wall thickness increased PWS (481 ± 126 kPa, P<0.001). Although the addition of calcifications was not statistically significant (506 ± 126 kPa, P=0.07), the addition of intraluminal thrombus to variable wall thickness (359 ± 86 kPa, P ≤ 0.001) reduced PWS. A final model incorporating all features also reduced PWS (368 ± 88 kPa, P<0.001). Saccular geometry did not increase diameter-normalized stress in the final model (77 ± 7 versus 67 ± 12 kPa/cm, P=0.22). Incorporation of local wall thickness can significantly increase PWS in finite element analysis models of thoracic aortic aneurysms. Incorporating variable wall thickness, intraluminal thrombus, and calcifications significantly impacts computed PWS of thoracic aneurysms; sophisticated models may, therefore, be more accurate in assessing rupture risk. Saccular aneurysms did not demonstrate a significantly higher normalized PWS than fusiform aneurysms.
Ramakrishaniah, Ravikumar; Al Kheraif, Abdulaziz A; Elsharawy, Mohamed A; Alsaleh, Ayman K; Ismail Mohamed, Karem M; Rehman, Ihtesham Ur
2015-05-01
The purpose of this study was to investigate and compare the load distribution and displacement of cantilever prostheses with and without glass abutment by three dimensional finite element analysis. Micro-computed tomography was used to study the relationship between the glass abutment and the ridge. The external surface of the maxilla was scanned, and a simplified finite element model was constructed. The ZX-27 glass abutment and the maxillary first and second premolars were created and modified. The solid model of the three-unit cantilever fixed partial denture was scanned, and the fitting surface was modified with reference to the created abutments using the 3D CAD system. The finite element analysis was completed in ANSYS. The fit and total gap volume between the glass abutment and dental model were determined by Skyscan 1173 high-energy spiral micro-CT scan. The results of the finite element analysis in this study showed that the cantilever prosthesis supported by the glass abutment demonstrated significantly less stress on the terminal abutment and overall deformation of the prosthesis under vertical and oblique load. Micro-computed tomography determined a gap volume of 6.74162 mm(3). By contacting the mucosa, glass abutments transfer some amount of masticatory load to the residual alveolar ridge, thereby preventing damage to the periodontal microstructures of the terminal abutment. The passive contact of the glass abutment with the mucosa not only preserves the health of the mucosa covering the ridge but also permits easy cleaning. It is possible to increase the success rate of cantilever FPDs by supporting the cantilevered pontic with glass abutments. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Reduced complexity structural modeling for automated airframe synthesis
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1987-01-01
A procedure is developed for the optimum sizing of wing structures based on representing the built-up finite element assembly of the structure by equivalent beam models. The reduced-order beam models are computationally less demanding in an optimum design environment which dictates repetitive analysis of several trial designs. The design procedure is implemented in a computer program requiring geometry and loading information to create the wing finite element model and its equivalent beam model, and providing a rapid estimate of the optimum weight obtained from a fully stressed design approach applied to the beam. The synthesis procedure is demonstrated for representative conventional-cantilever and joined wing configurations.
NASA Technical Reports Server (NTRS)
Spilker, R. L.; Witmer, E. A.; French, S. E.; Rodal, J. J. A.
1980-01-01
Two computer programs are described for predicting the transient large deflection elastic viscoplastic responses of thin single layer, initially flat unstiffened or integrally stiffened, Kirchhoff-Lov ductile metal panels. The PLATE 1 program pertains to structural responses produced by prescribed externally applied transient loading or prescribed initial velocity distributions. The collision imparted velocity method PLATE 1 program concerns structural responses produced by impact of an idealized nondeformable fragment. Finite elements are used to represent the structure in both programs. Strain hardening and strain rate effects of initially isotropic material are considered.
NASA Astrophysics Data System (ADS)
Zhao, Bin
2015-02-01
Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.
APPLE - An aeroelastic analysis system for turbomachines and propfans
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral
1992-01-01
This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).
Takenouchi, Toshiki; Kuchikata, Tomu; Yoshihashi, Hiroshi; Fujiwara, Mineko; Uehara, Tomoko; Miyama, Sahoko; Yamada, Shiro; Kosaki, Kenjiro
2017-05-01
Among more than 5,000 human monogenic disorders with known causative genes, transposable element insertion of a Long Interspersed Nuclear Element 1 (LINE1, L1) is known as the mechanistic basis in only 13 genetic conditions. Meckel-Gruber syndrome is a rare ciliopathy characterized by occipital encephalocele and cystic kidney disease. Here, we document a boy with occipital encephalocele, post-axial polydactyly, and multicystic renal disease. A medical exome analysis detected a heterozygous frameshift mutation, c.4582_4583delCG p.(Arg1528Serfs*17) in CC2D2A in the maternally derived allele. The further use of a dedicated bioinformatics algorithm for detecting retrotransposon insertions led to the detection of an L1 insertion affecting exon 7 in the paternally derived allele. The complete sequencing and sequence homology analysis of the inserted L1 element showed that the L1 element was classified as L1HS (L1 human specific) and that the element had intact open reading frames in the two L1-encoded proteins. This observation ranks Meckel-Gruber syndrome as only the 14th disorder to be caused by an L1 insertion among more than 5,000 known human genetic disorders. Although a transposable element detection algorithm is not included in the current best-practice next-generation sequencing analysis, the present observation illustrates the utility of such an algorithm, which would require modest computational time and resources. Whether the seemingly infrequent recognition of L1 insertion in the pathogenesis of human genetic diseases might simply reflect a lack of appropriate detection methods remains to be seen. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. Lance; Fleischer, Van Tran
2009-01-01
The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing deflections and cross-sectional twist angles calculated from the displacement equations were then compared with those computed from the finite-element computer program. The Ko displacement theory formulated for weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the doubly-tapered Ikhana wing.
Hypercube matrix computation task
NASA Technical Reports Server (NTRS)
Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.
1988-01-01
A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).
High-performance wavelet engine
NASA Astrophysics Data System (ADS)
Taylor, Fred J.; Mellot, Jonathon D.; Strom, Erik; Koren, Iztok; Lewis, Michael P.
1993-11-01
Wavelet processing has shown great promise for a variety of image and signal processing applications. Wavelets are also among the most computationally expensive techniques in signal processing. It is demonstrated that a wavelet engine constructed with residue number system arithmetic elements offers significant advantages over commercially available wavelet accelerators based upon conventional arithmetic elements. Analysis is presented predicting the dynamic range requirements of the reported residue number system based wavelet accelerator.
The value of continuity: Refined isogeometric analysis and fast direct solvers
Garcia, Daniel; Pardo, David; Dalcin, Lisandro; ...
2016-08-24
Here, we propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) discretization, we introduce C0-separators to reduce the interconnection between degrees of freedom in the mesh. By doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting method “refined Isogeometric Analysis (rIGA)”. To illustrate the impact of the continuity reduction, we analyze the number of Floating Point Operations (FLOPs), computational times, and memory required to solve the linear system obtained by discretizing themore » Laplace problem with structured meshes and uniform polynomial orders. Theoretical estimates demonstrate that an optimal continuity reduction may decrease the total computational time by a factor between p 2 and p 3, with pp being the polynomial order of the discretization. Numerical results indicate that our proposed refined isogeometric analysis delivers a speed-up factor proportional to p 2. In a 2D mesh with four million elements and p=5, the linear system resulting from rIGA is solved 22 times faster than the one from highly continuous IGA. In a 3D mesh with one million elements and p=3, the linear system is solved 15 times faster for the refined than the maximum continuity isogeometric analysis.« less
Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers
NASA Technical Reports Server (NTRS)
Guru Prasad, K.; Kane, J. H.
1992-01-01
The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.
Explicit Trace Inequalities for Isogeometric Analysis and Parametric Hexahedral Finite Elements
2011-05-01
Computational Mechanics, 43:3– 37, 2008. [6] Y Bazilevs, L Beirao da Veiga , J A Cottrell, T J R Hughes, and G Sangalli. Isoge- ometric analysis... Veiga , A Buffa, J Rivas, and G Sangalli. Some estimates for h − p − k refinement in isogeometric analysis. Numerische Mathematik, 118:271–305, 2011
1988-11-01
264 ANALYSIS RESTART. ............. ..... ....... 269 1.0 TITLE CARD. .............. ............. 271 2.0 CONTROL CARDS...stress soil model will provide a tool for such analysis of waterfront structures. To understand the significance of liquefaction, it is important to note...Implementing this effective stress soil model into a finite element computer program would allow analysis of soil and structure together. TECHNICAL BACKGROUND
Sampling Scattered Data Onto Rectangular Grids for Volume Visualization
1989-12-01
30 4.4 Building A Rectangular Grid ..... ................ 30 4.5 Sampling Methds ...... ...................... 34 4.6...dimensional data have been developed recently. In computational fluid flow analysis, methods for constructing three dimen- sional numerical grids are...structure of rectangular grids. Because finite element analysis is useful in fields other than fluid flow analysis and the numerical grid has promising
Structural performance analysis and redesign
NASA Technical Reports Server (NTRS)
Whetstone, W. D.
1978-01-01
Program performs stress buckling and vibrational analysis of large, linear, finite-element systems in excess of 50,000 degrees of freedom. Cost, execution time, and storage requirements are kept reasonable through use of sparse matrix solution techniques, and other computational and data management procedures designed for problems of very large size.
ERIC Educational Resources Information Center
Juricic, Davor; Barr, Ronald E.
1996-01-01
Reports on a project that extended the Engineering Design Graphics curriculum to include instruction and laboratory experience in computer-aided design, analysis, and manufacturing (CAD/CAM). Discusses issues in project implementation, including introduction of finite element analysis to lower-division students, feasibility of classroom prototype…
The physicochemical properties of coarse-mode, iron-containing particles, and their temporal and spatial distributions are poorly understood. Single particle analysis combining x-ray elemental mapping and computer-controlled scanning electron microscopy (CCSEM-EDX) of passively ...
Lin, Chun-Li; Chang, Yen-Hsiang; Hsieh, Shih-Kai; Chang, Wen-Jen
2013-03-01
This study evaluated the risk of failure for an endodontically treated premolar with different crack depths, which was shearing toward the pulp chamber and was restored by using 3 different computer-aided design/computer-aided manufacturing ceramic restoration configurations. Three 3-dimensional finite element models designed with computer-aided design/computer-aided manufacturing ceramic onlay, endocrown, and conventional crown restorations were constructed to perform simulations. The Weibull function was incorporated with finite element analysis to calculate the long-term failure probability relative to different load conditions. The results indicated that the stress values on the enamel, dentin, and luting cement for endocrown restorations exhibited the lowest values relative to the other 2 restoration methods. Weibull analysis revealed that the overall failure probabilities in a shallow cracked premolar were 27%, 2%, and 1% for the onlay, endocrown, and conventional crown restorations, respectively, in the normal occlusal condition. The corresponding values were 70%, 10%, and 2% for the depth cracked premolar. This numeric investigation suggests that the endocrown provides sufficient fracture resistance only in a shallow cracked premolar with endodontic treatment. The conventional crown treatment can immobilize the premolar for different cracked depths with lower failure risk. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Aeroelastic Considerations in the Preliminary Design Aircraft
1983-09-01
system for aeroelastic analysis FINDEX- Lockheed’s DMS for matrices and NASTRAN tables FSD- fully stressed design algorithm Lockheed- Lockheed-California...Company MLC- maneuver load control NASA- National Aeronautics and Space Adminstration NASTRAN - structural finite element program developed by NASA...Computer Program Validation All major computing programs (FAMAS, NASTRAN , etc.), except the weight distribution program, the panel sizing and allowable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Peiyuan; Brown, Timothy; Fullmer, William D.
Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling ofmore » the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.« less
Multidisciplinary analysis of actively controlled large flexible spacecraft
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Young, John W.; Sutter, Thomas R.
1986-01-01
The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.
Automatic prediction of tongue muscle activations using a finite element model.
Stavness, Ian; Lloyd, John E; Fels, Sidney
2012-11-15
Computational modeling has improved our understanding of how muscle forces are coordinated to generate movement in musculoskeletal systems. Muscular-hydrostat systems, such as the human tongue, involve very different biomechanics than musculoskeletal systems, and modeling efforts to date have been limited by the high computational complexity of representing continuum-mechanics. In this study, we developed a computationally efficient tracking-based algorithm for prediction of muscle activations during dynamic 3D finite element simulations. The formulation uses a local quadratic-programming problem at each simulation time-step to find a set of muscle activations that generated target deformations and movements in finite element muscular-hydrostat models. We applied the technique to a 3D finite element tongue model for protrusive and bending movements. Predicted muscle activations were consistent with experimental recordings of tongue strain and electromyography. Upward tongue bending was achieved by recruitment of the superior longitudinal sheath muscle, which is consistent with muscular-hydrostat theory. Lateral tongue bending, however, required recruitment of contralateral transverse and vertical muscles in addition to the ipsilateral margins of the superior longitudinal muscle, which is a new proposition for tongue muscle coordination. Our simulation framework provides a new computational tool for systematic analysis of muscle forces in continuum-mechanics models that is complementary to experimental data and shows promise for eliciting a deeper understanding of human tongue function. Copyright © 2012 Elsevier Ltd. All rights reserved.
VALIDATION OF ANSYS FINITE ELEMENT ANALYSIS SOFTWARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAMM, E.R.
2003-06-27
This document provides a record of the verification and Validation of the ANSYS Version 7.0 software that is installed on selected CH2M HILL computers. The issues addressed include: Software verification, installation, validation, configuration management and error reporting. The ANSYS{reg_sign} computer program is a large scale multi-purpose finite element program which may be used for solving several classes of engineering analysis. The analysis capabilities of ANSYS Full Mechanical Version 7.0 installed on selected CH2M Hill Hanford Group (CH2M HILL) Intel processor based computers include the ability to solve static and dynamic structural analyses, steady-state and transient heat transfer problems, mode-frequency andmore » buckling eigenvalue problems, static or time-varying magnetic analyses and various types of field and coupled-field applications. The program contains many special features which allow nonlinearities or secondary effects to be included in the solution, such as plasticity, large strain, hyperelasticity, creep, swelling, large deflections, contact, stress stiffening, temperature dependency, material anisotropy, and thermal radiation. The ANSYS program has been in commercial use since 1970, and has been used extensively in the aerospace, automotive, construction, electronic, energy services, manufacturing, nuclear, plastics, oil and steel industries.« less
Three-dimensional finite element analysis of acoustic instability of solid propellant rocket motors
NASA Technical Reports Server (NTRS)
Hackett, R. M.; Juruf, R. S.
1976-01-01
A three dimensional finite element solution of the acoustic vibration problem in a solid propellant rocket motor is presented. The solution yields the natural circular frequencies of vibration and the corresponding acoustic pressure mode shapes, considering the coupled response of the propellant grain to the acoustic oscillations occurring in the motor cavity. The near incompressibility of the solid propellant is taken into account in the formulation. A relatively simple example problem is solved in order to illustrate the applicability of the analysis and the developed computer code.
Goreham-Voss, Curtis M.; Hyde, Philip J.; Hall, Richard M.; Fisher, John; Brown, Thomas D.
2010-01-01
Computational simulations of wear of orthopaedic total joint replacement implants have proven to valuably complement laboratory physical simulators, for pre-clinical estimation of abrasive/adhesive wear propensity. This class of numerical formulations has primarily involved implementation of the Archard/Lancaster relationship, with local wear computed as the product of (finite element) contact stress, sliding speed, and a bearing-couple-dependent wear factor. The present study introduces an augmentation, whereby the influence of interface cross-shearing motion transverse to the prevailing molecular orientation of the polyethylene articular surface is taken into account in assigning the instantaneous local wear factor. The formulation augment is implemented within a widely-utilized commercial finite element software environment (ABAQUS). Using a contemporary metal-on-polyethylene total disc replacement (ProDisc-L) as an illustrative implant, physically validated computational results are presented to document the role of cross-shearing effects in alternative laboratory consensus testing protocols. Going forward, this formulation permits systematically accounting for cross-shear effects in parametric computational wear studies of metal-on-polyethylene joint replacements, heretofore a substantial limitation of such analyses. PMID:20399432
Mechanical testing and finite element analysis of orthodontic teardrop loop.
Coimbra, Maria Elisa Rodrigues; Penedo, Norman Duque; de Gouvêa, Jayme Pereira; Elias, Carlos Nelson; de Souza Araújo, Mônica Tirre; Coelho, Paulo Guilherme
2008-02-01
Understanding how teeth move in response to mechanical loads is an important aspect of orthodontic treatment. Treatment planning should include consideration of the appliances that will meet the desired loading of the teeth to result in optimized treatment outcomes. The purpose of this study was to evaluate the use of computer simulation to predict the force and the torsion obtained after the activation of tear drop loops of 3 heights. Seventy-five retraction loops were divided into 3 groups according to height (6, 7, and 8 mm). The loops were subjected to tensile load through displacements of 0.5, 1.0, 1.5, and 2.0 mm, and the resulting forces and torques were recorded. The loops were designed in AutoCAD software(2005; Autodesk Systems, Alpharetta, GA), and finite element analysis was performed with Ansys software(version 7.0; Swanson Analysis System, Canonsburg, PA). Statistical analysis of the mechanical experiment results was obtained by ANOVA and the Tukey post-hoc test (P < .01). The correlation test and the paired t test (P < .05) were used to compare the computer simulation with the mechanical experiment. The computer simulation accurately predicted the experimentally determined mechanical behavior of tear drop loops of different heights and should be considered an alternative for designing orthodontic appliances before treatment.
Materials requirements for optical processing and computing devices
NASA Technical Reports Server (NTRS)
Tanguay, A. R., Jr.
1985-01-01
Devices for optical processing and computing systems are discussed, with emphasis on the materials requirements imposed by functional constraints. Generalized optical processing and computing systems are described in order to identify principal categories of requisite components for complete system implementation. Three principal device categories are selected for analysis in some detail: spatial light modulators, volume holographic optical elements, and bistable optical devices. The implications for optical processing and computing systems of the materials requirements identified for these device categories are described, and directions for future research are proposed.
Teixeira, E R; Sato, Y; Akagawa, Y; Shindoi, N
1998-04-01
Further validity of finite element analysis (FEA) in implant biomechanics requires an increase of modelled range and mesh refinement, and a consequent increase in element number and calculation time. To develop a new method that allows a decrease of the modelled range and element number (along with less calculation time and less computer memory), 10 FEA models of the mandible with different mesio-distal lengths and elements were constructed based on three-dimensional graphic data of the bone structure around an osseointegrated implant. Analysis of stress distribution followed by 100 N loading with the fixation of the most external planes of the models indicated that a minimal bone length of 4.2 mm of the mesial and distal sides was acceptable for FEA representation. Moreover, unification of elements located far away from the implant surface did not affect stress distribution. These results suggest that it may be possible to develop a replica FEA implant model of the mandible with less range and fewer elements without altering stress distribution.
Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K
2017-10-17
Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hou, Gene
2004-01-01
The focus of this research is on the development of analysis and sensitivity analysis equations for nonlinear, transient heat transfer problems modeled by p-version, time discontinuous finite element approximation. The resulting matrix equation of the state equation is simply in the form ofA(x)x = c, representing a single step, time marching scheme. The Newton-Raphson's method is used to solve the nonlinear equation. Examples are first provided to demonstrate the accuracy characteristics of the resultant finite element approximation. A direct differentiation approach is then used to compute the thermal sensitivities of a nonlinear heat transfer problem. The report shows that only minimal coding effort is required to enhance the analysis code with the sensitivity analysis capability.
NASA Astrophysics Data System (ADS)
Mead, Denys J.
2009-01-01
A general theory for the forced vibration of multi-coupled one-dimensional periodic structures is presented as a sequel to a much earlier general theory for free vibration. Starting from the dynamic stiffness matrix of a single multi-coupled periodic element, it derives matrix equations for the magnitudes of the characteristic free waves excited in the whole structure by prescribed harmonic forces and/or displacements acting at a single periodic junction. The semi-infinite periodic system excited at its end is first analysed to provide the basis for analysing doubly infinite and finite periodic systems. In each case, total responses are found by considering just one periodic element. An already-known method of reducing the size of the computational problem is reexamined, expanded and extended in detail, involving reduction of the dynamic stiffness matrix of the periodic element through a wave-coordinate transformation. Use of the theory is illustrated in a combined periodic structure+finite element analysis of the forced harmonic in-plane motion of a uniform flat plate. Excellent agreement between the computed low-frequency responses and those predicted by simple engineering theories validates the detailed formulations of the paper. The primary purpose of the paper is not towards a specific application but to present a systematic and coherent forced vibration theory, carefully linked with the existing free-wave theory.
Assessment of computational issues associated with analysis of high-lift systems
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Jones, Kenneth M.; Waggoner, Edgar G.
1992-01-01
Thin-layer Navier-Stokes calculations for wing-fuselage configurations from subsonic to hypersonic flow regimes are now possible. However, efficient, accurate solutions for using these codes for two- and three-dimensional high-lift systems have yet to be realized. A brief overview of salient experimental and computational research is presented. An assessment of the state-of-the-art relative to high-lift system analysis and identification of issues related to grid generation and flow physics which are crucial for computational success in this area are also provided. Research in support of the high-lift elements of NASA's High Speed Research and Advanced Subsonic Transport Programs which addresses some of the computational issues is presented. Finally, fruitful areas of concentrated research are identified to accelerate overall progress for high lift system analysis and design.
NASA Astrophysics Data System (ADS)
Cui, Xiangyang; Li, She; Feng, Hui; Li, Guangyao
2017-05-01
In this paper, a novel triangular prism solid and shell interactive mapping element is proposed to solve the coupled magnetic-mechanical formulation in electromagnetic sheet metal forming process. A linear six-node "Triprism" element is firstly proposed for transient eddy current analysis in electromagnetic field. In present "Triprism" element, shape functions are given explicitly, and a cell-wise gradient smoothing operation is used to obtain the gradient matrices without evaluating derivatives of shape functions. In mechanical field analysis, a shear locking free triangular shell element is employed in internal force computation, and a data mapping method is developed to transfer the Lorentz force on solid into the external forces suffered by shell structure for dynamic elasto-plasticity deformation analysis. Based on the deformed triangular shell structure, a "Triprism" element generation rule is established for updated electromagnetic analysis, which means inter-transformation of meshes between the coupled fields can be performed automatically. In addition, the dynamic moving mesh is adopted for air mesh updating based on the deformation of sheet metal. A benchmark problem is carried out for confirming the accuracy of the proposed "Triprism" element in predicting flux density in electromagnetic field. Solutions of several EMF problems obtained by present work are compared with experiment results and those of traditional method, which are showing excellent performances of present interactive mapping element.
Manual for Program PSTRESS: Peel stress computation
NASA Technical Reports Server (NTRS)
Barkey, Derek A.; Madan, Ram C.
1987-01-01
Described is the use of the interactive FORTRAN computer program PSTRESS, which computes a closed form solution for two bonded plates subjected to applied moments, vertical shears, and in-plane forces. The program calculates in-plane stresses in the plates, deflections of the plates, and peel and shear stresses in the adhesive. The document briefly outlines the analytical method used by PSTRESS, describes the input and output of the program, and presents a sample analysis. The results of the latter are shown to be within a few percent of results obtained using a NASTRAN finite element analysis. An appendix containing a listing of PSTRESS is included.
Design sensitivity analysis of boundary element substructures
NASA Technical Reports Server (NTRS)
Kane, James H.; Saigal, Sunil; Gallagher, Richard H.
1989-01-01
The ability to reduce or condense a three-dimensional model exactly, and then iterate on this reduced size model representing the parts of the design that are allowed to change in an optimization loop is discussed. The discussion presents the results obtained from an ongoing research effort to exploit the concept of substructuring within the structural shape optimization context using a Boundary Element Analysis (BEA) formulation. The first part contains a formulation for the exact condensation of portions of the overall boundary element model designated as substructures. The use of reduced boundary element models in shape optimization requires that structural sensitivity analysis can be performed. A reduced sensitivity analysis formulation is then presented that allows for the calculation of structural response sensitivities of both the substructured (reduced) and unsubstructured parts of the model. It is shown that this approach produces significant computational economy in the design sensitivity analysis and reanalysis process by facilitating the block triangular factorization and forward reduction and backward substitution of smaller matrices. The implementatior of this formulation is discussed and timings and accuracies of representative test cases presented.
Optimising LAN access to grid enabled storage elements
NASA Astrophysics Data System (ADS)
Stewart, G. A.; Cowan, G. A.; Dunne, B.; Elwell, A.; Millar, A. P.
2008-07-01
When operational, the Large Hadron Collider experiments at CERN will collect tens of petabytes of physics data per year. The worldwide LHC computing grid (WLCG) will distribute this data to over two hundred Tier-1 and Tier-2 computing centres, enabling particle physicists around the globe to access the data for analysis. Although different middleware solutions exist for effective management of storage systems at collaborating institutes, the patterns of access envisaged for Tier-2s fall into two distinct categories. The first involves bulk transfer of data between different Grid storage elements using protocols such as GridFTP. This data movement will principally involve writing ESD and AOD files into Tier-2 storage. Secondly, once datasets are stored at a Tier-2, physics analysis jobs will read the data from the local SE. Such jobs require a POSIX-like interface to the storage so that individual physics events can be extracted. In this paper we consider the performance of POSIX-like access to files held in Disk Pool Manager (DPM) storage elements, a popular lightweight SRM storage manager from EGEE.
Modal element method for scattering of sound by absorbing bodies
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1992-01-01
The modal element method for acoustic scattering from 2-D body is presented. The body may be acoustically soft (absorbing) or hard (reflecting). The infinite computational region is divided into two subdomains - the bounded finite element domain, which is characterized by complicated geometry and/or variable material properties, and the surrounding unbounded homogeneous domain. The acoustic pressure field is represented approximately in the finite element domain by a finite element solution, and is represented analytically by an eigenfunction expansion in the homogeneous domain. The two solutions are coupled by the continuity of pressure and velocity across the interface between the two subdomains. Also, for hard bodies, a compact modal ring grid system is introduced for which computing requirements are drastically reduced. Analysis for 2-D scattering from solid and coated (acoustically treated) bodies is presented, and several simple numerical examples are discussed. In addition, criteria are presented for determining the number of modes to accurately resolve the scattered pressure field from a solid cylinder as a function of the frequency of the incoming wave and the radius of the cylinder.
NASA Technical Reports Server (NTRS)
1974-01-01
Studies were conducted to develop appropriate space shuttle electrical power distribution and control (EPDC) subsystem simulation models and to apply the computer simulations to systems analysis of the EPDC. A previously developed software program (SYSTID) was adapted for this purpose. The following objectives were attained: (1) significant enhancement of the SYSTID time domain simulation software, (2) generation of functionally useful shuttle EPDC element models, and (3) illustrative simulation results in the analysis of EPDC performance, under the conditions of fault, current pulse injection due to lightning, and circuit protection sizing and reaction times.
NASA Technical Reports Server (NTRS)
Rajagopal, K. R.
1992-01-01
The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.
Conceptual Design Oriented Wing Structural Analysis and Optimization
NASA Technical Reports Server (NTRS)
Lau, May Yuen
1996-01-01
Airplane optimization has always been the goal of airplane designers. In the conceptual design phase, a designer's goal could be tradeoffs between maximum structural integrity, minimum aerodynamic drag, or maximum stability and control, many times achieved separately. Bringing all of these factors into an iterative preliminary design procedure was time consuming, tedious, and not always accurate. For example, the final weight estimate would often be based upon statistical data from past airplanes. The new design would be classified based on gross characteristics, such as number of engines, wingspan, etc., to see which airplanes of the past most closely resembled the new design. This procedure works well for conventional airplane designs, but not very well for new innovative designs. With the computing power of today, new methods are emerging for the conceptual design phase of airplanes. Using finite element methods, computational fluid dynamics, and other computer techniques, designers can make very accurate disciplinary-analyses of an airplane design. These tools are computationally intensive, and when used repeatedly, they consume a great deal of computing time. In order to reduce the time required to analyze a design and still bring together all of the disciplines (such as structures, aerodynamics, and controls) into the analysis, simplified design computer analyses are linked together into one computer program. These design codes are very efficient for conceptual design. The work in this thesis is focused on a finite element based conceptual design oriented structural synthesis capability (CDOSS) tailored to be linked into ACSYNT.
NASA Astrophysics Data System (ADS)
Rahman, P. A.
2018-05-01
This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.
Aeroelastic and dynamic finite element analyses of a bladder shrouded disk
NASA Technical Reports Server (NTRS)
Smith, G. C. C.; Elchuri, V.
1980-01-01
The delivery and demonstration of a computer program for the analysis of aeroelastic and dynamic properties is reported. Approaches to flutter and forced vibration of mistuned discs, and transient aerothermoelasticity are described.
High-speed on-chip windowed centroiding using photodiode-based CMOS imager
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)
2003-01-01
A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.
High-speed on-chip windowed centroiding using photodiode-based CMOS imager
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)
2004-01-01
A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.
NASA Technical Reports Server (NTRS)
Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.; Vidussoni, Marco A.
1990-01-01
A practical example of applying two- to three-dimensional (2- to 3-D) global/local finite element analysis to laminated composites is presented. Cross-ply graphite/epoxy laminates of 0.1-in. (0.254-cm) thickness with central circular holes ranging from 1 to 6 in. (2.54 to 15.2 cm) in diameter, subjected to in-plane compression were analyzed. Guidelines for full three-dimensional finite element analysis and two- to three-dimensional global/local analysis of interlaminar stresses at straight free edges of laminated composites are included. The larger holes were found to reduce substantially the interlaminar stresses at the straight free-edge in proximity to the hole. Three-dimensional stress results were obtained for thin laminates which require prohibitive computer resources for full three-dimensional analyses of comparative accuracy.
A Two Element Laminar Flow Airfoil Optimized for Cruise. M.S. Thesis
NASA Technical Reports Server (NTRS)
Steen, Gregory Glen
1994-01-01
Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.
Frequency analysis of uncertain structures using imprecise probability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modares, Mehdi; Bergerson, Joshua
2015-01-01
Two new methods for finite element based frequency analysis of a structure with uncertainty are developed. An imprecise probability formulation based on enveloping p-boxes is used to quantify the uncertainty present in the mechanical characteristics of the structure. For each element, independent variations are considered. Using the two developed methods, P-box Frequency Analysis (PFA) and Interval Monte-Carlo Frequency Analysis (IMFA), sharp bounds on natural circular frequencies at different probability levels are obtained. These methods establish a framework for handling incomplete information in structural dynamics. Numerical example problems are presented that illustrate the capabilities of the new methods along with discussionsmore » on their computational efficiency.« less
Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, Amin Termeh, E-mail: at.tyousefi@gmail.com; Miyake, Mikio, E-mail: miyakejaist@gmail.com; Ikeda, Shoichiro, E-mail: sho16.ikeda@gmail.com
Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell’s. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cellmore » analysis.« less
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
A CAD Approach to Integrating NDE With Finite Element
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Downey, James; Ghosn, Louis J.; Baaklini, George Y.
2004-01-01
Nondestructive evaluation (NDE) is one of several technologies applied at NASA Glenn Research Center to determine atypical deformities, cracks, and other anomalies experienced by structural components. NDE consists of applying high-quality imaging techniques (such as x-ray imaging and computed tomography (CT)) to discover hidden manufactured flaws in a structure. Efforts are in progress to integrate NDE with the finite element (FE) computational method to perform detailed structural analysis of a given component. This report presents the core outlines for an in-house technical procedure that incorporates this combined NDE-FE interrelation. An example is presented to demonstrate the applicability of this analytical procedure. FE analysis of a test specimen is performed, and the resulting von Mises stresses and the stress concentrations near the anomalies are observed, which indicates the fidelity of the procedure. Additional information elaborating on the steps needed to perform such an analysis is clearly presented in the form of mini step-by-step guidelines.
Finite element simulation of the mechanical impact of computer work on the carpal tunnel syndrome.
Mouzakis, Dionysios E; Rachiotis, George; Zaoutsos, Stefanos; Eleftheriou, Andreas; Malizos, Konstantinos N
2014-09-22
Carpal tunnel syndrome (CTS) is a clinical disorder resulting from the compression of the median nerve. The available evidence regarding the association between computer use and CTS is controversial. There is some evidence that computer mouse or keyboard work, or both are associated with the development of CTS. Despite the availability of pressure measurements in the carpal tunnel during computer work (exposure to keyboard or mouse) there are no available data to support a direct effect of the increased intracarpal canal pressure on the median nerve. This study presents an attempt to simulate the direct effects of computer work on the whole carpal area section using finite element analysis. A finite element mesh was produced from computerized tomography scans of the carpal area, involving all tissues present in the carpal tunnel. Two loading scenarios were applied on these models based on biomechanical data measured during computer work. It was found that mouse work can produce large deformation fields on the median nerve region. Also, the high stressing effect of the carpal ligament was verified. Keyboard work produced considerable and heterogeneous elongations along the longitudinal axis of the median nerve. Our study provides evidence that increased intracarpal canal pressures caused by awkward wrist postures imposed during computer work were associated directly with deformation of the median nerve. Despite the limitations of the present study the findings could be considered as a contribution to the understanding of the development of CTS due to exposure to computer work. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Gordon, M. F.; Mclaughlin, R. H.; Marshall, R. E.
1975-01-01
The MIDAS (Multivariate Interactive Digital Analysis System) processor is a high-speed processor designed to process multispectral scanner data (from Landsat, EOS, aircraft, etc.) quickly and cost-effectively to meet the requirements of users of remote sensor data, especially from very large areas. MIDAS consists of a fast multipipeline preprocessor and classifier, an interactive color display and color printer, and a medium scale computer system for analysis and control. The system is designed to process data having as many as 16 spectral bands per picture element at rates of 200,000 picture elements per second into as many as 17 classes using a maximum likelihood decision rule.
One-dimensional analysis of filamentary composite beam columns with thin-walled open sections
NASA Technical Reports Server (NTRS)
Lo, Patrick K.-L.; Johnson, Eric R.
1986-01-01
Vlasov's one-dimensional structural theory for thin-walled open section bars was originally developed and used for metallic elements. The theory was recently extended to laminated bars fabricated from advanced composite materials. The purpose of this research is to provide a study and assessment of the extended theory. The focus is on flexural and torsional-flexural buckling of thin-walled, open section, laminated composite columns. Buckling loads are computed from the theory using a linear bifurcation analysis and a geometrically nonlinear beam column analysis by the finite element method. Results from the analyses are compared to available test data.
NASTRAN thermal analyzer: A general purpose finite element heat transfer computer program
NASA Technical Reports Server (NTRS)
Lee, H.; Mason, J. B.
1972-01-01
The program not only can render temperature distributions in solids subjected to various thermal boundary conditions, including effects of diffuse-gray thermal radiation, but is fully compatible in capacity and in the finite-element model representation with that of its structural counterpart in the NASTRAN system. The development history of the finite-element approach for determining temperatures is summarized. The scope of analysis capability, program structure, features, and limitations are given with the objective of providing NASTRAN users with an overall veiw of the NASTRAN thermal analyzer.
Nakashima, Yoshito; Nakano, Tsukasa
2014-01-01
Iodine is commonly used as a contrast agent in nonmedical science and engineering, for example, to visualize Darcy flow in porous geological media using X-ray computed tomography (CT). Undesirable beam hardening artifacts occur when a polychromatic X-ray source is used, which makes the quantitative analysis of CT images difficult. To optimize the chemistry of a contrast agent in terms of the beam hardening reduction, we performed computer simulations and generated synthetic CT images of a homogeneous cylindrical sand-pack (diameter, 28 or 56 mm; porosity, 39 vol.% saturated with aqueous suspensions of heavy elements assuming the use of a polychromatic medical CT scanner. The degree of cupping derived from the beam hardening was assessed using the reconstructed CT images to find the chemistry of the suspension that induced the least cupping. The results showed that (i) the degree of cupping depended on the position of the K absorption edge of the heavy element relative to peak of the polychromatic incident X-ray spectrum, (ii) (53)I was not an ideal contrast agent because it causes marked cupping, and (iii) a single element much heavier than (53)I ((64)Gd to (79)Au) reduced the cupping artifact significantly, and a four-heavy-element mixture of elements from (64)Gd to (79)Au reduced the artifact most significantly.
Segmentation of Unstructured Datasets
NASA Technical Reports Server (NTRS)
Bhat, Smitha
1996-01-01
Datasets generated by computer simulations and experiments in Computational Fluid Dynamics tend to be extremely large and complex. It is difficult to visualize these datasets using standard techniques like Volume Rendering and Ray Casting. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This thesis explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and from Finite Element Analysis.
Simulation of a Canard in Fluid Flow Driven by a Piezoelectric Beam with a Software Control Loop
2014-04-01
The canard is actuated by a piezoelectric beam that bends as voltage is applied. The voltage is controlled by a software subroutine that measures...Dynamic system Modeling Co-simulation Simulation Abaqus Finite element analysis (FEA) Finite element method (FEM) Computational...is unlimited. i CONTENTS Page Introduction 1 Model Description 1 Fluid Model 2 Structural Model 3 Control Subroutine 4 Results 4
Semi-quantitative spectrographic analysis and rank correlation in geochemistry
Flanagan, F.J.
1957-01-01
The rank correlation coefficient, rs, which involves less computation than the product-moment correlation coefficient, r, can be used to indicate the degree of relationship between two elements. The method is applicable in situations where the assumptions underlying normal distribution correlation theory may not be satisfied. Semi-quantitative spectrographic analyses which are reported as grouped or partly ranked data can be used to calculate rank correlations between elements. ?? 1957.
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.
1992-01-01
A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.
Dynamic simulation and preliminary finite element analysis of gunshot wounds to the human mandible.
Tang, Zhen; Tu, Wenbing; Zhang, Gang; Chen, Yubin; Lei, Tao; Tan, Yinghui
2012-05-01
Due to the complications arising from gunshot wounds to the maxillofacial region, traditional models of gunshot wounds cannot meet our research needs. In this study, we established a finite element model and conducted preliminary simulation and analysis to determine the injury mechanism and degree of damage for gunshot wounds to the human mandible. Based on a previously developed modelling method that used animal experiments and internal parameters, digital computed tomography data for the human mandible were used to establish a three-dimensional finite element model of the human mandible. The mechanism by which a gunshot injures the mandible was dynamically simulated under different shot conditions. First, the residual velocities of the shootings using different projectiles at varying entry angles and impact velocities were calculated. Second, the energy losses of the projectiles and the rates of energy loss after exiting the mandible were calculated. Finally, the data were compared and analysed. The dynamic processes involved in gunshot wounds to the human mandible were successfully simulated using two projectiles, three impact velocities, and three entry angles. The stress distributions in different parts of mandible after injury were also simulated. Based on the computation and analysis of the modelling data, we found that the injury severity of the mandible and the injury efficiency of the projectiles differ under different injury conditions. The finite element model has many advantages for the analysis of ballistic wounds, and is expected to become an improved model for studying maxillofacial gunshot wounds. Copyright © 2011 Elsevier Ltd. All rights reserved.
Conti, Michele; Van Loo, Denis; Auricchio, Ferdinando; De Beule, Matthieu; De Santis, Gianluca; Verhegghe, Benedict; Pirrelli, Stefano; Odero, Attilio
2011-06-01
To quantitatively evaluate the impact of carotid stent cell design on vessel scaffolding by using patient-specific finite element analysis of carotid artery stenting (CAS). The study was organized in 2 parts: (1) validation of a patient-specific finite element analysis of CAS and (2) evaluation of vessel scaffolding. Micro-computed tomography (CT) images of an open-cell stent deployed in a patient-specific silicone mock artery were compared with the corresponding finite element analysis results. This simulation was repeated for the closed-cell counterpart. In the second part, the stent strut distribution, as reflected by the inter-strut angles, was evaluated for both cell types in different vessel cross sections as a measure of scaffolding. The results of the patient-specific finite element analysis of CAS matched well with experimental stent deployment both qualitatively and quantitatively, demonstrating the reliability of the numerical approach. The measured inter-strut angles suggested that the closed-cell design provided superior vessel scaffolding compared to the open-cell counterpart. However, the full strut interconnection of the closed-cell design reduced the stent's ability to accommodate to the irregular eccentric profile of the vessel cross section, leading to a gap between the stent surface and the vessel wall. Even though this study was limited to a single stent design and one vascular anatomy, the study confirmed the capability of dedicated computer simulations to predict differences in scaffolding by open- and closed-cell carotid artery stents. These simulations have the potential to be used in the design of novel carotid stents or for procedure planning.
Fifteenth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1987-01-01
Numerous applications of the NASA Structural Analysis (NASTRAN) computer program, a general purpose finite element code, are discussed. Additional features that can be added to NASTRAN, interactive plotting of NASTRAN data on microcomputers, mass modeling for bars, the design of wind tunnel models, the analysis of ship structures subjected to underwater explosions, and buckling analysis of radio antennas are among the topics discussed.
Monolithic ceramic analysis using the SCARE program
NASA Technical Reports Server (NTRS)
Manderscheid, Jane M.
1988-01-01
The Structural Ceramics Analysis and Reliability Evaluation (SCARE) computer program calculates the fast fracture reliability of monolithic ceramic components. The code is a post-processor to the MSC/NASTRAN general purpose finite element program. The SCARE program automatically accepts the MSC/NASTRAN output necessary to compute reliability. This includes element stresses, temperatures, volumes, and areas. The SCARE program computes two-parameter Weibull strength distributions from input fracture data for both volume and surface flaws. The distributions can then be used to calculate the reliability of geometrically complex components subjected to multiaxial stress states. Several fracture criteria and flaw types are available for selection by the user, including out-of-plane crack extension theories. The theoretical basis for the reliability calculations was proposed by Batdorf. These models combine linear elastic fracture mechanics (LEFM) with Weibull statistics to provide a mechanistic failure criterion. Other fracture theories included in SCARE are the normal stress averaging technique and the principle of independent action. The objective of this presentation is to summarize these theories, including their limitations and advantages, and to provide a general description of the SCARE program, along with example problems.
Multi-Scale Computational Modeling of Two-Phased Metal Using GMC Method
NASA Technical Reports Server (NTRS)
Moghaddam, Masoud Ghorbani; Achuthan, A.; Bednacyk, B. A.; Arnold, S. M.; Pineda, E. J.
2014-01-01
A multi-scale computational model for determining plastic behavior in two-phased CMSX-4 Ni-based superalloys is developed on a finite element analysis (FEA) framework employing crystal plasticity constitutive model that can capture the microstructural scale stress field. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, GMC as stand-alone is validated by analyzing a repeating unit cell (RUC) as a two-phased sample with 72.9% volume fraction of gamma'-precipitate in the gamma-matrix phase and comparing the results with those predicted by finite element analysis (FEA) models incorporating the same crystal plasticity constitutive model. The global stress-strain behavior and the local field quantity distributions predicted by GMC demonstrated good agreement with FEA. High computational saving, at the expense of some accuracy in the components of local tensor field quantities, was obtained with GMC. Finally, the capability of the developed multi-scale model linking FEA and GMC to solve real life sized structures is demonstrated by analyzing an engine disc component and determining the microstructural scale details of the field quantities.
NASA Technical Reports Server (NTRS)
Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.; Rogers, Karen M.
1993-01-01
A method of efficient and automated thermal-structural processing of very large space structures is presented. The method interfaces the finite element and finite difference techniques. It also results in a pronounced reduction of the quantity of computations, computer resources and manpower required for the task, while assuring the desired accuracy of the results.
Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element
NASA Technical Reports Server (NTRS)
Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.
2013-01-01
In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis
Computational mechanics needs study
NASA Technical Reports Server (NTRS)
Griffin, O. Hayden, Jr.
1993-01-01
In order to assess the needs in computational mechanics over the next decade, we formulated a questionnaire and contacted computational mechanics researchers and users in industry, government, and academia. As expected, we found a wide variety of computational mechanics usage and research. This report outlines the activity discussed with those contacts, as well as that in our own organizations. It should be noted that most of the contacts were made before the recent decline of the defense industry. Therefore, areas which are strongly defense-oriented may decrease in relative importance. In order to facilitate updating of this study, names of a few key researchers in each area are included as starting points for future literature surveys. These lists of names are not intended to represent those persons doing the best research in that area, nor are they intended to be comprehensive. They are, as previously stated, offered as starting points for future literature searches. Overall, there is currently a broad activity in computational mechanics in this country, with the breadth and depth increasing as more sophisticated software and faster computers become more available. The needs and desires of the workers in this field are as diverse as their background and organizational products. There seems to be some degree of software development in any organization (although the level of activity is highly variable from one organization to another) which has any research component in its mission. It seems, however, that there is considerable use of commercial software in almost all organizations. In most industrial research organizations, it appears that very little actual software development is contracted out, but that most is done in-house, using a mixture of funding sources. Government agencies vary widely in the ratio of in-house to out-house ratio. There is a considerable amount of experimental verification in most, but not all, organizations. Generally, the amount of experimental verification is more than we expected. Of all the survey contacts, one or two believe that the resources they are allocated are sufficient, but most do not. Some believe they have only half the resources they need. Some see their resource deficits as short-term, while others see it as a trend which will continue or perhaps worsen. The pessimism is stronger in the defense and aerospace industry. When considering only the nonlinear development efforts, there appears to be an even mix of geometric and material nonlinearity. There is not much particular emphasis in linear analysis unless it is in extension of current analysis capabilities to larger problems. The primary exception is concern about modeling of composites, where proven methodologies have trailed element and computer hardware development. Most of the people we spoke to use finite element techniques, but there is some finite difference and boundary element work ongoing. There is also some interest in multiple methods. Coupling of finite elements and boundary elements appears to be of high interest, since the two analysis types are complementary.
Economic Analysis. Computer Simulation Models.
ERIC Educational Resources Information Center
Sterling Inst., Washington, DC. Educational Technology Center.
A multimedia course in economic analysis was developed and used in conjunction with the United States Naval Academy. (See ED 043 790 and ED 043 791 for final reports of the project evaluation and development model.) This volume of the text discusses the simulation of behavioral relationships among variable elements in an economy and presents…
Nondestructive pavement evaluation using finite element analysis based soft computing models.
DOT National Transportation Integrated Search
2009-09-15
Evaluating structural condition of existing, in-service pavements constitutes annually a major part of the : maintenance and rehabilitation activities undertaken by State Highway Agencies (SHAs). Accurate : estimation of pavement geometry and layer m...
Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test
NASA Technical Reports Server (NTRS)
Dec, John A.; Laub, Bernard; Braun, Robert D.
2011-01-01
The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.
On nonlinear finite element analysis in single-, multi- and parallel-processors
NASA Technical Reports Server (NTRS)
Utku, S.; Melosh, R.; Islam, M.; Salama, M.
1982-01-01
Numerical solution of nonlinear equilibrium problems of structures by means of Newton-Raphson type iterations is reviewed. Each step of the iteration is shown to correspond to the solution of a linear problem, therefore the feasibility of the finite element method for nonlinear analysis is established. Organization and flow of data for various types of digital computers, such as single-processor/single-level memory, single-processor/two-level-memory, vector-processor/two-level-memory, and parallel-processors, with and without sub-structuring (i.e. partitioning) are given. The effect of the relative costs of computation, memory and data transfer on substructuring is shown. The idea of assigning comparable size substructures to parallel processors is exploited. Under Cholesky type factorization schemes, the efficiency of parallel processing is shown to decrease due to the occasional shared data, just as that due to the shared facilities.
Thermal Analysis on Plume Heating of the Main Engine on the Crew Exploration Vehicle Service Module
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Yuko, James R.
2007-01-01
The crew exploration vehicle (CEV) service module (SM) main engine plume heating is analyzed using multiple numerical tools. The chemical equilibrium compositions and applications (CEA) code is used to compute the flow field inside the engine nozzle. The plume expansion into ambient atmosphere is simulated using an axisymmetric space-time conservation element and solution element (CE/SE) Euler code, a computational fluid dynamics (CFD) software. The thermal analysis including both convection and radiation heat transfers from the hot gas inside the engine nozzle and gas radiation from the plume is performed using Thermal Desktop. Three SM configurations, Lockheed Martin (LM) designed 604, 605, and 606 configurations, are considered. Design of multilayer insulation (MLI) for the stowed solar arrays, which is subject to plume heating from the main engine, among the passive thermal control system (PTCS), are proposed and validated.
NASA Technical Reports Server (NTRS)
Haviland, J. K.; Yoo, Y. S.
1976-01-01
Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.
C1 finite elements on non-tensor-product 2d and 3d manifolds
Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg
2015-01-01
Geometrically continuous (Gk) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are Ck also for non-tensor-product layout. This paper describes and analyzes one such concrete C1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson’s equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O(h3) convergence in the L∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis. PMID:26594070
C1 finite elements on non-tensor-product 2d and 3d manifolds.
Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg
2016-01-01
Geometrically continuous ( G k ) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are C k also for non-tensor-product layout. This paper describes and analyzes one such concrete C 1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G 1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson's equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O ( h 3 ) convergence in the L ∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis.