The New Element Berkelium (Atomic Number 97)
DOE R&D Accomplishments Database
Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.
1950-04-26
An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.
METHOD FOR THE RECOVERY AND PURIFICATION OF BERKELIUM
Hulet, E.K.
1959-10-20
A solvent extraction process is described for the separation of berkelium from a mixture of elements in the lanthanum and actinium series of the periodic table. In particular, the mixture of elements is dissolved in 1.0N nitric acid, and the resulting solution is extracted with n-tributyl phosphate containlng a stoichiometric excess of solid sodium bismuthate. The berkelium present in the nitric acid solution is oxidized to the IV oxidation state and is preferentially- extracted into the n-tributyl phosphate. The organic phase, containing berkelium in an oxidized state, is extracted with 0.1N hydrochloric acid solution containing a small quantity- of a reducing agent such as yvdrazine hydrochloride. The berkelium is reduced to the III oxidation state and is extracted into the aqueous phase. The berkelium is then recovered from the aqueous phase.
Chemistry of berkelium: A review
NASA Astrophysics Data System (ADS)
Hobart, D. E.; Peterson, J. R.
Element 97 was first produced in December 1949, by the bombardment of americium-241 with accelerated alpha particles. This new element was named berkelium (Bk) after Berkeley, California, the city of its discovery. In the 36 years since the discovery of Bk, a substantial amount of knowledge concerning the physicochemical properties of this relatively scarce transplutonium element was acquired. All of the Bk isotopes of mass numbers 240 and 242 through 251 are presently known, but only berkelium-249 is available in sufficient quantities for bulk chemical studies. About 0.7 gram of this isotope was isolated at the HFIR/TRU Complex in Oak Ridge, Tennessee in the last 18 years. Over the same time period, the scale of experimental work using berkelium-249 has increased from the tracer level to bulk studies at the microgram level to solution and solid state investigations with milligram quantities. Extended knowledge of the physicochemical behavior of berkelium is important in its own right, because Bk is the first member of the second half of the actinide series. In addition, such information should enable more accurate extrapolations to the predicted behavior of heavier elements for which experimental studies are severely limited by lack of material and/or by intense radioactivity.
NASA Astrophysics Data System (ADS)
Trabesinger, Andreas
2017-09-01
The first new element produced after the Second World War has led a rather peaceful life since entering the period table -- until it became the target of those producing superheavy elements, as Andreas Trabesinger describes.
Electronic Structure of Actinides under Pressure
NASA Astrophysics Data System (ADS)
Johansson, Borje
2006-03-01
The series of heavy radioactive elements known as the actinides all have similar elemental properties. However, when the volume per atom in the condensed phase is illustrated as a function of atomic number, perhaps the most dramatic anomaly in the periodic table becomes apparent. The atomic volume of americium is almost 50% larger than it is for the preceding element plutonium. For the element after americium, curium, the atomic volume is very close to that of americium. The same holds also for the next elements berkelium and californium. Accordingly from americium and onwards the actinides behave very similar to the corresponding rare-earth elements - a second lanthanide series of metallic elements can be identified. This view is strongly supported by the fact that all these elements adopt the dhcp structure, a structure typical for the lanthanides. The reason for this behavior is found in the behavior of the 5f electrons. For the earlier actinides, up to and including plutonium, the 5f electrons form metallic states and contribute most significantly to the bonding. In Np and Pu they even dominate the bonding, while all of a sudden they become localized in Am, very much like the 4f electrons in the lanthanide series, and contribute no longer to the cohesion. This withdrawal of 5f bonding gives rise to the large volume expansion between plutonium and americium. This difference between the light and heavy actinide suggests that it would be most worthwhile to strongly compress the transplutonium elements, thereby forcing the individual 5f electron wave functions into strong contact with each other (overlap). Recently high pressure experiments have been performed for americium and curium and dramatic crystal structure changes have been observed. These results and other high pressure data will be discussed in relation to the basic electronic structure of these elements.
Chelation and stabilization of berkelium in oxidation state +IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deblonde, Gauthier J. -P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.
Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here, in this work, we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin - a mammalian metal transporter - in contrast to the negatively charged species obtained withmore » neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Finally, combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.« less
Chelation and stabilization of berkelium in oxidation state +IV
Deblonde, Gauthier J. -P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; ...
2017-04-10
Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here, in this work, we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin - a mammalian metal transporter - in contrast to the negatively charged species obtained withmore » neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Finally, combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.« less
Directed evolution of the periodic table: probing the electronic structure of late actinides.
Marsh, M L; Albrecht-Schmitt, T E
2017-07-25
Recent investigations of the coordination chemistry and physical properties of berkelium (Z = 97) and californium (Z = 98) have revealed fundamental differences between post-curium elements and lighter members of the actinide series. This review highlights these developments and chronicles key findings and concepts from the last half-century that have helped usher in a new understanding of the evolution of electronic structure in the periodic table.
NASA Astrophysics Data System (ADS)
Haire, Richard G.
The discovery of californium came in the era of the syntheses and identifications of other transplutonium elements, following the end of World War II. The discovery of the element californium, like many of the other actinide elements, hinged on the development of new experimental techniques in conjunction with predictions based on nuclear systematics. Californium was named after the University and State of California where many of the transuranium elements were first identified. This element was discovered by Thompson, Street, Ghiorso, and Seaborg (Hyde et al., 1971; Seaborg and Loveland, 1990) in February, 1950. The discovery of californium came only 2 months after the preparation and identification of the first isotope of berkelium, element 97 (see Chapter 10). An account of the discovery and reminiscences about the early work on californium has been given by Ghiorso (1983).
The discovery of plutonium reorganized the periodic table and aided the discovery of new elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, David L
2009-01-01
The modern Periodic Table derives principally from the work of the great Russian scientist Dimitri Mendeleev, who in 1869 enunciated a 'periodic law' that the properties of the elements are a periodic function of their atomic weights, and arranged the 65 known elements in a 'periodic table'. Fundamentally, every column in the main body of the Periodic Table is a grouping of elements that display similar chemical and physical behavior. Similar properties are therefore exhibited by elements with widely different mass. Chemical periodicity is central to the study of chemistry, and no other generalization comes close to its ability tomore » systematize and rationalize known chemical facts. With the development of atomic theory, and an understanding of the electronic structure of atoms, chemical periodicity and the periodic table now find their natural explanation in the electronic structure of atoms. Moving from left to right along any row, the elements are arranged sequentially according to nuclear charge (the atomic number). Electrons counter balance that nuclear charge, hence each successive element has one more electron in its configuration. The electron configuration, or distribution of electrons among atomic orbitals, may be determined by application of the Pauli principle (paired spin in the same orbital) and the aufbau principle (which outlines the order of filling of electrons into shells of orbitals - s, p, d, f, etc.) such that in a given atom, no two electrons may have all four quantum numbers identical. In 1939, only three elements were known to be heavier than actinium: thorium, protactinium, and uranium. All three exhibited variable oxidation states and a complex chemistry. Thorium, protactinium and uranium were assumed to be d-transition metals and were placed in the Periodic Table under hafnium, tantalum, and tungsten, respectively. By 1940, McMillan and Abelson bombarded uranium atoms with slow neutrons and successfully identified atoms of element 93, which they named neptunium after the planet Neptune. This rapidly set the stage for the discovery of the next succeeding element, plutonium (Seaborg, McMillan, Kennedy, and Wahl, 1940), named after the next planet away from the Sun, Pluto. The newly discovered elements were presumed to fit comfortably in the Periodic Table under rhenium and osmium, respectively. However, subsequent tracer chemical experiments showed that neptunium and plutonium were closer in their chemical properties to uranium than their presumed homologues, rhenium and osmium. Spectroscopic evidence also indicated that the new elements were not typical transition elements, but had f-electrons in their valence shell. Thus, several researchers, including McMillan and Wahl, and Zachariasen at Los Alamos, suggested that these elements might be part of a second inner-transition series in which the 5f-electron subshell was being filled. It was not clear, however, where the new series would begin. McMillian had proposed a 'uraninide series' that started with neptunium, but attempts to isolate elements with atomic numbers 95 and 96 based on assumed similarities to uranium were unsuccessful. Both Wahl and Zacharias en had proposed a thoride series that started with protactinium. In 1944, Seaborg proposed that the series started with thorium, and that all of the elements heavier than actinium constituted an 'actinide' series similar to the lanthanides. Because the 5f-shell began filling in the same relative position as the 4f-shell, the electronic configuration of elements in the two series would be similar. Guided by the hypothesis that elements 95 and 96 were homologues of europium and gadolinium, new experiments were designed and the elements were uniquely synthesized and separated from all others. The new elements were subsequently named americium and curium. Seaborg's 'Actinide Concept' thus played a major role in the discovery of the transplutonium elements. It provided the framework that supported synthesis, isolation, and identification of the succeeding actinide elements berkelium through lawrencium and beyond to the element with Atomic Number 118. But as research has progressed in the study of the actinide elements, it has become clear that the 5f series has a unique chemistry that is distinct from the lanthanides. One of the focal points of study in actinide research has been to better define the scope and limitations of the actinide concept. Seaborg's actinide concept of heavy element electronic structure, prediction that the actinides form a transition series analogous to the rare earth series of lanthanide elements, is now well accepted in the scientific community and included in all standard configurations of the Periodic Table.« less
BAG PASSOUT SEALER FOR WATER-SHIELDED CAVE FACILITY (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
The water-shielded cave facility is used in processing irradiated slugs for recovery of americium, curium, berkelium, californium, einsteinium, and fermium. The remotely operated, plastic-bag passout sealer is used in removing isotopic fractions for storage in the rear or for removing radioactive waste for placement in the waste storage containers. The unit is accessible by both the primary inclosure master-slaves and the service area master-slaves. (F.L.S.)
Dau, Phuong D; Vasiliu, Monica; Peterson, Kirk A; Dixon, David A; Gibson, John K
2017-12-06
Actinyl chemistry is extended beyond Cm to BkO 2 + and CfO 2 + through transfer of an O atom from NO 2 to BkO + or CfO + , establishing a surprisingly high lower limit of 73 kcal mol -1 for the dissociation energies, D[O-(BkO + )] and D[O-(CfO + )]. CCSD(T) computations are in accord with the observed reactions, and characterize the newly observed dioxide ions as linear pentavalent actinyls; these being the first Bk and Cf species with oxidation states above IV. Computations of actinide dioxide cations AnO 2 + for An=Pa to Lr reveal an unexpected minimum for D[O-(CmO + )]. For CmO 2 + , and AnO 2 + beyond EsO 2 + , the most stable structure has side-on bonded η 2 -(O 2 ), as An III peroxides for An=Cm and Lr, and as An II superoxides for An=Fm, Md, and No. It is predicted that the most stable structure of EsO 2 + is linear [O=Es V =O] + , einsteinyl, and that FmO 2 + and MdO 2 + , like CmO 2 + , also have actinyl(V) structures as local energy minima. The results expand actinide oxidation state chemistry, the realm of the distinctive actinyl moiety, and the non-periodic character towards the end of the periodic table. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the way to unveiling the atomic structure of superheavy elements
NASA Astrophysics Data System (ADS)
Laatiaoui, Mustapha
2016-12-01
Optical spectroscopy of the transfermium elements (atomic number Z > 100) is nowadays one of the most fascinating and simultaneously challenging tasks in atomic physics. On the one hand, key atomic and even nuclear ground-state properties may be obtained by studying the spectral lines of these heaviest elements. On the other hand, these elements have to be produced "online" by heavy-ion induced fusion-evaporation reactions yielding rates on the order of a few atoms per second at most, which renders their optical spectroscopy extremely difficult. Only recently, a first foray of laser spectroscopy into this heaviest element region was reported. Several atomic transitions in the element nobelium (Z = 102) were observed and characterized, using an ultra-sensitive and highly efficient resonance ionization technique. The findings confirm the predictions and additionally provide a benchmark for theoretical modelling. The work represents an important stepping stone towards experimental studies of the atomic structure of superheavy elements.
RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, N.E.; Holden, N.; Holden,N.E.
2011-07-27
In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotopemore » as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value. For the elements, which have no stable characteristic terrestrial isotopic composition, the data on the half-lives and the relative atomic masses for the nuclides of interest for those elements have been evaluated. The values of the half-lives with their uncertainties are listed in the table. The uncertainties are given for the last digit quoted of the half-life and are given in parentheses. A half-life entry for the Table having a value and an uncertainty of 7 {+-} 3 is listed in the half-life column as 7 (3). The criteria to include data in this Table, is to be the same as it has been for over sixty years. It is the same criteria, which are used for all data that are evaluated for inclusion in the Standard Table of Atomic Weights. If a report of data is published in a peer-reviewed journal, that data is evaluated and considered for inclusion in the appropriate table of the biennial report of the Atomic Weights Commission. As better data becomes available in the future, the information that is contained in either of the Tables of Standard Atomic Weights or in the Table of Radioactive Elements may be modified. It should be noted that the appearance of any datum in the Table of the Radioactive Elements is merely for the purposes of calculating an atomic mass value for any sample of a radioactive material, which might have a variety of isotopic compositions and it has no implication as to the priority for claiming discovery of a given element and is not intended to. The atomic mass values have been taken primarily from the 2003 Atomic Mass Table. Mass values for those radioisotopes that do not appear in the 2003 Atomic mass Table have been taken from preliminary data of the Atomic Mass Data Center. Most of the quoted half-lives.« less
Dispersoid reinforced alloy powder and method of making
Anderson, Iver E [Ames, IA; Terpstra, Robert L [Ames, IA
2012-06-12
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
Dispersoid reinforced alloy powder and method of making
Anderson, Iver E.; Terpstra, Robert L.
2010-04-20
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
Dispersoid reinforced alloy powder and method of making
Anderson, Iver E; Terpstra, Robert L
2014-10-21
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. Bodies made from the dispersion strengthened solidified particles exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures.
Miller, C.M.; Nogar, N.S.
1982-09-02
Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.
Isotope-abundance variations of selected elements (IUPAC technical report)
Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.
2002-01-01
Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.
Coplen, Tyler B.; Holden, Norman E.
2016-01-01
Abstract The Commission on Isotopic Abundances and Atomic Weights uses annotations given in footnotes that are an integral part of the Tables of Standard Atomic Weights to alert users to the possibilities of quite extraordinary occurrences, as well as sources with abnormal atomic-weight values outside an otherwise acceptable range. The basic need for footnotes to the Standard Atomic Weights Table and equivalent annotations to the Table of Isotopic Compositions of the Elements arises from the necessity to provide users with information that is relevant to one or more elements, but that cannot be provided using numerical data in columns. Anymore » desire to increase additional information conveyed by annotations to these Tables is tempered by the need to preserve a compact format and a style that can alert users, who would not be inclined to consult either the last full element-by-element review or the full text of a current Standard Atomic Weights of the Elements report. Since 1989, the footnotes of the Tables of Standard Atomic Weights and the annotations in column 5 of the Table of Isotopic Compositions of the Elements have been harmonized by use of three lowercase footnotes, “g”, “m”, and “r”, that signify geologically exceptionally specimens (“g”), modified isotopic compositions in material subjected to undisclosed or inadvertent isotopic fractionation (“m”), and the range in isotopic composition of normal terrestrial material prevents more precise atomic-weight value being given (“r”). As some elements are assigned intervals for their standard atomic-weight values (applies to 12 elements since 2009), footnotes “g” and “r” are no longer needed for these elements.« less
Coplen, Tyler B.; Holden, Norman E.
2016-01-01
The Commission on Isotopic Abundances and Atomic Weights uses annotations given in footnotes that are an integral part of the Tables of Standard Atomic Weights to alert users to the possibilities of quite extraordinary occurrences, as well as sources with abnormal atomic-weight values outside an otherwise acceptable range. The basic need for footnotes to the Standard Atomic Weights Table and equivalent annotations to the Table of Isotopic Compositions of the Elements arises from the necessity to provide users with information that is relevant to one or more elements, but that cannot be provided using numerical data in columns. Any desire to increase additional information conveyed by annotations to these Tables is tempered by the need to preserve a compact format and a style that can alert users, who would not be inclined to consult either the last full element-by-element review or the full text of a current Standard Atomic Weights of the Elements report. Since 1989, the footnotes of the Tables of Standard Atomic Weights and the annotations in column 5 of the Table of Isotopic Compositions of the Elements have been harmonized by use of three lowercase footnotes, “g”, “m”, and “r”, that signify geologically exceptionally specimens (“g”), modified isotopic compositions in material subjected to undisclosed or inadvertent isotopic fractionation (“m”), and the range in isotopic composition of normal terrestrial material prevents more precise atomic-weight value being given (“r”). As some elements are assigned intervals for their standard atomic-weight values (applies to 12 elements since 2009), footnotes “g” and “r” are no longer needed for these elements.
Molarity (Aromic Density) of the Elements as Pure Crystals.
ERIC Educational Resources Information Center
Pauling, Linus; Herman, Zelek S.
1985-01-01
Provides background information for teachers on the atomic density of the elements as pure crystals. Atomic density is defined as the reciprocal of the atomic volume. Includes atomic-density diagrams which were prepared using the atomic-volume values given by Singman, supplemented by additional values for some allotropes. (JN)
Clarifying atomic weights: A 2016 four-figure table of standard and conventional atomic weights
Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.
2017-01-01
To indicate that atomic weights of many elements are not constants of nature, in 2009 and 2011 the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) replaced single-value standard atomic weight values with atomic weight intervals for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium); for example, the standard atomic weight of nitrogen became the interval [14.00643, 14.00728]. CIAAW recognized that some users of atomic weight data only need representative values for these 12 elements, such as for trade and commerce. For this purpose, CIAAW provided conventional atomic weight values, such as 14.007 for nitrogen, and these values can serve in education when a single representative value is needed, such as for molecular weight calculations. Because atomic weight values abridged to four figures are preferred by many educational users and are no longer provided by CIAAW as of 2015, we provide a table containing both standard atomic weight values and conventional atomic weight values abridged to four figures for the chemical elements. A retrospective review of changes in four-digit atomic weights since 1961 indicates that changes in these values are due to more accurate measurements over time or to the recognition of the impact of natural isotopic fractionation in normal terrestrial materials upon atomic weight values of many elements. Use of the unit “u” (unified atomic mass unit on the carbon mass scale) with atomic weight is incorrect because the quantity atomic weight is dimensionless, and the unit “amu” (atomic mass unit on the oxygen scale) is an obsolete term: Both should be avoided.
Chemical experiments with superheavy elements.
Türler, Andreas
2010-01-01
Unnoticed by many chemists, the Periodic Table of the Elements has been extended significantly in the last couple of years and the 7th period has very recently been completed with eka-Rn (element 118) currently being the heaviest element whose synthesis has been reported. These 'superheavy' elements (also called transactinides with atomic number > or = 104 (Rf)) have been artificially synthesized in fusion reactions at accelerators in minute quantities of a few single atoms. In addition, all isotopes of the transactinide elements are radioactive and decay with rather short half-lives. Nevertheless, it has been possible in some cases to investigate experimentally chemical properties of transactinide elements and even synthesize simple compounds. The experimental investigation of superheavy elements is especially intriguing, since theoretical calculations predict significant deviations from periodic trends due to the influence of strong relativistic effects. In this contribution first experiments with hassium (Hs, atomic number 108), copernicium (Cn, atomic number 112) and element 114 (eka-Pb) are reviewed.
Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)
Coplen, Tyler B.; Shrestha, Yesha
2016-01-01
There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.
Clarifying Atomic Weights: A 2016 Four-Figure Table of Standard and Conventional Atomic Weights
ERIC Educational Resources Information Center
Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.
2017-01-01
To indicate that atomic weights of many elements are not constants of nature, in 2009 and 2011 the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) replaced single-value standard atomic weight values with atomic weight intervals for 12 elements (hydrogen, lithium, boron,…
Dispersoid reinforced alloy powder and method of making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver E.; Terpstra, Robert L.
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomizedmore » particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.« less
Dispersoid reinforced alloy powder and method of making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver E.; Terpstra, Robert L.
2017-10-10
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomizedmore » particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.« less
Handbook of Basic Atomic Spectroscopic Data
National Institute of Standards and Technology Data Gateway
SRD 108 Handbook of Basic Atomic Spectroscopic Data (Web, free access) This handbook provides a selection of the most important and frequently used atomic spectroscopic data. The compilation includes data for the neutral and singly-ionized atoms of all elements hydrogen through einsteinium (Z = 1-99). The wavelengths, intensities, and spectrum assignments are given for each element, and the data for the approximately 12,000 lines of all elements are also collected into a single table.
Atomic weights of the elements--Review 2000 (IUPAC Technical Report)
de Laeter, John R.; Böhlke, John Karl; De Bièvre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.
2003-01-01
A consistent set of internationally accepted atomic weights has long been an essential aim of the scientific community because of the relevance of these values to science and technology, as well as to trade and commerce subject to ethical, legal, and international standards. The standard atomic weights of the elements are regularly evaluated, recommended, and published in updated tables by the Commission on Atomic Weights and Isotopic Abundances (CAWIA) of the International Union of Pure and Applied Chemistry (IUPAC). These values are invariably associated with carefully evaluated uncertainties. Atomic weights were originally determined by mass ratio measurements coupled with an understanding of chemical stoichiometry, but are now based almost exclusively on knowledge of the isotopic composition (derived from isotope-abundance ratio measurements) and the atomic masses of the isotopes of the elements. Atomic weights and atomic masses are now scaled to a numerical value of exactly 12 for the mass of the carbon isotope of mass number 12. Technological advances in mass spectrometry and nuclear-reaction energies have enabled atomic masses to be determined with a relative uncertainty of better than 1 ×10−7 . Isotope abundances for an increasing number of elements can be measured to better than 1 ×10−3 . The excellent precision of such measurements led to the discovery that many elements, in different specimens, display significant variations in their isotope-abundance ratios, caused by a variety of natural and industrial physicochemical processes. While such variations increasingly place a constraint on the uncertainties with which some standard atomic weights can be stated, they provide numerous opportunities for investigating a range of important phenomena in physical, chemical, cosmological, biological, and industrial processes. This review reflects the current and increasing interest of science in the measured differences between source-specific and even sample-specific atomic weights. These relative comparisons can often be made with a smaller uncertainty than is achieved in the best calibrated “absolute ” (=SI-traceable) atomic-weight determinations. Accurate determinations of the atomic weights of certain elements also influence the values of fundamental constants such as the Avogadro, Faraday, and universal gas constants. This review is in two parts: the first summarizes the development of the science of atomic-weight determinations during the 20th century; the second summarizes the changes and variations that have been recognized in the values and uncertainties of atomic weights, on an element-by-element basis, in the latter part of the 20th century.
NASA Technical Reports Server (NTRS)
Paruso, D. M.; Cassidy, W. A.; Hapke, B. W.
1978-01-01
Artificial glass targets composed of elements varying widely in atomic weight were irradiated at an angle of incidence of 45 deg by 2-keV hydrogen ions at a current density of .33 mA/sq cm, and sputtered atoms were caught on a molybdenum film. Analyses of the sputter-deposited films and unsputtered target glasses were carried out by electron microprobe. The backward-sputtered component was found to be enriched in elements of low atomic weight, while the forward-sputtered component was enriched in heavy atoms. These results indicate that at the lunar surface lighter elements and isotopes would tend to be ejected in backward directions, escaping directly through the openings which admit bombarding ions without first striking an adjacent grain surface; heavy elements and isotopes would be forward-sputtered deeper into the soil and be preferentially retained, contributing to the reported enrichments of heavy elements and isotopes. Additional results show that the binding energy of an element in its oxide form influences the sticking coefficient of a sputtered atom; elements of low binding energy are likely to desorb, while elements of high binding energy tend to stick to the first bounce surface.
Atomic weights of the elements 2011 (IUPAC Technical Report)
Wieser, Michael E.; Holden, Norman; Coplen, Tyler B.; Böhlke, John K.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Loss, Robert D.; Meija, Juris; Hirata, Takafumi; Prohaska, Thomas; Schoenberg, Ronny; O'Connor, Glenda; Walczyk, Thomas; Yoneda, Shige; Zhu, Xiang-Kun
2013-01-01
The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of five elements. The atomic weight of bromine has changed from 79.904(1) to the interval [79.901, 79.907], germanium from 72.63(1) to 72.630(8), indium from 114.818(3) to 114.818(1), magnesium from 24.3050(6) to the interval [24.304, 24.307], and mercury from 200.59(2) to 200.592(3). For bromine and magnesium, assignment of intervals for the new standard atomic weights reflects the common occurrence of variations in the atomic weights of those elements in normal terrestrial materials.
NASA Astrophysics Data System (ADS)
Pašti, Igor A.; Jovanović, Aleksandar; Dobrota, Ana S.; Mentus, Slavko V.; Johansson, Börje; Skorodumova, Natalia V.
2018-04-01
The understanding of atomic adsorption on graphene is of high importance for many advanced technologies. Here we present a complete database of the atomic adsorption energies for the elements of the Periodic Table up to the atomic number 86 (excluding lanthanides) on pristine graphene. The energies have been calculated using the projector augmented wave (PAW) method with PBE, long-range dispersion interaction corrected PBE (PBE+D2, PBE+D3) as well as non-local vdW-DF2 approach. The inclusion of dispersion interactions leads to an exothermic adsorption for all the investigated elements. Dispersion interactions are found to be of particular importance for the adsorption of low atomic weight earth alkaline metals, coinage and s-metals (11th and 12th groups), high atomic weight p-elements and noble gases. We discuss the observed adsorption trends along the groups and rows of the Periodic Table as well some computational aspects of modelling atomic adsorption on graphene.
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.
Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep
2015-02-02
Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J
2007-01-01
Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.
METHOD AND APPARATUS FOR TESTING THE PRESENCE OF SPECIFIC ATOMIC ELEMENTS IN A SUBSTANCE
Putman, J.L.
1960-01-26
Detection of specific atomic elements in a substance and particularly the applicability to well logging are discussed. The principal novelty resides in the determination of several of the auxiliary energy peaks in addition to the main energy peak of the gamma-ray energy spectrum of a substance and comparison of such peaks to the spectrum of the specific atomic element being tested for. thus resulting in identification of same. The invention facilitates the identification of specific elements even when in the presence of other elements having similar gamma energy spectra as to the main energy peaks.
IUPAC Periodic Table of Isotopes for the Educational Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden N. E.; Holden,N.E.; Coplen,T.B.
2012-07-15
John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in thismore » area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).« less
An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements
NASA Technical Reports Server (NTRS)
Ross, H. Richard
1993-01-01
A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.
NASA Astrophysics Data System (ADS)
Katskov, Dmitri A.; Sadagov, Yuri M.
2011-06-01
The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a "platform" effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 °C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element determination in Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.
NASA Astrophysics Data System (ADS)
Eriş, Rasim; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat
2017-10-01
Remarkable high-temperature mechanical properties of nickel-based superalloys are correlated with the arrangement of ternary alloying elements in L12-type-ordered γ‧-Ni3Al intermetallics. In the current study, therefore, high-temperature site occupancy preference and energetic-structural characteristics of atomic short-range ordering (SRO) of ternary alloying X elements (X = Mo, W, Ta, Hf, Re, Ru, Pt or Co) in Ni75Al21.875X3.125 alloy systems have been studied by combining the statistico-thermodynamical theory of ordering and electronic theory of alloys in the pseudopotential approximation. Temperature dependence of site occupancy tendencies of alloying X element atoms has been predicted by calculating partial ordering energies and SRO parameters of Ni-Al, Ni-X and Al-X atomic pairs. It is shown that, all ternary alloying element atoms (except Pt) tend to occupy Al, whereas Pt atoms prefer to substitute for Ni sub-lattice sites of Ni3Al intermetallics. However, in contrast to other X elements, sub-lattice site occupancy characteristics of Re atoms appear to be both temperature- and composition-dependent. Theoretical calculations reveal that site occupancy preference of Re atoms switches from Al to both Ni and Al sites at critical temperatures, Tc, for Re > 2.35 at%. Distribution of Re atoms at both Ni and Al sub-lattice sites above Tc may lead to localised supersaturation of the parent Ni3Al phase and makes possible the formation of topologically close-packed (TCP) phases. The results of the current theoretical and simulation study are consistent with other theoretical and experimental investigations published in the literature.
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
Atomic weights of the elements 1999
Coplen, T.B.
2001-01-01
The biennial review of atomic-weight, Ar(E), determinations and other cognate data have resulted in changes for the standard atomic weights of the following elements: Presented are updated tables of the standard atomic weights and their uncertainties estimated by combining experimental uncertainties and terrestrial variabilities. In addition, this report again contains an updated table of relative atomic-mass values and half-lives of selected radioisotopes. Changes in the evaluated isotopic abundance values from those published in 1997 are so minor that an updated list will not be published for the year 1999. Many elements have a different isotopic composition in some nonterrestrial materials. Some recent data on parent nuclides that might affect isotopic abundances or atomic-weight values are included in this report for the information of the interested scientific community.
Trace Element Analysis of Biological Samples.
ERIC Educational Resources Information Center
Veillon, Claude
1986-01-01
Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…
Liquid electrolyte-free, solid-state solar cells with inorganic hole transport materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanatzidis, Mercouri G.; Chung, In; Lee, Byunghong
Photovoltaic cells incorporating the compounds A/M/X compounds as hole transport materials are provide. The A/M/X compounds comprise one or more A moieties, one or more M atoms and one or more X atoms. The A moieties are selected from organic cations and elements from Group 1 of the periodic table, the M atoms are selected from elements from at least one of Groups 3, 4, 5, 13, 14 or 15 of the periodic table, and the X atoms are selected from elements from Group 17 of the periodic table.
Glenn T. Seaborg - Contributions to Advancing Science
. Documents: The First Weighing of Plutonium (Atomic Number 94); DOE Technical Report; September 1967 The New Element Americium (Atomic Number 95); DOE Technical Report; January 1948 The New Element Curium (Atomic Number 96); DOE Technical Report; January 1948 Frontiers of Chemistry for Americium and Curium; DOE
Light element opacities of astrophysical interest from ATOMIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.
We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a newmore » equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.« less
The New Element Curium (Atomic Number 96)
DOE R&D Accomplishments Database
Seaborg, G. T.; James, R. A.; Ghiorso, A.
1948-01-01
Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.
Influence of alloying elements on friction and wear of copper
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1972-01-01
The friction and wear characteristics were determined for copper binary alloys containing 10 atomic percent aluminum, silicon, indium, and tin. A ternary alloy containing 10 atomic percent aluminum and 5 atomic percent silicon was also examined. The effectiveness of each of the alloying elements aluminum and silicon were very effective in reducing friction. Silicon, however, also reduced wear appreciably. With lubrication, silicon, indium, and tin were all effective alloying elements in reducing friction and wear from values obtained for copper. Silicon was the most effective single element in reducing friction and wear in dry sliding and with lubrication.
Enzymatically Controlled Vacancies in Nanoparticle Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.
In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemicalmore » nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.« less
Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis
Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang
2016-01-01
An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972
Murphy, Edward
2018-01-23
The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.
Ion-barrier for memristors/ReRAM and methods thereof
Haase, Gad S.
2017-11-28
The present invention relates to memristive devices including a resistance-switching element and a barrier element. In particular examples, the barrier element is a monolayer of a transition metal chalcogenide that sufficiently inhibits diffusion of oxygen atoms or ions out of the switching element. As the location of these atoms and ions determine the state of the device, inhibiting diffusion would provide enhanced state retention and device reliability. Other types of barrier elements, as well as methods for forming such elements, are described herein.
New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings
NASA Astrophysics Data System (ADS)
Kong, Xiangru; Li, Linyang; Leenaerts, Ortwin; Liu, Xiong-Jun; Peeters, François M.
2017-07-01
Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four- and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.
Passivation and alloying element retention in gas atomized powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidloff, Andrew J.; Rieken, Joel R.; Anderson, Iver E.
A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al.sub.2O.sub.3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch where...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch where...
Atomic hydrogen in. gamma. -irradiated hydroxides of alkaline-earth elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitsyn, V.I.; Yurik, T.K.; Barsova, L.I.
1982-04-01
Atomic hydrogen is an important intermediate product formed in the radiolysis of compounds containing X-H bonds. H atoms have been detected in irradiated matrices of H/sub 2/ and inert gases at 4/sup 0/K, in irradiated ice and frozen solutions of acids in irradiated salts and in other systems. Here results are presented from a study of the ESR spectra of H atoms generated in polycrystalline hydroxides of alkaline-earth elements that have been ..gamma..-irradiated at 77/sup 0/K, after preliminary treatment at various temperatures. For the first time stabilization of atomic hydrogen in ..gamma..-irradiated polycrystalline alkaline-earth element hydroxides has been detected. Dependingmore » on the degree of dehydroxylation, several types of hydrogen atoms may be stabilized in the hydroxides, these hydrogen atoms having different radiospectroscopic parameters. In the magnesium-calcium-strontium-barium hydroxide series, a regular decrease has been found in the hfi constants for H atoms with the cations in the immediate surroundings. A direct proportionality has been found between the parameters ..delta..A/A/sub 0/ and the polarizability of the cation.« less
Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar
2012-12-01
In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy. Published by Elsevier B.V.
Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs
NASA Astrophysics Data System (ADS)
Mae, Yoshiharu
2018-04-01
A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.
Semiconductor composition containing iron, dysprosium, and terbium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooser, Raphael C.; Lawrie, Benjamin J.; Baddorf, Arthur P.
An amorphous semiconductor composition includes 1 to 70 atomic percent iron, 15 to 65 atomic percent dysprosium, 15 to 35 atomic percent terbium, balance X, wherein X is at least one of an oxidizing element and a reducing element. The composition has an essentially amorphous microstructure, an optical transmittance of at least 50% in at least the visible spectrum and semiconductor electrical properties.
NASA Technical Reports Server (NTRS)
Haskin, L. A.; Blanchard, D. P.; Korotev, R.; Jacobs, J. W.; Brannon, J. A.; Herrmann, A. G.
1974-01-01
Analytical data have been obtained for Co, Sc, Hf, Zn, Cr, Ga, Rb, Cs, Ni, major elements, and rare earth elements in eight samples from boulder 1. The data for trace elements were obtained by radiochemical neutron activation analysis. Major elements, except Na and Mn, were obtained by atomic absorption spectral photometry. Values for Na and Mn were obtained by neutron activation analysis of the same powder that was later dissolved to provide the atomic absorption analyses.
Measurement of the first ionization potential of lawrencium, element 103.
Sato, T K; Asai, M; Borschevsky, A; Stora, T; Sato, N; Kaneya, Y; Tsukada, K; Düllmann, Ch E; Eberhardt, K; Eliav, E; Ichikawa, S; Kaldor, U; Kratz, J V; Miyashita, S; Nagame, Y; Ooe, K; Osa, A; Renisch, D; Runke, J; Schädel, M; Thörle-Pospiech, P; Toyoshima, A; Trautmann, N
2015-04-09
The chemical properties of an element are primarily governed by the configuration of electrons in the valence shell. Relativistic effects influence the electronic structure of heavy elements in the sixth row of the periodic table, and these effects increase dramatically in the seventh row--including the actinides--even affecting ground-state configurations. Atomic s and p1/2 orbitals are stabilized by relativistic effects, whereas p3/2, d and f orbitals are destabilized, so that ground-state configurations of heavy elements may differ from those of lighter elements in the same group. The first ionization potential (IP1) is a measure of the energy required to remove one valence electron from a neutral atom, and is an atomic property that reflects the outermost electronic configuration. Precise and accurate experimental determination of IP1 gives information on the binding energy of valence electrons, and also, therefore, on the degree of relativistic stabilization. However, such measurements are hampered by the difficulty in obtaining the heaviest elements on scales of more than one atom at a time. Here we report that the experimentally obtained IP1 of the heaviest actinide, lawrencium (Lr, atomic number 103), is 4.96(+0.08)(-0.07) electronvolts. The IP1 of Lr was measured with (256)Lr (half-life 27 seconds) using an efficient surface ion-source and a radioisotope detection system coupled to a mass separator. The measured IP1 is in excellent agreement with the value of 4.963(15) electronvolts predicted here by state-of-the-art relativistic calculations. The present work provides a reliable benchmark for theoretical calculations and also opens the way for IP1 measurements of superheavy elements (that is, transactinides) on an atom-at-a-time scale.
ERIC Educational Resources Information Center
Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad
2011-01-01
A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…
Atomization methods for forming magnet powders
Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.
2000-01-01
The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.
Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.
2002-01-01
Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among laboratories comparable. The minimum and maximum concentrations of a selected isotope in naturally occurring terrestrial materials for selected chemical elements reviewed in this report are given below: Isotope Minimum mole fraction Maximum mole fraction -------------------------------------------------------------------------------- 2H 0 .000 0255 0 .000 1838 7Li 0 .9227 0 .9278 11B 0 .7961 0 .8107 13C 0 .009 629 0 .011 466 15N 0 .003 462 0 .004 210 18O 0 .001 875 0 .002 218 26Mg 0 .1099 0 .1103 30Si 0 .030 816 0 .031 023 34S 0 .0398 0 .0473 37Cl 0 .240 77 0 .243 56 44Ca 0 .020 82 0 .020 92 53Cr 0 .095 01 0 .095 53 56Fe 0 .917 42 0 .917 60 65Cu 0 .3066 0 .3102 205Tl 0 .704 72 0 .705 06 The numerical values above have uncertainties that depend upon the uncertainties of the determinations of the absolute isotope-abundance variations of reference materials of the elements. Because reference materials used for absolute isotope-abundance measurements have not been included in relative isotope abundance investigations of zinc, selenium, molybdenum, palladium, and tellurium, ranges in isotopic composition are not listed for these elements, although such ranges may be measurable with state-of-the-art mass spectrometry. This report is available at the url: http://pubs.water.usgs.gov/wri014222.
Precision measurement of transition matrix elements via light shift cancellation.
Herold, C D; Vaidya, V D; Li, X; Rolston, S L; Porto, J V; Safronova, M S
2012-12-14
We present a method for accurate determination of atomic transition matrix elements at the 10(-3) level. Measurements of the ac Stark (light) shift around "magic-zero" wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s - 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea(0) and 0.5230(8)ea(0) for the 5s - 6p(1/2) and 5s - 6p(3/2) elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information.
Evaluation of atomic constants for optical radiation, volume 2
NASA Technical Reports Server (NTRS)
Kylstra, C. D.; Schneider, R. J.
1974-01-01
Various atomic constant for 23 elements from helium to mercury were computed and are presented in tables. The data given for each element start with the element name, its atomic number, its ionic state, and the designation and series limit for each parent configuration. This is followed by information on the energy level, parent configuration, and designation for each term available to the program. The matrix elements subtables are ordered by the sequence numbers, which represent the initial and final levels of the transitions. Each subtable gives the following: configuration of the core or parent, designation and energy level for the reference state, effective principal quantum number, energy of the series limit, value of the matrix element for the reference state interacting with itself, and sum of all of the dipole matrix elements listed in the subtable. Dipole and quadrupole interaction data are also given.
Headridge, J B; Smith, D R
1972-07-01
An induction-heated graphite furnace, coupled to a Unicam SP 90 atomic-absorption spectrometer, is described for the direct determination of trace elements in metals and alloys. The furnace is capable of operation at temperatures up to 2400 degrees , and has been used to obtain calibration graphs for the determination of ppm quantities of bismuth in lead-base alloys, cast irons and stainless steels, and for the determination of cadmium at the ppm level in zinc-base alloys. Milligram samples of the alloys were atomized directly. Calibration graphs for the determination of the elements in solutions were obtained for comparison. The accuracy and precision of the determination are presented and discussed.
This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.
Chi, Miaofang; Wang, Chao; Lei, Yinkai; Wang, Guofeng; Li, Dongguo; More, Karren L.; Lupini, Andrew; Allard, Lawrence F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.
2015-01-01
The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance. PMID:26576477
Chi, Miaofang; Wang, Chao; Lei, Yinkai; ...
2015-11-18
The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt 3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt 3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation;more » nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. In conlcusion, this work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.« less
Statistical clumped isotope signatures
Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
Calculating Relativistic Transition Matrix Elements for Hydrogenic Atoms Using Monte Carlo Methods
NASA Astrophysics Data System (ADS)
Alexander, Steven; Coldwell, R. L.
2015-03-01
The nonrelativistic transition matrix elements for hydrogen atoms can be computed exactly and these expressions are given in a number of classic textbooks. The relativistic counterparts of these equations can also be computed exactly but these expressions have been described in only a few places in the literature. In part, this is because the relativistic equations lack the elegant simplicity of the nonrelativistic equations. In this poster I will describe how variational Monte Carlo methods can be used to calculate the energy and properties of relativistic hydrogen atoms and how the wavefunctions for these systems can be used to calculate transition matrix elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Yuan, Renliang; Zuo, Jian Min
Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less
Lu, Ping; Yuan, Renliang; Zuo, Jian Min
2017-02-23
Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less
Structure and conformational dynamics of scaffolded DNA origami nanoparticles
2017-05-08
all-atom molecular dynamics and coarse-grained finite element modeling to DX-based nanoparticles to elucidate their fine-scale and global conforma... finite element (FE) modeling approach CanDo is also routinely used to predict the 3D equilibrium conformation of programmed DNA assemblies based on a...model with both experimental cryo-electron microscopy (cryo-EM) data and all-atom modeling. MATERIALS AND METHODS Lattice-free finite element model
ERIC Educational Resources Information Center
Nika, G. Gerald; Parameswaran, R.
1997-01-01
Describes a visual approach for explaining the filling of electrons in the shells, subshells, and orbitals of the chemical elements. Enables students to apply the principles of atomic electron configuration while using manipulatives to model the building up of electron configurations as the atomic numbers of elements increase on the periodic…
Updated atomic weights: Time to review our table
Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.
2016-01-01
Despite common belief, atomic weights are not necessarily constants of nature. Scientists’ ability to measure these values is regularly improving, so one would expect that the accuracy of these values should be improving with time. It is the task of the IUPAC (International Union of Pure and Applied Chemistry) Commission on Isotopic Abundances and Atomic Weights (CIAAW) to regularly review atomic-weight determinations and release updated values.According to an evaluation published in Pure and Applied Chemistry [1], even the most simplified table abridged to four significant digits needs to be updated for the elements selenium and molybdenum. According to the most recent 2015 release of "Atomic Weights of the Elements" [2], another update is needed for ytterbium.
The effect of grading the atomic number at resistive guide element interface on magnetic collimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alraddadi, R. A. B.; Woolsey, N. C.; Robinson, A. P. L.
2016-07-15
Using 3 dimensional numerical simulations, this paper shows that grading the atomic number and thus the resistivity at the interface between an embedded high atomic number guide element and a lower atomic number substrate enhances the growth of a resistive magnetic field. This can lead to a large integrated magnetic flux density, which is fundamental to confining higher energy fast electrons. This results in significant improvements in both magnetic collimation and fast-electron-temperature uniformity across the guiding. The graded interface target provides a method for resistive guiding that is tolerant to laser pointing.
Atomic Weights and Isotopic Compositions
National Institute of Standards and Technology Data Gateway
SRD 144 Atomic Weights and Isotopic Compositions (Web, free access) The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.
Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys
Ovshinsky, Stanford R.; Fetcenko, Michael A.
1996-01-01
An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.
Kondo, Yukihito; Okunishi, Eiji
2014-10-01
Moiré method in scanning transmission electron microscopy allows observing a magnified two-dimensional atomic column elemental map of a higher pixel resolution with a lower electron dose unlike conventional atomic column mapping. The magnification of the map is determined by the ratio between the pixel size and the lattice spacing. With proper ratios for the x and y directions, we could observe magnified elemental maps, homothetic to the atomic arrangement in the sample of SrTiO3 [0 0 1]. The map showed peaks at all expected oxygen sites in SrTiO3 [0 0 1]. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Quasi-planar elemental clusters in pair interactions approximation
NASA Astrophysics Data System (ADS)
Chkhartishvili, Levan
2016-01-01
The pair-interactions approximation, when applied to describe elemental clusters, only takes into account bonding between neighboring atoms. According to this approach, isomers of wrapped forms of 2D clusters - nanotubular and fullerene-like structures - and truly 3D clusters, are generally expected to be more stable than their quasi-planar counterparts. This is because quasi-planar clusters contain more peripheral atoms with dangling bonds and, correspondingly, fewer atoms with saturated bonds. However, the differences in coordination numbers between central and peripheral atoms lead to the polarization of bonds. The related corrections to the molar binding energy can make small, quasi-planar clusters more stable than their 2D wrapped allotropes and 3D isomers. The present work provides a general theoretical frame for studying the relative stability of small elemental clusters within the pair interactions approximation.
The Kelvin-Thomson Atom. Part 2: The Many-Electron Atoms
ERIC Educational Resources Information Center
Walton, Alan J.
1977-01-01
Presents part two of a two-part article describing the Kelvin-Thomson atom. This part discusses the arrangement of electrons within the atom and examines some of the properties predicted for elements in the Kelvin-Thomson model. (SL)
Lu, Ping; Yuan, Renliang; Zuo, Jian Min
2017-02-01
Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.
Lewen, Nancy
2011-06-25
The subject of the analysis of various elements, including metals and metalloids, in the pharmaceutical industry has seen increasing importance in the last 10-15 years, as modern analytical instrumentation has afforded analysts with the opportunity to provide element-specific, accurate and meaningful information related to pharmaceutical products. Armed with toxicological data, compendial and regulatory agencies have revisited traditional approaches to the testing of pharmaceuticals for metals and metalloids, and analysts have begun to employ the techniques of atomic spectroscopy, such as flame- and graphite furnace atomic absorption spectroscopy (FAAS, Flame AA or FAA and GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), to meet their analytical needs. Newer techniques, such as laser-induced breakdown spectroscopy (LIBS) and Laser Ablation ICP-MS (LAICP-MS) are also beginning to see wider applications in the analysis of elements in the pharmaceutical industry.This article will provide a perspective regarding the various applications of atomic spectroscopy in the analysis of metals and metalloids in drug products, active pharmaceutical ingredients (API's), raw materials and intermediates. The application of atomic spectroscopy in the analysis of metals and metalloids in clinical samples, nutraceutical, metabolism and pharmacokinetic samples will not be addressed in this work. Copyright © 2010 Elsevier B.V. All rights reserved.
Single element injector testing for STME injector technology
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.; Davis, J.
1992-01-01
An oxidizer-swirled coaxial element injector is being developed for application in the liquid oxygen/gaseous hydrogen Space Transportation Main Engine (STME) for the National Launch System (NLS) vehicle. This paper reports on the first two parts of a four part single injector element study for optimization of the STME injector design. Measurements of Rupe mixing efficiency and atomization characteristics are reported for single element versions of injection elements from two multielement injectors that have been recently hot fire tested. Rather than attempting to measure a definitive mixing efficiency or droplet size parameters of these injector elements, the purpose of these experiments was to provide a baseline comparison for evaluating future injector element design modifications. Hence, all the experiments reported here were conducted with cold flow simulants to nonflowing, ambient conditions. Mixing experiments were conducted with liquid/liquid simulants to provide economical trend data. Atomization experiments were conducted with liquid/gas simulants without backpressure. The results, despite significant differences from hot fire conditions, were found to relate to mixing and atomization parameters deduced from the hot fire testing, suggesting that these experiments are valid for trend analyses. Single element and subscale multielement hot fire testing will verify optimized designs before committing to fullscale fabrication.
Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-A review.
Zou, Zhirong; Deng, Yujia; Hu, Jing; Jiang, Xiaoming; Hou, Xiandeng
2018-08-17
Atomic fluorescence spectrometry (AFS), as one of the common atomic spectrometric techniques with high sensitivity, simple instrumentation, and low acquisition and running cost, has been widely used in various fields for trace elemental analysis, notably the determination of hydride-forming elements by hydride generation atomic fluorescence spectrometry (HG-AFS). In recent years, the soaring demand of field analysis has significantly promoted the miniaturization of analytical atomic spectrometers or at least instrumental components. Various techniques have also been developed to approach the goal of portable/miniaturized AFS instrumentation for field analysis. In this review, potentially portable/miniaturized AFS techniques, primarily involving advanced instrumental components and whole instrumentation with references since 2000, are summarized and discussed. The discussion mainly includes five aspects: radiation source, atomizer, detector, sample introduction, and miniaturized atomic fluorescence spectrometer/system. Copyright © 2018 Elsevier B.V. All rights reserved.
X-ray STM: Nanoscale elemental analysis & Observation of atomic track.
Saito, Akira; Furudate, Y; Kusui, Y; Saito, T; Akai-Kasaya, M; Tanaka, Y; Tamasaku, K; Kohmura, Y; Ishikawa, T; Kuwahara, Y; Aono, M
2014-11-01
Scanning tunneling microscopy (STM) combined with brilliant X-rays from synchrotron radiation (SR) can provide various possibilities of original and important applications, such as the elemental analysis on solid surfaces at an atomic scale. The principle of the elemental analysis is based on the inner-shell excitation of an element-specific energy level "under STM observation". A key to obtain an atomic locality is to extract the element-specific modulation of the local tunneling current (not emission that can damage the spatial resolution), which is derived from the inner-shell excitation [1]. On this purpose, we developed a special SR-STM system and smart tip. To surmount a tiny core-excitation efficiency by hard X-rays, we focused two-dimensionally an incident beam having the highest photon density at the SPring-8.After successes in the elemental analyses by SR-STM [1,2] on a semiconductor hetero-interface (Ge on Si) and metal-semiconductor interface (Cu on Ge), we succeeded in obtaining the elemental contrast between Co nano-islands and Au substrate. The results on the metallic substrate suggest the generality of the method and give some important implications on the principle of contrast. For all cases of three samples, the spatial resolution of the analysis was estimated to be ∼1 nm or less, and it is worth noting that the measured surface domains had a deposition thickness of less than one atomic layer (Fig. 1, left and center).jmicro;63/suppl_1/i14-a/DFU045F1F1DFU045F1Fig. 1.(left) Topographic image and (center) beam-induced tip current image of Ge(111)-Cu (-2V, 0.2 nA). (right) X-ray- induced atomic motion tracks on Ge(111) that were newly imaged by the Xray-STM. On the other hand, we found that the "X-ray induced atomic motion" can be observed directly with atomic scale using the SR-STM system effectively under the incident photon density of ∼2 x10(15) photon/sec/mm(2) [3]. SR-STM visualized successfully the track of the atomic motion (Fig. 1, right), which enabled the further analysis on the mechanism of the atomic motion. It is worth comparing our results with past conventional thermal STM observations on the same surface [4], where the atomic motion was found to occur in the 2-dimensional domain. However, our results show the atomic track having a local chain distribution [3].The above mentioned results will allow us to investigate the chemical analysis and control of the local reaction with the spatial resolution of STM, giving hope of wide applications. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Atomic weights of the elements 2009 (IUPAC technical report)
Wieser, M.E.; Coplen, T.B.
2011-01-01
The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of 11 elements. Many atomic weights are not constants of nature, but depend upon the physical, chemical, and nuclear history of the material. The standard atomic weights of 10 elements having two or more stable isotopes have been changed to reflect this variability of atomic-weight values in natural terrestrial materials. To emphasize the fact that these standard atomic weights are not constants of nature, each atomic-weight value is expressed as an interval. The interval is used together with the symbol [a; b] to denote the set of atomic-weight values, Ar(E), of element E in normal materials for which a ≤ Ar(E) ≤ b. The symbols a and b denote the bounds of the interval [a; b]. The revised atomic weight of hydrogen, Ar(H), is [1.007 84; 1.008 11] from 1.007 94(7); lithium, Ar(Li), is [6.938; 6.997] from 6.941(2); boron, Ar(B), is [10.806; 10.821] from 10.811(7); carbon, Ar(C), is [12.0096; 12.0116] from 12.0107(8); nitrogen, Ar(N), is [14.006 43; 14.007 28] from 14.0067(2); oxygen, Ar(O), is [15.999 03; 15.999 77] from 15.9994(3); silicon, Ar(Si), is [28.084; 28.086] from 28.0855(3); sulfur, Ar(S), is [32.059; 32.076] from 32.065(2); chlorine, Ar(Cl), is [35.446; 35.457] from 35.453(2); and thallium, Ar(Tl), is [204.382; 204.385] from 204.3833(2). This fundamental change in the presentation of the atomic weights represents an important advance in our knowledge of the natural world and underscores the significance and contributions of chemistry to the well-being of humankind in the International Year of Chemistry 2011. The standard atomic weight of germanium, Ar(Ge), was also changed to 72.63(1) from 72.64(1).
Electronic Transmutation (ET): Chemically Turning One Element into Another.
Zhang, Xinxing; Lundell, Katie A; Olson, Jared K; Bowen, Kit H; Boldyrev, Alexander I
2018-03-08
The concept of electronic transmutation (ET) depicts the processes that by acquiring an extra electron, an element with the atomic number Z begins to have properties that were known to only belong to its neighboring element with the atomic number Z+1. Based on ET, signature compounds and chemical bonds that are composed of certain elements can now be designed and formed by other electronically transmutated elements. This Minireview summarizes the recent developments and applications of ET on both the theoretical and experimental fronts. Examples on the ET of Group 13 elements into Group 14 elements, Group 14 elements into Group 15 elements, and Group 15 elements into Group 16 elements are discussed. Compounds and chemical bonding composed of carbon, silicon, germanium, phosphorous, oxygen and sulfur now have analogues using transmutated boron, aluminum, gallium, silicon, nitrogen, and phosphorous. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, V. Ya.; Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru
An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electronsmore » in an arbitrary atom.« less
Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; ...
2016-08-31
Researcher feedback has indicated that in Urzhumtsevet al.[(2015)Acta Cryst.D71, 1668–1683] clarification of key parts of the algorithm for interpretation of TLS matrices in terms of elemental atomic motions and corresponding ensembles of atomic models is required. Also, it has been brought to the attention of the authors that the incorrect PDB code was reported for one of test models. Lastly, these issues are addressed in this article.
SEPARATION OF PLUTONIUM FROM ELEMENTS HAVING AN ATOMIC NUMBER NOT LESS THAN 92
Fitch, F.T.; Russell, D.S.
1958-09-16
other elements having atomic numbers nnt less than 92, It has been proposed in the past to so separate plutonium by solvent extraction iato an organic solvent using triglycoldichlcride as the organic solvent. The improvement lies in the discovery that triglycoldichloride performs far more efflciently as an extractant, wher certain second organie compounds are added to it. Mentioned as satisfactory additive compounds are benzaldehyde, saturated aliphatic aldehydes containtng at least twc carbon atoms, and certain polyhydric phenols.
An attempt to diagnose cancer by PIXE
NASA Astrophysics Data System (ADS)
Uda, M.; Maeda, K.; Sasa, Y.; Kusuyama, H.; Yokode, Y.
1987-03-01
PIXE is suitable especially for trace elemental analysis for atoms with high atomic numbers, which are contained in matrices composed mainly of light elements such as biological materials. An attempt has been made to distinguish elemental concentrations of cancer tissues from those of normal ones. Kidney, testis and urinary bladder cancer tissues were examined by PIXE. Key elements to diagnose these cancers were Ca, Ti, Cr, Fe and Zn. Enrichment of Fe and Ti, and deficiency of Zn could be seen in the kidney cancer. An opposite tendency was observed in the testicular cancer. Imbalance of these elemental concentrations in characteristic organs might give us a possibility for cancer diagnosis.
Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.
2011-01-01
Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909
NASA Technical Reports Server (NTRS)
Madzsar, George C. (Inventor)
1993-01-01
The elemental composition of a material exposed to hot gases and subjected to wear is determined. Atoms of an elemental species not appearing in this material are implanted in a surface at a depth based on the maximum allowable wear. The exhaust gases are spectroscopically monitored to determine the exposure of these atoms when the maximum allowable wear is reached.
Analyzing For Light Elements By X-Ray Scattering
NASA Technical Reports Server (NTRS)
Ross, H. Richard
1993-01-01
Nondestructive method of determining concentrations of low-atomic-number elements in liquids and solids involves measurements of Compton and Rayleigh scattering of x rays. Applied in quantitative analysis of low-atomic-number constituents of alloys, of contaminants and corrosion products on surfaces of alloys, and of fractions of hydrogen in plastics, oils, and solvents.
Muonic alchemy: Transmuting elements with the inclusion of negative muons
NASA Astrophysics Data System (ADS)
Moncada, Félix; Cruz, Daniel; Reyes, Andrés
2012-06-01
In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.
Campos, Cesar T; Jorge, Francisco E; Alves, Júlia M A
2012-09-01
Recently, segmented all-electron contracted double, triple, quadruple, quintuple, and sextuple zeta valence plus polarization function (XZP, X = D, T, Q, 5, and 6) basis sets for the elements from H to Ar were constructed for use in conjunction with nonrelativistic and Douglas-Kroll-Hess Hamiltonians. In this work, in order to obtain a better description of some molecular properties, the XZP sets for the second-row elements were augmented with high-exponent d "inner polarization functions," which were optimized in the molecular environment at the second-order Møller-Plesset level. At the coupled cluster level of theory, the inclusion of tight d functions for these elements was found to be essential to improve the agreement between theoretical and experimental zero-point vibrational energies (ZPVEs) and atomization energies. For all of the molecules studied, the ZPVE errors were always smaller than 0.5 %. The atomization energies were also improved by applying corrections due to core/valence correlation and atomic spin-orbit effects. This led to estimates for the atomization energies of various compounds in the gaseous phase. The largest error (1.2 kcal mol(-1)) was found for SiH(4).
Atomic weights of the elements 1999
Coplen, T.B.
2001-01-01
The biennial review of atomic-weight, Ar(E), determinations and other cognate data have resulted in changes for the standard atomic weights of the following elements: from to nitrogen 14.006 74??0.000 07 14.0067??0.0002 sulfur 32.066??0.006 32.065??0.005 chlorine 35.4527??0.0009 35.453??0.002 germanium 72.61??0.02 72.64??0.01 xenon 131.29??0.02 131.293??0.006 erbium 167.26??0.03 167.259??0.003 uranium 238.0289??0.0001 238.028 91??0.000 03 Presented are updated tables of the standard atomic weights and their uncertainties estimated by combining experimental uncertainties and terrestrial variabilities. In addition, this report again contains an updated table of relative atomic mass values and half-lives of selected radioisotopes. Changes in the evaluated isotopic abundance values from those published in 1997 are so minor that an updated list will not be published for the year 1999. Many elements have a different isotopic composition in some nonterrestrial materials. Some recent data on parent nuclides that might affect isotopic abundances or atomic-weight values are included in this report for the information of the interested scientific community. ?? 2001 American Institute of Physics.
Synthesis of two-dimensional TlxBi1−x compounds and Archimedean encoding of their atomic structure
Gruznev, Dimitry V.; Bondarenko, Leonid V.; Matetskiy, Andrey V.; Mihalyuk, Alexey N.; Tupchaya, Alexandra Y.; Utas, Oleg A.; Eremeev, Sergey V.; Hsing, Cheng-Rong; Chou, Jyh-Pin; Wei, Ching-Ming; Zotov, Andrey V.; Saranin, Alexander A.
2016-01-01
Crystalline atomic layers on solid surfaces are composed of a single building block, unit cell, that is copied and stacked together to form the entire two-dimensional crystal structure. However, it appears that this is not an unique possibility. We report here on synthesis and characterization of the one-atomic-layer-thick TlxBi1−x compounds which display quite a different arrangement. It represents a quasi-periodic tiling structures that are built by a set of tiling elements as building blocks. Though the layer is lacking strict periodicity, it shows up as an ideally-packed tiling of basic elements without any skips or halting. The two-dimensional TlxBi1−x compounds were formed by depositing Bi onto the Tl-covered Si(111) surface where Bi atoms substitute appropriate amount of Tl atoms. Atomic structure of each tiling element as well as arrangement of TlxBi1−x compounds were established in a detail. Electronic properties and spin texture of the selected compounds having periodic structures were characterized. The shown example demonstrates possibility for the formation of the exotic low-dimensional materials via unusual growth mechanisms. PMID:26781340
Liu, Yu; Huang, Yuanchun; Xiao, Zhengbing; Jia, Guangze
2017-07-19
To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al₂O₃, MgO and Al₄C₃, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al₄C₃ and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al₂O₃ and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111), the second atomic layer of Mn(111), and the O atom in the third atomic layer of Al₂O₃, compared with other sites. It was found that alloying elements Cu and Mn and including Al₂O₃ may increase the hydrogen adsorption in the molten 2219 Al alloy with Al₂O₃ being the most sensitive component in this regard.
Atomic force microscope observations of otoconia in the newt
NASA Technical Reports Server (NTRS)
Hallworth, R.; Wiederhold, M. L.; Campbell, J. B.; Steyger, P. S.
1995-01-01
Calcitic and aragonitic otoconia from the Japanese red-bellied newt, Cynops pyrrhogaster, were examined using an atomic force microscope. The surface structure of both otoconial polymorphs consisted of arrays of elements approximately 50 nm in diameter. Elements were generally round and were separated by shallow depressions of no more than 20 nm. The elements are suggested to be single crystals of calcium carbonate. The relationship of these observations to theories of otoconial genesis is discussed.
Harring, Lori S.; Simpson, Sharon M.; Sansbury, Francis H.
1997-01-01
Hydrogen atom donor compounds are useful as contrast enhancers when used in combination with (i) hindered phenol developers, and (ii) trityl hydrazide and/or formyl-phenyl hydrazine co-developers, to produce ultra-high contrast black-and-white photothermographic and thermographic elements. The photothermographic and thermographic elements may be used as a photomask in a process where there is a subsequent exposure of an ultraviolet or short wavelength visible radiation-sensitive imageable medium.
Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry
NASA Astrophysics Data System (ADS)
Anselmi, Anna; Tittarelli, Paolo; Katskov, Dmitri A.
2002-03-01
The determination of Cd, Cr, Cu, Pb and Ni was performed in gasoline and diesel fuel samples by electrothermal atomic absorption spectrometry using the Transverse Heated Filter Atomizer (THFA). Thermal conditions were experimentally defined for the investigated elements. The elements were analyzed without addition of chemical modifiers, using organometallic standards for the calibration. Forty-microliter samples were injected into the THFA. Gasoline samples were analyzed directly, while diesel fuel samples were diluted 1:4 with n-heptane. The following characteristic masses were obtained: 0.8 pg Cd, 6.4 pg Cr, 12 pg Cu, 17 pg Pb and 27 pg Ni. The limits of determination for gasoline samples were 0.13 μg/kg Cd, 0.4 μg/kg Cr, 0.9 μg/kg Cu, 1.5 μg/kg Pb and 2.5 μg/kg Ni. The corresponding limit of determination for diesel fuel samples was approximately four times higher for all elements. The element recovery was performed using the addition of organometallic compounds to gasoline and diesel fuel samples and was between 85 and 105% for all elements investigated.
Dispersoid reinforced alloy powder and method of making
Anderson, Iver E; Rieken, Joel
2013-12-10
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies are made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
NASA Astrophysics Data System (ADS)
Patel, M.; De Jager, G.; Nkosi, Z.; Wyngaard, A.; Govender, K.
2017-10-01
In this paper we report on the study of two and multi-level atoms interacting with multiple laser beams. The semi-classical approach is used to describe the system in which the atoms are treated quantum mechanically via the density matrix operator, while the laser beams are treated classically using Maxwells equations. We present results of a two level atom interacting with single and multiple laser beams and demonstrate Rabi oscillations between the levels. The effects of laser modulation on the dynamics of the atom (atomic populations and coherences) are examined by solving the optical Bloch equations. Plots of the density matrix elements as a function of time are presented for various parameters such as laser intensity, detuning, modulation etc. In addition, phase-space plots and Fourier analysis of the density matrix elements are provided. The atomic polarization, estimated from the coherence terms of the density matrix elements, is used in the numerical solution of Maxwells equations to determine the behaviour of the laser beams as they propagate through the atomic ensemble. The effects of saturation and hole-burning are demonstrated in the case of two counter propagating beams with one being a strong beam and the other being very weak. The above work is extended to include four-wave mixing in four level atoms in a diamond configuration. Two co-propagating beams of different wavelengths drive the atoms from a ground state |1〉 to an excited state |3〉 via an intermediate state |2〉. The atoms then move back to the ground state via another intermediate state |4〉, resulting in the generation of two additional correlated photon beams. The characteristics of these additional photons are studied.
Filler, Guido; Felder, Sarah
2014-08-01
In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.
Isotopic Compositions of the Elements, 2001
NASA Astrophysics Data System (ADS)
Böhlke, J. K.; de Laeter, J. R.; De Bièvre, P.; Hidaka, H.; Peiser, H. S.; Rosman, K. J. R.; Taylor, P. D. P.
2005-03-01
The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the "best measurement" of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E) and its uncertainty U[Ar(E)] recommended by CAWIA in 2001.
The determination of elements in herbal teas and medicinal plant formulations and their tisanes.
Pohl, Pawel; Dzimitrowicz, Anna; Jedryczko, Dominika; Szymczycha-Madeja, Anna; Welna, Maja; Jamroz, Piotr
2016-10-25
Elemental analysis of herbal teas and their tisanes is aimed at assessing their quality and safety in reference to specific food safety regulations and evaluating their nutritional value. This survey is dedicated to atomic spectroscopy and mass spectrometry element detection methods and sample preparation procedures used in elemental analysis of herbal teas and medicinal plant formulations. Referring to original works from the last 15 years, particular attention has been paid to tisane preparation, sample matrix decomposition, calibration and quality assurance of results in elemental analysis of herbal teas by different atomic and mass spectrometry methods. In addition, possible sources of elements in herbal teas and medicinal plant formulations have been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee
2018-05-01
To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.
Hollow cathode lamp based Faraday anomalous dispersion optical filter.
Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong
2016-07-15
The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.
Hollow cathode lamp based Faraday anomalous dispersion optical filter
NASA Astrophysics Data System (ADS)
Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong
2016-07-01
The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 - (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.
Jelsch, C
2001-09-01
The normal matrix in the least-squares refinement of macromolecules is very sparse when the resolution reaches atomic and subatomic levels. The elements of the normal matrix, related to coordinates, thermal motion and charge-density parameters, have a global tendency to decrease rapidly with the interatomic distance between the atoms concerned. For instance, in the case of the protein crambin at 0.54 A resolution, the elements are reduced by two orders of magnitude for distances above 1.5 A. The neglect a priori of most of the normal-matrix elements according to a distance criterion represents an approximation in the refinement of macromolecules, which is particularly valid at very high resolution. The analytical expressions of the normal-matrix elements, which have been derived for the coordinates and the thermal parameters, show that the degree of matrix sparsity increases with the diffraction resolution and the size of the asymmetric unit.
The Full Story of the Electron Configurations of the Transition Elements
ERIC Educational Resources Information Center
Schwarz, W. H. Eugen
2010-01-01
The dominant electronic valence configurations of atoms in chemical substances of a transition element of group "G" in period "n" is ("n" - 1)d[superscript "G"]"n"s[superscript 0]. Transition-metal chemistry is d orbital chemistry. In contrast, the ground states of free, unbound atoms derive, in most cases, from configurations ("n" -…
Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.
Harris, Frank E
2016-05-28
Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.
Atomic weights of the elements 2013 (IUPAC Technical Report)
Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas
2016-01-01
The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of 19 elements. The standard atomic weights of four elements have been revised based on recent determinations of isotopic abundances in natural terrestrial materials:cadmium to 112.414(4) from 112.411(8),molybdenum to 95.95(1) from 95.96(2),selenium to 78.971(8) from 78.96(3), andthorium to 232.0377(4) from 232.038 06(2). The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) also revised the standard atomic weights of fifteen elements based on the 2012 Atomic Mass Evaluation:aluminium (aluminum) to 26.981 5385(7) from 26.981 5386(8),arsenic to 74.921 595(6) from 74.921 60(2),beryllium to 9.012 1831(5) from 9.012 182(3),caesium (cesium) to 132.905 451 96(6) from 132.905 4519(2),cobalt to 58.933 194(4) from 58.933 195(5),fluorine to 18.998 403 163(6) from 18.998 4032(5),gold to 196.966 569(5) from 196.966 569(4),holmium to 164.930 33(2) from 164.930 32(2),manganese to 54.938 044(3) from 54.938 045(5),niobium to 92.906 37(2) from 92.906 38(2),phosphorus to 30.973 761 998(5) from 30.973 762(2),praseodymium to 140.907 66(2) from 140.907 65(2),scandium to 44.955 908(5) from 44.955 912(6),thulium to 168.934 22(2) from 168.934 21(2), andyttrium to 88.905 84(2) from 88.905 85(2). The Commission also recommends the standard value for the natural terrestrial uranium isotope ratio, N(238U)/N(235U)=137.8(1).
Afonine, Pavel V.; Adams, Paul D.; Urzhumtsev, Alexandre
2018-06-08
TLS modelling was developed by Schomaker and Trueblood to describe atomic displacement parameters through concerted (rigid-body) harmonic motions of an atomic group [Schomaker & Trueblood (1968), Acta Cryst. B 24 , 63–76]. The results of a TLS refinement are T , L and S matrices that provide individual anisotropic atomic displacement parameters (ADPs) for all atoms belonging to the group. These ADPs can be calculated analytically using a formula that relates the elements of the TLS matrices to atomic parameters. Alternatively, ADPs can be obtained numerically from the parameters of concerted atomic motions corresponding to the TLS matrices. Both proceduresmore » are expected to produce the same ADP values and therefore can be used to assess the results of TLS refinement. Here, the implementation of this approach in PHENIX is described and several illustrations, including the use of all models from the PDB that have been subjected to TLS refinement, are provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonine, Pavel V.; Adams, Paul D.; Urzhumtsev, Alexandre
TLS modelling was developed by Schomaker and Trueblood to describe atomic displacement parameters through concerted (rigid-body) harmonic motions of an atomic group [Schomaker & Trueblood (1968), Acta Cryst. B 24 , 63–76]. The results of a TLS refinement are T , L and S matrices that provide individual anisotropic atomic displacement parameters (ADPs) for all atoms belonging to the group. These ADPs can be calculated analytically using a formula that relates the elements of the TLS matrices to atomic parameters. Alternatively, ADPs can be obtained numerically from the parameters of concerted atomic motions corresponding to the TLS matrices. Both proceduresmore » are expected to produce the same ADP values and therefore can be used to assess the results of TLS refinement. Here, the implementation of this approach in PHENIX is described and several illustrations, including the use of all models from the PDB that have been subjected to TLS refinement, are provided.« less
ERIC Educational Resources Information Center
Cipolla, Laura; Ferrari, Lia A.
2016-01-01
A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).
Doughten, M.W.; Gillison, J.R.
1990-01-01
Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.
NASA Technical Reports Server (NTRS)
Segar, D. A.
1971-01-01
A selective, volatalization technique utilizing the heated graphite atomizer atomic absorption technique has been developed for the analysis of iron in sea water. A similar technique may be used to determine vanadium, copper, nickel and cobalt in saline waters when their concentrations are higher than those normally encountered'in unpolluted sea waters. A preliminary solvent extraction using ammonium pyrolidine dithiocarbamate and methyl iso-butyl ketone permits the determination of a number of elements including iron, copper, zinc, nickel, cobalt and lead in sea water. The heated graphite atomized technique has also been applied to the determination of a range of trace transition elements in marine plant and animal tissues.
Analysis of metal-laden water via portable X-ray fluorescence spectrometry
NASA Astrophysics Data System (ADS)
Pearson, Delaina; Weindorf, David C.; Chakraborty, Somsubhra; Li, Bin; Koch, Jaco; Van Deventer, Piet; de Wet, Jandre; Kusi, Nana Yaw
2018-06-01
A rapid method for in-situ elemental composition analysis of metal-laden water would be indispensable for studying polluted water. Current analytical lab methods to determine water quality include flame atomic absorption spectrometry (FAAS), atomic absorption spectrophotometry (AAS), electrothermal atomic absorption spectrometry (EAAS), and inductively coupled plasma (ICP) spectroscopy. However only two field methods, colorimetry and absorptiometry, exist for elemental analysis of water. Portable X-ray fluorescence (PXRF) spectrometry is an effective method for elemental analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study sought to statistically establish PXRF's predictive ability for various elements in water at different concentrations relative to inductively coupled plasma atomic emission spectroscopy (ICP-AES). A total of 390 metal-laden water samples collected from leaching columns of mine tailings in South Africa were analyzed via PXRF and ICP-AES. The PXRF showed differential effectiveness in elemental quantification. For the collected water samples, the best relationships between ICP and PXRF elemental data were obtained for K and Cu (R2 = 0.92). However, when scanning ICP calibration solutions with elements in isolation, PXRF results indicated near perfect agreement; Ca, K, Fe, Cu and Pb produced an R2 of 0.99 while Zn and Mn produced an R2 of 1.00. The utilization of multiple PXRF (stacked) beams produced stronger correlation to ICP relative to the use of a single beam in isolation. The results of this study demonstrated the PXRF's ability to satisfactorily predict the composition of metal-laden water as reported by ICP for several elements. Additionally this study indicated the need for a "Water Mode" calibration for the PXRF and demonstrates the potential of PXRF for future study of polluted or contaminated waters.
Thermodynamic stability of boron: the role of defects and zero point motion.
van Setten, Michiel J; Uijttewaal, Matthé A; de Wijs, Gilles A; de Groot, Robert A
2007-03-07
Its low weight, high melting point, and large degree of hardness make elemental boron a technologically interesting material. The large number of allotropes, mostly containing over a hundred atoms in the unit cell, and their difficult characterization challenge both experimentalists and theoreticians. Even the ground state of this element is still under discussion. For over 30 years, scientists have attempted to determine the relative stability of alpha- and beta-rhombohedral boron. We use density functional calculations in the generalized gradient approximation to study a broad range of possible beta-rhombohedral structures containing interstitial atoms and partially occupied sites within a 105 atoms framework. The two most stable structures are practically degenerate in energy and semiconducting. One contains the experimental 320 atoms in the hexagonal unit cell, and the other contains 106 atoms in the triclinic unit cell. When populated with the experimental 320 electrons, the 106 atom structure exhibits a band gap of 1.4 eV and an in-gap hole trap at 0.35 eV above the valence band, consistent with known experiments. The total energy of these two structures is 23 meV/B lower than the original 105 atom framework, but it is still 1 meV/B above the alpha phase. Adding zero point energies finally makes the beta phase the ground state of elemental boron by 3 meV/B. At finite temperatures, the difference becomes even larger.
Oxygen adsorption onto pure and doped Al surfaces--the role of surface dopants.
Lousada, Cláudio M; Korzhavyi, Pavel A
2015-01-21
Using density functional theory (DFT) with the PBE0 density functional we investigated the role of surface dopants in the molecular and dissociative adsorption of O2 onto Al clusters of types Al50, Al50Alad, Al50X and Al49X, where X represents a dopant atom of the following elements Si, Mg, Cu, Sc, Zr, and Ti. Each dopant atom was placed on the Al(111) surface as an adatom or as a substitutional atom, in the last case replacing a surface Al atom. We found that for the same dopant geometry, the closer is the ionization energy of the dopant element to that of elemental Al, the more exothermic is the dissociative adsorption of O2 and the stronger are the bonds between the resulting O atoms and the surface. Additionally we show that the Mulliken concept of electronegativity can be applied in the prediction of the dissociative adsorption energy of O2 on the doped surfaces. The Mulliken modified second-stage electronegativity of the dopant atom is proportional to the exothermicity of the dissociative adsorption of O2. For the same dopant element in an adatom position the dissociation of O2 is more exothermic when compared to the case where the dopant occupies a substitutional position. These observations are discussed in view of the overlap population densities of states (OPDOS) computed as the overlap between the electronic states of the adsorbate O atoms and the clusters. It is shown that a more covalent character in the bonding between the Al surface and the dopant atom causes a more exothermic dissociation of O2 and stronger bonding with the O atoms when compared to a more ionic character in the bonding between the dopant and the Al surface. The extent of the adsorption site reconstruction is dopant atom dependent and is an important parameter for determining the mode of adsorption, adsorption energy and electronic structure of the product of O2 adsorption. The PBE0 functional could predict the existence of the O2 molecular adsorption product for many of the cases investigated here.
NASA Astrophysics Data System (ADS)
Pickering, Juliet C.; Nave, Gillian; Liggins, Florence; Clear, Christian; Ruffoni, Matthew; Sansonetti, Craig
2015-08-01
We present new laboratory spectroscopic measurements to produce atomic data for astrophysically important species: neutral, singly and doubly ionised iron group elements.We use high resolution Fourier Transform Spectrometry (FTS) (resolving power up to 2x106 at 200nm) to measure atomic spectra, giving accurate line wavelengths (to a few parts in 108), atomic energy levels, hyperfine structure splitting and log gfs (accurate to a few %) (Ruffoni et al this meeting). These data are vital for astrophysical spectral analyses for: line identification, spectrum synthesis, elemental abundance determinations [eg 1], and disentangling of blends etc. It is not possible to theoretically calculate these atomic data to the accuracy needed for modern astrophysics applications.At Imperial College we have a unique visible-VUV FT spectrometer with short wavelength cut-off of 135nm. We supplement FTS data at shorter wavelengths with spectra recorded on the NIST 10.7m grating spectrograph (with phosphor image or photographic plates) and at longer wavelengths in the IR we use the NIST IR FT spectrometer.An elemental spectrum may contain thousands of spectral lines from the IR to VUV. We use these wavelengths to correct known atomic energy levels, and search for new atomic levels. The result is a classified linelist and accurate atomic energy levels.We present progress on iron group element atomic energy levels and wavelengths for V I and V II [2,3], Co III [4], Cr I, Mn I and Mn II, and Ni II.This work is supported by STFC(UK), The Leverhulme Trust, The Royal Society and NASA.References[1] Bergemann M, Pickering JC & Gehren T,“NLTE analysis of Co I/Co II lines in spectra of cool stars with new laboratory hyperfine splitting constants",MNRAS 401(2) 1334 (2010)[2] Thorne AP, Pickering JC & Semeniuk J,“The spectrum and term analysis of V II”, ApJS 207,13 (2013)[3] Thorne AP, Pickering JC & Semeniuk J,“The spectrum and term analysis of V I",ApJS 192,11 (2011)[4] Smillie DG, Pickering JC, Nave G & Smith PL,“The Spectrum and Term Analysis of Co III Measured using Fourier Transform and Grating Spectroscopy”,ApJS submitted
Isotopic compositions of the elements, 2001
Böhlke, J.K.; De Laeter, J. R.; De Bievre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.
2005-01-01
The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the “best measurement” of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E)">Ar(E)Ar(E) and its uncertainty U[Ar(E)]">U[Ar(E)]U[Ar(E)] recommended by CAWIA in 2001.
ERIC Educational Resources Information Center
Correia, Paulo R. M.; Oliveira, Pedro V.
2004-01-01
The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…
Atomic Weights of the Elements 1999
NASA Astrophysics Data System (ADS)
Coplen, T. B.
2001-05-01
The biennial review of atomic-weight, Ar(E), determinations and other cognate data have resulted in changes for the standard atomic weights of the following elements: from to nitrogen 14.006 74±0.000 07¯r 14.0067±0.0002¯ sulfur 32.066±0.006 32.065±0.005 chlorine 35.4527±0.0009 35.453±0.002 germanium 72.61±0.02 72.64±0.01 xenon 131.29±0.02 131.293±0.006 erbium 167.26±0.03 167.259±0.003 uranium 238.0289±0.0001 238.028 91±0.000 03 Presented are updated tables of the standard atomic weights and their uncertainties estimated by combining experimental uncertainties and terrestrial variabilities. In addition, this report again contains an updated table of relative atomic mass values and half-lives of selected radioisotopes. Changes in the evaluated isotopic abundance values from those published in 1997 are so minor that an updated list will not be published for the year 1999. Many elements have a different isotopic composition in some nonterrestrial materials. Some recent data on parent nuclides that might affect isotopic abundances or atomic-weight values are included in this report for the information of the interested scientific community.
Liu, Yu; Huang, Yuanchun; Jia, Guangze
2017-01-01
To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al2O3, MgO and Al4C3, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al4C3 and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al2O3 and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111), the second atomic layer of Mn(111), and the O atom in the third atomic layer of Al2O3, compared with other sites. It was found that alloying elements Cu and Mn and including Al2O3 may increase the hydrogen adsorption in the molten 2219 Al alloy with Al2O3 being the most sensitive component in this regard. PMID:28773185
Paulsen, Bruna S.; Rehen, Stevens K.
2011-01-01
The mechanisms underlying pluripotency and differentiation in embryonic and reprogrammed stem cells are unclear. In this work, we characterized the pluripotent state towards neural differentiated state through analysis of trace elements distribution using the Synchrotron Radiation X-ray Fluorescence Spectroscopy. Naive and neural-stimulated embryoid bodies (EB) derived from embryonic and induced pluripotent stem (ES and iPS) cells were irradiated with a spatial resolution of 20 µm to make elemental maps and qualitative chemical analyses. Results show that these embryo-like aggregates exhibit self-organization at the atomic level. Metallic elements content rises and consistent elemental polarization pattern of P and S in both mouse and human pluripotent stem cells were observed, indicating that neural differentiation and elemental polarization are strongly correlated. PMID:22195032
ERIC Educational Resources Information Center
Moreno, Luis F.; Hincapié, Gina; Alzate, María Victoria
2014-01-01
Cheminoes is a didactic game that enables the meaningful learning of some relations between concepts such as chemical element, valence, atomic number, and chemical symbol for the first 36 chemical elements of the periodic system. Among the students who have played the game, their opinions of the activity were positive, considering the game to be a…
A beachhead on the island of stability
Oganessian, Yuri Ts.; Rykaczewski, Krzysztof P.
2015-01-01
Remember learning the periodic table of elements in high school? Our chemistry teachers explained that the chemical properties of elements come from the electronic shell structure of atoms. Furthermore, our physics teachers enriched that picture of the atomic world by introducing us to isotopes and the Segrè chart of nuclides, which arranges them by proton number Z and neutron number N.
Flow visualization of a rocket injector spray using gelled propellant simulants
NASA Technical Reports Server (NTRS)
Green, James M.; Rapp, Douglas C.; Roncace, James
1991-01-01
A study was conducted at NASA-Lewis to compare the atomization characteristics of gelled and nongelled propellant simulants. A gelled propellant simulant composed of water, sodium hydroxide, and an acrylic acid polymer resin (as the gelling agent) was used to simulate the viscosity of an aluminum/PR-1 metallized fuel gel. Water was used as a comparison fluid to isolate the rheological effects of the water-gel and to simulate nongelled RP-1. The water-gel was injected through the central orifice of a triplet injector element and the central post of a coaxial injector element. Nitrogen gas flowed through the outer orifices of the triplet injector element and through the annulus of the coaxial injector element and atomized the gelled and nongelled liquids. Photographs of the water-gel spray patterns at different operating conditions were compared with images obtained using water and nitrogen. A laser light was used for illumination of the sprays. The results of the testing showed that the water sprays produced a finer and more uniform atomization than the water-gel sprays. Rheological analysis of the water-gel showed poor atomization caused by high viscosity of water-gel delaying the transition to turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinata, Shintaro; Research Fellowship Division Japan Society for the Promotion of Science; Yamane, Akira
2016-05-15
The effect of additional element on compositionally modulated atomic layered structure of hexagonal Co{sub 80}Pt{sub 20} alloy films with superlattice diffraction was investigated. In this study it is found that the addition of Cr or W element to Co{sub 80}Pt{sub 20} alloy film shows less deterioration of hcp stacking structure and compositionally modulated atomic layer stacking structure as compared to Si or Zr or Ti with K{sub u} of around 1.4 or 1.0 × 10{sup 7} erg/cm{sup 3} at 5 at.% addition. Furthermore, for O{sub 2} addition of O{sub 2} ≥ 5.0 × 10{sup −3} Pa to CoPt alloy, compositionallymore » modulated atomic layer stacking structure will be deteriorated with enhancement of formation of hcp stacking structure which leads higher K{sub u} of 1.0 × 10{sup 7} erg/cm{sup 3}.« less
Kane, J.S.
1988-01-01
A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.
Correlation of materials properties with the atomic density concept
NASA Technical Reports Server (NTRS)
1975-01-01
Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.
Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Frank E., E-mail: harris@qtp.ufl.edu
Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance r{sub ij}. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validatedmore » by showing that they yield correct results for a large number of integrals published by other investigators.« less
Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J
2017-10-01
This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sovestnov, A. E.; Kapustin, V. K.; Tikhonov, V. I.; Fomin, E. V.; Chernenkov, Yu. P.
2014-08-01
The structure of a metal-carbon composite formed by the pyrolysis of diphthalocyanine of some rare-earth elements (Y, La, Ce, Eu) and uranium in the temperature range T ann = 800-1700°C has been investigated for the first time by the methods of X-ray diffraction analysis and X-ray line shift. It has been shown that, in the general case, the studied pyrolysates consist of three phases. One phase corresponds to the structure of graphite. The second phase corresponds to nitrides, carbides, and oxides of basic metal elements with a crystallite size ranging from 5 to 100 nm. The third phase is amorphous or consisting of crystallites with a size of ˜1 nm. It has been found that all the basic elements (Y, La, Ce, Eu, U) and incorporated iodine atoms in the third phase are in a chemically bound state. The previously unobserved electronic configurations have been revealed for europium. The possibility of including not only atoms of elements forming diphthalocyanine but also other elements (for example, iodine) in the composite structure is of interest, in particular, for the creation of a thermally, chemically, and radiation resistant metal-carbon matrix for the radioactive waste storage.
Hollow cathode lamp based Faraday anomalous dispersion optical filter
Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong
2016-01-01
The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 − (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112
Ashy, M A; Headridge, J B; Sowerbutts, A
1974-06-01
Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour.
Nucleation of the diamond phase in aluminium-solid solutions
NASA Technical Reports Server (NTRS)
Hornbogen, E.; Mukhopadhyay, A. K.; Starke, E. A., Jr.
1993-01-01
Precipitation was studied from fcc solid solutions with silicon, germanium, copper and magnesium. Of all these elements only silicon and germanium form diamond cubic (DC) precipitates in fcc Al. Nucleation of the DC structure is enhanced if both types of atom are dissolved in the fcc lattice. This is interpreted as due to atomic size effects in the prenucleation stage. There are two modes of interference of fourth elements with nucleation of the DC phase in Al + Si, Ge. The formation of the DC phase is hardly affected if the atoms (for example, copper) are rejected from the (Si, Ge)-rich clusters. If additional types of atom are attracted by silicon and/or germanium, DC nuclei are replaced by intermetallic compounds (for example Mg2Si).
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Tong, Yang; Jin, Ke
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...
2018-06-16
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Chemistry of superheavy elements.
Schädel, Matthias
2006-01-09
The number of chemical elements has increased considerably in the last few decades. Most excitingly, these heaviest, man-made elements at the far-end of the Periodic Table are located in the area of the long-awaited superheavy elements. While physical techniques currently play a leading role in these discoveries, the chemistry of superheavy elements is now beginning to be developed. Advanced and very sensitive techniques allow the chemical properties of these elusive elements to be probed. Often, less than ten short-lived atoms, chemically separated one-atom-at-a-time, provide crucial information on basic chemical properties. These results place the architecture of the far-end of the Periodic Table on the test bench and probe the increasingly strong relativistic effects that influence the chemical properties there. This review is focused mainly on the experimental work on superheavy element chemistry. It contains a short contribution on relativistic theory, and some important historical and nuclear aspects.
Light, Thomas D.; Schmidt, Jeanine M.
2011-01-01
Mineralized and altered rock samples collected from the northern Talkeetna Mountains, Alaska, were analyzed by two different inductively coupled plasma atomic-emission spectrometry (ICP-AES) methods for as many as 44 elements; by fire assay and either direct-coupled plasma (DCP) or atomic absorption spectrophotometry (AAS) for gold (Au); by cold vapor atomic absorption (CVAA) for mercury (Hg); and by irradiated neutron activation analysis (INAA) for tungsten (W). The analytical results showed that some samples contain high values of multiple elements and may be potential indicators of hydrothermal mineralization in the area.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. Job Corps.
This self-study program for high-school level contains lessons on: Atomic Structure and Valence, Chemical Bonding, The Table of Elements, and Electrolysis. Each of the lessons concludes with a Mastery Test to be completed by the student. (DB)
ERIC Educational Resources Information Center
Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.
2004-01-01
An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…
Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, Tennesse; Varga, Kálmán
2016-05-14
A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.
Systematic variation of rare earths in monazite
Murata, K.J.; Rose, H.J.; Carron, M.K.
1953-01-01
Ten monazites from widely scattered localities have been analyzed for La, Ce, Pr, Nd, Sm, Gd, Y and Th by means of a combined chemical and emission spectrographic method. The analytical results, calculated to atomic percent of total rare earths (thorium excluded), show a considerable variation in the proportions of every element except praseodymium, which is relatively constant. The general variation trends of the elements may be calculated by assuming that the monazites represent different stages in a fractional precipitation process, and by assuming that there is a gradational increase in the precipitability of rare earth elements with decreasing ionic radius. Fractional precipitation brings about an increase in lanthanum and cerium, little change in praseodymium, and a decrease in neodymium, samarium, gadolinium, and yttrium. Deviations from the calculated lines of variation consist of a simultaneous, abnormal increase or decrease in the proportions of cerium, praseodymium, and neodymium with antipathetic decrease or increase in the proportions of the other elements. These deviations are ascribed to abnormally high or low temperatures that affect the precipitability of the central trio of elements (Ce, Pr, Nd) relatively more than that of the other elements. The following semiquantitative rules have been found useful in describing the composition of rare earths from monazite: 1. 1. The sum of lanthanum and neodymium is very nearly a constant at 42 ?? 2 atomic percent. 2. 2. Praseodymium is very nearly constant at 5 ?? 1 atomic percent. 3. 3. The sum of Ce, Sm, Gd, and Y is very nearly a constant at 53 ?? 3 atomic percent. No correlation could be established between the content of Th and that of any of the rare earth elements. ?? 1953.
Adiabatic Quantum Computing with Neutral Atoms
NASA Astrophysics Data System (ADS)
Hankin, Aaron; Biedermann, Grant; Burns, George; Jau, Yuan-Yu; Johnson, Cort; Kemme, Shanalyn; Landahl, Andrew; Mangan, Michael; Parazzoli, L. Paul; Schwindt, Peter; Armstrong, Darrell
2012-06-01
We are developing, both theoretically and experimentally, a neutral atom qubit approach to adiabatic quantum computation. Using our microfabricated diffractive optical elements, we plan to implement an array of optical traps for cesium atoms and use Rydberg-dressed ground states to provide a controlled atom-atom interaction. We will develop this experimental capability to generate a two-qubit adiabatic evolution aimed specifically toward demonstrating the two-qubit quadratic unconstrained binary optimization (QUBO) routine.
sp3-hybridized framework structure of group-14 elements discovered by genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang
2014-05-01
Group-14 elements, including C, Si, Ge, and Sn, can form various stable and metastable structures. Finding new metastable structures of group-14 elements with desirable physical properties for new technological applications has attracted a lot of interest. Using a genetic algorithm, we discovered a new low-energy metastable distorted sp3-hybridized framework structure of the group-14 elements. It has P42/mnm symmetry with 12 atoms per unit cell. The void volume of this structure is as large as 139.7Å3 for Si P42/mnm, and it can be used for gas or metal-atom encapsulation. Band-structure calculations show that P42/mnm structures of Si and Ge are semiconductingmore » with energy band gaps close to the optimal values for optoelectronic or photovoltaic applications. With metal-atom encapsulation, the P42/mnm structure would also be a candidate for rattling-mediated superconducting or used as thermoelectric materials.« less
ARC: An open-source library for calculating properties of alkali Rydberg atoms
NASA Astrophysics Data System (ADS)
Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.
2017-11-01
We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant, Comput. Sci. Eng. 9, 10 (2007). http://www.scipy.org/. [2] J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007). http://matplotlib.org/.
Reveles, J U; Khanna, S N; Roach, P J; Castleman, A W
2006-12-05
We recently demonstrated that, in gas phase clusters containing aluminum and iodine atoms, an Al(13) cluster behaves like a halogen atom, whereas an Al(14) cluster exhibits properties analogous to an alkaline earth atom. These observations, together with our findings that Al(13)(-) is inert like a rare gas atom, have reinforced the idea that chosen clusters can exhibit chemical behaviors reminiscent of atoms in the periodic table, offering the exciting prospect of a new dimension of the periodic table formed by cluster elements, called superatoms. As the behavior of clusters can be controlled by size and composition, the superatoms offer the potential to create unique compounds with tailored properties. In this article, we provide evidence of an additional class of superatoms, namely Al(7)(-), that exhibit multiple valences, like some of the elements in the periodic table, and hence have the potential to form stable compounds when combined with other atoms. These findings support the contention that there should be no limitation in finding clusters, which mimic virtually all members of the periodic table.
Methods for identification and verification using vacuum XRF system
NASA Technical Reports Server (NTRS)
Kaiser, Bruce (Inventor); Schramm, Fred (Inventor)
2005-01-01
Apparatus and methods in which one or more elemental taggants that are intrinsically located in an object are detected by x-ray fluorescence analysis under vacuum conditions to identify or verify the object's elemental content for elements with lower atomic numbers. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, as well as provide detection by a non line-of-sight method to establish the origin of objects, as well as their point of manufacture, authenticity, verification, security, and the presence of impurities. The invention is extremely advantageous because it provides the capability to measure lower atomic number elements in the field with a portable instrument.
Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo
2014-07-15
A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).
Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA
2009-11-17
A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).
NASA Astrophysics Data System (ADS)
Eritenko, A. N.; Tsvetiansky, A. L.; Polev, A. A.
2018-01-01
In the present paper, a universal analytical dependence of effective atomic number on the composition of matter and radiation energy is proposed. This enables one to consider the case of a strong difference in the elemental composition with respect to their atomic numbers over a wide energy range. The contribution of photoelectric absorption and incoherent and coherent scattering during the interaction between radiation and matter is considered. For energy values over 40 keV, the contribution of coherent scattering does not exceed approximately 10% that can be neglected at a further consideration. The effective atomic numbers calculated on the basis of the proposed relationships are compared to the results of calculations based on other methods considered by different authors on the basis of experimental and tabulated data on mass and atomic attenuation coefficients. The examination is carried out for both single-element (e.g., 6C, 14Si, 28Cu, 56Ba, and 82Pb) and multi-element materials. Calculations are performed for W1-xCux alloys (x = 0.35; x = 0.4), PbO, ther moluminescent dosimetry compounds (56Ba, 48Cd, 41Sr, 20Ca, 12Mg, and 11Na), and SO4 in a wide energy range. A case with radiation energy between the K- and L1-absorption edges is considered for 82Pb, 74W, 56Ba, 48Cd, and 38Sr. This enables to substantially simplify the calculation of the atomic number and will be useful in technical and scientific fields related to the interaction between X-ray/gamma radiation and matter.
Approaching the Limit in Atomic Spectrochemical Analysis.
ERIC Educational Resources Information Center
Hieftje, Gary M.
1982-01-01
To assess the ability of current analytical methods to approach the single-atom detection level, theoretical and experimentally determined detection levels are presented for several chemical elements. A comparison of these methods shows that the most sensitive atomic spectrochemical technique currently available is based on emission from…
Imafuku, Yuji; Abe, Minori; Schmidt, Michael W.; ...
2016-03-22
Methodologies beyond the Born–Oppenheimer (BO) approximation are nowadays important to explain high precision spectroscopic measurements. Most previous evaluations of the BO correction are, however, focused on light-element molecules and based on a nonrelativistic Hamiltonian, so no information about the BO approximation (BOA) breakdown in heavy-element molecules is available. The present work is the first to investigate the BOA breakdown for the entire periodic table, by considering scalar relativistic effects in the Diagonal BO correction (DBOC). In closed shell atoms, the relativistic EDBOC scales as Z 1.25 and the nonrelativistic EDBOC scales as Z 1.17, where Z is the atomic number.more » Hence, we found that EDBOC becomes larger in heavy element atoms and molecules, and the relativistic EDBOC increases faster than nonrelativistic EDBOC. We have further investigated the DBOC effects on properties such as potential energy curves, spectroscopic parameters, and various energetic properties. The DBOC effects for these properties are mostly affected by the lightest atom in the molecule. Furthermore, in X 2 or XAt molecule (X = H, Li, Na, K, Rb, and Cs) the effect of DBOC systematically decreases when X becomes heavier but in HX molecules, the effect of DBOC seems relatively similar among all the molecules.« less
Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J
2013-09-03
A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.
2013-07-09
A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
NASA Astrophysics Data System (ADS)
Pašti, Igor A.; Jovanović, Aleksandar; Dobrota, Ana S.; Mentus, Slavko V.; Johansson, Börje; Skorodumova, Natalia V.
Vacancies in graphene present sites of altered chemical reactivity and open possibilities to tune graphene properties by defect engineering. The understanding of chemical reactivity of such defects is essential for successful implementation of carbon materials in advanced technologies. We report the results of a systematic DFT study of atomic adsorption on graphene with a single vacancy for the elements of rows 1 to 6 of the Periodic Table of Elements (PTE), excluding lanthanides. The calculations have been performed using PBE, long-range dispersion interaction-corrected PBE (PBE+D2 and PBE+D3) and non-local vdW-DF2 functional. We find that most elements strongly bind to the vacancy, except for the elements of groups 11 and 12, and noble gases, for which the contribution of dispersion interaction to bonding is most significant. The strength of the interaction with the vacancy correlates with the cohesive energy of the elements in their stable phases: the higher the cohesive energy is the stronger bonding to the vacancy can be expected. As most atoms can be trapped at the SV site we have calculated the potentials of dissolution and found that in most cases the metals adsorbed at the vacancy are more "noble" than they are in their corresponding stable phases.
Pašti, Igor A; Jovanović, Aleksandar; Dobrota, Ana S; Mentus, Slavko V; Johansson, Börje; Skorodumova, Natalia V
2018-01-03
Vacancies in graphene present sites of altered chemical reactivity and open possibilities to tune graphene properties by defect engineering. The understanding of chemical reactivity of such defects is essential for successful implementation of carbon materials in advanced technologies. We report the results of a systematic DFT study of atomic adsorption on graphene with a single vacancy for the elements of rows 1-6 of the periodic table of elements (PTE), excluding lanthanides. The calculations have been performed using the PBE, long-range dispersion interaction-corrected PBE (PBE+D2 and PBE+D3) and non-local vdW-DF2 functionals. We find that most elements strongly bind to the vacancy, except for the elements of groups 11 and 12, and noble gases, for which the contribution of dispersion interaction to bonding is most significant. The strength of the interaction with the vacancy correlates with the cohesive energy of the elements in their stable phases: the higher the cohesive energy is, the stronger bonding to the vacancy can be expected. As most atoms can be trapped at the SV site we have calculated the potentials of dissolution and found that in most cases the metals adsorbed at the vacancy are more "noble" than they are in their corresponding stable phases.
[Determination of metal elements in Achyranthis bidentatae radix from various habitats].
Tu, Wan-Qian; Zhang, Liu-Ji
2011-12-01
To establish an atomic absorption spectrometry method for determination of the contents of metal elements in Achyranthis Bidentatae Radix and analyze 21 batches of samples from different areas. Fe, Mn, Ca, Mg, K, Zn and Cu were detected by atomic absorption spectrometry with hydrogen flame detector, Pb, As and Cd were detected by graphite furnace atomic absorption, Hg was detected by cold atomic absorption. The heavy metal contents met the requirement of Chinese Pharmacopoeia. The contents of K, Mg, Cu and Mn in the samples of geo-authentic areas were higher,while the contents of Fe, Zn, Hg and Pb in the samples of non-authentic areas were higher. This method is sample, accurate, repeatable and could be used to evaluate the quality of Achyranthis Bidentatae Radix.
Atomic and Ionic Radii of Elements 1-96.
Rahm, Martin; Hoffmann, Roald; Ashcroft, N W
2016-10-04
Atomic and cationic radii have been calculated for the first 96 elements, together with selected anionic radii. The metric adopted is the average distance from the nucleus where the electron density falls to 0.001 electrons per bohr(3) , following earlier work by Boyd. Our radii are derived using relativistic all-electron density functional theory calculations, close to the basis set limit. They offer a systematic quantitative measure of the sizes of non-interacting atoms, commonly invoked in the rationalization of chemical bonding, structure, and different properties. Remarkably, the atomic radii as defined in this way correlate well with van der Waals radii derived from crystal structures. A rationalization for trends and exceptions in those correlations is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Deal, M.; Richard, O.; Vauclair, S.
2017-12-01
Atomic diffusion, including the effect of radiative accelerations on individual elements, leads to important variations of the chemical composition inside the stars. The accumulation in specific layers of the elements, which are the main contributors of the local opacity, leads to hydrodynamical instabilities that modify the internal stellar structure and surface abundances. The modification of the initial chemical composition has important effects on the internal stellar mixing and leads to different surface and internal abundances of the elements. These processes also modify the age determination by asteroseismology.
Bonds Between Metal Atoms: A New Mode of Transition Metal Chemistry.
ERIC Educational Resources Information Center
Cotton, F. Albert; Chisholm, Malcolm H.
1982-01-01
Discusses polynuclear metal clusters (containing two or more metal atoms bonded to one another as well as to nonmetallic elements), including their formation and applications. Studies of bonds between metal atoms reveal superconductors, organic-reaction catalysts, and photosensitive complexes that may play a role in solar energy. (JN)
Multielement extraction system for the determination of 18 trace elements in geochemical samples
Clark, J.R.; Viets, J.G.
1981-01-01
A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.
NASA Astrophysics Data System (ADS)
Zamfir, Oana-Liliana; Ionicǎ, Mihai; Caragea, Genica; Radu, Simona; Vlǎdescu, Marian
2016-12-01
Cobalt is a chemical element with symbol Co and atomic number 27 and atomic weight 58.93. 59 Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. Cobalt is the active center of coenzymes called cobalamin or cyanocobalamin the most common example of which is vitamin B12. Vitamin B12 deficiency can potentially cause severe and irreversible damage, especially to the brain and nervous system in the form of fatigue, depression and poor memory or even mania and psychosis. In order to study the degree of deficiency of the population with Co or the correctness of treatment with vitamin B12, a modern optoelectronic method for the determination of metals and metalloids from biological samples has been developed, Graphite Furnace - Atomic Absorption Spectrometer (GF- AAS) method is recommended. The technique is based on the fact that free atoms will absorb light at wavelengths characteristic of the element of interest. Free atoms of the chemical element can be produced from samples by the application of high temperatures. The system GF-AAS Varian used as biological samples, blood or urine that followed the digest of the organic matrix. For the investigations was used a high - performance GF-AAS with D2 - background correction system and a transversely heated graphite atomizer. As result of the use of the method are presented the concentration of Co in the blood or urine of a group of patient in Bucharest. The method is sensitive, reproducible relatively easy to apply, with a moderately costs.
A New Generation of Los Alamos Opacity Tables
Colgan, James Patrick; Kilcrease, David Parker; Magee, Jr., Norman H.; ...
2016-01-26
We present a new, publicly available, set of Los Alamos OPLIB opacity tables for the elements hydrogen through zinc. Our tables are computed using the Los Alamos ATOMIC opacity and plasma modeling code, and make use of atomic structure calculations that use fine-structure detail for all the elements considered. Our equation-of-state (EOS) model, known as ChemEOS, is based on the minimization of free energy in a chemical picture and appears to be a reasonable and robust approach to determining atomic state populations over a wide range of temperatures and densities. In this paper we discuss in detail the calculations thatmore » we have performed for the 30 elements considered, and present some comparisons of our monochromatic opacities with measurements and other opacity codes. We also use our new opacity tables in solar modeling calculations and compare and contrast such modeling with previous work.« less
Zhang, R. L.; Damewood, L.; Fong, C. Y.; ...
2016-11-02
For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constantmore » of 5.803Å, and has the maximum atomic-like magnetic moment of 5μ B. In conclusion, the challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.« less
NASA Astrophysics Data System (ADS)
Hwang, Jeongwoon; Oh, Young Jun; Kim, Jiyoung; Sung, Myung Mo; Cho, Kyeongjae
2018-04-01
We have performed first-principle calculations to explore the possibility of synthesizing atomically thin transition metal (TM) layers. Buckled structures as well as planar structures of elemental 2D TM layers result in significantly higher formation energies compared with sp-bonded elemental 2D materials with similar structures, such as silicene and phosphorene. It is shown that the TM layers can be stabilized by surface passivation with HS, C6H5S2, or O, and O passivation is most effective. The surface oxygen passivation can improve stability leading to thermodynamically stable TM monolayers except Au, which is the most non-reactive metal element. Such stabilized TM monolayers also show an electronic structure transition from metallic state of free-standing TM layer to semiconducting O-passivated Mo and W monolayers with band gaps of 0.20-1.38 eV.
ERIC Educational Resources Information Center
Daniel, Esther Gnanamalar Sarojini; Saat, Rohaida Mohd.
2001-01-01
Introduces a learning module integrating three disciplines--physics, chemistry, and biology--and based on four elements: carbon, oxygen, hydrogen, and silicon. Includes atomic model and silicon-based life activities. (YDS)
ERIC Educational Resources Information Center
Hennigan, Jennifer N.; Grubbs, W. Tandy
2013-01-01
The chemical elements present in the modern periodic table are arranged in terms of atomic numbers and chemical periodicity. Periodicity arises from quantum mechanical limitations on how many electrons can occupy various shells and subshells of an atom. The shell model of the atom predicts that a maximum of 2, 8, 18, and 32 electrons can occupy…
Correlation and transport properties for mixtures at constant pressure and temperature
NASA Astrophysics Data System (ADS)
White, Alexander J.; Collins, Lee A.; Kress, Joel D.; Ticknor, Christopher; Clérouin, Jean; Arnault, Philippe; Desbiens, Nicolas
2017-06-01
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2 g/cm 3 , namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2003-01-01
An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.
Correlation and transport properties for mixtures at constant pressure and temperature
White, Alexander J.; Collins, Lee A.; Kress, Joel D.; ...
2017-06-02
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. In this paper, we present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm 3, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity formore » various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. Finally, the concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.« less
Correlation and transport properties for mixtures at constant pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Alexander J.; Collins, Lee A.; Kress, Joel D.
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. In this paper, we present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm 3, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity formore » various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. Finally, the concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.« less
Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.
La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M
2017-04-01
The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ji-Hwan; Lu, Ping; Hoffman, Jason
2016-12-19
We construct the elemental distribution and lattice strain maps from the measured atomic column positions in a (LaNiO3)(4)/(LaMnO3)(2) superlattice over a large field of view. The correlation between the distribution of B-cations and the lattice parameter in the form of Vegard's law is validated using atomic resolution energy dispersive x-ray spectroscopy (EDS). The maps show negligible Mn intermixing in the LaNiO3 layer, while Ni intermixing in the LaMnO3 layer improves away from the substrate interface to 9.5 atomic% from the 8th period onwards, indicating that the superlattice interfacial sharpness is established as the distance from the substrate increases. The mapsmore » allow an observation of the compositional defects of the B-sites, which is not possible by Z-contrast alone. Thus, this study demonstrates a promising approach for atomic scale correlative study of lattice strain and composition, and a method for the calibration of atomic resolution EDS maps.« less
A projection-free method for representing plane-wave DFT results in an atom-centered basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu
2015-09-14
Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less
Przybytek, Michal; Helgaker, Trygve
2013-08-07
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.
Concentration and distribution of sixty-one elements in coals from DPR Korea
Hu, Jiawen; Zheng, B.; Finkelman, R.B.; Wang, B.; Wang, M.; Li, S.; Wu, D.
2006-01-01
Fifty coal samples (28 anthracite and 22 lignites) were collected from both main and small coal mines in DPR Korea prioritized by resource distribution and coal production. The concentrations of 61 elements in 50 coal samples were determined by several multielement and element-specific techniques, including inductively coupled plasma atomic emission spectrometry (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-MS), ion chromatogram (IC), cold-vapor atomic absorption spectrometry (CV-AAS), and hydride generation atomic absorption spectrometry (HGAAS). The ranges, arithmetic means and geometric means of concentrations of these elements are presented. A comparison with crustal abundances (Clarke values) shows that some potentially hazardous elements in the coals of DPR Korea are highly enriched Li, B, S, Cl, Zn, As, Se, Cd, Sn, Sb, W, Te, Hg, Ag, Pb, and La, Ce, Dy, Tm, Ge, Mo, Cs, Tl, Bi, Th and U are moderately enriched. A comparison of ranges and means of elemental concentrations in DPR Korea, Chinese, and world coals shows the ranges of most elements in DPR Korea coals are very close to the ranges of world coals. Arithmetic means of most elements in DPR Korea coals are close to that of American coals. Most elements arithmetic means are higher in Jurassic and Paleogene coals than coals of other ages. In DPR Korea coals, only seven elements in early Permian coals are higher than other periods: Li, Zn, Se, Cd, Hg, Pb, and Bi. Only five elements B, As, Sr, Mo, W in Neogene coals have arithmetic means higher than others. SiO2 and Al2O 3 in ashes are more than 70% except six samples. The correlation between ash yields and major elements from high to low is in the order of Si>Al>Ti>K>Mg>Fe>Na>Ca>P>S. Most elements have high positive correlation with ash (r>0.5) and show high inorganic affinity. ?? 2005 Elsevier Ltd. All rights reserved.
Global and local approaches to population analysis: Bonding patterns in superheavy element compounds
NASA Astrophysics Data System (ADS)
Oleynichenko, Alexander; Zaitsevskii, Andréi; Romanov, Stepan; Skripnikov, Leonid V.; Titov, Anatoly V.
2018-03-01
Relativistic effective atomic configurations of superheavy elements Cn, Nh and Fl and their lighter homologues (Hg, Tl and Pb) in their simple compounds with fluorine and oxygen are determined using the analysis of local properties of molecular Kohn-Sham density matrices in the vicinity of heavy nuclei. The difference in populations of atomic spinors with the same orbital angular momentum and different total angular momenta is demonstrated to be essential for understanding the peculiarities of chemical bonding in superheavy element compounds. The results are fully compatible with those obtained by the relativistic iterative version of conventional projection analysis of global density matrices.
Multiple heteroatom substitution to graphene nanoribbon
Meyer, Ernst
2018-01-01
Substituting heteroatoms into nanostructured graphene elements, such as graphene nanoribbons, offers the possibility for atomic engineering of electronic properties. To characterize these substitutions, functionalized atomic force microscopy (AFM)—a tool to directly resolve chemical structures—is one of the most promising tools, yet the chemical analysis of heteroatoms has been rarely performed. We synthesized multiple heteroatom-substituted graphene nanoribbons and showed that AFM can directly resolve elemental differences and can be correlated to the van der Waals radii, as well as the modulated local electron density caused by the substitution. This elemental-sensitive measurement takes an important step in the analysis of functionalized two-dimensional carbon materials. PMID:29662955
Li, Tao; Wang, Yuan-zhong; Yu, Hon; Cao, Yu-juan; Zhang, Jing-jing; Liu, Qin
2007-12-01
The effects of different sample digestives on the determination of Swertia davidii Franch are compared. Eight trace elements in the Swertia davidii Franch were determined by flame atomic absorption spectrometry. The result shows that the RSD and recovery are better if the Swertia davidii Franch was digested with HNO3-HClO4 (5 : 1) mixed acid. The experimental results show that the detection limits were all smaller than 0.097 microg x mL(-1), the RSDs (n=8) all smaller than 2.34%, and the addition standard recovery (ASR) (n=8) was 89.32%-106.65% for all the elements.
Arán-Ais, Rosa M; Dionigi, Fabio; Merzdorf, Thomas; Gocyla, Martin; Heggen, Marc; Dunin-Borkowski, Rafal E; Gliech, Manuel; Solla-Gullón, José; Herrero, Enrique; Feliu, Juan M; Strasser, Peter
2015-11-11
Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction "one-step" conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a "two-step" route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.
Zhang, Qi-Feng; Zhu, Long-Yin; Ding, Shu-Liang; Wang, Chen; Tu, Long-Fei
2008-03-01
The fingerprints for most of Chinese medicines based on their organic compositions have been well established. Nevertheless, there are very few known fingerprints which are based on inorganic elements. In order to identify the Da Huo Luo Dan and its efficiency from other Chinese medicines, the authors attempted to set up a fingerprint which could be determined by the measurement of inorganic elements in Da Huo Luo Dan and other Chinese medicines. In the present study, the authors first employed 28 batches of Da Huo Luo Dan produced by Zhang-Shu Pharmatheutical Company in Jiang Xi Province to screen 12 kinds of inorganic elements measured by atomic absorption spectrophotometer and established the atomic absorption fingerprints. Secondly, the authors tried to identify Da Huo Luo Dan and other Chinese medicines by using the similarly analysis of vectors and the statistical analysis of compositional data. The result showed that the methods the authors used here were predictable to tell the efficiency of Da Huo Luo Dan from others. The authors' study also proves that establishment of standard for quality control by analysis of inorganic elements in Chinese medicines is feasible. The present study provides a new idea and a new technique that serve for the establishment of industrial standards for analysis of inorganic elements fingerprint to explore the effects of Chinese medicines.
Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T
2018-02-08
Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text
NASA Astrophysics Data System (ADS)
Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.
2016-01-01
In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.
Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.
Data Needs for Stellar Atmosphere and Spectrum Modeling
NASA Technical Reports Server (NTRS)
Short, C. I.
2006-01-01
The main data need for stellar atmosphere and spectrum modeling remains atomic and molecular transition data, particularly energy levels and transition cross-sections. We emphasize that data is needed for bound-free (b - f) as well as bound-bound (b - b), and collisional as well as radiative transitions. Data is now needed for polyatomic molecules as well as atoms, ions, and diatomic molecules. In addition, data for the formation of, and extinction due to, liquid and solid phase dust grains is needed. A prioritization of species and data types is presented, and gives emphasis to Fe group elements, and elements important for the investigation of nucleosynthesis and Galactic chemical evolution, such as the -elements and n-capture elements. Special data needs for topical problems in the modeling of cool stars and brown dwarfs are described.
Heaviest Nuclei: New Element with Atomic Number 117
Oganessian, Yuri
2018-01-24
One of the fundamental outcomes of the nuclear shell model is the prediction of the 'stability islands' in the domain of the hypothetical super heavy elements. The talk is devoted to the experimental verification of these predictions - the synthesis and study of both the decay and chemical properties of the super heavy elements. The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z =111, validating the concept of the long sought island of enhanced stability for heaviest nuclei.
A suggested periodic table up to Z≤ 172, based on Dirac-Fock calculations on atoms and ions.
Pyykkö, Pekka
2011-01-07
Extended Average Level (EAL) Dirac-Fock calculations on atoms and ions agree with earlier work in that a rough shell-filling order for the elements 119-172 is 8s < 5g≤ 8p(1/2) < 6f < 7d < 9s < 9p(1/2) < 8p(3/2). The present Periodic Table develops further that of Fricke, Greiner and Waber [Theor. Chim. Acta 1971, 21, 235] by formally assigning the elements 121-164 to (nlj) slots on the basis of the electron configurations of their ions. Simple estimates are made for likely maximum oxidation states, i, of these elements M in their MX(i) compounds, such as i = 6 for UF(6). Particularly high i are predicted for the 6f elements.
NASA Astrophysics Data System (ADS)
Hu, Q.; Guo, S.; Wang, J. M.; Yan, Y. H.; Chen, S. S.; Lu, D. P.; Liu, K. M.; Zou, J. Z.; Zeng, X. R.
2017-01-01
Chemical and topological parameters have been widely used for predicting the phase selection in high-entropy alloys (HEAs). Nevertheless, previous studies could be faulted due to the small number of available data points, the negligence of kinetic effects, and the insensitivity to small compositional changes. Here in this work, 92 TiZrHfM, TiZrHfMM, TiZrHfMMM (M = Fe, Cr, V, Nb, Al, Ag, Cu, Ni) HEAs were prepared by melt spinning, to build a reliable and sufficiently large material database to inspect the robustness of previously established parameters. Modification of atomic radii by considering the change of local electronic environment in alloys, was critically found out to be superior in distinguishing the formation of amorphous and crystalline alloys, when compared to using atomic radii of pure elements in topological parameters. Moreover, crystal structures of alloying element were found to play an important role in the amorphous phase formation, which was then attributed to how alloying hexagonal-close-packed elements and face-centered-cubic or body-centered-cubic elements can affect the mixing enthalpy. Findings from this work not only provide parametric studies for HEAs with new and important perspectives, but also reveal possibly a hidden connection among some important concepts in various fields.
High Fidelity Simulation of Atomization in Diesel Engine Sprays
2015-09-01
ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D
Local Structures of High-Entropy Alloys (HEAs) on Atomic Scales: An Overview
Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; ...
2015-08-29
The high-entropy alloys (HEAs), containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on atomic level are essential to understand the mechanical behaviors and related mechanisms. In this paper, the local structure and stress on the atomic level are reviewed by the pair-distribution function (PDF) of neutron-diffraction data, ab-initio-molecular-dynamics (AIMD) simulations, and atomic-probe microscopy (APT).
Development of a Plutonium Ceramic Target for the MASHA Separator
NASA Astrophysics Data System (ADS)
Shaughnessy, D. A.; Moody, K. J.; Kenneally, J. M.; Wild, J. F.; Stoyer, M. A.; Lougheed, R. W.; Yeremin, A. V.; Oganessian, Yu. Ts.
2004-04-01
We are participating in the development of the target for the MASHA (Mass Analyzer of Super Heavy Atoms) on-line mass separator in Dubna. Along with recent upgrades of the U400 cyclotron, MASHA will provide for at least a ten-fold increase in the production- and-detection rate for element 114 atoms, and will allow us to measure their atomic masses precisely. The MASHA separator will employ a thick Pu ceramic target capa- ble of tolerating temperatures in the vicinity of 2000 C without vaporizing the actinide compound. Reaction products will diffuse out of the target and will drift to an ECR ion source after which they will be transported through the separator and will impinge on a position-sensitive focal-plane detector array. Furthermore, operation of the MASHA hot target/ion source combination will provide chemical volatility information that will support our assignment of an atomic number of 114 to these nuclei. Taken together, these experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments in which the chemical properties of the heaviest elements are studied.
Photoelectrochemical cells including chalcogenophosphate photoelectrodes
NASA Technical Reports Server (NTRS)
Reichman, B.; Byvik, C. E. (Inventor)
1984-01-01
Photoelectrochemical cells employing chalcogenophosphate (MPX3) photoelectrodes are described where M is selected from the group of transition metal series of elements beginning with scandium (atomic number 21) through germanium (atomic number 32) yttrium (atomic number 39) through antimony (atomic number 51) and lanthanum (atomic number 57) through polonium (atomic number 84); P is phosphorus; and X is selected from the chalogenide series consisting of sulfur, selenium, and tellurium. These compounds have bandgaps in the desirable range from 2.0 eV to 2.2 eV for the photoelectrolysis of water and are stable when used as photoelectrodes for the same.
ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION
A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...
ERIC Educational Resources Information Center
Philippof, Joanna; Seraphin, Kanesa Duncan; Seki, Jennifer; Kaupp, Lauren
2015-01-01
The periodic table does more than provide information about the elements. The periodic table also helps us make predictions about how the elements behave. Understanding the atomic structure of matter and periodic properties of the elements, as shown in the periodic table, is fundamental to many scientific disciplines. Unfortunately, high school…
NASA Astrophysics Data System (ADS)
de Angelis, E.; di Lellis, A. M.; Orsini, S.; Zanza, V.; Maggi, M.; Vertolli, N.; D'Amicis, R.; Tilia, B.; Sibio, A.
2003-04-01
An Energetic Neutral Atoms facility to test and calibrate Neutral Atoms Analyzers has been developed in the Scientific Technical Unit of Fusion at the ENEA Research Center in Frascati (Rome-Italy). In the last years a collaboration with IFSI (Interplanetary Space and Physics Institute, CNR-Rome-Italy) has allowed to use this facility for space sensors and for characterization of crucial instruments elements. The ENA beam is realized with an ion source and a neutralization cell, and allows to test any instrument in the energy range 300eV-110keV with the available masses of Hydrogen, Deuterium or Helium. At the moment, the critical elements of ELENA (Emitted Low Energy Neutral Atoms) instrument proposed for BepiColombo ESA cornerstone mission to Mercury is under development testing. The facility, its potentiality and the instrument characterization progresses are presented.
NASA Technical Reports Server (NTRS)
Lee, C.
1975-01-01
Adopting the so-called genealogical construction, the eigenstates of collective operators can be expressed corresponding to a specified mode for an N-atom system in terms of those for an (N-1)-atom system. Matrix element of a collective operator of an arbitrary mode is presented which can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME was obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups was then introduced. This gave a simple and systematic way of calculating the RME. Results show explicitly the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes and clears up the chief difficulty encounted in the problem of N two-level atoms, spread over large regions, interacting with a multimode radiation field.
Clark, J.R.; Viets, J.G.
1981-01-01
The Methyl isobutyl ketone-Amine synerGistic Iodkte Complex (MAGIC) extraction system offers the advantage that a large number of trace elements can be rapidly determined with a single sample preparation procedure. However, many of the elements extracted by the MAGIC system form volatile organometallic halide salts when the organic extract is heated in the graphite furnace. High concentrations of some elements such as Cu and Zn extracted by the system from anomalous geological samples produce serious interferences when certain other elements are determined by flameless atomic absorption. Stripping systems have been developed using solutions of HNO3, H2SO4, and CH3COOH individually or combined with H2O2 in order to circumvent these problems. With these systems most of the elements in the organic extract can be sequentially stripped into an aqueous phase. Organometallic volatilization and the most serious interelement interferences, therefore, can be eliminated by stripping with various combinations of reagents in a series of steps.
Partition of unity finite element method for quantum mechanical materials calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pask, J. E.; Sukumar, N.
The current state of the art for large-scale quantum-mechanical simulations is the planewave (PW) pseudopotential method, as implemented in codes such as VASP, ABINIT, and many others. However, since the PW method uses a global Fourier basis, with strictly uniform resolution at all points in space, it suffers from substantial inefficiencies in calculations involving atoms with localized states, such as first-row and transition-metal atoms, and requires significant nonlocal communications, which limit parallel efficiency. Real-space methods such as finite-differences (FD) and finite-elements (FE) have partially addressed both resolution and parallel-communications issues but have been plagued by one key disadvantage relative tomore » PW: excessive number of degrees of freedom (basis functions) needed to achieve the required accuracies. In this paper, we present a real-space partition of unity finite element (PUFE) method to solve the Kohn–Sham equations of density functional theory. In the PUFE method, we build the known atomic physics into the solution process using partition-of-unity enrichment techniques in finite element analysis. The method developed herein is completely general, applicable to metals and insulators alike, and particularly efficient for deep, localized potentials, as occur in calculations at extreme conditions of pressure and temperature. Full self-consistent Kohn–Sham calculations are presented for LiH, involving light atoms, and CeAl, involving heavy atoms with large numbers of atomic-orbital enrichments. We find that the new PUFE approach attains the required accuracies with substantially fewer degrees of freedom, typically by an order of magnitude or more, than the PW method. As a result, we compute the equation of state of LiH and show that the computed lattice constant and bulk modulus are in excellent agreement with reference PW results, while requiring an order of magnitude fewer degrees of freedom to obtain.« less
Partition of unity finite element method for quantum mechanical materials calculations
Pask, J. E.; Sukumar, N.
2016-11-09
The current state of the art for large-scale quantum-mechanical simulations is the planewave (PW) pseudopotential method, as implemented in codes such as VASP, ABINIT, and many others. However, since the PW method uses a global Fourier basis, with strictly uniform resolution at all points in space, it suffers from substantial inefficiencies in calculations involving atoms with localized states, such as first-row and transition-metal atoms, and requires significant nonlocal communications, which limit parallel efficiency. Real-space methods such as finite-differences (FD) and finite-elements (FE) have partially addressed both resolution and parallel-communications issues but have been plagued by one key disadvantage relative tomore » PW: excessive number of degrees of freedom (basis functions) needed to achieve the required accuracies. In this paper, we present a real-space partition of unity finite element (PUFE) method to solve the Kohn–Sham equations of density functional theory. In the PUFE method, we build the known atomic physics into the solution process using partition-of-unity enrichment techniques in finite element analysis. The method developed herein is completely general, applicable to metals and insulators alike, and particularly efficient for deep, localized potentials, as occur in calculations at extreme conditions of pressure and temperature. Full self-consistent Kohn–Sham calculations are presented for LiH, involving light atoms, and CeAl, involving heavy atoms with large numbers of atomic-orbital enrichments. We find that the new PUFE approach attains the required accuracies with substantially fewer degrees of freedom, typically by an order of magnitude or more, than the PW method. As a result, we compute the equation of state of LiH and show that the computed lattice constant and bulk modulus are in excellent agreement with reference PW results, while requiring an order of magnitude fewer degrees of freedom to obtain.« less
An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Saether, E.; Glaessgen, E.H.; Yamakov, V.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
On diamond, graphitic and amorphous carbons in primitive extraterrestrial solar system materials
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1990-01-01
Carbon is among the most abundant elements in the universe and carbon chemistry in meteorites and comets is an important key to understanding many Solar System and interstellar processes. Yet, the mineralogical properties and interrelations between various structural forms of elemental carbon remain ambiguous. Crystalline elemental carbons include rhombohedral graphite, hexagonal graphite, cubic diamond, hexagonal diamond (i.e., lonsdaleite or carbon-2H) and chaoite. Elemental carbon also occurs as amorphous carbon and poorly graphitized (or turbostratic) carbon but of all the forms of elemental carbon only graphite is stable under physical conditions that prevail in small Solar System bodies and in the interstellar medium. The recent discovery of cubic diamond in carbonaceous chondrites and hexagonal diamond in chondritic interplanetary dust particles (IDPs) have created a renewed interest in the crystalline elemental carbons that were not formed by shock processes on a parent body. Another technique, Raman spectroscopy, confirms a widespread occurrence of disordered graphite in the Allende carbonaceous chondrite and in chondritic IDPs. Elemental carbons have also been identified by their characteristic K-edge features in electron energy loss spectra (EELS). However, the spectroscopic data do not necessarily coincide with those obtained by selected area electron diffraction (SAED). In order to interpret these data in terms of rational crystalline structures, it may be useful to consider the principles underlying electron diffraction and spectroscopic analyses. Electron diffraction depends on electron scattering, on the type of atom and the distance between atoms in a crystal lattice. Spectroscopic data are a function of the type of atom and the energy of bonds between atoms. Also, SAED is a bulk sampling technique when compared to techniques such as Raman spectroscopy or EELS. Thus, it appears that combined analyses provide contradictory results and that amorphous, or short-range ordered, carbon identified by conventional TEM imaging and SAED may show evidence for sp(3) bonds in EELS spectra. It is suggested that complex, nanometer-scale, mineralogical interrelations are common to all elemental carbons irrespective of their origin. The subsequent thermal history, or energy balance, will determine the ultimate microstructure.
Remote preparation of an atomic quantum memory.
Rosenfeld, Wenjamin; Berner, Stefan; Volz, Jürgen; Weber, Markus; Weinfurter, Harald
2007-02-02
Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%.
‘Pd20Sn13’ revisited: crystal structure of Pd6.69Sn4.31
Klein, Wilhelm; Jin, Hanpeng; Hlukhyy, Viktor; Fässler, Thomas F.
2015-01-01
The crystal structure of the title compound was previously reported with composition ‘Pd20Sn13’ [Sarah et al. (1981 ▸). Z. Metallkd, 72, 517–520]. For the original structure model, as determined from powder X-ray data, atomic coordinates from the isostructural compound Ni13Ga3Ge6 were transferred. The present structure determination, resulting in a composition Pd6.69Sn4.31, is based on single crystal X-ray data and includes anisotropic displacement parameters for all atoms as well as standard uncertainties for the atomic coordinates, leading to higher precision and accuracy for the structure model. Single crystals of the title compound were obtained via a solid-state reaction route, starting from the elements. The crystal structure can be derived from the AlB2 type of structure after removing one eighth of the atoms at the boron positions and shifting adjacent atoms in the same layer in the direction of the voids. One atomic site is partially occupied by both elements with a Pd:Sn ratio of 0.38 (3):0.62 (3). One Sn and three Pd atoms are located on special positions with site symmetry 2. (Wyckoff letter 3a and 3b). PMID:26279872
The First Row Anomaly and Recoupled Pair Bonding in the Halides of the Late p-Block Elements
2012-01-01
The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N–F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements. Our studies point to a single underlying cause for many of these differences: the ability of the late p-block elements in the second and subsequent rows of the periodic table to form recoupled pair bonds and recoupled pair bond dyads with very electronegative ligands. Recoupled pair bonds form when an electron in a singly occupied ligand orbital recouples the pair of electrons in a doubly occupied lone pair orbital on the central atom, leading to a central atom-ligand bond. Recoupled pair bond dyads occur when a second ligand forms a bond with the orbital left over from the initial recoupled pair bond. Recoupled pair bonds and recoupled pair bond dyads enable the late p-block elements to form remarkably stable hypervalent compounds such as PF5 and SF6 and lead to unexpected excited states in smaller halides of the late p-block elements such as SF and SF2. Recoupled pair bonding also causes the Fn–1X–F bond energies to oscillate dramatically once the normal valences of the central atoms have been satisfied. In addition, recoupled pair bonding provides a lower-energy pathway for inversion in heavily fluorinated compounds (PF3 and PF2H, but not PH2F and PH3) and leads to unusual intermediates and products in reactions involving halogens and late p-block element compounds, such as (CH3)2S + F2. Although this Account focuses on the halides of the second row, late p-block elements, recoupled pair bonds and recoupled pair bond dyads are important in the chemistry of p-block elements beyond the second row (As, Se, and Br) and for compounds of these elements with other very electronegative ligands, such as OH and O. Knowledge of recoupled pair bonding is thus critical to understanding the properties and reactivity of molecules containing the late p-block elements beyond the first row. PMID:23151313
The first row anomaly and recoupled pair bonding in the halides of the late p-block elements.
Dunning, Thom H; Woon, David E; Leiding, Jeff; Chen, Lina
2013-02-19
The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N-F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements. Our studies point to a single underlying cause for many of these differences: the ability of the late p-block elements in the second and subsequent rows of the periodic table to form recoupled pair bonds and recoupled pair bond dyads with very electronegative ligands. Recoupled pair bonds form when an electron in a singly occupied ligand orbital recouples the pair of electrons in a doubly occupied lone pair orbital on the central atom, leading to a central atom-ligand bond. Recoupled pair bond dyads occur when a second ligand forms a bond with the orbital left over from the initial recoupled pair bond. Recoupled pair bonds and recoupled pair bond dyads enable the late p-block elements to form remarkably stable hypervalent compounds such as PF(5) and SF(6) and lead to unexpected excited states in smaller halides of the late p-block elements such as SF and SF(2). Recoupled pair bonding also causes the F(n-1)X-F bond energies to oscillate dramatically once the normal valences of the central atoms have been satisfied. In addition, recoupled pair bonding provides a lower-energy pathway for inversion in heavily fluorinated compounds (PF(3) and PF(2)H, but not PH(2)F and PH(3)) and leads to unusual intermediates and products in reactions involving halogens and late p-block element compounds, such as (CH(3))(2)S + F(2). Although this Account focuses on the halides of the second row, late p-block elements, recoupled pair bonds and recoupled pair bond dyads are important in the chemistry of p-block elements beyond the second row (As, Se, and Br) and for compounds of these elements with other very electronegative ligands, such as OH and O. Knowledge of recoupled pair bonding is thus critical to understanding the properties and reactivity of molecules containing the late p-block elements beyond the first row.
NASA Technical Reports Server (NTRS)
Lee, C. T.
1975-01-01
Adopting the so-called genealogical construction, one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicity the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1979-01-01
Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.
Christensen, Noel C.; Emery, James D.; Smith, Maurice L.
1988-04-05
A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object.
Kim, Dongyoung; Yang, Jun-Ho; Choi, Soojin; Yoh, Jack J
2018-01-01
Environments affect mineral surfaces, and the surface contamination or alteration can provide potential information to understanding their regional environments. However, when investigating mineral surfaces, mineral and environmental elements appear mixed in data. This makes it difficult to determine their atomic compositions independently. In this research, we developed four analytical methods to distinguish mineral and environmental elements into positive and negative spectra based on depth profiling data using laser-induced breakdown spectroscopy (LIBS). The principle of the methods is to utilize how intensity varied with depth for creating a new spectrum. The methods were applied to five mineral samples exposed to four environmental conditions including seawater, crude oil, sulfuric acid, and air as control. The proposed methods are then validated by applying the resultant spectra to principal component analysis and data were classified by the environmental conditions and atomic compositions of mineral. By applying the methods, the atomic information of minerals and environmental conditions were successfully inferred in the resultant spectrum.
ERIC Educational Resources Information Center
Cizdziel, James V.
2011-01-01
In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…
Scaling up the precision in a ytterbium Bose-Einstein condensate interferometer
NASA Astrophysics Data System (ADS)
McAlpine, Katherine; Plotkin-Swing, Benjamin; Gochnauer, Daniel; Saxberg, Brendan; Gupta, Subhadeep
2016-05-01
We report on progress toward a high-precision ytterbium (Yb) Bose-Einstein condensate (BEC) interferometer, with the goal of measuring h/m and thus the fine structure constant α. Here h is Planck's constant and m is the mass of a Yb atom. The use of the non-magnetic Yb atom makes our experiment insensitive to magnetic field noise. Our chosen symmetric 3-path interferometer geometry suppresses errors from vibration, rotation, and acceleration. The precision scales with the phase accrued due to the kinetic energy difference between the interferometer arms, resulting in a quadratic sensitivity to the momentum difference. We are installing and testing the laser pulses for large momentum transfer via Bloch oscillations. We will report on Yb BEC production in a new apparatus and progress toward realizing the atom optical elements for high precision measurements. We will also discuss approaches to mitigate two important systematics: (i) atom interaction effects can be suppressed by creating the BEC in a dynamically shaped optical trap to reduce the density; (ii) diffraction phase effects from the various atom-optical elements can be accounted for through an analysis of the light-atom interaction for each pulse.
Anomalous Diffraction in Crystallographic Phase Evaluation
Hendrickson, Wayne A.
2014-01-01
X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017
Ferreira, Carlos R.; Gahl, William A.
2017-01-01
Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism. PMID:29354481
Theodore William Richards and the Periodic Table
ERIC Educational Resources Information Center
Conant, James B.
1970-01-01
Discusses the contribution of Theodore Richards to the accurate determination of atomic weights of copper and other elements; his major contribution was to the building of the definitive periodic table of the elements. (BR)
ERIC Educational Resources Information Center
Tsang, Chin Fu
1975-01-01
Discusses the possibility of creating elements with an atomic number of around 114. Describes the underlying physics responsible for the limited extent of the periodic table and enumerates problems that must be overcome in creating a superheavy nucleus. (GS)
The Concept of Oxidation States in Metal Complexes
ERIC Educational Resources Information Center
Steinborn, Dirk
2004-01-01
The concepts of oxidation numbers when applied means electrons that are shared between atoms in molecules are assigned to a specific atom. Oxidation numbers are assigned from the Lewis structure of a molecule, with knowledge of the electronegativities of elements.
Atomic hydrogen storage method and apparatus
NASA Technical Reports Server (NTRS)
Woollam, J. A. (Inventor)
1978-01-01
Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.
Atomic hydrogen storage method and apparatus
NASA Technical Reports Server (NTRS)
Woollam, J. A. (Inventor)
1980-01-01
Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.
Atomic hydrogen storage. [cryotrapping and magnetic field strength
NASA Technical Reports Server (NTRS)
Woollam, J. A. (Inventor)
1980-01-01
Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.
Compact ion source neutron generator
Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe
2015-10-13
A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.
Mobile atom traps using magnetic nanowires
NASA Astrophysics Data System (ADS)
Allwood, D. A.; Schrefl, T.; Hrkac, G.; Hughes, I. G.; Adams, C. S.
2006-07-01
By solving the Landau-Lifshitz-Gilbert equation using a finite element method we show that an atom trap can be produced above a ferromagnetic nanowire domain wall. Atoms experience trap frequencies of up to a few megahertz, and can be transported by applying a weak magnetic field along the wire. Lithographically defined nanowire patterns could allow quantum information processing by bringing domain walls in close proximity at certain places to allow trapped atom interactions and far apart at others to allow individual addressing.
Research on the properties and interactions of simple atomic and ionic systems
NASA Technical Reports Server (NTRS)
Novick, R.
1972-01-01
Simple ionic systems were studied, such as metastable autoionizing states of the negative He ion, two-photon decay spectrum of metastable He ion, optical excitation with low energy ions, and lifetime measurements of singly ionized Li and metastable He ion. Simple atomic systems were also investigated. Metastable autoionizing atomic energy levels in alkali elements were included, along with lifetime measurements of Cr-53, group 2A isotopes, and alkali metal atoms using level crossing and optical double resonance spectroscopy.
Science and Emerging Technology of 2D Atomic Layered Materials and Devices
2017-09-09
AFRL-AFOSR-JP-TR-2017-0067 Science & Emerging Technology of 2D Atomic Layered Materials and Devices Angel Rubio UNIVERSIDAD DEL PAIS VASCO - EUSKAL...Emerging Technology of 2D Atomic Layered Materials and Devices 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-0006 5c. PROGRAM ELEMENT NUMBER...reporting documents for AOARD project 144088, “2D Materials and Devices Beyond Graphene Science & Emerging Technology of 2D Atomic Layered Materials and
NASA Astrophysics Data System (ADS)
He, Ping; Peng, Xiaolong; Zhang, Zhongzhi; Wu, Jiang; Chen, Naichao; Ren, Jianxing
Copper oxide (CuO) is proved to be a potential adsorbent for elemental mercury in the flue gas emitted from coal-fired power plant. However, the O-terminated CuO(110) surface has relatively week adsorption capacity for Hg. In this work, the doped method is applied to enhance the mercury adsorption capacity of O-terminated CuO(110). Mn, Si, Ti, Al and Zn are selected as the doped atom. It is found that only Zn-doped CuO (110) surfaces have the higher adsorption energy than the pure O-terminated CuO(110) surface. The mercury adsorption capacity is a complex issue, which depends on a combination of oxygen and doped element. The results suggest that the lower electropositive doped element is favorable for the improvement of mercury adsorption capacity. However, the lower electronegativity of oxygen atoms does not facilitate the mercury capture, which is different from the organic material. Cu and doped metal element, rather than oxygen atom, mainly determine mercury adsorption capacity of O-terminated CuO(110) surface, which leads to the lower adsorption capacity of the O-terminated CuO(110) surface than the Cu-terminated CuO(110) surface. The conclusions can also offer a valuable reference for the other metal oxide regarding mercury capture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ünlü, Hilmi, E-mail: hunlu@itu.edu.tr
We propose a non-orthogonal sp{sup 3} hybrid bond orbital model to determine the electronic properties of semiconductor heterostructures. The model considers the non-orthogonality of sp{sup 3} hybrid states of nearest neighboring adjacent atoms using the intra-atomic Coulomb interactions corrected Hartree-Fock atomic energies and metallic contribution to calculate the valence band width energies of group IV elemental and group III-V and II-VI compound semiconductors without any adjustable parameter.
Evolution of ion emission yield of alloys with the nature of the solute. 2: Interpretation
NASA Technical Reports Server (NTRS)
Blaise, G.; Slodzian, G.
1977-01-01
Solid solutions of transition elements in copper, nickel, cobalt, iron, and aluminum matrices were analyzed by observing secondary ion emissions under bombardment with 6.2-keV argon ions. Enchancement of the production of solute-element ions was observed. An ion emission model is proposed according to which the ion yield is governed by the probability of an atom leaving the metal in a preionized state. The energy distribution of the valence electrons of the solute atoms is the bases of the probability calculation.
QEDMOD: Fortran program for calculating the model Lamb-shift operator
NASA Astrophysics Data System (ADS)
Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.
2018-02-01
We present Fortran package QEDMOD for computing the model QED operator hQED that can be used to account for the Lamb shift in accurate atomic-structure calculations. The package routines calculate the matrix elements of hQED with the user-specified one-electron wave functions. The operator can be used to calculate Lamb shift in many-electron atomic systems with a typical accuracy of few percent, either by evaluating the matrix element of hQED with the many-electron wave function, or by adding hQED to the Dirac-Coulomb-Breit Hamiltonian.
On the Use of a Mixed Gaussian/Finite-Element Basis Set for the Calculation of Rydberg States
NASA Technical Reports Server (NTRS)
Thuemmel, Helmar T.; Langhoff, Stephen (Technical Monitor)
1996-01-01
Configuration-interaction studies are reported for the Rydberg states of the helium atom using mixed Gaussian/finite-element (GTO/FE) one particle basis sets. Standard Gaussian valence basis sets are employed, like those, used extensively in quantum chemistry calculations. It is shown that the term values for high-lying Rydberg states of the helium atom can be obtained accurately (within 1 cm -1), even for a small GTO set, by augmenting the n-particle space with configurations, where orthonormalized interpolation polynomials are singly occupied.
Improved graphite furnace atomizer
Siemer, D.D.
1983-05-18
A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Mina; Mohammadzadeh, Roghayeh
2017-11-01
The stacking fault energy (SFE) is an important parameter in the deformation mechanism of face centered cubic (fcc) iron-based alloy. In this study, the effect of interstitial (C and N) and substitution (Nb and Ti) alloying elements on the intrinsic SFE (ISFE) of nanocrystalline iron were investigated via molecular dynamics (MD) simulation. The modified embedded atom method (MEAM) inter-atomic potential was used in the MD simulations. The results demonstrate a strong dependence of ISFE with addition of interstitial alloying elements but only a mild increase in ISFE with addition of substitution alloying elements in the composition range of 0 < {CNb, CTi} < 3 (at%). Moreover, it is shown that alloying of fcc iron with N decreases ISFE, whereas it increases significantly by addition of carbon element [0 < {CC, CN} < 3.5 (at%)]. The simulation method employed in this work shows reasonable agreement with some published experimental/calculated data.
Empirical Monod-Beuneu relation of spin relaxation revisited for elemental metals
NASA Astrophysics Data System (ADS)
Szolnoki, L.; Kiss, A.; Forró, L.; Simon, F.
2014-03-01
Monod and Beuneu [P. Monod and F. Beuneu, Phys. Rev. B 19, 911 (1979), 10.1103/PhysRevB.19.911] established the validity of the Elliott-Yafet theory for elemental metals through correlating the experimental electron spin resonance linewidth with the so-called spin-orbit admixture coefficients and the momentum-relaxation theory. The spin-orbit admixture coefficients data were based on atomic spin-orbit splitting. We highlight two shortcomings of the previous description: (i) the momentum-relaxation involves the Debye temperature and the electron-phonon coupling whose variation among the elemental metals was neglected, (ii) the Elliott-Yafet theory involves matrix elements of the spin-orbit coupling (SOC), which are however not identical to the SOC induced energy splitting of the atomic levels, even though the two have similar magnitudes. We obtain the empirical spin-orbit admixture parameters for the alkali metals by considering the proper description of the momentum relaxation theory. In addition we present a model calculation, which highlights the difference between the SOC matrix element and energy splitting.
NASA Technical Reports Server (NTRS)
Wahlgren, Glenn M.; Carpenter, Kenneth G.; Norris, Ryan P.
2008-01-01
We report on progress in the analysis of high-resolution near-IR spectra of alpha Orionis (M2 Iab) and other cool, luminous stars. Using synthetic spectrum techniques, we search for atomic absorption lines in the stellar spectra and evaluate the available line parameter data for use in our abundance analyses. Our study concentrates on the post iron-group elements copper through zirconium as a means of investigating the slow neutron-capture process of nucleosynthesis in massive stars and the mechanisms that transport recently processed material up into the photospheric region. We discuss problems with the atomic data and model atmospheres that need to be addressed before theoretically derived elemental abundances from pre-supernova nucleosynthesis calculations can be tested by comparison with abundances determined from observations of cool, massive stars.
Abundance stratification in the atmospheres of blue horizontal-branch stars
NASA Astrophysics Data System (ADS)
LeBlanc, F.
2013-12-01
Horizontal-branch stars with effective temperatures larger than approximately 11 500 K show abundance anomalies as well as other peculiar observational properties believed to be due to atomic diffusion in their atmosphere. These stars possess low rotational velocities that makes it possible for atomic diffusion to come into play and are therefore of great interest with respect to diffusion theory. Observational anomalies of blue horizontal-branch stars found in globular clusters such as photometric jumps and gaps are reviewed. Recent detections of vertical stratification of elements are also discussed. These results are compared to predictions of atmospheric modeling while including vertical stratification of the elements. The atmospheric structure of these models is calculated self-consistently while taking into account vertical stratification of the elements.
Grindlay, Guillermo; Mora, Juan; Gras, Luis; de Loos-Vollebregt, Margaretha T C
2011-04-08
The analysis of wine is of great importance since wine components strongly determine its stability, organoleptic or nutrition characteristics. In addition, wine analysis is also important to prevent fraud and to assess toxicological issues. Among the different analytical techniques described in the literature, atomic spectrometry has been traditionally employed for elemental wine analysis due to its simplicity and good analytical figures of merit. The scope of this review is to summarize the main advantages and drawbacks of various atomic spectrometry techniques for elemental wine analysis. Special attention is paid to interferences (i.e. matrix effects) affecting the analysis as well as the strategies available to mitigate them. Finally, latest studies about wine speciation are briefly discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ovsyannikov, V. D.; Kamenskii, A. A.
2002-03-01
The changes in the wave functions and the energies of a hydrogen-like atom in the static field of a structureless charged particle are calculated in the asymptotic approximation. The corrections to the energy of states, as well as to the dipole matrix elements of radiative transitions caused by the interaction of the atom with the point charge at long range are calculated using the perturbation theory and the Sturm series for a reduced Coulomb Green’s function in parabolic coordinates. The analytical expressions are derived and tables of numerical values of the coefficients of asymptotic series that determine the corrections to the matrix elements and the intensities of transitions of the Lyman and Balmer series are presented.
Stockwell, P. B.; Corns, W. T.
1993-01-01
Considerable attention has been drawn to the environmental levels of mercury, arsenic, selenium and antimony in the last decade. Legislative and environmental pressure has forced levels to be lowered and this has created an additional burden for analytical chemists. Not only does an analysis have to reach lower detection levels, but it also has to be seen to be correct. Atomic fluorescence detection, especially when coupled to vapour generation techniques, offers both sensitivity and specificity. Developments in the design of specified atomic fluorescence detectors for mercury, for the hydride-forming elements and also for cadmium, are described in this paper. Each of these systems is capable of analysing samples in the part per trillion (ppt) range reliably and economically. Several analytical applications are described. PMID:18924964
ERIC Educational Resources Information Center
ten Hoor, Marten J.
2017-01-01
Contrary to current IUPAC recommendations, the chemical element X should be defined as the nucleus of the X atom. Consequently, different isotopes with their different nuclei belong to different elements, each one with its own physical and chemical properties. This view leads to the conclusion that we no longer have a periodic table of the…
Chemistry of the superheavy elements.
Schädel, Matthias
2015-03-13
The quest for superheavy elements (SHEs) is driven by the desire to find and explore one of the extreme limits of existence of matter. These elements exist solely due to their nuclear shell stabilization. All 15 presently 'known' SHEs (11 are officially 'discovered' and named) up to element 118 are short-lived and are man-made atom-at-a-time in heavy ion induced nuclear reactions. They are identical to the transactinide elements located in the seventh period of the periodic table beginning with rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) in groups 4, 5 and 6, respectively. Their chemical properties are often surprising and unexpected from simple extrapolations. After hassium (element 108), chemistry has now reached copernicium (element 112) and flerovium (element 114). For the later ones, the focus is on questions of their metallic or possibly noble gas-like character originating from interplay of most pronounced relativistic effects and electron-shell effects. SHEs provide unique opportunities to get insights into the influence of strong relativistic effects on the atomic electrons and to probe 'relativistically' influenced chemical properties and the architecture of the periodic table at its farthest reach. In addition, they establish a test bench to challenge the validity and predictive power of modern fully relativistic quantum chemical models. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Noh, Seunghyo; Kwak, Dohyun; Lee, Juseung; Kang, Joonhee; Han, Byungchan
2014-03-01
We utilized first-principles density-functional-theory (DFT) calculations to evaluate the thermodynamic feasibility of a pyroprocessing methodology for reducing the volume of high-level radioactive materials and recycling spent nuclear fuels. The thermodynamic properties of transuranium elements (Pu, Np and Cm) were obtained in electrochemical equilibrium with a LiCl-KCl molten salt as ionic phases and as adsorbates on a W(110) surface. To accomplish the goal, we rigorously calculated the double layer interface structures on an atomic resolution, on the thermodynamically most stable configurations on W(110) surfaces and the chemical activities of the transuranium elements for various coverages of those elements. Our results indicated that the electrodeposition process was very sensitive to the atomic level structures of Cl ions at the double-layer interface. Our studies are easily expandable to general electrochemical applications involving strong redox reactions of transition metals in non-aqueous solutions.
Predicting the properties of the lead alloys from DFT calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buimaga-Iarinca, L., E-mail: luiza.iarinca@itim-cj.ro; Calborean, A.
2015-12-23
We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix formore » low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.« less
Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi
2007-06-01
Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.
Hughes, J.M.; Bloodaxe, E.S.; Hanchar, J.M.; Foord, E.E.
1997-01-01
The atomic arrangement of a natural rare-earth-rich titanite and two synthetic rare-earth-doped titanites have been refined in space group A2/a, and the atomic arrangement of an undoped P21/a synthetic titanite was also refined for comparison. Previous work has shown that titanite possesses a domain structure, with domains formed of like-displaced Ti atoms in the [100] octahedral chains. P21/a titanite results when the crystal is formed of a single domain, but as Ti-reversal sites occur in the octahedral chain the apparent A2/a structure results from the average of antiphase domains. Antiphase boundaries occur at O1, which is alternately overbonded or underbonded at the boundaries, depending on the displacement of the neighboring Ti atoms. Type 2 antiphase boundaries exist where two Ti atoms are displaced away from the intervening O1 atom and are energetically unfavorable because of underbonding of that O1 atom. However, substitution of a trivalent rare earth element in the adjacent Ca2+ site relieves that underbonding, favoring the creation of type 2 antiphase boundaries and stabilization of the A2/a dimorph. The results of high-precision crystal structure analyses demonstrate that rare earth substituents for Ca stabilize the A2/a dimorph at lower substitution levels than required for octahedral substitutions.
Theoretical modeling of laser-induced plasmas using the ATOMIC code
NASA Astrophysics Data System (ADS)
Colgan, James; Johns, Heather; Kilcrease, David; Judge, Elizabeth; Barefield, James, II; Clegg, Samuel; Hartig, Kyle
2014-10-01
We report on efforts to model the emission spectra generated from laser-induced breakdown spectroscopy (LIBS). LIBS is a popular and powerful method of quickly and accurately characterizing unknown samples in a remote manner. In particular, LIBS is utilized by the ChemCam instrument on the Mars Science Laboratory. We model the LIBS plasma using the Los Alamos suite of atomic physics codes. Since LIBS plasmas generally have temperatures of somewhere between 3000 K and 12000 K, the emission spectra typically result from the neutral and singly ionized stages of the target atoms. We use the Los Alamos atomic structure and collision codes to generate sets of atomic data and use the plasma kinetics code ATOMIC to perform LTE or non-LTE calculations that generate level populations and an emission spectrum for the element of interest. In this presentation we compare the emission spectrum from ATOMIC with an Fe LIBS laboratory-generated plasma as well as spectra from the ChemCam instrument. We also discuss various physics aspects of the modeling of LIBS plasmas that are necessary for accurate characterization of the plasma, such as multi-element target composition effects, radiation transport effects, and accurate line shape treatments. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.
Blood-collection device for trace and ultra-trace metal specimens evaluated.
Moyer, T P; Mussmann, G V; Nixon, D E
1991-05-01
We evaluated the evacuated phlebotomy tube designed specifically for trace metal analysis by Sherwood Medical Co. Pools of human serum containing known concentrations of aluminum, arsenic, calcium, cadmium, copper, chromium, iron, lead, magnesium, manganese, mercury, selenium, and zinc were exposed to the tube and rubber stopper for defined periods ranging from 5 min to 24 h. Analysis for each element was performed in a randomized fashion under rigidly controlled conditions by use of standard electrothermal atomization atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy, and cold vapor atomic absorption spectrometry. In addition, for comparative purposes, we collected blood samples from normal volunteers by use of ultra-clean polystyrene phlebotomy syringes as well as standard evacuated phlebotomy tubes. We conclude that, except for lead, there was no significant contribution of any trace element studied from the evaluated tube and stopper to the serum. Because whole blood is the usual specimen for lead testing, the observation of a trace amount of lead in this tube designed for serum collection is trivial.
Arc plasma generator of atomic driver for steady-state negative ion source.
Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A
2014-02-01
The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.
Forbidden line emission from highly ionized atoms in tokamak plasmas
NASA Technical Reports Server (NTRS)
Feldman, U.; Doschek, G. A.; Bhatia, A. K.
1982-01-01
Considerable interest in the observation of forbidden spectral lines from highly ionized atoms in tokamak plasmas is related to the significance of such observations for plasma diagnostic applications. Atomic data for the elements Ti Cr, Mn, Fe, Ni, and Kr have been published by Feldman et al. (1980) and Bhatia et al. (1980). The present investigation is concerned with collisional excitation rate coefficients and radiative decay rates, which are interpolated for ions of elements between calcium, and krypton and for levels of the 2s2 2pk, 2s 2p(k+1), and 2p(k+2) configurations, and for the O I, N I, C I, B I, and Be I isoelectronic sequences. The provided interpolated atomic data can be employed to calculate level populations and relative line intensities for ions of the considered sequences, taking into account levels of the stated configurations. Important plasma diagnostic information provided by the forbidden lines includes the ion temperature
Atomic oxygen dosimetry measurements made on STS-46 by CONCAP 2
NASA Technical Reports Server (NTRS)
Gregory, J. C.; Miller, G. P.; Pettigrew, P. J.; Raikar, G. N.; Cross, Jon B.; Lan, E.; Renschler, C. L.; Sutherland, W. T.
1995-01-01
With increasing flight duration and the possibility of a permanent facility in space, long-term monitoring of material degradation due to atomic oxygen is increasing in importance. Reliance on models to determine the fluence of atomic oxygen is not only necessarily complex but also imprecise due to the strong dependence of oxygen concentration on day/night, latitude and solar activity. Mass-spectroscopy, the traditional method for determining the gas phase species densities at low pressure, is not only expensive but is limited in the area that it can monitor. Our group has developed a simple and inexpensive dosimeter to measure the atomic oxygen fluence via the change in resistance as the sensor element is gradually oxidized. The sensors consisted of thin-film circuit elements deposited on a suitable substrate. Four-point resistance measurements were used to monitor the change in resistance. Results obtained using silver and carbon dosimeters flown on STS-46 (CONCAP 2-01) will be discussed.
Whispering galleries and the control of artificial atoms.
Forrester, Derek Michael; Kusmartsev, Feodor V
2016-04-28
Quantum computation using artificial-atoms, such as novel superconducting circuits, can be sensitively controlled by external electromagnetic fields. These fields and the self-fields attributable to the coupled artificial-atoms influence the amount of quantum correlation in the system. However, control elements that can operate without complete destruction of the entanglement of the quantum-bits are difficult to engineer. Here we investigate the possibility of using closely-spaced-linear arrays of metallic-elliptical discs as whispering gallery waveguides to control artificial-atoms. The discs confine and guide radiation through the array with small notches etched into their sides that act as scatterers. We focus on π-ring artificial-atoms, which can generate their own spontaneous fluxes. We find that the micro-discs of the waveguides can be excited by terahertz frequency fields to exhibit whispering-modes and that a quantum-phase-gate composed of π-rings can be operated under their influence. Furthermore, we gauge the level of entanglement through the concurrence measure and show that under certain magnetic conditions a series of entanglement sudden-deaths and revivals occur between the two qubits. This is important for understanding the stability and life-time of qubit operations using, for example, a phase gate in a hybrid of quantum technologies composed of control elements and artificial-atoms.
Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.
Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T
2005-08-01
A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.
Survey of elemental specificity in positron annihilation peak shapes
NASA Astrophysics Data System (ADS)
Myler, U.; Simpson, P. J.
1997-12-01
Recently the detailed interpretation of positron-annihilation γ-ray peak shapes has proven to be of interest with respect to their chemical specificity. In this contribution, we show highly resolved spectra for a number of different elements. To this purpose, annihilation spectra with strongly reduced background intensities were recorded in the two detector geometry, using a variable-energy positron beam. Division of the subsequently normalized spectra by a standard spectrum (in our case the spectrum of pure silicon) yields quotient spectra, which display features characteristic of the sample material. First we ascertain that the specific spectrum of an element is conserved in different chemical compounds, demonstrated here by identical oxygen spectra obtained from both SiO2/Si and MgO/Mg. Second, we show highly resolved spectra for a number of different elements (Fe...Zn, Ag, Ir...Au). We show that the characteristic features in these spectra vary in a systematic fashion with the atomic number of the element and can be tentatively identified with particular orbitals. Finally, for 26 different elements we compare the maximum intensity in the quotient spectra with the relative atomic density in the corresponding element. To our knowledge, this is the most comprehensive survey of such data made to date.
NASA Astrophysics Data System (ADS)
Bahreini, Maryam; Hosseinimakarem, Zahra; Hassan Tavassoli, Seyed
2012-09-01
Laser induced breakdown spectroscopy (LIBS) is used to investigate the possible effect of osteoporosis on the elemental composition of fingernails. Also, the ability to classify healthy, osteopenic, and osteoporotic subjects based on their fingernail spectra has been examined. 46 atomic and ionic emission lines belonging to 13 elements, which are dominated by calcium and magnesium, have been identified. Measurements are carried out on fingernail clippings of 99 subjects including 27 healthy, 47 osteopenic, and 25 osteoporotic subjects. The Pearson correlations between spectral intensities of different elements of fingernail and age and bone mineral densities (BMDs) in nail samples are calculated. Correlations between line intensities of some elements such as sodium and potassium, calcium and iron, magnesium and silicon and also between some fingernail elements, BMD, and age are observed. Although some of these correlations are weak, some information about mineral metabolism can be deduced from them. Discrimination between nail samples of healthy, osteopenic, and osteoporotic subjects is shown to be somehow possible by a discriminant function analysis using 46 atomic emission lines of the LIBS spectra as input variables. The results of this study provide some evidences for association between osteoporosis and elemental composition of fingernails measured by LIBS.
In situ chemical analyses of extraterrestrial bodies
NASA Technical Reports Server (NTRS)
Economou, Thanasis E.; Turkevich, Anthony L.
1988-01-01
One of the most important tasks on any sample return mission will have to be a quick sample characterization in order to guarantee a variety of collected samples. An alpha particle instrument with alpha, proton and X-ray modes can provide a quick and almost complete chemical analysis of Mars samples. This instrument is based on three interactions of the alpha particles from a radioactive source with matter: elastic scattering of the alpha particles by nuclei (alpha mode), (alpha,p) nuclear reaction with some light elements (proton mode), and excitation of the atomic structure of atoms by alpha particles, leading to emission of characteristic X-rays of the lunar surface at three sites during the Surveyor mission of 1967 to 1968. Since then the instrument has been improved and miniaturized substantially. As shown in the past, the alpha particle instrument can operate under Martian conditions without any degradation in the performance. The alpha and proton modes can provide vital information about the light elements, while the X-ray mode with its ambient temperature X-ray detector will be useful for the heavier elements. The excitation of the atomic structure is provided by the same alpha radioactive source that is used by alpha and proton modes or by an auxiliary X-ray source that is selected to enhance the sensitivity to some important geochemical elements.
Vacuum Attachment for XRF Scanner
NASA Technical Reports Server (NTRS)
Schramm, Harry F.; Kaiser, Bruce
2005-01-01
Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation
Non-destructive elemental analysis of vertebral body trabecular bone using muonic X-rays.
Hosoi, Y; Watanabe, Y; Sugita, R; Tanaka, Y; Nagamine, K; Ono, T; Sakamoto, K
1995-12-01
Non-destructive elemental analysis with muonic X-rays was performed on human vertebral bone and lumbar torso phantoms. It can provide quantitative information on all elements in small deep-seated localized volumes. The experiment was carried out using the superconducting muon channel at TRIUMF in Vancouver, Canada and a lithium drifted germanium detector with an active area of 18.5 cm2. The muon channel produced backward-decayed negative muons with wide kinetic energy range from 0.5 to 54.2 MeV. The muon beam was collimated to a diameter of 18 mm. The number of incoming muons was about 4 x 10(6) approximately 5 x 10(7) per data point. In the measurements with human vertebral bones fixed with neutralized formaldehyde, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.0003. In the measurements with lumbar torso phantoms, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.02. The results suggest that elemental analysis in vertebral body trabecular bone using muonic X-rays closely correlates with measurements by atomic absorption analysis.
ERIC Educational Resources Information Center
Seaborg, Glenn T.
1983-01-01
Reviews the historical development of the periodic table, examining major changes due to understanding of radioactivity, synthetic transmutation by bombardment, differences between transuranium elements and the lanthanide series, and the transactinide elements. Discusses the continuing work on atomic synthesis and its importance in extending our…
Periodic Contractions among the Elements. Or, on Being the Right Size.
ERIC Educational Resources Information Center
Mason, Joan
1988-01-01
Discusses the significance of periodicity and covalent atomic radius among the elements. Describes contraction across the row, expansion down the group, irregularities in the buildup of the periodic table and periodicities of physiochemical properties. (CW)
NASA Astrophysics Data System (ADS)
Pang, Rui; Deng, Bei; Shi, Xingqiang; Zheng, Xiaohong
2018-04-01
Nanostructures with giant magnetic anisotropy energies (MAEs) are desired in designing miniaturized magnetic storage and quantum computing devices. Previous works focused mainly on materials or elements with d electrons. Here, by taking Bi–X(X = In, Tl, Ge, Sn, Pb) adsorbed on nitrogenized divacancy of graphene and Bi atoms adsorbed on MgO(100) as examples, through ab initio and model calculations, we propose that special p-element dimers and single-adatoms on symmetry-matched substrates possess giant atomic MAEs of 72–200 meV, and has room temperature structural stability. The huge MAEs originate from the p-orbital degeneracy around the Fermi level in a symmetry-matched surface ligand field and the lifting of this degeneracy when spin–orbit interaction (SOI) is taken into account. Especially, we developed a simplified quantum mechanical model for the design principles of giant MAEs of supported magnetic adatoms and dimers. Thus, our discoveries and mechanisms provide a new paradigm to design giant atomic MAE of p electrons in supported nanostructures.
Christensen, N.C.; Emery, J.D.; Smith, M.L.
1985-04-29
A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object. 19 figs.
NASA Astrophysics Data System (ADS)
Luo, Zhe; Zhu, Hong; Ying, Tao; Li, Dejiang; Zeng, Xiaoqin
2018-06-01
The influences of solute atoms (Li, Al, Mn, Zn, Fe, Ni, Cu, Y, Zr) and Cl adsorption on the anodic corrosion performance on Mg (0001) surface have been investigated based on first-principles calculations, which might be useful for the design of corrosion-resistant Mg alloys. Work function and local electrode potential shift are chosen as descriptors since they quantify the barrier for charge transfer and anodic stability. We found that at 25% surface doping rate, Y decreased the work function of Mg, while the impact of remaining doping elements on the work function of Mg was trivial due to the small surface dipole moment change. The adsorption of Cl destabilized the Mg atoms at surface by weakening the bonding between surface Mg atoms. We find that a stronger hybridization of d orbits of alloying elements (e.g. Zr) with the orbits of Mg can greatly increase the local electrode potential,which even overbalances the negative effect introduced by Cl adsorbates and hence improves the corrosion resistance of Mg alloys.
Zeilinger, Michael; van Wüllen, Leo; Benson, Daryn; Kranak, Verina F; Konar, Sumit; Fässler, Thomas F; Häussermann, Ulrich
2013-06-03
Silicon swallows up boron: The novel open tetrahedral framework structure (OTF) of the Zintl phase LiBSi2 was made by applying high pressure to a mixture of LiB and elemental silicon. The compound represents a new topology in the B-Si net (called tum), which hosts Li atoms in the channels (see picture). LiBSi2 is the first example where B and Si atoms form an ordered common framework structure with B engaged exclusively in heteronuclear B-Si contacts.
Atom probe tomography (APT) of carbonate minerals.
Pérez-Huerta, Alberto; Laiginhas, Fernando; Reinhard, David A; Prosa, Ty J; Martens, Rich L
2016-01-01
Atom probe tomography (APT) combines the highest spatial resolution with chemical data at atomic scale for the analysis of materials. For geological specimens, the process of field evaporation and molecular ion formation and interpretation is not yet entirely understood. The objective of this study is to determine the best conditions for the preparation and analysis by APT of carbonate minerals, of great importance in the interpretation of geological processes, focusing on the bulk chemical composition. Results show that the complexity of the mass spectrum is different for calcite and dolomite and relates to dissimilarities in crystalochemical parameters. In addition, APT bulk chemistry of calcite closely matches the expected stoichiometry but fails to provide accurate atomic percentages for elements in dolomite under the experimental conditions evaluated in this work. For both calcite and dolomite, APT underestimates the amount of oxygen based on their chemical formula, whereas it is able to detect small percentages of elemental substitutions in crystal lattices. Overall, our results demonstrate that APT of carbonate minerals is possible, but further optimization of the experimental parameters are required to improve the use of atom probe tomography for the correct interpretation of mineral geochemistry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Relativistic calculations of atomic properties
NASA Astrophysics Data System (ADS)
Kaur, Jasmeet; Sahoo, B. K.; Arora, Bindiya
2017-04-01
Singly charged ions are engaging candidates in many areas of Physics. They are especially important in astrophysics for evaluating the radiative properties of stellar objects, in optical frequency standards and for fundamental physics studies such as searches for permanent electric dipole moments and atomic parity violation. Interpretation of these experiments often requires a knowledge of their transition wavelengths and electric dipole amplitudes. In this work, we discuss the calculation of various properties of alkaline earth ions. The relativistic all-order SD method in which all single and double excitations of the Dirac-Fock wave function are included, is used to calculate these atomic properties. We use this method for evaluation of electric dipole matrix elements of alkaline earth ions. Combination of these matrix elements with experimental energies allow to obtain the polarizabilities of ground and excited states of ions. We discuss the applications of estimated polarizabiities as a function of imaginary frequencies in the calculations of long-range atom-ion interactions. We have also located the magic wavelengths for nS1 / 2 - nD3 / 2 , 5 / 2 transitions of alkaline earth ions. These calculated properties will be highly valuable to atomic and astrophysics community. UGC-BSR Grant No. F.7-273/2009/BSR.
Surface Modification of Plastic Substrates Using Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking of hydrogen molecules on heated tungsten wire. Surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. In addition, plastic surface was reduced by AHA. The surface can be modified by the recombination reaction of atomic hydrogen, the reduction reaction and selective etching of halogen atom. It is concluded that this method is a promising technique for improvement of adhesion between inorganic films and plastic substrates at low temperatures.
Local Energies and Energy Fluctuations — Applied to the High Entropy Alloy CrFeCoNi
NASA Astrophysics Data System (ADS)
Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi; Sato, Kazunori; Ogura, Masako; Zeller, Rudolf; Dederichs, Peter H.
2017-11-01
High entropy alloys show a variety of fascinating properties like high hardness, wear resistance, corrosion resistance, etc. They are random solid solutions of many components with rather high concentrations. We perform ab-initio calculations for the high entropy alloy CrFeCoNi, which equal concentration of 25% for each element. By the KKRnano program package, which is based on an order-N screened Korringa-Kohn-Rostoker Green's function method, we consider a face-centered cubic (FCC) supercell with 1372 randomly distributed elements, and in addition also smaller supercells with 500 and 256 atoms. It is found from our calculations that the local moments of the Cr atoms show a large environmental variation, ranging from -1.70 μB to +1.01 μB with an average of about -0.51 μB. We present a new method to calculate "local energies" of all atoms. This is based on the partitioning of the whole space into Voronoi cells and allows to calculate the energetic contribution of each atomic cell to the total energy of the supercell. The supercell calculations show very large variations of the local energies, analogous to the variations of the local moments. This shows that the random solid solution is not stable and has a tendency to form an L12-structure with the Cr-atoms ordered at the corner of the cube and the elements Fe, Co, and Ni randomly distributed on the three other FCC sublattices. For this structure the variation of the local moments are much smaller.
NASA Astrophysics Data System (ADS)
Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.
2016-08-01
Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.
Origin of magnetic anisotropy in doped Ce 2 Co 17 alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Liqin; Kukusta, D. A.; Johnson, Duane D.
2016-10-21
Magnetocrystalline anisotropy (MCA) in doped Ce 2Co 17 and other competing structures was investigated using density functional theory. We confirmed that the MCA contribution from dumbbell Co sites is very negative. Replacing Co dumbbell atoms with a pair of Fe or Mn atoms greatly enhance the uniaxial anisotropy, which agrees quantitatively with experiment, and this enhancement arises from electronic-structure features near the Fermi level, mostly associated with dumbbell sites. With Co dumbbell atoms replaced by other elements, the variation of anisotropy is generally a collective effect and contributions from other sublattices may change significantly. Furthermore, we found that Zr dopingmore » promotes the formation of 1-5 structure that exhibits a large uniaxial anisotropy, such that Zr is the most effective element to enhance MCA in this system.« less
Method of identifying defective particle coatings
Cohen, Mark E.; Whiting, Carlton D.
1986-01-01
A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.
Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy
NASA Technical Reports Server (NTRS)
Schlagen, Kenneth J.
1992-01-01
Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.
Digital lock-in detection of site-specific magnetism in magnetic materials
Haskel, Daniel [Naperville, IL; Lang, Jonathan C [Naperville, IL; Srajer, George [Oak Park, IL
2008-07-22
The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.
Clark, J.R.
1986-01-01
A multi-element organic-extraction and back-extraction procedure, that had been developed previously to eliminate matrix interferences in the determination of a large number of trace elements in complex materials such as geological samples, produced organic and aqueous solutions that were complex. Electrothermal atomisation atomic absorption conditions and matrix modifications have been developed for 13 of the extracted elements (Ag, As, Au, Bi, Cd, Ga, In, Pb, Sb, Se, Sn, Te and Tl) that enhance sensitivity, alleviate problems resulting from the complex solutions and produce acceptable precision. Platinum, Pd and Mo can be determined without matrix modification directly on the original unstripped extracts.
Some Reflections on the Periodic Table and Its Use.
ERIC Educational Resources Information Center
Fernelius, W. Conard
1986-01-01
Discusses early periodic tables; effect on the periodic table of atomic numbers; the periodic table in relation to electron distribution in the atoms of elements; terms and concepts related to the table; and the modern basis of the periodic table. Additional comments about these and other topics are included. (JN)
Investigation and Development of Advanced Surface Microanalysis Techniques and Methods
1983-04-01
descriminates against isobars since each of the isobaric species will have a different atomic number or Z and, therefore, will be stripped of its...allow descrimination between two elements at the same mass but which have different atomic numbers. Multiply-charged ions are not produced during the
Quantum-mechanical transport equation for atomic systems.
NASA Technical Reports Server (NTRS)
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
NASA Astrophysics Data System (ADS)
Löbling, L.
2017-03-01
Aluminum (Al) nucleosynthesis takes place during the asymptotic-giant-branch (AGB) phase of stellar evolution. Al abundance determinations in hot white dwarf stars provide constraints to understand this process. Precise abundance measurements require advanced non-local thermodynamic stellar-atmosphere models and reliable atomic data. In the framework of the German Astrophysical Virtual Observatory (GAVO), the Tübingen Model-Atom Database (TMAD) contains ready-to- use model atoms for elements from hydrogen to barium. A revised, elaborated Al model atom has recently been added. We present preliminary stellar-atmosphere models and emergent Al line spectra for the hot white dwarfs G191-B2B and RE 0503-289.
Chemistry of the 5g Elements: Relativistic Calculations on Hexafluorides.
Dognon, Jean-Pierre; Pyykkö, Pekka
2017-08-14
A Periodic System was proposed for the elements 1-172 by Pyykkö on the basis of atomic and ionic calculations. In it, the elements 121-138 were nominally assigned to a 5g row. We now perform molecular, relativistic four-component DFT calculations and find that the hexafluorides of the elements 125-129 indeed enjoy occupied 5g states. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A new assessment of the alleged link between element 115 and element 117 decay chains
NASA Astrophysics Data System (ADS)
Forsberg, U.; Rudolph, D.; Fahlander, C.; Golubev, P.; Sarmiento, L. G.; Åberg, S.; Block, M.; Düllmann, Ch. E.; Heßberger, F. P.; Kratz, J. V.; Yakushev, A.
2016-09-01
A novel rigorous statistical treatment is applied to available data (May 9, 2016) from search and spectroscopy experiments on the elements with atomic numbers Z = 115 and Z = 117. The present analysis implies that the hitherto proposed cross-reaction link between α-decay chains associated with the isotopes 293117 and 289115 is highly improbable.
Saravanan, Chandra; Shao, Yihan; Baer, Roi; Ross, Philip N; Head-Gordon, Martin
2003-04-15
A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal block size is found to be between 40 and 100 basis functions, where about 55-75% of the machine peak performance was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be 10 times faster than a standard element-by-element sparse matrix package. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 618-622, 2003
Site preference of alloying elements in DO22-Ni3V phase: Phase-field and first-principles study
NASA Astrophysics Data System (ADS)
Zhang, Ding-Ni; Shangguan, Qian-Qian; Liu, Fu; Zhang, Ming-Yi
2015-07-01
Site preference of alloying elements in DO22-Ni3V phase was investigated using phase-field and first-principles method. The concentrations of alloying elements on sublattices of DO22-Ni3V phase were quantitatively studied using phase-field model based on microscopic diffusion equations. The phase-field computation results demonstrate that the concentration differences of alloying elements on the NiI and NiII site are attributed to the coordination environment difference. Host atoms Ni and substitutional ternary additions Al prefer to occupy NiI site. Antisite atoms V show site preference on the NiII site. Further reason of site preference of alloying elements on the two different Ni sites were studied using first-principles method to calculate the electronic structure of DO22-Ni3V phase. Calculation of density of states, orbitals population and charge population of the optimized Ni3V structure found that the electronic structures of NiI and NiII sites are different. Electronic structure difference, which is caused by coordination environment difference, is the essential reason for site selectivity behaviors of alloying elements on NiI and NiII sites.
Multielement extraction system for determining 19 trace elements in gold exploration samples
Clark, J. Robert; Viets, John G.; ,
1990-01-01
A multielement extraction system is being used successfully to provide essentially interference-free geochemical analyses to aid in gold exploration. The Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system separates Ag, As, Au, Bi, Cd, Cu, Ga, Hg, In, Mo, Pb, Pd, Pt, Sb, Se, Sn, Te, Tl, and Zn from interfering geological matrices. Quantitative extraction of these elements is accomplished over a broad range of acid normality making it possible to economically determine all 19 elements from a single digestion or leach solution. The resulting organic extracts are amenable to analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and flame atomic absorption spectroscopy (FAAS). For many years the principal shortcoming of ICP-AES was the complex spectral and stray-light interferences that were caused by the extreme variability of components such as Fe, Na, and Ca in common geological matrices. The MAGIC extraction allows determination of the extracted elements with enhanced sensitivity, from a virtually uniform matrix, by ICP-AES and FAAS. Because of its simultaneous multichannel capabilities, ICP-AES is the ideal instrumental technique for determining these 19 extracted elements. Ultratrace (sub-part-per-billion) determinations of Au and many of the other extracted elements can be made by graphite furnace atomic absorption spectroscopy (GFAAS), following back stripping of the extracts. The combination of the extraction followed by stripping of the organic phase eliminates 99.999% of potential interferences for Au. Gold determination by GFAAS from these extracts under the specified conditions yields a fourfold improvement in sensitivity over conventional GFAAS methods. This sensitivity enhancement and the interference-free matrix allow highly reliable determinations well into the parts-per-trillion range.
Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping
Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde
2016-01-01
Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles. PMID:27165122
Williams, Monique; Bozhilov, Krassimir; Ghai, Sanjay; Talbot, Prue
2017-01-01
Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs) and electronic hookahs (EHs), examine the effect of puffing topography on elements in aerosols, and identify the source of the elements. Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy. Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium), thick wire (copper coated with silver), brass clamp (copper, zinc), solder joints (tin, lead), and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum). Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs). These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals.
Optically guided atom interferometer tuned to magic wavelength
NASA Astrophysics Data System (ADS)
Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi
2017-11-01
We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.
Hayashi, Kouichi
2014-11-01
Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed four separate Pb images, as shown in Fig.1. Using these images, we could obtain acute and obtuse rhombohedral structures of the crystal unit cells. Moreover, the Pb-Pb correlated images reconstructed from Pb Lα holograms showed a local structure of body center-like 2a0 ×2a0 × 2a0 superlattice, proving a rigid 3D network structural model combining the two kinds of rhombohedrons. This superstructure are believed to play an important role in the relaxor behaviour of PMN at atomic level[3].jmicro;63/suppl_1/i13/DFU047F1F1DFU047F1Fig. 1.3D images of the nearest Pb and O atoms around Nb in Pb(Mg1/3Nb2/3)O3. The cube represents 1/8 of the unit cell. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Interstellar abundances and depletions inferred from observations of neutral atoms
NASA Technical Reports Server (NTRS)
Snow, T. P.
1984-01-01
Data on neutral atomic species are analyzed for the purpose of inferring relative elemental abundances and depletions in diffuse cloud cores, where it is assumed that densities are enhanced in comparison with mean densities over integrated lines of sight. Column densities of neutral atoms are compared to yield relative column densities of singly ionized species, which are assumed dominant in cloud cores. This paper incorporates a survey of literature data on neutral atomic abundances with the result that no systematic enhancement in the depletions of calcium or iron in cloud cores is found, except for zeta Ophiuchi. This may imply that depletions are not influenced by density, but other data argue against this interpretation. It is concluded either that in general all elements are depleted together in dense regions so that their relative abundances remain constant, or that typical diffuse clouds do not have significant cores, but instead are reasonably homogeneous. The data show a probable correlation between cloud-core depletion and hydrogen-molecular fraction, supporting the assumption that overall depletions are a function of density.
Yamamura, Masaki; Albrecht, Marcel; Albrecht, Markus; Nishimura, Yoshinobu; Arai, Tatsuo; Nabeshima, Tatsuya
2014-02-03
A dipyrrin complex has been one of the most utilized fluorescent dyes, and a variety of dipyrrin complexes show intriguing functions based on the various coordination structures of the central element. We now report the synthesis, structure, and photophysical properties of germanium and stannane complexes of the N2O2-type tetradentate dipyrrin, L·Ge and L·Sn, which are heavier analogues of the previously reported dipyrrin silicon complex, L·Si. The central group-14 atoms of the monomeric complexes have geometries close to trigonal bipyramidal (TBP), in which the contribution of the square-pyramidal (SP) character becomes higher as the central atom is heavier. Interestingly, L·Sn formed a dimeric structure in the crystal. All complexes L·Si, L·Ge, and L·Sn showed a fluorescence in the red/NIR region. Fluorescence quantum yields of L·Ge and L·Sn are higher than that of L·Si. These results indicated that the central atom on the dipyrrin complexes contributes not only to the geometry difference but also to tuning the fluorescence properties.
Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F
2007-01-01
The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. Themore » theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.« less
NASA Astrophysics Data System (ADS)
Li, Yubo; Wang, Pengtao; Hua, Fei; Zhan, Shijie; Wang, Xiaozhi; Luo, Jikui; Yang, Hangsheng
2018-03-01
Electronic properties of cubic boron nitride (c-BN) doped with group IIA elements were systematically investigated using the first principle calculation based on density functional theory. The electronic bandgap of c-BN was found to be narrowed when the impurity atom substituted either the B (IIA→B) or the N (IIA→N) atom. For IIA→B, a shallow accept level degenerated into valence band (VB); while for IIA→N, a shallow donor level degenerated conduction band (CB). In the cases of IIBe→N and IIMg→N, deep donor levels were also induced. Moreover, a zigzag bandgap narrowing pattern was found, which is in consistent with the variation pattern of dopants' radius of electron occupied outer s-orbital. From the view of formation energy, the substitution of B atom under N-rich conditions and the substitution of N atom under B-rich conditions were energetically favored. Our simulation results suggested that Mg and Ca are good candidates for p-type dopants, and Ca is the best candidate for n-type dopant.
Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.
2007-08-01
Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.
Peppernick, Samuel J; Gunaratne, K D Dasitha; Castleman, A W
2010-01-19
Detailed in the present investigation are results pertaining to the photoelectron spectroscopy of negatively charged atomic ions and their isoelectronic molecular counterparts. Experiments utilizing the photoelectron imaging technique are performed on the negative ions of the group 10 noble metal block (i.e. Ni-, Pd-, and Pt-) of the periodic table at a photon energy of 2.33 eV (532 nm). The accessible electronic transitions, term energies, and orbital angular momentum components of the bound electronic states in the atom are then compared with photoelectron images collected for isoelectronic early transition metal heterogeneous diatomic molecules, M-X- (M = Ti,Zr,W; X = O or C). A superposition principle connecting the spectroscopy between the atomic and molecular species is observed, wherein the electronic structure of the diatomic is observed to mimic that present in the isoelectronic atom. The molecular ions studied in this work, TiO-, ZrO-, and WC- can then be interpreted as possessing superatomic electronic structures reminiscent of the isoelectronic elements appearing on the periodic table, thereby quantifying the superatom concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toga, Yuta; Suzuki, Tsuneaki; Sakuma, Akimasa, E-mail: sakuma@solid.apph.tohoku.ac.jp
2015-06-14
Using first-principles calculations, we investigate the positional dependence of trace elements such as O and Cu on the crystal field parameter A{sub 2}{sup 0}, proportional to the magnetic anisotropy constant K{sub u} of Nd ions placed at the surface of Nd{sub 2}Fe{sub 14}B grains. The results suggest the possibility that the A{sub 2}{sup 0} parameter of Nd ions at the (001) surface of Nd{sub 2}Fe{sub 14}B grains exhibits a negative value when the O or Cu atom is located near the surface, closer than its equilibrium position. At the (110) surface, however, O atoms located at the equilibrium position providemore » a negative A{sub 2}{sup 0}, while for Cu additions A{sub 2}{sup 0} remains positive regardless of Cu's position. Thus, Cu atoms are expected to maintain a positive local K{sub u} of surface Nd ions more frequently than O atoms when they approach the grain surfaces in the Nd-Fe-B grains.« less
On-chip quantum tomography of mechanical nanoscale oscillators with guided Rydberg atoms
NASA Astrophysics Data System (ADS)
Sanz-Mora, A.; Wüster, S.; Rost, J.-M.
2017-07-01
Nanomechanical oscillators as well as Rydberg-atomic waveguides hosted on microfabricated chip surfaces hold promise to become pillars of future quantum technologies. In a hybrid platform with both, we show that beams of Rydberg atoms in waveguides can quantum coherently interrogate and manipulate nanomechanical elements, allowing full quantum state tomography. Central to the tomography are quantum nondemolition measurements using the Rydberg atoms as probes. Quantum coherent displacement of the oscillator is also made possible by driving the atoms with external fields while they interact with the oscillator. We numerically demonstrate the feasibility of this fully integrated on-chip control and read-out suite for quantum nanomechanics, taking into account noise and error sources.
NASA Technical Reports Server (NTRS)
Heidmann, M. F.; Auble, C. M.
1955-01-01
The importance of atomizing and mixing liquid oxygen and heptane was studied in a 200-pound-thrust rocket engine. Ten injector elements were used with both steel and transparent chambers. Characteristic velocity was measured over a range of mixture ratios. Combustion gas-flow and luminosity patterns within the chamber were obtained by photographic methods. The results show that, for efficient combustion, the propellants should be both atomized and mixed. Heptane atomization controlled the combustion rate to a much larger extent than oxygen atomization. Induced mixing, however, was required to complete combustion in the smallest volume. For stable, high-efficiency combustion and smooth engine starts, mixing after atomization was most promising.
NASA Technical Reports Server (NTRS)
Barbier, Louis; Binns, W. R.; Christian, E.; deNolfo, G.; Geier, S.; Israel, M. H.; Link, J. T.; Mewaldt, R. A.; Mitchell, J.; Rauch, B. F.
2004-01-01
We present new results on the elemental abundances of galactic cosmic rays with atomic number, Z, greater than 30, and comparison of these observations with abundances expected from galactic propagation of various suggested models of the cosmic-ray source. We combine preliminary results from the 2003-04 flight of the Trans-Iron Galactic Element Recorder (TIGER) cosmic-ray detector with previously reported results from the 2001-02 flight. This instrument flew over Antarctica for nearly 32 days at a mean atmospheric depth of 5.2 mb in December 2001 - January 2002. At the time of submission of this abstract, January 8, 2004, TIGER was again in the air over Antarctica having completed 22 days of an expected 30day flight at a mean atmospheric depth of about 4 nb, Data from the first flight demonstrated excellent resolution of individual elements, and we expect similar resolution from the second flight.
NASA Astrophysics Data System (ADS)
Zeng, Ying; Jiang, Bin; Shi, Ouling; Quan, Gaofen; Al-Ezzi, Salih; Pan, FuSheng
2018-07-01
Some alloying elements (Al, Er, Gd, Li, Mn, Sn, Y, Zn) were proved recently by calculations or experiments to improve the formability of Mg alloys, but ignoring their site preference in Mg crystals during the calculated process. A crystallographic model was built via first principle calculations to predict the site preferences of these elements. Regularities between doping elements and site preferences were summarized. Meanwhile, in the basis of the crystallographic model, a series of formulas were deduced combining the diffraction law. It predicted that a crystal plane with abnormal XRD peak intensity of the Mg-based solid solutions, compared to that of the pure Mg, prefers to possess solute atoms. Thus, three single-phase solid solution alloys were then prepared through an original In-situ Solution Treatment, and their XRD patterns were compared. Finally, the experiment further described the site preferences of these solute atoms in Mg crystal, verifying the calculation results.
NASA Astrophysics Data System (ADS)
Rudolph, Dirk; Elding, Lars-Ivar; Fahlander, Claes; Åberg, Sven
2016-12-01
Science often develops most vigorously through challenging studies of extreme phenomena. Superheavy elements fall into such a category. What is the heaviest element that can exist in Nature? Driven by the continued search for an anticipated "island of stability" of superheavy atomic nuclei and the understanding of their underlying nuclear (in)stability and atomic structure hence chemical properties, the past decades have seen a tremendous progress in experimental ingenuity and theoretical methodology to study and characterize superheavy elements. Therefore, we are very grateful that the Nobel Foundation [1] approved and, jointly with the Knut and Alice Wallenberg Foundation [2], provided the financial resources to organize and conduct the Nobel Symposium NS160, entitled Chemistry and Physics of Heavy and Superheavy Elements. These symposia "are devoted to areas of science where breakthroughs are occurring or deal with other topics of primary cultural or social significance" [1]. About three symposia are held each year, roughly every fourth symposium promotes a topic in physics as primary research area, and from about every third symposium a contemporary Nobel Price is being awarded.
Enhanced light element imaging in atomic resolution scanning transmission electron microscopy.
Findlay, S D; Kohno, Y; Cardamone, L A; Ikuhara, Y; Shibata, N
2014-01-01
We show that an imaging mode based on taking the difference between signals recorded from the bright field (forward scattering region) in atomic resolution scanning transmission electron microscopy provides an enhancement of the detectability of light elements over existing techniques. In some instances this is an enhancement of the visibility of the light element columns relative to heavy element columns. In all cases explored it is an enhancement in the signal-to-noise ratio of the image at the light column site. The image formation mechanisms are explained and the technique is compared with earlier approaches. Experimental data, supported by simulation, are presented for imaging the oxygen columns in LaAlO₃. Case studies looking at imaging hydrogen columns in YH₂ and lithium columns in Al₃Li are also explored through simulation, particularly with respect to the dependence on defocus, probe-forming aperture angle and detector collection aperture angles. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeng, Ying; Jiang, Bin; Shi, Ouling; Quan, Gaofen; Al-Ezzi, Salih; Pan, FuSheng
2018-03-01
Some alloying elements (Al, Er, Gd, Li, Mn, Sn, Y, Zn) were proved recently by calculations or experiments to improve the formability of Mg alloys, but ignoring their site preference in Mg crystals during the calculated process. A crystallographic model was built via first principle calculations to predict the site preferences of these elements. Regularities between doping elements and site preferences were summarized. Meanwhile, in the basis of the crystallographic model, a series of formulas were deduced combining the diffraction law. It predicted that a crystal plane with abnormal XRD peak intensity of the Mg-based solid solutions, compared to that of the pure Mg, prefers to possess solute atoms. Thus, three single-phase solid solution alloys were then prepared through an original In-situ Solution Treatment, and their XRD patterns were compared. Finally, the experiment further described the site preferences of these solute atoms in Mg crystal, verifying the calculation results.
Nucleosynthesis: Stellar and Solar Abundances and Atomic Data
NASA Technical Reports Server (NTRS)
Cowan, John J.; Lawler, James E.; Sneden, Christopher; DenHartog, E. A.; Collier, Jason; Dodge, Homer L.
2006-01-01
Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy the progenitors of the halo stars responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nucleosynthesis. In addition age determinations, based upon long-lived radioactive nuclei abundances, can now be obtained. These stellar abundance determinations depend critically upon atomic data. Improved laboratory transition probabilities have been recently obtained for a number of elements. These new gf values have been used to greatly refine the abundances of neutron-capture elemental abundances in the solar photosphere and in very metal-poor Galactic halo stars. The newly determined stellar abundances are surprisingly consistent with a (relative) Solar System r-process pattern, and are also consistent with abundance predictions expected from such neutron-capture nucleosynthesis.
Integrated coherent matter wave circuits
Ryu, C.; Boshier, M. G.
2015-09-21
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
Halogen atom effect on the photophysical properties of substituted aza-BODIPY derivatives.
De Simone, B C; Mazzone, G; Pirillo, J; Russo, N; Sicilia, E
2017-01-18
The influence of halogen atom substitution (Br and I), in different amounts and positions in an aza-BODIPY skeleton, on the photophysical properties of some aza-BODIPY derivatives has been investigated by using density functional theory and its time-dependent extension. The heavy atom effect on excitation energies, singlet-triplet energy gaps and spin-orbit matrix elements has been considered. The maximum absorption within the therapeutic window has been confirmed for all the aza-BODIPY derivatives. The feasible intersystem spin crossing pathways for the population of the lowest triplet state, that will depend on the values of the spin-orbit matrix elements, the energy gap as well as the orbital composition of the involved states have been found to most likely involve the S 1 and T 1 or T 2 states. The outcomes of computations support the potential therapeutic use of these compounds as photosensitizers in photodynamic therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.
2010-11-12
Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to {tau}=1.38(0.21) h, and the final segregated configurationmore » was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.« less
NASA Astrophysics Data System (ADS)
Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.
2010-11-01
Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to τ=1.38(0.21)h, and the final segregated configuration was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.
Sanzolone, R.F.; Chao, T.T.
1978-01-01
Suppression caused by five of the seven matrix elements studied (Si, Al, Fe, Ca and Mg) was observed in the atomic-absorption determination of manganese in geological materials, when synthetic solutions and the recommended oxidizing air-acetylene flame were used. The magnitude of the suppression effects depends on (1) the kind and concentration of the interfering elements, (2) the type of acid medium, and (3) the concentration of manganese to be determined. All interferences noted are removed or alleviated by using a reducing nitrous oxide-acetylene flame. The atomic-absorption method using this flame can be applied to the determination of total and extractable manganese in a wide range of geological materials without interferences. Analyses of six U.S. Geological Survey rock standards for manganese gave results in agreement with the reported values. ?? 1978.
Oxides having high energy densities
Ceder, Gerbrand; Kang, Kisuk
2013-09-10
Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.; Boshier, M. G.
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
NASA Astrophysics Data System (ADS)
Rouhi, S.; Alizadeh, Y.; Ansari, R.; Aryayi, M.
2015-09-01
Molecular dynamics simulations are used to study the mechanical behavior of single-walled carbon nanotube reinforced composites. Polyethylene and polyketone are selected as the polymer matrices. The effects of nanotube atomic structure and diameter on the mechanical properties of polymer matrix nanocomposites are investigated. It is shown that although adding nanotube to the polymer matrix raises the longitudinal elastic modulus significantly, the transverse tensile and shear moduli do not experience important change. As the previous finite element models could not be used for polymer matrices with the atom types other than carbon, molecular dynamics simulations are used to propose a finite element model which can be used for any polymer matrices. It is shown that this model can predict Young’s modulus with an acceptable accuracy.
2013 Review of Neutron and Non-Neutron Nuclear Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, N. E.
2014-05-23
The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature over the past three years since the ISRD-14 Symposium has been performed and the highlights are presented. Included in the data review are the status of new chemical elements, new measurements of the isotopic composition for many chemical elements and the resulting change in the atomic weight values. New half-life measurements for both short-lived and longlived nuclides, some alpha decay and double beta decay measurements for quasistable nuclides are discussed. The latest evaluation of atomic masses has been published. Data from newmore » measurements on the very heavy (trans-meitnerium) elements are discussed and tabulated. Data on various recent neutron cross section and resonance integral measurements are discussed and tabulated.« less
Upgrade of the Surface Spectrometer at NEPOMUC for PAES, XPS and STM Investigations
NASA Astrophysics Data System (ADS)
Zimnik, S.; Lippert, F.; Hugenschmidt, C.
2014-04-01
The characterization of the elemental composition of surfaces is of great importance for the understanding of many surface processes, such as surface segregation or oxidation. Positron-annihilation-induced Auger Electron Spectroscopy (PAES) is a powerful technique for gathering information about the elemental composition of only the topmost atomic layer of a sample. The upgraded surface spectrometer at NEPOMUC (NEtron induced POsitron source MUniCh) enables a comprehensive surface analysis with the complementary techniques STM, XPS and PAES. A new X-ray source for X-ray induced photoelectron spectroscopy (XPS) was installed to gather additional information on oxidation states. A new scanning tunneling microscope (STM) is used as a complementary method to investigate with atomic resolution the surface electron density. The combination of PAES, XPS and STM allows the characterization of both the elemental composition, and the surface topology.
Characterization of a Viking Blade Fabricated by Traditional Forging Techniques
NASA Astrophysics Data System (ADS)
Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.
2016-12-01
A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.
Chen, S.G.; Yang, R.T.
1997-01-01
From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, John King; Nielsen, Erik; Baczewski, Andrew David
This paper describes our work over the past few years to use tools from quantum chemistry to describe electronic structure of nanoelectronic devices. These devices, dubbed "artificial atoms", comprise a few electrons, con ned by semiconductor heterostructures, impurities, and patterned electrodes, and are of intense interest due to potential applications in quantum information processing, quantum sensing, and extreme-scale classical logic. We detail two approaches we have employed: nite-element and Gaussian basis sets, exploring the interesting complications that arise when techniques that were intended to apply to atomic systems are instead used for artificial, solid-state devices.
Application of the Finite Element Method in Atomic and Molecular Physics
NASA Technical Reports Server (NTRS)
Shertzer, Janine
2007-01-01
The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.
Do some of the sub-micrometer cosmic dust particles come from the sun.
NASA Technical Reports Server (NTRS)
Hemenway, C. L.; Erkes, J. W.; Greenberg, J. M.; Hallgren, D. S.; Schmalberger, D. C.
1973-01-01
Studies of cosmic dust particles collected at altitudes of 80 to 120 km over White Sands, New Mexico, and at times of noctilucent clouds over Kiruna, Sweden, indicate that an anomalously high atomic weight contribution is present within those particles collected at Kiruna. The elements observed are inconsistent with an origin due to atomic bomb fallout, meteoroidal crumbling, lunar ejecta, or comets. Many of these heavy elements may be stable in particulate form at the relatively high temperatures found in the coolest regions of the solar atmosphere. Some implications of the sun as the source of a significant component of cosmic dust are discussed.
From deep TLS validation to ensembles of atomic models built from elemental motions
Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; ...
2015-07-28
The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy severalmore » conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.« less
Yang, Hao; MacLaren, Ian; Jones, Lewys; ...
2017-04-01
Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Thus coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light andmore » heavy elements at atomic resolution. Here, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Our experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.« less
NASA Astrophysics Data System (ADS)
Giannopoulos, Georgios I.; Kontoni, Denise-Penelope N.; Georgantzinos, Stylianos K.
2016-08-01
This paper describes the static and free vibration behavior of single walled boron nitride nanotubes using a structural mechanics based finite element method. First, depending on the type of nanotube under investigation, its three dimensional nanostructure is developed according to the well-known corresponding positions of boron and nitride atoms as well as boron nitride bonds. Then, appropriate point masses are assigned to the atomic positions of the developed space frame. Next, these point masses are suitably interconnected with two-noded, linear, spring-like, finite elements. In order to simulate effectively the interactions observed between boron and nitride atoms within the nanotube, appropriate potential energy functions are introduced for these finite elements. In this manner, various atomistic models for both armchair and zigzag nanotubes with different aspect ratios are numerically analyzed and their effective elastic modulus as well as their natural frequencies and corresponding mode shapes are obtained. Regarding the free vibration analysis, the computed results reveal bending, breathing and axial modes of vibration depending on the nanotube size and chirality as well as the applied boundary support conditions. The longitudinal stiffness of the boron nitride nanotubes is found also sensitive to their geometric characteristics.
Electronic structure of atoms: atomic spectroscopy information system
NASA Astrophysics Data System (ADS)
Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.
2017-10-01
The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.
Description of the atomic disorder (local order) in crystals by the mixed-symmetry method
NASA Astrophysics Data System (ADS)
Dudka, A. P.; Novikova, N. E.
2017-11-01
An approach to the description of local atomic disorder (short-range order) in single crystals by the mixed-symmetry method based on Bragg scattering data is proposed, and the corresponding software is developed. In defect-containing crystals, each atom in the unit cell can be described by its own symmetry space group. The expression for the calculated structural factor includes summation over different sets of symmetry operations for different atoms. To facilitate the search for new symmetry elements, an "atomic disorder expert" was developed, which estimates the significance of tested models. It is shown that the symmetry lowering for some atoms correlates with the existence of phase transitions (in langasite family crystals) and the anisotropy of physical properties (in rare-earth dodecaborides RB12).
Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.
1987-01-01
Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.
IUPAC Periodic Table of the Isotopes
Holden, N.E.; Coplen, T.B.; Böhlke, J.K.; Wieser, M.E.; Singleton, G.; Walczyk, T.; Yoneda, S.; Mahaffy, P.G.; Tarbox, L.V.
2011-01-01
For almost 150 years, the Periodic Table of the Elements has served as a guide to the world of elements by highlighting similarities and differences in atomic structure and chemical properties. To introduce students, teachers, and society to the existence and importance of isotopes of the chemical elements, an IUPAC Periodic Table of the Isotopes (IPTI) has been prepared and can be found as a supplement to this issue.
Superheavy-element spectroscopy: Correlations along element 115 decay chains
NASA Astrophysics Data System (ADS)
Rudolph, D.; Forsberg, U.; Sarmiento, L. G.; Golubev, P.; Fahlander, C.
2016-05-01
Following a brief summary of the region of the heaviest atomic nuclei yet created in the laboratory, data on more than hundred α-decay chains associated with the production of element 115 are combined to investigate time and energy correlations along the observed decay chains. Several of these are analysed using a new method for statistical assessments of lifetimes in sets of decay chains.
Atomic weights: no longer constants of nature
Coplen, Tyler B.; Holden, Norman E.
2011-01-01
Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature
1990-09-01
accuracy by Carl F. Austin, NWC; James Moore, California Energy Co.; and Robert 0. Fournier, Unites States Geological Survey. Approved by Under authority...protons, electrons , and neutrons. The electrical charge of protons is positive, and that of electrons is negative. Neutrons have no electrical charge...The number of protons determines what element an atom is and gives it its atomic number. In a neutral or nonionized atom the number of electrons
Reconfigurable Electronics and Non-Volatile Memory Research
2011-10-14
Sources of metal dopants were elemental metals and as well as, metal-Se compounds, and there was no evident difference in the measured Raman and Electron...similar in nature. Intensity of the most of the sample reduces with dopant concentration. This is due to the reduction in Ge-Ge and Ge-Se bonds as...the metal is incorporated into the glass. The metal dopant atoms will bond with the Se atoms [5] reducing the number of Se atoms that are available
2010 Neutron Review: ORNL Neutron Sciences Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardoel, Agatha A; Counce, Deborah M; Ekkebus, Allen E
2011-06-01
During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizesmore » to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron pnictides and chalcogenides), a class of materials discovered in 2008. This research is yielding new insights into the relationship between magnetism and superconductivity and has established several key features of this family of high-temperature superconducting (HTS ) materials: the maximum magnetic field at which they can function, the nature of the electrons involved in the superconductivity, the dependence of the properties upon chemical substitution, and the character of the magnetic fluctuations in the material. The results suggest that despite important differences between these materials and the HTS copper oxides, a universal mechanism may be responsible for the unconventional superconductivity. (4) Coal Sequestration Research: A New Home for Greenhouse Gases - One possibility for slowing down the increasing levels of carbon dioxide (CO{sub 2}) in the atmosphere is to capture the gas in natural underground features such as coal seams. Critical to the feasibility of this technology is determining how much CO{sub 2} can be stored, no method for which has been found - until now. (5) Accelerator Reliability Passes 92% - In December 2010, SNS set a new record for itself when the accelerator ran at 1 MW with 100% reliability. Target Performance Exceeds All Expectations - The mercury target used at SNS is the first of its kind. During the design and planning for SNS, many people were skeptical that the target would work. In 2010, it was confirmed that the target was working not only well but much better than anyone would have imagined. (6) Changing the World of Data Acquisition - Researchers at SNS are starting to benefit from event-based data analysis. Event data mode captures and stores an individual data set for every single neutron that strikes a detector - precisely when and where the neutron is detected. This technique provides numerous advantages over traditional methods. Event data mode allows researchers to process their data at the highest resolution possible with no loss of data. This method of data collection provides a much more efficient way for users to gather data and get the most from their beam time. (7) New Laboratories for Users - The HFIR and SNS user communities continue to grow dramatically. In 2010, HFIR hosted 862 users and SNS 796, outpacing projections for both facilities. To meet the needs of those users, a new complex of 13 laboratories is now open for users at SNS. (8) Innovative Detectors Provide Relief from Helium-3 Shortage - Helium-3 ({sup 3}He) has been the gas of choice for gaseous detectors since the early days of neutron science. About two years ago, detector scientists worldwide faced the reality that stockpiles of {sup 3}He are dwindling rapidly, while demand for it has risen by a factor of five. The Neutron Sciences Detectors Group has developed two new types of detectors that don't rely on {sup 3}He: the Anger camera and the wavelength shifting fiber neutron detector, both of which use lithium ({sup 6}Li).« less
NASA Astrophysics Data System (ADS)
Butcher, David James
1990-01-01
Here is reported novel instrumentation for atomic spectrometry that combined the use of a pulsed laser system as the light source and an electrothermal atomizer as the atom cell. The main goal of the research was to develop instrumentation that was more sensitive for elemental analysis than commercially available instruments and could be used to determine elements in real sample matrices. Laser excited atomic fluorescence spectrometry (LEAFS) in an electrothermal atomizer (ETA) was compared to ETA atomic absorption spectrometry (AAS) for the determination of thallium, manganese, and lead in food and agricultural standard reference materials (SRMs). Compared to ETA AAS, ETA LEAFS has a longer linear dynamic range (LDR) (5-7 orders of magnitude compared to 2-3 orders of magnitude) and higher sensitivity (10 ^{-16} to 10^{ -14} g as compared to 10^{ -13} to 10^{-11} g). Consequently, ETA LEAFS allows elemental analysis to be done over a wider range of concentrations with less dilution steps. Thallium was accurately determined in biological samples by ETA LEAFS at amounts five to one hundred times below the ETA AAS detection limit. ETA AAS and ETA LEAFS were compared for the determination of lead and manganese, and in general, the accuracies and precisions of ETA AAS were the same, with typical precisions between 3% and 6%. Fluorine was determined using laser excited molecular fluorescence spectrometry (LEMOFS) in an ETA. Molecular fluorescence from magnesium fluoride was collected, and the detection limit of 0.3 pg fluorine was two to six orders of magnitude more sensitive than other methods commonly used for the determination of fluorine. Significant interferences from ions were observed, but the sensitivity was high enough that fluorine could be determined in freeze dried urine SRMs by diluting the samples by a factor of one hundred to remove the interferences. Laser enhanced ionization (LEI) in an ETA was used for the determination of metals. For thallium, indium, and lithium, detection limits between 0.7 and 2 pg were obtained, with an LDR of 3.5 orders of magnitude. Sodium was shown to severely depress the indium LEI signal in an ETA.
HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOLDEN,N.E.
What do we mean by a chemical element? A chemical element is matter, all of whose atoms are alike in having the same positive charge on the nucleus and the same number of extra-nuclear electrons. As we shall see in the following elemental review, the origin of the chemical elements show a wide diversity with some of these elements having an origin in antiquity, other elements having been discovered within the past few hundred years and still others have been synthesized within the past fifty years via nuclear reactions on heavy elements since these other elements are unstable and radioactivemore » and do not exist in nature.« less
Trends in tungsten coil atomic spectrometry
NASA Astrophysics Data System (ADS)
Donati, George L.
Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective methods for trace metal determinations in several different samples, representing an important asset in today's analytical chemistry.
The History and Use of Our Earth's Chemical Elements: A Reference Guide (by Robert E. Krebs)
NASA Astrophysics Data System (ADS)
Bracken, Reviewed By Jeffrey D.
1999-04-01
Greenwood Press: Westport, CT, 1998. 282 pp + 25 pp glossary + 37 pp index. 15.9 x 24.1 cm. ISBN 0-313-30123-9. $39.95. This book is an excellent resource for chemical educators at the high school and college levels. The format of the text is consistent and the writing style is clear and concise, making it ideally suited for student use also. The first three chapters serve to introduce the reader to a brief history of chemistry, early models of the atom, and the development of the periodic table. Names of the contributing scientists are mentioned whenever necessary, but the overall purpose of these introductory chapters is simply to lay a foundation for the subsequent seven chapters. A complete glossary of important scientific terms mentioned in the text should allow beginning students to use this book without feeling overwhelmed. Each entry for the 112 elements contains the following information: elemental symbol, atomic number, period, common valence, atomic weight, natural state, common isotopes, properties, characteristics, abundance, natural sources, history, common uses and compounds, and safety hazards. This information is well organized, with clear headings and separate sections making the book extremely user-friendly. Readers can easily obtain the information they desire without having to skim the full entry for a chosen element. One very nice feature of this book is that the elements entries are arranged by their locations in the periodic table. For example, chapter 4 contains the alkali metals and alkaline earth metals. This organizational scheme allows one to quickly see the patterns and trends within groups of elements. This format is significantly better than arranging the elements in alphabetical order, which places the entry for sodium far removed from the entries for lithium and potassium. I would highly recommend this book to high school teachers and college chemistry professors. It is well written and is an excellent source of information for both students and educators.
Element Specific Imaging Using Muonic X-rays
NASA Astrophysics Data System (ADS)
Hillier, Adrian; Ishida, Katsu; Seller, Paul; Veale, Matthew C.; Wilson, Matthew D.
The RIKEN-RAL facility provides a source of negative muons that can be used to non-destructively determine the elemental composition of bulk samples. A negative muon can replace an electron in an atom and subsequently transition to lower orbital positions. As with conventional X-ray fluorescence, an X-ray photon is emitted with a characteristic energy to enable the transition between orbitals of an atom. As the mass of a negative muon is much greater than that of an electron, a higher energy X-ray photon is emitted when the negative muon transitions between orbitals compared to conventional X-ray fluorescence. The higher energy muonic X-rays are able to escape large samples even when they are emitted from lower Z atoms, making muonic X-rays fluorescence a unique method to characterize the elemental content of a sample. In a typical experiment a section of a sample will be probed with negative muons with the muon momentum tuned to interact at a desired depth in the sample. A small number of single element high purity Ge detectors are positioned to capture up to one photon each from each of the forty muon pulses per second at the RIKEN-RAL facility. This can provide a high resolution and high dynamic range X-ray energy spectrum when collected for several hours but can only provide a spatial average or single point elemental distribution per collection. Here, an STFC developed CdTe detector with 80 × 80 energy resolving channels has been used to demonstrate the ability to image the elemental distribution of a test sample. A test sample of C, Al, and Fe2O3 was positioned close to the detector surface and each of the 250 µm pitch pixels recorded a muonic X-ray energy spectrum. Results are presented to show the principal of this new technique and potential improvements to provide higher resolution and larger area elemental imaging using muonic X-rays are discussed.
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi
2018-06-01
The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.
Ariyama, Kaoru; Horita, Hiroshi; Yasui, Akemi
2004-09-22
The composition of concentration ratios of 19 inorganic elements to Mg (hereinafter referred to as 19-element/Mg composition) was applied to chemometric techniques to determine the geographic origin (Japan or China) of Welsh onions (Allium fistulosum L.). Using a composition of element ratios has the advantage of simplified sample preparation, and it was possible to determine the geographic origin of a Welsh onion within 2 days. The classical technique based on 20 element concentrations was also used along with the new simpler one based on 19 elements/Mg in order to validate the new technique. Twenty elements, Na, P, K, Ca, Mg, Mn, Fe, Cu, Zn, Sr, Ba, Co, Ni, Rb, Mo, Cd, Cs, La, Ce, and Tl, in 244 Welsh onion samples were analyzed by flame atomic absorption spectroscopy, inductively coupled plasma atomic emission spectrometry, and inductively coupled plasma mass spectrometry. Linear discriminant analysis (LDA) on 20-element concentrations and 19-element/Mg composition was applied to these analytical data, and soft independent modeling of class analogy (SIMCA) on 19-element/Mg composition was applied to these analytical data. The results showed that techniques based on 19-element/Mg composition were effective. LDA, based on 19-element/Mg composition for classification of samples from Japan and from Shandong, Shanghai, and Fujian in China, classified 101 samples used for modeling 97% correctly and predicted another 119 samples excluding 24 nonauthentic samples 93% correctly. In discriminations by 10 times of SIMCA based on 19-element/Mg composition modeled using 101 samples, 220 samples from known production areas including samples used for modeling and excluding 24 nonauthentic samples were predicted 92% correctly.
DFT Studies on Interaction between Lanthanum and Hydroxyamide
NASA Astrophysics Data System (ADS)
Pati, Anindita; Kundu, T. K.; Pal, Snehanshu
2018-03-01
Extraction and separation of individual rare earth elements has been a challenge as they are chemically very similar. Solvent extraction is the most suitable way for extraction of rare earth elements. Acidic, basic, neutral, chelating are the major classes of extractants for solvent extraction of rare earth elements. The coordination complex of chelating extractants is very selective with positively charged metal ion. Hence they are widely used. Hydroxyamide is capable of forming chelates with metal cations. In this present study interactions of hydroxyamide ligand with lanthanum have been investigated using density functional theory (DFT). Two different functional such as raB97XD and B3LYP are applied along with 6-31+G(d,p) basis set for carbon, nitrogen, hydrogen and SDD basis set for lanthanum. Stability of formed complexes has been evaluated based on calculated interaction energies and solvation energies. Frontier orbital (highest occupied molecular orbital or HOMO and lowest unoccupied molecular orbital or LUMO) energies of the molecule have also been calculated. Electronegativity, chemical hardness, chemical softness and chemical potential are also determined for these complexes to get an idea about the reactivity. From the partial charge distribution it is seen that oxygen atoms in hydroxyamide have higher negative charge. The double bonded oxygen atom present in the hydroxyamide structure has higher electron density and so it forms bond with lanthanum but the singly bonded oxygen atom in the hydroxyamide structure is weaker donor atom and so it is less available for interaction with lanthanum.
Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Haiyan; Zhu, Ye; Dwyer, Christian
2014-12-31
Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). Atmore » greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.« less
The New Element Americium (Atomic Number 95)
DOE R&D Accomplishments Database
Seaborg, G.T.; James, R.A.; Morgan, L.O.
1948-01-01
Several isotopes of the new element 95 have been produced and their radiations characterized. The chemical properties of this tripositive element are similar to those of the typical tripositive lanthanide rare-earth elements. Element 95 is different from the latter in the degree and rate of formation of certain compounds of the complex ion type, which makes possible the separation of element 95 from the lanthanide rare-earths. The name americium (after the Americas) and the symbol Am are suggested for the element on the basis of its position as the sixth member of the actinide rare-earth series, analogous to europium, Eu, of the lanthanide series.
Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)
NASA Astrophysics Data System (ADS)
Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.
2017-03-01
This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.
Mota, F de B; Rivelino, R; Medeiros, P V C; Mascarenhas, A J S; de Castilho, C M C
2014-11-21
First-principles calculations demonstrate that line/ribbon defects, resulting from a controlled dehydrogenation in graphane, lead to the formation of low-dimensional electron-rich tracks in a monolayer. The present simulations point out that hybrid graphane-graphene nanostructures exhibit important elements, greatly required for the fabrication of efficient electronic circuits at the atomic level.
MacArthur, Katherine E; Brown, Hamish G; Findlay, Scott D; Allen, Leslie J
2017-11-01
Advances in microscope stability, aberration correction and detector design now make it readily possible to achieve atomic resolution energy dispersive X-ray mapping for dose resilient samples. These maps show impressive atomic-scale qualitative detail as to where the elements reside within a given sample. Unfortunately, while electron channelling is exploited to provide atomic resolution data, this very process makes the images rather more complex to interpret quantitatively than if no electron channelling occurred. Here we propose small sample tilt as a means for suppressing channelling and improving quantification of composition, whilst maintaining atomic-scale resolution. Only by knowing composition and thickness of the sample is it possible to determine the atomic configuration within each column. The effects of neighbouring atomic columns with differing composition and of residual channelling on our ability to extract exact column-by-column composition are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Building Complex Kondo Impurities by Manipulating Entangled Spin Chains.
Choi, Deung-Jang; Robles, Roberto; Yan, Shichao; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Gauyacq, Jean-Pierre; Lorente, Nicolás; Ternes, Markus; Loth, Sebastian
2017-10-11
The creation of molecule-like structures in which magnetic atoms interact controllably is full of potential for the study of complex or strongly correlated systems. Here, we create spin chains in which a strongly correlated Kondo state emerges from magnetic coupling of transition-metal atoms. We build chains up to ten atoms in length by placing Fe and Mn atoms on a Cu 2 N surface with a scanning tunneling microscope. The atoms couple antiferromagnetically via superexchange interaction through the nitrogen atom network of the surface. The emergent Kondo resonance is spatially distributed along the chain. Its strength can be controlled by mixing atoms of different transition metal elements and manipulating their spatial distribution. We show that the Kondo screening of the full chain by the electrons of the nonmagnetic substrate depends on the interatomic entanglement of the spins in the chain, demonstrating the prerequisites to build and probe spatially extended strongly correlated nanostructures.
2013-03-27
Research Office (W911NF-12-1-0023). Ab initio calculations have been performed to study the effects of solute atoms on the c/a ratio of magnesium alloys ... effects of alloying elements on the c/a ratio of magnesium were performed. The most commonly and extensively used alloying elements such as Al, Mn, and... Magnesium Alloy Design - Theoretical and Experimental Studies of the Influence of Alloying Elements on Deformation Twinning M.F. Horstemeyer
76 FR 70896 - Polyethylene Glycol; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
76 FR 69662 - Methacrylic Polymer; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is... part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
Electronegativity and the Bond Triangle
ERIC Educational Resources Information Center
Meek, Terry L.; Garner, Leah D.
2005-01-01
The usefulness of the bond triangle for categorizing compounds of the main-group elements may be extended by the use of weighted average electronegativities to allow distinction between compounds of the same elements with different stoichiometries. In such cases a higher valency for the central atom leads to greater covalent character and the…
Atom and Bond Fukui Functions and Matrices: A Hirshfeld-I Atoms-in-Molecule Approach.
Oña, Ofelia B; De Clercq, Olivier; Alcoba, Diego R; Torre, Alicia; Lain, Luis; Van Neck, Dimitri; Bultinck, Patrick
2016-09-19
The Fukui function is often used in its atom-condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms-in-molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld-I atoms-in-molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld-I approach to obtain atom- and bond-condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms-in-molecule approach shows low correlation between the two partitioning schemes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Itakura, Masaru; Watanabe, Natsuki; Nishida, Minoru; Daio, Takeshi; Matsumura, Syo
2013-05-01
We have investigated local element distributions in a Dy-doped Nd2Fe14B hot-deformed magnet by atomic-column resolution chemical mapping using an X-ray energy-dispersive spectrometer (XEDS) attached to an aberration-corrected scanning transmission electron microscope (Cs-corrected STEM). The positions of the Nd and Dy atomic columns were visualized in the XEDS maps. The substitution of Dy was limited to a surface layer 2-3 unit cells thick in the Nd2Fe14B grains, and the Dy atoms preferentially occupied the 4f-Nd sites of Nd2Fe14B. These results provide further insights into the principal mechanism governing the coercivity enhancement due to Dy doping.
Liquid-metal atomization for hot working preforms
NASA Technical Reports Server (NTRS)
Grant, N. J.; Pelloux, R. M.
1974-01-01
Rapid quenching of a liquid metal by atomization or splat cooling overcomes the major limitation of most solidification processes, namely, the segregation of alloying elements, impurities, and constituent phases. The cooling rates of different atomizing processes are related to the dendrite arm spacings and to the microstructure of the atomized powders. The increased solubility limits and the formation of metastable compounds in splat-cooled alloys are discussed. Consolidation of the powders by hot isostatic compaction, hot extrusion, or hot forging and rolling processes yields billets with properties equivalent to or better than those of the wrought alloys. The application of this powder processing technology to high-performance alloys is reviewed.
Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra
NASA Technical Reports Server (NTRS)
Valenti, J. A.; Piskunov, N.
1996-01-01
We describe a new software package that may be used to determine stellar and atomic parameters by matching observed spectra with synthetic spectra generated from parameterized atmospheres. A nonlinear least squares algorithm is used to solve for any subset of allowed parameters, which include atomic data (log gf and van der Waals damping constants), model atmosphere specifications (T(sub eff, log g), elemental abundances, and radial, turbulent, and rotational velocities. LTE synthesis software handles discontiguous spectral intervals and complex atomic blends. As a demonstration, we fit 26 Fe I lines in the NSO Solar Atlas (Kurucz et al.), determining various solar and atomic parameters.
NASA Astrophysics Data System (ADS)
Gramaccioni, Chiara; Yang, Yang; Procopio, Alessandra; Pacureanu, Alexandra; Bohic, Sylvain; Malucelli, Emil; Iotti, Stefano; Farruggia, Giovanna; Bukreeva, Inna; Notargiacomo, Andrea; Fratini, Michela; Valenti, Piera; Rosa, Luigi; Berlutti, Francesca; Cloetens, Peter; Lagomarsino, Stefano
2018-01-01
We present here a correlative X-ray microscopy approach for quantitative single cell imaging of molar concentrations. By combining the elemental content provided by X-ray fluorescence microscopy and the morphology information extracted from X-ray phase nanotomography, we determine the intracellular molarity distributions. This correlative method was demonstrated on a freeze-dried human phagocytic cell to obtain the absolute elemental concentration maps of K, P, and Fe. The cell morphology results showed a very good agreement with atomic-force microscopy measurements. This work opens the way for non-destructive single cell chemical analysis down to the sub-cellular level using exclusively synchrotron radiation techniques. It will be of high interest in the case where it is difficult to access the morphology using atomic-force microscopy, for example, on frozen-hydrated cells or tissues.
Viets, J.G.; O'Leary, R. M.; Clark, Robert J.
1984-01-01
Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.
Magnetic elements for switching magnetization magnetic force microscopy tips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambel, V.; Elias, P.; Gregusova, D.
2010-09-01
Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, lowmore » switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.« less
Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Sliding friction experiments, conducted with various iron base alloys (alloying elements are Ti, Cr, Mn, Ni, Rh and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum are discussed. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is as an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.
Exospheric perturbations by radiation pressure. II - Solution for orbits in the ecliptic plane
NASA Technical Reports Server (NTRS)
Chamberlain, J. W.
1980-01-01
A previous study (Chamberlain, 1979) gave solutions for the mean time rates of change of orbital elements of satellite atoms in an exosphere influenced by solar radiation pressure; each element was assumed to behave independently. In the present paper, the instantaneous rates of changes for three elements (e, Omega, and phi = omega + Omega) are integrated simultaneously for the case of the inclination i = 0. The results confirm the validity of using mean rates when the orbits are tighly bound to the planet, and serve as examples to be reproduced by the complicated numerical solutions required for arbitrary inclination. Strongly bound hydrogen atoms perturbed in earth orbit by radiation pressure do not seem a likely cause of the geotail extending in the anti-sun direction. Instead, radiation pressure will cause those particles' orbits to form a broad fan-shaped tail and to deteriorate into the earth's atmosphere.
Essential and toxic elements in meat of wild birds.
Roselli, Carla; Desideri, Donatella; Meli, Maria Assunta; Fagiolino, Ivan; Feduzi, Laura
2016-01-01
Essential and toxic elements were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES), mass spectrometry (MS), and atomic absorption (AS) in meat of 14 migratory birds originating from central and northern Europe to provide baseline data regarding game meat consumed in central Italy. In all samples analyzed, cobalt (Co) and chromium (Cr) (total) levels were <0.326 mg/kg ww . For nonessential or toxic elements, arsenic (As), barium (Ba), cadmium (Cd), stannous (Sn), thallium (Tl), tellurium (Te), titanium (Ti), cerium (Ce), lantanium (La), and uranium (U) concentrations were <0.326 mg/kg ww, thorium (Th) <1.63 mg/kg ww , and mercury (Hg) <0.0163 mg/kg ww . When detectable, lead (Pb) concentrations always exceeded maximal admissible levels for metal (0.1 mg/kg ww ) established by the European Commission for meat. These findings indicate that elevated Pb concentrations in game ingested by humans may be a cause for concern.
Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis.
Liu, Qun; Hendrickson, Wayne A
2017-01-01
The normal elastic X-ray scattering that depends only on electron density can be modulated by an "anomalous" component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.
Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event.
Kasen, Daniel; Metzger, Brian; Barnes, Jennifer; Quataert, Eliot; Ramirez-Ruiz, Enrico
2017-11-02
The cosmic origin of elements heavier than iron has long been uncertain. Theoretical modelling shows that the matter that is expelled in the violent merger of two neutron stars can assemble into heavy elements such as gold and platinum in a process known as rapid neutron capture (r-process) nucleosynthesis. The radioactive decay of isotopes of the heavy elements is predicted to power a distinctive thermal glow (a 'kilonova'). The discovery of an electromagnetic counterpart to the gravitational-wave source GW170817 represents the first opportunity to detect and scrutinize a sample of freshly synthesized r-process elements. Here we report models that predict the electromagnetic emission of kilonovae in detail and enable the mass, velocity and composition of ejecta to be derived from observations. We compare the models to the optical and infrared radiation associated with the GW170817 event to argue that the observed source is a kilonova. We infer the presence of two distinct components of ejecta, one composed primarily of light (atomic mass number less than 140) and one of heavy (atomic mass number greater than 140) r-process elements. The ejected mass and a merger rate inferred from GW170817 imply that such mergers are a dominant mode of r-process production in the Universe.
Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO2 glasses.
Sato, K; Hatta, T
2015-03-07
Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO2 glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.
Intrinsic Studies of Materials.
RELAXATION TIME , CRYSTAL LATTICES), (*RARE EARTH ELEMENTS, *ELECTRON TRANSITIONS), (*CRYSTAL DEFECTS, INTERACTIONS), EXCITATION, DOPING, LANTHANUM COMPOUNDS, PHONONS, ATOMIC ENERGY LEVELS, HOLMIUM, CHLORIDES, PRASEODYMIUM
Atom-scale depth localization of biologically important chemical elements in molecular layers.
Schneck, Emanuel; Scoppola, Ernesto; Drnec, Jakub; Mocuta, Cristian; Felici, Roberto; Novikov, Dmitri; Fragneto, Giovanna; Daillant, Jean
2016-08-23
In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers' global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces.
Malucelli, Emil; Iotti, Stefano; Gianoncelli, Alessandra; Fratini, Michela; Merolle, Lucia; Notargiacomo, Andrea; Marraccini, Chiara; Sargenti, Azzurra; Cappadone, Concettina; Farruggia, Giovanna; Bukreeva, Inna; Lombardo, Marco; Trombini, Claudio; Maier, Jeanette A; Lagomarsino, Stefano
2014-05-20
We report a method that allows a complete quantitative characterization of whole single cells, assessing the total amount of carbon, nitrogen, oxygen, sodium, and magnesium and providing submicrometer maps of element molar concentration, cell density, mass, and volume. This approach allows quantifying elements down to 10(6) atoms/μm(3). This result was obtained by applying a multimodal fusion approach that combines synchrotron radiation microscopy techniques with off-line atomic force microscopy. The method proposed permits us to find the element concentration in addition to the mass fraction and provides a deeper and more complete knowledge of cell composition. We performed measurements on LoVo human colon cancer cells sensitive (LoVo-S) and resistant (LoVo-R) to doxorubicin. The comparison of LoVo-S and LoVo-R revealed different patterns in the maps of Mg concentration with higher values within the nucleus in LoVo-R and in the perinuclear region in LoVo-S cells. This feature was not so evident for the other elements, suggesting that Mg compartmentalization could be a significant trait of the drug-resistant cells.
Atom-scale depth localization of biologically important chemical elements in molecular layers
Schneck, Emanuel; Scoppola, Ernesto; Drnec, Jakub; Mocuta, Cristian; Felici, Roberto; Novikov, Dmitri; Fragneto, Giovanna; Daillant, Jean
2016-01-01
In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers’ global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces. PMID:27503887
Holographic method for site-resolved detection of a 2D array of ultracold atoms
NASA Astrophysics Data System (ADS)
Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes
2016-08-01
We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.
Single-Atom Single-Photon Quantum Interface
NASA Astrophysics Data System (ADS)
Moehring, David; Bochmann, Joerg; Muecke, Martin; Specht, Holger; Weber, Bernhard; Wilk, Tatjana; Rempe, Gerhard
2008-05-01
By combining atom trapping techniques and cavity cooling schemes we are able to trap a single neutral atom inside a high-finesse cavity for several tens of seconds. We show that our coupled atom-cavity system can be used to generate single photons in a controlled way. With our long trapping times and high single-photon production efficiency, the non-classical properties of the emitted light can be shown in the photon correlations of a single atom. In a similar atom-cavity setup, we investigate the interface between atoms and photons by entangling a single atom with a single photon emitted into the cavity and by further mapping the quantum state of the atom onto a second single photon. These schemes are intrinsically deterministic and establish the basic element required to realize a distributed quantum network with individual atoms at rest as quantum memories and single flying photons as quantum messengers. This work was supported by the Deutsche Forschungsgemeinschaft, and the European Union SCALA and CONQUEST programs. D. L. M. acknowledges support from the Alexander von Humboldt Foundation.
Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Multipass sliding friction experiments were conducted with various iron base binary alloys in contact with a single crystal silicon carbide surface in vacuum. Results indicate that the atomic size and concentration of alloy elements play important roles in controlling the transfer and friction properties of iron base binary alloys. Alloys having high solute concentration produce more transfer than do alloys having low solute concentration. The coefficient of friction during multipass sliding generally increases with an increase in the concentration of alloying element. The change of friction with succeeding passes after the initial pass also increases as the solute to iron, atomic radius ratio increases or decreases from unity.
Sampling and analysis techniques for monitoring serum for trace elements.
Ericson, S P; McHalsky, M L; Rabinow, B E; Kronholm, K G; Arceo, C S; Weltzer, J A; Ayd, S W
1986-07-01
We describe techniques for controlling contamination in the sampling and analysis of human serum for trace metals. The relatively simple procedures do not require clean-room conditions. The atomic absorption and atomic emission methods used have been applied in studying zinc, copper, chromium, manganese, molybdenum, selenium, and aluminum concentrations. Values obtained for a group of 16 normal subjects agree with the most reliable values reported in the literature, obtained by much more elaborate techniques. All of these metals can be measured in 3 to 4 mL of serum. The methods may prove especially useful in monitoring concentrations of essential trace elements in blood of patients being maintained on total parenteral nutrition.
Atomic and ionic spectrum lines below 2000A: hydrogen through argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, R.L.
1982-10-01
A critical tabulation of observed spectral lines below 2000 angstroms has been prepared from the published literature up to July 1978. It is intended principally as an aid to those physicists and astronomers who deal with the spectra of highly stripped atoms. This report includes the first 18 elements, from hydrogen (including deuterium) through argon. The tabulation is divided into two main sections: the spectrum lines by spectrum, and a finding list. The entries for each element give the ionization species, ground state term, and ionization potential, as well as the best values of vacuum wavelength, intensity, and classification. Amore » list of the pertinent references is appended at the end.« less
Aluminum powder metallurgy processing
NASA Astrophysics Data System (ADS)
Flumerfelt, Joel Fredrick
In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.
Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA
NASA Astrophysics Data System (ADS)
Donovan, J.; Singer, J.; Armstrong, J. T.
2016-12-01
Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.
ERIC Educational Resources Information Center
Chinni, Rosemarie C.
2012-01-01
This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…
The calculation of molecular Eigen-frequencies
NASA Technical Reports Server (NTRS)
Lindemann, F. A.
1984-01-01
A method of determining molecular eigen-frequencies based on the function of Einstein expressing the variation of the atomic heat of various elements is proposed. It is shown that the same equation can be utilized to calculate both atomic heat and optically identifiably eigen-frequencies - at least to an order of magnitude - suggesting that in both cases the same oscillating structure is responsible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Shashank
2017-11-01
The digital electronics at the atomic limit (DEAL) project seeks to leverage Sandia's atomic-precision fabrication capability to realize the theorized orders-of-magnitude improvement in operating voltage for tunnel field effect transistors (TFETs) compared to CMOS. Not only are low-power digital circuits a critical element of many national security systems (e.g. satellites), TFETs can perform circuit functions inaccessible to CMOS (e.g. polymorphism).
NASA Astrophysics Data System (ADS)
Le Kien, Fam; Schneeweiss, Philipp; Rauschenbeutel, Arno
2013-05-01
We present a systematic derivation of the dynamical polarizability and the ac Stark shift of the ground and excited states of atoms interacting with a far-off-resonance light field of arbitrary polarization. We calculate the scalar, vector, and tensor polarizabilities of atomic cesium using resonance wavelengths and reduced matrix elements for a large number of transitions. We analyze the properties of the fictitious magnetic field produced by the vector polarizability in conjunction with the ellipticity of the polarization of the light field.
Methods for analysis of selected metals in water by atomic absorption
Fishman, Marvin J.; Downs, Sanford C.
1966-01-01
This manual describes atomic-absorption-spectroscopy methods for determining calcium, copper, lithium, magnesium, manganese, potassium, sodium, strontium and zinc in atmospheric precipitation, fresh waters, and brines. The procedures are intended to be used by water quality laboratories of the Water Resources Division of the U.S. Geological Survey. Detailed procedures, calculations, and methods for the preparation of reagents are given for each element along with data on accuracy, precision, and sensitivity. Other topics discussed briefly are the principle of atomic absorption, instrumentation used, and special analytical techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainshtein, �. E.; Zhurakovskii, E. A.
1959-08-01
X-ray spectral analyses confirmed the hypothesis on the metal-like state of hydrogen in tithnium hydrides. Experiments with titunium borides and silicides indicate the special character and degree of the 3d--level participation in the metallic'' bond between the atoms of various complexes. The structure of metalloid elements becomes more complicated with an increase in the specific number of boron and silicon atoms and the bond between the atoms tends to become covalent. (R.V.J.)
2016-09-06
displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent...associated with the atoms as well as in displacements of atoms from their ideal lattice sites. II. SYNTHESIS OF THE J141Sc COMPOSITION Berardan et al...Plotted in Figure 6 are the average atom displacements for the three large systems as a function of element type. For J14 (open bars), the dis
NASA Astrophysics Data System (ADS)
Rauch, T.; Deetjen, J. L.
2003-01-01
State-of-the-art NLTE model atmosphere codes have arrived at a high level of ``numerical'' sophistication and are an adequate tool to analyze the available high-quality spectra from the infrared to the X-ray wavelength range. The computational capacities allow the calculation which include all elements from hydrogen up to the iron group and the lack of reliable atomic data has become a crucial problem for further progress. We summarize briefly the available sources of atomic data and how these are implemented in the Tübingen Model Atmosphere Package (TMAP).
NASA Technical Reports Server (NTRS)
Ferrenberg, A.; Hunt, K.; Duesberg, J.
1985-01-01
The primary objective was the obtainment of atomization and mixing performance data for a variety of typical liquid oxygen/hydrocarbon injector element designs. Such data are required to establish injector design criteria and to provide critical inputs to liquid rocket engine combustor performance and stability analysis, and computational codes and methods. Deficiencies and problems with the atomization test equipment were identified, and action initiated to resolve them. Test results of the gas/liquid mixing tests indicated that an assessment of test methods was required. A series of 71 liquid/liquid tests were performed.
Local electronic effects and irradiation resistance in high-entropy alloys
Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; ...
2015-08-14
High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.
75 FR 44917 - Castor Oil, Ethoxylated, Dioleate; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in...
77 FR 30407 - 1,2-Ethanediamine, N
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... environment. 2. The polymer does contain as an integral part of its composition the atomic elements carbon... impurities, any element other than those listed in 40 CFR 723.250(d)(2)(ii). 4. The polymer is neither...
75 FR 40751 - Castor Oil, Ethoxylated, Oleate; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... contain as an integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other...
78 FR 20032 - Styrene-Ethylene-Propylene Block Copolymer; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... integral part of its composition, the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-14
... result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is... integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
Emissions Inventory of PM2.5 Trace Elements across the United States
This paper presents the first National Emissions Inventory (NEI) of fine particulate matter (PM2.5) that includes the full suite of PM2.5 trace elements (atomic number >10) measured at ambient monitoring sites across the U.S. PM 2.5 emissions in ...
Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez
2018-03-01
This study investigates the use of Scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) as a diagnostic tool for the determination of the osseous origin of samples subjected to different temperatures. Sheep (Ovis aries) ribs of two experimental groups (fleshed and defleshed) were burned at temperatures of between 100°C and 1100°C in 100°C increments and subsequently analyzed with the SEM-EDX to determine the atomic percentage of present elements. Three-factor ANOVA analysis showed that neither the exposure temperature, nor whether the burning occurred with or without soft tissue present had any significant influence on the bone's overall elemental makeup (p > 0.05). The Ca/P ratio remained in the osseous typical range of between 1.6 and 2.58 in all analyzed samples. This demonstrates that even faced with high temperatures, the overall gross elemental content and atomic percentage of elements in bone remain stable, creating a unique "fingerprint" for osseous material, even after exposure to extreme conditions. © 2017 American Academy of Forensic Sciences.
Gamble, Bruce M.; Bailey, Elizabeth A.; Shew, Nora B.; Labay, Keith A.; Schmidt, Jeanine M.; O'Leary, Richard M.; Detra, David E.
2010-01-01
During the 1960s through the 1980s, the U.S. Geological Survey conducted reconnaissance geochemical surveys of drainage basins throughout most of the Iliamna, Lake Clark, Lime Hills, and Talkeetna 1:250,000-scale quadrangles and parts of the McGrath, Seldovia, and Tyonek 1:250,000-scale quadrangles in Alaska. These geochemical surveys provide data necessary to assess the potential for undiscovered mineral resources and provide data that may be used to determine regional-scale element baselines. This report provides new data for 1,075 of the previously collected stream-sediment samples. The new analyses include a broader spectrum of elements and provide data that are more precise than the original analyses. All samples were analyzed for arsenic by hydride generation atomic absorption spectrometry, for gold, palladium, and platinum by inductively coupled plasma-mass spectrometry after lead button fire assay separation, and for a suite of 55 major, rare earth, and trace elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry after sodium peroxide sinter at 450 degrees Celsius.
A computer code for calculations in the algebraic collective model of the atomic nucleus
NASA Astrophysics Data System (ADS)
Welsh, T. A.; Rowe, D. J.
2016-03-01
A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.
Multipole expansions and Fock symmetry of the hydrogen atom
NASA Astrophysics Data System (ADS)
Meremianin, A. V.; Rost, J.-M.
2006-10-01
The main difficulty in utilizing the O(4) symmetry of the hydrogen atom in practical calculations is the dependence of the Fock stereographic projection on energy. This is due to the fact that the wavefunctions of the states with different energies are proportional to the hyperspherical harmonics (HSH) corresponding to different points on the hypersphere. Thus, the calculation of the matrix elements reduces to the problem of re-expanding HSH in terms of HSH depending on different points on the hypersphere. We solve this problem by applying the technique of multipole expansions for four-dimensional HSH. As a result, we obtain the multipole expansions whose coefficients are the matrix elements of the boost operator taken between hydrogen wavefunctions (i.e., hydrogen form factors). The explicit expressions for those coefficients are derived. It is shown that the hydrogen matrix elements can be presented as derivatives of an elementary function. Such an operator representation is convenient for the derivation of recurrence relations connecting matrix elements between states corresponding to different values of the quantum numbers n and l.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cashman, Frances H.; Kulkarni, Varsha P.; Kisielius, Romas
2017-05-01
Measurements of element abundances in galaxies from astrophysical spectroscopy depend sensitively on the atomic data used. With the goal of making the latest atomic data accessible to the community, we present a compilation of selected atomic data for resonant absorption lines at wavelengths longward of 911.753 Å (the H i Lyman limit), for key heavy elements (heavier than atomic number 5) of astrophysical interest. In particular, we focus on the transitions of those ions that have been observed in the Milky Way interstellar medium (ISM), the circumgalactic medium (CGM) of the Milky Way and/or other galaxies, and the intergalactic mediummore » (IGM). We provide wavelengths, oscillator strengths, associated accuracy grades, and references to the oscillator strength determinations. We also attempt to compare and assess the recent oscillator strength determinations. For about 22% of the lines that have updated oscillator strength values, the differences between the former values and the updated ones are ≳0.1 dex. Our compilation will be a useful resource for absorption line studies of the ISM, as well as studies of the CGM and IGM traced by sight lines to quasars and gamma-ray bursts. Studies (including those enabled by future generations of extremely large telescopes) of absorption by galaxies against the light of background galaxies will also benefit from our compilation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumagai, Tomohisa, E-mail: kumagai@criepi.denken.or.jp; Nakamura, Kaoru; Yamada, Susumu
The effects of guest atomic species in Si clathrates on the lattice thermal conductivity were studied using classical molecular dynamics calculations. The interaction between a host atom and a guest atom was described by the Morse potential function while that between host atoms was described by the Tersoff potential. The parameters of the potentials were newly determined for this study such that the potential curves obtained from first-principles calculations for the insertion of a guest atom into a Si cage were successfully reproduced. The lattice thermal conductivities were calculated by using the Green-Kubo method. The experimental lattice thermal conductivity ofmore » Ba{sub 8}Ga{sub 16}Si{sub 30} can be successfully reproduced using the method. As a result, the lattice thermal conductivities of type-I Si clathrates, M{sub 8}Si{sub 46} (M = Na, Mg, K, Ca Rb, Sr, Cs, or Ba), were obtained. It is found that the lattice thermal conductivities of M{sub 8}Si{sub 46}, where M is IIA elements (i.e., M = Mg, Ca, Sr, or Ba) tend to be lower than those of M{sub 8}Si{sub 46}, where M is IA elements (i.e., M = Na, K, Rb, or Cs). Those of {sup m}M{sub 8}Si{sub 46}, where m was artificially modified atomic weight were also obtained. The obtained lattice thermal conductivity can be regarded as a function of a characteristic frequency, f{sub c}. That indicates minimum values around f{sub c}=2-4 THz, which corresponds to the center of the frequencies of the transverse acoustic phonon modes associated with Si cages.« less
NASA Astrophysics Data System (ADS)
Şimşek, Ö.; Karagöz, D.; Ertugrul, M.
2003-10-01
The K to L shell vacancy transfer probabilities for nine elements in the atomic region 46≤ Z≤55 were determined by measuring the L X-ray yields from targets excited by 5.96 and 59.5 keV photons and using the theoretical K and L shell photoionization cross-sections. The L X-rays from different targets were detected with an Ultra-LEGe detector with very thin polymer window. Present experimental results were compared with the semi empirical values tabulated by Rao et al. [Atomic vacancy distributions product by inner shellionization, Phys. Rev. A 5 (1972) 997-1002] and theoretically calculated values using radiative and radiationless transitions. The radiative transitions of these elements were observed from the relativistic Hartree-Slater model, which was proposed by Scofield [Relativistic Hartree-Slater values for K and L shell X-ray emission rates, At. Data Nucl. Data Tables 14 (1974) 121-137]. The radiationless transitions were observed from the Dirac-Hartree-Slater model, which was proposed by Chen et al. [Relativistic radiationless transition probabilities for atomic K- and L-shells, At. Data Nucl. Data Tables 24 (1979) 13-37]. To the best of our knowledge, these vacancy transfer probabilities are reported for the first time.
Williams, Monique; Bozhilov, Krassimir; Ghai, Sanjay; Talbot, Prue
2017-01-01
Objective Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs) and electronic hookahs (EHs), examine the effect of puffing topography on elements in aerosols, and identify the source of the elements. Methods Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy. Results Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium), thick wire (copper coated with silver), brass clamp (copper, zinc), solder joints (tin, lead), and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum). Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs). Conclusion These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals. PMID:28414730
Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton
2015-11-01
Atomic simulations were undertaken to analyse the effect of polymer chain scission on amorphous poly(lactide) during degradation. Many experimental studies have analysed mechanical properties degradation but relatively few computation studies have been conducted. Such studies are valuable for supporting the design of bioresorbable medical devices. Hence in this paper, an Effective Cavity Theory for the degradation of Young's modulus was developed. Atomic simulations indicated that a volume of reduced-stiffness polymer may exist around chain scissions. In the Effective Cavity Theory, each chain scission is considered to instantiate an effective cavity. Finite Element Analysis simulations were conducted to model the effect of the cavities on Young's modulus. Since polymer crystallinity affects mechanical properties, the effect of increases in crystallinity during degradation on Young's modulus is also considered. To demonstrate the ability of the Effective Cavity Theory, it was fitted to several sets of experimental data for Young's modulus in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai
2014-04-17
Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.
Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian
2015-01-01
The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.
A new scale of electronegativity based on electrophilicity index.
Noorizadeh, Siamak; Shakerzadeh, Ehsan
2008-04-17
By calculating the energies of neutral and different ionic forms (M2+, M+, M, M-, and M2-) of 32 elements (using B3LYP/6-311++G** level of theory) and taking energy (E) to be a Morse-like function of the number of electrons (N), the electrophilicity values (omega) are calculated for these atoms. The obtained electrophilicities show a good linearity with some commonly used electronegativity scales such as Pauling and Allred-Rochow. Using these electrophilicities, the ionicities of some diatomic molecules are calculated, which are in good agreement with the experimental data. Therefore, these electrophilicities are introduced as a new scale for atomic electronegativity, chi(omega)0. The same procedure is also performed for some simple polyatomic molecules. It is shown that the new scale successfully obeys Sanderson's electronegativity equalization principle and for those molecules which have the same number of atoms, the ratio of the change in electronegativity during the formation of a molecule from its elements to the molecular electronegativity (Delta chi/chi omega) is the same.
Scharfenberger, Christian; Wong, Alexander; Clausi, David A
2015-01-01
We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.
Mechanics of low-dimensional carbon nanostructures: Atomistic, continuum, and multi-scale approaches
NASA Astrophysics Data System (ADS)
Mahdavi, Arash
A new multiscale modeling technique called the Consistent Atomic-scale Finite Element (CAFE) method is introduced. Unlike traditional approaches for linking the atomic structure to its equivalent continuum, this method directly connects the atomic degrees of freedom to a reduced set of finite element degrees of freedom without passing through an intermediate homogenized continuum. As a result, there is no need to introduce stress and strain measures at the atomic level. The Tersoff-Brenner interatomic potential is used to calculate the consistent tangent stiffness matrix of the structure. In this finite element formulation, all local and non-local interactions between carbon atoms are taken into account using overlapping finite elements. In addition, a consistent hierarchical finite element modeling technique is developed for adaptively coarsening and refining the mesh over different parts of the model. This process is consistent with the underlying atomic structure and, by refining the mesh to the scale of atomic spacing, molecular dynamic results can be recovered. This method is valid across the scales and can be used to concurrently model atomistic and continuum phenomena so, in contrast with most other multi-scale methods, there is no need to introduce artificial boundaries for coupling atomistic and continuum regions. Effect of the length scale of the nanostructure is also included in the model by building the hierarchy of elements from bottom up using a finite size atom cluster as the building block. To be consistent with the bravais multi-lattice structure of sp2-bonded carbon, two independent displacement fields are used for reducing the order of the model. Sparse structure of the stiffness matrix of these nanostructures is exploited to reduce the memory requirement and to speed up the formation of the system matrices and solution of the equilibrium equations. Applicability of the method is shown with several examples of the nonlinear mechanics of carbon nanotubes and carbon nanocones subject to different loadings and boundary conditions. This finite element technique is also used to study the natural frequencies of low-dimensional carbon nanostructures and comparing the results with those of a homogenized isotropic continuum shell. Conclusion is that, replacing the atomic lattice with an isotropic continuum shell for a graphene sheet does not significantly affect the vibration frequencies while in the case of carbon nanotubes and carbon nanocones there is a significant difference between the natural frequencies of the atomistic model and its continuum counterpart. In the case of the carbon nanotube, continuum model successfully captures the beam bending vibration modes while overestimating frequencies of the modes in which the cross-section undergoes significant deformation. Furthermore, in the case of carbon nanotubes, the continuum shell exhibits a torsional mode which appears to be an artifact resulting from the small nominal thickness typically used in the continuum shell approximation of these nanostructures. Results of this study indicate that isotropic continuum shell models, while simple and useful in static analysis, cannot accurately predict the vibration frequencies of these nanostructures. We have studied the bistable nature of single-walled carbon nanotubes by investigating the change in the tube's energy as it is compressed between flat rigid indenters of various widths. Assuming the nanotube deformed uniformly along its length and modeling the cross-section as an inextensible, non-linear beam we found that tubes with a radius greater than 12 A are bistable and that tubes with a radius greater than 25 A have a lower energy in the collapsed state than in the inflated state. The difference in energy between the collapsed and inflated states decreases nearly linearly with increasing tube radius. While the inflated state remains stable for tubes of all diameters, the energy barrier keeping the tube from collapsing approaches zero as the tube radius increases. We also demonstrate why collapse with a wide indenter may be difficult to observe in narrow tubes. A reduced-order model is developed for the dynamics of the carbon nanotube atomic force microscope probes. Bending behavior of the nanotube probe is modeled using Euler's elastica. A nonlinear moment-curvature relationship is implemeneted to account for the ovalization of the cross section of the nanotube during bending. Van der Waal forces acting between tube and the substrate is integrated over the surface of the tube and used as distributed follower forces acting on the equivalent elastica. Approximating the behavior of the nanotube with an elastica proved to be a very effiecient technique for modeling these nanostructures.
NASA Astrophysics Data System (ADS)
Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth
2015-06-01
Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.
NASA Astrophysics Data System (ADS)
Rotella, H.; Caby, B.; Ménesguen, Y.; Mazel, Y.; Valla, A.; Ingerle, D.; Detlefs, B.; Lépy, M.-C.; Novikova, A.; Rodriguez, G.; Streli, C.; Nolot, E.
2017-09-01
The optical and electrical properties of transparent conducting oxide (TCO) thin films are strongly linked with the structural and chemical properties such as elemental depth profile. In R&D environments, the development of non-destructive characterization techniques to probe the composition over the depth of deposited films is thus necessary. The combination of Grazing-Incidence X-ray Fluorescence (GIXRF) and X-ray reflectometry (XRR) is emerging as a fab-compatible solution for the measurement of thickness, density and elemental profile in complex stacks. Based on the same formalism, both techniques can be implemented on the same experimental set-up and the analysis can be combined in a single software in order to refine the sample model. While XRR is sensitive to the electronic density profile, GIXRF is sensitive to the atomic density (i. e. the elemental depth profile). The combination of both techniques allows to get simultaneous information about structural properties (thickness and roughness) as well as the chemical properties. In this study, we performed a XRR-GIXRF combined analysis on indium-free TCO thin films (Ga doped ZnO compound) in order to correlate the optical properties of the films with the elemental distribution of Ga dopant over the thickness. The variation of optical properties due to annealing process were probed by spectroscopic ellipsometry measurements. We studied the evolution of atomic profiles before and after annealing process. We show that the blue shift of the band gap in the optical absorption edge is linked to a homogenization of the atomic profiles of Ga and Zn over the layer after the annealing. This work demonstrates that the combination of the techniques gives insight into the material composition and makes the XRR-GIXRF combined analysis a promising technique for elemental depth profiling.
NASA Technical Reports Server (NTRS)
Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.
1976-01-01
Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.
Single and pair-wise manipulation of atoms in a 3D optical lattice
NASA Astrophysics Data System (ADS)
Corcovilos, Theodore; Wang, Yang; Weiss, David
2013-05-01
We describe the hardware used in a quantum computing experiment using individual Cs atoms in a 5 μm -spaced 3D optical lattice as qubits. Far-off-resonance addressing beams can be steered to any site in the array using MEMS mirrors within 10 μs , allowing the translation of individual atoms between lattice sites, for example to remove vacancies in the atom array, and the manipulation of single atoms for single qubit gates in < 100 μs . Two-qubit gates on adjacent atoms can be performed via the Rydberg blockade mechanism using a second MEMS system and high-NA imaging objective. The lasers for the Rydberg excitation are built using a new extended cavity diode laser design utilizing an interference filter as the frequency selecting element following Baillard, et al. (Opt. Comm. 266: 609 (2009)), but using commercially available components. We gratefully acknowledge funding from ARO and DARPA.
Analog tree-organized multiplexer
NASA Technical Reports Server (NTRS)
Crabbe, J. S.; Smith, D. M.; Turner, W. R.
1971-01-01
An analog tree-organized multiplexer (ATOM) which is intended for use in the telemetry system of an interplanetary spacecraft is designed. The ATOM will be fabricated by a monolithic, dielectric isolation process, and will contain silicon junction field effect transistors (JFET) as the active elements. The effect of the radiation environment on the performance of the ATOM is analyzed. The result indicates that the expected radiation environment will cause only minor changes in the preradiation characteristics of ATOM. The JFET in the ATOM is designed to meet the electrical requirements when fabricated by either the double poly-dielectric isolation process or the raised dielectric isolation process. The effect of the heat treatment required for the dielectric isolation process on the diffusion profile of the JFET is described. The layout of the ATOM circuit for fabrication by either the double poly or raised dielectric isolation process is also given.
NASA Astrophysics Data System (ADS)
Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te
2016-10-01
Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.
NASA Astrophysics Data System (ADS)
Agustin, RR; Liliasari, L.; Sinaga, P.; Rochintaniawati, D.
2017-09-01
Atoms, ions and molecules are considered as abstract concepts that often lead to students’ learning difficulties. Th is study aimed at providing description of pre-service science teachers (PSTs)’ creative thinking skills on atoms, elements and compounds digital media creation. Qualitative descriptive method were employed to acquire data. Instruments used were rubric of PSTs’ digital teaching media, open ended question related to PSTs’ technological knowledge and pre-test about atoms, ions and molecules that were given to eighteen PSTs. The study reveals that PSTs’ creative thinking skills were still low and inadequate to create qualified teaching media of atoms, ions and molecules. PSTs’ content and technological knowledge in regard with atoms, ions and molecules are the most contributing factors. This finding support the necessity of developing pre-service and in-service science teachers’ creative thinking skill in digital media that is embedded to development of technological content knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jursenas, Rytis, E-mail: Rytis.Jursenas@tfai.vu.l; Merkelis, Gintaras
2011-01-15
General expressions for the second-order effective atomic Hamiltonian are derived for open-subshell atoms in jj-coupling. The expansion terms are presented as N-body (N=0,1,2,3) effective operators given in the second quantization representation in coupled tensorial form. Two alternative coupled tensorial forms for each expansion term have been developed. To reduce the number of expressions of the effective Hamiltonian, the reduced matrix elements of antisymmetric two-particle wavefunctions are involved in the consideration. The general expressions presented allow the determination of the spin-angular part of expansion terms when studying correlation effects dealing with a number of problems in atomic structure calculations.
Single-shot imaging of trapped Fermi gas
NASA Astrophysics Data System (ADS)
Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena
2016-07-01
Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.
Harnly, J.M.; Kane, J.S.
1984-01-01
The effect of the acid matrix, the measurement mode (height or area), the atomizer surface (unpyrolyzed and pyrolyzed graphite), the atomization mode (from the wall or from a platform), and the atomization temperature on the simultaneous electrothermal atomization of Co, Cr, Cu, Fe, Mn, Mo, Ni, V, and Zn was examined. The 5% HNO3 matrix gave rise to severe irreproducibility using a pyrolyzed tube unless the tube was properly "prepared". The 5% HCl matrix did not exhibit this problem, and no problems were observed with either matrix using an unpyrolized tube or a pyrolyzed platform. The 5% HCl matrix gave better sensitivities with a pyrolyzed tube but the two matrices were comparable for atomization from a platform. If Mo and V are to be analyzed with the other seven elements, a high atomization temperature (2700??C or greater) is necessary regardless of the matrix, the measurement mode, the atomization mode, or the atomizer surface. Simultaneous detection limits (peak height with pyrolyzed tube atomization) were comparable to those of conventional atomic absorption spectrometry using electrothermal atomization above 280 nm. Accuracies and precisions of ??10-15% were found in the 10 to 120 ng mL-1 range for the analysis of NBS acidified water standards.
Biogeochemistry of the rare-earth elements with particular reference to hickory trees
Robinson, W.O.; Bastron, H.; Murata, K.J.
1958-01-01
Hickory trees concentrate the rare-earth elements in their leaves to a phenomenal degree and may contain as much as 2300 p.p.m. of total rare earths based on the dry weight of the leaves. The average proportions of the individual elements (atomic percent of the total rare-earth elements) in the leaves are: Y 36, La 16, Ce 14, Pr 2, Nd 20, Sm 1, Eu 0.7, Gd 3, Tb 0.6, Dy 3, Ho 0.7, Er 2, Tm 0.2, Yb 1, and Lu 0.2. The similarity in the proportions of the rare-earth elements in the leaves and in the exchange complex of the soil on which the hickory trees grow indicates that the trees do not fractionate the rare earths appreciably. The variation of the rare-earth elements in the leaves and soils can be explained generally in terms of the relative abundance of the cerium group and the yttrium group, except for the element cerium. The large fluctuations in the proportion of cerium [Ce/(La + Nd) atomic ratios of 0.16 to 0.86] correlate with oxidation-reduction conditions in the soil profile. The substitution of dilute H2SO3 for dilute HC1 in the determination of available rare-earth elements brings about a large increase in the proportion of cerium that is extracted from an oxygenated subsoil. These relationships strongly suggest that quadrivalent cerium is present in oxygenated subsoil and is less available to plants than the other rare-earth elements that do not undergo such a change in valence. A few parts per billion of rare-earth elements have been detected in two samples of ground water. ?? 1958.
The generator coordinate Dirac-Fock method for open-shell atomic systems
NASA Astrophysics Data System (ADS)
Malli, Gulzari L.; Ishikawa, Yasuyuki
1998-11-01
Recently we developed generator coordinate Dirac-Fock and Dirac-Fock-Breit methods for closed-shell systems assuming finite nucleus and have reported Dirac-Fock and Dirac-Fock-Breit energies for the atoms He through Nobelium (Z=102) [see Refs. Reference 10Reference 11Reference 12Reference 13]. In this paper, we generalize our earlier work on closed-shell systems and develop a generator coordinate Dirac-Fock method for open-shell systems. We present results for a number of representative open-shell heavy atoms (with nuclear charge Z>80) including the actinide and superheavy transactinide (with Z>103) atomic systems: Fr (Z=87), Ac (Z=89), and Lr (Z=103) to E113 (eka-thallium, Z=113). The high accuracy obtained in our open-shell Dirac-Fock calculations is similar to that of our closed-shell calculations, and we attribute it to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite difference method. The DF SCF energies calculated by Desclaux [At. Data. Nucl. Data Tables 12, 311 (1973)] (apart from a typographic error for Fr pointed out here) are higher than those reported here for atoms of some of the superheavy transactinide elements by as much as 5 hartrees (136 eV). We believe that this is due to the use by Desclaux of much larger atomic masses than the currently accepted values for these elements.
NASA Astrophysics Data System (ADS)
2001-08-01
La Silla Telescope Detects Lots of Lead in Three Distant Binaries Summary Very high abundances of the heavy element Lead have been discovered in three distant stars in the Milky Way Galaxy . This finding strongly supports the long-held view that roughly half of the stable elements heavier than Iron are produced in common stars during a phase towards the end of their life when they burn their Helium - the other half results from supernova explosions. All the Lead contained in each of the three stars weighs about as much as our Moon. The observations show that these "Lead stars" - all members of binary stellar systems - have been more enriched with Lead than with any other chemical element heavier than Iron. This new result is in excellent agreement with predictions by current stellar models about the build-up of heavy elements in stellar interiors. The new observations are reported by a team of Belgian and French astronomers [1] who used the Coude Echelle Spectrometer on the ESO 3.6-m telescope at the La Silla Observatory (Chile). PR Photo 26a/01 : A photo of HD 196944 , one of the "Lead stars". PR Photo 26b/01 : A CES spectrum of HD 196944 . The build-up of heavy elements Astronomers and physicists denote the build-up of heavier elements from lighter ones as " nucleosynthesis ". Only the very lightest elements (Hydrogen, Helium and Lithium [2]) were created at the time of the Big Bang and therefore present in the early universe. All the other heavier elements we now see around us were produced at a later time by nucleosynthesis inside stars. In those "element factories", nuclei of the lighter elements are smashed together whereby they become the nuclei of heavier ones - this process is known as nuclear fusion . In our Sun and similar stars, Hydrogen is being fused into Helium. At some stage, Helium is fused into Carbon, then Oxygen, etc. The fusion process requires positively charged nuclei to move very close to each other before they can unite. But with increasing atomic mass and hence, increasing positive charge of the nuclei, the electric repulsion between the nuclei becomes stronger and stronger. In fact, the fusion process only works up to a certain mass limit, corresponding to the element Iron [2]. All elements that are heavier than Iron cannot be produced via this path. But then, how were those heavy elements we now find on the Earth produced in the first place? From where comes the Zirconium in artificial diamonds, the Barium that colours fireworks, the Tungsten in the filaments in electric bulbs? Which process made the Lead in your car battery? Beyond iron The production of elements heavier than Iron takes place by adding neutrons to the atomic nuclei . These neutral particles do not feel any electrical repulsion from the charged nuclei. They can therefore easily approach them and thereby create heavier nuclei. This is indeed the way the heaviest chemical elements are built up. There are actually two different stellar environments where this process of "neutron capture" can happen. One place where this process occurs is inside very massive stars when they explode as supernovae . In such a dramatic event, the build-up proceeds very rapidly, via the so-called "r-process" ( "r" for rapid ). The AGB stars But not all heavy elements are created in such an explosive way. A second possibility follows a more "peaceful" road. It takes place in rather normal stars, when they burn their Helium towards the end of their lives. In the so-called "s-process" ( "s" for slow ), heavier elements are then produced by a rather gentle addition of neutral neutrons to atomic nuclei. In fact, roughly half of all the elements heavier than Iron are believed to be synthesized by this process during the late evolutionary phases of stars. This process takes place during a specific stage of stellar evolution, known as the "AGB" phase [3]. It occurs just before an old star expels its gaseous envelope into the surrounding interstellar space and sometime thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and strongly reinforce our current understanding of heavy element nucleosynthesis. But detecting the element Lead is not easy - the expected spectral lines of Lead in stellar spectra are relatively weak, and they are blended with many nearby absorption lines of other elements. Moreover, bona-fide, low-metallicity AGB stars appear to be extremely rare in the solar neighborhood . But if the necessary observations are so difficult, how is it then possible to probe nucleosynthesis in low-metallicity AGB stars? CH-stars in binary systems ESO PR Photo 26a/01 ESO PR Photo 26a/01 [Preview - JPEG: 350 x 400 pix - 232k] [Normal - JPEG: 700 x 800 pix - 616k] Caption : One of the three Lead stars, HD 196944 that was analyzed in the present research programme (at the center of the field). This star lies about 1600 light years away in the constellation Aquarius. At magnitude 9, it is not visible to the unaided eye, but easily seen through a small amateur telescope. Still, the detailed spectroscopic study reported in this Press release that revealed a high abundance of Lead in this star required a 4-m class telescope. This DSS-image are copyright by the UK SERC/PPARC (Particle Physics and Astronomy Research Council, formerly Science and Engineering Research Council), the Anglo-Australian Telescope Board and the Association of Universities for Research in Astronomy (AURA). The spikes seen in this photo are an optical effect in the telescope. In a determined effort in this direction, a team of Belgian and French astronomers [1] decided to try to detect the presence of Lead in some "CH-stars" [4] that are located about 1600 light-years away, high above the main plane of our Milky Way Galaxy. Over-abundance of some heavy elements has been observed in some "CH-stars". But CH-stars are not very luminous and have not yet evolved to the AGB phase. Hence they are totally unable to produce heavy elements. So how can there be heavy elements in the CH-stars? This mystery was solved when it was realized that the CH-stars all belong to binary systems and that they therefore have a companion star [5]. That companion is now a white dwarf star and was therefore at some earlier moment an AGB star ! During its AGB-phase, the companion star expelled much of its material, eventually producing the "planetary nebula" phenomenon, referred to above. In this process, a lot of its material, enriched with heavy elements produced by the "s-process" during the AGB phase, was deposited in the atmosphere of the CH-star that is now observed. The former AGB-star, now a slowly cooling, dim white-dwarf star, still orbits the CH-star. For this reason, the atmospheric composition of a CH-star actually carries the signature of the nucleosynthesis that took place deep inside the companion AGB star at an earlier epoch. Spectroscopic observations of CH-stars thus provide the opportunity to probe the predicted s-process in low-metallicity stars. Three stars with Lead ESO PR Photo 26b/01 ESO PR Photo 26b/01 [Preview - JPEG: 400 x 371 pix - 95k] [Normal - JPEG: 800 x 741 pix - 240k] Caption : A high-resolution spectrum of the CH-star HD 196944, obtained with the CES instrument on the ESO 3.6-m telescope in September 2000. The observed spectrum (dots) shows many absorption lines from elements that are usually seen in stars. The red line shows a model in which elements (in particular those produced by the s-process) are present in normal quantities, compared to Iron. The blue line instead shows a model where s-processing has occured. It is obvious that the red line does not fit, only the blue line reproduces the observed absorption line at wavelength 405.781 nm caused by Lead (Pb) atoms in the atmosphere of this star. A subsequent, detailed analysis demonstrated that HD 196944 is a true "Lead star". Technical information about this photo is available below. A necessary condition for these observations to succeed is a very high spectral resolution in order to detect the spectral line of Lead (Pb), in particular to "resolve" it among the many absorption lines from other elements, present in the stellar spectrum in this wavelength region. Moreover, a fairly large telescope is needed as the stars to be observed are relatively rare, hence distant and faint for this kind of demanding observations. The Belgian and French astronomers decided to use the Coude Echelle Spectrometer (CES) at the ESO 3.6-m telescope on La Silla, a telescope/instrument combination offering some hope of success for these difficult observations. Spectra of three southern stars, HD 187861, HD 196944 and HD 224959 , were obtained during two nights in September 2000 and found to be of excellent quality. The scientists were very pleased to find that the Lead absorption line was clearly present and very strong in the spectra of all three stars . A subsequent, detailed analysis demonstrated that the three stars all have a substantial overabundance of Lead. Moreover, from the measured abundances of other elements in these spectra, it is also clear that this Lead has been formed in the s-process . The astronomers were able to prove that the Lead cannot originate from the competing "r-process" that occurs in other environments like supernova explosions. " This is the first detection of a Lead-star ", explains Sophie Van Eck from the Institut d'Astronomie et d'Astrophysique of the Université Libre de Bruxelles (Belgium). " These stars are almost exclusively enriched with Lead. Moreover, the abundances in all three stars show a remarkable similarity ." How does the s-process operate? The high abundance of Lead in these otherwise low-metallicity stars also provides detailed clues on how the s-process operates inside the AGB stars. When a Carbon-13 nucleus (i.e. a nucleus with 6 protons and 7 neutrons [2]) is hit by a Helium-4 nucleus (2 protons and 2 neutrons), they fuse to form Oxygen-16 (8 protons and 8 neutrons). In this process - as can be seen by adding the numbers - one neutron is released. It is exactly these surplus neutrons that become the building-blocks for making heavier elements via the s-process. Hence the true source of the required neutrons is the Carbon-13 isotope, which is in turn produced by fusion of normal carbon (Carbon-12) and protons, i.e. hydrogen nuclei. However, an additional problem is that it seems that nowhere inside the star would there be sufficient Carbon and Hydrogen in the same place to allow this process to take off. Indeed most hydrogen nuclei have already been "used up" and have fused to heavier nuclei, including Carbon. But the observations now prove that the s-process does happen - how is this then possible? Mixing the star Current models of stellar interiors suggest that a moderate, "partial" mixing occurs that occasionally drags Hydrogen down to the Carbon-rich inner regions (and some Carbon moves up into the Hydrogen-rich region). It is still not clearly understood exactly how this process operates, but the Belgian astronomers independently predicted that if such a "partial mixing process" does take place in a low-metallicity star, then Lead-stars should exist and it should also be possible to observe them. " Our discovery of these Lead stars is without any doubt the clearest signature of that model prediction we have today ", states Sophie Van Eck . " The excellent agreement between predicted and observed abundances reinforces our current understanding of the detailed operation of the s-process in the deep interiors of the stars, and thus constitutes an important piece of information on how the heaviest stable elements in the universe are formed ." Three moons and your car battery The astronomers altogether found a mass of Lead in each of the three stars that is about the same as the mass of our Moon (7.4 x 10 22 kg). Stars like these were once the most efficient Lead factories in the Universe. It is likely that the Lead in your car battery was once produced in such a low-metallicity star. From that star, it was later dispersed into the interstellar medium and was present in the cloud of dust and gas from which the Solar System and hence our Earth was formed. More information The research described in this Press Release is reported in a scientific article ("Discovery of three Lead stars" by S. Van Eck, S. Goriely, A. Jorissen and B. Plez) that appears in the August 23, 2001 issue of the science journal "Nature". Notes [1]: The team consists of Sophie Van Eck , Stéphane Goriely , Alain Jorissen (all Institut d'Astronomie et d'Astrophysique de l'Université Libre de Bruxelles, Belgium) and Bertrand Plez (Groupe de Recherche en Astronomie et Astrophysique en Languedoc, Université de Montpellier II - GRAAL), France). Sophie Van Eck was an ESO fellow (1999-2000). [2] The "atomic mass" of a chemical element is the total mass of the positively charged protons and neutral neutrons in the atomic nucleus. The "atomic number" of a chemical element is equal to the number of protons in the nucleus. Different isotopes of a chemical element all have the same number of protons in the nuclei, but a different number of neutrons. For the principal (most abundant) isotopes of the elements mentioned in this text, the "atomic mass" (expressed in "atomic mass units" (amu)) is approximately: Hydrogen : 1 atomic mass unit (with 1 proton in the nucleus); Helium : 4 atomic mass units (2 protons + 2 neutrons); Lithium : 7 atomic mass units (3 protons + 4 neutrons); Carbon : 12 atomic mass units (6 protons + 6 neutrons); Oxygen : 16 atomic mass units (8 protons + 8 neutrons); Iron : 56 atomic mass units (26 protons + 30 neutrons); Zirconium : 90 atomic mass units (40 protons + 50 neutrons); Barium : 138 atomic mass units (56 protons + 82 neutrons); Tungsten : 184 atomic mass units (74 protons + 110 neutrons); Lead : 208 atomic mass units (82 protons + 126 neutrons); Bismuth : 209 atomic mass units (83 protons + 126 neutrons) [3] "AGB" stands for "Asymptotic Giant Branch"; a location in the HR-diagramme (a plot of stellar colours and luminosities) of evolved stars in which hydrogen and helium burning occurs in two concentric shells and elements heavier than iron are produced via the s-process. [4] The "CH-stars" owe their name to the prominent bands of the CH-molecule observed in their spectrum. [5] The fact that CH-stars are all double stars was discovered by the Canadian astronomer Robert McClure in 1984. Technical information about the photos PR Photo 26b/01 shows a small section of the reduced spectrum of the CH-star HD 196944, near wavelength 4050 Angstrom. It was obtained during a 90-min exposure with the Coude Echelle Spectrometer at the ESO 3.6-m telescope on La Silla in 16 September 2000. The spectral resolution is 135 000.
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, Steven D.
1996-06-11
A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.
Inelastic Transitions in Slow Collisions of Anti-Hydrogen with Hydrogen Atoms
NASA Astrophysics Data System (ADS)
Harrison, Robert; Krstic, Predrag
2007-06-01
We calculate excited adiabatic states and nonadiabatic coupling matrix elements of a quasimolecular system containing hydrogen and anti-hydrogen atoms, for a range of internuclear distances from 0.2 to 20 Bohrs. High accuracy is achieved by exact diagonalization of the molecular Hamiltionian in a large Gaussian basis. Nonadiabatic dynamics was calculated by solving MOCC equations. Positronium states are included in the consideration.
Atomic solid state energy scale: Universality and periodic trends in oxidation state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelatt, Brian D.; Kokenyesi, Robert S.; Ravichandran, Ram
2015-11-15
The atomic solid state energy (SSE) scale originates from a plot of the electron affinity (EA) and ionization potential (IP) versus band gap (E{sub G}). SSE is estimated for a given atom by assessing an average EA (for a cation) or an average IP (for an anion) for binary inorganic compounds having that specific atom as a constituent. Physically, SSE is an experimentally-derived average frontier orbital energy referenced to the vacuum level. In its original formulation, 69 binary closed-shell inorganic semiconductors and insulators were employed as a database, providing SSE estimates for 40 elements. In this contribution, EA and IPmore » versus E{sub G} are plotted for an additional 92 compounds, thus yielding SSE estimates for a total of 64 elements from the s-, p-, d-, and f-blocks of the periodic table. Additionally, SSE is refined to account for its dependence on oxidation state. Although most cations within the SSE database are found to occur in a single oxidation state, data are available for nine d-block transition metals and one p-block main group metal in more than one oxidation state. SSE is deeper in energy for a higher cation oxidation state. Two p-block main group non-metals within the SSE database are found to exist in both positive and negative oxidation states so that they can function as a cation or anion. SSEs for most cations are positioned above −4.5 eV with respect to the vacuum level, and SSEs for all anions are positioned below. Hence, the energy −4.5 eV, equal to the hydrogen donor/acceptor ionization energy ε(+/−) or equivalently the standard hydrogen electrode energy, is considered to be an absolute energy reference for chemical bonding in the solid state. - Highlights: • Atomic solid-state energies are estimated for 64 elements from experimental data. • The relationship between atomic SSEs and oxidation state is assessed. • Cations are positioned above and absolute energy of −4.5 eV and anions below.« less
Atomic diffusion and mixing in old stars. V. A deeper look into the globular cluster NGC 6752
NASA Astrophysics Data System (ADS)
Gruyters, Pieter; Nordlander, Thomas; Korn, Andreas J.
2014-07-01
Context. Abundance trends in heavier elements with evolutionary phase have been shown to exist in the globular cluster NGC 6752 ([Fe / H] = -1.6). These trends are a result of atomic diffusion and additional (non-convective) mixing. Studying such trends can provide us with important constraints on the extent to which diffusion modifies the internal structure and surface abundances of solar-type, metal-poor stars. Aims: Taking advantage of a larger data sample, we investigate the reality and the size of these abundance trends and address questions and potential biases associated with the various stellar populations that make up NGC 6752. Methods: We perform an abundance analysis by combining photometric and spectroscopic data of 194 stars located between the turnoff point and the base of the red giant branch. Stellar parameters are derived from uvby Strömgren photometry. Using the quantitative-spectroscopy package SME, stellar surface abundances for light elements such as Li, Na, Mg, Al, and Si as well as heavier elements such as Ca, Ti, and Fe are derived in an automated way by fitting synthetic spectra to individual lines in the stellar spectra, obtained with the VLT/FLAMES-GIRAFFE spectrograph. Results: Based on uvby Strömgren photometry, we are able to separate three stellar populations in NGC 6752 along the evolutionary sequence from the base of the red giant branch down to the turnoff point. We find weak systematic abundance trends with evolutionary phase for Ca, Ti, and Fe which are best explained by stellar-structure models including atomic diffusion with efficient additional mixing. We derive a new value for the initial lithium abundance of NGC 6752 after correcting for the effect of atomic diffusion and additional mixing which falls slightly below the predicted standard BBN value. Conclusions: We find three stellar populations by combining photometric and spectroscopic data of 194 stars in the globular cluster NGC 6752. Abundance trends for groups of elements, differently affected by atomic diffusion and additional mixing, are identified. Although the statistical significance of the individual trends is weak, they all support the notion that atomic diffusion is operational along the evolutionary sequence of NGC 6752. Based on data collected at the ESO telescopes under programs 079.D-0645(A) and 081.D-0253(A).Full Tables 2 and 8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A72
Optical beams with embedded vortices: building blocks for atom optics and quantum information
NASA Astrophysics Data System (ADS)
Chattrapiban, N.; Arakelyan, I.; Mitra, S.; Hill, W. T., III
2006-05-01
Laser beams with embedded vortices, Bessel or Laguerre-Gaussian modes, provide a unique opportunity for creating elements for atom optics, entangling photons and, potentially, mediating novel quantum interconnects between photons and matter. High-order Bessel modes, for example, contain intensity voids and propagate nearly diffraction-free for tens of meters. These vortices can be exploited to produce dark channels oriented longitudinally (hollow beams) or transversely to the laser propagation direction. Such channels are ideal for generating networks or circuits to guide and manipulate cold neutral atoms, an essential requirement for realizing future applications associated with atom interferometry, atom lithography and even some neutral atom-based quantum computing architectures. Recently, we divided a thermal cloud of neutral atoms moving within a blue-detuned beam into two clouds with two different momenta by crossing two hollow beams. In this presentation, we will describe these results and discuss the prospects for extending the process to coherent ensembles of matter.
Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua
2014-01-01
The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.
Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua
2014-01-01
The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination. PMID:24982869
Method of making coherent multilayer crystals
Schuller, Ivan K.; Falco, Charles M.
1984-01-01
A new material consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 .ANG. to 2500 .ANG.. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.
78 FR 7275 - 2-Pyrrolidone, 1-Ethenyl-, Polymer With Ethenol; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is... integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
78 FR 4792 - Epoxy Polymer; Exemption From the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... contain as an integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other...
77 FR 65834 - Residues of Fatty Acids, Tall-Oil, Ethoxylated Propoxylated; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... in residential settings. If EPA is able to determine that a finite tolerance is not necessary to... integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... in residential settings. If EPA is able to determine that a finite tolerance is not necessary to... composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in 40 CFR 723.250(d...
78 FR 6213 - Styrene-2-Ethylhexyl Acrylate Copolymer; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
.... If EPA is able to determine that a finite tolerance is not necessary to ensure that there is a... composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in 40 CFR 723.250(d...
75 FR 4288 - Oxirane, 2-Methyl-, Polymer with Oxirane, Dimethyl Ether; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in 40 CFR 723.250(d...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in...
77 FR 65831 - Polymers; exemptions from the requirement of a tolerance.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is... composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in 40 CFR 723.250(d...
75 FR 71556 - Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... polymer does contain as an integral part of its composition the atomic elements carbon, hydrogen, and... element other than those listed in 40 CFR 723.250(d)(2)(ii). 4. The polymer is neither designed nor can it...
75 FR 52269 - Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
... result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is... contain as an integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other...
Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Z. G.; Wang, Z.; Wang, W. H., E-mail: whw@iphy.ac.cn
2015-10-21
We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical andmore » mechanical properties of MGs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schafer, Marion; Bobev, Svilen
This paper presents results from our exploratory work in the systems K-Cd-Ge, Rb-Cd-Ge, and Cs-Cd-Ge, which yielded the novel type-I clathrates with refined compositions K 8Cd 3.77(7)Ge 42.23, Rb 8Cd 3.65(7)Ge 42.35, and Cs 7.80(1)Cd 3.65(6)Ge 42.35. The three compounds represent rare examples of clathrates of germanium with the alkali metals, where a d 10 element substitutes a group 14 element. The three structures, established by single-crystal X-ray diffraction, indicate that the framework-building Ge atoms are randomly substituted by Cd atoms on only one of the three possible crystallographic sites. Furthermore, this and several other details of the crystal chemistrymore » are elaborated.« less
NASA Astrophysics Data System (ADS)
Ombaba, Jackson M.
This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is also discussed. The program supplied by LC Resources (Lafayette, CA) is used for separation optimization and prediction of gas chromatographic parameters. Column dead-time and average plate number were used as input data in conjunction with the retention times and peak areas of solutes at two different temperature programming rates. Once input data are entered into an IBM or IBM compatible personal computer, the program produces a 'relative resolution map' (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.
NASA Technical Reports Server (NTRS)
Mchale, R. M.
1974-01-01
Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.
NASA Astrophysics Data System (ADS)
Satoh, Y.; Yoshiie, T.; Arai, S.
2018-03-01
We conducted systematic experiments of defect structure development in Cu base binary alloys under 1000 kV electron irradiation at temperatures higher than 300 K, using in situ observations with high voltage electron microscopy. This report describes the effects of undersize elements: Co (-3.78%), Ni (-8.45%) and Be (-26.45%). The volume size factors are given in parentheses. The amounts of the respective elements were 2, 0.3, 0.05 at.%, or less. In Cu-Ni and Cu-Co and in the reference Cu, temperature dependence of the number density of interstitial-type dislocation loops had a down peak (i.e. loops hardly formed) at approximately 373 K, attributed to unexpected impurity atoms. Above the down-peak temperature, the addition of Co or Ni increased the loop number density through continuous nucleation of loops, extended the loop formation to higher temperatures, and decreased the apparent activation energy of loop growth rate. The addition of Be for 0.3 at.% or more delayed loop formation after formation of stacking fault tetrahedra (SFTs) around 300 K. The apparent mobility of self-interstitial atoms is expected to be smaller than that of vacancies because of strong binding with Be. Loop formation at temperatures higher than 373 K was enhanced by Be for 0.3 or 2 at.%, although it was suppressed greatly for 0.05 at.% or less. All undersize atoms increased the stability of SFTs under irradiation. Mechanisms of those effects were discussed and were briefly compared with earlier results found for oversize elements in Cu.
Karpiuk, Uliana Vladimirovna; Al Azzam, Khaldun Mohammad; Abudayeh, Zead Helmi Mahmoud; Kislichenko, Viktoria; Naddaf, Ahmad; Cholak, Irina; Yemelianova, Oksana
2016-06-01
To determine the elements in Bryonia alba L. roots, collected from the Crimean Peninsula region in Ukraine. Dry ashing was used as a flexible method and all elements were determined using atomic absorption spectrometry (AAS) equipped with flame and graphite furnace. The average concentrations of the determined elements, expressed as mg/100 g dry weight of the sample, were as follow: 13.000 for Fe, 78.000 for Si, 88.000 for P, 7.800 for Al, 0.130 for Mn, 105.000 for Mg, 0.030 for Pb, 0.052 for Ni, 0.030 for Mo, 210.000 for Ca, 0.130 for Cu, 5.200 for Zn, 13.000 for Na, 1170.000 for K, 0.780 for Sr, 0.030 for Co, 0.010 for Cd, 0.010 for As, and 0.010 for Hg. Toxic elements such as Cd and Pb were also found but at very low concentration. Among the analyzed elements, K was the most abundant followed by Ca, Mg, P, Si, Fe, Na, and Zn, whereas Hg, As, Cd, Co, Mo, and Pb were found in low concentration. The results suggest that the roots of Bryonia alba L. plant has potential medicinal property through their high element contents present. Moreover, it showed that the AAS method is a simple, fast, and reliable for the determination of elements in plant materials. The obtained results of the current study provide justification for the usage of such fruit in daily diet for nutrition and for medicinal usage in the treatment of various diseases.
Calculation of Free-Atom Fractions in Hydrocarbon-Fueled Rocket Engine Plume
NASA Technical Reports Server (NTRS)
Verma, Satyajit
2006-01-01
Free atom fractions (Beta) of nine elements are calculated in the exhaust plume of CH4- oxygen and RP-1-oxygen fueled rocket engines using free energy minimization method. The Chemical Equilibrium and Applications (CEA) computer program developed by the Glenn Research Center, NASA is used for this purpose. Data on variation of Beta in both fuels as a function of temperature (1600 K - 3100 K) and oxygen to fuel ratios (1.75 to 2.25 by weight) is presented in both tabular and graphical forms. Recommendation is made for the Beta value for a tenth element, Palladium. The CEA computer code was also run to compare with experimentally determined Beta values reported in literature for some of these elements. A reasonable agreement, within a factor of three, between the calculated and reported values is observed. Values reported in this work will be used as a first approximation for pilot rocket engine testing studies at the Stennis Space Center for at least six elements Al, Ca, Cr, Cu, Fe and Ni - until experimental values are generated. The current estimates will be improved when more complete thermodynamic data on the remaining four elements Ag, Co, Mn and Pd are added to the database. A critique of the CEA code is also included.
Morshed, Nader; Echols, Nathaniel; Adams, Paul D.
2015-04-25
In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalousmore » diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.« less
NASA Astrophysics Data System (ADS)
Jadambaa, Khuyagbaatar
2017-11-01
The synthesis of superheavy elements beyond oganesson (Og), which has atomic number Z = 118, is currently one of the main topics in nuclear physics. An absence of sufficient amounts of target material with atomic numbers heavier than californium (Z = 98) forces the use of projectiles heavier than 48Ca (Z = 20), which has been successfully used for the discoveries of elements with Z = 114 - 118 in complete fusion reactions. Experimental cross sections of 48Ca with actinide targets behave very differently to "cold" and "hot" fusion-evaporation reactions, where doubly-magic lead and deformed actinides are used as targets, respectively. The known cross sections of these reactions have been analysed compared to calculated fission barriers. It has been suggested that observed discrepancies between the cross sections of 48Ca-induced and other fusionevaporation reactions originate from the shell structure of the compound nucleus, which lies in the island of the stability. Besides scarcely known data on other reactions involving heavier projectiles, the most promising projectile for the synthesis of the elements beyond Og seems to be 50Ti. However, detailed studies of 50Ti, 54Cr, 58Fe and 64Ni-induced reactions are necessary to be performed in order to fully understand the complexities of superheavy element formation.
Chen, H L; Wang, J K; Ren, Y Q; Wu, Z Y
2001-03-01
Determine and compare the contents of ten trace elements in crude E. acuminatum and its three different processed products. Using flame atomic absorption spectrometry. The ten trace elements were found in both the crude drug and its three processed products, and in terms of contents some of the trace elements in all the three processed products are higher than those in the crude drug. According to the trace element contents, the three processed products of E. acuminatum have their own advantages. It is thus suggested that thoroughgoing clinical and experimental researches be performed anew for the long-shelved processing methods.
NASA Astrophysics Data System (ADS)
You, Y.; Yan, M. F.
2013-05-01
C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.
Big Bang Day: 5 Particles - 1. The Electron
None
2017-12-09
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born. Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.
Diamond like carbon coatings: Categorization by atomic number density
NASA Technical Reports Server (NTRS)
Angus, John C.
1986-01-01
Dense diamond-like hydrocarbon films grown at the NASA Lewis Research Center by radio frequency self bias discharge and by direct ion beam deposition were studied. A new method for categorizing hydrocarbons based on their atomic number density and elemental composition was developed and applied to the diamond-like hydrocarbon films. It was shown that the diamond-like hydrocarbon films are an entirely new class of hydrocarbons with atomic number densities lying between those of single crystal diamond and adamantanes. In addition, a major review article on these new materials was completed in cooperation with NASA Lewis Research Center personnel.
Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients among Alternative Bases
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Cavalli, Simonetta; Coletti, Cecilia
1998-04-01
Fock's representation of momentum space hydrogenic orbitals in terms of harmonics on the hypersphere S3 of a four-dimensional space is extended to classify alternative bases. These orbitals are of interest for Sturmian expansions of use in atomic and molecular structure calculations and for the description of atoms in fields. Because of the correspondence between the S3 manifold and the SU\\(2\\) group, new sum rules are established which are of relevance for the connection, not only among hydrogen atom orbitals in different bases, but also among the usual vector coupling coefficients and rotation matrix elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergienko, V. S., E-mail: sergienko@igic.ras.ru; Martsinko, E. E.; Seifullina, I. I.
2015-09-15
The germanium(IV) complex with propylene-1,3-diaminetetraacetic acid (H{sub 4}Pdta) is studied by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction study reveals two crystallographically independent [Ge(Pdta)] molecules of similar structure. Both Ge atoms are octahedrally coordinated by four O atoms and two N atoms (at the cis positions) of the hexadentate pentachelate Pdta{sup 4–} ligand. An extended system of weak C—H···O hydrogen bonds connects complex molecules into a supramolecular 3D framework.
NASA Astrophysics Data System (ADS)
Sergienko, V. S.; Martsinko, E. E.; Seifullina, I. I.; Churakov, A. V.; Chebanenko, E. A.
2015-09-01
The germanium(IV) complex with propylene-1,3-diaminetetraacetic acid (H4 Pdta) is studied by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction study reveals two crystallographically independent [Ge( Pdta)] molecules of similar structure. Both Ge atoms are octahedrally coordinated by four O atoms and two N atoms (at the cis positions) of the hexadentate pentachelate Pdta 4- ligand. An extended system of weak С—Н···О hydrogen bonds connects complex molecules into a supramolecular 3D framework.
X-ray fluorescence holography studies for a Cu3Au crystal
NASA Astrophysics Data System (ADS)
Dąbrowski, K. M.; Dul, D. T.; Jaworska-Gołąb, T.; Rysz, J.; Korecki, P.
2015-12-01
In this work we show that performing a numerical correction for beam attenuation and indirect excitation allows one to fully restore element sensitivity in the three-dimensional reconstruction of the atomic structure. This is exemplified by a comparison of atomic images reconstructed from holograms measured for ordered and disordered phases of a Cu3Au crystal that clearly show sensitivity to changes in occupancy of the atomic sites. Moreover, the numerical correction, which is based on quantitative methods of X-ray fluorescence spectroscopy, was extended to take into account the influence of a disturbed overlayer in the sample.
Atomistic simulation of mineral-melt trace-element partitioning
NASA Astrophysics Data System (ADS)
Allan, Neil L.; Du, Zhimei; Lavrentiev, Mikhail Yu.; Blundy, Jon D.; Purton, John A.; van Westrenen, Wim
2003-09-01
We discuss recent advances in computational approaches to trace-element incorporation in minerals and melts. It is crucial to take explicit account of the local structural environment of each ion in the solid and the change in this environment following the introduction of a foreign atom or atoms. Particular attention is paid to models using relaxation (strain) energies and solution energies, and the use of these different models for isovalent and heterovalent substitution in diopside and forsterite. Solution energies are also evaluated for pyrope and grossular garnets, and pyrope-grossular solid solutions. Unfavourable interactions between dodecahedral sites containing ions of the same size and connected by an intervening tetrahedron lead to larger solubilities of trace elements in the garnet solid solution than in either end member compound and to the failure of Goldschmidt's first rule. Our final two examples are the partitioning behaviour of noble gases, which behave as 'ions of zero charge' and the direct calculation of high-temperature partition coefficients between CaO solid and melt via Monte Carlo simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matusiewicz, H.; Barnes, R.M.
1985-02-01
A method utilizing pressure decomposition to minimize sample pretreatment is described for the inductively coupled plasma atomic emission spectrometric analysis of red spruce and sugar maple. Cores collected from trees growing on Camels Hump Mountain, Vermont, were divided into decade increments in order to monitor the temporal changes in concentrations of 21 elements. Dried wood samples were decomposed in a bomb made of Teflon with 50% hydrogen peroxide heated in an oven at 125/sup 0/C for 4 h. The digestion permitted use of aqueous standards and minimized any potential matrix effects. The element concentrations were obtained sequentially by electrothermal vaporizationmore » ICP-AES using 5 ..mu..L sample aliquots. The method precision varied between 3 and 12%. Elements forming oxyanions (Al, As, Fe, Ge, Mn, Si, V) were found at elevated concentrations during the most recent three decades, while other metal (e.g., Mg, Zn) concentrations were unchanged or decreased. 45 references, 6 tables, 1 figure.« less
An in Situ Technique for Elemental Analysis of Lunar Surfaces
NASA Technical Reports Server (NTRS)
Kane, K. Y.; Cremers, D. A.
1992-01-01
An in situ analytical technique that can remotely determine the elemental constituents of solids has been demonstrated. Laser-Induced Breakdown Spectroscopy (LIBS) is a form of atomic emission spectroscopy in which a powerful laser pulse is focused on a solid to generate a laser spark, or microplasma. Material in the plasma is vaporized, and the resulting atoms are excited to emit light. The light is spectrally resolved to identify the emitting species. LIBS is a simple technique that can be automated for inclusion aboard a remotely operated vehicle. Since only optical access to a sample is required, areas inaccessible to a rover can be analyzed remotely. A single laser spark both vaporizes and excites the sample so that near real-time analysis (a few minutes) is possible. This technique provides simultaneous multielement detection and has good sensitivity for many elements. LIBS also eliminates the need for sample retrieval and preparation preventing possible sample contamination. These qualities make the LIBS technique uniquely suited for use in the lunar environment.
On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu).
Huang, Wei; Xu, Wen-Hua; Schwarz, W H E; Li, Jun
2016-05-02
Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.
NASA Astrophysics Data System (ADS)
Aue, Walter A.; Singh, Hameraj
2001-05-01
Photon yields — the number of photons generated per analyte atom — are of obvious analytical and mechanistic importance in flame chemiluminescence. However, such numbers are unavailable for spectral detectors in gas chromatography (as well as for most conventional spectroscopic systems). In this study, photon yields have been determined for the chemiluminescence of several elements in the flame photometric detector (FPD). The number of photons generated per atom of FPD-active element was 2×10 -3 for sulfur (emitter S 2*, test compound thianaphthene), 3×10 -3 for phosphorus [HPO*, tris(pentafluorophenyl)phosphine], 8×10 -3 for manganese (Mn*, methylcyclopentadienyl manganese tricarbonyl), 3×10 -3 for ruthenium (emitter unknown, ruthenocene), 4×10 -5 for iron (Fe*, ferrocene) and 2×10 -4 for selenium (Se 2*, dimethylbenzselenazole). Total flows, maximum thermocouple temperatures, and visible flame volumes have also been estimated for each element under signal/noise-optimized conditions in order to provide a database for kinetic calculations.
Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Q.; Hendrickson, W.
2017-01-01
The normal elastic X-ray scattering that depends only on electron density can be modulated by an ?anomalous? component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those thatmore » can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.« less
PREFACE: Light element atom, molecule and radical behaviour in the divertor and edge plasma regions
NASA Astrophysics Data System (ADS)
Braams, Bastiaan J.; Chung, Hyun-Kung
2015-01-01
This volume of Journal of Physics: Conference Series contains contributions by participants in an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on "Light element atom, molecule and radical behaviour in the divertor and edge plasma regions" (in magnetic fusion devices). Light elements are the dominant impurity species in fusion experiments and in the near-wall plasma they occur as atoms or ions and also as hydrides and other molecules and molecular ions. Hydrogen (H or D, and T in a reactor) is the dominant species in fusion experiments, but all light elements He - O and Ne are of interest for various reasons. Helium is a product of the D+T fusion reaction and is introduced in experiments for transport studies. Lithium is used for wall coating and also as a beam diagnostic material. Beryllium is foreseen as a wall material for the ITER experiment and is used on the Joint European Torus (JET) experiment. Boron may be used as a coating material for the vessel walls. Carbon (graphite or carbon-fiber composite) is often used as the target material for wall regions subject to high heat load. Nitrogen may be used as a buffer gas for edge plasma cooling. Oxygen is a common impurity in experiments due to residual water vapor. Finally, neon is another choice as a buffer gas. Data for collisional and radiative processes involving these species are important for plasma modelling and for diagnostics. The participants in the CRP met 3 times over the years 2009-2013 for a research coordination meeting. Reports and presentation materials for these meetings are available through the web page on coordinated research projects of the (IAEA) Atomic and Molecular Data Unit [1]. Some of the numerical data generated in the course of the CRP is available through the ALADDIN database [2]. The IAEA takes the opportunity to thank the participants in the CRP for their dedicated efforts in the course of the CRP and for their contributions to this volume. The IAEA scientific officers for this project were Mr Bastiaan J. Braams and Ms Hyun-Kyung Chung. [1] See: https://www-amdis.iaea.org/CRP/ [2] See: https://www-amdis.iaea.org/ALADDIN/
Method and apparatus for displaying information
NASA Technical Reports Server (NTRS)
Huang, Sui (Inventor); Eichler, Gabriel (Inventor); Ingber, Donald E. (Inventor)
2010-01-01
A method for displaying large amounts of information. The method includes the steps of forming a spatial layout of tiles each corresponding to a representative reference element; mapping observed elements onto the spatial layout of tiles of representative reference elements; assigning a respective value to each respective tile of the spatial layout of the representative elements; and displaying an image of the spatial layout of tiles of representative elements. Each tile includes atomic attributes of representative elements. The invention also relates to an apparatus for displaying large amounts of information. The apparatus includes a tiler forming a spatial layout of tiles, each corresponding to a representative reference element; a comparator mapping observed elements onto said spatial layout of tiles of representative reference elements; an assigner assigning a respective value to each respective tile of said spatial layout of representative reference elements; and a display displaying an image of the spatial layout of tiles of representative reference elements.
Adams, Bernhard W.; Kim, Kwang -Je
2016-08-09
Here, x-ray free-electron-laser oscillators with nuclear-resonant cavity stabilization (NRS-XFELO) hold the promise for providing x-rays with unprecedented coherence properties that will enable interesting quantum-optical and metrological applications. Among these are atom optics with x-ray-based optical elements providing high momentum transfer, or a frequency standard far surpassing the best state-of the-art atomic clocks.
Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 1
NASA Technical Reports Server (NTRS)
Kelly, R. L.
1979-01-01
A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.
Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 2
NASA Technical Reports Server (NTRS)
Kelly, R. L.
1979-01-01
A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.
The Periodic Table. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
Kids know that when they are lost, they look at a map to find their way. It's no different in the world of science, as they'll learn in The Periodic Table--a fun and engaging look at the road map of the elements. Young students will learn about key information included on the table, including atomic number, atomic mass and chemical symbol. They'll…
Lu, Ping; Moya, Jaime M.; Yuan, Renliang; ...
2018-03-01
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Moya, Jaime M.; Yuan, Renliang
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less
Lu, Ping; Moya, Jaime M; Yuan, Renliang; Zuo, Jian Min
2018-03-01
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maxima (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K + L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. With increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping. Published by Elsevier B.V.
Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F
2012-09-14
We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.
Gómez-Ariza, José Luis; Lorenzo, Fernando; García-Barrera, Tamara
2005-05-01
Mercury and arsenic are two elements of undoubted importance owing to their toxic character. Although speciation of these elements has been developed separately, in this work for the first time the speciation of As and Hg using two atomic fluorescence detectors in a sequential ensemble is presented. A coupling based on the combination of high-performance liquid chromatography (where mercury and arsenic species are separated) and two atomic fluorescence detectors in series, with several online treatments, including photooxidation (UV) and hydride generation, has allowed the determination of mercury and arsenic compounds simultaneously. The detection limits for this device were 16, 3, 17, 12 and 8 ng mL(-1) for As(III), monomethylarsinic acid, As(V), Hg2+ and methylmercury, respectively. This coupling was compared with an analogous one based on inductively coupled plasma-mass spectrometry (ICP-MS) detection, with detection limits of 0.7, 0.5, 0.8, 0.9 and 1.1 ng mL(-1), respectively. Multispeciation based on ICP-MS exhibits better sensitivity than the coupling based on tandem atomic fluorescence, but this second device is a very robust system and exhibits obvious advantages related to the low cost of acquisition and maintenance, as well as easy handling, which makes it a suitable system for routine laboratories.
Tao, Franklin Feng; Nguyen, Luan
2018-04-18
Studies of the surface of a catalyst in the gas phase via photoelectron spectroscopy is an important approach to establish a correlation between the surface of a catalyst under reaction conditions or during catalysis and its corresponding catalytic performance. Unlike the well understood interactions between photoelectrons and the atomic layers of a surface in ultrahigh vacuum (UHV) and the well-developed method of quantitative analysis of a solid surface in UHV, a fundamental understanding of the interactions between X-ray photons and gaseous molecules and between photoelectrons and molecules of the gas phase in ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is lacking. Through well designed experiments, here the impact of the interactions between photoelectrons and gaseous molecules and interactions between X-ray photons and gaseous molecules on the intensity of the collected photoelectrons have been explored. How the changes in photoelectron intensity resulting from these interactions influence measurement of the authentic atomic ratio of element M to A of a solid surface has been discussed herein, and methods to correct the measured nominal atomic ratio of two elements of a solid surface upon travelling through a gas phase to its authentic atomic ratio have been developed.
Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz
2017-10-07
Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.
NASA Astrophysics Data System (ADS)
Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz
2017-10-01
Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.
Impeding effect of Ce on He bubble growth in bcc Fe
NASA Astrophysics Data System (ADS)
Hao, W.; Geng, W. T.
2012-06-01
Our first-principles density functional theory calculations suggest that the rare earth element Ce has a strong attraction to He (-1.31 eV/atom pair) in bcc Fe, even stronger than He-He attraction (-1.18 eV). The segregated Ce layer at the He bubble surface could introduce an additional energy barrier (0.40 eV) to trespassing He atoms. Therefore, Ce could not only have a pinning effect on mobile He atoms and hence reduce merging rate of He clusters, but also serve as a cover layer to repel further He atoms and thus slows down the bubble growth. The low cost makes Ce a great advantage over Au, which was recently predicted to have similar effect.
Building one molecule from a reservoir of two atoms
NASA Astrophysics Data System (ADS)
Liu, L. R.; Hood, J. D.; Yu, Y.; Zhang, J. T.; Hutzler, N. R.; Rosenband, T.; Ni, K.-K.
2018-05-01
Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits.
Antiferromagnetic phase of the gapless semiconductor V3Al
NASA Astrophysics Data System (ADS)
Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.
2015-03-01
Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.
Nguyen, Thanh Binh; Pasturaud, Karine; Ermolenko, Ludmila; Al-Mourabit, Ali
2015-05-15
A wide range of 2-aroylbenzothiazoles 3 including some pharmacologically relevant derivatives can be obtained in high yields by simply heating o-halonitrobenzenes 1, acetophenones 2, elemental sulfur, and N-methylmorpholine. This three-component nitro methyl coupling was found to occur in an excellent atom-, step-, and redox-efficient manner in which elemental sulfur played the role of nucleophile building block and redox moderating agent to fulfill electronic requirements of the global reaction.
Pershina, V; Anton, J; Fricke, B
2007-10-07
Fully relativistic (four-component) density-functional theory calculations were performed for intermetallic dimers MM', where M=Ge, Sn, Pb, and element 114, and MM'=group 10 elements (Ni, Pd, and Pt) and group 11 elements (Cu, Ag, and Au). PbM and 114M, where M are group 14 elements, were also considered. The results have shown that trends in spectroscopic properties-atomization energies D(e), vibrational frequencies omega(e), and bond lengths R(e), as a function of MM', are similar for compounds of Ge, Sn, Pb, and element 114, except for D(e) of PbNi and 114Ni. They were shown to be determined by trends in the energies and space distribution of the valence ns(MM')atomic orbitals (AOs). According to the results, element 114 should form the weakest bonding with Ni and Ag, while the strongest with Pt due to the largest involvement of the 5d(Pt) AOs. In turn, trends in the spectroscopic properties of MM' as a function of M were shown to be determined by the behavior of the np(1/2)(M) AOs. Overall, D(e) of the element 114 dimers are about 1 eV smaller and R(e) are about 0.2 a.u. larger than those of the corresponding Pb compounds. Such a decrease in bonding of the element 114 dimers is caused by the large SO splitting of the 7p orbitals and a decreasing contribution of the relativistically stabilized 7p(1/2)(114) AO. On the basis of the calculated D(e) for the dimers, adsorption enthalpies of element 114 on the corresponding metal surfaces were estimated: They were shown to be about 100-150 kJ/mol smaller than those of Pb.
NASA Astrophysics Data System (ADS)
Abdul-Majeed, Wameath Sh
This research is dedicated to develop a fully integrated system for heavy metals determination in water samples based on micro fluidic plasma atomizers. Several configurations of dielectric barrier discharge (DBD) atomizer are designed, fabricated and tested toward this target. Finally, a combination of annular and rectangular DBD atomizers has been utilized to develop a scheme for heavy metals determination. The present thesis has combined both theoretical and experimental investigations to fulfil the requirements. Several mathematical studies are implemented to explore the optimal design parameters for best system performance. On the other hand, expanded experimental explorations are conducted to assess the proposed operational approaches. The experiments were designed according to a central composite rotatable design; hence, an empirical model has been produced for each studied case. Moreover, several statistical approaches are adopted to analyse the system performance and to deduce the optimal operational parameters.. The introduction of the examined analyte to the plasma atomizer has been achieved by applying chemical schemes, where the element in the sample has been derivitized by using different kinds of reducing agents to produce vapour species (e.g. hydrides) for a group of nine elements examined in this research individually and simultaneously. Moreover, other derivatization schemes based on photochemical vapour generation assisted by ultrasound irradiation are also investigated. Generally speaking, the detection limits achieved in this research for the examined set of elements (by applying hydroborate scheme) are found to be acceptable in accordance with the standard limits in drinking water. The results of copper compared with the data from other technologies in the literature, showed a competitive detection limit obtained from applying the developed scheme, with an advantage of conducting simultaneous, fully automated, insitu, online- real time analysis as well as a possibility of connecting the proposed device to control loops..
NASA Technical Reports Server (NTRS)
Adelman, Saul J.
1988-01-01
Changes in chromium, manganese, and nickel abundances derived from singly ionized lines are incorporated into the elemental abundance of Adelman and Hill (1987) in order to provide more accurate gf values and damping constants for several atomic species. An improved agreement with the values from neutral lines of the same element is found. In the second part, the method is applied to an elemental abundance analysis of three mercury-manganese stars, and correlations are found between the derived abundances and the effective temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yushchenko, Alexander V.; Kang, Young-Woon; Kim, Sungeun
We investigated the chemical composition of ρ Pup using high-resolution spectral observations taken from the Very Large Telescope and the IUE archives and also spectra obtained at the 1.8 m telescope of the Bohyunsan observatory in Korea. The abundances of 56 chemical elements and the upper limits of Li and Be abundances were determined. The abundance pattern of ρ Pup was found to be similar to that of Am-type stars. The possibility of the influence of the accretion of interstellar gas and dust on the abundance patterns of B–F-type stars is discussed. The plots of the relative abundances of chemicalmore » elements in the atmospheres of ρ Pup and δ Sct versus the second ionization potentials of these elements show the correlations. The discontinuities at 13.6 and 24.6 eV—the ionization potentials of hydrogen and helium, respectively, are also exhibited in these plots. These discontinuities can be explained by interaction of the atoms of interstellar gas, mainly hydrogen and helium atoms, with the atoms of stellar photospheres (so-called charge-exchange reactions). Note that only the jumps near 13.6 and 24.6 eV were pointed out in previous investigations of relative abundances versus the second ionization potentials for Am-type stars. The dependencies of the relative abundances of chemical elements on the second ionization potentials of these elements were investigated using the published abundance patterns of B–F-type stars. The correlations of relative and absolute abundances of chemical elements, second ionization potentials, and projected rotational velocities are clearly detected for stars with effective temperatures between 7,000 and 12,000 K. If the correlation of relative abundances and second ionization potentials can be explained by the accretion of interstellar gas on the stellar surfaces, the investigation of these correlations can provide valuable information on the density and velocities of interstellar gas in different regions of the Galaxy and also on the influence of this phenomenon on stellar evolution. The dependencies of the relative abundances of chemical elements on the condensation temperatures of these elements were also found in the atmospheres of ρ Pup, δ Sct, and other B–F-type stars. Ten possible λ Boo-type stars were detected. The effective temperatures of these objects are between 10,900 and 14,000 K.« less
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Ryabchikova, T. A.
2018-02-01
A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is... of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in 40 CFR 723.250(d...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-04
... result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is... composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in 40 CFR 723.250(d...
Effect of dissociation on thermodynamic properties of pure diatomic gases
NASA Technical Reports Server (NTRS)
Woolley, Harold W
1955-01-01
A graphical method is described by which the enthalpy, entropy, and compressibility factor for the equilibrium mixture of atoms and diatomic molecules for pure gaseous elements may be obtained and shown for any dissociating element for which the necessary data exist. Results are given for hydrogen, oxygen, and nitrogen. The effect of dissociation on the heat capacity is discussed briefly.
Coherent multilayer crystals and method of making
Schuller, I.K.; Falco, C.M.
1980-10-30
A new material is described consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 A to 2500 A. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.
Method to synthesize and produce thin films by spray pyrolysis
Squillante, Michael R.
1982-06-22
Forming a film by spraying onto a heated substrate an atomized solution containing the appropriate salt of a constituent element of the film and a highly soluble (i.e., greater than 1 M) organic acid in sufficient amount to reduce the oxidation state of at least one solute element of the spray solution after contacting the heated substrate.
NASA Astrophysics Data System (ADS)
Lagoida, I. A.; Trushin, A. V.
2016-02-01
For the past several years many nuclear physics methods of quantitative elemental analysis have been designed. Many of these methods have applied in different devices which have become useful and effective instrument in many industrial laboratories. Methods of a matter structure analysis are based on the intensity detection of the X-ray radiation from the nuclei of elements which are excited by external X-ray source. The production of characteristic X-rays involves transitions of the orbital electrons of atoms in the target material between allowed orbits, or energy states, associated with ionization of the inner atomic shells. One of these methods is X-ray fluorescence analysis, which is widespread in metallurgical and processing industries and is used to identify and measure the concentration of the elements in ores and minerals on a conveyor belt. Samples of copper ore with known concentrations of elements, were taken from the Ural deposit. To excite the characteristic X-rays radionuclide sources 109Cd, with half-life 461.4 days were used. After finding the calibration coefficients, control measurements of samples and averaging of overall samples were made. The measurement error did not exceed 3%.
Quantitative ion beam analysis of M-C-O systems: application to an oxidized uranium carbide sample
NASA Astrophysics Data System (ADS)
Martin, G.; Raveu, G.; Garcia, P.; Carlot, G.; Khodja, H.; Vickridge, I.; Barthe, M. F.; Sauvage, T.
2014-04-01
A large variety of materials contain both carbon and oxygen atoms, in particular oxidized carbides, carbon alloys (as ZrC, UC, steels, etc.), and oxycarbide compounds (SiCO glasses, TiCO, etc.). Here a new ion beam analysis methodology is described which enables quantification of elemental composition and oxygen concentration profile over a few microns. It is based on two procedures. The first, relative to the experimental configuration relies on a specific detection setup which is original in that it enables the separation of the carbon and oxygen NRA signals. The second concerns the data analysis procedure i.e. the method for deriving the elemental composition from the particle energy spectrum. It is a generic algorithm and is here successfully applied to characterize an oxidized uranium carbide sample, developed as a potential fuel for generation IV nuclear reactors. Furthermore, a micro-beam was used to simultaneously determine the local elemental composition and oxygen concentration profiles over the first microns below the sample surface. This method is adapted to the determination of the composition of M?C?O? compounds with a sensitivity on elemental atomic concentrations around 1000 ppm.
Some properties of Stark states of hydrogenic atoms and ions
NASA Astrophysics Data System (ADS)
Hey, J. D.
2007-10-01
The motivation for this work is the problem of providing accurate values of the atomic transition matrix elements for the Stark components of Rydberg Rydberg transitions in atomic hydrogen and hydrogenic ions, for use in spectral line broadening calculations applicable to cool, low-density plasmas, such as those found in H II regions. Since conventional methods of calculating these transition matrix elements cannot be used for the high principal quantum numbers now easily attained in radio astronomical spectra, we attempt to show that the recurrence relation (ladder operator) method recently employed by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889 97) and Hey (2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641 64) can be taken over into the parabolic coordinate system used to describe the Stark states of the atomic (ionic) radiators. The present method is therefore suggested as potentially useful for extending the work of Griem (1967 Astrophys. J. 148 547 58, 2005 Astrophys. J. 620 L133 4), Watson (2006), Stambulchik et al (2007 Phys. Rev. E 75 016401(9 pp) on Stark broadening in transitions between states of high principal quantum number, to physical conditions where the binary, impact approximation is no longer strictly applicable to both electron and ion perturbers. Another possible field of application is the study of Stark mixing transitions in 'ultracold' Rydberg atoms perturbed by long-range interactions with slow atoms and ions. Preparatory to the derivation of recurrence relations for states of different principal quantum number, a number of properties and recurrence relations are also found for states of identical principal quantum number, including the analogue in parabolic coordinates to the relations of Pasternack (1937 Proc. Natl Acad. Sci. USA 23 91 4, 250) in spherical polar coordinates.
Understanding complete oxidation of methane on spinel oxides at a molecular level
Tao, Franklin Feng; Shan, Jun-jun; Nguyen, Luan; ...
2015-08-04
It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo 2O 4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo 2O 4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. Finally, in situ studies of complete oxidation of methane on NiCo 2Omore » 4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH 3O with a following dehydrogenation to -CH 2O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.« less
Bashkin, S
1965-05-21
The new spectroscopy is in its infancy, and many fascinating aspects are yet to be studied. The properties of thin films may be studied by means of the excitation they induce in a given kind of beam. The production of ions with but a single electron offers a means of carefully mapping the nuclear charge distribution without the complications introduced by the normal complement of electrons. The study of high-purity, multiply ionized particles should make for better temperature determinations in hot plasmas. Possibly the data on lifetimes and modes of decay of excited energy levels may assist in the quantitative assignment of element abundances in the stars. One can even attempt to use the glowing beams as sources for absorption spectroscopy. The method seems to permit study of every stage of excitation for every stage of ionization for every element in the periodic table. Practical problems may interfere with so complete a study, but a major extension of our knowledge of atomic structure seems to be at hand.
Production and study of radionuclides at the research institute of atomic reactors (NIIAR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karelin, E.A.; Gordeev, Y.N.; Filimonov, V.T.
1995-01-01
The main works of the Radionuclide Sources and Preparations Department (ORIP) of the Research Institute of Atomic Reactors (NIIAR) are summarized. The major activity of the Radionuclide Sources and Preparations Department (ORIP) is aimed at production of radioactive preparations of trans-plutonium elements (TPE) and also of lighter elements (from P to Ir), manufacture of ionizing radiation sources thereof, and scientific research to develop new technologies. One of the radionuclides that recently has received major attention is gadolinium-153. Photon sources based on it are used in densimeters for diagnostics of bone deseases. The procedure for separating gadolinium and europium, which ismore » currently used at the Research Institute of Atomic Reactors (NILAR), is based on europium cementation with the use of sodium amalgam. The method, though efficient, did not until recently permit an exhaustive removal of radioactive europium from {sup 153}Gd. The authors have thoroughly studied the separation process in semi-countercurrent mode, using citrate solutions. A special attention was given to the composition of europium complex species.« less