Science.gov

Sample records for element binding factor

  1. GAGA factor binding to DNA via a single trinucleotide sequence element.

    PubMed Central

    Wilkins, R C; Lis, J T

    1998-01-01

    GAGA transcription factor (GAF) is an essential protein in Drosophila , important for the transcriptional regulation of numerous genes. GAF binds to GA repeats in the promoters of these genes via a DNA-binding domain containing a single zinc finger. While GAF binding sites are typically composed of 3.5 GA repeats, the Drosophila hsp70 gene contains much smaller elements, some of which are as little as three bases (GAG) in length. Interestingly, the binding of GAF to more distant trinucleotide elements is relatively strong and not appreciably affected by the removal of larger GA arrays in the promoter. Moreover, a simple synthetic GAG sequence is sufficient to bind GAF in vitro . Here we directly compare the affinity of GAF for different sequence elements by immunoprecipitation and gel mobility shift analysis. Furthermore, our measures of the concentration of GAF in vivo indicate that it is a highly abundant nuclear protein, prevalent enough to occupy a sizable fraction of correspondingly abundant trinucleotide sites. PMID:9592153

  2. Effects of binding factors on structural elements in F-actin.

    PubMed

    Scoville, Damon; Stamm, John D; Altenbach, Christian; Shvetsov, Alexander; Kokabi, Kaveh; Rubenstein, Peter A; Hubbell, Wayne L; Reisler, Emil

    2009-01-20

    Understanding the dynamics of the actin filament is essential to a detailed description of their interactions and role in the cell. Previous studies have linked the dynamic properties of actin filaments (F-actin) to three structural elements contributing to a hydrophobic pocket, namely, the hydrophobic loop, the DNase I binding loop, and the C-terminus. Here, we examine how these structural elements are influenced by factors that stabilize or destabilize F-actin, using site-directed spin-labeled (SDSL) electron paramagnetic resonance (EPR), fluorescence, and cross-linking techniques. Specifically, we employ cofilin, an actin destabilizing protein that binds and severs filaments, and phalloidin, a fungal toxin that binds and stabilizes F-actin. We find that cofilin shifts both the DNase I binding loop and the hydrophobic loop away from the C-terminus in F-actin, as demonstrated by weakened spin-spin interactions, and alters the environment of spin probes on residues of these two loops. In contrast, although phalloidin strongly stabilizes F-actin, it causes little or no local change in the environment of the loop residues. This indicates that the stabilizing effect of phalloidin is achieved mainly through constraining structural fluctuations in F-actin and suggests that factors and interactions that control these fluctuations have an important role in the cytoskeleton dynamics.

  3. Genomic Heat Shock Element Sequences Drive Cooperative Human Heat Shock Factor 1 DNA Binding and Selectivity*

    PubMed Central

    Jaeger, Alex M.; Makley, Leah N.; Gestwicki, Jason E.; Thiele, Dennis J.

    2014-01-01

    The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer. PMID:25204655

  4. Small yet effective: the ethylene responsive element binding factor-associated amphiphilic repression (EAR) motif.

    PubMed

    Kagale, Sateesh; Rozwadowski, Kevin

    2010-06-01

    The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif is a small yet distinct regulatory motif that is conserved in many plant transcriptional regulator (TR) proteins associated with diverse biological functions. We have previously established a list of high-confidence Arabidopsis EAR repressors, the EAR repressome, comprising 219 TRs belonging to 21 different TR families. This class of proteins and the sequence context of the EAR motif exhibited a high degree of conservation across evolutionarily diverse plant species. Our comprehensive genome-wide analysis enabled refining EAR motifs as comprising either LxLxL or DLNxxP. Comparing the representation of these sequence signatures in TRs to that of other repressor motifs we show that the EAR motif is the one most frequently represented, detected in 10 to 25% of the TRs from diverse plant species. The mechanisms involved in regulation of EAR motif function and the cellular fates of EAR repressors are currently not well understood. Our earlier analysis had implicated amino acid residues flanking the EAR motifs in regulation of their functionality. Here, we present additional evidence supporting possible regulation of EAR motif function by phosphorylation of integral or adjacent Ser and/or Thr residues. Additionally, we discuss potential novel roles of EAR motifs in plant-pathogen interaction and processes other than transcriptional repression.

  5. A petunia ocs element binding factor, PhOBF1, plays an important role in antiviral RNA silencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) is a common strategy of reverse genetics for characterizing function of genes in plant. The detailed mechanism governing RNA silencing efficiency triggered by virus is largely unclear. Here, we revealed that a petunia (Petunia hybrida) ocs element binding factor, ...

  6. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

    PubMed Central

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  7. Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis.

    PubMed

    L'honore, Aurore; Rana, Vanessa; Arsic, Nikola; Franckhauser, Celine; Lamb, Ned J; Fernandez, Anne

    2007-06-01

    MyoD is a critical myogenic factor induced rapidly upon activation of quiescent satellite cells, and required for their differentiation during muscle regeneration. One of the two enhancers of MyoD, the distal regulatory region, is essential for MyoD expression in postnatal muscle. This enhancer contains a functional divergent serum response factor (SRF)-binding CArG element required for MyoD expression during myoblast growth and muscle regeneration in vivo. Electrophoretic mobility shift assay, chromatin immunoprecipitation, and microinjection analyses show this element is a hybrid SRF- and MEF2 Binding (SMB) sequence where myocyte enhancer factor 2 (MEF2) complexes can compete out binding of SRF at the onset of differentiation. As cells differentiate into postmitotic myotubes, MyoD expression no longer requires SRF but instead MEF2 binding to this dual-specificity element. As such, the MyoD enhancer SMB element is the site for a molecular relay where MyoD expression is first initiated in activated satellite cells in an SRF-dependent manner and then increased and maintained by MEF2 binding in differentiated myotubes. Therefore, SMB is a DNA element with dual and stage-specific binding activity, which modulates the effects of regulatory proteins critical in controlling the balance between proliferation and differentiation.

  8. Identification of the DNA damage-responsive element of RNR2 and evidence that four distinct cellular factors bind it.

    PubMed Central

    Elledge, S J; Davis, R W

    1989-01-01

    The RNR2 gene encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of the deoxyribonucleotides needed for DNA synthesis. Transcription of this gene is induced approximately 20-fold in response to environmental stimuli that damage DNA or block DNA replication. Deletion and subcloning analysis identified two, and possibly three, upstream activating sequences (UAS) and one repressing (URS) element in the RNR2 regulatory region. A 42-base-pair (bp) fragment from this region was found to be necessary for proper regulation of RNR2 and to be capable of conferring DNA damage inducibility upon a heterologous promoter. This fragment contained both positively and negatively acting sequences. Four DNA-binding factors interacted with the RNR2 regulatory region. One factor was identified as the GRF1 protein, the product of the RAP1 gene. GRF1 bound to the UAS2 element of RNR2, which was found to be directly adjacent to the 42-bp fragment. UAS2 activity was repressed by the 42-bp fragment. Three other factors bound to the 42-bp fragment; one of these factors, RRF3, had a second binding site in the RNR2 promoter. These factors are likely to mediate the response of RNR2 to DNA damage. Images PMID:2685561

  9. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene.

    PubMed Central

    Riccio, A; Pedone, P V; Lund, L R; Olesen, T; Olsen, H S; Andreasen, P A

    1992-01-01

    Transforming growth factor beta (TGF-beta) is the name of a group of closely related polypeptides characterized by a multiplicity of effects, including regulation of extracellular proteolysis and turnover of the extracellular matrix. Its cellular mechanism of action is largely unknown. TGF-beta 1 is a strong and fast inducer of type 1 plasminogen activator inhibitor gene transcription. We have identified a TGF-beta 1-responsive element in the 5'-flanking region of the human type 1 plasminogen activator inhibitor gene and shown that it is functional both in its natural context and when fused to a heterologous nonresponsive promoter. Footprinting and gel retardation experiments showed that two different nuclear factors, present in extracts from both TGF-beta 1-treated and nontreated cells, bind to adjacent sequences contained in the responsive unit. A palindromic sequence binds a trans-acting factor(s) of the CCAAT-binding transcription factor-nuclear factor I family. A partially overlapping dyad symmetry interacts with a second protein that much evidence indicates to be USF. USF is a transactivator belonging to the basic helix-loop-helix family of transcription factors. Mutations which abolish the binding of either CCAAT-binding transcription factor-nuclear factor I or USF result in reduction of transcriptional activation upon exposure to TGF-beta 1, thus showing that both elements of the unit are necessary for the TGF-beta 1 response. We discuss the possible relationship of these findings to the complexity of the TGF-beta action. Images PMID:1549130

  10. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder.

    PubMed

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-03-25

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  11. Forkhead transcription factor 1 inhibits endometrial cancer cell proliferation via sterol regulatory element-binding protein 1

    PubMed Central

    Zhang, Yifang; Zhang, Lili; Sun, Hengzi; Lv, Qingtao; Qiu, Chunping; Che, Xiaoxia; Liu, Zhiming; Jiang, Jie

    2017-01-01

    The morbidity and mortality associated with endometrial cancer (EC) has increased in recent years. Regarded as a tumor suppressor, forkhead transcription factor 1 (FOXO1) has various biological activities and participates in cell cycle progression, apoptosis and differentiation. Notably, FOXO1 also functions in the regulation of lipogenesis and energy metabolism. Lipogenesis is a feature of cancer and is upregulated in EC. Sterol regulatory element-binding protein 1 (SREBP1) is a transcription factor that is also able to regulate lipogenesis. Increased expression of SREBP1 is directly correlated with malignant transformation of tumors. A previous study demonstrated that SREBP1 was highly expressed in EC and directly resulted in tumorigenesis. However, the association between FOXO1 and SREBP1 in EC is not clear. In the present study, lentiviruses overexpressing FOXO1 were used in cell transfection and transduction. Cell viability assays demonstrated that the overexpression of FOXO1 was able to suppress cell proliferation significantly in Ishikawa and AN3 CA cell lines. In addition, FOXO1 overexpression significantly inhibited cell migration and invasion ability in vitro. In xenograft models, overexpression of FOXO1 suppressed cell tumorigenesis, and western blot analysis demonstrated that SREBP1 expression was markedly reduced in the FOXO1-overexpressing cells. It may therefore be concluded that FOXO1 is able to inhibit the proliferative capacity of cells in vitro and in vivo, in addition to the migratory and invasive capacities in vitro by directly targeting SREBP1. PMID:28356952

  12. A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: Its possible translocation to nucleus

    SciTech Connect

    Fujisawa-Sehara, Atsuko; Yamane, Miyuki; Fujii-Kuriyama, Yoshiaki

    1988-08-01

    Transcription of the drug-metabolizing cytochrome P-450c gene is induced by 3-methylcholanthrene or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Previously, the authors defined two xenobiotic responsive elements (XREs) of {approx}15 base pairs, both of which activate transcription in cis in response to these xenobiotics. Using a gel mobility shift assay, they have identified a factor that specifically binds to the XREs. This factor appears in nuclei of mouse hepatoma cell line Hepa-1 only when the cells are treated with the xenobiotics, while the factor is undetectable in the nuclei of a 3-methylcholanthrene-treated mutant of Hepa-1 with defective function of a xenobiotic receptor. In addition, the nuclear factor bound to the XRE in the gel was found to be associated with ({sup 3}H)TCDD when the cells were treated with it, suggesting that the xenobiotic receptor is at least a component of the DNA-binding factor. The cytoplasmic fraction from nontreated Hepa-1 cells also contains the factor as a cryptic form and prominently reveals its DNA-binding activity by incubation with 3-methylcholanthrene in vitro. These results not only suggest the involvement of the XRE-binding factor in transcriptional activation via XREs but also provide evidence that the binding of ligands to the preexisting factor in a cryptic form induces its XRE-binding activity, which is probably followed by its translocation from cytoplasm to nucleus.

  13. Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4α.

    PubMed

    Hanse, Eric A; Mashek, Douglas G; Becker, Jennifer R; Solmonson, Ashley D; Mullany, Lisa K; Mashek, Mara T; Towle, Howard C; Chau, Anhtung T; Albrecht, Jeffrey H

    2012-07-15

    Following acute hepatic injury, the metabolic capacity of the liver is altered during the process of compensatory hepatocyte proliferation by undefined mechanisms. In this study, we examined the regulation of de novo lipogenesis by cyclin D1, a key mediator of hepatocyte cell cycle progression. In primary hepatocytes, cyclin D1 significantly impaired lipogenesis in response to glucose stimulation. Cyclin D1 inhibited the glucose-mediated induction of key lipogenic genes, and similar effects were seen using a mutant (D1-KE) that does not activate cdk4 or induce cell cycle progression. Cyclin D1 (but not D1-KE) inhibited the activity of the carbohydrate response element-binding protein (ChREBP) by regulating the glucose-sensing motif of this transcription factor. Because changes in ChREBP activity could not fully explain the effect of cyclin D1, we examined hepatocyte nuclear factor 4α (HNF4α), which regulates numerous differentiated functions in the liver including lipid metabolism. We found that both cyclins D1 and D1-KE bound to HNF4α and significantly inhibited its recruitment to the promoter region of lipogenic genes in hepatocytes. Conversely, knockdown of cyclin D1 in the AML12 hepatocyte cell line promoted HNF4α activity and lipogenesis. In mouse liver, HNF4α bound to a central domain of cyclin D1 involved in transcriptional repression. Cyclin D1 inhibited lipogenic gene expression in the liver following carbohydrate feeding. Similar findings were observed in the setting of physiologic cyclin D1 expression in the regenerating liver. In conclusion, these studies demonstrate that cyclin D1 represses ChREBP and HNF4α function in hepatocytes via Cdk4-dependent and -independent mechanisms. These findings provide a direct link between the cell cycle machinery and the transcriptional control of metabolic function of the liver.

  14. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element

    PubMed Central

    Gao, Ying; Jia, Shuangwei; Wang, Chunlian; Wang, Fujun; Wang, Fajun; Zhao, Kaijun

    2016-01-01

    We previously identified the W-box-like-4 (Wbl-4) element (GTAGTGACTCAT), one of six Wbl elements in the BjC-P promoter of the unusual chitinase gene BjCHI1 from Brassica juncea, as the core element responsive to fungal infection. Here, we report the isolation and characterization of the cognate transcription factor interacting with the Wbl-4 element. Using Wbl-4 as a target, we performed yeast one-hybrid screening of a B. juncea cDNA library and isolated an R2R3-MYB transcription factor designated as BjMYB1. BjMYB1 was localized in the nucleus of plant cells. EMSA assays confirmed that BjMYB1 binds to the Wbl-4 element. Transiently expressed BjMYB1 up-regulated the activity of the BjC-P promoter through its binding to the Wbl-4 element in tobacco (Nicotiana benthamiana) leaves. In B. juncea, BjMYB1 displayed a similar induced expression pattern as that of BjCHI1 upon infection by the fungus Botrytis cinerea. Moreover, heterogeneous overexpression of BjMYB1 significantly elevated the resistance of transgenic Arabidopsis thaliana to the fungus B. cinerea. These results suggest that BjMYB1 is potentially involved in host defence against fungal attack through activating the expression of BjCHI1 by binding to the Wbl-4 element in the BjC-P promoter. This finding demonstrates a novel DNA target of plant MYB transcription factors. PMID:27353280

  15. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  16. HRP-2, the Caenorhabditis elegans homolog of mammalian heterogeneous nuclear ribonucleoproteins Q and R, is an alternative splicing factor that binds to UCUAUC splicing regulatory elements.

    PubMed

    Kabat, Jennifer L; Barberan-Soler, Sergio; Zahler, Alan M

    2009-10-16

    Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.

  17. A binuclear zinc transcription factor binds the host isoflavonoid-responsive element in a fungal cytochrome p450 gene responsible for detoxification.

    PubMed

    Khan, Rana; Tan, Reynold; Mariscal, Amanda Galvez; Straney, David

    2003-07-01

    The PDA1 gene of the filamentous fungus Nectria haematococca MPVI (anamorph: Fusarium solani) encodes pisatin demethylase, a cytochrome P450. Pisatin is a fungistatic isoflavonoid produced by garden pea (Pisum sativum), a host for this fungus. Pisatin demethylase detoxifies pisatin and functions as a virulence factor for this fungus. Pisatin induces PDA1 expression both in cultured mycelia as well as during pathogenesis on pea. The regulatory element within PDA1 that provides pisatin-responsive expression was identified using a combination of in vivo functional analysis and in vitro binding analysis. The 40 bp pisatin-responsive element is located 635 bp upstream of the PDA1 transcription start site. This element was sufficient to provide strong pisatin-induced expression to a minimal promoter in vivo and was required for pisatin regulation of the PDA1 promoter. A gene encoding a DNA-binding protein specific to this 40 bp element was isolated from a N. haematococca cDNA library using the yeast one-hybrid screen. The cloned gene possesses sequence motifs found in the binuclear zinc (Cys 6-Zn 2) family of transcription factors unique to fungi. The results suggest that it is a regulator of this fungal cytochrome P450 gene and may provide pisatin-responsive regulation.

  18. Transforming Growth Factor β Suppresses Peroxisome Proliferator-Activated Receptor γ Expression via Both SMAD Binding and Novel TGF-β Inhibitory Elements.

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Reddy, Raju C

    2017-01-18

    Transforming growth factor β (TGF-β) contributes to wound healing and, when dysregulated, to pathological fibrosis. TGF-β and the anti-fibrotic nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) repress each other's expression, and such PPARγ downregulation is prominent in fibrosis and mediated, via previously unknown mechanisms, by SMAD signaling. Here we show that TGF-β induces association of SMAD3 with both SMAD4, needed for translocation of the complex into the nucleus, and the essential context-sensitive corepressors E2F4 and p107. The complex mediates TGF-β-induced repression by binding to regulatory elements in the target promoter. In the PPARG promoter, we found that the SMAD3-SMAD4 complex binds both to a previously unknown consensus TGF-β inhibitory element (TIE) and also to canonical SMAD-binding elements (SBEs). Furthermore, the TIE and SBEs independently mediated partial repression of PPARG transcription, the first demonstration of a TIE and SBEs functioning within the same promoter. Also, TGF-β-treated fibroblasts contained SMAD complexes that activated a SMAD target gene in addition to those repressing PPARG transcription, the first finding of such dual activity within the same cell. These findings describe in detail novel mechanisms by which TGF-β represses PPARG transcription, thereby facilitating its own pro-fibrotic activity.

  19. Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response.

    PubMed Central

    Fawcett, T W; Martindale, J L; Guyton, K Z; Hai, T; Holbrook, N J

    1999-01-01

    Gadd153, also known as chop, encodes a member of the CCAAT/enhancer-binding protein (C/EBP) transcription factor family and is transcriptionally activated by cellular stress signals. We recently demonstrated that arsenite treatment of rat pheochromocytoma PC12 cells results in the biphasic induction of Gadd153 mRNA expression, controlled in part through binding of C/EBPbeta and two uncharacterized protein complexes to the C/EBP-ATF (activating transcription factor) composite site in the Gadd153 promoter. In this report, we identified components of these additional complexes as two ATF/CREB (cAMP-responsive-element-binding protein) transcription factors having differential binding activities dependent upon the time of arsenite exposure. During arsenite treatment of PC12 cells, we observed enhanced binding of ATF4 to the C/EBP-ATF site at 2 h as Gadd153 mRNA levels increased, and enhanced binding of ATF3 complexes at 6 h as Gadd153 expression declined. We further demonstrated that ATF4 activates, while ATF3 represses, Gadd153 promoter activity through the C/EBP-ATF site. ATF3 also repressed ATF4-mediated transactivation and arsenite-induced activation of the Gadd153 promoter. Our results suggest that numerous members of the ATF/CREB family are involved in the cellular stress response, and that regulation of stress-induced biphasic Gadd153 expression in PC12 cells involves the ordered, sequential binding of multiple transcription factor complexes to the C/EBP-ATF composite site. PMID:10085237

  20. Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA.

    PubMed

    Gueydan, C; Droogmans, L; Chalon, P; Huez, G; Caput, D; Kruys, V

    1999-01-22

    In monocyte/macrophages, the translation of tumor necrosis factor alpha (TNF-alpha) mRNA is tightly regulated. In unstimulated cells, translation of TNF-alpha mRNA is blocked. Upon stimulation with lipopolysaccharides, this repression is overcome, and the mRNA becomes efficiently translated. The key element in this regulation is the AU-rich element (ARE). We have previously reported the binding of two cytosolic protein complexes to the TNF-alpha mRNA ARE. One of these complexes (complex 1) forms with extracts of both unstimulated and lipopolysaccharide-stimulated macrophages and requires a large fragment of the ARE containing clustered AUUUA pentamers. The other complex (complex 2) is only detected after cell activation, binds to a minimal UUAUUUAUU nonamer, and is composed of a 55-kDa protein. Here, we report the identification of the RNA-binding protein TIAR as a protein involved in complex 1. The RNA sequence bound by TIAR and the cytoplasmic localization of this protein in macrophages argue for an involvement of TIAR in TNF mRNA posttranscriptional regulation.

  1. The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration-responsive element binding (MaDREB) transcription factors in fruit ripening.

    PubMed

    Kuang, Jian-Fei; Chen, Jian-Ye; Liu, Xun-Cheng; Han, Yan-Chao; Xiao, Yun-Yi; Shan, Wei; Tang, Yang; Wu, Ke-Qiang; He, Jun-Xian; Lu, Wang-Jin

    2017-04-01

    Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established significance of dehydration-responsive element binding (DREB) TFs in plant abiotic stress responses, the involvement of DREBs in fruit ripening is yet to be determined. Here, we identified four genes encoding ripening-regulated DREB TFs in banana (Musa acuminata), MaDREB1, MaDREB2, MaDREB3, and MaDREB4, and demonstrated that they play regulatory roles in fruit ripening. We showed that MaDREB1-MaDREB4 are nucleus-localized, induced by ethylene and encompass transcriptional activation activities. We performed a genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-Seq) experiment for MaDREB2 and identified 697 genomic regions as potential targets of MaDREB2. MaDREB2 binds to hundreds of loci with diverse functions and its binding sites are distributed in the promoter regions proximal to the transcriptional start site (TSS). Most of the MaDREB2-binding targets contain the conserved (A/G)CC(G/C)AC motif and MaDREB2 appears to directly regulate the expression of a number of genes involved in fruit ripening. In combination with transcriptome profiling (RNA sequencing) data, our results indicate that MaDREB2 may serve as both transcriptional activator and repressor during banana fruit ripening. In conclusion, our study suggests a hierarchical regulatory model of fruit ripening in banana and that the MaDREB TFs may act as transcriptional regulators in the regulatory network.

  2. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.

    PubMed

    Kagale, Sateesh; Links, Matthew G; Rozwadowski, Kevin

    2010-03-01

    The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation.

  3. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    SciTech Connect

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  4. Protein binding elements in the human beta-polymerase promoter.

    PubMed Central

    Englander, E W; Wilson, S H

    1990-01-01

    The core promoter for human DNA polymerase beta contains discrete binding sites for mammalian nuclear proteins, as revealed by DNasel footprinting and gel mobility shift assays. Two sites correspond to sequences identical with the Sp1 factor binding element, and a third site includes an eight residue palindromic sequence, TGACGTCA, known as the CRE element of several cAMP responsive promoters; the 5 to 10 residues flanking this palindrome on each side have no apparent sequence homology with known elements in other promoters. Nuclear extract from a variety of tissues and cells were examined; these included rat liver and testes and cultured cells of human and hamster origin. The DNasel footprint is strong over and around the palindromic element for each of the extracts and is equivalent in size (approximately 22 residues); footprinting over the Sp1 binding sites is seen also. Two potential tissue-specific binding sites, present in liver but not in testes, were found corresponding to residues -13 to -10 and +33 to +48, respectively. Protein binding to the palindromic element was confirmed by an electrophoretic mobility shift assay with the core promoter as probe. Binding specificity of the 22 residue palindromic element, as revealed by oligonucleotide competition, is different from that of AP-1 binding element. Controlled proteolysis with trypsin was used to study structural properties of proteins forming the mobility shift bands. Following digestion with trypsin, most of the palindrome binding activity of each extract corresponded to a sharp, faster migrating band, potentially representing a DNA binding domain of the palindrome binding protein. Images PMID:2315044

  5. The role of the glucose-sensing transcription factor carbohydrate-responsive element-binding protein pathway in termite queen fertility

    PubMed Central

    Sillam-Dussès, David; Hanus, Robert; Poulsen, Michael; Roy, Virginie; Favier, Maryline

    2016-01-01

    Termites are among the few animals that themselves can digest the most abundant organic polymer, cellulose, into glucose. In mice and Drosophila, glucose can activate genes via the transcription factor carbohydrate-responsive element-binding protein (ChREBP) to induce glucose utilization and de novo lipogenesis. Here, we identify a termite orthologue of ChREBP and its downstream lipogenic targets, including acetyl-CoA carboxylase and fatty acid synthase. We show that all of these genes, including ChREBP, are upregulated in mature queens compared with kings, sterile workers and soldiers in eight different termite species. ChREBP is expressed in several tissues, including ovaries and fat bodies, and increases in expression in totipotent workers during their differentiation into neotenic mature queens. We further show that ChREBP is regulated by a carbohydrate diet in termite queens. Suppression of the lipogenic pathway by a pharmacological agent in queens elicits the same behavioural alterations in sterile workers as observed in queenless colonies, supporting that the ChREBP pathway partakes in the biosynthesis of semiochemicals that convey the signal of the presence of a fertile queen. Our results highlight ChREBP as a likely key factor for the regulation and signalling of queen fertility. PMID:27249798

  6. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    SciTech Connect

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  7. Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem.

    PubMed

    Zhao, Kai; Shen, Xinjie; Yuan, Huazhao; Liu, Yun; Liao, Xiong; Wang, Qi; Liu, Linlin; Li, Fang; Li, Tianhong

    2013-09-01

    DREB2 (dehydration-responsive element-binding factor 2)-type transcription factors play a critical role in the stress-related regulation network in plants. In this study, we isolated and characterized a DREB2 homolog from Malus sieversii Roem., designated MsDREB2C (GenBank accession No. JQ790526). MsDREB2C localized to the nucleus and transactivated reporter genes in yeast strain YGR-2. Quantitative real-time PCR analysis demonstrated that MsDREB2C was constitutively expressed and significantly induced by drought, salt, cold, heat and ABA. Transgenic Arabidopsis plants overexpressing MsDREB2C exhibited increased root and leaf growth and proline levels, and reduced water loss and stomatal aperture. The transcriptional level of genes that function downstream of dehydration-responsive elements was greater in the transgenic Arabidopsis plants than in wild-type plants under control and abiotic stress conditions. Furthermore, constitutive expression of MsDREB2C repressed the expression of pathogenesis-related (PR) genes and the activity of peroxidase in transgenic plants under control and pathogenic conditions. As a result, transgenic plants were more tolerant to drought, heat and cold, but more sensitive to Pst DC3000 (Pseudomonas syringae pv . tomato DC3000) infection than control plants. β-Glucuronidase expression analysis of the MsDREB2C promoter in transgenic tobacco plants showed that MsDREB2C was mainly expressed in the vascular tissues and seeds. Deletion analysis identified the regulatory regions responsible for the plant's response to drought (-831 to -680), ABA (-831 to -680 and -335 to -148), salt (-831 to -335), cold (-1,317 to -831 and -335 to -148) and heat (-335 to -148).

  8. Members of the nuclear factor 1 family and hepatocyte nuclear factor 4 bind to overlapping sequences of the L-II element on the rat pyruvate kinase L gene promoter and regulate its expression.

    PubMed

    Yamada, K; Tanaka, T; Noguchi, T

    1997-06-15

    The L-II element (-149 to -126 bp) in the enhancer unit of the rat pyruvate kinase L (PKL) gene is required for cell-type-specific transcription and induction by carbohydrates. This element was found to bind multiple nuclear proteins with different heat stabilities. A heat-labile factor was shown to be hepatocyte nuclear factor (HNF) 4 by the electrophoretic mobility-shift assay (EMSA) using various competitor DNAs and anti-HNF4 serum. A heat-stable factor was purified from rat liver nuclear extract and was resolved as two protein bands migrating at about 33 kDa on SDS/polyacrylamide gels. Peptide sequence analysis revealed that these proteins were nuclear factor (NF) 1-L and NF1/Red1. The heat-stable factor was also identified as a member of the NF1 family by using various competitor DNAs and anti-NF1 serum in an EMSA. In addition, we found that a factor bound to the accessory site of the rat S14 gene, which is necessary for carbohydrate responsiveness of this gene, was also a member of the NF1 family, raising the possibility that the NF1 family is involved in the carbohydrate regulation of gene transcription by interactions with other proteins. The NF1 family members and HNF4 interacted with overlapping sequences of the L-II element, wherein the 5' half-site was more critical for NF1 binding, and the 3' site was more important for HNF4 binding. Co-transfection of a vector expressing either NF1-L or NF1/Red1 repressed the transcription of the PKL enhancer unit-chloramphenicol acetyltransferase (CAT) fusion gene in HepG2 cells, whereas co-transfection of a vector expressing HNF4 activated the transcription of the same reporter gene. Furthermore NF1 family members antagonized the effect of HNF4 on PKL enhancer unit-CAT fusion gene expression when both expression plasmids were co-transfected. We conclude that NF1 family members and HNF4 regulate transcription of the PKL gene in an opposing manner by binding overlapping sequences of the L-II element.

  9. The DNA replication-related element (DRE)/DRE-binding factor system is a transcriptional regulator of the Drosophila E2F gene.

    PubMed

    Sawado, T; Hirose, F; Takahashi, Y; Sasaki, T; Shinomiya, T; Sakaguchi, K; Matsukage, A; Yamaguchi, M

    1998-10-02

    Two mRNA species were observed for the Drosophila E2F (dE2F) gene, differing with regard to the first exons (exon 1-a and exon 1-b), which were expressed differently during development. A single transcription initiation site for mRNA containing exon 1-b was mapped by primer extension analysis and numbered +1. We found three tandemly aligned sequences, similar to the DNA replication-related element (DRE; 5'-TATCGATA), which is commonly required for transcription of genes related to DNA replication and cell proliferation, in the region upstream of this site. Band mobility shift analyses using oligonucleotides containing the DRE-related sequences with or without various base substitutions revealed that two out of three DRE-related sequences are especially important for binding to the DRE-binding factor (DREF). On footprinting analysis with Kc cell nuclear extracts and a glutathione S-transferase fusion protein with the N-terminal fragment (1-125 amino acid residues) of DREF, all three DRE-related sequences were found to be protected. Transient luciferase expression assays in Kc cells demonstrated that the region containing the three DRE-related sequences is required for high promoter activity. We have established transgenic lines of Drosophila in which ectopic expression of DREF was targeted to the eye imaginal disc cells. Overexpression of DREF in eye imaginal disc cells enhanced the promoter activity of dE2F. The obtained results indicate that the DRE/DREF system activates transcription of the dE2F gene.

  10. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  11. Association Study Between Metabolic Syndrome and rs8066560 Polymorphism in the Promoter Region of Sterol Regulatory Element-binding Transcription Factor 1 Gene in Iranian Children and Adolescents

    PubMed Central

    Miranzadeh-Mahabadi, Hajar; Emadi-Baygi, Modjtaba; Nikpour, Parvaneh; Kelishadi, Roya

    2016-01-01

    Background: Metabolic syndrome (MetS) is a prevalent disorder in pediatric age groups, described by a combination of genetic and environmental factors. Sterol regulatory element-binding transcription factor 1 (SREBF-1) induces the expression of a family of genes involved in fatty acid synthesis. Moreover, dysregulation of miR-33b, which is located within the intron 17 of the SREBF-1 gene, disrupts fatty acid oxidation and insulin signaling, thus leading to MetS. The aim of the present study was to investigate the association between SREBF-1 rs8066560 polymorphism and MetS in Iranian children and adolescents. Methods: This study includes 100 MetS and 100 normal individuals aged 9–19 years. Anthropological and biochemical indexes were measured. The -1099G > A polymorphism was genotyped by TaqMan real-time polymerase chain reaction. Results: Significant differences were observed in anthropometric measurements and lipid profiles between MetS and normal children. There were no differences in the genotype frequencies or allele distribution for -1099G > A polymorphism between MetS and control groups. High-density lipoprotein cholesterol levels were significantly higher in the MetS GG group than in the A allele carrier group. The genotype AA controls had significantly increased cholesterol and low-density lipoprotein cholesterol levels than AG genotypes. By logistic regression using different genetic models, no significant association was observed between SREBF-1 rs8066560 polymorphism and the risk of MetS. Conclusions: We conclude that the -1099G > A variant on SREBF-1 gene associated with serum lipid profiles, however, it may not be a major risk factor for the MetS in Iranian children and adolescents. PMID:27076879

  12. High glucose induces platelet-derived growth factor-C via carbohydrate response element-binding protein in glomerular mesangial cells.

    PubMed

    Kitsunai, Hiroya; Makino, Yuichi; Sakagami, Hidemitsu; Mizumoto, Katsutoshi; Yanagimachi, Tsuyoshi; Atageldiyeva, Kuralay; Takeda, Yasutaka; Fujita, Yukihiro; Abiko, Atsuko; Takiyama, Yumi; Haneda, Masakazu

    2016-03-01

    Persistent high concentration of glucose causes cellular stress and damage in diabetes via derangement of gene expressions. We previously reported high glucose activates hypoxia-inducible factor-1αand downstream gene expression in mesangial cells, leading to an extracellular matrix expansion in the glomeruli. A glucose-responsive transcription factor carbohydrate response element-binding protein (ChREBP) is a key mediator for such perturbation of gene regulation. To provide insight into glucose-mediated gene regulation in mesangial cells, we performed chromatin immunoprecipitation followed byDNAmicroarray analysis and identified platelet-derived growth factor-C (PDGF-C) as a novel target gene of ChREBP In streptozotocin-induced diabetic mice, glomerular cells showed a significant increase inPDGF-C expression; the ratio ofPDGF-C-positive cells to the total number glomerular cells demonstrated more than threefold increase when compared with control animals. In cultured human mesangial cells, high glucose enhanced expression ofPDGF-C protein by 1.9-fold. Knock-down of ChREBPabrogated this induction response. UpregulatedPDGF-C contributed to the production of typeIVand typeVIcollagen, possibly via an autocrine mechanism. Interestingly, urinaryPDGF-C levels in diabetic model mice were significantly elevated in a fashion similar to urinary albumin. Taken together, we hypothesize that a high glucose-mediated induction ofPDGF-C via ChREBPin mesangial cells contributes to the development of glomerular mesangial expansion in diabetes, which may provide a platform for novel predictive and therapeutic strategies for diabetic nephropathy.

  13. The gene transcription factor cyclic AMP-responsive element binding protein: role in positive and negative affective states of alcohol addiction.

    PubMed

    Pandey, Subhash C

    2004-10-01

    The gene transcription factor cyclic adenosine monophosphate (cAMP)-responsive element binding (CREB) protein is a nuclear protein that regulates synaptic plasticity via modulating the expression of several (cAMP)-inducible genes. Alcohol addiction is a complex psychiatric disorder and is characterized by a compulsive and uncontrolled pattern of alcohol drinking by an individual in spite of the adverse consequences of its abuse. Ethanol produces both euphoric (reward and reinforcing) and dysphoric (negative withdrawal reactions) effects and these are most likely involved in the initiation and maintenance of alcohol use and abuse. Several neurotransmitter systems in the brain might be involved in the effects of alcohol but the exact molecular mechanisms of both the positive and negative affective states of alcohol abuse are still unclear. Recent research in molecular neurosciences using animal models have identified the role of extended amygdaloid (shell structures of nucleus accumbens [NAc] and central and medial amygdaloid nuclei) CREB signaling in positive and negative affective states of alcohol drinking behaviors. This review article highlights the current findings on the role of nucleus accumbal and amygdaloid CREB signaling in behavioral consequences of alcohol use and abuse.

  14. Chromatin landscape dictates HSF binding to target DNA elements.

    PubMed

    Guertin, Michael J; Lis, John T

    2010-09-09

    Sequence-specific transcription factors (TFs) are critical for specifying patterns and levels of gene expression, but target DNA elements are not sufficient to specify TF binding in vivo. In eukaryotes, the binding of a TF is in competition with a constellation of other proteins, including histones, which package DNA into nucleosomes. We used the ChIP-seq assay to examine the genome-wide distribution of Drosophila Heat Shock Factor (HSF), a TF whose binding activity is mediated by heat shock-induced trimerization. HSF binds to 464 sites after heat shock, the vast majority of which contain HSF Sequence-binding Elements (HSEs). HSF-bound sequence motifs represent only a small fraction of the total HSEs present in the genome. ModENCODE ChIP-chip datasets, generated during non-heat shock conditions, were used to show that inducibly bound HSE motifs are associated with histone acetylation, H3K4 trimethylation, RNA Polymerase II, and coactivators, compared to HSE motifs that remain HSF-free. Furthermore, directly changing the chromatin landscape, from an inactive to an active state, permits inducible HSF binding. There is a strong correlation of bound HSEs to active chromatin marks present prior to induced HSF binding, indicating that an HSE's residence in "active" chromatin is a primary determinant of whether HSF can bind following heat shock.

  15. Heterology Expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 Gene Confers Elevated Tolerance to Chilling and Oxidative Stresses in Transgenic Tomato1

    PubMed Central

    Hsieh, Tsai-Hung; Lee, Jent-Turn; Yang, Pei-Tzu; Chiu, Li-Hui; Charng, Yee-yung; Wang, Yu-Chie; Chan, Ming-Tsair

    2002-01-01

    In an attempt to improve stress tolerance of tomato (Lycopersicon esculentum) plants, an expression vector containing an Arabidopsis C-repeat/dehydration responsive element binding factor 1 (CBF1) cDNA driven by a cauliflower mosaic virus 35S promoter was transferred into tomato plants. Transgenic expression of CBF1 was proved by northern- and western-blot analyses. The degree of chilling tolerance of transgenic T1 and T2 plants was found to be significantly greater than that of wild-type tomato plants as measured by survival rate, chlorophyll fluorescence value, and radical elongation. The transgenic tomato plants exhibited patterns of growth retardation; however, they resumed normal growth after GA3 (gibberellic acid) treatment. More importantly, GA3-treated transgenic plants still exhibited a greater degree of chilling tolerance compared with wild-type plants. Subtractive hybridization was performed to isolate the responsive genes of heterologous Arabidopsis CBF1 in transgenic tomato plants. CATALASE1 (CAT1) was obtained and showed activation in transgenic tomato plants. The CAT1 gene and catalase activity were also highly induced in the transgenic tomato plants. The level of H2O2 in the transgenic plants was lower than that in the wild-type plants under either normal or cold conditions. The transgenic plants also exhibited considerable tolerance against oxidative damage induced by methyl viologen. Results from the current study suggest that heterologous CBF1 expression in transgenic tomato plants may induce several oxidative-stress responsive genes to protect from chilling stress. PMID:12114563

  16. Sterol regulatory element binding transcription factor 1 expression and genetic polymorphism significantly affect intramuscular fat deposition in the longissimus muscle of Erhualian and Sutai pigs.

    PubMed

    Chen, J; Yang, X J; Xia, D; Chen, J; Wegner, J; Jiang, Z; Zhao, R Q

    2008-01-01

    Two experiments were performed to elucidate the role of sterol regulatory element binding transcription factor 1 (SREBF1) in i.m. fat (IMF) deposition in pigs. In Exp. 1, LM samples were removed from 4 male and 4 female Erhualian piglets at 3, 20, and 45 d of age, and SREBF1 mRNA expression level and IMF content were measured. Intramuscular fat content and expression of SREBF1 mRNA was greater (P < 0.05) in females than males at all 3 stages of age, providing initial evidence that the level of SREBF1 mRNA expression is related to IMF deposition in muscle of suckling pigs. Additionally, in Exp. 2 there was a positive correlation between the SREBF1 mRNA level and IMF content (r = 0.67, P < 0.01) in 100 Sutai finishing pigs, a synthetic line produced by crossing Erhualian and Duroc pigs. Single-strand conformation polymorphism (SSCP) analysis of the reverse transcription PCR products of the SREBF1 gene revealed 3 genotypes in Sutai pigs with frequencies of 50% for AA, 36% for AB, and 14% for BB, respectively. Both SREBF1 mRNA level and IMF content in muscle were greater (P < 0.05) in AB and BB animals than in AA animals, whereas no difference in backfat thickness was observed among the 3 genotypes. Sequencing analysis identified 2 SNP at T1006C and C1033T within the open reading frame of the SREBF1 gene (NM_214157). Although both are silent mutations, they affected the secondary structure of SREBF1 mRNA. These results suggest that SREBF1 might play an important role in regulation of muscle fat deposition during postnatal growth of pigs. The SNP identified in the SREBF1 gene suggest that it could be used as a genetic marker to improve IMF content in pigs.

  17. FoxO1 inhibits sterol regulatory element-binding protein-1c (SREBP-1c) gene expression via transcription factors Sp1 and SREBP-1c.

    PubMed

    Deng, Xiong; Zhang, Wenwei; O-Sullivan, InSug; Williams, J Bradley; Dong, Qingming; Park, Edwards A; Raghow, Rajendra; Unterman, Terry G; Elam, Marshall B

    2012-06-08

    Induction of lipogenesis in response to insulin is critically dependent on the transcription factor, sterol regulatory element-binding protein-1c (SREBP-1c). FoxO1, a forkhead box class-O transcription factor, is an important mediator of insulin action, but its role in the regulation of lipid metabolism has not been clearly defined. We examined the effects of FoxO1 on srebp1 gene expression in vivo and in vitro. In vivo studies showed that constitutively active (CA) FoxO1 (CA-FoxO1) reduced basal expression of SREBP-1c mRNA in liver by ∼60% and blunted induction of SREBP-1c in response to feeding. In liver-specific FoxO knock-out mice, SREBP-1c expression was increased ∼2-fold. Similarly, in primary hepatocytes, CA-FoxO1 suppressed SREBP1-c expression and inhibited basal and insulin-induced SREBP-1c promoter activity. SREBP-1c gene expression is induced by the liver X receptor (LXR), but CA-FoxO1 did not block the activation of SREBP-1c by the LXR agonist TO9. Insulin stimulates SREBP-1c transcription through Sp1 and via "feed forward" regulation by newly synthesized SREBP-1c. CA-FoxO1 inhibited SREBP-1c by reducing the transactivational capacity of both Sp1 and SREBP-1c. In addition, chromatin immunoprecipitation assays indicate that FoxO1 can associate with the proximal promoter region of the srebp1 gene and disrupt the assembly of key components of the transcriptional complex of the SREBP-1c promoter. We conclude that FoxO1 inhibits SREBP-1c transcription via combined actions on multiple transcription factors and that this effect is exerted at least in part through reduced transcriptional activity of Sp1 and SREBP-1c and disrupted assembly of the transcriptional initiation complex on the SREBP-1c promoter.

  18. Anoxic induction of a sarcoma virus-related VL30 retrotransposon is mediated by a cis-acting element which binds hypoxia-inducible factor 1 and an anoxia-inducible factor.

    PubMed Central

    Estes, S D; Stoler, D L; Anderson, G R

    1995-01-01

    Cells exposed to hypoxia undergo substantial changes in gene expression generally associated with metabolic adaptation and increasing oxygen delivery. In contrast, responses distinct from those elicited by hypoxia are induced in anoxic fibroblasts; this includes activation of a set of VL30 elements. The responses seen in anoxically cultured fibroblasts are expressed physiologically in vivo during the anaerobic phase of wound healing. A fundamental question is whether transcriptional regulatory pathways utilized during anoxia are distinct from those already characterized for hypoxic cells. We report here the isolation of a 14-bp sequence within a VL30 retrotransposon promoter which mediates its anoxia responsiveness. Analyses of the protein complexes binding to this sequence demonstrated the presence of two distinct inducible DNA binding activities. The first is present in both hypoxic and anoxic fibroblasts and is indistinguishable from hypoxia-inducible factor 1. The second activity, which is present only in anoxic fibroblasts, is a previously uncharacterized heterodimeric DNA binding activity that appears to arise via posttranslational modification of an existing complex found in aerobic cells. These results indicate that the strong VL30 transcriptional induction seen with anoxia occurs through a mechanism specific to anoxia. PMID:7666534

  19. Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) replication and transcription factor activates the K9 (vIRF) gene through two distinct cis elements by a non-DNA-binding mechanism.

    PubMed

    Ueda, Keiji; Ishikawa, Kayo; Nishimura, Ken; Sakakibara, Shuhei; Do, Eunju; Yamanishi, Koichi

    2002-12-01

    The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, a homologue of Epstein-Barr virus BRLF1 or Rta, is a strong transactivator and inducer of lytic replication. RTA acting alone can induce lytic replication of KSHV in infected cell lines that originated from primary effusion lymphomas, leading to virus production. During the lytic replication process, RTA activates many kinds of genes, including polyadenylated nuclear RNA, K8, K9 (vIRF), ORF57, and so on. We focused here on the mechanism of how RTA upregulates the K9 (vIRF) promoter and identified two independent cis-acting elements in the K9 (vIRF) promoter that responded to RTA. These elements were finally confined to the sequence 5'-TCTGGGACAGTC-3' in responsive element (RE) I-2B and the sequence 5'-GTACTTAAAATA-3' in RE IIC-2, both of which did not share sequence homology. Multiple factors bound specifically with these elements, and their binding was correlated with the RTA-responsive activity. Electrophoretic mobility shift assay with nuclear extract from infected cells and the N-terminal part of RTA expressed in Escherichia coli, however, did not show that RTA interacted directly with these elements, in contrast to the RTA responsive elements in the PAN/K12 promoter region, the ORF57/K8 promoter region. Thus, it was likely that RTA could transactivate several kinds of unique cis elements without directly binding to the responsive elements, probably through cooperation with other DNA-binding factors.

  20. Identification of two factors which bind to the upstream sequences of a number of nuclear genes coding for mitochondrial proteins and to genetic elements important for cell division in yeast.

    PubMed Central

    Dorsman, J C; van Heeswijk, W C; Grivell, L A

    1988-01-01

    Two abundant factors, GFI and GFII which interact with the 5' flanking regions of nuclear genes coding for proteins of the mitochondrial respiratory chain have been identified. In one case (subunit VIII of QH2: cytochrome c oxidoreductase) the binding sites for both factors overlap completely and their binding is mutually exclusive. For the other 5' regions tested the GFI and GFII binding sites do not coincide. Interestingly, binding sites for GFI and GFII are also present in or at the 3' ends of the coding regions of two genes of the PHO gene family and in DNA elements important for optimal ARS and CEN function respectively. The sites recognized by GFI conform to the consensus RTCRNNNNNNACGNR, while those recognized by GFII contain the element RTCACGTG. We speculate that GFI and GFII may play a role in different cellular processes, dependent on the context of their binding sites and that one of these processes may be the coordination of the expression of genes involved in mitochondrial biogenesis with the progress of the cell cycle. Images PMID:3045755

  1. 170 SUPPLEMENT OF GROWTH DIFFERENTIATION FACTOR 8 ON PORCINE OOCYTE DURING IN VITRO MATURATION ACTIVATES SMAD2 AND cAMP RESPONSIVE ELEMENT BINDING PROTEIN SIGNALING.

    PubMed

    Yoon, J D; Lee, E; Hyun, S-H

    2016-01-01

    -related genes HAS2, PTX3, and TNFAIP6 mRNA expression levels after IVM (4 times). To determine effect of GDF8 treatment during IVM, GDF8 downstream effector and oocyte ovulation-related protein expression and activation levels were analysed in CC after IVM by Western blotting. The 1 and 10ngmL(-1) treatment groups showed significantly increased phosphorylated (P)-SMAD2 (1.25 and 1.23 times increased compared with the control) and cyclic adenosine monophosphate responsive element binding protein (CREB; 1.31 and 1.32 times increased compared with the control) activation levels (4 times). In conclusion, supplementation of 10ngmL(-1) of GDF8 during IVM effectively increased the oocytes cytoplasmic maturation by reducing of intracellular ROS, and it seems correlated with significantly increased P-SMAD2, which is possibly related with induction of the cumulus cell expansion related genes expression and P-CREB while process of IVM.

  2. The Basic Leucine Zipper Transcription Factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 Is an Important Transcriptional Regulator of Abscisic Acid-Dependent Grape Berry Ripening Processes1[W][OPEN

    PubMed Central

    Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma

    2014-01-01

    In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949

  3. A nuclear factor that binds purine-rich, single-stranded oligonucleotides derived from S1-sensitive elements upstream of the CFTR gene and the MUC1 gene.

    PubMed Central

    Hollingsworth, M A; Closken, C; Harris, A; McDonald, C D; Pahwa, G S; Maher, L J

    1994-01-01

    We have identified two regions of non-random purine/pyrimidine strand asymmetry that were nearly identical in sequence in the 5' flanking (promoter) regions of the human cystic fibrosis transmembrane conductance regulator (CFTR) gene and the human MUC1 gene. These regions contain perfect mirror repeat elements, a sequence motif previously found to be associated with the formation of H-DNA conformations. In this report we demonstrate that a single-stranded non-B DNA conformation exists at low pH in supercoiled plasmids containing the similar mirror repeat elements, and that S1 nuclease digestion maps the single-stranded region to the position of the mirror repeats. In addition, we identify a nuclear protein of approximately 27 kD that binds to single-stranded oligonucleotides corresponding to the purine-rich strand of this region, but not to the pyrimidine-rich strands or to double-stranded oligonucleotides with corresponding purine/pyrimidine strand asymmetry. Images PMID:7513081

  4. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  5. Synergy of aromatic residues and phosphoserines within the intrinsically disordered DNA-binding inhibitory elements of the Ets-1 transcription factor.

    PubMed

    Desjardins, Geneviève; Meeker, Charles A; Bhachech, Niraja; Currie, Simon L; Okon, Mark; Graves, Barbara J; McIntosh, Lawrence P

    2014-07-29

    The E26 transformation-specific (Ets-1) transcription factor is autoinhibited by a conformationally disordered serine-rich region (SRR) that transiently interacts with its DNA-binding ETS domain. In response to calcium signaling, autoinhibition is reinforced by calmodulin-dependent kinase II phosphorylation of serines within the SRR. Using mutagenesis and quantitative DNA-binding measurements, we demonstrate that phosphorylation-enhanced autoinhibition requires the presence of phenylalanine or tyrosine (ϕ) residues adjacent to the SRR phosphoacceptor serines. The introduction of additional phosphorylated Ser-ϕ-Asp, but not Ser-Ala-Asp, repeats within the SRR dramatically reinforces autoinhibition. NMR spectroscopic studies of phosphorylated and mutated SRR variants, both within their native context and as separate trans-acting peptides, confirmed that the aromatic residues and phosphoserines contribute to the formation of a dynamic complex with the ETS domain. Complementary NMR studies also identified the SRR-interacting surface of the ETS domain, which encompasses its positively charged DNA-recognition interface and an adjacent region of neutral polar and nonpolar residues. Collectively, these studies highlight the role of aromatic residues and their synergy with phosphoserines in an intrinsically disordered regulatory sequence that integrates cellular signaling and gene expression.

  6. Suppression of granulocyte-macrophage colony-stimulating factor expression by glucocorticoids involves inhibition of enhancer function by the glucocorticoid receptor binding to composite NF-AT/activator protein-1 elements.

    PubMed

    Smith, P J; Cousins, D J; Jee, Y K; Staynov, D Z; Lee, T H; Lavender, P

    2001-09-01

    Increased expression of a number of cytokines including GM-CSF is associated with chronic inflammatory conditions such as bronchial asthma. Glucocorticoid therapy results in suppression of cytokine levels by a mechanism(s) not yet fully understood. We have examined regulation of GM-CSF expression by the synthetic glucocorticoid dexamethasone in human T cells. Transient transfection assays with reporter constructs revealed that dexamethasone inhibited the function of the GM-CSF enhancer, but had no effect on regulation of GM-CSF expression occurring through the proximal promoter. Activation of the GM-CSF enhancer involves cooperative interaction between the transcription factors NF-AT and AP-1. We demonstrate here that glucocorticoid-mediated inhibition of enhancer function involves glucocorticoid receptor (GR) binding to the NF-AT/AP-1 sites. These elements, which do not constitute recognizable glucocorticoid response elements, support binding of the GR, primarily as a dimer. This binding correlates with the ability of dexamethasone to inhibit enhancer activity of the NF-AT/AP-1 elements, suggesting a competition between NF-AT/AP-1 proteins and GR.

  7. Mutant copper-zinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to adenine/uridine-rich stability elements in the vascular endothelial growth factor 3′-untranslated region

    PubMed Central

    Li, Xuelin; Lu, Liang; Bush, Donald J.; Zhang, Xiaowen; Zheng, Lei; Suswam, Esther A.; King, Peter H.

    2009-01-01

    Vascular endothelial growth factor (VEGF) is a neurotrophic factor essential for maintenance of motor neurons. Loss of this factor produces a phenotype similar to amyotrophic lateral sclerosis (ALS). We recently showed that ALS-producing mutations of Cu/Zn-superoxide dismutase (SOD1) disrupt post-transcriptional regulation of VEGF mRNA, leading to significant loss of expression. Mutant SOD1 was present in the ribonucleoprotein complex associated with adenine/uridine-rich elements (ARE) of the VEGF 3′-untranslated region (UTR). Here, we show by electrophoretic mobility shift assay that mutant SOD1 bound directly to the VEGF 3′-UTR with a predilection for AREs similar to the RNA stabilizer HuR. SOD1 mutants A4V and G37R showed higher affinity for the ARE than L38V or G93A. Wild-type SOD1 bound very weakly with an apparent Kd 11- to 72-fold higher than mutant forms. Mutant SOD1 showed an additional lower shift with VEGF ARE that was accentuated in the metal-free state. A similar pattern of binding was observed with AREs of tumor necrosis factor-α and interleukin-8, except only a single shift predominated. Using an ELISA-based assay, we demonstrated that mutant SOD1 competes with HuR and neuronal HuC for VEGF 3′-UTR binding. To define potential RNA-binding domains, we truncated G37R, G93A and wild-type SOD1 and found that peptides from the N-terminal portion of the protein that included amino acids 32-49 could recapitulate the binding pattern of full-length protein. Thus, the strong RNA-binding affinity conferred by ALS-associated mutations of SOD1 may contribute to the post-transcriptional dysregulation of VEGF mRNA. PMID:19196430

  8. Identification of a Bipartite Jasmonate-Responsive Promoter Element in the Catharanthus roseus ORCA3 Transcription Factor Gene That Interacts Specifically with AT-Hook DNA-Binding Proteins1[W

    PubMed Central

    Vom Endt, Débora; Soares e Silva, Marina; Kijne, Jan W.; Pasquali, Giancarlo; Memelink, Johan

    2007-01-01

    Jasmonates are plant signaling molecules that play key roles in defense against certain pathogens and insects, among others, by controlling the biosynthesis of protective secondary metabolites. In Catharanthus roseus, the APETALA2-domain transcription factor ORCA3 is involved in the jasmonate-responsive activation of terpenoid indole alkaloid biosynthetic genes. ORCA3 gene expression is itself induced by jasmonate. By loss- and gain-of-function experiments, we located a 74-bp region within the ORCA3 promoter, which contains an autonomous jasmonate-responsive element (JRE). The ORCA3 JRE is composed of two important sequences: a quantitative sequence responsible for a high level of expression and a qualitative sequence that appears to act as an on/off switch in response to methyl jasmonate. We isolated 12 different DNA-binding proteins having one of four different types of DNA-binding domains, using the ORCA3 JRE as bait in a yeast (Saccharomyces cerevisiae) one-hybrid transcription factor screening. The binding of one class of proteins bearing a single AT-hook DNA-binding motif was affected by mutations in the quantitative sequence within the JRE. Two of the AT-hook proteins tested had a weak activating effect on JRE-mediated reporter gene expression, suggesting that AT-hook family members may be involved in determining the level of expression of ORCA3 in response to jasmonate. PMID:17496112

  9. Synthetic heparin-binding factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul O.; Lin, Xinhua; Glass, John D.

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  10. Ginsenoside F2 reduces hair loss by controlling apoptosis through the sterol regulatory element-binding protein cleavage activating protein and transforming growth factor-β pathways in a dihydrotestosterone-induced mouse model.

    PubMed

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Mavlonov, Gafurjon Turdalievich; Yi, Tae-Hoo

    2014-01-01

    This study was conducted to test whether ginsenoside F2 can reduce hair loss by influencing sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and the transforming growth factor beta (TGF-β) pathway of apoptosis in dihydrotestosterone (DHT)-treated hair cells and in a DHT-induced hair loss model in mice. Results for ginsenoside F2 were compared with finasteride. DHT inhibits proliferation of hair cells and induces androgenetic alopecia and was shown to activate an apoptosis signal pathway both in vitro and in vivo. The cell-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the proliferation rates of DHT-treated human hair dermal papilla cells (HHDPCs) and HaCaTs increased by 48% in the ginsenoside F2-treated group and by 12% in the finasteride-treated group. Western blot analysis showed that ginsenoside F2 decreased expression of TGF-β2 related factors involved in hair loss. The present study suggested a hair loss related pathway by changing SCAP related apoptosis pathway, which has been known to control cholesterol metabolism. SCAP, sterol regulatory element-binding protein (SREBP) and caspase-12 expression in the ginsenoside F2-treated group were decreased compared to the DHT and finasteride-treated group. C57BL/6 mice were also prepared by injection with DHT and then treated with ginsenoside F2 or finasteride. Hair growth rate, density, thickness measurements and tissue histotological analysis in these groups suggested that ginsenoside F2 suppressed hair cell apoptosis and premature entry to catagen more effectively than finasteride. Our results indicated that ginsenoside F2 decreased the expression of TGF-β2 and SCAP proteins, which have been suggested to be involved in apoptosis and entry into catagen. This study provides evidence those factors in the SCAP pathway could be targets for hair loss prevention drugs.

  11. The Arabidopsis ETHYLENE RESPONSE FACTOR1 Regulates Abiotic Stress-Responsive Gene Expression by Binding to Different cis-Acting Elements in Response to Different Stress Signals1[W][OA

    PubMed Central

    Cheng, Mei-Chun; Liao, Po-Ming; Kuo, Wei-Wen; Lin, Tsan-Piao

    2013-01-01

    ETHYLENE RESPONSE FACTOR1 (ERF1) is an upstream component in both jasmonate (JA) and ethylene (ET) signaling and is involved in pathogen resistance. Accumulating evidence suggests that ERF1 might be related to the salt stress response through ethylene signaling. However, the specific role of ERF1 in abiotic stress and the molecular mechanism underlying the signaling cross talk still need to be elucidated. Here, we report that ERF1 was highly induced by high salinity and drought stress in Arabidopsis (Arabidopsis thaliana). The salt stress induction required both JA and ET signaling but was inhibited by abscisic acid. ERF1-overexpressing lines (35S:ERF1) were more tolerant to drought and salt stress. They also displayed constitutively smaller stomatal aperture and less transpirational water loss. Surprisingly, 35S:ERF1 also showed enhanced heat tolerance and up-regulation of heat tolerance genes compared with the wild type. Several suites of genes activated by JA, drought, salt, and heat were found in microarray analysis of 35S:ERF1. Chromatin immunoprecipitation assays found that ERF1 up-regulates specific suites of genes in response to different abiotic stresses by stress-specific binding to GCC or DRE/CRT. In response to biotic stress, ERF1 bound to GCC boxes but not DRE elements; conversely, under abiotic stress, we observed specific binding of ERF1 to DRE elements. Furthermore, ERF1 bound preferentially to only one among several GCC box or DRE/CRT elements in the promoter region of its target genes. ERF1 plays a positive role in salt, drought, and heat stress tolerance by stress-specific gene regulation, which integrates JA, ET, and abscisic acid signals. PMID:23719892

  12. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors

    PubMed Central

    Bulyk, Martha L.; Johnson, Philip L. F.; Church, George M.

    2002-01-01

    We can determine the effects of many possible sequence variations in transcription factor binding sites using microarray binding experiments. Analysis of wild-type and mutant Zif268 (Egr1) zinc fingers bound to microarrays containing all possible central 3 bp triplet binding sites indicates that the nucleotides of transcription factor binding sites cannot be treated independently. This indicates that the current practice of characterizing transcription factor binding sites by mutating individual positions of binding sites one base pair at a time does not provide a true picture of the sequence specificity. Similarly, current bioinformatic practices using either just a consensus sequence, or even mononucleotide frequency weight matrices to provide more complete descriptions of transcription factor binding sites, are not accurate in depicting the true binding site specificities, since these methods rely upon the assumption that the nucleotides of binding sites exert independent effects on binding affinity. Our results stress the importance of complete reference tables of all possible binding sites for comparing protein binding preferences for various DNA sequences. We also show results suggesting that microarray binding data using particular subsets of all possible binding sites can be used to extrapolate the relative binding affinities of all possible full-length binding sites, given a known binding site for use as a starting sequence for site preference refinement. PMID:11861919

  13. Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism

    PubMed Central

    2014-01-01

    Background Heat shock protein 70 (Hsp70) is an intracellular chaperone protein with regulatory and cytoprotective functions. Hsp70 can also be found in the extracellular milieu, as a result of active secretion or passive release from damaged cells. The role of extracellular Hsp70 is not fully understood. Some studies report that it activates monocytes, macrophages and dendritic cells through innate immune receptors (such as Toll-like receptors, TLRs), while others report that Hsp70 is a negative regulator of the inflammatory response. In order to address this apparent inconsistency, in this study we evaluated the response of human monocytes to a highly purified recombinant Hsp70. Methods Human peripheral blood monocytes were stimulated with Hsp70, alone or in combination with TLR agonists. Cytokines were quantified in culture supernatants, their mRNAs were measured by RT-PCR, and the binding of transcription factors was evaluated by electrophoretic mobility shift assay (EMSA). Kruskal-Wallis test or one-way or two-way ANOVA were used to analyze the data. Results The addition of Hsp70 to TLR-activated monocytes down-regulated TNF-α as well as IL-6 levels. This effect was independent of a physical interaction between Hsp70 and TLR agonists; instead it resulted of changes at the TNF-α gene expression level. The decrease in TNF-α expression correlated with the binding of HSF-1 (heat shock transcription factor 1, a transcription factor activated in response to Hsp70) and CHBF (constitutive HSE-binding factor) to the TNF-α gene promoter. Conclusion Extracellular Hsp70 negatively regulates the production of pro-inflammatory cytokines of monocytes exposed to TLR agonists and contributes to dampen the inflammatory response. PMID:25053922

  14. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    SciTech Connect

    Zuloaga, R.; Fuentes, E.N.; Molina, A.; Valdés, J.A.

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.

  15. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang).

    PubMed

    Hong, Jong-Pil; Kim, Woo Taek

    2005-04-01

    Through the use of subtractive hybridization analysis, we have identified 14 partial cDNA clones (pCa-DSRs) that are rapidly induced by dehydration in hot pepper (Capsicum annuum L.) roots. The predicted proteins encoded by Ca-DSRs are putatively involved in processes as diverse as primary and secondary metabolism, protein degradation, and stress responses, indicating the complexity of cellular responses to water deficit in hot pepper roots. Particularly, we investigated the detailed structural properties and expression profiles of Ca-DSR2 (Ca-DREBLP1: dehydration-responsive element binding-factor-like protein 1) encoding a protein that contains a single ERF/AP2 DNA-binding domain. Based on the conserved 14th valine and 19th glutamic acid residues in the ERF/AP2 domain, a basic amino acid stretch (PKKPAGRKKFR) near its N-terminal region, and DSAW signature sequence at the end of its ERF/AP2 domain, Ca-DREBLP1 was classified as a member of a DREB1-type subfamily. Gel retardation assays revealed that Ca-DREBLP1 was able to form a specific complex with the DRE/CRT motif, but not with the GCC box. When fused to the GAL4 DNA-binding domain, the Ca-DREBLP1(190-215) mutant could effectively function as a trans-activator in yeast. This suggests that the extreme C-terminal region plays an essential role in transcription activation. In hot pepper plants, Ca-DREBLP1 was rapidly induced by dehydration, high salinity and, to a lesser extent, mechanical wounding, but not by cold stress. Thus, although the structural features of Ca-DREBLP1 resemble those of the DREB1-type proteins of Arabidopsis thaliana and rice plants, its induction patterns are reminiscent of the DREB2-type proteins, indicating that Ca-DREBLP1 is a novel class DREB subfamily in hot pepper.

  16. Molecular cloning and expression of chicken carbohydrate response element binding protein and Max-like protein X gene homologues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrate response element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c) are transcription factors that are known to be key regulators of glucose metabolism and lipid synthesis in mammals. Since ChREBP and its co-activator Max-like protein X (Mlx) have not ...

  17. Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c.

    PubMed

    Ponugoti, Bhaskar; Fang, Sungsoon; Kemper, Jongsook Kim

    2007-11-01

    Insulin inhibits transcription of cholesterol 7alpha-hydroxylase (Cyp7a1), a key gene in bile acid synthesis, and the hepatic nuclear factor-4 (HNF-4) site in the promoter was identified as a negative insulin response sequence. Using a fasting/feeding protocol in mice and insulin treatment in HepG2 cells, we explored the inhibition mechanisms. Expression of sterol regulatory element-binding protein-1c (SREBP-1c), an insulin-induced lipogenic factor, inversely correlated with Cyp7a1 expression in mouse liver. Interaction of HNF-4 with its coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), was observed in livers of fasted mice and was reduced after feeding. Conversely, HNF-4 interaction with SREBP-1c was increased after feeding. In vitro studies suggested that SREBP-1c competed with PGC-1alpha for direct interaction with the AF2 domain of HNF-4. Reporter assays showed that SREBP-1c, but not of a SREBP-1c mutant lacking the HNF-4 interacting domain, inhibited HNF-4/PGC-1alpha transactivation of Cyp7a1. SREBP-1c also inhibited PGC-1alpha-coactivation of estrogen receptor, constitutive androstane receptor, pregnane X receptor, and farnesoid X receptor, implying inhibition of HNF-4 by SREBP-1c could extend to other nuclear receptors. In chromatin immunoprecipitation studies, HNF-4 binding to the promoter was not altered, but PGC-1alpha was dissociated, SREBP-1c and histone deacetylase-2 (HDAC2) were recruited, and acetylation of histone H3 was decreased upon feeding. Adenovirus-mediated expression of a SREBP-1c dominant-negative mutant, which blocks the interaction of SREBP-1c and HNF-4, partially but significantly reversed the inhibition of Cyp7a1 after feeding. Our data show that SREBP-1c functions as a non-DNA-binding inhibitor and mediates, in part, suppression of Cyp7a1 by blocking functional interaction of HNF-4 and PGC-1alpha. This mechanism may be relevant to known repression of many other HNF-4 target genes upon

  18. Transcription factor binding energy vs. biological function

    NASA Astrophysics Data System (ADS)

    Djordjevic, M.; Grotewold, E.

    2007-03-01

    Transcription factors (TFs) are proteins that bind to DNA and regulate expression of genes. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of gene regulatory networks. Recent theoretical advances that we developed [1,2], allow us to infer TF-DNA interaction parameters from in-vitro selection experiments [3]. We use more than 6000 binding sequences [3], assembled under controlled conditions, to obtain protein-DNA interaction parameters for a mammalian TF with up to now unprecedented accuracy. Can one accurately identify biologically functional TF binding sites (i.e. the binding sites that regulate gene expression), even with the best possible protein-DNA interaction parameters? To address this issue we i) compare our prediction of protein binding with gene expression data, ii) use evolutionary comparison between related mammalian genomes. Our results strongly suggest that in a genome there exists a large number of randomly occurring high energy binding sites that are not biologically functional. [1] M Djordjevic, submitted to Biomol. Eng. [2] M. Djordjevic and A. M. Sengupta, Phys. Biol. 3: 13, 2006. [3] E. Roulet et al., Nature Biotech. 20: 831, 2002.

  19. Role of Hypoxia-Inducible Factor 1, α Subunit and cAMP-Response Element Binding Protein 1 in Synergistic Release of Interleukin 8 by Prostaglandin E2 and Nickel in Lung Fibroblasts

    PubMed Central

    Fabisiak, James P.

    2013-01-01

    Numerous epidemiological studies have linked exposure to particulate matter (PM) air pollution with acute respiratory infection and chronic respiratory and cardiovascular diseases. We have previously shown that soluble nickel (Ni), a common component of PM, alters the release of CXC chemokines from cultured human lung fibroblasts (HLF) in response to microbial stimuli via a pathway dependent on disrupted prostaglandin (PG)E2 signaling. The current study sought to identify the molecular events underlying Ni-induced alterations in PGE2 signaling and its effects on IL-8 production. PGE2 synergistically enhances Ni-induced IL-8 release from HLF in a concentration-dependent manner. The effects of PGE2 were mimicked by butaprost and PGE1-alcohol and inhibited with antagonists AH6809 and L-161,982, indicating PGE2 signals via PGE2 receptors 2 and 4. PGE2 and forskolin stimulated cAMP, but it was only in the presence of Ni-induced hypoxia-inducible factor 1, α subunit (HIF1A) that these agents stimulated IL-8 release. The Ni-induced HIF1A DNA binding was enhanced by PGE2 and mediated, in part, by activation of p38 MAPK. Negation of cAMP-response element binding protein 1 or HIF1A using short interfering RNA blocked the synergistic interactions between Ni and PGE2. The results of the current study provide novel information on the ability of atmospheric hypoxia-mimetic metals to disrupt the release of immune-modulating chemokines by HLF in response to PGE2. Moreover, in the presence of HIF1A, cAMP-mediated signaling pathways may be altered to exacerbate inflammatory-like processes in lung tissue, imparting a susceptibility of PM-exposed populations to adverse respiratory health effects. PMID:23526216

  20. Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus.

    PubMed

    Hattiangady, Bharathi; Rao, Muddanna S; Shetty, Geetha A; Shetty, Ashok K

    2005-10-01

    The hippocampus is very susceptible to aging. Severely diminished dentate neurogenesis at middle age is one of the most conspicuous early changes in the aging hippocampus, which is likely linked to an early decline in the concentration of neurotrophic factors and signaling proteins that influence neurogenesis. We analyzed three proteins that are well-known to promote dentate neurogenesis and learning and memory function in the dentate gyrus and the hippocampal CA1 and CA3 subfields of young, middle-aged and aged F344 rats. These include the brain-derived neurotrophic factor (BDNF), the transcription factor phosphorylated cyclic AMP response element binding protein (p-CREB) and the neuropeptide neuropeptide Y (NPY). The BDNF was analyzed via ELISA and BDNF immunohistochemistry, the p-CREB through densitometric analysis of p-CREB immunopositive cells, and the NPY via stereological counting of NPY-immunopositive interneurons. We provide new evidence that the BDNF concentration, the p-CREB immunoreactivity and the number of NPY immunopositive interneurons decline considerably by middle age in both dentate gyrus and CA1 and CA3 subfields of the hippocampus. However, both BDNF concentration and NPY immunopositive interneuron numbers exhibit no significant decrease between middle age and old age. In contrast, the p-CREB immunoreactivity diminishes further during this period, which is also associated with reduced BDNF immunoreaction within the soma of dentate granule cells and hippocampal pyramidal neurons. Collectively, these results suggest that severely dampened dentate neurogenesis observed at middle age is linked at least partially to reduced concentrations of BDNF, p-CREB and NPY, as each of these proteins is a positive regulator of dentate neurogenesis. Dramatically diminished CREB phosphorylation (and persistently reduced levels of BDNF and NPY) at old age may underlie the learning and memory impairments observed during senescence.

  1. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    PubMed

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA3) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  2. The Transacting Factor CBF-A/Hnrnpab Binds to the A2RE/RTS Element of Protamine 2 mRNA and Contributes to Its Translational Regulation during Mouse Spermatogenesis

    PubMed Central

    Fukuda, Nanaho; Fukuda, Tomoyuki; Sinnamon, John; Hernandez-Hernandez, Abrahan; Izadi, Manizheh; Raju, Chandrasekhar S.; Czaplinski, Kevin; Percipalle, Piergiorgio

    2013-01-01

    During spermatogenesis, mRNA localization and translation are believed to be regulated in a stage-specific manner. We report here that the Protamine2 (Prm2) mRNA transits through chromatoid bodies of round spermatids and localizes to cytosol of elongating spermatids for translation. The transacting factor CBF-A, also termed Hnrnpab, contributes to temporal regulation of Prm2 translation. We found that CBF-A co-localizes with the Prm2 mRNA during spermatogenesis, directly binding to the A2RE/RTS element in the 3′ UTR. Although both p37 and p42 CBF-A isoforms interacted with RTS, they associated with translationally repressed and de-repressed Prm2 mRNA, respectively. Only p42 was found to interact with the 5′cap complex, and to co-sediment with the Prm2 mRNA in polysomes. In CBF-A knockout mice, expression of protamine 2 (PRM2) was reduced and the Prm2 mRNA was prematurely translated in a subset of elongating spermatids. Moreover, a high percentage of sperm from the CBF-A knockout mouse showed abnormal DNA morphology. We suggest that CBF-A plays an important role in spermatogenesis by regulating stage-specific translation of testicular mRNAs. PMID:24146628

  3. [Blockade of NMDA receptor enhances corticosterone-induced downregulation of brain-derived neurotrophic factor gene expression in the rat hippocampus through cAMP response element binding protein pathway].

    PubMed

    Feng, Hao; Lu, Li-Min; Huang, Ying; Zhu, Yi-Chun; Yao, Tai

    2005-10-25

    High concentration of corticosterone leads to morphological and functional impairments in hippocampus, ranging from a reversible atrophy of pyramidal CA3 apical dendrites to the impairment of long-term potentiation (LTP) and hippocampus-dependent learning and memory. Glutamate and N-methyl-D-aspartate (NMDA) receptor play an important role in this effect. Because of the importance of brain-derived neurotrophic factor (BDNF) in the functions of the hippocampal neurons, alteration of the expression of BDNF is thought to be involved in the corticosterone effect on the hippocampus. To determine whether change in BDNF in the hippocampus is involved in the corticosterone effect, we injected corticosterone (2 mg/kg, s.c.) to Sprague-Dawley rats and measured the mRNA, proBDNF and mature BDNF protein levels in the hippocampus. We also measured the phosphorylation level of the transcription factor cAMP response element binding protein (CREB). Furthermore, we intraperitoneally injected NMDA receptor antagonist MK801 (0.1 mg/kg) 30 min before corticosterone administration to investigate whether and how MK801 affected the regulation of BDNF gene expression by corticosterone. Our results showed that 3 h after single s.c. injection of corticsterone, the expression of BDNF mRNA, proBDNF and mature BDNF protein decreased significantly (P<0.01). MK801 promoted the downregulation of BDNF gene expression in the rat hippocampus by corticosterone. We also found that either applying corticosterone or co-applying corticosterone with MK801 downregulated the phosphoration level of CREB, the latter (corticosterone plus MK801) being more effective (P<0.05). Taken together, our results indicate that corticosterone downregulates BDNF gene expression in the rat hippocampus through CREB pathway and that blockade of NMDA receptor enhances this effect of corticosterone in reducing BDNF expression.

  4. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  5. Effects of estrogen treatment on expression of brain-derived neurotrophic factor and cAMP response element-binding protein expression and phosphorylation in rat amygdaloid and hippocampal structures.

    PubMed

    Zhou, Jin; Zhang, Huaibo; Cohen, Rochelle S; Pandey, Subhash C

    2005-01-01

    Clinical studies indicate an effect of estrogen (E2) on affect and cognition, which may be mediated by the cAMP response element-binding protein (CREB) pathway and CREB-related gene target brain-derived neurotrophic factor (BDNF). We investigated the effect of E2 on CREB expression and phosphorylation and BDNF expression in the amygdala and hippocampus, areas involved in emotional processing. Ovariectomized rats were given 10 microg 17beta-estradiol or vehicle for 14 days and expression of components of the CREB signaling pathway, i.e., CREB, phosphorylated CREB (pCREB), and BDNF in amygdala and hippocampus were investigated using immunogold labeling. Levels of BDNF mRNA were determined by in situ reverse-transcriptase polymerase chain reaction. We also examined the effect of E2 on calcium/calmodulin kinase (CaMK IV) immunolabeling in the hippocampus. E2 increased immunolabeling and mRNA levels of BDNF in the medial and basomedial amygdala and CA1 and CA3 regions of the hippocampus, but not in any other amygdaloid or hippocampal regions examined. E2 increased immunolabeling of CREB and pCREB in the medial and basomedial, but not central or basolateral amygdala. E2 also increased CaMK IV and pCREB immunolabeling in the CA1 and CA3 regions, but not CA2 region or dentate gyrus, of the hippocampus. There was no change in immunolabeling of CREB in any hippocampal region. These data identify a signaling pathway through which E2 increases BDNF expression that may underlie some actions of E2 on affective behavior and indicate neuroanatomical heterogeneity in the E2 effect within the amygdala and hippocampus.

  6. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes

    PubMed Central

    Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B.

    2015-01-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  7. Streptococcus pneumoniae Genome-wide Identification and Characterization of BOX Element-binding Domains.

    PubMed

    Zhang, Qiao; Wang, Changzheng; Wan, Min; Wu, Yin; Ma, Qianli

    2015-11-01

    The BOX elements are short repetitive DNA sequences that distribute randomly in intergenic regions of the Streptococcus pneumoniae genome. The function and origin of such elements are still unknown, but they were found to modulate expression of neighboring genes. Evidences suggested that the modulation's mechanism can be fulfilled by sequence-specific interaction of BOX elements with transcription factor family proteins. However, the type and function of these BOX-binding proteins still remain largely unexplored to date. In the current study we described a synthetic protocol to investigate the recognition and interaction between a highly conserved site of BOX elements and the DNA-binding domains of a variety of putative transcription factors in the pneumococcal genome. With the protocol we were able to predict those high-affinity domain binders of the conserved BOX DNA site (BOX DNA) in a high-throughput manner, and analyzed sequence-specific interaction in the domainDNA recognition at molecular level. Consequently, a number of putative transcription factor domains with both high affinity and specificity for the BOX DNA were identified, from which the helix-turn-helix (HTH) motif of a small heat shock factor was selected as a case study and tested for its binding capability toward the double-stranded BOX DNA using fluorescence anisotropy analysis. As might be expected, a relatively high affinity was detected for the interaction of HTH motif with BOX DNA with dissociation constant at nanomolar level. Molecular dynamics simulation, atomic structure examination and binding energy analysis revealed a complicated network of intensive nonbonded interactions across the complex interface, which confers both stability and specificity for the complex architecture.

  8. CCAAT box binding protein NF-Y facilitates in vivo recruitment of upstream DNA binding transcription factors.

    PubMed Central

    Wright, K L; Vilen, B J; Itoh-Lindstrom, Y; Moore, T L; Li, G; Criscitiello, M; Cogswell, P; Clarke, J B; Ting, J P

    1994-01-01

    NF-Y binds a CCAAT motif found in many eukaryotic polymerase II-dependent promoters. In the HLA-DRA promoter it has been demonstrated that stereo-specific alignment between this motif and the upstream elements X1 and X2 is required for activation. To study the underlying mechanism for this requirement, a panel of transfected cell lines that maintained integrated, wild-type and mutant promoters were analyzed by in vivo genomic footprinting. Cell lines harboring a mutated CCAAT element exhibited a loss of interactions at the CCAAT site, as expected, and no transcriptional activity. Most importantly, mutation of the CCAAT sequence nearly abolished in vivo binding at the X1 and X2 sites, while mutations of X1 and X2 had little effect on CCAAT box binding. However, X1 and X2 binding was interdependent. In vitro, X1 binding activities are known to be stabilized by NF-Y binding. Interaction between NF-Y and X box binding proteins was demonstrated by reciprocal co-immunoprecipitation in the absence of DNA and co-affinity purification in the presence of DNA. Collectively, these studies indicate that occupancy of the CCAAT element represents an early event affecting other protein-DNA interactions and suggest that NF-Y stabilizes and interacts with X box factors to mediate this function. These findings may represent a common theme among promoters containing a CCAAT element. Images PMID:8076600

  9. Identification and characterization of a critical CP2-binding element in the human interleukin-4 promoter.

    PubMed

    Casolaro, V; Keane-Myers, A M; Swendeman, S L; Steindler, C; Zhong, F; Sheffery, M; Georas, S N; Ono, S J

    2000-11-24

    Expression of cytokine genes in T cells is thought to result from a complex network of antigen- and mitogen-activated transcriptional regulators. CP2, a factor homologous to Drosophila Elf-1 and previously found to be a critical regulator of several viral and cellular genes in response to developmental signals, is rapidly activated in T helper (Th) cells in response to mitogenic stimulation. Here we show that overexpression of CP2 enhances interleukin (IL)-4 promoter-driven chloramphenicol acetyltransferase expression, while repressing IL-2 promoter activity, in transiently transfected Jurkat cells. A CP2-protected element, partially overlapping the nuclear factor of activated T cell-binding P2 sequence, was required for IL-4 promoter activation in CP2-overexpressing Jurkat cells. This CP2-response element is the site of a cooperative interaction between CP2 and an inducible heteromeric co-factor(s). Mutation of conserved nucleotide contacts within the CP2-response element prevented CP2 binding and significantly reduced constitutive and induced IL-4 promoter activity. Expression of a CP2 mutant lacking the Elf-1-homology region of the DNA-binding domain inhibited IL-4 promoter activity in a dominant negative fashion in transiently transfected Jurkat cells. Moreover, overexpressed CP2 markedly enhanced, while its dominant negative mutant consistently suppressed, expression of the endogenous IL-4 gene in the murine Th2 cell line D10. Taken together, these findings point to CP2 as a critical IL-4 transactivator in Th cells.

  10. Cooperative binding of Ets-1 and core binding factor to DNA.

    PubMed Central

    Wotton, D; Ghysdael, J; Wang, S; Speck, N A; Owen, M J

    1994-01-01

    Two phorbol ester-inducible elements (beta E2 and beta E3) within the human T-cell receptor beta gene enhancer each contain consensus binding sites for the Ets and core binding factor (CBF) transcription factor families. Recombinant Ets-1 and purified CBF bound individually to beta E2 and beta E3, in which the Ets and core sites are directly adjacent. In this report, we show that CBF and Ets-1 bind together to beta E2 and beta E3 and that Ets-1-CBF-DNA complexes are favored over the binding of either protein alone to beta E2. Formation of Ets-1-CBF-DNA complexes increased the affinity of Ets-1-DNA interactions and decreased the rate of dissociation of CBF from DNA. Ets-1-CBF-DNA complexes were not observed when either the Ets or core site was mutated. The spatial requirements for the cooperative interaction of Ets-1 and CBF were analyzed by oligonucleotide mutagenesis and binding site selection experiments. Core and Ets sites were coselected, and there appeared to be little constraint on the relative orientation and spacing of the two sites. These results demonstrate that CBF and Ets-1 form a high-affinity DNA-binding complex when both of their cognate sites are present and that the relative spacing and orientation of the two sites are unimportant. Ets and core sites are found in several T-cell-specific enhancers, suggesting that this interaction is of general importance in T-cell-specific transcription. Images PMID:8264651

  11. Cloning of a cellular factor, interleukin binding factor, that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeat.

    PubMed Central

    Li, C; Lai, C F; Sigman, D S; Gaynor, R B

    1991-01-01

    Human immunodeficiency virus (HIV) gene expression is regulated by both general transcription factors and factors induced by activation of T lymphocytes such as NF-kappa B and the nuclear factor of activated T cells (NFAT). Within the HIV long terminal repeat (LTR), two purine-rich domains between nucleotides -283 and -195 have homology to a regulatory region found in the interleukin 2 promoter, which binds NFAT and other cellular factors. In the HIV LTR, this region has been demonstrated to have both positive and negative regulatory effects on HIV gene expression. In an attempt to clone genes encoding cellular factors that bind to these NFAT-like elements in the HIV LTR, we used lambda gt11 expression cloning with oligonucleotides corresponding to these binding motifs. A ubiquitously expressed cDNA encoding a 60-kDa protein, which we termed interleukin binding factor (ILF), binds specifically to these purine-rich motifs in the HIV LTR. This factor also binds to similar purine-rich motifs in the interleukin 2 promoter, through with lower affinity than to HIV LTR sequences. Sequence analysis reveals that the DNA binding domain of ILF has strong homology to the recently described fork head DNA binding domain found in the Drosophila homeotic protein fork head and a family of hepatocyte nuclear factors, HNF-3. Other domains found in ILF include a nucleotide binding site, an N-glycosylation motif, a signal for ubiquitin-mediated degradation, and a potential nuclear localization signal. These results describe a DNA binding protein that may be involved in both positive and negative regulation of important viral and cellular promoter elements. Images PMID:1909027

  12. Identification and characterization of DNA sequences that prevent glucocorticoid receptor binding to nearby response elements.

    PubMed

    Telorac, Jonas; Prykhozhij, Sergey V; Schöne, Stefanie; Meierhofer, David; Sauer, Sascha; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-07-27

    Out of the myriad of potential DNA binding sites of the glucocorticoid receptor (GR) found in the human genome, only a cell-type specific minority is actually bound, indicating that the presence of a recognition sequence alone is insufficient to specify where GR binds. Cooperative interactions with other transcription factors (TFs) are known to contribute to binding specificity. Here, we reasoned that sequence signals preventing GR recruitment to certain loci provide an alternative means to confer specificity. Motif analyses uncovered candidate Negative Regulatory Sequences (NRSs) that interfere with genomic GR binding. Subsequent functional analyses demonstrated that NRSs indeed prevent GR binding to nearby response elements. We show that NRS activity is conserved across species, found in most tissues and that they also interfere with the genomic binding of other TFs. Interestingly, the effects of NRSs appear not to be a simple consequence of changes in chromatin accessibility. Instead, we find that NRSs interact with proteins found at sub-nuclear structures called paraspeckles and that these proteins might mediate the repressive effects of NRSs. Together, our studies suggest that the joint influence of positive and negative sequence signals partition the genome into regions where GR can bind and those where it cannot.

  13. RNA-Binding Proteins: Splicing Factors and Disease

    PubMed Central

    Fredericks, Alger M.; Cygan, Kamil J.; Brown, Brian A.; Fairbrother, William G.

    2015-01-01

    Pre-mRNA splicing is mediated by interactions of the Core Spliceosome and an array of accessory RNA binding proteins with cis-sequence elements. Splicing is a major regulatory component in higher eukaryotes. Disruptions in splicing are a major contributor to human disease. One in three hereditary disease alleles are believed to cause aberrant splicing. Hereditary disease alleles can alter splicing by disrupting a splicing element, creating a toxic RNA, or affecting splicing factors. One of the challenges of medical genetics is identifying causal variants from the thousands of possibilities discovered in a clinical sequencing experiment. Here we review the basic biochemistry of splicing, the mechanisms of splicing mutations, the methods for identifying splicing mutants, and the potential of therapeutic interventions. PMID:25985083

  14. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    PubMed

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  15. Physical factors affecting chloroquine binding to melanin.

    PubMed

    Schroeder, R L; Pendleton, P; Gerber, J P

    2015-10-01

    Chloroquine is an antimalarial drug but is also prescribed for conditions such as rheumatoid arthritis. Long-term users risk toxic side effects, including retinopathy, thought to be caused by chloroquine accumulation on ocular melanin. Although the binding potential of chloroquine to melanin has been investigated previously, our study is the first to demonstrate clear links between chloroquine adsorption by melanin and system factors including temperature, pH, melanin type, and particle size. In the current work, two Sepia melanins were compared with bovine eye as a representative mammalian melanin. Increasing the surface anionic character due to a pH change from 4.7 to 7.4 increased each melanin's affinity for chloroquine. Although the chloroquine isotherms exhibited an apparently strong interaction with each melanin, isosteric heat analysis indicated a competitive interaction. Buffer solution cations competed effectively at low surface coverage; chloroquine adsorption occurs via buffer cation displacement and is promoted by temperature-influenced secondary structure swelling.

  16. cAMP Response Element-binding Protein (CREB) and Nuclear Factor κB Mediate the Tamoxifen-induced Up-regulation of Glutamate Transporter 1 (GLT-1) in Rat Astrocytes*

    PubMed Central

    Karki, Pratap; Webb, Anton; Smith, Keisha; Lee, Kyuwon; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2013-01-01

    Tamoxifen (TX), a selective estrogen receptor modulator, exerts antagonistic effects on breast tissue and is used to treat breast cancer. Recent evidence also suggests that it may act as an agonist in brain tissue. We reported previously that TX enhanced the expression and function of glutamate transporter 1 (GLT-1) in rat astrocytes, an effect that was mediated by TGF-α. To gain further insight into the mechanisms that mediate TX-induced up-regulation of GLT-1 (EAAT2 in humans), we investigated its effect on GLT-1 at the transcriptional level. TX phosphorylated the cAMP response element-binding protein (CREB) and recruited CREB to the GLT-1 promoter consensus site. The effect of TX on astrocytic GLT-1 was attenuated by the inhibition of PKA, the upstream activator of the CREB pathway. In addition, the effect of TX on GLT-1 promoter activity was abolished by the inhibition of the NF-κB pathway. Furthermore, TX recruited the NF-κB subunits p65 and p50 to the NF-κB binding domain of the GLT-1 promoter. Mutation of NF-κB (triple, −583/-282/-251) or CRE (-308) sites on the GLT-1 promoter led to significant repression of the promoter activity, but neither mutant completely abolished the TX-induced GLT-1 promoter activity. Mutation of both the NF-κB (-583/-282/-251) and CRE (-308) sites led to a complete abrogation of the effect of TX on GLT-1 promoter activity. Taken together, our findings establish that TX regulates GLT-1 via the CREB and NF-κB pathways. PMID:23955341

  17. Transcription of Epstein-Barr virus-encoded nuclear antigen 1 promoter Qp is repressed by transforming growth factor-beta via Smad4 binding element in human BL cells.

    PubMed

    Liang, C L; Tsai, C N; Chung, P J; Chen, J L; Sun, C M; Chen, R H; Hong, J H; Chang, Y S

    2000-11-10

    In Epstein-Barr virus (EBV)-infected BL cells, the oncogenic EBV-encoded nuclear antigen 1 (EBNA 1) gene is directed from the latent promoter Qp. Yeast one-hybrid screen analysis using the -50 to -37 sequence of Qp as the bait was carried out to identify transcriptional factors that may control Qp activity. Results showed that Smad4 binds the -50 to -37 sequence of Qp, indicating that this promoter is potentially regulated by TGF-beta. The association of Smad4 with Qp was further confirmed by supershift of EMSA complexes using Smad4-specific antibody. The transfection of a Qp reporter construct in two EBV(+) BL cell lines, Rael and WW2, showed that Qp activity is repressed in response to the TGF-beta treatment. This repression involves the interaction of a Smad3/Smad4 complex and the transcriptional repressor TGIF, as determined by cotransfection assay and coimmunoprecipitation analysis. Results suggest that TGF-beta may transcriptionally repress Qp through the Smad4-binding site in human BL cells.

  18. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  19. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  20. rVISTA for Comparative Sequence-Based Discovery of Functional Transcription Factor Binding Sites

    SciTech Connect

    Loots, Gabriela G.; Ovcharenko, Ivan; Pachter, Lior; Dubchak, Inna; Rubin, Edward M.

    2002-03-08

    Identifying transcriptional regulatory elements represents a significant challenge in annotating the genomes of higher vertebrates. We have developed a computational tool, rVISTA, for high-throughput discovery of cis-regulatory elements that combines transcription factor binding site prediction and the analysis of inter-species sequence conservation. Here, we illustrate the ability of rVISTA to identify true transcription factor binding sites through the analysis of AP-1 and NFAT binding sites in the 1 Mb well-annotated cytokine gene cluster1 (Hs5q31; Mm11). The exploitation of orthologous human-mouse data set resulted in the elimination of 95 percent of the 38,000 binding sites predicted upon analysis of the human sequence alone, while it identified 87 percent of the experimentally verified binding sites in this region.

  1. A zinc-dependent DNA-binding activity co-operates with cAMP-responsive-element-binding protein to activate the human thyroglobulin enhancer.

    PubMed Central

    Berg, V; Vassart, G; Christophe, D

    1997-01-01

    Footprinting experiments involving the human thyroglobulin gene enhancer and thyroid nuclear extracts revealed a protected region called X2, containing an incomplete cAMP-responsive element (CRE). Band-shift experiments identified two binding activities recognizing the X2 element: a CRE-binding protein (CREB)/activating transcription factor (ATF) relative that binds the half CRE motif and a second factor that interacts with a G-rich motif located just upstream from the CRE. The first factor appears to be CREB itself, as indicated by the supershifting when using an antibody directed against CREB, and the second DNA-binding activity involved was shown to be zinc-dependent and exhibited an apparent molecular mass of 42-44 kDa in South-Western blotting experiments. This factor may represent a novel entity, which we named CAF, for 'CREB Associated Factor'. Three copies of X2 sequence conferred a strong cAMP-dependent transcriptional activation to a heterologous promoter in transient transfection assay in cAMP-stimulated primary thyrocytes and HeLa cells. Transfection experiments of constructs containing the X2 element mutated in either the CRE or the G-rich site showed that both motifs were required for this transcription activating function. Moreover, the combination of several individual X2 elements mutated in either the CRE or the G-rich motif did not exhibit full transcriptional activity. This suggests that, in the context of the X2 element, CREB requires a close interaction with CAF to achieve both basal and cAMP-dependent transcriptional activation. PMID:9163323

  2. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    PubMed Central

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes. PMID:23530060

  3. Sequential coagulation factor VIIa domain binding to tissue factor

    SciTech Connect

    Oesterlund, Maria; Persson, Egon; Freskgard, Per-Ola . E-mail: msv@ifm.liu.se

    2005-12-02

    Vessel wall tissue factor (TF) is exposed to blood upon vascular damage which enables association with factor VIIa (FVIIa). This leads to initiation of the blood coagulation cascade through localization and allosteric induction of FVIIa procoagulant activity. To examine the docking pathway of the FVIIa-TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with cysteines labelled with a fluorescent probe. By using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, we studied the association of the resulting sTF variants with FVIIa. We found the docking trajectory to be a sequence of events in which the protease domain of FVIIa initiates contact with sTF. Thereafter, the two proteins are tethered via the first epidermal growth factor-like and finally the {gamma}-carboxyglutamic acid (Gla) domain. The two labelled sTF residues interacting with the protease domain of FVIIa bind or become eventually ordered at different rates, revealing kinetic details pertinent to the allosteric activation of FVIIa by sTF. Moreover, when the Gla domain of FVIIa is removed the difference in the rate of association for the remaining domains is much more pronounced.

  4. Retroactivity effects dependency on the transcription factors binding mechanisms.

    PubMed

    Pantoja-Hernández, Libertad; Álvarez-Buylla, Elena; Aguilar-Ibáñez, Carlos F; Garay-Arroyo, Adriana; Soria-López, Alberto; Martínez-García, Juan Carlos

    2016-12-07

    Downstream connection effects on transcription are caused by retroactivity. When biomolecular dynamical systems interconnect retroactivity is a property that becomes important. The biological functional meaning of these effects is increasingly becoming an area of interest. Downstream targets, which are operator binding sites in transcriptional networks, may induce behaviors such as ultrasensitive responses or even represent an undesired issue in regulation. To the best of our knowledge, the role of the binding mechanisms of transcription factors in relation to minimizing - or enhancing - retroactivity effects has not been previously addressed. Our aim is to evaluate retroactivity effects considering how the binding mechanism impacts the number of free functional transcription factor (FFTF) molecules using a simple model via deterministic and stochastic simulations. We study four transcription factor binding mechanisms (BM): simple monomer binding (SMB), dimer binding (DB), cooperative sequential binding (CSB) and cooperative sequential binding with dimerization (CSB_D). We consider weak and strong binding regimes for each mechanism, where we contrast the cases when the FFTF is bound or unbound to the downstream loads. Upon interconnection, the number of FFTF molecules changed less for the SMB mechanism while for DB they changed the most. Our results show that for the chosen mechanisms (in terms of the corresponding described dynamics), retroactivity effects depend on transcription binding mechanisms. This contributes to the understanding of how the transcription factor regulatory function-such as decision making-and its dynamic needs for the response, may determine the nature of the selected binding mechanism.

  5. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes

    SciTech Connect

    Shannon, M.F.; Pell, L.M.; Kuczek, E.S.; Occhiodoro, F.S.; Dunn, S.M.; Vadas, M.A. ); Lenardo, M.J. )

    1990-06-01

    A conserved DNA sequence element, termed cytokine 1 (CK-1), is found in the promoter regions of many hemopoietic growth factor (HGF) genes. Mutational analyses and modification interference experiments show that this sequence specifically binds a nuclear transcription factor, NF-GMa, which is a protein with a molecular mass of 43 kilodaltons. It interacts with different affinities with the CK-1-like sequence from a number of HGF genes, including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte (G)-CSF, interleukin 3 (IL-3), and IL-5. The authors show that the level of NF-GMa binding is induced in embryonic fibroblasts by tumor necrosis factor {alpha} (TNF-{alpha}) treatment and that the CK-1 sequence from the G-CSF gene is a TNF-{alpha}-responsive enhancer in these cells.

  6. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding

    PubMed Central

    van Steensel, Bas; Delrow, Jeffrey; Bussemaker, Harmen J.

    2003-01-01

    The association of sequence-specific DNA-binding factors with their cognate target sequences in vivo depends on the local molecular context, yet this context is poorly understood. To address this issue, we have performed genomewide mapping of in vivo target genes of Drosophila GAGA factor (GAF). The resulting list of ≈250 target genes indicates that GAF regulates many cellular pathways. We applied unbiased motif-based regression analysis to identify the sequence context that determines GAF binding. Our results confirm that GAF selectively associates with (GA)n repeat elements in vivo. GAF binding occurs in upstream regulatory regions, but less in downstream regions. Surprisingly, GAF binds abundantly to introns but is virtually absent from exons, even though the density of (GA)n is roughly the same. Intron binding occurs equally frequently in last introns compared with first introns, suggesting that GAF may not only regulate transcription initiation, but possibly also elongation. We provide evidence for cooperative binding of GAF to closely spaced (GA)n elements and explain the lack of GAF binding to exons by the absence of such closely spaced GA repeats. Our approach for revealing determinants of context-dependent DNA binding will be applicable to many other transcription factors. PMID:12601174

  7. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    SciTech Connect

    Mao, Grace; Brody, James P.

    2007-11-09

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s{sup -1}. We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase.

  8. Why Transcription Factor Binding Sites Are Ten Nucleotides Long

    PubMed Central

    Stewart, Alexander J.; Hannenhalli, Sridhar; Plotkin, Joshua B.

    2012-01-01

    Gene expression is controlled primarily by transcription factors, whose DNA binding sites are typically 10 nt long. We develop a population-genetic model to understand how the length and information content of such binding sites evolve. Our analysis is based on an inherent trade-off between specificity, which is greater in long binding sites, and robustness to mutation, which is greater in short binding sites. The evolutionary stable distribution of binding site lengths predicted by the model agrees with the empirical distribution (5–31 nt, with mean 9.9 nt for eukaryotes), and it is remarkably robust to variation in the underlying parameters of population size, mutation rate, number of transcription factor targets, and strength of selection for proper binding and selection against improper binding. In a systematic data set of eukaryotic and prokaryotic transcription factors we also uncover strong relationships between the length of a binding site and its information content per nucleotide, as well as between the number of targets a transcription factor regulates and the information content in its binding sites. Our analysis explains these features as well as the remarkable conservation of binding site characteristics across diverse taxa. PMID:22887818

  9. Systematic dissection of genomic features determining transcription factor binding and enhancer function

    PubMed Central

    Grossman, Sharon R.; Zhang, Xiaolan; Wang, Li; Engreitz, Jesse; Melnikov, Alexandre; Rogov, Peter; Tewhey, Ryan; Isakova, Alina; Deplancke, Bart; Bernstein, Bradley E.; Mikkelsen, Tarjei S.; Lander, Eric S.

    2017-01-01

    Enhancers regulate gene expression through the binding of sequence-specific transcription factors (TFs) to cognate motifs. Various features influence TF binding and enhancer function—including the chromatin state of the genomic locus, the affinities of the binding site, the activity of the bound TFs, and interactions among TFs. However, the precise nature and relative contributions of these features remain unclear. Here, we used massively parallel reporter assays (MPRAs) involving 32,115 natural and synthetic enhancers, together with high-throughput in vivo binding assays, to systematically dissect the contribution of each of these features to the binding and activity of genomic regulatory elements that contain motifs for PPARγ, a TF that serves as a key regulator of adipogenesis. We show that distinct sets of features govern PPARγ binding vs. enhancer activity. PPARγ binding is largely governed by the affinity of the specific motif site and higher-order features of the larger genomic locus, such as chromatin accessibility. In contrast, the enhancer activity of PPARγ binding sites depends on varying contributions from dozens of TFs in the immediate vicinity, including interactions between combinations of these TFs. Different pairs of motifs follow different interaction rules, including subadditive, additive, and superadditive interactions among specific classes of TFs, with both spatially constrained and flexible grammars. Our results provide a paradigm for the systematic characterization of the genomic features underlying regulatory elements, applicable to the design of synthetic regulatory elements or the interpretation of human genetic variation. PMID:28137873

  10. Systematic dissection of genomic features determining transcription factor binding and enhancer function.

    PubMed

    Grossman, Sharon R; Zhang, Xiaolan; Wang, Li; Engreitz, Jesse; Melnikov, Alexandre; Rogov, Peter; Tewhey, Ryan; Isakova, Alina; Deplancke, Bart; Bernstein, Bradley E; Mikkelsen, Tarjei S; Lander, Eric S

    2017-02-14

    Enhancers regulate gene expression through the binding of sequence-specific transcription factors (TFs) to cognate motifs. Various features influence TF binding and enhancer function-including the chromatin state of the genomic locus, the affinities of the binding site, the activity of the bound TFs, and interactions among TFs. However, the precise nature and relative contributions of these features remain unclear. Here, we used massively parallel reporter assays (MPRAs) involving 32,115 natural and synthetic enhancers, together with high-throughput in vivo binding assays, to systematically dissect the contribution of each of these features to the binding and activity of genomic regulatory elements that contain motifs for PPARγ, a TF that serves as a key regulator of adipogenesis. We show that distinct sets of features govern PPARγ binding vs. enhancer activity. PPARγ binding is largely governed by the affinity of the specific motif site and higher-order features of the larger genomic locus, such as chromatin accessibility. In contrast, the enhancer activity of PPARγ binding sites depends on varying contributions from dozens of TFs in the immediate vicinity, including interactions between combinations of these TFs. Different pairs of motifs follow different interaction rules, including subadditive, additive, and superadditive interactions among specific classes of TFs, with both spatially constrained and flexible grammars. Our results provide a paradigm for the systematic characterization of the genomic features underlying regulatory elements, applicable to the design of synthetic regulatory elements or the interpretation of human genetic variation.

  11. Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila.

    PubMed

    Ajuria, Leiore; Nieva, Claudia; Winkler, Clint; Kuo, Dennis; Samper, Núria; Andreu, María José; Helman, Aharon; González-Crespo, Sergio; Paroush, Ze'ev; Courey, Albert J; Jiménez, Gerardo

    2011-03-01

    RTK/Ras/MAPK signaling pathways play key functions in metazoan development, but how they control expression of downstream genes is not well understood. In Drosophila, it is generally assumed that most transcriptional responses to RTK signal activation depend on binding of Ets-family proteins to specific cis-acting sites in target enhancers. Here, we show that several Drosophila RTK pathways control expression of downstream genes through common octameric elements that are binding sites for the HMG-box factor Capicua, a transcriptional repressor that is downregulated by RTK signaling in different contexts. We show that Torso RTK-dependent regulation of terminal gap gene expression in the early embryo critically depends on Capicua octameric sites, and that binding of Capicua to these sites is essential for recruitment of the Groucho co-repressor to the huckebein enhancer in vivo. We then show that subsequent activation of the EGFR RTK pathway in the neuroectodermal region of the embryo controls dorsal-ventral gene expression by downregulating the Capicua protein, and that this control also depends on Capicua octameric motifs. Thus, a similar mechanism of RTK regulation operates during subdivision of the anterior-posterior and dorsal-ventral embryonic axes. We also find that identical DNA octamers mediate Capicua-dependent regulation of another EGFR target in the developing wing. Remarkably, a simple combination of activator-binding sites and Capicua motifs is sufficient to establish complex patterns of gene expression in response to both Torso and EGFR activation in different tissues. We conclude that Capicua octamers are general response elements for RTK signaling in Drosophila.

  12. Age-associated changes in basal c-fos transcription factor binding activity in rat hearts.

    PubMed

    Tsou, H; Azhar, G; Lu, X G; Kovacs, S; Peacocke, M; Wei, J Y

    1996-12-15

    The early response proto-oncogene c-fos is expressed at very low levels in the mammalian heart at baseline. To further investigate the mechanism of altered c-fos expression with age, we studied in the basal state the binding of five transcription proteins to their cognate sites in the c-fos promoter/enhancer region, in adult and old F344 rats. Our results show a reduced binding of E2F and AP1 proteins to the c-fos promoter in aging hearts. The major calcium/cyclic AMP response element (CRE) and SP1 binding was unchanged. The only increase seen with age was in the serum response element (SRE) binding proteins. SRE is the point of convergence of different signal transduction pathways (via MAP kinases and the Rho family of GTPases) at the c-fos promoter. Increased SRE binding may reflect a compensation for a decreased binding of other transcription proteins to the c-fos promoter, alteration in the phosphorylation status of SRF, or a change in the ternary complex factors Elk 1 or SAP 1. Other possibilities include defects in the signal transduction pathways with aging, which combine to produce an overall negative balance in the function of the c-fos promoter despite the increased SRE binding activity. Both in vitro and in vivo experiments have shown decreased c-fos expression with age. This may be due partly to alterations in the basal levels of transcription factor binding.

  13. Gibbs Recursive Sampler: finding transcription factor binding sites.

    PubMed

    Thompson, William; Rouchka, Eric C; Lawrence, Charles E

    2003-07-01

    The Gibbs Motif Sampler is a software package for locating common elements in collections of biopolymer sequences. In this paper we describe a new variation of the Gibbs Motif Sampler, the Gibbs Recursive Sampler, which has been developed specifically for locating multiple transcription factor binding sites for multiple transcription factors simultaneously in unaligned DNA sequences that may be heterogeneous in DNA composition. Here we describe the basic operation of the web-based version of this sampler. The sampler may be acces-sed at http://bayesweb.wadsworth.org/gibbs/gibbs.html and at http://www.bioinfo.rpi.edu/applications/bayesian/gibbs/gibbs.html. An online user guide is available at http://bayesweb.wadsworth.org/gibbs/bernoulli.html and at http://www.bioinfo.rpi.edu/applications/bayesian/gibbs/manual/bernoulli.html. Solaris, Solaris.x86 and Linux versions of the sampler are available as stand-alone programs for academic and not-for-profit users. Commercial licenses are also available. The Gibbs Recursive Sampler is distributed in accordance with the ISCB level 0 guidelines and a requirement for citation of use in scientific publications.

  14. TEMPLE: analysing population genetic variation at transcription factor binding sites.

    PubMed

    Litovchenko, Maria; Laurent, Stefan

    2016-11-01

    Genetic variation occurring at the level of regulatory sequences can affect phenotypes and fitness in natural populations. This variation can be analysed in a population genetic framework to study how genetic drift and selection affect the evolution of these functional elements. However, doing this requires a good understanding of the location and nature of regulatory regions and has long been a major hurdle. The current proliferation of genomewide profiling experiments of transcription factor occupancies greatly improves our ability to identify genomic regions involved in specific DNA-protein interactions. Although software exists for predicting transcription factor binding sites (TFBS), and the effects of genetic variants on TFBS specificity, there are no tools currently available for inferring this information jointly with the genetic variation at TFBS in natural populations. We developed the software Transcription Elements Mapping at the Population LEvel (TEMPLE), which predicts TFBS, evaluates the effects of genetic variants on TFBS specificity and summarizes the genetic variation occurring at TFBS in intraspecific sequence alignments. We demonstrate that TEMPLE's TFBS prediction algorithms gives identical results to PATSER, a software distribution commonly used in the field. We also illustrate the unique features of TEMPLE by analysing TFBS diversity for the TF Senseless (SENS) in one ancestral and one cosmopolitan population of the fruit fly Drosophila melanogaster. TEMPLE can be used to localize TFBS that are characterized by strong genetic differentiation across natural populations. This will be particularly useful for studies aiming to identify adaptive mutations. TEMPLE is a java-based cross-platform software that easily maps the genetic diversity at predicted TFBSs using a graphical interface, or from the Unix command line.

  15. The cellular factor TRP-185 regulates RNA polymerase II binding to HIV-1 TAR RNA.

    PubMed Central

    Wu-Baer, F; Lane, W S; Gaynor, R B

    1995-01-01

    Activation of HIV-1 gene expression by the transactivator Tat is dependent on an RNA regulatory element located downstream of the transcription initiation site known as TAR. To characterize cellular factors that bind to TAR RNA and are involved in the regulation of HIV-1 transcription, HeLa nuclear extract was fractionated and RNA gel-retardation analysis was performed. This analysis indicated that only two cellular factors, RNA polymerase II and the previously characterized TAR RNA loop binding protein TRP-185, were capable of binding specifically to TAR RNA. To elucidate the function of TRP-185, it was purified from HeLa nuclear extract, amino acid microsequence analysis was performed and a cDNA encoding TRP-185 was isolated. TRP-185 is a novel protein of 1621 amino acids which contains a leucine zipper and potentially a novel RNA binding motif. In gel-retardation assays, the binding of both recombinant TRP-185 and RNA polymerase II was dependent on the presence of an additional group of proteins designated cellular cofactors. Both the TAR RNA loop and bulge sequences were critical for RNA polymerase II binding, while TRP-185 binding was dependent only on TAR RNA loop sequences. Since binding of TRP-185 and RNA polymerase II to TAR RNA was found to be mutually exclusive, our results suggest that TRP-185 may function either alone or in conjunction with Tat to disengage RNA polymerase II which is stalled upon binding to nascently synthesized TAR RNA during transcriptional elongation. Images PMID:8846792

  16. An information transmission model for transcription factor binding at regulatory DNA sites

    PubMed Central

    2012-01-01

    Background Computational identification of transcription factor binding sites (TFBSs) is a rapid, cost-efficient way to locate unknown regulatory elements. With increased potential for high-throughput genome sequencing, the availability of accurate computational methods for TFBS prediction has never been as important as it currently is. To date, identifying TFBSs with high sensitivity and specificity is still an open challenge, necessitating the development of novel models for predicting transcription factor-binding regulatory DNA elements. Results Based on the information theory, we propose a model for transcription factor binding of regulatory DNA sites. Our model incorporates position interdependencies in effective ways. The model computes the information transferred (TI) between the transcription factor and the TFBS during the binding process and uses TI as the criterion to determine whether the sequence motif is a possible TFBS. Based on this model, we developed a computational method to identify TFBSs. By theoretically proving and testing our model using both real and artificial data, we found that our model provides highly accurate predictive results. Conclusions In this study, we present a novel model for transcription factor binding regulatory DNA sites. The model can provide an increased ability to detect TFBSs. PMID:22672438

  17. Epidermal growth factor receptors on PC12 cells: alteration of binding properties by lectins

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1983-01-01

    The PC12 cell line displays cell surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). It has been previously shown that the lectin wheat germ agglutinin (WGA) alters the properties of NGF receptors on these cells. We now report that preincubations with either WGA or concanavalin A (Con A) decrease the binding of /sup 125/I-EGF to PC12 cells by greater than 50%. The inhibition of binding occurred at 37 degrees C and 4 degrees C and could be blocked or reversed by the addition of sugars which bind specifically to WGA or Con A. Scatchard analysis revealed that these lectins decreased binding primarily by lowering the affinity of the receptor and to a lesser extent by decreasing receptor number. Succinylation of Con A (sCon A) produced a derivative that was less effective than the native lectin in decreasing EGF binding; however, addition of an antibody against Con A restored the ability of sCon A to decrease binding. Similar to results obtained with /sup 125/I-NGF binding, WGA but not Con A was found to increase, by severalfold, the proportion of /sup 125/I-EGF binding that is resistant to solubilization by Triton X-100 detergent. A potential association of the EGF receptor with cytoskeletal elements is discussed which could account for such results.

  18. New alternating direction procedures in finite element analysis based upon EBE approximate factorizations. [element-by-element

    NASA Technical Reports Server (NTRS)

    Hughes, T. J. R.; Winget, J.; Levit, I.; Tezduyar, T. E.

    1983-01-01

    Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in computational mechanics. A variety of techniques are compared on problems of structural mechanics, heat conduction and fluid mechanics. The results obtained suggest considerable potential for the methods described.

  19. Scatter factor binds to thrombospondin and other extracellular matrix components.

    PubMed Central

    Lamszus, K.; Joseph, A.; Jin, L.; Yao, Y.; Chowdhury, S.; Fuchs, A.; Polverini, P. J.; Goldberg, I. D.; Rosen, E. M.

    1996-01-01

    Scatter factor (SF) is an angiogenic growth factor that stimulates motility and invasion of carcinoma cells. SF is present in the extracellular matrix (ECM) of breast cancers, where it might act to promote tumor cell invasion and angiogenesis. To investigate how SF is incorporated into the ECM, we studied the binding of SF to various ECM components using a solid-phase binding assay based on the SF enzyme-linked immunosorbent assay. We found that SF binds to a variety of ECM molecules, with different binding capacities. The highest SF binding capacities were observed for thrombospondin-1 (TSP-1), fibronectin (Fn), and heparan sulfate proteoglycan, although SF did not bind to albumin. Mature two-chain SF and precursor single-chain SF bound approximately equally well to TSP-1 and Fn. Moreover, two SF alpha-chain peptides (NK1 and NK2) both bound to TSP-1 and Fn, suggesting that the whole SF molecule is not required for binding. Based on binding competition assays, TSP-1 exhibited higher affinity for SF than did nine other ECM molecules, including Fn and heparan sulfate proteoglycan. Although heparin in solution potently inhibited the binding of SF to TSP-1-coated surfaces, even very high concentrations of heparin could not elute SF already bound to TSP-1. SF binding was modulated by binding interactions among ECM molecules (TSP-1-Fn, TSP-1-collagen I, and Fn-collagen I), suggesting that the matrix capacity to bind SF depends upon its exact composition. SF bound in a dose-dependent fashion to ECMs secreted by three human breast carcinoma cell lines. Binding of SF to matrices from all three cell lines was significantly inhibited by preincubation of the matrices with antibodies against TSP-1, whereas antibodies against several other ECM components were less effective or ineffective in inhibiting SF binding. In addition, TSP-1 markedly inhibited chemotaxis of microvascular endothelial cells toward SF and SF-induced angiogenesis in the rat cornea neovascularization assay

  20. A GC-rich element confers epidermal growth factor responsiveness to transcription from the gastrin promoter.

    PubMed Central

    Merchant, J L; Demediuk, B; Brand, S J

    1991-01-01

    Epidermal growth factor (EGF) and transforming growth factor alpha are important determinants of mucosal integrity in the gastrointestinal tract, and they act both directly and indirectly to prevent ulceration in the stomach. Consistent with this physiological role, EGF stimulates transcription of gastrin, a peptide hormone which regulates gastric acid secretion and mucosal growth. EGF stimulation of gastrin transcription is mediated by a GC-rich gastrin EGF response element (gERE) (GGGGCGGGGTGGGGGG) which lies between -54 and -68 in the human gastrin promoter. The gERE sequence also confers weaker responsiveness to phorbol ester stimulation. The gERE sequence differs from previously described EGF response elements. The gERE DNA sequence specifically interacts with a GH4 DNA-binding protein distinct from previously described transcription factors (Egr-1 and AP2) which bind GC-rich sequences and mediate transcriptional activation by growth factors. Furthermore, the gERE element does not bind the Sp1 transcription factor even though the gERE sequence contains a high-affinity Sp1-binding site (GGCGGG). Images PMID:2017173

  1. A nucleolar localizing Rev binding element inhibits HIV replication

    PubMed Central

    Michienzi, Alessandro; De Angelis, Fernanda G; Bozzoni, Irene; Rossi, John J

    2006-01-01

    The Rev protein of the human immunodeficiency virus (HIV) facilitates the nuclear export of intron containing viral mRNAs allowing formation of infectious virions. Rev traffics through the nucleolus and shuttles between the nucleus and cytoplasm. Rev multimerization and interaction with the export protein CRM1 takes place in the nucleolus. To test the importance of Rev nucleolar trafficking in the HIV-1 replication cycle, we created a nucleolar localizing Rev Response Element (RRE) decoy and tested this for its anti-HIV activity. The RRE decoy provided marked inhibition of HIV-1 replication in both the CEM T-cell line and in primary CD34+ derived monocytes. These results demonstrate that titration of Rev in the nucleolus impairs HIV-1 replication and supports a functional role for Rev trafficking in this sub-cellular compartment. PMID:16712721

  2. Binding of bovine factor Va to phosphatidylcholine membranes.

    PubMed Central

    Koppaka, V; Lentz, B R

    1996-01-01

    The interaction of bovine factor Va with phosphatidylcholine membranes was examined using four different fluorescence techniques: 1) changes in the fluorescence anisotropy of the fluorescent membrane probe 1,6-diphenyl-1,3,5-hexatriene (DPH) to monitor the interaction of factor Va with 1,2-dimyristoyl-3-sn-phosphatidylcholine (DMPC) small unilamellar vesicles (SUVs), 2) changes in the fluorescence anisotropy of N-(lissamine rhodamine B sulfonyl) diacyl phosphati-dylethanolamine (Rh-PE) incorporated into SUVs prepared from 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC), 3) changes in the fluorescence anisotropy of fluorescein-labeled factor Va (labeled in the heavy chain) upon interaction with POPC SUVs, 4) fluorescence energy transfer from fluorescein-labeled factor Va to rhodamine-labeled POPC SUVs. In the first two sets of experiments, labeled lipid vesicles were titrated with unlabeled protein, whereas, in the latter two types of experiments, labeled factor Va was titrated with vesicles. For the weak binding observed here, it was impossible from any one binding experiment to obtain precise estimates of the three parameters involved in modeling the lipid-protein interaction, namely, the dissociation constant Kd, the stoichiometry of binding i, and the saturation value of the observable Rmax from any one experiment. However, a global analysis of the four data sets involving POPC SUVs yielded a stable estimate of the binding parameters (Kd of approximately 3.0 microM and a stoichiometry of approximately 200 lipids per bound factor Va). Binding to DMPC SUVs may be of slightly higher affinity. These observations support the contention that association of factor Va with a membrane involves a significant acidic-lipid-independent interaction along with the more commonly accepted acidic-lipid-dependent component of the total binding free energy. PMID:8744331

  3. Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis.

    PubMed

    Attanasio, Catia; Nord, Alex S; Zhu, Yiwen; Blow, Matthew J; Biddie, Simon C; Mendenhall, Eric M; Dixon, Jesse; Wright, Crystal; Hosseini, Roya; Akiyama, Jennifer A; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Ren, Bing; Bernstein, Bradley E; Rubin, Edward M; Visel, Axel; Pennacchio, Len A

    2014-06-01

    The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4(FLAG) knock-in mouse line. Using ChIP-seq, we identified ∼51,000 SMARCA4-associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at mid-gestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up- or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4-associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.

  4. Identifying differential transcription factor binding in ChIP-seq

    PubMed Central

    Wu, Dai-Ying; Bittencourt, Danielle; Stallcup, Michael R.; Siegmund, Kimberly D.

    2015-01-01

    ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease in costs associated with sequencing has led to a rise in the number of studies that investigate protein binding across treatment conditions or cell lines. In addition to the identification of binding sites, new studies evaluate the variation in protein binding between conditions. A number of approaches to study differential transcription factor binding have recently been developed. Several of these methods build upon established methods from RNA-seq to quantify differences in read counts. We compare how these new approaches perform on different data sets from the ENCODE project to illustrate the impact of data processing pipelines under different study designs. The performance of normalization methods for differential ChIP-seq depends strongly on the variation in total amount of protein bound between conditions, with total read count outperforming effective library size, or variants thereof, when a large variation in binding was studied. Use of input subtraction to correct for non-specific binding showed a relatively modest impact on the number of differential peaks found and the fold change accuracy to biological validation, however a larger impact might be expected for samples with more extreme copy number variations between them. Still, it did identify a small subset of novel differential regions while excluding some differential peaks in regions with high background signal. These results highlight proper scaling for between-sample data normalization as critical for differential transcription factor binding analysis and suggest bioinformaticians need to know about the variation in level of total protein binding between conditions to select the best analysis method. At the same time, validation using fold-change estimates from qRT-PCR suggests there is still room for further method improvement. PMID:25972895

  5. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  6. Bovine coronavirus nonstructural protein 1 (p28) is an RNA binding protein that binds terminal genomic cis-replication elements.

    PubMed

    Gustin, Kortney M; Guan, Bo-Jhih; Dziduszko, Agnieszka; Brian, David A

    2009-06-01

    Nonstructural protein 1 (nsp1), a 28-kDa protein in the bovine coronavirus (BCoV) and closely related mouse hepatitis coronavirus, is the first protein cleaved from the open reading frame 1 (ORF 1) polyprotein product of genome translation. Recently, a 30-nucleotide (nt) cis-replication stem-loop VI (SLVI) has been mapped at nt 101 to 130 within a 288-nt 5'-terminal segment of the 738-nt nsp1 cistron in a BCoV defective interfering (DI) RNA. Since a similar nsp1 coding region appears in all characterized groups 1 and 2 coronavirus DI RNAs and must be translated in cis for BCoV DI RNA replication, we hypothesized that nsp1 might regulate ORF 1 expression by binding this intra-nsp1 cistronic element. Here, we (i) establish by mutation analysis that the 72-nt intracistronic SLV immediately upstream of SLVI is also a DI RNA cis-replication signal, (ii) show by gel shift and UV-cross-linking analyses that cellular proteins of approximately 60 and 100 kDa, but not viral proteins, bind SLV and SLVI, (SLV-VI) and (iii) demonstrate by gel shift analysis that nsp1 purified from Escherichia coli does not bind SLV-VI but does bind three 5' untranslated region (UTR)- and one 3' UTR-located cis-replication SLs. Notably, nsp1 specifically binds SLIII and its flanking sequences in the 5' UTR with approximately 2.5 muM affinity. Additionally, under conditions enabling expression of nsp1 from DI RNA-encoded subgenomic mRNA, DI RNA levels were greatly reduced, but there was only a slight transient reduction in viral RNA levels. These results together indicate that nsp1 is an RNA-binding protein that may function to regulate viral genome translation or replication but not by binding SLV-VI within its own coding region.

  7. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary and Specialized Metabolism in planta

    PubMed Central

    Sheshadri, S. A.; Nishanth, M. J.; Simon, Bindu

    2016-01-01

    Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants. PMID:27933071

  8. Ets transcription factors bind and transactivate the core promoter of the von Willebrand factor gene.

    PubMed

    Schwachtgen, J L; Janel, N; Barek, L; Duterque-Coquillaud, M; Ghysdael, J; Meyer, D; Kerbiriou-Nabias, D

    1997-12-18

    von Willebrand factor (vWF) gene expression is restricted to endothelial cells and megakaryocytes. Previous results demonstrated that basal transcription of the human vWF gene is mediated through a promoter located between base pairs -89 and +19 (cap site: +1) which is functional in endothelial and non endothelial cells. Two DNA repeats TTTCCTTT correlating with inverted consensus binding sites for the Ets family of transcription factors are present in the -56/-36 sequence. In order to analyse whether these DNA elements are involved in transcription, human umbilical vein endothelial cells (HUVEC), bovine calf pulmonary endothelial cell line (CPAE), HeLa and COS cells were transfected with constructs containing deletions of the -89/+19 fragment, linked to the chloramphenicol acetyl transferase (CAT) reporter gene. The -60/+19 region exhibits significant promoter activity in HUVEC and CPAE cells only. The -42/+19 fragment is not active. Mutations of the -60/+19 promoter fragment in the 5' (-56/-49) Ets binding site abolish transcription in endothelial cells whereas mutations in the 3' (-43/-36) site does not. The -60/-33 fragment forms three complexes with proteins from HUVEC nuclear extracts in electrophoretic mobility shift assay which are dependent on the presence of the 5' Ets binding site. Binding of recombinant Ets-1 protein to the -60/-33 fragment gives a complex which also depends on the 5' site. The -60/+19 vWF gene core promoter is transactivated in HeLa cells by cotransfecting with Ets-1 or Erg (Ets-related gene) expression plasmids. In contrast to the wild type construct, transcription of the 5' site mutants is not increased by these expressed proteins. The results indicate that the promoter activity of the -60/+19 region of the vWF gene depends on transcription factors of the Ets family of which several members like Ets-1, Ets-2 and Erg are expressed in endothelium. Cotransfection of Ets-1 and Erg expression plasmids is sufficient to induce the -60/+19 v

  9. A binding site for the transcription factor Grainyhead/Nuclear transcription factor-1 contributes to regulation of the Drosophila proliferating cell nuclear antigen gene promoter.

    PubMed

    Hayashi, Y; Yamagishi, M; Nishimoto, Y; Taguchi, O; Matsukage, A; Yamaguchi, M

    1999-12-03

    The Drosophila proliferating cell nuclear antigen promoter contains multiple transcriptional regulatory elements, including upstream regulatory element (URE), DNA replication-related element, E2F recognition sites, and three common regulatory factor for DNA replication and DNA replication-related element-binding factor genes recognition sites. In nuclear extracts of Drosophila embryos, we detected a protein factor, the URE-binding factor (UREF), that recognizes the nucleotide sequence 5'-AAACCAGTTGGCA located within URE. Analyses in Drosophila Kc cells and transgenic flies revealed that the UREF-binding site plays an important role in promoter activity both in cultured cells and in living flies. A yeast one-hybrid screen using URE as a bait allowed isolation of a cDNA encoding a transcription factor, Grainyhead/nuclear transcription factor-1 (GRH/NTF-1). The nucleotide sequence required for binding to GRH was indistinguishable from that for UREF detected in embryo nuclear extracts. Furthermore, a specific antibody to GRH reacted with UREF in embryo nuclear extracts. From these results we conclude that GRH is identical to UREF. Although GRH has been thought to be involved in regulation of differentiation-related genes, this study demonstrates, for the first time, involvement of a GRH-binding site in regulation of the DNA replication-related proliferating cell nuclear antigen gene.

  10. Telomerase RNA stem terminus element affects template boundary element function, telomere sequence, and shelterin binding.

    PubMed

    Webb, Christopher J; Zakian, Virginia A

    2015-09-08

    The stem terminus element (STE), which was discovered 13 y ago in human telomerase RNA, is required for telomerase activity, yet its mode of action is unknown. We report that the Schizosaccharomyces pombe telomerase RNA, TER1 (telomerase RNA 1), also contains a STE, which is essential for telomere maintenance. Cells expressing a partial loss-of-function TER1 STE allele maintained short stable telomeres by a recombination-independent mechanism. Remarkably, the mutant telomere sequence was different from that of wild-type cells. Generation of the altered sequence is explained by reverse transcription into the template boundary element, demonstrating that the STE helps maintain template boundary element function. The altered telomeres bound less Pot1 (protection of telomeres 1) and Taz1 (telomere-associated in Schizosaccharomyces pombe 1) in vivo. Thus, the S. pombe STE, although distant from the template, ensures proper telomere sequence, which in turn promotes proper assembly of the shelterin complex.

  11. Identification of two nuclear factor-binding domains on the chicken cardiac actin promoter: implications for regulation of the gene.

    PubMed Central

    Quitschke, W W; DePonti-Zilli, L; Lin, Z Y; Paterson, B M

    1989-01-01

    The cis-acting regions that appear to be involved in negative regulation of the chicken alpha-cardiac actin promoter both in vivo and in vitro have been identified. A nuclear factor(s) binding to the proximal region mapped over the TATA element between nucleotides -50 and -25. In the distal region, binding spanned nucleotides -136 to -112, a region that included a second CArG box (CArG2) 5' to the more familiar CCAAT-box (CArG1) consensus sequence. Nuclear factors binding to these different domains were found in both muscle and nonmuscle preparations but were detectable at considerably lower levels in tissues expressing the alpha-cardiac actin gene. In contrast, concentrations of the beta-actin CCAAT-box binding activity were similar in all extracts tested. The role of these factor-binding domains on the activity of the cardiac actin promoter in vivo and in vitro and the prevalence of the binding factors in nonmuscle extracts are consistent with the idea that these binding domains and their associated factors are involved in the tissue-restricted expression of cardiac actin through both positive and negative regulatory mechanisms. In the absence of negative regulatory factors, these same binding domains act synergistically, via other factors, to activate the cardiac actin promoter during myogenesis. Images PMID:2552286

  12. SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps.

    PubMed

    Setty, Manu; Leslie, Christina S

    2015-05-01

    Genome-wide maps of transcription factor (TF) occupancy and regions of open chromatin implicitly contain DNA sequence signals for multiple factors. We present SeqGL, a novel de novo motif discovery algorithm to identify multiple TF sequence signals from ChIP-, DNase-, and ATAC-seq profiles. SeqGL trains a discriminative model using a k-mer feature representation together with group lasso regularization to extract a collection of sequence signals that distinguish peak sequences from flanking regions. Benchmarked on over 100 ChIP-seq experiments, SeqGL outperformed traditional motif discovery tools in discriminative accuracy. Furthermore, SeqGL can be naturally used with multitask learning to identify genomic and cell-type context determinants of TF binding. SeqGL successfully scales to the large multiplicity of sequence signals in DNase- or ATAC-seq maps. In particular, SeqGL was able to identify a number of ChIP-seq validated sequence signals that were not found by traditional motif discovery algorithms. Thus compared to widely used motif discovery algorithms, SeqGL demonstrates both greater discriminative accuracy and higher sensitivity for detecting the DNA sequence signals underlying regulatory element maps. SeqGL is available at http://cbio.mskcc.org/public/Leslie/SeqGL/.

  13. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    PubMed Central

    Iizuka, Katsumi

    2017-01-01

    Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP) is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase), fructolysis (Glut5, ketohexokinase), and lipogenesis (acetyl CoA carboxylase, fatty acid synthase). ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome. PMID:28241431

  14. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    SciTech Connect

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui; Ha, Hyunil Lee, Zang Hee

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.

  15. An AP1 binding site upstream of the kappa immunoglobulin intron enhancer binds inducible factors and contributes to expression.

    PubMed Central

    Schanke, J T; Marcuzzi, A; Podzorski, R P; Van Ness, B

    1994-01-01

    Expression of the kappa immunoglobulin light chain gene requires developmental- and tissue-specific regulation by trans-acting factors which interact with two distinct enhancer elements. A new protein-DNA interaction has been identified upstream of the intron enhancer, within the matrix-associated region of the J-C intron. The binding activity is greatly inducible in pre-B cells by bacterial lipopolysaccharide and interleukin-1 but specific complexes are found at all stages of B cell development tested. The footprinted binding site is homologous to the consensus AP1 motif. The protein components of this complex are specifically competed by an AP1 consensus motif and were shown by supershift to include c-Jun and c-Fos, suggesting that this binding site is an AP1 motif and that the Jun and Fos families of transcription factors play a role in the regulation of the kappa light chain gene. Mutation of the AP1 motif in the context of the intron enhancer was shown to decrease enhancer-mediated activation of the promoter in both pre-B cells induced with LPS and constitutive expression in mature B cells. Images PMID:7816634

  16. Universal protein binding microarrays for the comprehensive characterization of the DNA binding specificities of transcription factors

    PubMed Central

    Berger, Michael F.; Bulyk, Martha L.

    2010-01-01

    Protein binding microarray (PBM) technology provides a rapid, high-throughput means of characterizing the in vitro DNA binding specificities of transcription factors (TFs). Using high-density, custom-designed microarrays containing all 10-mer sequence variants, one can obtain comprehensive binding site measurements for any TF, regardless of its structural class or species of origin. Here, we present a protocol for the examination and analysis of TF binding specificities at high resolution using such ‘all 10-mer’ universal PBMs. This procedure involves double-stranding a commercially synthesized DNA oligonucleotide array, binding a TF directly to the double-stranded DNA microarray, and labeling the protein-bound microarray with a fluorophore-conjugated antibody. We describe how to computationally extract the relative binding preferences of the examined TF for all possible contiguous and gapped 8-mers over the full range of affinities, from highest affinity sites to nonspecific sites. Multiple proteins can be tested in parallel in separate chambers on a single microarray, enabling the processing of a dozen or more TFs in a single day. PMID:19265799

  17. Specific binding of atrial natriuretic factor in brain microvessels

    SciTech Connect

    Chabrier, P.E.; Roubert, P.; Braquet, P.

    1987-04-01

    Cerebral capillaries constitute the blood-brain barrier. Studies of specific receptors (neurotransmitters or hormones) located on this structure can be performed by means of radioligand-binding techniques on isolated brain microvessels. The authors examined on pure bovine cerebral microvessel preparations the binding of atrial natriuretic factor (ANF), using /sup 125/I-labeled ANF. Saturation and competition experiments demonstrated the presence of a single class of ANF-binding sites with high affinity and with a binding capacity of 58 fmol/mg of protein. The binding of /sup 125/I-labeled ANF to brain microvessels is specific, reversible, and time dependent, as is shown by association-dissociation experiments. The demonstration of specific ANF-binding sites on brain microvessels supposes a physiological role of ANF on brain microvasculature. The coexistence of ANF and angiotensin II receptors on this cerebrovascular tissue suggests that the two circulating peptides may act as mutual antagonists in the regulation of brain microcirculation and/or blood-brain barrier function.

  18. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    DOE Data Explorer

    Loots, Gabriela G. [LLNL; Ovcharenko, I. [LLNL

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. This database of evolutionary conserved regions (ECRs) in vertebrate genomes features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a comprehensive collection of promoters in all vertebrate genomes generated using multiple sources of gene annotation. The database also contains a collection of annotated transcription factor binding sites (TFBSs) in evolutionary conserved and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and fugu genomes. (taken from paper in Journal: Bioinformatics, November 7, 2006, pp. 122-124

  19. A Novel Protein Domain Induces High Affinity Selenocysteine Insertion Sequence Binding and Elongation Factor Recruitment*

    PubMed Central

    Donovan, Jesse; Caban, Kelvin; Ranaweera, Ruchira; Gonzalez-Flores, Jonathan N.; Copeland, Paul R.

    2008-01-01

    Selenocysteine (Sec) is incorporated at UGA codons in mRNAs possessing a Sec insertion sequence (SECIS) element in their 3′-untranslated region. At least three additional factors are necessary for Sec incorporation: SECIS-binding protein 2 (SBP2), Sec-tRNASec, and a Sec-specific translation elongation factor (eEFSec). The C-terminal half of SBP2 is sufficient to promote Sec incorporation in vitro, which is carried out by the concerted action of a novel Sec incorporation domain and an L7Ae RNA-binding domain. Using alanine scanning mutagenesis, we show that two distinct regions of the Sec incorporation domain are required for Sec incorporation. Physical separation of the Sec incorporation and RNA-binding domains revealed that they are able to function in trans and established a novel role of the Sec incorporation domain in promoting SECIS and eEFSec binding to the SBP2 RNA-binding domain. We propose a model in which SECIS binding induces a conformational change in SBP2 that recruits eEFSec, which in concert with the Sec incorporation domain gains access to the ribosomal A site. PMID:18948268

  20. Global genome analysis of the downstream binding targets of testis determining factor SRY and SOX9.

    PubMed

    Bhandari, Ramji K; Haque, Md M; Skinner, Michael K

    2012-01-01

    A major event in mammalian male sex determination is the induction of the testis determining factor Sry and its downstream gene Sox9. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. A modified ChIP-Chip analysis using a comparative hybridization was used to identify 71 direct downstream binding targets for SRY and 109 binding targets for SOX9. Interestingly, only 5 gene targets overlapped between SRY and SOX9. In addition to the direct response element binding gene targets, a large number of atypical binding gene targets were identified for both SRY and SOX9. Bioinformatic analysis of the downstream binding targets identified gene networks and cellular pathways potentially involved in the induction of Sertoli cell differentiation and testis development. The specific DNA sequence binding site motifs for both SRY and SOX9 were identified. Observations provide insights into the molecular control of male gonadal sex determination.

  1. Global Genome Analysis of the Downstream Binding Targets of Testis Determining Factor SRY and SOX9

    PubMed Central

    Bhandari, Ramji K.; Haque, Md. M.; Skinner, Michael K.

    2012-01-01

    A major event in mammalian male sex determination is the induction of the testis determining factor Sry and its downstream gene Sox9. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. A modified ChIP-Chip analysis using a comparative hybridization was used to identify 71 direct downstream binding targets for SRY and 109 binding targets for SOX9. Interestingly, only 5 gene targets overlapped between SRY and SOX9. In addition to the direct response element binding gene targets, a large number of atypical binding gene targets were identified for both SRY and SOX9. Bioinformatic analysis of the downstream binding targets identified gene networks and cellular pathways potentially involved in the induction of Sertoli cell differentiation and testis development. The specific DNA sequence binding site motifs for both SRY and SOX9 were identified. Observations provide insights into the molecular control of male gonadal sex determination. PMID:22984422

  2. The unique extracellular disulfide loop of the glycine receptor is a principal ligand binding element.

    PubMed Central

    Rajendra, S; Vandenberg, R J; Pierce, K D; Cunningham, A M; French, P W; Barry, P H; Schofield, P R

    1995-01-01

    A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily. Images PMID:7621814

  3. Binding among Select Episodic Elements Is Altered via Active Short-Term Retrieval

    ERIC Educational Resources Information Center

    Bridge, Donna J.; Voss, Joel L.

    2015-01-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated…

  4. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element

    PubMed Central

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-01-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5′-NNCCAC-3′ and 5′-GCGMGN′N′-3′ (M:A or C; N and N′ form Watson–Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences. PMID:23709277

  5. Definition of the affinity of binding between human von Willebrand factor and coagulation factor VIII.

    PubMed

    Ganz, P R; Atkins, J S; Palmer, D S; Dudani, A K; Hashemi, S; Luison, F

    1991-10-15

    Factor VIII and von Willebrand factor are two plasma proteins essential for effective hemostasis. In vivo, they form a non-covalent complex whose association appears to be metal ion dependent. However, a precise definition of the nature of the molecular forces governing their association remains to be defined, as does their binding affinity. In this paper we have determined the dissociation constant and stoichiometry for Factor VIII binding to immobilized von Willebrand factor. The data demonstrate that these proteins interact saturably and with relatively high affinity. Computer assisted analyses of the Scatchard data favour a two site binding model. The higher affinity site was found to have a Kd of 62 (+/- 13) x 10(-12) M while that of the lower affinity site was 380 (+/- 92) x 10(-12) M. The density of Factor VIII binding sites (Bmax) present on von Willebrand factor was 31 (+/- 3) pM for the high affinity binding site and 46 (+/- 6) pM for the lower site, corresponding to a calculated Factor VIII: von Willebrand factor binding ratio of 1:33 and 1:23, respectively.

  6. Soluble spiroperidol binding factors from bovine caudate nucleus.

    PubMed

    Winkler, M H; Berl, S

    1982-09-01

    Several properties of soluble spiroperidol binding factors separated from bovine caudate nucleus have been investigated by a previously unreported procedure. Data consistent with high particle weight and rapid binding equilibration are reported for high-affinity (+)butaclamol-sensitive components of a digitonin extract. A slower sedimenting component is found that also exhibits high affinity for spiroperidol but is not sensitive to (+)butaclamol. Centrifugation of a caudate nucleus homogenate yields a supernatant that appears to contain a component that exhibits spiroperidol binding that is more sensitive to displacement by (-) than by (+)butaclamol. The procedure used effects rapid separation of bound from unbound tritiated ligand on short columns of Sephadex G-15 followed by extrusion and sectioning of the Sephadex. The radioactivity remaining with each section is determined. The procedure is very rapid; the addition of active phases or the changing of the ionic environment, which may disturb the equilibrium, is avoided; and recovery of the protein free of bound ligand is easily affected.

  7. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes

    PubMed Central

    2013-01-01

    Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316

  8. Insulin-Like Growth Factor Binding Proteins: A Structural Perspective

    PubMed Central

    Forbes, Briony E.; McCarthy, Peter; Norton, Raymond S.

    2012-01-01

    Insulin-like growth factor binding proteins (IGFBP-1 to -6) bind insulin-like growth factors-I and -II (IGF-I and IGF-II) with high affinity. These binding proteins maintain IGFs in the circulation and direct them to target tissues, where they promote cell growth, proliferation, differentiation, and survival via the type 1 IGF receptor. IGFBPs also interact with many other molecules, which not only influence their modulation of IGF action but also mediate IGF-independent activities that regulate processes such as cell migration and apoptosis by modulating gene transcription. IGFBPs-1 to -6 are structurally similar proteins consisting of three distinct domains, N-terminal, linker, and C-terminal. There have been major advances in our understanding of IGFBP structure in the last decade and a half. While there is still no structure of an intact IGFBP, several structures of individual N- and C-domains have been solved. The structure of a complex of N-BP-4:IGF-I:C-BP-4 has also been solved, providing a detailed picture of the structural features of the IGF binding site and the mechanism of binding. Structural studies have also identified features important for interaction with extracellular matrix components and integrins. This review summarizes structural studies reported so far and highlights features important for binding not only IGF but also other partners. We also highlight future directions in which structural studies will add to our knowledge of the role played by the IGFBP family in normal growth and development, as well as in disease. PMID:22654863

  9. cAMP-responsive element binding protein: a vital link in embryonic hormonal adaptation.

    PubMed

    Schindler, Maria; Fischer, Sünje; Thieme, René; Fischer, Bernd; Santos, Anne Navarrete

    2013-06-01

    The transcription factor cAMP responsive element-binding protein (CREB) and activating transcription factors (ATFs) are downstream components of the insulin/IGF cascade, playing crucial roles in maintaining cell viability and embryo survival. One of the CREB target genes is adiponectin, which acts synergistically with insulin. We have studied the CREB-ATF-adiponectin network in rabbit preimplantation development in vivo and in vitro. From the blastocyst stage onwards, CREB and ATF1, ATF3, and ATF4 are present with increasing expression for CREB, ATF1, and ATF3 during gastrulation and with a dominant expression in the embryoblast (EB). In vitro stimulation with insulin and IGF-I reduced CREB and ATF1 transcripts by approximately 50%, whereas CREB phosphorylation was increased. Activation of CREB was accompanied by subsequent reduction in adiponectin and adiponectin receptor (adipoR)1 expression. Under in vivo conditions of diabetes type 1, maternal adiponectin levels were up-regulated in serum and endometrium. Embryonic CREB expression was altered in a cell lineage-specific pattern. Although in EB cells CREB localization did not change, it was translocated from the nucleus into the cytosol in trophoblast (TB) cells. In TB, adiponectin expression was increased (diabetic 427.8 ± 59.3 pg/mL vs normoinsulinaemic 143.9 ± 26.5 pg/mL), whereas it was no longer measureable in the EB. Analysis of embryonic adipoRs showed an increased expression of adipoR1 and no changes in adipoR2 transcription. We conclude that the transcription factors CREB and ATFs vitally participate in embryo-maternal cross talk before implantation in a cell lineage-specific manner. Embryonic CREB/ATFs act as insulin/IGF sensors. Lack of insulin is compensated by a CREB-mediated adiponectin expression, which may maintain glucose uptake in blastocysts grown in diabetic mothers.

  10. Predicting DNA-Binding Specificities of Eukaryotic Transcription Factors

    PubMed Central

    Schröder, Adrian; Eichner, Johannes; Supper, Jochen; Eichner, Jonas; Wanke, Dierk; Henneges, Carsten; Zell, Andreas

    2010-01-01

    Today, annotated amino acid sequences of more and more transcription factors (TFs) are readily available. Quantitative information about their DNA-binding specificities, however, are hard to obtain. Position frequency matrices (PFMs), the most widely used models to represent binding specificities, are experimentally characterized only for a small fraction of all TFs. Even for some of the most intensively studied eukaryotic organisms (i.e., human, rat and mouse), roughly one-sixth of all proteins with annotated DNA-binding domain have been characterized experimentally. Here, we present a new method based on support vector regression for predicting quantitative DNA-binding specificities of TFs in different eukaryotic species. This approach estimates a quantitative measure for the PFM similarity of two proteins, based on various features derived from their protein sequences. The method is trained and tested on a dataset containing 1 239 TFs with known DNA-binding specificity, and used to predict specific DNA target motifs for 645 TFs with high accuracy. PMID:21152420

  11. An M-CAT binding factor and an RSRF-related A-rich binding factor positively regulate expression of the alpha-cardiac myosin heavy-chain gene in vivo.

    PubMed Central

    Molkentin, J D; Markham, B E

    1994-01-01

    Cardiac muscle-restricted expression of the alpha-myosin heavy-chain (alpha-MHC) gene is regulated by multiple elements in the proximal enhancer/promoter. Within this region, an M-CAT site and an A-rich site were identified as potential regulatory elements. Site-specific mutations in each site, individually, reduced activity from the wild-type promoter by approximately 85% in the adult rat heart, demonstrating that these sites were positive regulatory elements. alpha-MHC, beta-MHC, and chicken cardiac troponin T (cTnT) M-CAT sites interacted with an M-CAT-binding factor (MCBF) from rat heart nuclear extracts that was immunologically related to transcriptional enhancer factor 1, a factor that binds within the simian virus 40 enhancer. The factor that bound the A-rich region (ARF) was antigenically related to the RSRF family of proteins, ARF was distinct from myocyte-specific enhancer factor 2 (MEF-2) on the basis of DNA-binding specificity and developmental expression. Like MEF-2, ARF DNA-binding activity was present in the heart and brain; however, no ARF activity was detected in extracts from skeletal muscle or C2C12 myotubes. MCBF and ARF DNA-binding activities were developmentally regulated with peak levels in the 1- to 2-day neonatal heart. The activity of both factors increased nearly fivefold in adult rat hearts subjected to a pressure overload. By comparison, the levels of alpha-MHC binding factor 2 did not change during hypertrophy. Binding sites for MCBF and ARF are present in several genes that are upregulated during cardiac hypertrophy. Our results suggest that these factors participate in the alterations in gene expression that occur during cardiac development and hypertrophy. Images PMID:8035789

  12. Advanced glycation end products increase carbohydrate responsive element binding protein expression and promote cancer cell proliferation.

    PubMed

    Chen, Hanbei; Wu, Lifang; Li, Yakui; Meng, Jian; Lin, Ning; Yang, Dianqiang; Zhu, Yemin; Li, Xiaoyong; Li, Minle; Xu, Ye; Wu, Yuchen; Tong, Xuemei; Su, Qing

    2014-09-01

    Diabetic patients have increased levels of advanced glycation end products (AGEs) and the role of AGEs in regulating cancer cell proliferation is unclear. Here, we found that treating colorectal and liver cancer cells with AGEs promoted cell proliferation. AGEs stimulated both the expression and activation of a key transcription factor called carbohydrate responsive element binding protein (ChREBP) which had been shown to promote glycolytic and anabolic activity as well as proliferation of colorectal and liver cancer cells. Using siRNAs or the antagonistic antibody for the receptor for advanced glycation end-products (RAGE) blocked AGEs-induced ChREBP expression or cell proliferation in cancer cells. Suppressing ChREBP expression severely impaired AGEs-induced cancer cell proliferation. Taken together, these results demonstrate that AGEs-RAGE signaling enhances cancer cell proliferation in which AGEs-mediated ChREBP induction plays an important role. These findings may provide new explanation for increased cancer progression in diabetic patients.

  13. A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway.

    PubMed

    Bhattacharya, Bonhi S; Sweby, Peter K; Minihane, Anne-Marie; Jackson, Kim G; Tindall, Marcus J

    2014-05-21

    Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in a hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main regulator of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homeostasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature.

  14. A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway

    PubMed Central

    Bhattacharya, Bonhi S.; Sweby, Peter K.; Minihane, Anne-Marie; Jackson, Kim G.; Tindall, Marcus J.

    2014-01-01

    Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in a hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main regulator of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homeostasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature. PMID:24444765

  15. OCTAMER-BINDING TRANSCRIPTION FACTORS: GENOMICS AND FUNCTIONS

    PubMed Central

    Zhao, Feng-Qi

    2015-01-01

    The Octamer-binding proteins (Oct) are a group of highly conserved transcription factors that specifically bind to the octamer motif (ATGCAAAT) and closely related sequences that are found in promoters and enhancers of a wide variety of both ubiquitously expressed and cell type-specific genes. Oct factors belong to the larger family of POU domain factors that are characterized by the presence of a highly conserved bipartite DNA binding domain, consisting of an amino-terminal specific subdomain (POUS) and a carboxyl-terminal homeo-subdomain (POUH). Eleven Oct proteins have been named (Oct1-11), and currently, eight genes encoding Oct proteins (Oct1, Oct2, Oct3/4, Oct6, Oct7, Oct8, Oct9, and Oct11) have been cloned and characterized. Oct1 and Oct2 are widely expressed in adult tissues, while other Oct proteins are much more restricted in their expression patterns. Oct proteins are implicated in crucial and versatile biological events, such as embryogenesis, neurogenesis, immunity, and body glucose and amino acid metabolism. The aberrant expression and null function of Oct proteins have also been linked to various diseases, including deafness, diabetes and cancer. In this review, I will report both the genomic structure and major functions of individual Oct proteins in physiological and pathological processes. PMID:23747866

  16. Efficient translation of Dnmt1 requires cytoplasmic polyadenylation and Musashi binding elements.

    PubMed

    Rutledge, Charlotte E; Lau, Ho-Tak; Mangan, Hazel; Hardy, Linda L; Sunnotel, Olaf; Guo, Fan; MacNicol, Angus M; Walsh, Colum P; Lees-Murdock, Diane J

    2014-01-01

    Regulation of DNMT1 is critical for epigenetic control of many genes and for genome stability. Using phylogenetic analysis we characterized a block of 27 nucleotides in the 3'UTR of Dnmt1 mRNA identical between humans and Xenopus and investigated the role of the individual elements contained within it. This region contains a cytoplasmic polyadenylation element (CPE) and a Musashi binding element (MBE), with CPE binding protein 1 (CPEB1) known to bind to the former in mouse oocytes. The presence of these elements usually indicates translational control by elongation and shortening of the poly(A) tail in the cytoplasm of the oocyte and in some somatic cell types. We demonstrate for the first time cytoplasmic polyadenylation of Dnmt1 during periods of oocyte growth in mouse and during oocyte activation in Xenopus. Furthermore we show by RNA immunoprecipitation that Musashi1 (MSI1) binds to the MBE and that this element is required for polyadenylation in oocytes. As well as a role in oocytes, site-directed mutagenesis and reporter assays confirm that mutation of either the MBE or CPE reduce DNMT1 translation in somatic cells, but likely act in the same pathway: deletion of the whole conserved region has more severe effects on translation in both ES and differentiated cells. In adult cells lacking MSI1 there is a greater dependency on the CPE, with depletion of CPEB1 or CPEB4 by RNAi resulting in substantially reduced levels of endogenous DNMT1 protein and concurrent upregulation of the well characterised CPEB target mRNA cyclin B1. Our findings demonstrate that CPE- and MBE-mediated translation regulate DNMT1 expression, representing a novel mechanism of post-transcriptional control for this gene.

  17. Long-Term Memory for Place Learning Is Facilitated by Expression of cAMP Response Element-Binding Protein in the Dorsal Hippocampus

    ERIC Educational Resources Information Center

    Brightwell, Jennifer J.; Smith, Clayton A.; Neve, Rachael L.; Colombo, Paul J.

    2007-01-01

    Extensive research has shown that the hippocampus is necessary for consolidation of long-term spatial memory in rodents. We reported previously that rats using a place strategy to solve a cross maze task showed sustained phosphorylation of hippocampus cyclic AMP response element-binding protein (CREB), a transcription factor implicated in…

  18. An in silico strategy identified the target gene candidates regulated by dehydration responsive element binding proteins (DREBs) in Arabidopsis genome.

    PubMed

    Wang, Shichen; Yang, Shuo; Yin, Yuejia; Guo, Xiaosen; Wang, Shan; Hao, Dongyun

    2009-01-01

    Identification of downstream target genes of stress-relating transcription factors (TFs) is desirable in understanding cellular responses to various environmental stimuli. However, this has long been a difficult work for both experimental and computational practices. In this research, we presented a novel computational strategy which combined the analysis of the transcription factor binding site (TFBS) contexts and machine learning approach. Using this strategy, we conducted a genome-wide investigation into novel direct target genes of dehydration responsive element binding proteins (DREBs), the members of AP2-EREBPs transcription factor super family which is reported to be responsive to various abiotic stresses in Arabidopsis. The genome-wide searching yielded in total 474 target gene candidates. With reference to the microarray data for abiotic stresses-inducible gene expression profile, 268 target gene candidates out of the total 474 genes predicted, were induced during the 24-h exposure to abiotic stresses. This takes about 57% of total predicted targets. Furthermore, GO annotations revealed that these target genes are likely involved in protein amino acid phosphorylation, protein binding and Endomembrane sorting system. The results suggested that the predicted target gene candidates were adequate to meet the essential biological principle of stress-resistance in plants.

  19. Discovery of new binding elements in DPP-4 inhibition and their applications in novel DPP-4 inhibitor design.

    PubMed

    Liang, Gui-Bai; Qian, Xiaoxia; Biftu, Tesfaye; Singh, Suresh; Gao, Ying-Duo; Scapin, Giovanna; Patel, Sangita; Leiting, Barbara; Patel, Reshma; Wu, Joseph; Zhang, Xiaoping; Thornberry, Nancy A; Weber, Ann E

    2008-07-01

    Probing with tool molecules, and by modeling and X-ray crystallography the binding modes of two structurally distinct series of DPP-4 inhibitors led to the discovery of a rare aromatic fluorine H-bond and the spatial requirement for better biaryl binding in the DPP-4 enzyme active site. These newly found binding elements were successfully incorporated into novel DPP-4 inhibitors.

  20. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  1. Roles of Binding Elements, FOXL2 Domains, and Interactions With cJUN and SMADs in Regulation of FSHβ

    PubMed Central

    Roybal, Lacey L.; Hambarchyan, Arpi; Meadows, Jason D.; Barakat, Nermeen H.; Pepa, Patricia A.; Breen, Kellie M.; Mellon, Pamela L.

    2014-01-01

    We previously identified FOXL2 as a critical component in FSHβ gene transcription. Here, we show that mice deficient in FOXL2 have lower levels of gonadotropin gene expression and fewer LH- and FSH-containing cells, but the same level of other pituitary hormones compared to wild-type littermates, highlighting a role of FOXL2 in the pituitary gonadotrope. Further, we investigate the function of FOXL2 in the gonadotrope cell and determine which domains of the FOXL2 protein are necessary for induction of FSHβ transcription. There is a stronger induction of FSHβ reporter transcription by truncated FOXL2 proteins, but no induction with the mutant lacking the forkhead domain. Specifically, FOXL2 plays a role in activin induction of FSHβ, functioning in concert with activin-induced SMAD proteins. Activin acts through multiple promoter elements to induce FSHβ expression, some of which bind FOXL2. Each of these FOXL2-binding sites is either juxtaposed or overlapping with a SMAD-binding element. We determined that FOXL2 and SMAD4 proteins form a higher order complex on the most proximal FOXL2 site. Surprisingly, two other sites important for activin induction bind neither SMADs nor FOXL2, suggesting additional factors at work. Furthermore, we show that FOXL2 plays a role in synergistic induction of FSHβ by GnRH and activin through interactions with the cJUN component of the AP1 complex that is necessary for GnRH responsiveness. Collectively, our results demonstrate the necessity of FOXL2 for proper FSH production in mice and implicate FOXL2 in integration of transcription factors at the level of the FSHβ promoter. PMID:25105693

  2. Maturation and Activity of Sterol Regulatory Element Binding Protein 1 Is Inhibited by Acyl-CoA Binding Domain Containing 3

    PubMed Central

    Chen, Yong; Patel, Vishala; Bang, Sookhee; Cohen, Natalie; Millar, John; Kim, Sangwon F.

    2012-01-01

    Imbalance of lipid metabolism has been linked with pathogenesis of a variety of human pathological conditions such as diabetes, obesity, cancer and neurodegeneration. Sterol regulatory element binding proteins (SREBPs) are the master transcription factors controlling the homeostasis of fatty acids and cholesterol in the body. Transcription, expression, and activity of SREBPs are regulated by various nutritional, hormonal or stressful stimuli, yet the molecular and cellular mechanisms involved in these adaptative responses remains elusive. In the present study, we found that overexpressed acyl-CoA binding domain containing 3 (ACBD3), a Golgi-associated protein, dramatically inhibited SREBP1-sensitive promoter activity of fatty acid synthase (FASN). Moreover, lipid deprivation-stimulated SREBP1 maturation was significantly attenuated by ACBD3. With cell fractionation, gene knockdown and immunoprecipitation assays, it was showed that ACBD3 blocked intracellular maturation of SREBP1 probably through directly binding with the lipid regulator rather than disrupted SREBP1-SCAP-Insig1 interaction. Further investigation revealed that acyl-CoA domain-containing N-terminal sequence of ACBD3 contributed to its inhibitory effects on the production of nuclear SREBP1. In addition, mRNA and protein levels of FASN and de novo palmitate biosynthesis were remarkably reduced in cells overexpressed with ACBD3. These findings suggest that ACBD3 plays an essential role in maintaining lipid homeostasis via regulating SREBP1's processing pathway and thus impacting cellular lipogenesis. PMID:23166793

  3. Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6.

    PubMed

    Volz, Yvonne; Koschut, David; Matzke-Ogi, Alexandra; Dietz, Marina S; Karathanasis, Christos; Richert, Ludovic; Wagner, Moritz G; Mély, Yves; Heilemann, Mike; Niemann, Hartmut H; Orian-Rousseau, Véronique

    2015-06-29

    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs.

  4. Imputation for transcription factor binding predictions based on deep learning

    PubMed Central

    Qin, Qian

    2017-01-01

    Understanding the cell-specific binding patterns of transcription factors (TFs) is fundamental to studying gene regulatory networks in biological systems, for which ChIP-seq not only provides valuable data but is also considered as the gold standard. Despite tremendous efforts from the scientific community to conduct TF ChIP-seq experiments, the available data represent only a limited percentage of ChIP-seq experiments, considering all possible combinations of TFs and cell lines. In this study, we demonstrate a method for accurately predicting cell-specific TF binding for TF-cell line combinations based on only a small fraction (4%) of the combinations using available ChIP-seq data. The proposed model, termed TFImpute, is based on a deep neural network with a multi-task learning setting to borrow information across transcription factors and cell lines. Compared with existing methods, TFImpute achieves comparable accuracy on TF-cell line combinations with ChIP-seq data; moreover, TFImpute achieves better accuracy on TF-cell line combinations without ChIP-seq data. This approach can predict cell line specific enhancer activities in K562 and HepG2 cell lines, as measured by massively parallel reporter assays, and predicts the impact of SNPs on TF binding. PMID:28234893

  5. Imputation for transcription factor binding predictions based on deep learning.

    PubMed

    Qin, Qian; Feng, Jianxing

    2017-02-01

    Understanding the cell-specific binding patterns of transcription factors (TFs) is fundamental to studying gene regulatory networks in biological systems, for which ChIP-seq not only provides valuable data but is also considered as the gold standard. Despite tremendous efforts from the scientific community to conduct TF ChIP-seq experiments, the available data represent only a limited percentage of ChIP-seq experiments, considering all possible combinations of TFs and cell lines. In this study, we demonstrate a method for accurately predicting cell-specific TF binding for TF-cell line combinations based on only a small fraction (4%) of the combinations using available ChIP-seq data. The proposed model, termed TFImpute, is based on a deep neural network with a multi-task learning setting to borrow information across transcription factors and cell lines. Compared with existing methods, TFImpute achieves comparable accuracy on TF-cell line combinations with ChIP-seq data; moreover, TFImpute achieves better accuracy on TF-cell line combinations without ChIP-seq data. This approach can predict cell line specific enhancer activities in K562 and HepG2 cell lines, as measured by massively parallel reporter assays, and predicts the impact of SNPs on TF binding.

  6. Factors influencing trace element composition in human teeth

    SciTech Connect

    Tandon, L.; Iyengar, G.V.

    1997-12-01

    The authors recently compiled and reviewed the literature published in or after 1978 for 45 major, minor, and trace elements in human teeth as a part of an International Atomic Energy Agency (IAEA) study. The purpose of this paper is to discuss the various factors that influence the concentration levels of certain trace elements in human teeth. The sampling practices and analytical techniques that are applicable for trace element analysis are also discussed. It is also our intention to identify reference range of values, where data permit such conclusions. The scrutiny was designed to identify only the healthy permanent teeth, and values from teeth with fillings, caries, or periodontal diseases were eliminated.

  7. The trehalose/maltose-binding protein as the sensitive element of a glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fonin, A. V.; Povarova, O. I.; Staiano, M.; D'Auria, S.; Turoverov, K. K.; Kuznetsova, I. M.

    2014-08-01

    The promising direction of the development of a modern glucometer is the construction of sensing element on the basis of stained (dyed) protein which changes its fluorescence upon glucose binding. One of the proteins that can be used for this purpose is the D-trehalose/D-maltose-binding protein (TMBP) from the thermophilic bacteria Thermococcus litoralis. We investigated the physical-chemical properties of the protein and evaluated its stability to the denaturing action of GdnHCl and heating. It was confirmed that TMBP is an extremely stable protein. In vivo, the intrinsic ligands of TMBP are trehalose and maltose, but TMBP can also bind glucose. The dissociation constant of the TMBP-glucose complex is in the range of 3-8 mM. The binding of glucose does not noticeably change the intrinsic fluorescence of the TMBP. To register protein-glucose binding, we used the fluorescence of the thiol-reactive dye BADAN attached to TMBP. Because the fluorescence of BADAN attached to the cysteine Cys182 of TMBP does not change upon glucose binding, the mutant forms ТМВР/C182S/X_Cys were created. In these mutant proteins, Cys182 is replaced by Ser, removing intrinsic binding site of BADAN and a new dye binding sites were introduced. The largest increase (by 1.4 times) in the intensity of the dye fluorescence was observed upon TMBP/C182S/A14C-BADAN-Glc complex formation. The dissociation constant of this complex is 3.4 ± 0.1 mM. We consider TMBP/C182S/A14C mutant form with attached fluorescent dye BADAN as a good basis for further research aimed to develop of series of TMBP mutant forms with different affinities to glucose labeled with fluorescent dyes.

  8. Structural factors governing azide and cyanide binding to mammalian metmyoglobins.

    PubMed

    Brancaccio, A; Cutruzzolá, F; Allocatelli, C T; Brunori, M; Smerdon, S J; Wilkinson, A J; Dou, Y; Keenan, D; Ikeda-Saito, M; Brantley, R E

    1994-05-13

    The structural factors governing azide and cyanide binding have been examined by measuring the effects of 46 mutations at key topological positions in the distal pocket in sperm whale, pig, and human myoglobin. Replacement of His64 (E7) with smaller amino acids results in dramatic increases in the association rate constant for azide binding primarily due to relief of steric hindrance imposed by the imidazole side chain. Gln64 and His64 (native) metmyoglobins have abnormally low rate constants for azide dissociation (0.1-0.3 s-1) due to direct hydrogen bonding between the N epsilon atoms of these residues and the bound ligand. Mutations at positions 67(E10) and 68(E11) produce large but complex changes in the azide binding parameters as a result of both steric and electrostatic effects, which alter water coordination, influence the rate of anion movement into the distal pocket, and affect the stability of the Fe-N3 bond. Replacement of Phe46 with Leu or Val and substitution of Arg(Lys)45 with Glu and Ser cause disorder in the position of the distal histidine side chain and result in 4-700-fold increases in both k'N3 and kN3 but produce little change in overall azide affinity. All of these results suggest strongly that azide enters the distal pocket of native myoglobin through a polar channel that is regulated by a His64 "gate." In contrast to azide binding, the rate constant for cyanide association decreases 4-300-fold when the distal histidine is replaced with apolar residues. His64, Gln64, and distal pocket water molecules appear to facilitate deprotonation of HCN, which is the major kinetic barrier to cyanide binding at neutral pH.

  9. Insulin-Like Growth Factor Binding Proteins--an Update.

    PubMed

    Bach, Leon A

    2015-12-01

    The insulin-like growth factor (IGF) system is essential for normal growth and development, and its perturbation is implicated in a number of diseases. IGF activity is finely regulated by a family of six high-affinity IGF binding proteins (IGFBPs). 1GFBPs usually inhibit IGF actions but may enhance them under certain conditions. Additionally, IGFBPs bind non-IGF ligands in the extracellular space, cell membrane, cytoplasm and nucleus, thereby modulating cell proliferation, survival and migration in an IGF-independent manner. IGFBP activity is regulated by transcriptional mechanisms as well as by post-translational modifications and proteolysis. Understanding the balance between the various actions of IGFBPs in vivo may lead to novel insights into disease processes and possible IGFBP-based therapeutics.

  10. Insulin-like growth factor binding proteins 4-6.

    PubMed

    Bach, Leon A

    2015-10-01

    Insulin-like growth factor binding proteins (IGFBPs) 4-6 have important roles as modulators of IGF actions. IGFBP-4 and IGFBP-6 predominantly inhibit IGF actions, whereas IGFBP-5 may enhance these actions under some circumstances. IGFBP-6 is unique among the IGFBPs for its marked IGF-II binding preference. IGFBPs 4-6 are found in the circulation as binary complexes with IGFs that can enter tissues. Additionally, about half of the circulating IGFBP-5 is found in ternary complexes with IGFs and an acid labile subunit; this high molecular complex cannot leave the circulation and acts as an IGF reservoir. IGFBPs 4-6 also have IGF-independent actions. These IGFBPs are regulated in a cell-specific manner and their dysregulation may play a role in a range of diseases including cancer. However, there is no clear clinical indication for measuring serum levels of these IGFBPs at present.

  11. The mouse albumin enhancer contains a negative regulatory element that interacts with a novel DNA-binding protein.

    PubMed Central

    Herbst, R S; Boczko, E M; Darnell, J E; Babiss, L E

    1990-01-01

    The far-upstream mouse albumin enhancer (-10.5 to -8.43 kilobases) has both positive and negative regulatory domains which contribute to the rate and tissue specificity of albumin gene transcription. (R. S. Herbst, N. Friedman, J. E. Darnell, Jr., and L. E. Babiss, Proc. Natl. Acad. Sci. USA 86:1553-1557). In this work, the negative regulatory region has been functionally localized to sequences -8.7 to -8.43 kilobases upstream of the albumin gene cap site. In the absence of the albumin-modulating region (in which there are binding sites for the transcription factor C/EBP), the negative region can suppress a neighboring positive-acting element, thereby interfering with albumin enhancer function. The negative region is also capable of negating the positive action of the heterologous transthyretin enhancer in an orientation-independent fashion. Within this negative-acting region we can detect two DNA-binding sites, both of which are recognized by a protein present in all cell types tested. This DNA-binding activity is not competed for by any of a series of known DNA-binding sites, and hence this new protein is a candidate for a role in suppressing the albumin gene in nonhepatic cells. Images PMID:2370857

  12. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  13. Conservation of transcription factor binding specificities across 600 million years of bilateria evolution

    PubMed Central

    Nitta, Kazuhiro R; Jolma, Arttu; Yin, Yimeng; Morgunova, Ekaterina; Kivioja, Teemu; Akhtar, Junaid; Hens, Korneel; Toivonen, Jarkko; Deplancke, Bart; Furlong, Eileen E M; Taipale, Jussi

    2015-01-01

    Divergent morphology of species has largely been ascribed to genetic differences in the tissue-specific expression of proteins, which could be achieved by divergence in cis-regulatory elements or by altering the binding specificity of transcription factors (TFs). The relative importance of the latter has been difficult to assess, as previous systematic analyses of TF binding specificity have been performed using different methods in different species. To address this, we determined the binding specificities of 242 Drosophila TFs, and compared them to human and mouse data. This analysis revealed that TF binding specificities are highly conserved between Drosophila and mammals, and that for orthologous TFs, the similarity extends even to the level of very subtle dinucleotide binding preferences. The few human TFs with divergent specificities function in cell types not found in fruit flies, suggesting that evolution of TF specificities contributes to emergence of novel types of differentiated cells. DOI: http://dx.doi.org/10.7554/eLife.04837.001 PMID:25779349

  14. Dual function of a nuclear factor I binding site in MMTV transcription regulation.

    PubMed Central

    Buetti, E; Kühnel, B; Diggelmann, H

    1989-01-01

    Using linker-scanning mutagenesis we had previously identified four elements within the MMTV LTR which are necessary for transcriptional stimulation by glucocorticoid hormones. Two of them overlapped with regions to which the glucocorticoid receptor binds in vitro. The third element contained a NF-I binding site, and the fourth the TATA box. Here we show that mutations that abolish in vitro binding of NF-I had a negative effect also on the basal activity of the MMTV promoter of LTR-containing plasmids stably integrated in Ltk- fibroblasts. The analysis of double mutants altered in the NF-I plus either one of the receptor binding elements further demonstrated that the NF-I site functionally cooperated with the proximal (-120) element, which alone was extremely inefficient in stimulation. The stronger distal (-181/-172) element was independent of NF-I and showed functional cooperativity with the proximal hormone-binding element. Images PMID:2542892

  15. The Role of Response Elements Organization in Transcription Factor Selectivity: The IFN-β Enhanceosome Example

    PubMed Central

    Pan, Yongping; Nussinov, Ruth

    2011-01-01

    What is the mechanism through which transcription factors (TFs) assemble specifically along the enhancer DNA? The IFN-β enhanceosome provides a good model system: it is small; its components' crystal structures are available; and there are biochemical and cellular data. In the IFN-β enhanceosome, there are few protein-protein interactions even though consecutive DNA response elements (REs) overlap. Our molecular dynamics (MD) simulations on different motif combinations from the enhanceosome illustrate that cooperativity is achieved via unique organization of the REs: specific binding of one TF can enhance the binding of another TF to a neighboring RE and restrict others, through overlap of REs; the order of the REs can determine which complexes will form; and the alternation of consensus and non-consensus REs can regulate binding specificity by optimizing the interactions among partners. Our observations offer an explanation of how specificity and cooperativity can be attained despite the limited interactions between neighboring TFs on the enhancer DNA. To date, when addressing selective TF binding, attention has largely focused on RE sequences. Yet, the order of the REs on the DNA and the length of the spacers between them can be a key factor in specific combinatorial assembly of the TFs on the enhancer and thus in function. Our results emphasize cooperativity via RE binding sites organization. PMID:21698143

  16. Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall.

    PubMed

    Claes, J; Liesenborghs, L; Peetermans, M; Veloso, T R; Missiakas, D; Schneewind, O; Mancini, S; Entenza, J M; Hoylaerts, M F; Heying, R; Verhamme, P; Vanassche, T

    2017-02-09

    Essentials Staphylococcus aureus (S. aureus) binds to endothelium via von Willebrand factor (VWF). Secreted VWF-binding protein (vWbp) mediates S. aureus adhesion to VWF under shear stress. vWbp interacts with VWF and the Sortase A-dependent surface protein Clumping factor A (ClfA). VWF-vWbp-ClfA anchor S. aureus to vascular endothelium under shear stress.

  17. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology.

    PubMed Central

    Katsani, K R; Hajibagheri, M A; Verrijzer, C P

    1999-01-01

    The POZ domain is a conserved protein-protein interaction motif present in a variety of transcription factors involved in development, chromatin remodelling and human cancers. Here, we study the role of the POZ domain of the GAGA transcription factor in promoter recognition. Natural target promoters for GAGA typically contain multiple GAGA-binding elements. Our results show that the POZ domain mediates strong co-operative binding to multiple sites but inhibits binding to single sites. Protein cross-linking and gel filtration chromatography experiments established that the POZ domain is required for GAGA oligomerization into higher order complexes. Thus, GAGA oligomerization increases binding specificity by selecting only promoters with multiple sites. Electron microscopy revealed that GAGA binds to multiple sites as a large oligomer and induces bending of the promoter DNA. Our results indicate a novel mode of DNA binding by GAGA, in which a large GAGA complex binds multiple GAGA elements that are spread out over a region of a few hundred base pairs. We suggest a model in which the promoter DNA is wrapped around a GAGA multimer in a conformation that may exclude normal nucleosome formation. PMID:9927429

  18. Deformed protein binding sites and cofactor binding sites are required for the function of a small segment-specific regulatory element in Drosophila embryos.

    PubMed Central

    Zeng, C; Pinsonneault, J; Gellon, G; McGinnis, N; McGinnis, W

    1994-01-01

    How each of the homeotic selector proteins can regulate distinct sets of DNA target elements in embryos is not understood. Here we describe a detailed functional dissection of a small element that is specifically regulated by the Deformed homeotic protein. This 120 bp element (module E) is part of a larger 2.7 kb autoregulatory enhancer that maintains Deformed (Dfd) transcription in the epidermis of the maxillary and mandibular segments of Drosophila embryos. In vitro binding assays show that module E contains only one Dfd protein binding site. Mutations in the Dfd binding site that increase or decrease its in vitro affinity for Dfd protein generate parallel changes in the regulatory activity of module E in transgenic embryos, strong evidence that the in vitro-defined binding site is a direct target of Dfd protein in embryos. However, a monomer or multimer of the Dfd binding region alone is not sufficient to supply Dfd-dependent, segment-specific reporter gene expression. An analysis of a systematic series of clustered point mutations in module E revealed that an additional region containing an imperfect inverted repeat sequence is also required for the function of this homeotic protein response element. The Dfd binding site and the putative cofactor binding site(s) in the region of the inverted repeat are both necessary and in combination sufficient for the function of module E. Images PMID:7910795

  19. Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment

    PubMed Central

    Ohta, Kunihiro

    2017-01-01

    ABSTRACT Eukaryotic cells produce a variety of non-coding RNAs (ncRNAs), many of which have been shown to play pivotal roles in biological processes such as differentiation, maintenance of pluripotency of stem cells, and cellular response to various stresses. Genome-wide analyses have revealed that many ncRNAs are transcribed around regulatory DNA elements located proximal or distal to gene promoters, but their biological functions are largely unknown. Recently, it has been demonstrated in yeast and mouse that ncRNA transcription around gene promoters and enhancers facilitates DNA binding of transcription factors to their target sites. These results suggest universal roles of promoter/enhancer-associated ncRNAs in the recruitment of transcription factors to their binding sites. PMID:27763805

  20. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-02-07

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low Schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

  1. Replication protein A binds to regulatory elements in yeast DNA repair and DNA metabolism genes.

    PubMed Central

    Singh, K K; Samson, L

    1995-01-01

    Saccharomyces cerevisiae responds to DNA damage by arresting cell cycle progression (thereby preventing the replication and segregation of damaged chromosomes) and by inducing the expression of numerous genes, some of which are involved in DNA repair, DNA replication, and DNA metabolism. Induction of the S. cerevisiae 3-methyladenine DNA glycosylase repair gene (MAG) by DNA-damaging agents requires one upstream activating sequence (UAS) and two upstream repressing sequences (URS1 and URS2) in the MAG promoter. Sequences similar to the MAG URS elements are present in at least 11 other S. cerevisiae DNA repair and metabolism genes. Replication protein A (Rpa) is known as a single-stranded-DNA-binding protein that is involved in the initiation and elongation steps of DNA replication, nucleotide excision repair, and homologous recombination. We now show that the MAG URS1 and URS2 elements form similar double-stranded, sequence-specific, DNA-protein complexes and that both complexes contain Rpa. Moreover, Rpa appears to bind the MAG URS1-like elements found upstream of 11 other DNA repair and DNA metabolism genes. These results lead us to hypothesize that Rpa may be involved in the regulation of a number of DNA repair and DNA metabolism genes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7761422

  2. Production of element correction factors for thermoluminescent dosimeters

    SciTech Connect

    Plato, P.; Miklos, J.

    1985-11-01

    Approximately 80 processors of personal dosimetry in the United States use thermoluminescent dosimeters (TLDs). Recent demands that dosimetry processors be able to measure radiation doses to within +/- 50% of the correct value have focused attention on the reproducibility of the TL elements within each TLD. The phosphors for these TLDs are manufactured by three companies. A dosimetry processor faces three options concerning the quality of the TL elements purchased; trust the supplier's quality control program, screen new TL elements and discard those that are extremely bad, or use element correction factors (ECFs). The first option results in dosimetry processors failing the +/- 50% accuracy requirement due to excessive variability among the TL elements. The second option still permits large precision errors that come close to the +/- 50% accuracy requirement. This paper advocates the third option and presents a 10-step procedure to produce ECFs. The procedure ensures that the ECFs represent only variations among the TL elements and not variations caused by stability problems with the TLD reader. Following is an example of ECF production for 3000 TLDs.

  3. LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization.

    PubMed

    Lee, Chic; Huang, Chun-Hsi

    2013-03-01

    The release of ChIP-seq data from the ENCyclopedia Of DNA Elements (ENCODE) and Model Organism ENCyclopedia Of DNA Elements (modENCODE) projects has significantly increased the amount of transcription factor (TF) binding affinity information available to researchers. However, scientists still routinely use TF binding site (TFBS) search tools to scan unannotated sequences for TFBSs, particularly when searching for lesser-known TFs or TFs in organisms for which ChIP-seq data are unavailable. The sequence analysis often involves multiple steps such as TF model collection, promoter sequence retrieval, and visualization; thus, several different tools are required. We have developed a novel integrated web tool named LASAGNA-Search that allows users to perform TFBS searches without leaving the web site. LASAGNA-Search uses the LASAGNA (Length-Aware Site Alignment Guided by Nucleotide Association) algorithm for TFBS alignment. Important features of LASAGNA-Search include (i) acceptance of unaligned variable-length TFBSs, (ii) a collection of 1726 TF models, (iii) automatic promoter sequence retrieval, (iv) visualization in the UCSC Genome Browser, and (v) gene regulatory network inference and visualization based on binding specificities. LASAGNA-Search is freely available at http://biogrid.engr.uconn.edu/lasagna_search/.

  4. Four major sequence elements of simian virus 40 large T antigen coordinate its specific and nonspecific DNA binding.

    PubMed Central

    Simmons, D T; Loeber, G; Tegtmeyer, P

    1990-01-01

    By mutational analysis, we have identified a motif critical to the proper recognition and binding of simian virus 40 large tumor antigen (T antigen) to virus DNA sequences at the origin of DNA replication. This motif is tripartite and consists of two elements (termed A1 and B2) that are necessary for sequence-specific binding of the origin and a central element (B1) which is required for nonspecific DNA-binding activity. Certain amino acids in elements A1 (residues 152 to 155) and B2 (203 to 207) may make direct contact with the GAGGC pentanucleotide sequences in binding sites I and II on the DNA. Alternatively, these two elements could determine the proper structure of the DNA-binding domain, although for a number of reasons we favor the first possibility. In contrast, element B1 (183 to 187) is most likely important for recognizing a general structural feature of DNA. Elements A1 and B2 are nearly identical in all known papovavirus T antigens, whereas B1 is identical only in the closely related papovaviruses simian virus 40, BK virus, and JC virus. In addition to these three elements, a fourth (B3; residues 215 to 219) is necessary for the binding of T antigen to site II but not to site I. We propose that additional contact sites on T antigen are involved in the interaction with site II to initiate the replication of the viral DNA. PMID:2157865

  5. Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic Development, Hematopoiesis, and Stabilizing Myc Expression Levels

    PubMed Central

    Zhou, Weixin; Chung, Yang Jo; Parrilla Castellar, Edgardo R.; Zheng, Ying; Chung, Hye-Jung; Bandle, Russell; Liu, Juhong; Tessarollo, Lino; Batchelor, Eric; Aplan, Peter D.; Levens, David

    2017-01-01

    The transcription factor far upstream element binding protein (FBP) binds and activates the MYC promoter when far upstream element is via TFIIH helicase activity early in the transcription cycle. The fundamental biology and pathology of FBP are complex. In some tumors FBP seems pro-oncogenic, whereas in others it is a tumor suppressor. We generated an FBP knockout (Fubp1−/−) mouse to study FBP deficiency. FBP is embryo lethal from embryonic day 10.5 to birth. A spectrum of pathology is associated with FBP loss; besides cerebral hyperplasia and pulmonary hypoplasia, pale livers, hypoplastic spleen, thymus, and bone marrow, cardiac hypertrophy, placental distress, and small size were all indicative of anemia. Immunophenotyping of hematopoietic cells in wild-type versus knockout livers revealed irregular trilineage anemia, with deficits in colony formation. Despite normal numbers of hematopoietic stem cells, transplantation of Fubp1−/− hematopoietic stem cells into irradiated mice entirely failed to reconstitute hematopoiesis. In competitive transplantation assays against wild-type donor bone marrow, Fubp1−/− hematopoietic stem cells functioned only sporadically at a low level. Although cultures of wild-type mouse embryo fibroblasts set Myc levels precisely, Myc levels of mouse varied wildly between fibroblasts harvested from different Fubp1−/− embryos, suggesting that FBP contributes to Myc set point fixation. FBP helps to hold multiple physiologic processes to close tolerances, at least in part by constraining Myc expression. PMID:26774856

  6. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters.

    PubMed

    Chen, Jiang; Yi, Qiang; Cao, Yao; Wei, Bin; Zheng, Lanjie; Xiao, Qianling; Xie, Ying; Gu, Yong; Li, Yangping; Huang, Huanhuan; Wang, Yongbin; Hou, Xianbin; Long, Tiandan; Zhang, Junjie; Liu, Hanmei; Liu, Yinghong; Yu, Guowu; Huang, Yubi

    2016-03-01

    Starch synthesis is a key process that influences crop yield and quality, though little is known about the regulation of this complex metabolic pathway. Here, we present the identification of ZmbZIP91 as a candidate regulator of starch synthesis via co-expression analysis in maize (Zea mays L.). ZmbZIP91 was strongly associated with the expression of starch synthesis genes. Reverse tanscription-PCR (RT-PCR) and RNA in situ hybridization indicated that ZmbZIP91 is highly expressed in maize endosperm, with less expression in leaves. Particle bombardment-mediated transient expression in maize endosperm and leaf protoplasts demonstrated that ZmbZIP91 could positively regulate the expression of starch synthesis genes in both leaves and endosperm. Additionally, the Arabidopsis mutant vip1 carried a mutation in a gene (VIP1) that is homologous to ZmbZIP91, displayed altered growth with less starch in leaves, and ZmbZIP91 was able to complement this phenotype, resulting in normal starch synthesis. A yeast one-hybrid experiment and EMSAs showed that ZmbZIP91 could directly bind to ACTCAT elements in the promoters of starch synthesis genes (pAGPS1, pSSI, pSSIIIa, and pISA1). These results demonstrate that ZmbZIP91 acts as a core regulatory factor in starch synthesis by binding to ACTCAT elements in the promoters of starch synthesis genes.

  7. Binding of stereognostically designed ligands to trivalent, pentavalent, and hexavalent f-block elements

    SciTech Connect

    Sinkov, Sergey I.; Lumetta, Gregg J.; Warner, Marvin G.; Pittman, Jonathan W.

    2012-03-26

    Stability constants were determined for the complexes formed from two stereognostically designed ligands and the f-block elements Nd(III), Np(V), and Pu(VI). The ligands investigated were tris[3-(2-carboxyphenoxy)propyl]amine (NPB) and tris-N,N',N''-[2-(2-carboxy-4-ethyl-phenoxy)ethyl]-1,4,7-triazacyclononane (EETAC). A stereognostically blind ligand, nitrilotriacetic acid (NTA), was also investigated for comparison. The results suggest that there is no significant stereognostic effect for complexation of NPB or EETAC to Np(V). On the other hand, a modest stereognostic effect is seen for the NPB ligand when complexed to Pu(VI), leading to an approximately 8-fold increase in the binding strength. A more significant effect is observed for the EETAC system in which a 250-fold increase in binding is observed for Pu(VI) versus Nd(III).

  8. Identifying combinatorial regulation of transcription factors and binding motifs

    PubMed Central

    Kato, Mamoru; Hata, Naoya; Banerjee, Nilanjana; Futcher, Bruce; Zhang, Michael Q

    2004-01-01

    Background Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important. Results Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways. Conclusions Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways. PMID:15287978

  9. Targeted expression of the DNA binding domain of DRE-binding factor, a Drosophila transcription factor, attenuates DNA replication of the salivary gland and eye imaginal disc.

    PubMed

    Hirose, F; Yamaguchi, M; Matsukage, A

    1999-09-01

    The promoters of Drosophila genes encoding DNA replication-related proteins contain transcription regulatory elements consisting of an 8-bp palindromic DNA replication-related element (DRE) sequence (5'-TATCGATA). The specific DRE-binding factor (DREF), a homodimer of the polypeptide with 709 amino acid residues, is a positive trans-acting factor for transcription of DRE-containing genes. Both DRE binding and dimer formation are associated with residues 16 to 115 of the N-terminal region. We have established transgenic flies expressing the full-length DREF polypeptide or its N-terminal fragment (amino acid residues 1 to 125) under the control of the heat shock promoter, the salivary gland-specific promoter, or the eye imaginal disc-specific promoter. Heat shock induction of the N-terminal fragment during embryonic, larval, or pupal stages caused greater than 50% lethality. This lethality was overcome by coexpression of the full-length DREF. In salivary glands of the transgenic larvae expressing the N-terminal fragment, this fragment formed a homodimer and a heterodimer with the endogenous DREF. Ectopic expression of the N-terminal fragment in salivary gland cells reduced the contents of mRNAs for the 180-kDa subunit of DNA polymerase alpha and for dE2F and the extent of DNA endoreplication. Ectopic expression of the N-terminal fragment in the eye imaginal discs significantly reduced DNA replication in cells at the second mitotic wave. The lines of evidence suggest that the N-terminal fragment can impede the endogenous DREF function in a dominant negative manner and that DREF is required for normal DNA replication in both mitotic cell cycle and endo cycle.

  10. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2010-03-01

    The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10 -4 to 2.7 × 10 -2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK 2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that logKdREE patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the logKdREE atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the logKdREE pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L -1 and 4

  11. N-Acetylgalactosaminyltransferase 14, a novel insulin-like growth factor binding protein-3 binding partner

    SciTech Connect

    Wu, Chen; Yao, Guangyin; Zou, Minji; Chen, Guangyu; Wang, Min; Liu, Jingqian; Wang, Jiaxi; Xu, Donggang . E-mail: xudg@nic.bmi.ac.cn

    2007-06-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) is known to inhibit cell proliferation and induce apoptosis in IGF-dependent and IGF-independent manners, but the mechanism underlying IGF-independent effects is not yet clear. In a yeast two-hybrid assay, IGFBP-3 was used as the bait to screen a human fetal liver cDNA library for it interactors that may potentially mediate IGFBP-3-regulated functions. N-Acetylgalactosaminyltransferase 14 (GalNAc-T14), a member of the GalNAc-Tases family, was identified as a novel IGFBP-3 binding partner. This interaction involved the ricin-type beta-trefoil domain of GalNAc-T14. The interaction between IGFBP-3 and GalNAc-T14 was reconfirmed in vitro and in vivo, using GST pull-down, co-immunoprecipitation and mammalian two-hybrid assays. Our findings may provide new clues for further study on the mechanism behind the IGF-independent effects of IGFBP-3 promoting apoptosis. The role of GalNAc-T14 as an intracellular mediator of the effects of IGFBP-3 need to be verified in future studies.

  12. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    SciTech Connect

    Loots, G; Ovcharenko, I

    2006-08-08

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. We have created a database of evolutionary conserved regions (ECRs) in vertebrate genomes entitled ECRbase that is constructed from a collection of pairwise vertebrate genome alignments produced by the ECR Browser database. ECRbase features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a collection of promoters in all vertebrate genomes presented in the database. The database also contains a collection of annotated transcription factor binding sites (TFBS) in all ECRs and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and two pufferfish genomes. It is freely accessible at http://ECRbase.dcode.org.

  13. Computational modeling reveals molecular details of epidermal growth factor binding

    PubMed Central

    Mayawala, Kapil; Vlachos, Dionisios G; Edwards, Jeremy S

    2005-01-01

    Background The ErbB family of receptors are dysregulated in a number of cancers, and the signaling pathway of this receptor family is a critical target for several anti-cancer drugs. Therefore a detailed understanding of the mechanisms of receptor activation is critical. However, despite a plethora of biochemical studies and recent single particle tracking experiments, the early molecular mechanisms involving epidermal growth factor (EGF) binding and EGF receptor (EGFR) dimerization are not as well understood. Herein, we describe a spatially distributed Monte Carlo based simulation framework to enable the simulation of in vivo receptor diffusion and dimerization. Results Our simulation results are in agreement with the data from single particle tracking and biochemical experiments on EGFR. Furthermore, the simulations reveal that the sequence of receptor-receptor and ligand-receptor reaction events depends on the ligand concentration, receptor density and receptor mobility. Conclusion Our computer simulations reveal the mechanism of EGF binding on EGFR. Overall, we show that spatial simulation of receptor dynamics can be used to gain a mechanistic understanding of receptor activation which may in turn enable improved cancer treatments in the future. PMID:16318625

  14. Atrial natriuretic factor binding sites in experimental congestive heart failure

    SciTech Connect

    Bianchi, C.; Thibault, G.; Wrobel-Konrad, E.; De Lean, A.; Genest, J.; Cantin, M. )

    1989-10-01

    A quantitative in vitro autoradiographic study was performed on the aorta, renal glomeruli, and adrenal cortex of cardiomyopathic hamsters in various stages of heart failure and correlated, in some instances, with in vivo autoradiography. The results indicate virtually no correlation between the degree of congestive heart failure and the density of 125I-labeled atrial natriuretic factor ((Ser99, Tyr126)ANF) binding sites (Bmax) in the tissues examined. Whereas the Bmax was increased in the thoracic aorta in moderate and severe heart failure, there were no significant changes in the zona glomerulosa. The renal glomeruli Bmax was lower in mild and moderate heart failure compared with control and severe heart failure. The proportion of ANF B- and C-receptors was also evaluated in sections of the aorta, adrenal, and kidney of control and cardiomyopathic hamsters with severe heart failure. (Arg102, Cys121)ANF (des-(Gln113, Ser114, Gly115, Leu116, Gly117) NH2) (C-ANF) at 10(-6) M displaced approximately 505 of (Ser99, Tyr126)125I-ANF bound in the aorta and renal glomeruli and approximately 20% in the adrenal zona glomerulosa in both series of animals. These results suggest that ANF may exert a buffering effect on the vasoconstriction of heart failure and to a certain extent may inhibit aldosterone secretion. The impairment of renal sodium excretion does not appear to be related to glomerular ANF binding sites at any stage of the disease.

  15. Regulation factors of corticosteroid-binding globulin: lesson from ontogenesis.

    PubMed

    Séralini, G E

    1996-01-01

    This short review summarizes recent data on corticosteroid-binding globulin (CBG), especially enlightening results on regulation factors of CBG gene expression during ontogenesis. The role of CBG as a specific steroid carrier, a structurally conserved glycoprotein of 50-60 kD in vertebrate species, is well documented, but this knowledge has often been limited to the young or adult life since CBG levels are low in the neonate. However, CBG and CBG mRNA have been recently detected, sometimes, in relatively high amounts, in various fetal tissues of mammals including liver, lung, pancreas, adrenal and kidney. CBG can thus participate in glucocorticoid-inducible events crucial for maturation. Moreover, its original molecular cloning, followed by its chromosomal localization, has shed a new light on the CBG role, as a member of the serine protease inhibitors and substrates (SERPINS) superfamily. This evidenced a special and unexpected way of steroid hormones delivery to their sites of action. Additionally, two classes of CBG receptors have been characterized, and an adenylate cyclase activity has been measured when the CBG-glucocorticoid complex binds to cell membranes.

  16. All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element.

    PubMed

    Vashisth, Harish; Abrams, Cameron F

    2013-06-01

    Insulin regulates blood glucose levels in higher organisms by binding to and activating insulin receptor (IR), a constitutively homodimeric glycoprotein of the receptor tyrosine kinase (RTK) superfamily. Therapeutic efforts in treating diabetes have been significantly impeded by the absence of structural information on the activated form of the insulin/IR complex. Mutagenesis and photo-crosslinking experiments and structural information on insulin and apo-IR strongly suggest that the dual-chain insulin molecule, unlike the related single-chain insulin-like growth factors, binds to IR in a very different conformation than what is displayed in storage forms of the hormone. In particular, hydrophobic residues buried in the core of the folded insulin molecule engage the receptor. There is also the possibility of plasticity in the receptor structure based on these data, which may in part be due to rearrangement of the so-called CT-peptide, a tandem hormone-binding element of IR. These possibilities provide opportunity for large-scale molecular modeling to contribute to our understanding of this system. Using various atomistic simulation approaches, we have constructed all-atom structural models of hormone/receptor complexes in the presence of CT in its crystallographic position and a thermodynamically favorable displaced position. In the "displaced-CT" complex, many more insulin-receptor contacts suggested by experiments are satisfied, and our simulations also suggest that R-insulin potentially represents the receptor-bound form of hormone. The results presented in this work have further implications for the design of receptor-specific agonists/antagonists.

  17. Sterol Regulatory Element Binding Protein Is a Principal Regulator of Anaerobic Gene Expression in Fission Yeast†

    PubMed Central

    Todd, Bridget L.; Stewart, Emerson V.; Burg, John S.; Hughes, Adam L.; Espenshade, Peter J.

    2006-01-01

    Fission yeast sterol regulatory element binding protein (SREBP), called Sre1p, functions in an oxygen-sensing pathway to allow adaptation to fluctuating oxygen concentrations. The Sre1p-Scp1p complex responds to oxygen-dependent sterol synthesis as an indirect measure of oxygen availability. To examine the role of Sre1p in anaerobic gene expression in Schizosaccharomyces pombe, we performed transcriptional profiling experiments after a shift to anaerobic conditions for 1.5 h. Of the 4,940 genes analyzed, expression levels of 521 (10.5%) and 686 (13.9%) genes were significantly increased and decreased, respectively, under anaerobic conditions. Sre1p controlled 68% of genes induced ≥2-fold. Oxygen-requiring biosynthetic pathways for ergosterol, heme, sphingolipid, and ubiquinone were primary targets of Sre1p. Induction of glycolytic genes and repression of mitochondrial oxidative phosphorylation genes largely did not require Sre1p. Using chromatin immunoprecipitation, we demonstrated that Sre1p acts directly at target gene promoters and stimulates its own transcription under anaerobic conditions. sre1+ promoter analysis identified two DNA elements that are both necessary and sufficient for oxygen-dependent, Sre1p-dependent transcription. Interestingly, these elements are homologous to sterol regulatory elements bound by mammalian SREBP, highlighting the evolutionary conservation between Sre1p and SREBP. We conclude that Sre1p is a principal activator of anaerobic gene expression, upregulating genes required for nonrespiratory oxygen consumption. PMID:16537923

  18. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.

    PubMed

    Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N

    1999-03-01

    The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors.

  19. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells

    PubMed Central

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  20. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    SciTech Connect

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  1. DNA binding site for a factor(s) required to initiate simian virus 40 DNA replication.

    PubMed Central

    Yamaguchi, M; DePamphilis, M L

    1986-01-01

    Efficient initiation of DNA replication in the absence of nonspecific DNA repair synthesis was obtained by using a modification of the system developed by J.J. Li and T.J. Kelly [(1984) Proc. Natl. Acad. Sci. USA 81, 6973-6977]. Circular double-stranded DNA plasmids replicated in extracts of CV-1 cells only when the plasmids contained the cis-acting origin sequence for simian virus 40 DNA replication (ori) and the extract contained simian virus 40 large tumor antigen. Competition between plasmids containing ori and plasmids carrying deletions in and about ori served to identify a sequence that binds the rate-limiting factor(s) required to initiate DNA replication. The minimum binding site (nucleotides 72-5243) encompassed one-half of the simian virus 40 ori sequence that is required for initiation of replication (ori-core) plus the contiguous sequence on the late gene side of ori-core containing G + C-rich repeats that facilitates initiation (ori-auxiliary). This initiation factor binding site was specific for the simian virus 40 ori region, even though it excluded the high-affinity large tumor antigen DNA binding sites. Images PMID:3006062

  2. NICER elements: a family of nerve growth factor-inducible cAMP-extinguishable retrovirus-like elements.

    PubMed Central

    Cho, K O; Minsk, B; Wagner, J A

    1990-01-01

    We have shown previously that the transcription of the gene designated d5 is induced by nerve growth factor (NGF) in rat adrenal pheochromocytoma PC-12 cells and that this NGF induction is repressed by cAMP. In this paper we demonstrate that d5 is a member of a gene family that contains several hundred members, which is closely related to retroviruses and retrotransposons, as demonstrated by the following observations: (i) the original d5 cDNA hybridized to numerous restriction fragments in genomic DNA; (ii) d5 cDNA hybridized to genomic clones with various intensities, and genomic clones can be isolated with a frequency suggesting that this family includes several hundred members; and (iii) there were minor sequence variations in four independently isolated cDNA clones that were homologous to d5 cDNA. Primer extension studies show that initiation of the 5.7-kilobase d5 mRNA(s) occurs at a unique site relative to a synthetic primer. The 5' end of the cDNA sequence was homologous to Rasheed rat sarcoma virus; and a genomic clone contained several elements that are typical of a long terminal repeat (LTR), including a CCAAT box, a TATA box, a primer binding site, a poly(A) addition signal, and a poly(A) addition site. Furthermore, there is a LTR at the 3' end of at least one of the genes in this family, and there appeared to be a four-base duplication at the probable site of integration into host DNA. Since several members of this family retain responses to NGF and cAMP, we conclude that the regulatory elements present in the LTR have been conserved in many members of this family. We have named this family of genes the NICER elements because they are a family of NGF-inducible cAMP-extinguishable retrovirus-like elements. Images PMID:2160077

  3. General expressions for the matrix elements of the tight-binding operator within the Racah-Wigner algebra*

    NASA Astrophysics Data System (ADS)

    Möller, Thomas

    2016-12-01

    General expressions for the matrix elements of the tight-binding operator are presented using the Racah-Wigner algebra, where the wave functions are expressed as coupled multiplet wave functions within a given angular momentum coupling scheme. The knowledge of all possible Slater determinants is not necessary and the matrix elements can be written as compact expressions computable with arbitrary accuracy.

  4. Protein Phosphatase 2A (PP2A) Regulates Low Density Lipoprotein Uptake through Regulating Sterol Response Element-binding Protein-2 (SREBP-2) DNA Binding*

    PubMed Central

    Rice, Lyndi M.; Donigan, Melissa; Yang, Muhua; Liu, Weidong; Pandya, Devanshi; Joseph, Biny K.; Sodi, Valerie; Gearhart, Tricia L.; Yip, Jenny; Bouchard, Michael; Nickels, Joseph T.

    2014-01-01

    LDL-cholesterol (LDL-C) uptake by Ldlr is regulated at the transcriptional level by the cleavage-dependent activation of membrane-associated sterol response element-binding protein (SREBP-2). Activated SREBP-2 translocates to the nucleus, where it binds to an LDLR promoter sterol response element (SRE), increasing LDLR gene expression and LDL-C uptake. SREBP-2 cleavage and translocation steps are well established. Several SREBP-2 phosphorylation sites have been mapped and functionally characterized. The phosphatases dephosphorylating these sites remain elusive. The phosphatase(s) regulating SREBP-2 represents a novel pharmacological target for treating hypercholesterolemia. Here we show that protein phosphatase 2A (PP2A) promotes SREBP-2 LDLR promoter binding in response to cholesterol depletion. No binding to an LDLR SRE was observed in the presence of the HMG-CoA reductase inhibitor, lovastatin, when PP2A activity was inhibited by okadaic acid or depleted by siRNA methods. SREBP-2 cleavage and nuclear translocation were not affected by loss of PP2A. PP2A activity was required for SREBP-2 DNA binding. In response to cholesterol depletion, PP2A directly interacted with SREBP-2 and altered its phosphorylation state, causing an increase in SREBP-2 binding to an LDLR SRE site. Increased binding resulted in induced LDLR gene expression and increased LDL uptake. We conclude that PP2A activity regulates cholesterol homeostasis and LDL-C uptake. PMID:24770487

  5. Mutations and Binding Sites of Human Transcription Factors

    PubMed Central

    Kamanu, Frederick Kinyua; Medvedeva, Yulia A.; Schaefer, Ulf; Jankovic, Boris R.; Archer, John A. C.; Bajic, Vladimir B.

    2012-01-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, “insertions” are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. PMID:22670148

  6. Strategy for molecular beacon binding readout: separating molecular recognition element and signal reporter.

    PubMed

    Wang, Yongxiang; Li, Jishan; Jin, Jianyu; Wang, Hao; Tang, Hongxing; Yang, Ronghua; Wang, Kemin

    2009-12-01

    A new strategy for molecular beacon binding readout is proposed by using separation of the molecular recognition element and signal reporter. The signal transduction of the target binding event is based on displacing interaction between the target DNA and a competitor, the signal transducer. The target-free capture DNA is first interacted with the competitor, forming an assembled complex. In the presence of a target DNA that the affinity is stronger than that of the competitor, hybridization between capture DNA and the target disassembles the assembled complex and releases the free competitor to change the readout of the signal reporter. To demonstrate the feasibility of the design, a thymine-rich oligonucleotide was examined as a model system. Hg2+ was selected as the competitor, and mercaptoacetic acid-coated CdTe/ZnS quantum dots served as the fluorescent reporter. Selective binding of Hg2+ between the two thymine bases of the capture DNA forms a hairpin-structure. Hybridization between the capture DNA and target DNA destroys the hairpin-structure, releasing Hg2+ ions to quench the quantum dots fluorescence. Under the optimal conditions, fluorescence intensity of the quantum dots against the concentration of perfect cDNA was linear over the concentration range of 0.1-1.6 microM, with a limit of detection of 25 nM. This new assay method is simple in design, avoiding any oligonucleotide labeling. Furthermore, this strategy is generalizable since any target binding can in principle release the signal transducer and be detected with separated signal reporter.

  7. A Repetitive DNA Element Regulates Expression of the Helicobacter pylori Sialic Acid Binding Adhesin by a Rheostat-like Mechanism

    PubMed Central

    Vallström, Anna; Olofsson, Annelie; Öhman, Carina; Rakhimova, Lena; Borén, Thomas; Engstrand, Lars; Brännström, Kristoffer; Arnqvist, Anna

    2014-01-01

    During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors. PMID:24991812

  8. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    PubMed Central

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-01-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor. Images PMID:2554307

  9. Epstein–Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression

    PubMed Central

    Ramasubramanyan, Sharada; Osborn, Kay; Al-Mohammad, Rajaei; Naranjo Perez-Fernandez, Ijiel B.; Zuo, Jianmin; Balan, Nicolae; Godfrey, Anja; Patel, Harshil; Peters, Gordon; Rowe, Martin; Jenner, Richard G.; Sinclair, Alison J.

    2015-01-01

    Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements. PMID:25779048

  10. Identification of novel factors that bind to the PRD I region of the human beta-interferon promoter.

    PubMed Central

    Whiteside, S T; Visvanathan, K V; Goodbourn, S

    1992-01-01

    Treatment of cells with virus or synthetic double-stranded RNA (dsRNA) leads to the transient transcriptional activation of the beta-interferon gene. Genetic analysis has revealed that the 5' regulatory sequence responsible for this induction contains multiple positive and negative elements. One of these, Positive Regulatory Domain I (PRD I), has been shown to bind the positively-acting transcription factor IRF-1. In this study we show that this element is inducible under conditions where IRF-1 cannot be detected, suggesting that additional cellular factors are involved in the induction process. To investigate the existence of such factors we have analysed the range and properties of PRD I-binding activities present in HeLa cells. In addition to the repressor protein IRF-2, several novel factors can bind to PRD I in uninduced cells: two of these have properties consistent with a role in negative regulation; levels of two others increase upon priming, and may be alternative candidates for activators. Upon induction we also observe a novel factor whose appearance does not depend upon de novo protein synthesis, and which appears to be a truncated form of IRF-2. The potential involvement of these factors in regulating the beta-interferon gene is discussed. Images PMID:1579446

  11. Discovery of Allosteric Modulators of Factor XIa by Targeting Hydrophobic Domains Adjacent to its Heparin-Binding Site

    PubMed Central

    Karuturi, Rajesh; Al-Horani, Rami A.; Mehta, Shrenik C.; Gailani, David; Desai, Umesh R.

    2013-01-01

    To discover promising sulfated allosteric modulators (SAMs) of glycosaminoglycan-binding proteins (GBPs), such as human factor XIa (FXIa), we screened a library of 26 synthetic, sulfated quinazolin-4(3H)-ones (QAOs) resulting in the identification of six molecules that reduced the VMAX of substrate hydrolysis without influencing the KM. Mutagenesis of residues of the heparin-binding site of FXIa introduced a nearly 5-fold loss in inhibition potency supporting recognition of an allosteric site. Fluorescence studies showed a sigmoidal binding profile indicating highly cooperative binding. Competition with a positively-charged, heparin-binding polymer did not fully nullify inhibition suggesting importance of hydrophobic forces to binding. This discovery suggest the operation of a dual-element recognition process, which relies on an initial Coulombic attraction of anionic SAMs to the cationic HBS of FXIa that forms a locked complex through tight interaction with an adjacent hydrophobic patch. The dual-element strategy may be widely applicable for discovering SAMs of other GBPs. PMID:23451707

  12. Nuclear factors that bind two regions important to transcriptional activity of the simian immunodeficiency virus long terminal repeat.

    PubMed Central

    Winandy, S; Renjifo, B; Li, Y; Hopkins, N

    1992-01-01

    Previous studies identified two regions in the U3 region of a molecular clone of simian immunodeficiency virus, SIVmac142, that are important to transcriptional activity under conditions of induction as well as basal-level expression (B. Renjifo, N. A. Speck, S. Winandy, N. Hopkins, and Y. Li, J. Virol. 64:3130-3134, 1990). One region includes the NF-kappa B binding site, while the other lies just 5' of this site between nucleotides -162 and -114 (the -162 to -114 region). The fact that the NF-kappa B site mutation attenuated transcriptional activity in uninduced T cells and fibroblasts where activated NF-kappa B would not be present suggested that a factor(s) other than NF-kappa B could be acting through this site. In this study, we have identified a factor which binds to a cis element overlapping the NF-kappa B site. This factor, which we call simian factor 3 (SF3), would play a role in regulation under conditions of basal level expression, whereas under conditions of induction, NF-kappa B would act via this region. SF3 may also bind to an element in the -162 to -114 region. In addition, we have identified two other factors that bind the -162 to -114 region. One, which we designated SF1, is a ubiquitous basal factor, and the other, SF2, is a T-cell-predominant phorbol myristate acetate-inducible factor. Through identification of nuclear factors that interact with the U3 region of the SIVmac142 long terminal repeat, we can gain insight into how this virus is transcriptionally regulated under conditions of basal-level expression as well as conditions of T-cell activation. Images PMID:1501272

  13. Xanthohumol Improves Diet-induced Obesity and Fatty Liver by Suppressing Sterol Regulatory Element-binding Protein (SREBP) Activation.

    PubMed

    Miyata, Shingo; Inoue, Jun; Shimizu, Makoto; Sato, Ryuichiro

    2015-08-14

    Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that stimulate the expression of genes involved in fatty acid and cholesterol biosynthesis. Here, we demonstrate that a prenylated flavonoid in hops, xanthohumol (XN), is a novel SREBP inactivator that reduces the de novo synthesis of fatty acid and cholesterol. XN independently suppressed the maturation of SREBPs of insulin-induced genes in a manner different from sterols. Our results suggest that XN impairs the endoplasmic reticulum-to-Golgi translocation of the SREBP cleavage-activating protein (SCAP)-SREBP complex by binding to Sec23/24 and blocking SCAP/SREBP incorporation into common coated protein II vesicles. Furthermore, in diet-induced obese mice, dietary XN suppressed SREBP-1 target gene expression in the liver accompanied by a reduction of the mature form of hepatic SREBP-1, and it inhibited the development of obesity and hepatic steatosis. Altogether, our data suggest that XN attenuates the function of SREBP-1 by repressing its maturation and that it has the potential of becoming a nutraceutical food or pharmacological agent for improving metabolic syndrome.

  14. Xanthohumol Improves Diet-induced Obesity and Fatty Liver by Suppressing Sterol Regulatory Element-binding Protein (SREBP) Activation*

    PubMed Central

    Miyata, Shingo; Inoue, Jun; Shimizu, Makoto; Sato, Ryuichiro

    2015-01-01

    Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that stimulate the expression of genes involved in fatty acid and cholesterol biosynthesis. Here, we demonstrate that a prenylated flavonoid in hops, xanthohumol (XN), is a novel SREBP inactivator that reduces the de novo synthesis of fatty acid and cholesterol. XN independently suppressed the maturation of SREBPs of insulin-induced genes in a manner different from sterols. Our results suggest that XN impairs the endoplasmic reticulum-to-Golgi translocation of the SREBP cleavage-activating protein (SCAP)-SREBP complex by binding to Sec23/24 and blocking SCAP/SREBP incorporation into common coated protein II vesicles. Furthermore, in diet-induced obese mice, dietary XN suppressed SREBP-1 target gene expression in the liver accompanied by a reduction of the mature form of hepatic SREBP-1, and it inhibited the development of obesity and hepatic steatosis. Altogether, our data suggest that XN attenuates the function of SREBP-1 by repressing its maturation and that it has the potential of becoming a nutraceutical food or pharmacological agent for improving metabolic syndrome. PMID:26140926

  15. Small Molecule Inhibition of cAMP Response Element Binding Protein in Human Acute Myeloid Leukemia Cells

    PubMed Central

    Mitton, Bryan; Chae, Hee-Don; Hsu, Katie; Dutta, Ritika; Aldana-Masangkay, Grace; Ferrari, Roberto; Davis, Kara; Tiu, Bruce C.; Kaul, Arya; Lacayo, Norman; Dahl, Gary; Xie, Fuchun; Li, Bingbing X.; Breese, Marcus R.; Landaw, Elliot M.; Nolan, Garry; Pellegrini, Matteo; Romanov, Sergei; Xiao, Xiangshu; Sakamoto, Kathleen M.

    2016-01-01

    The transcription factor CREB (cAMP Response Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced apoptosis and cell cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP-CREB interaction mostly affects apoptotic, cell cycle, and survival pathways, which may represent a novel approach for AML therapy. PMID:27211267

  16. Sterol Regulatory Element Binding Protein (Srb1) Is Required for Hypoxic Adaptation and Virulence in the Dimorphic Fungus Histoplasma capsulatum

    PubMed Central

    DuBois, Juwen C.; Smulian, A. George

    2016-01-01

    The Histoplasma capsulatum sterol regulatory element binding protein (SREBP), Srb1 is a member of the basic helix-loop-helix (bHLH), leucine zipper DNA binding protein family of transcription factors that possess a unique tyrosine (Y) residue instead of an arginine (R) residue in the bHLH region. We have determined that Srb1 message levels increase in a time dependent manner during growth under oxygen deprivation (hypoxia). To further understand the role of Srb1 during infection and hypoxia, we silenced the gene encoding Srb1 using RNA interference (RNAi); characterized the resulting phenotype, determined its response to hypoxia, and its ability to cause disease within an infected host. Silencing of Srb1 resulted in a strain of H. capsulatum that is incapable of surviving in vitro hypoxia. We found that without complete Srb1 expression, H. capsulatum is killed by murine macrophages and avirulent in mice given a lethal dose of yeasts. Additionally, silencing Srb1 inhibited the hypoxic upregulation of other known H. capsulatum hypoxia-responsive genes (HRG), and genes that encode ergosterol biosynthetic enzymes. Consistent with these regulatory functions, Srb1 silenced H. capsulatum cells were hypersensitive to the antifungal azole drug itraconazole. These data support the theory that the H. capsulatum SREBP is critical for hypoxic adaptation and is required for H. capsulatum virulence. PMID:27711233

  17. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors.

    PubMed

    Lane, B Josh; Mutchler, Charla; Al Khodor, Souhaila; Grieshaber, Scott S; Carabeo, Rey A

    2008-03-01

    Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein). TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K), appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.

  18. The latent transforming growth factor beta binding protein (LTBP) family.

    PubMed Central

    Oklü, R; Hesketh, R

    2000-01-01

    The transforming growth factor beta (TGFbeta) cytokines are a multi-functional family that exert a wide variety of effects on both normal and transformed mammalian cells. The secretion and activation of TGFbetas is regulated by their association with latency-associated proteins and latent TGFbeta binding proteins (LTBPs). Over the past few years, three members of the LTBP family have been identified, in addition to the protoype LTBP1 first sequenced in 1990. Three of the LTBP family are expressed in a variety of isoforms as a consequence of alternative splicing. This review summarizes the differences between the isoforms in terms of the effects on domain structure and hence possible function. The close identity between LTBPs and members of the fibrillin family, mutations in which have been linked directly to Marfan's syndrome, suggests that anomalous expression of LTBPs may be associated with disease. Recent data indicating that differential expression of LTBP1 isoforms occurs during the development of coronary heart disease is considered, together with evidence that modulation of LTBP function, and hence of TGFbeta activity, is associated with a variety of cancers. PMID:11104663

  19. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice

    PubMed Central

    Horie, Takahiro; Nishino, Tomohiro; Baba, Osamu; Kuwabara, Yasuhide; Nakao, Tetsushi; Nishiga, Masataka; Usami, Shunsuke; Izuhara, Masayasu; Sowa, Naoya; Yahagi, Naoya; Shimano, Hitoshi; Matsumura, Shigenobu; Inoue, Kazuo; Marusawa, Hiroyuki; Nakamura, Tomoyuki; Hasegawa, Koji; Kume, Noriaki; Yokode, Masayuki; Kita, Toru; Kimura, Takeshi; Ono, Koh

    2013-01-01

    MicroRNAs (miRs) are small non-protein-coding RNAs that bind to specific mRNAs and inhibit translation or promote mRNA degradation. Recent reports have indicated that miR-33, which is located within the intron of sterol regulatory element-binding protein (SREBP) 2, controls cholesterol homoeostasis and may be a potential therapeutic target for the treatment of atherosclerosis. Here we show that deletion of miR-33 results in marked worsening of high-fat diet-induced obesity and liver steatosis. Using miR-33−/−Srebf1+/− mice, we demonstrate that SREBP-1 is a target of miR-33 and that the mechanisms leading to obesity and liver steatosis in miR-33−/− mice involve enhanced expression of SREBP-1. These results elucidate a novel interaction between SREBP-1 and SREBP-2 mediated by miR-33 in vivo. PMID:24300912

  20. Human Research Program: Space Human Factors and Habitability Element

    NASA Technical Reports Server (NTRS)

    Russo, Dane M.

    2007-01-01

    The three project areas of the Space Human Factors and Habitability Element work together to achieve a working and living environment that will keep crews healthy, safe, and productive throughout all missions -- from Earth orbit to Mars expeditions. The Advanced Environmental Health (AEH) Project develops and evaluates advanced habitability systems and establishes requirements and health standards for exploration missions. The Space Human Factors Engineering (SHFE) Project s goal is to ensure a safe and productive environment for humans in space. With missions using new technologies at an ever-increasing rate, it is imperative that these advances enhance crew performance without increasing stress or risk. The ultimate goal of Advanced Food Technology (AFT) Project is to develop and deliver technologies for human centered spacecraft that will support crews on missions to the moon, Mars, and beyond.

  1. Core-level binding-energy shifts for the metallic elements

    NASA Astrophysics Data System (ADS)

    Johansson, Börje; Mårtensson, Nils

    1980-05-01

    A general treatment of core-level binding-energy shifts in metals relative to the free atom is introduced and applied to all elemental metals in the Periodic Table. The crucial ingredients of the theoretical description are (a) the assumption of a fully screened final state in the metallic case and (b) the (Z+1) approximation for the screening valence charge distribution around the core-ionized site. This core-ionized site is, furthermore, treated as an impurity in an otherwise perfect metal. The combination of the complete screening picture and the (Z+1) approximation makes it possible to introduce a Born-Haber cycle which connects the initial state with the final state of the core-ionization process. From this cycle it becomes evident that the main contributions to the core-level shift are the cohesive energy difference between the (Z+1) and Z metal and an appropriate ionization energy of the (Z+1) atom (usually the first ionization potential). The appearance of the ionization potential in the shift originates from the assumption of a charge-neutral final state, while the contribution from the cohesive energies essentially describes the change of bonding properties between the initial and final state of the site. The calculated shifts show very good agreement with available experimental values (at present, for 19 elements). For the other elements we have made an effort to combine experimental ionization potentials with theoretical calculations in order to obtain accurate estimates of some of the atomic-core-level binding energies. Such energies together with measured metallic binding energies give "pseudoexperimental" shifts for many elements. Our calculated core-level shifts agree exceedingly well also with these data. For some of the transition elements the core-level shift shows a deviating behavior in comparison with that of neighboring elements. This is shown to be due to a difference in the atomic ground-state configuration, such as, for example, d5s in

  2. Effects of the binding of a dextran derivative on fibroblast growth factor 2: secondary structure and receptor-binding studies.

    PubMed

    Bittoun, P; Bagheri-Yarmand, R; Chaubet, F; Crépin, M; Jozefonvicz, J; Fermandjian, S

    1999-06-15

    CMDB (carboxymethyldextran-benzylamide) are dextrans statistically substituted with carboxymethyl and benzylamide groups which can mimick some of the biological properties of heparin. It has previously been shown that CMDB inhibit autocrine growth of breast tumor cells (Bagheri-Yarmand et al., Biochem. Biophys. Res. Commun. 239: 424-428, 1997) and selectively displace fibroblast growth factor 2 (FGF-2) from its receptor. Here, we used circular dichroism and fluorescence anisotropy measurements to show that the conformation of FGF-2 was significantly altered upon its binding to CMDB and to short CMDB fragments prepared within this study. CMDB and fragments formed a stable 1:1 complex with FGF-2, with affinities being estimated as 20+/-10 nM from fluorescence anisotropy analysis. No such a complex was formed with insulin-like growth factor (IGF-1) or epidermal growth factor (EGF). CMDB competed with the FGF-2 receptor for binding to FGF-2 but did not disturb the binding of IGF-1 and EGF to their receptors. Thus, our results highlight the selectivity of CMDB and their fragments towards FGF-2. Heparin, however, competes with CMDB and their fragments for binding to FGF-2. The carboxymethyl and benzylamide groups of these molecules likely interact directly with a heparin-binding region of FGF-2. The resulting change in conformation disturbs the binding of FGF-2 to its receptor and consecutively its mitogenic activity.

  3. Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein.

    PubMed

    Li, Wencheng; Liu, Jiao; Hammond, Sean L; Tjalkens, Ronald B; Saifudeen, Zubaida; Feng, Yumei

    2015-07-15

    We reported that brain (pro)renin receptor (PRR) expression levels are elevated in DOCA-salt-induced hypertension; however, the underlying mechanism remained unknown. To address whether ANG II type 1 receptor (AT1R) signaling is involved in this regulation, we implanted a DOCA pellet and supplied 0.9% saline as the drinking solution to C57BL/6J mice. Sham pellet-implanted mice that were provided regular drinking water served as controls. Concurrently, mice were intracerebroventricularly infused with the AT1R blocker losartan, angiotensin-converting-enzyme inhibitor captopril, or artificial cerebrospinal fluid for 3 wk. Intracerebroventricular infusion of losartan or captopril attenuated DOCA-salt-induced PRR mRNA elevation in the paraventricular nucleus of the hypothalamus, suggesting a role for ANG II/AT1R signaling in regulating PRR expression during DOCA-salt hypertension. To test which ANG II/AT1R downstream transcription factors were involved in PRR regulation, we treated Neuro-2A cells with ANG II with or without CREB (cAMP response element-binding protein) or AP-1 (activator protein-1) inhibitors, or CREB siRNA. CREB and AP-1 inhibitors, as well as CREB knockdown abolished ANG II-induced increases in PRR levels. ANG II also induced PRR upregulation in primary cultured neurons. Chromatin immunoprecipitation assays revealed that ANG II treatment increased CREB binding to the endogenous PRR promoter in both cultured neurons and hypothalamic tissues of DOCA-salt hypertensive mice. This increase in CREB activity was reversed by AT1R blockade. Collectively, these findings indicate that ANG II acts via AT1R to upregulate PRR expression both in cultured cells and in DOCA-salt hypertensive mice by increasing CREB binding to the PRR promoter.

  4. Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors.

    PubMed Central

    Garrity, P A; Chen, D; Rothenberg, E V; Wold, B J

    1994-01-01

    Interleukin-2 (IL-2) transcription is developmentally restricted to T cells and physiologically dependent on specific stimuli such as antigen recognition. Prior studies have shown that this stringent two-tiered regulation is mediated through a transcriptional promoter/enhancer DNA segment which is composed of diverse recognition elements. Factors binding to some of these elements are present constitutively in many cell types, while others are signal dependent, T cell specific, or both. This raises several questions about the molecular mechanism by which IL-2 expression is regulated. Is the developmental commitment of T cells reflected molecularly by stable interaction between available factors and the IL-2 enhancer prior to signal-dependent induction? At which level, factor binding to DNA or factor activity once bound, are individual regulatory elements within the native enhancer regulated? By what mechanism is developmental and physiological specificity enforced, given the participation of many relatively nonspecific elements? To answer these questions, we have used in vivo footprinting to determine and compare patterns of protein-DNA interactions at the native IL-2 locus in cell environments, including EL4 T-lymphoma cells and 32D clone 5 premast cells, which express differing subsets of IL-2 DNA-binding factors. We also used the immunosuppressant cyclosporin A as a pharmacological agent to further dissect the roles played by cyclosporin A-sensitive factors in the assembly and maintenance of protein-DNA complexes. Occupancy of all site types was observed exclusively in T cells and then only upon excitation of signal transduction pathways. This was true even though partially overlapping subsets of IL-2-binding activities were shown to be present in 32D clone 5 premast cells. This observation was especially striking in 32D cells because, upon signal stimulation, they mobilized a substantial set of IL-2 DNA-binding activities, as measured by in vitro assays using

  5. Inhibition by Elongation Factor EF G of Aminoacyl-tRNA Binding to Ribosomes

    PubMed Central

    Cabrer, Bartolomé; Vázquez, David; Modolell, Juan

    1972-01-01

    Elongation factor G (EF G), bound to ribosomes either with GMPPCP or with fusidic acid and GDP, inhibits elongation factor Tu (EF Tu)-dependent binding of Phe-tRNA on the ribosome-poly(U) complex and binding of Ala-tRNA on the initiation complex formed with RNA from bacteriophage R17; GTP hydrolysis associated with Phe-tRNA binding is also inhibited. Moreover, nonenzymic binding of Phe-tRNA at high Mg++ concentration is completely blocked by EF G. Thus, EF G appears to bind at a site that overlaps or interacts with the ribosomal A-site. PMID:4551985

  6. Recombinant pigment epithelium-derived factor PEDF binds vascular endothelial growth factor receptors 1 and 2.

    PubMed

    Johnston, Erin K; Francis, Mary K; Knepper, Janice E

    2015-08-01

    Angiogenesis, or the formation of new blood vessels, is stimulated by angiogenic factors such as vascular endothelial growth factor (VEGF). Pigment epithelium-derived factor (PEDF) is a potent inhibitor of angiogenesis. To explore the mechanism by which PEDF acts, recombinant PEDF was expressed with a 6x-His tag (for purification) and a green fluorescent protein (GFP) tag. The PEDF fusion protein was confirmed to be active in inhibition of endothelial cell proliferation and migration. Direct binding of PEDF to both vascular endothelial growth factor receptor-1 (VEGFR-1) and VEGFR-2 was demonstrated in an in vitro assay similar to an enzyme-linked immunosorbent assay (ELISA). PEDF was shown by immune-confocal microscopy to be localized within treated endothelial cells. When VEGF-stimulated endothelial cells were incubated with PEDF the VEGF receptors showed intracellular localization. These data suggest that the interaction between PEDF and VEGFR-1 or VEGFR-2 may be a possible mechanism for inhibiting angiogenesis. PEDF may be binding to the VEGF receptors to promote their internalization and/or degradation to limit VEGF responses in treated cells.

  7. Phosphate binding protein as the biorecognition element in a biosensor for phosphate

    NASA Technical Reports Server (NTRS)

    Salins, Lyndon L E.; Deo, Sapna K.; Daunert, Sylvia

    2004-01-01

    This work explores the potential use of a member of the periplasmic family of binding proteins, the phosphate binding protein (PBP), as the biorecognition element in a sensing scheme for the detection of inorganic phosphate (Pi). The selectivity of this protein originates from its natural role which, in Escherichia coli, is to serve as the initial receptor for the highly specific translocation of Pi to the cytoplasm. The single polypeptide chain of PBP is folded into two similar domains connected by three short peptide linkages that serve as a hinge. The Pi binding site is located deep within the cleft between the two domains. In the presence of the ligand, the two globular domains engulf the former in a hinge-like manner. The resultant conformational change constitutes the basis of the sensor development. A mutant of PBP (MPBP), where an alanine was replaced by a cysteine residue, was prepared by site-directed mutagenesis using the polymerase chain reaction (PCR). The mutant was expressed, from plasmid pSD501, in the periplasmic space of E. coli and purified in a single chromatographic step on a perfusion anion-exchange column. Site-specific labeling was achieved by attaching the fluorophore, N-[2-(1-maleimidyl)ethyl]-7-(diethylamino)coumarin-3-carboxamide (MDCC), to the protein through the sulfhydryl group of the cysteine moiety. Steady-state fluorescence studies of the MPBP-MDCC conjugate showed a change in the intensity of the signal upon addition of Pi. Calibration curves for Pi were constructed by relating the intensity of the fluorescence signal with the amount of analyte present in the sample. The sensing system was first developed and optimized on a spectrofluorometer using ml volumes of sample. It was then adapted to be used on a microtiter plate arrangement with microliter sample volumes. The system's versatility was finally proven by developing a fiber optic fluorescence-based sensor for monitoring Pi. In all three cases the detection limits for the

  8. Using protein-binding microarrays to study transcription factor specificity: homologs, isoforms and complexes

    PubMed Central

    Andrilenas, Kellen K.; Penvose, Ashley

    2015-01-01

    Protein–DNA binding is central to specificity in gene regulation, and methods for characterizing transcription factor (TF)–DNA binding remain crucial to studies of regulatory specificity. High-throughput (HT) technologies have revolutionized our ability to characterize protein–DNA binding by significantly increasing the number of binding measurements that can be performed. Protein-binding microarrays (PBMs) are a robust and powerful HT platform for studying DNA-binding specificity of TFs. Analysis of PBM-determined DNA-binding profiles has provided new insight into the scope and mechanisms of TF binding diversity. In this review, we focus specifically on the PBM technique and discuss its application to the study of TF specificity, in particular, the binding diversity of TF homologs and multi-protein complexes. PMID:25431149

  9. Two distinct factors bind to the rabbit uteroglobin TATA-box region and are required for efficient transcription.

    PubMed Central

    Klug, J; Knapp, S; Castro, I; Beato, M

    1994-01-01

    The rabbit uteroglobin gene is expressed in a variety of epithelial cell types like the lung Clara cells and the glandular and luminal epithelial cells of the endometrium. Expression in Clara cells is on a high constitutive level, whereas expression in the rabbit endometrium is under tight hormonal control. One important element of the rabbit uteroglobin gene mediating its efficient transcription in two epithelial cell lines from human endometrium (Ishikawa) and lung (NCI-H441) is its noncanonical TATA box (TACA). Here, we show that two factors (TATA core factor [TCF] and TATA palindrome factor [TPF]) different from the TATA-box binding protein bind to the DNA major groove at two adjacent sites within the uteroglobin TATA-box region and that one of them (TCF) is specifically expressed in cell lines derived from uteroglobin-expressing tissues. The binding sites for TCF and TPF, respectively, are both required for efficient transcription in Ishikawa and NCI-H441 cells. Mutation of the TACA box, which we show is a poor TATA box in functional terms, to a canonical TATA motif does not affect TCF and TPF binding. Therefore, we suggest that the function of the unusual cytosine could be to reduce rabbit uteroglobin expression in cells lacking TCF and that the interaction of TATA-box binding protein with the weak TACA site is facilitated in TCF- and TPF-positive cells. Images PMID:8065353

  10. DNA-binding domains of plant-specific transcription factors: structure, function, and evolution.

    PubMed

    Yamasaki, Kazuhiko; Kigawa, Takanori; Seki, Motoaki; Shinozaki, Kazuo; Yokoyama, Shigeyuki

    2013-05-01

    The families of the plant-specific transcription factors (TFs) are defined by their characteristic DNA-binding domains (DBDs), such as AP2/ERF, B3, NAC, SBP, and WRKY. Recently, three-dimensional structures of the DBDs, including those in complexes with DNA, were determined by NMR spectroscopy and X-ray crystallography. In this review we summarize the functional and evolutionary implications arising from structure analyses. The unexpected structural similarity between B3 and the noncatalytic DBD of the restriction endonuclease EcoRII allowed us to build structural models of the B3/DNA complex. Most of the DBDs of plant-specific TFs are likely to have originated from endonucleases associated with transposable elements. After the DBDs have been established in unicellular eukaryotes, they experienced extensive plant-specific expansion, by acquiring new functions.

  11. Structure of a Thyroid Hormone Receptor DNA-Binding Domain Homodimer Bound to an Inverted Palindrome DNA Response Element

    SciTech Connect

    Chen, Yi; Young, Matthew A.

    2010-10-22

    Thyroid hormone receptor (TR), as a member of the nuclear hormone receptor family, can recognize and bind different classes of DNA response element targets as either a monomer, a homooligomer, or a heterooligomer. We report here the first crystal structure of a homodimer TR DNA-binding domain (DBD) in complex with an inverted repeat class of thyroid response element (TRE). The structure shows a nearly symmetric structure of the TR DBD assembled on the F2 TRE where the base recognition contacts in the homodimer DNA complex are conserved relative to the previously published structure of a TR-9-cis-retinoic acid receptor heterodimer DNA complex. The new structure also reveals that the T-box region of the DBD can function as a structural hinge that enables a large degree of flexibility in the position of the C-terminal extension helix that connects the DBD to the ligand-binding domain. Although the isolated TR DBDs exist as monomers in solution, we have measured highly cooperative binding of the two TR DBD subunits onto the inverted repeat DNA sequence. This suggests that elements of the DBD can influence the specific TR oligomerization at target genes, and it is not just interactions between the ligand-binding domains that are responsible for TR oligomerization at target genes. Mutational analysis shows that intersubunit contacts at the DBD C terminus account for some, but not all, of the cooperative homodimer TR binding to the inverted repeat class TRE.

  12. The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor-like growth factor (HB-EGF).

    PubMed Central

    Hospital, Véronique; Nishi, Eiichiro; Klagsbrun, Michael; Cohen, Paul; Seidah, Nabil G; Prat, Annik

    2002-01-01

    Nardilysin (N-arginine dibasic convertase, or NRDc) is a cytosolic and cell-surface metalloendopeptidase that, in vitro, cleaves substrates upstream of Arg or Lys in basic pairs. NRDc differs from most of the other members of the M16 family of metalloendopeptidases by a 90 amino acid acidic domain (DAC) inserted close to its active site. At the cell surface, NRDc binds heparin-binding epidermal growth factor-like growth factor (HB-EGF) and enhances HB-EGF-induced cell migration. An active-site mutant of NRDc fulfills this function as well as wild-type NRDc, indicating that the enzyme activity is not required for this process. We now demonstrate that NRDc starts at Met(49). Furthermore, we show that HB-EGF not only binds to NRDc but also potently inhibits its enzymic activity. NRDc-HB-EGF interaction involves the 21 amino acid heparin-binding domain (P21) of the growth factor, the DAC of NRDc and most probably its active site. Only disulphide-bonded P21 dimers are inhibitory. We also show that Ca(2+), via the DAC, regulates both NRDc activity and HB-EGF binding. We conclude that the DAC is thus a key regulatory element for the two distinct functions that NRDc fulfills, i.e. as an HB-EGF modulator and a peptidase. PMID:12095415

  13. The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor-like growth factor (HB-EGF).

    PubMed

    Hospital, Véronique; Nishi, Eiichiro; Klagsbrun, Michael; Cohen, Paul; Seidah, Nabil G; Prat, Annik

    2002-10-01

    Nardilysin (N-arginine dibasic convertase, or NRDc) is a cytosolic and cell-surface metalloendopeptidase that, in vitro, cleaves substrates upstream of Arg or Lys in basic pairs. NRDc differs from most of the other members of the M16 family of metalloendopeptidases by a 90 amino acid acidic domain (DAC) inserted close to its active site. At the cell surface, NRDc binds heparin-binding epidermal growth factor-like growth factor (HB-EGF) and enhances HB-EGF-induced cell migration. An active-site mutant of NRDc fulfills this function as well as wild-type NRDc, indicating that the enzyme activity is not required for this process. We now demonstrate that NRDc starts at Met(49). Furthermore, we show that HB-EGF not only binds to NRDc but also potently inhibits its enzymic activity. NRDc-HB-EGF interaction involves the 21 amino acid heparin-binding domain (P21) of the growth factor, the DAC of NRDc and most probably its active site. Only disulphide-bonded P21 dimers are inhibitory. We also show that Ca(2+), via the DAC, regulates both NRDc activity and HB-EGF binding. We conclude that the DAC is thus a key regulatory element for the two distinct functions that NRDc fulfills, i.e. as an HB-EGF modulator and a peptidase.

  14. The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements.

    PubMed

    Luo, Lin; Xue, Jing; Kwan, Ann; Gamsjaeger, Roland; Wielens, Jerome; von Kleist, Lisa; Cubeddu, Liza; Guo, Zhong; Stow, Jennifer L; Parker, Michael W; Mackay, Joel P; Robinson, Phillip J

    2016-04-29

    Dynamin is a GTPase that mediates vesicle fission during synaptic vesicle endocytosis. Its long C-terminal proline-rich domain contains 13 PXXP motifs, which orchestrate its interactions with multiple proteins. The SH3 domains of syndapin and endophilin bind the PXXP motifs called Site 2 and 3 (Pro-786-Pro-793) at the N-terminal end of the proline-rich domain, whereas the amphiphysin SH3 binds Site 9 (Pro-833-Pro-836) toward the C-terminal end. In some proteins, SH3/peptide interactions also involve short distance elements, which are 5-15 amino acid extensions flanking the central PXXP motif for high affinity binding. Here we found two previously unrecognized elements in the central and the C-terminal end of the dynamin proline-rich domain that account for a significant increase in syndapin binding affinity compared with a previously reported Site 2 and Site 3 PXXP peptide alone. The first new element (Gly-807-Gly-811) is short distance element on the C-terminal side of Site 2 PXXP, which might contact a groove identified under the RT loop of the SH3 domain. The second element (Arg-838-Pro-844) is located about 50 amino acids downstream of Site 2. These two elements provide additional specificity to the syndapin SH3 domain outside of the well described polyproline-binding groove. Thus, the dynamin/syndapin interaction is mediated via a network of multiple contacts outside the core PXXP motif over a previously unrecognized extended region of the proline-rich domain. To our knowledge this is the first example among known SH3 interactions to involve spatially separated and extended long-range elements that combine to provide a higher affinity interaction.

  15. An intact DNA-binding domain is not required for peroxisome proliferator-activated receptor gamma (PPARgamma) binding and activation on some PPAR response elements.

    PubMed

    Temple, Karla A; Cohen, Ronald N; Wondisford, Sarah R; Yu, Christine; Deplewski, Dianne; Wondisford, Fredric E

    2005-02-04

    Peroxisome proliferator-activated receptor gamma (PPARgamma) interacts with retinoid X receptor (RXR) on PPAR response elements (PPREs) to regulate transcription of PPAR-responsive genes. To investigate the binding of PPARgamma and RXR to PPREs, three mutations were constructed in the DNA-binding domains of PPARgamma; two of the mutants maintained the structure of zinc finger I (PPARgamma-GS and PPARgamma-AA), and a third mutation disrupted the protein structure of zinc finger I (PPARgamma-CS). Results indicated that the mutations of PPARgamma that maintained intact zinc fingers were capable of binding to a variety of PPREs in the presence of RXR and could activate transcription on several PPREs. In parallel, a mutation was created in the DNA-binding domain of RXRalpha that maintained the structure of the zinc fingers (RXR-GS) but did not bind DNA and was transcriptionally inactive. Examination of the 3' half-site of several PPREs revealed that variations from the consensus sequence reduced or abolished transcriptional activity, but conversion to consensus improved transcriptional activity with PPARgamma-GS and PPARgamma-AA. Examination of the 5' half-site indicated that the upstream three nucleotides were more important for transcriptional activity than the downstream three nucleotides. Our data demonstrated that stringent binding of RXR to the 3' half-site of a PPRE is more influential on the binding of the PPARgamma/RXR heterodimer than the ability of PPARgamma to bind DNA. Thus, unlike RXR, PPARgamma exhibits promiscuity in binding on a PPRE, suggesting that the definition of a PPRE for PPARgamma may need to be expanded.

  16. A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription Factor Binding Sites

    PubMed Central

    Santolini, Marc; Mora, Thierry; Hakim, Vincent

    2014-01-01

    The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond

  17. Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1

    PubMed Central

    Ye, Zhenqing; Chen, Zhong; Sunkel, Benjamin; Frietze, Seth; Huang, Tim H.-M.; Wang, Qianben; Jin, Victor X.

    2016-01-01

    The compaction of nucleosomal structures creates a barrier for DNA-binding transcription factors (TFs) to access their cognate cis-regulatory elements. Pioneer factors (PFs) such as FOXA1 are able to directly access these cis-targets within compact chromatin. However, how these PFs interplay with nucleosomes remains to be elucidated, and is critical for us to understand the underlying mechanism of gene regulation. Here, we have conducted a computational analysis on a strand-specific paired-end ChIP-exo (termed as ChIP-ePENS) data of FOXA1 in LNCaP cells by our novel algorithm ePEST. We find that FOXA1 chromatin binding occurs via four distinct border modes (or footprint boundary patterns), with a preferential footprint boundary patterns relative to FOXA1 motif orientation. In addition, from this analysis three fundamental nucleotide positions (oG, oS and oH) emerged as major determinants for blocking exo-digestion and forming these four distinct border modes. By integrating histone MNase-seq data, we found an astonishingly consistent, ‘well-positioned’ configuration occurs between FOXA1 motifs and dyads of nucleosomes genome-wide. We further performed ChIP-seq of eight chromatin remodelers and found an increased occupancy of these remodelers on FOXA1 motifs for all four border modes (or footprint boundary patterns), indicating the full occupancy of FOXA1 complex on the three blocking sites (oG, oS and oH) likely produces an active regulatory status with well-positioned phasing for protein binding events. Together, our results suggest a positional-nucleosome-oriented accessing model for PFs seeking target motifs, in which FOXA1 can examine each underlying DNA nucleotide and is able to sense all potential motifs regardless of whether they face inward or outward from histone octamers along the DNA helix axis. PMID:27458208

  18. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    PubMed Central

    Westholm, Jakub Orzechowski; Xu, Feifei; Ronne, Hans; Komorowski, Jan

    2008-01-01

    Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence) is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context. PMID:19014636

  19. Finite element methods of studying mechanical factors in blood flow.

    PubMed

    Davids, N

    1981-01-01

    This paper reviews some biomechanical analyses of blood flow in large arteries based on a general computer modeling using the finite element method. We study the following question: What is the role played by the interrelated factors of mechanical stress, flow irregularities, and diffusion through the endothelium on the etiology of atherosclerosis or the aggravation of vascular injury. It presents the computational features of the method and stresses the physiological significance of the results, such as the effect of geometric complexities, material nonlinearities, and non-Newtonian rheology of the blood. The specific mechanical and fluid dynamic factors analyzed are wall shear stress, flow profiles, and pressure variations. After simulating tubes of circular cross section, we apply the analysis to a number of physiological situations of significance, including blood flow in the entrance region, at bifurcations, in the annular region between an inserted catheter of varying diameter and the vessel. A model study of pulsatile flow in a 60 degree bifurcated channel of velocity profiles provided corroborative measurements of these processes with special emphasis on reversed or distributed flow conditions. The corresponding analysis was extended to the situation in which flow separates and reverses in the neighborhood of stagnation points. This required developing the nonlinear expression for the convective velocity change in the medium. A computer algorithm was developed to handle simultaneous effects of pressure and viscous forces on velocity change across the element and applied to the canine prebranch arterial segment. For mean physiological flow conditions, low shear stresses (0-10 dynes/cm2) are predicted near the wall in the diverging plane, higher values (50 dynes/cm2) along the converging sides of the wall. Backflow is predicted along the outer wall, pressure recovery prior to and into the branches, and a peak shear at the divider lip.

  20. Phosphatidylserine-induced factor Xa dimerization and binding to factor Va are competing processes in solution.

    PubMed

    Majumder, Rinku; Koklic, Tilen; Rezaie, Alireza R; Lentz, Barry R

    2013-01-08

    A soluble, short chain phosphatidylserine, 1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), binds to discrete sites on FXa, FVa, and prothrombin to alter their conformations, to promote FXa dimerization (K(d) ~ 14 nM), and to enhance both the catalytic activity of FXa and the cofactor activity of FVa. In the presence of calcium, C6PS binds to two sites on FXa, one in the epidermal growth factor-like (EGF) domain and one in the catalytic domain; the latter interaction is sensitive to Na(+) binding and probably represents a protein recognition site. Here we ask whether dimerization of FXa and its binding to FVa in the presence of C6PS are competitive processes. We monitored FXa activity at 5, 20, and 50 nM FXa while titrating with FVa in the presence of 400 μM C6PS and 3 or 5 mM Ca(2+) to show that the apparent K(d) of FVa-FXa interaction increased with an increase in FXa concentration at 5 mM Ca(2+), but the K(d) was only slightly affected at 3 mM Ca(2+). A mixture of 50 nM FXa and 50 nM FVa in the presence of 400 μM C6PS yielded both Xa homodimers and Xa·Va heterodimers, but no FXa dimers bound to FVa. A mutant FXa (R165A) that has reduced prothrombinase activity showed both weakened dimerization (K(d) ~ 147 nM) and weakened FVa binding (apparent K(d) values of 58, 92, and 128 nM for 5, 20, and 50 nM R165A FXa, respectively). Native gel electrophoresis showed that the GLA-EGF(NC) fragment of FXa (lacking the catalytic domain) neither dimerized nor formed a complex with FVa in the presence of 400 μM C6PS and 5 mM Ca(2+). Our results demonstrate that the dimerization site and FVa-binding site are both located in the catalytic domain of FXa and that these sites are linked thermodynamically.

  1. Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts.

    PubMed

    Babbitt, G A

    2010-10-15

    The spurious (or nonfunctional) binding of transcription factors (TF) to the wrong locations on DNA presents a formidable challenge to genomes given the relatively low ceiling for sequence complexity within the short lengths of most binding motifs. The high potential for the occurrence of random motifs and subsequent nonfunctional binding of many transcription factors should theoretically lead to natural selection against the occurrence of spurious motif throughout the genome. However, because of the active role that chromatin can influence over eukaryotic gene regulation, it may also be expected that many supposed spurious binding sites could escape purifying selection if (A) they simply occur in regions of high nucleosome occupancy or (B) their surrounding chromatin was dynamically involved in their identity and function. We compared nucleosome occupancy and the presence/absence of functionally conserved chromatin context to the strength of selection against spurious binding of various TF binding motifs in Saccharomyces yeast. While we find no direct relationship with nucleosome occupancy, we find strong evidence that transcription factors spatially associated with evolutionarily conserved chromatin states are under relaxed selection against accidental binding. Transcription factors (with/without) a conserved chromatin context were found to occur on average, (87.7%/49.3%) of their expected frequencies. Functional binding motifs with conserved chromatin contexts were also significantly shorter in length and more often clustered. These results indicate a role of chromatin context dependency in relaxing selection against spurious binding in nearly half of all TF binding motifs throughout the yeast genome.

  2. Yeast general transcription factor GFI: sequence requirements for binding to DNA and evolutionary conservation.

    PubMed Central

    Dorsman, J C; van Heeswijk, W C; Grivell, L A

    1990-01-01

    GFI is an abundant DNA binding protein in the yeast S. cerevisiae. The protein binds to specific sequences in both ARS elements and the upstream regions of a large number of genes and is likely to play an important role in yeast cell growth. To get insight into the relative strength of the various GFI-DNA binding sites within the yeast genome, we have determined dissociation rates for several GFI-DNA complexes and found them to vary over a 70-fold range. Strong binding sites for GFI are present in the upstream activating sequences of the gene encoding the 40 kDa subunit II of the QH2:cytochrome c reductase, the gene encoding ribosomal protein S33 and in the intron of the actin gene. The binding site in the ARS1-TRP1 region is of intermediate strength. All strong binding sites conform to the sequence 5' RTCRYYYNNNACG-3'. Modification interference experiments and studies with mutant binding sites indicate that critical bases for GFI recognition are within the two elements of the consensus DNA recognition sequence. Proteins with the DNA binding specificities of GFI and GFII can also be detected in the yeast K. lactis, suggesting evolutionary conservation of at least the respective DNA-binding domains in both yeasts. Images PMID:2187179

  3. The Ewing sarcoma protein (EWS) binds directly to the proximal elements of the macrophage-specific promoter of the CSF-1 receptor (csf1r) gene.

    PubMed

    Hume, David A; Sasmono, Tedjo; Himes, S Roy; Sharma, Sudarshana M; Bronisz, Agnieszka; Constantin, Myrna; Ostrowski, Michael C; Ross, Ian L

    2008-05-15

    Many macrophage-specific promoters lack classical transcriptional start site elements such as TATA boxes and Sp1 sites. One example is the CSF-1 receptor (CSF-1R, CD115, c-fms), which is used as a model of the transcriptional regulation of macrophage genes. To understand the molecular basis of start site recognition in this gene, we identified cellular proteins binding specifically to the transcriptional start site (TSS) region. The mouse and human csf1r TSS were identified using cap analysis gene expression (CAGE) data. Conserved elements flanking the TSS cluster were analyzed using EMSAs to identify discrete DNA-binding factors in primary bone marrow macrophages as candidate transcriptional regulators. Two complexes were identified that bind in a highly sequence-specific manner to the mouse and human TSS proximal region and also to high-affinity sites recognized by myeloid zinc finger protein 1 (Mzf1). The murine proteins were purified by DNA affinity isolation from the RAW264.7 macrophage cell line and identified by mass spectrometry as EWS and FUS/TLS, closely related DNA and RNA-binding proteins. Chromatin immunoprecipitation experiments in bone marrow macrophages confirmed that EWS, but not FUS/TLS, was present in vivo on the CSF-1R proximal promoter in unstimulated primary macrophages. Transfection assays suggest that EWS does not act as a conventional transcriptional activator or repressor. We hypothesize that EWS contributes to start site recognition in TATA-less mammalian promoters.

  4. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites

    PubMed Central

    Lelieveld, Stefan H.; Schütte, Judith; Dijkstra, Maurits J.J.; Bawono, Punto; Kinston, Sarah J.; Göttgens, Berthold; Heringa, Jaap; Bonzanni, Nicola

    2016-01-01

    Eukaryotic gene expression is regulated by transcription factors (TFs) binding to promoter as well as distal enhancers. TFs recognize short, but specific binding sites (TFBSs) that are located within the promoter and enhancer regions. Functionally relevant TFBSs are often highly conserved during evolution leaving a strong phylogenetic signal. While multiple sequence alignment (MSA) is a potent tool to detect the phylogenetic signal, the current MSA implementations are optimized to align the maximum number of identical nucleotides. This approach might result in the omission of conserved motifs that contain interchangeable nucleotides such as the ETS motif (IUPAC code: GGAW). Here, we introduce ConBind, a novel method to enhance alignment of short motifs, even if their mutual sequence similarity is only partial. ConBind improves the identification of conserved TFBSs by improving the alignment accuracy of TFBS families within orthologous DNA sequences. Functional validation of the Gfi1b + 13 enhancer reveals that ConBind identifies additional functionally important ETS binding sites that were missed by all other tested alignment tools. In addition to the analysis of known regulatory regions, our web tool is useful for the analysis of TFBSs on so far unknown DNA regions identified through ChIP-sequencing. PMID:26721389

  5. Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements.

    PubMed Central

    Zechel, C; Shen, X Q; Chambon, P; Gronemeyer, H

    1994-01-01

    We have previously reported that the binding site repertoires of heterodimers formed between retinoid X receptor (RXR) and either retinoic acid receptor (RAR) or thyroid hormone receptor (TR) bound to response elements consisting of directly repeated PuG(G/T)TCA motifs spaced by 1-5 bp [direct repeat (DR) elements 1-5] are highly similar to those of their corresponding DNA binding domains (DBDs). We have now mapped the dimerization surfaces located in the DBDs of RXR, RAR and TR, which are responsible for cooperative interaction on DR4 (RXR and TR) and DR5 (RXR and RAR). The D-box of the C-terminal CII finger of RXR provides one of the surfaces which is specifically required for the formation of the heterodimerization interfaces on both DR4 and DR5. Heterodimerization with the RXR DBD on DR5 specifically requires the tip of the RAR CI finger as the complementary surface, while a 7 amino acid sequence encompassing the 'prefinger region', but not the TR CI finger, is specifically required for efficient dimerization of TR and RXR DBDs on DR4. Importantly, DBD swapping experiments demonstrate not only that the binding site repertoires of the full-length receptors are dictated by those of their DBDs, but also that the formation of distinct dimerization interfaces between the DBDs are the critical determinants for cooperative DNA binding of these receptors to specific DRs. Images PMID:8137825

  6. The endothelial cell binding determinant of human factor IX resides in the. gamma. -carboxyglutamic acid domain

    SciTech Connect

    Toomey, J.R.; Roberts, H.R.; Stafford, D.W. ); Smith, K.J. United Blood Services, Albuquerque, NM )

    1992-02-18

    The blood coagulation factor IX(a) binds specifically to a site on endothelial cells with a K{sub d} of 2.0-3.0 nM. A number of previous studies have attempted to define the region(s) of factor IX(a) that mediate this interaction. These studies suggested that there are two regions of factor IX(a), the {gamma}-carboxyglutamic acid (Gla) domain and the epidermal growth factor like (EGF-like) domains, that mediate high-affinity binding to endothelial cells. Recently, however, the participation of the EGF1 domain has been excluded from the interaction. This indicated that if there was an EGF component of factor IX contributing to the binding affinity, then it must be in the second EGF-like domain. In order to further evaluate this relationship, the authors performed competitive binding experiments between {sup 125}I plasma factor IX and a set of six chimeric proteins composed of portions of factor VII and factor IX. The data suggest that the high-affinity interaction between factor IX and the endothelial cell binding site is mediated by the factor IX Gla domain and that the factor IX EGF domains are not involved in binding specificity.

  7. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    PubMed

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  8. Modeling RNA-ligand interactions: the Rev-binding element RNA-aminoglycoside complex.

    PubMed

    Leclerc, F; Cedergren, R

    1998-01-15

    An approach to the modeling of ligand-RNA complexes has been developed by combining three-dimensional structure-activity relationship (3D-SAR) computations with a docking protocol. The ability of 3D-SAR to predict bound conformations of flexible ligands was first assessed by attempting to reconstruct the known, bound conformations of phenyloxazolines complexed with human rhinovirus 14 (HRV14) RNA. Subsequently, the same 3D-SAR analysis was applied to the identification of bound conformations of aminoglycosides which associate with the Rev-binding element (RBE) RNA. Bound conformations were identified by parsing ligand conformational data sets with pharmacophores determined by the 3D-SAR analysis. These "bioactive" structures were docked to the receptor RNA, and optimization of the complex was undertaken by extensive searching of ligand conformational space coupled with molecular dynamics computations. The similarity between the bound conformations of the ligand from the 3D-SAR analysis and those found in the docking protocol suggests that this methodology is valid for the prediction of bound ligand conformations and the modeling of the structure of the ligand-RNA complexes.

  9. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    SciTech Connect

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E.; Navrotsky, Alexandra; Jiao, Yongqin

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  10. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    DOE PAGES

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; ...

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate,more » consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.« less

  11. Estrogen-mediated regulation of Igf1 transcription and uterine growth involves direct binding of estrogen receptor alpha to estrogen-responsive elements.

    PubMed

    Hewitt, Sylvia C; Li, Yin; Li, Leping; Korach, Kenneth S

    2010-01-22

    Estrogen enables uterine proliferation, which depends on synthesis of the IGF1 growth factor. This proliferation and IGF1 synthesis requires the estrogen receptor (ER), which binds directly to target DNA sequences (estrogen-responsive elements or EREs), or interacts with other transcription factors, such as AP1, to impact transcription. We observe neither uterine growth nor an increase in Igf1 transcript in a mouse with a DNA-binding mutated ER alpha (KIKO), indicating that both Igf1 regulation and uterine proliferation require the DNA binding function of the ER. We identified several potential EREs in the Igf1 gene, and chromatin immunoprecipitation analysis revealed ER alpha binding to these EREs in wild type but not KIKO chromatin. STAT5 is also reported to regulate Igf1; uterine Stat5a transcript is increased by estradiol (E(2)), but not in KIKO or alpha ERKO uteri, indicating ER alpha- and ERE-dependent regulation. ER alpha binds to a potential Stat5a ERE. We hypothesize that E(2) increases Stat5a transcript through ERE binding; that ER alpha, either alone or together with STAT5, then acts to increase Igf1 transcription; and that the resulting lack of IGF1 impairs KIKO uterine growth. Treatment with exogenous IGF1, alone or in combination with E(2), induces proliferation in wild type but not KIKO uteri, indicating that IGF1 replacement does not rescue the KIKO proliferative response. Together, these observations suggest in contrast to previous in vitro studies of IGF-1 regulation involving AP1 motifs that direct ER alpha-DNA interaction is required to increase Igf1 transcription. Additionally, full ER alpha function is needed to mediate other cellular signals of the growth factor for uterine growth.

  12. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus.

    PubMed

    Nibuya, M; Nestler, E J; Duman, R S

    1996-04-01

    The present study demonstrates that chronic, but not acute, adminstration of several different classes of antidepressants, including serotonin- and norepinephrine-selective reuptake inhibitors, increases the expression of cAMP response element binding protein (CREB) mRNA in rat hippocampus. In contrast, chronic administration of several nonantidepressant psychotropic drugs did not influence expression of CREB mRNA, demonstrating the pharmacological specificity of this effect. In situ hybridization analysis demonstrates that antidepressant administration increases expression of CREB mRNA in CA1 and CA3 pyramidal and dentate gyrus granule cell layers of the hippocampus. In addition, levels of CRE immunoreactivity and of CRE binding activity were increased by chronic antidepressant administration, which indicates that expression and function of CREB protein are increased along with its mRNA. Chronic administration of the phosphodiesterase (PDE) inhibitors rolipram or papaverine also increased expression of CREB mRNA in hippocampus, demonstrating a role for the cAMP cascade. Moreover, coadministration of rolipram with imipramine resulted in a more rapid induction of CREB than with either treatment alone. Increased expression and function of CREB suggest that specific target genes may be regulated by these treatments. We have found that levels of brain-derived neurotrophic factor (BDNF) and trkB mRNA are also increased by administration of antidepressants or PDE inhibitors. These findings indicate that upregulation of CREB is a common action of chronic antidepressant treatments that may lead to regulation of specific target genes, such as BDNF and trkB, and to the long-term effects of these treatments on brain function.

  13. Arabidopsis Acyl-CoA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats.

    PubMed

    Li, Hong-Ye; Chye, Mee-Len

    2004-01-01

    Cytosolic acyl-CoA-binding proteins (ACBP) bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and maintain acyl-CoA pools. Arabidopsis thaliana ACBP2 shows conservation at the acyl-CoA-binding domain to cytosolic ACBPs but is distinct by the presence of an N-terminal transmembrane domain and C-terminal ankyrin repeats. The function of the acyl-CoA-binding domain in ACBP2 has been confirmed by site-directed mutagenesis and four conserved residues crucial for palmitoyl-CoA binding have been identified. Results from ACBP2:GFP fusions transiently expressed in onion epidermal cells have demonstrated that the transmembrane domain functions in plasma membrane targeting, suggesting that ACBP2 transfers acyl-CoA esters to this membrane. In this study, we investigated the significance of its ankyrin repeats in mediating protein-protein interactions by yeast two-hybrid analysis and in vitro protein-binding assays; we showed that ACBP2 interacts with the A. thaliana ethylene-responsive element-binding protein AtEBP via its ankyrin repeats. This interaction was lacking in yeast two-hybrid analysis upon removal of the ankyrin repeats. When the subcellular localizations of ACBP2 and AtEBP were further investigated using autofluorescent protein fusions in transient expression by agroinfiltration of tobacco leaves, the DsRed:ACBP2 fusion protein was localized to the plasma membrane while the GFP:AtEBP fusion protein was targeted to the nucleus and plasma membrane. Co-expression of DsRed:ACBP2 and GFP:AtEBP showed a common localization of both proteins at the plasma membrane, suggesting that ACBP2 likely interacts with AtEBP at the plasma membrane.

  14. Stb3 binds to ribosomal RNA processing element motifs that control transcriptional responses to growth in Saccharomyces cerevisiae.

    PubMed

    Liko, Dritan; Slattery, Matthew G; Heideman, Warren

    2007-09-07

    Transfer of quiescent Saccharomyces cerevisiae cells to fresh medium rapidly induces hundreds of genes needed for growth. A large subset of these genes is regulated via a DNA sequence motif known as the ribosomal RNA processing element (RRPE). However, no RRPE-binding proteins have been identified. We screened a panel of 6144 glutathione S-transferase-open reading frame fusions for RRPE-binding proteins and identified Stb3 as a specific RRPE-binding protein, both in vitro and in vivo. Chromatin immunoprecipitation experiments showed that glucose increases Stb3 binding to RRPE-containing promoters. Microarray experiments demonstrated that the loss of Stb3 inhibits the transcriptional response to fresh glucose, especially for genes with RRPE motifs. However, these experiments also showed that not all genes containing RRPEs were dependent on Stb3 for expression. Overall our data support a model in which Stb3 plays an important but not exclusive role in the transcriptional response to growth conditions.

  15. Identification of a minimal promoter element of the mouse epidermal growth factor gene.

    PubMed Central

    Pascall, J C; Brown, K D

    1997-01-01

    We have previously generated a transgenic mouse line (EGF/Tag) in which simian virus 40 (SV40) T-antigen expression is directed by the mouse epidermal growth factor (EGF) gene promoter. In these mice, cellular hyperproliferation is observed in the submaxillary gland associated with SV40 T-antigen expression. In addition, SV40 T-antigen-expressing tumours of prostatic origin are seen. We have now derived immortalized cell lines from these tissues and have used the cells to perform a functional analysis of the EGF gene promoter. Cells were transfected with EGF promoter/reporter constructs, and an element located between 51 and 35 bases upstream of the EGF mRNA start site required for basal activity of the promoter was identified. Electrophoretic mobility-shift analysis suggests that three proteins bind to this region, one of which is either Sp1 or a closely related protein. PMID:9210411

  16. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP)

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661

  17. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo

    PubMed Central

    Schulz, Katharine N.; Bondra, Eliana R.; Moshe, Arbel; Villalta, Jacqueline E.; Lieb, Jason D.; Kaplan, Tommy; McKay, Daniel J.; Harrison, Melissa M.

    2015-01-01

    The transition from a specified germ cell to a population of pluripotent cells occurs rapidly following fertilization. During this developmental transition, the zygotic genome is largely transcriptionally quiescent and undergoes significant chromatin remodeling. In Drosophila, the DNA-binding protein Zelda (also known as Vielfaltig) is required for this transition and for transcriptional activation of the zygotic genome. Open chromatin is associated with Zelda-bound loci, as well as more generally with regions of active transcription. Nonetheless, the extent to which Zelda influences chromatin accessibility across the genome is largely unknown. Here we used formaldehyde-assisted isolation of regulatory elements to determine the role of Zelda in regulating regions of open chromatin in the early embryo. We demonstrate that Zelda is essential for hundreds of regions of open chromatin. This Zelda-mediated chromatin accessibility facilitates transcription-factor recruitment and early gene expression. Thus, Zelda possesses some key characteristics of a pioneer factor. Unexpectedly, chromatin at a large subset of Zelda-bound regions remains open even in the absence of Zelda. The GAGA factor-binding motif and embryonic GAGA factor binding are specifically enriched in these regions. We propose that both Zelda and GAGA factor function to specify sites of open chromatin and together facilitate the remodeling of the early embryonic genome. PMID:26335634

  18. Factor B Is the Second Lipopolysaccharide-binding Protease Zymogen in the Horseshoe Crab Coagulation Cascade.

    PubMed

    Kobayashi, Yuki; Takahashi, Toshiaki; Shibata, Toshio; Ikeda, Shunsuke; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2015-07-31

    Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to β-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by β-factor C, in an LPS-dependent manner and that β-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C.

  19. Factor B Is the Second Lipopolysaccharide-binding Protease Zymogen in the Horseshoe Crab Coagulation Cascade*

    PubMed Central

    Kobayashi, Yuki; Takahashi, Toshiaki; Shibata, Toshio; Ikeda, Shunsuke; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2015-01-01

    Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to β-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by β-factor C, in an LPS-dependent manner and that β-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C. PMID:26109069

  20. Identification of the mismatch repair genes PMS2 and MLH1 as p53 target genes by using serial analysis of binding elements

    PubMed Central

    Chen, Jiguo; Sadowski, Ivan

    2005-01-01

    The ability to determine the global location of transcription factor binding sites in vivo is important for a comprehensive understanding of gene regulation in human cells. We have developed a technology, called serial analysis of binding elements (SABE), involving subtractive hybridization of chromatin immunoprecipitation-enriched DNA fragments followed by the generation and analysis of concatamerized sequence tags. We applied the SABE technology to search for p53 target genes in the human genome, and have identified several previously described p53 targets in addition to numerous potentially novel targets, including the DNA mismatch repair genes MLH1 and PMS2. Both of these genes were determined to be responsive to DNA damage and p53 activation in normal human fibroblasts, and have p53-response elements within their first intron. These two genes may serve as a sensor in DNA repair mechanisms and a critical determinant for the decision between cell-cycle arrest and apoptosis. These results also demonstrate the potential for use of SABE as a broadly applicable means to globally identify regulatory elements for human transcription factors in vivo. PMID:15781865

  1. A Novel Pregnane X Receptor-mediated and Sterol Regulatory Element-binding Protein-independent Lipogenic Pathway*

    PubMed Central

    Zhou, Jie; Zhai, Yonggong; Mu, Ying; Gong, Haibiao; Uppal, Hirdesh; Toma, David; Ren, Songrong; Evans, Ronald M.; Xie, Wen

    2014-01-01

    The pregnane X receptor (PXR) was isolated as a xenosensor regulating xenobiotic responses. In this study, we show that PXR plays an endobiotic role by impacting lipid homeostasis. Expression of an activated PXR in the livers of transgenic mice resulted in an increased hepatic deposit of triglycerides. This PXR-mediated lipid accumulation was independent of the activation of the lipogenic transcriptional factor SREBP-1c (sterol regulatory element-binding protein 1c) and its primary lipogenic target enzymes, including fatty-acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC-1). Instead, the lipid accumulation in transgenic mice was associated with an increased expression of the free fatty acid transporter CD36 and several accessory lipogenic enzymes, such as stearoyl-CoA desaturase-1 (SCD-1) and long chain free fatty acid elongase. Studies using transgenic and knock-out mice showed that PXR is both necessary and sufficient for Cd36 activation. Promoter analyses revealed a DR-3-type of PXR-response element in the mouse Cd36 promoter, establishing Cd36 as a direct transcriptional target of PXR. The hepatic lipid accumulation and Cd36 induction were also seen in the hPXR “humanized” mice treated with the hPXR agonist rifampicin. The activation of PXR was also associated with an inhibition of pro-β-oxidative genes, such as peroxisome proliferator-activated receptor α (PPARα) and thiolase, and an up-regulation of PPARγ, a positive regulator of CD36. The cross-regulation of CD36 by PXR and PPARγ suggests that this fatty acid transporter may function as a common target of orphan nuclear receptors in their regulation of lipid homeostasis. PMID:16556603

  2. Enhanced phosphorylation of cyclic AMP response element binding protein in Brain of mice following repetitive hypoxic exposure

    SciTech Connect

    Gao Yanan; Gao Ge; Long Caixia; Han Song; Zu Pengyu; Fang Li . E-mail: lfang@utmb.edu; Li Junfa . E-mail: junfali@cpums.edu.cn

    2006-02-10

    Cerebral ischemic/hypoxic preconditioning (I/HPC) is a phenomenon of endogenous protection that renders Brain tolerant to sustained ischemia/hypoxia. This profound protection induced by I/HPC makes it an attractive target for developing potential clinical therapeutic approaches. However, the molecular mechanism of I/HPC is unclear. Cyclic AMP (cAMP) response element binding protein (CREB), a selective nuclear transcriptional factor, plays a key role in the neuronal functions. Phosphorylation of CREB on Ser-133 may facilitate its transcriptional activity in response to various stresses. In the current study, we observed the changes in CREB phosphorylation (Ser-133) and protein expression in Brain of auto-hypoxia-induced HPC mice by using Western blot analysis. We found that the levels of phosphorylated CREB (Ser-133), but not protein expression of CREB, increased significantly (p < 0.05) in the hippocampus and the frontal cortex of mice after repetitive hypoxic exposure (H2-H4, n = 6 for each group), when compared to that of the normoxic (H0, n = 6) or hypoxic exposure once group (H1, n = 6). In addition, a significant enhancement (p < 0.05) of CREB phosphorylation (Ser-133) could also be found in the nuclear extracts from the whole hippocampus of hypoxic preconditioned mice (H2-H4, n = 6 for each group). These results suggest that the phosphorylation of CREB might be involved in the development of cerebral hypoxic preconditioning.

  3. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells.

    PubMed

    Laurette, Patrick; Strub, Thomas; Koludrovic, Dana; Keime, Céline; Le Gras, Stéphanie; Seberg, Hannah; Van Otterloo, Eric; Imrichova, Hana; Siddaway, Robert; Aerts, Stein; Cornell, Robert A; Mengus, Gabrielle; Davidson, Irwin

    2015-03-24

    Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.

  4. Factors affecting binding of galacto ligands to Actinomyces viscosus lectin.

    PubMed Central

    Heeb, M J; Marini, A M; Gabriel, O

    1985-01-01

    The specificity requirements for the binding of Actinomyces viscosus T14V were examined by testing simple sugars, oligopeptides, and glycoproteins as inhibitors of the aggregation of glycoprotein-coated latex beads and washed A. viscosus cells. Lactose was the most inhibitory simple sugar; D-fucose and D-galactose were equally inhibitory, methyl-alpha-D-fucoside was slightly less inhibitory, and L-fucose and raffinose were not inhibitory. The concentration of galactose residues required for 50% inhibition of aggregation was 15 times higher in the form of lactose than in the form of asialoglycoprotein, suggesting an enhancement of lectin binding when galactose residues are clustered. However, when the inhibitory power of bi-, tri-, and tetraantennary asialooligopeptides of alpha 1-acid glycoprotein was compared with that of equivalent concentrations of galactose in the form of lactose, the biantennary form was slightly less effective than lactose, the triantennary form was approximately as effective as lactose, and the tetraantennary form was slightly more effective than lactose. Steric interference may prevent this type of clustering from enhancing lectin binding. The O-linked asialooligopeptides of asialofetuin were 10 times more inhibitory than an equivalent concentration of galactose in the form of N-linked asialooligopeptides. Thus, galactose beta-1----3 linked to N-acetylgalactosamine exhibits greater specificity for the A. viscosus lectin than does galactose beta-1----4 linked to N-acetylglucosamine. These results, taken together with previously reported data, are consistent with a lectin of low affinity, binding enhanced by multivalency, and specificity for beta-linked galactose. PMID:2578122

  5. Functional Analyses of Transcription Factor Binding Sites that Differ between Present-Day and Archaic Humans

    PubMed Central

    Weyer, Sven; Pääbo, Svante

    2016-01-01

    We analyze 25 previously identified transcription factor binding sites that carry DNA sequence changes that are present in all or nearly all present-day humans, yet occur in the ancestral state in Neandertals and Denisovans, the closest evolutionary relatives of humans. When the ancestral and derived forms of the transcription factor binding sites are tested using reporter constructs in 3 neuronal cell lines, the activity of 12 of the derived versions of transcription factor binding sites differ from the respective ancestral variants. This suggests that the majority of this class of evolutionary differences between modern humans and Neandertals may affect gene expression in at least some tissue or cell type. PMID:26454764

  6. Unusually Situated Binding Sites for Bacterial Transcription Factors Can Have Hidden Functionality

    PubMed Central

    Haycocks, James R. J.; Grainger, David C.

    2016-01-01

    A commonly accepted paradigm of molecular biology is that transcription factors control gene expression by binding sites at the 5' end of a gene. However, there is growing evidence that transcription factor targets can occur within genes or between convergent genes. In this work, we have investigated one such target for the cyclic AMP receptor protein (CRP) of enterotoxigenic Escherichia coli. We show that CRP binds between two convergent genes. When bound, CRP regulates transcription of a small open reading frame, which we term aatS, embedded within one of the adjacent genes. Our work demonstrates that non-canonical sites of transcription factor binding can have hidden functionality. PMID:27258043

  7. Functional comparison of the binding of factor H short consensus repeat 6 (SCR 6) to factor H binding protein from Neisseria meningitidis and the binding of factor H SCR 18 to 20 to Neisseria gonorrhoeae porin.

    PubMed

    Shaughnessy, Jutamas; Lewis, Lisa A; Jarva, Hanna; Ram, Sanjay

    2009-05-01

    Both Neisseria meningitidis and Neisseria gonorrhoeae recruit the alternative pathway complement inhibitory protein factor H (fH) to their surfaces to evade complement-dependent killing. Meningococci bind fH via fH binding protein (fHbp), a surface-exposed lipoprotein that is subdivided into three variant families based on one classification scheme. Chimeric proteins that comprise contiguous domains of fH fused to murine Fc were used to localize the binding site for all three fHbp variants on fH to short consensus repeat 6 (SCR 6). As expected, fH-like protein 1 (FHL-1), which contains fH SCR 6, also bound to fHbp-expressing meningococci. Using site-directed mutagenesis, we identified histidine 337 and histidine 371 in SCR 6 as important for binding to fHbp. These findings may provide the molecular basis for recent observations that demonstrated human-specific fH binding to meningococci. Differences in the interactions of fHbp variants with SCR 6 were evident. Gonococci bind fH via their porin (Por) molecules (PorB.1A or PorB.1B); sialylation of lipooligosaccharide enhances fH binding. Both sialylated PorB.1B- and (unsialylated) PorB.1A-bearing gonococci bind fH through SCR 18 to 20; PorB.1A can also bind SCR 6, but only weakly, as evidenced by a low level of binding of FHL-1 relative to that of fH. Using isogenic strains expressing either meningococcal fHbp or gonococcal PorB.1B, we discovered that strains expressing gonococcal PorB.1B in the presence of sialylated lipooligosaccharide bound more fH, more effectively limited C3 deposition, and were more serum resistant than their isogenic counterparts expressing fHbp. Differences in fH binding to these two related pathogens may be important for modulating their individual responses to host immune attack.

  8. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively

    NASA Astrophysics Data System (ADS)

    Clifford, Jacob; Adami, Christoph

    2015-10-01

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  9. Transcription Factor Binding Site Positioning in Yeast: Proximal Promoter Motifs Characterize TATA-Less Promoters

    PubMed Central

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of ‘proximal promoter motifs’ (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters. PMID:21931670

  10. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    PubMed

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  11. In situ detection of a heat-shock regulatory element binding protein using a soluble synthetic enhancer sequence.

    PubMed Central

    Harel-Bellan, A; Brini, A T; Ferris, D K; Robin, P; Farrar, W L

    1989-01-01

    In various studies, enhancer binding proteins have been successfully absorbed out by competing sequences inserted into plasmids, resulting in the inhibition of the plasmid expression. Theoretically, such a result could be achieved using synthetic enhancer sequences not inserted into plasmids. In this study, a double stranded DNA sequence corresponding to the human heat shock regulatory element was chemically synthesized. By in vitro retardation assays, the synthetic sequence was shown to bind specifically a protein in extracts from the human T cell line Jurkat. When the synthetic enhancer was electroporated into Jurkat cells, not only the enhancer was shown to remain undegraded into the cells for up to 2 days, but also it was shown to bind intracellularly a protein. The binding was specific and was modulated upon heat shock. Furthermore, the binding protein was shown to be of the expected molecular weight by UV crosslinking. However, when the synthetic enhancer element was co-electroporated with an HSP 70-CAT reporter construct, the expression of the reporter plasmid was consistently enhanced in the presence of the exogenous synthetic enhancer. Images PMID:2740211

  12. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes.

    PubMed

    Yalley, Akua; Schill, Daniel; Hatta, Mitsutoki; Johnson, Nicole; Cirillo, Lisa Ann

    2016-04-15

    FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding.

  13. The conserved lymphokine element-0 in the IL5 promoter binds to a high mobility group-1 protein.

    PubMed

    Marrugo, J; Marsh, D G; Ghosh, B

    1996-10-01

    The conserved lymphokine elements-0 (CLE0) in the IL5 promoter is essential for the expression of IL-5. Here, we report the cloning and expression of a cDNA encoding a novel CLE0-binding protein, CLEBP-1 from a mouse Th2 clone, D10.G4.1. Interestingly, it was found that the CLEBP1 cDNA sequence was almost identical to the sequences of known high mobility group-1 (HMG1) cDNAs. When expressed as a recombinant fusion protein in Escherichia coli, CLEBP-1 was shown to bind to the IL5-CLE0 element in electrophoretic mobility-shift assays (EMSA) and southwestern blot analysis. The CLEBP-1 fusion protein cross-reacts with and-HMG-1/2 in Western blot analysis. It also binds to the CLE0 elements of IL4, GMCSF and GCSF genes. CLEBP-1 and closely related HMG-1 and HMG-2 proteins may play key roles in facilitating the expression of the lymphokine genes that contain CLE0 elements.

  14. Bacterial chitinases and chitin-binding proteins as virulence factors.

    PubMed

    Frederiksen, Rikki F; Paspaliari, Dafni K; Larsen, Tanja; Storgaard, Birgit G; Larsen, Marianne H; Ingmer, Hanne; Palcic, Monica M; Leisner, Jørgen J

    2013-05-01

    Bacterial chitinases (EC 3.2.1.14) and chitin-binding proteins (CBPs) play a fundamental role in the degradation of the ubiquitous biopolymer chitin, and the degradation products serve as an important nutrient source for marine- and soil-dwelling bacteria. However, it has recently become clear that representatives of both Gram-positive and Gram-negative bacterial pathogens encode chitinases and CBPs that support infection of non-chitinous mammalian hosts. This review addresses this biological role of bacterial chitinases and CBPs in terms of substrate specificities, regulation, secretion and involvement in cellular and animal infection.

  15. Implications of Dna-Nanostructures by Hoogsteen-Dinucleotides on Transcription Factor Binding

    NASA Astrophysics Data System (ADS)

    Wanke, Dierk; Brand, Luise H.; Fischer, Nina M.; Peschke, Florian; Kilian, Joachim; Berendzen, Kenneth W.

    2013-01-01

    Recent findings showed that non-harmonic DNA-nanostructures are formed by Hoogsteen (HG) dinucleotides in vivo. In contrast to Waston-Crick (WC) base pairing, the purine base component is flipped from anti- to syn-conformation. This change consequently alters the width of the DNA-helix, the sizes of minor and major groove and biophysical properties, such as the melting temperature. Three dinucleotides (CA, TG and TA) have been identified that form stable HG conformations. Functional data and structural models imply that transcription factors specifically bind DNA-motifs that consist of both HG and WC base pairs - especially at the topological transition between HG and WC dinucleotides. We could show that most know cis -regulatory elements contain at least one HG dinucleotide. In addition, we focused our work on human promoter sequences that encode gene regulatory information within double stranded DNA. We compared occurrences of HG dinucleotides to all 16 dinucleotides. These ratios differed most in sequences closer to gene transcripts, where the promoters are located. These findings imply that transcription factors might explicitly recognize their DNA-motifs in regulatory promoter sequences that exhibit HG nanostructure islands.

  16. Characterization of the DNA-binding Properties of the Mohawk Homeobox Transcription Factor*

    PubMed Central

    Anderson, Douglas M.; George, Rajani; Noyes, Marcus B.; Rowton, Megan; Liu, Wenjin; Jiang, Rulang; Wolfe, Scot A.; Wilson-Rawls, Jeanne; Rawls, Alan

    2012-01-01

    The homeobox transcription factor Mohawk (Mkx) is a potent transcriptional repressor expressed in the embryonic precursors of skeletal muscle, cartilage, and bone. MKX has recently been shown to be a critical regulator of musculoskeletal tissue differentiation and gene expression; however, the genetic pathways through which MKX functions and its DNA-binding properties are currently unknown. Using a modified bacterial one-hybrid site selection assay, we determined the core DNA-recognition motif of the mouse monomeric Mkx homeodomain to be A-C-A. Using cell-based assays, we have identified a minimal Mkx-responsive element (MRE) located within the Mkx promoter, which is composed of a highly conserved inverted repeat of the core Mkx recognition motif. Using the minimal MRE sequence, we have further identified conserved MREs within the locus of Sox6, a transcription factor that represses slow fiber gene expression during skeletal muscle differentiation. Real-time PCR and immunostaining of in vitro differentiated muscle satellite cells isolated from Mkx-null mice revealed an increase in the expression of Sox6 and down-regulation of slow fiber structural genes. Together, these data identify the unique DNA-recognition properties of MKX and reveal a novel role for Mkx in promoting slow fiber type specification during skeletal muscle differentiation. PMID:22923612

  17. The Human CCHC-type Zinc Finger Nucleic Acid-Binding Protein Binds G-Rich Elements in Target mRNA Coding Sequences and Promotes Translation.

    PubMed

    Benhalevy, Daniel; Gupta, Sanjay K; Danan, Charles H; Ghosal, Suman; Sun, Hong-Wei; Kazemier, Hinke G; Paeschke, Katrin; Hafner, Markus; Juranek, Stefan A

    2017-03-21

    The CCHC-type zinc finger nucleic acid-binding protein (CNBP/ZNF9) is conserved in eukaryotes and is essential for embryonic development in mammals. It has been implicated in transcriptional, as well as post-transcriptional, gene regulation; however, its nucleic acid ligands and molecular function remain elusive. Here, we use multiple systems-wide approaches to identify CNBP targets and function. We used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to identify 8,420 CNBP binding sites on 4,178 mRNAs. CNBP preferentially bound G-rich elements in the target mRNA coding sequences, most of which were previously found to form G-quadruplex and other stable structures in vitro. Functional analyses, including RNA sequencing, ribosome profiling, and quantitative mass spectrometry, revealed that CNBP binding did not influence target mRNA abundance but rather increased their translational efficiency. Considering that CNBP binding prevented G-quadruplex structure formation in vitro, we hypothesize that CNBP is supporting translation by resolving stable structures on mRNAs.

  18. Fkh1 and Fkh2 Bind Multiple Chromosomal Elements in the S. cerevisiae Genome with Distinct Specificities and Cell Cycle Dynamics

    PubMed Central

    Knott, Simon R. V.; Fox, Catherine A.; Tavaré, Simon; Aparicio, Oscar M.

    2014-01-01

    Forkhead box (FOX) transcription factors regulate a wide variety of cellular functions in higher eukaryotes, including cell cycle control and developmental regulation. In Saccharomyces cerevisiae, Forkhead proteins Fkh1 and Fkh2 perform analogous functions, regulating genes involved in cell cycle control, while also regulating mating-type silencing and switching involved in gamete development. Recently, we revealed a novel role for Fkh1 and Fkh2 in the regulation of replication origin initiation timing, which, like donor preference in mating-type switching, appears to involve long-range chromosomal interactions, suggesting roles for Fkh1 and Fkh2 in chromatin architecture and organization. To elucidate how Fkh1 and Fkh2 regulate their target DNA elements and potentially regulate the spatial organization of the genome, we undertook a genome-wide analysis of Fkh1 and Fkh2 chromatin binding by ChIP-chip using tiling DNA microarrays. Our results confirm and extend previous findings showing that Fkh1 and Fkh2 control the expression of cell cycle-regulated genes. In addition, the data reveal hundreds of novel loci that bind Fkh1 only and exhibit a distinct chromatin structure from loci that bind both Fkh1 and Fkh2. The findings also show that Fkh1 plays the predominant role in the regulation of a subset of replication origins that initiate replication early, and that Fkh1/2 binding to these loci is cell cycle-regulated. Finally, we demonstrate that Fkh1 and Fkh2 bind proximally to a variety of genetic elements, including centromeres and Pol III-transcribed snoRNAs and tRNAs, greatly expanding their potential repertoire of functional targets, consistent with their recently suggested role in mediating the spatial organization of the genome. PMID:24504085

  19. Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley.

    PubMed

    Osnato, Michela; Stile, Maria Rosaria; Wang, Yamei; Meynard, Donaldo; Curiale, Serena; Guiderdoni, Emmanuel; Liu, Yongxiu; Horner, David S; Ouwerkerk, Pieter B F; Pozzi, Carlo; Müller, Kai J; Salamini, Francesco; Rossini, Laura

    2010-12-01

    In the barley (Hordeum vulgare) Hooded (Kap) mutant, the duplication of a 305-bp intron sequence leads to the overexpression of the Barley knox3 (Bkn3) gene, resulting in the development of an extra flower in the spikelet. We used a one-hybrid screen to identify four proteins that bind the intron-located regulatory element (Kap intron-binding proteins). Three of these, Barley Ethylene Response Factor1 (BERF1), Barley Ethylene Insensitive Like1 (BEIL1), and Barley Growth Regulating Factor1 (BGRF1), were characterized and their in vitro DNA-binding capacities verified. Given the homology of BERF1 and BEIL1 to ethylene signaling proteins, we investigated if these factors might play a dual role in intron-mediated regulation and ethylene response. In transgenic rice (Oryza sativa), constitutive expression of the corresponding genes produced phenotypic alterations consistent with perturbations in ethylene levels and variations in the expression of a key gene of ethylene biosynthesis. In barley, ethylene treatment results in partial suppression of the Kap phenotype, accompanied by up-regulation of BERF1 and BEIL1 expression, followed by down-regulation of Bkn3 mRNA levels. In rice protoplasts, BEIL1 activates the expression of a reporter gene driven by the 305-bp intron element, while BERF1 can counteract this activation. Thus, BEIL1 and BERF1, likely in association with other Kap intron-binding proteins, should mediate the fine-tuning of Bkn3 expression by ethylene. We propose a hypothesis for the cross talk between the KNOX and ethylene pathways.

  20. New Insights into Cooperative Binding of Homeodomain Transcription Factors PREP1 and PBX1 to DNA

    PubMed Central

    Zucchelli, Chiara; Ferrari, Elena; Blasi, Francesco; Musco, Giovanna; Bruckmann, Chiara

    2017-01-01

    PREP1 and PBX1 are homeodomain (HD) transcription factors that play crucial roles in embryonic development. Here, we present the first biophysical characterization of a PREP1 HD, and the NMR spectroscopic study of its DNA binding pocket. The data show that residues flanking the HD participate in DNA binding. The kinetic parameters for DNA binding of individual PREP1 and PBX1 HDs, and of their combination, show that isolated PREP1 and PBX1 HDs bind to DNA in a cooperative manner. A novel PREP1 motif, flanking the HD at the C-terminus, is required for cooperativity. PMID:28094776

  1. Position specific variation in the rate of evolution intranscription factor binding sites

    SciTech Connect

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  2. Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers.

    PubMed Central

    Wang, S W; Speck, N A

    1992-01-01

    The Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major genetic determinant of the thymic disease specificity of the Moloney virus genetically maps to two protein binding sites in the Moloney virus enhancer, the leukemia virus factor b site and the adjacent core site. Point mutations introduced into either of these sites significantly shifts the disease specificity of the Moloney virus from thymic leukemia to erythroleukemia (N. A. Speck, B. Renjifo, E. Golemis, T. Frederickson, J. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We have purified several polypeptides that bind to the core site in the Moloney virus enhancer. These proteins were purified from calf thymus nuclear extracts by selective pH denaturation, followed by chromatography on heparin-Sepharose, nonspecific double-stranded DNA-cellulose, and core oligonucleotide-coupled affinity columns. We have achieved greater than 13,000-fold purification of the core-binding factors (CBFs), with an overall yield of approximately 19%. Analysis of purified protein fractions by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis reveals more than 10 polypeptides. Each of the polypeptides was recovered from an SDS-polyacrylamide gel, and those in the molecular size range of 19 to 35 kDa were demonstrated to have core-binding activity. The purified CBFs were shown by DNase I footprint analyses to bind the core site in the Moloney virus enhancer specifically, and also to core motifs in the enhancers from a simian immunodeficiency virus, the immunoglobulin mu chain, and T-cell receptor gamma-chain genes. Images PMID:1309596

  3. The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation.

    PubMed

    Chowdhury, A; Liu, G; Kemp, M; Chen, X; Katrangi, N; Myers, S; Ghosh, M; Yao, J; Gao, Y; Bubulya, P; Leffak, M

    2010-03-01

    Template unwinding during DNA replication initiation requires the loading of the MCM helicase activator Cdc45 at replication origins. We show that Cdc45 interacts with the DNA unwinding element (DUE) binding protein DUE-B and that these proteins localize to the DUEs of active replication origins. DUE-B and Cdc45 are not bound at the inactive c-myc replicator in the absence of a functional DUE or at the recently identified ataxin 10 (ATX10) origin, which is silent before disease-related (ATTCT)(n) repeat length expansion of its DUE sequence, despite the presence of the origin recognition complex (ORC) and MCM proteins at these origins. Addition of a heterologous DUE to the ectopic c-myc origin, or expansion of the ATX10 DUE, leads to origin activation, DUE-B binding, and Cdc45 binding. DUE-B, Cdc45, and topoisomerase IIbeta binding protein 1 (TopBP1) form complexes in cell extracts and when expressed from baculovirus vectors. During replication in Xenopus egg extracts, DUE-B and Cdc45 bind to chromatin with similar kinetics, and DUE-B immunodepletion blocks replication and the loading of Cdc45 and a fraction of TopBP1. The coordinated binding of DUE-B and Cdc45 to origins and the physical interactions of DUE-B, Cdc45, and TopBP1 suggest that complexes of these proteins are necessary for replication initiation.

  4. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  5. Human rheumatoid factors bear the internal image of the Fc binding region of staphylococcal protein A.

    PubMed

    Oppliger, I R; Nardella, F A; Stone, G C; Mannik, M

    1987-09-01

    The binding specificity of rheumatoid factors (RFs) to human Fc resembles that of some microbial Fc-binding proteins, suggesting conformational similarities in their Fc-binding regions. Using polyclonal chicken antibodies against SPA, we have detected a crossreactive determinant shared by human RFs from different individuals, but not by non-RF IgM and IgG. Chicken anti-SPA was shown to bind to 18 of 19 IgM RFs and 2 of 2 IgG RFs isolated from different individuals. This binding was inhibitable with SPA, fragment D of SPA, human IgG, and Fc fragment of IgG. The binding site for RF was located on the Fab' fragment of chicken anti-SPA. The antigenic mimicry of RFs by a protein of microbial origin suggests that the immune response to infectious agents could induce or modulate RF production through an internal image autoantiidiotype mechanism.

  6. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  7. Survey of variation in human transcription factors reveals prevalent DNA binding changes

    PubMed Central

    Barrera, Luis A.; Rogers, Julia M.; Gisselbrecht, Stephen S.; Rossin, Elizabeth J.; Woodard, Jaie; Mariani, Luca; Kock, Kian Hong; Inukai, Sachi; Siggers, Trevor; Shokri, Leila; Gordân, Raluca; Sahni, Nidhi; Cotsapas, Chris; Hao, Tong; Yi, Song; Kellis, Manolis; Daly, Mark J.; Vidal, Marc; Hill, David E.; Bulyk, Martha L.

    2016-01-01

    Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA-binding activity and used universal protein binding microarrays to assay sequence-specific DNA-binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA-binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA-binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA-binding activities, which may contribute to phenotypic variation. PMID:27013732

  8. Molecular biology of beta-estradiol-estrogen receptor complex binding to estrogen response element and the effect on cell proliferation.

    PubMed

    Heger, Zbynek; Zitka, Ondrej; Krizkova, Sona; Beklova, Miroslava; Kizek, Rene; Adam, Vojtech

    2013-01-01

    Group of estrogen pollutants, where the highest estrogen activity is reported at estradiol, is characterized by the fact that even at very low concentrations have potential to cause xenoestrogenic effects. During exposure of excessive amounts of estradiols may be produced undesirable effects resulting in the feminization of males of water organisms. The presence of estradiols in drinking water implies also a risk for the human population in the form of cancers of endocrine systems, abnormalities in reproduction or dysfunctions of neuronal and immune system. Currently, the research is focused mainly to uncover the relationship between the estrogen receptors binding affinity with an estrogen response element and estradiol. In this review we summarized facts about molecular biological principles of β estradiol-estrogen receptor complex binding with estrogen response element and its successive effect on cancer genes expression.

  9. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    SciTech Connect

    Istrate, Monica A.; Nussler, Andreas K.; Eichelbaum, Michel; Burk, Oliver

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  10. Crystallization of hepatocyte nuclear factor 4α (HNF4α) in complex with the HNF1α promoter element

    SciTech Connect

    Lu, Peng; Liu, Jianguo; Melikishvili, Manana; Fried, Michael G.; Chi, Young-In

    2008-04-01

    Sample preparation, characterization, crystallization and preliminary X-ray analysis are reported for the HNF4α–DNA binary complex. Hepatocyte nuclear factor 4α (HNF4α) is a member of the nuclear receptor superfamily that plays a central role in organ development and metabolic functions. Mutations on HNF4α cause maturity-onset diabetes of the young (MODY), a dominant monogenic cause of diabetes. In order to understand the molecular mechanism of promoter recognition and the molecular basis of disease-causing mutations, the recombinant HNF4α DNA-binding domain was prepared and used in a study of its binding properties and in crystallization with a 21-mer DNA fragment that contains the promoter element of another MODY gene, HNF1α. The HNF4α protein displays a cooperative and specific DNA-binding activity towards its target gene-recognition elements. Crystals of the complex diffract to 2.0 Å using a synchrotron-radiation source under cryogenic (100 K) conditions and belong to space group C2, with unit-cell parameters a = 121.63, b = 35.43, c = 70.99 Å, β = 119.36°. A molecular-replacement solution has been obtained and structure refinement is in progress. This structure and the binding studies will provide the groundwork for detailed functional and biochemical studies of the MODY mutants.

  11. Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products.

    PubMed Central

    Cserjesi, P; Olson, E N

    1991-01-01

    The myocyte-specific enhancer-binding factor MEF-2 is a nuclear factor that interacts with a conserved element in the muscle creatine kinase and myosin light-chain 1/3 enhancers (L. A. Gossett, D. J. Kelvin, E. A. Sternberg, and E. N. Olson, Mol. Cell. Biol. 9:5022-5033, 1989). We show in this study that MEF-2 is regulated by the myogenic regulatory factor myogenin and that mitogenic signals block this regulatory interaction. Induction of MEF-2 by myogenin occurs in transfected 10T1/2 cells that have been converted to myoblasts by myogenin, as well as in CV-1 kidney cells that do not activate the myogenic program in response to myogenin. Through mutagenesis of the MEF-2 site, we further defined the binding site requirements for MEF-2 and identified potential MEF-2 sites within numerous muscle-specific regulatory regions. The MEF-2 site was also found to bind a ubiquitous nuclear factor whose binding specificity was similar to but distinct from that of MEF-2. Our results reveal that MEF-2 is controlled, either directly or indirectly, by a myogenin-dependent regulatory pathway and suggest that growth factor signals suppress MEF-2 expression through repression of myogenin expression or activity. The ability of myogenin to induce MEF-2 activity in CV-1 cells, which do not activate downstream genes associated with terminal differentiation, also demonstrates that myogenin retains limited function within cell types that are nonpermissive for myogenesis and suggests that MEF-2 is regulated independently of other muscle-specific genes. Images PMID:1656214

  12. Structure and function of the c-myc DNA-unwinding element-binding protein DUE-B.

    PubMed

    Kemp, Michael; Bae, Brian; Yu, John Paul; Ghosh, Maloy; Leffak, Michael; Nair, Satish K

    2007-04-06

    Local zones of easily unwound DNA are characteristic of prokaryotic and eukaryotic replication origins. The DNA-unwinding element of the human c-myc replication origin is essential for replicator activity and is a target of the DNA-unwinding element-binding protein DUE-B in vivo. We present here the 2.0A crystal structure of DUE-B and complementary biochemical characterization of its biological activity. The structure corresponds to a dimer of the N-terminal domain of the full-length protein and contains many of the structural elements of the nucleotide binding fold. A single magnesium ion resides in the putative active site cavity, which could serve to facilitate ATP hydrolytic activity of this protein. The structure also demonstrates a notable similarity to those of tRNA-editing enzymes. Consistent with this structural homology, the N-terminal core of DUE-B is shown to display both D-aminoacyl-tRNA deacylase activity and ATPase activity. We further demonstrate that the C-terminal portion of the enzyme is disordered and not essential for dimerization. However, this region is essential for DNA binding in vitro and becomes ordered in the presence of DNA.

  13. Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model

    PubMed Central

    Schauwaers, Kris; De Gendt, Karel; Saunders, Philippa T. K.; Atanassova, Nina; Haelens, Annemie; Callewaert, Leen; Moehren, Udo; Swinnen, Johannes V.; Verhoeven, Guido; Verrijdt, Guy; Claessens, Frank

    2007-01-01

    Androgens influence transcription of their target genes through the activation of the androgen receptor (AR) that subsequently interacts with specific DNA motifs in these genes. These DNA motifs, called androgen response elements (AREs), can be classified in two classes: the classical AREs, which are also recognized by the other steroid hormone receptors; and the AR-selective AREs, which display selectivity for the AR. For in vitro interaction with the selective AREs, the androgen receptor DNA-binding domain is dependent on specific residues in its second zinc-finger. To evaluate the physiological relevance of these selective elements, we generated a germ-line knockin mouse model, termed SPARKI (SPecificity-affecting AR KnockIn), in which the second zinc-finger of the AR was replaced with that of the glucocorticoid receptor, resulting in a chimeric protein that retains its ability to bind classical AREs but is unable to bind selective AREs. The reproductive organs of SPARKI males are smaller compared with wild-type animals, and they are also subfertile. Intriguingly, however, they do not display any anabolic phenotype. The expression of two testis-specific, androgen-responsive genes is differentially affected by the SPARKI mutation, which is correlated with the involvement of different types of response elements in their androgen responsiveness. In this report, we present the first in vivo evidence of the existence of two functionally different types of AREs and demonstrate that AR-regulated gene expression can be targeted based on this distinction. PMID:17360365

  14. Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs

    PubMed Central

    Ohmura, Sakie; Mizuno, Seiya; Oishi, Hisashi; Ku, Chia-Jui; Hermann, Mary; Hosoya, Tomonori; Takahashi, Satoru; Engel, James Douglas

    2016-01-01

    The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell–specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte–specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte–specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell–regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell–specific transcriptional activity. PMID:26808502

  15. Immunoproteomic and two-dimensional difference gel electrophoresis analysis of Arabidopsis dehydration response element-binding protein 1A (DREB1A)-transgenic potato.

    PubMed

    Nakamura, Rika; Satoh, Rie; Nakamura, Ryosuke; Shimazaki, Takayoshi; Kasuga, Mie; Yamaguchi-Shinozaki, Kazuko; Kikuchi, Akira; Watanabe, Kazuo N; Teshima, Reiko

    2010-01-01

    To produce crops that are more tolerant to stresses such as heat, cold, and salt, transgenic plants have been produced those express stress-associated proteins. In this study, we used immunoproteomic and two-dimensional difference gel electrophoresis (2D-DIGE) methods to investigate the allergenicity of transgenic potatoes expressing Arabidopsis DREB1A (dehydration responsive element-binding protein 1A), driven by the rd29A promoter or the 35S promoter. Immunoproteomic analysis using sera from potato-allergic patients revealed several immunoglobulin E (IgE)-binding protein spots. The patterns of protein binding were almost the same between transgenic and non-transgenic potatoes. The IgE-binding proteins in potato were identified as patatin precursors, a segment of serine protease inhibitor 2, and proteinase inhibitor II by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) MS/MS. 2D-DIGE analysis revealed several differences in protein expression between non-transgenic potato and transgenic potato; those showing increased expression in transgenic potatoes were identified as precursors of patatin, a major potato allergen, and those showing decreased expression in transgenic potatoes were identified as lipoxygenase and glycogen (starch) synthase. These results suggested that transgenic potatoes may express slightly higher levels of allergens, but their IgE-binding patterns were almost the same as those of control potatoes. Further research on changes in protein expressions in response to environmental factors is required to confirm whether the differences observed in this study are due to gene transfection, rather than environmental factors.

  16. Role of cAMP-response element-binding protein phosphorylation in hepatic apoptosis under protein kinase C alpha suppression during sepsis.

    PubMed

    Hsieh, Ya-Ching; Chen, Yen-Hsu; Jao, Hsiao-Ching; Hsu, Hseng-Kuang; Huang, Li-Ju; Hsu, Chin

    2005-10-01

    Previous studies have shown that a decrease in protein kinase C (PKC) alpha levels contributes to hepatic failure and/or apoptosis during sepsis, and suppression of PKCalpha plays a critical role in triggering caspase-dependent apoptosis, which can modulate expression of Bcl-xL. However, the underlying molecular mechanism remains uncertain. In the present study, we examined whether a decrease in the nuclear PKCalpha levels causes hepatic apoptosis via modulation of cAMP-response element-binding protein (CREB) or nuclear factor-kappaB (NFkappaB), the crucial factors regulating the expression of prosurvival Bcl-xL. For polymicrobial sepsis induction, a cecal ligation and puncture model was used; at 9 or 18 h after CLP, experiments were terminated, referring as early or late sepsis, respectively. Additionally, PKCalpha was suppressed by stable transfection of antisense PKCalpha plasmid into a Clone-9 rat hepatic epithelial cell. The results showed that the nuclear PKCalpha was significantly decreased in the liver during sepsis, which was accompanied by decreases in phospho-CREB content, DNA-binding activity of CREB, and Bcl-xL expression. Likewise, the binding activity of NFkappaB increased significantly, which was associated with a decrease in cytosolic inhibitory-kappaBalpha content. The in vitro suppression of PKCalpha also resulted in decreases in the phospho-CREB content and DNA-binding activity, which were accompanied by down-regulation of Bcl-xL and apoptosis, but no significant alteration in NFkappaB-binding activity. The in vivo and in vitro results suggest that the suppression of PKCalpha results in a decreased CREB phosphorylation and subsequent down-regulation of Bcl-xL, which may contribute to the hepatic apoptosis during sepsis.

  17. Pituitary tumor transforming gene binding factor: a new gene in breast cancer.

    PubMed

    Watkins, Rachel J; Read, Martin L; Smith, Vicki E; Sharma, Neil; Reynolds, Gary M; Buckley, Laura; Doig, Craig; Campbell, Moray J; Lewy, Greg; Eggo, Margaret C; Loubiere, Laurence S; Franklyn, Jayne A; Boelaert, Kristien; McCabe, Christopher J

    2010-05-01

    Pituitary tumor transforming gene (PTTG) binding factor (PBF; PTTG1IP) is a relatively uncharacterized oncoprotein whose function remains obscure. Because of the presence of putative estrogen response elements (ERE) in its promoter, we assessed PBF regulation by estrogen. PBF mRNA and protein expression were induced by both diethylstilbestrol and 17beta-estradiol in estrogen receptor alpha (ERalpha)-positive MCF-7 cells. Detailed analysis of the PBF promoter showed that the region -399 to -291 relative to the translational start site contains variable repeats of an 18-bp sequence housing a putative ERE half-site (gcccctcGGTCAcgcctc). Sequencing the PBF promoter from 122 normal subjects revealed that subjects may be homozygous or heterozygous for between 1 and 6 repeats of the ERE. Chromatin immunoprecipitation and oligonucleotide pull-down assays revealed ERalpha binding to the PBF promoter. PBF expression was low or absent in normal breast tissue but was highly expressed in breast cancers. Subjects with greater numbers of ERE repeats showed higher PBF mRNA expression, and PBF protein expression positively correlated with ERalpha status. Cell invasion assays revealed that PBF induces invasion through Matrigel, an action that could be abrogated both by siRNA treatment and specific mutation. Furthermore, PBF is a secreted protein, and loss of secretion prevents PBF inducing cell invasion. Given that PBF is a potent transforming gene, we propose that estrogen treatment in postmenopausal women may upregulate PBF expression, leading to PBF secretion and increased cell invasion. Furthermore, the number of ERE half-sites in the PBF promoter may significantly alter the response to estrogen treatment in individual subjects.

  18. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome.

    PubMed

    Cameron, Dale M; Thompson, Jill; March, Paul E; Dahlberg, Albert E

    2002-05-24

    The bacterial translational GTPases (initiation factor IF2, elongation factors EF-G and EF-Tu and release factor RF3) are involved in all stages of translation, and evidence indicates that they bind to overlapping sites on the ribosome, whereupon GTP hydrolysis is triggered. We provide evidence for a common ribosomal binding site for EF-G and IF2. IF2 prevents the binding of EF-G to the ribosome, as shown by Western blot analysis and fusidic acid-stabilized EF-G.GDP.ribosome complex formation. Additionally, IF2 inhibits EF-G-dependent GTP hydrolysis on 70 S ribosomes. The antibiotics thiostrepton and micrococcin, which bind to part of the EF-G binding site and interfere with the function of the factor, also affect the function of IF2. While thiostrepton is a strong inhibitor of EF-G-dependent GTP hydrolysis, GTP hydrolysis by IF2 is stimulated by the drug. Micrococcin stimulates GTP hydrolysis by both factors. We show directly that these drugs act by destabilizing the interaction of EF-G with the ribosome, and provide evidence that they have similar effects on IF2.

  19. Definition and prediction of the full range of transcription factor binding sites—the hepatocyte nuclear factor 1 dimeric site

    PubMed Central

    Locker, Joseph; Ghosh, David; Luc, Phuong-Van; Zheng, Jianhua

    2002-01-01

    In animals, transcription factor binding sites are hard to recognize because of their extensive variation. We therefore characterized the general relationship between a specific protein-binding site and its DNA sequence and used this relationship to generate a predictive algorithm for searching other DNA sequences. The experimental process was defined by studying hepatocyte nuclear factor 1 (HNF1), which binds DNA as a dimer on two inverted-repeat 7-bp half sites separated by one base. The binding model was based on the equivalence of the two half sites, which was confirmed in examples where specific modified sites were compared. Binding competition analysis was used to determine the effects of substitution of all four bases at each position in the half site. From these data, a weighted half-site matrix was generated and the full site was evaluated as the sum of two half-site scores. This process accurately predicted even weak binding sites that were significantly different from the consensus sequence. The predictions also showed a direct correlation with measured protein binding. PMID:12202766

  20. Modeling the epidermal growth factor -- epidermal growth factor receptor l2 domain interaction: implications for the ligand binding process.

    PubMed

    Jorissen, Robert N; Treutlein, Herbert R; Epa, V Chandana; Burgess, Antony W

    2002-06-01

    Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.

  1. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha.

    PubMed

    Carter, P H; Scherle, P A; Muckelbauer, J K; Voss, M E; Liu, R Q; Thompson, L A; Tebben, A J; Solomon, K A; Lo, Y C; Li, Z; Strzemienski, P; Yang, G; Falahatpisheh, N; Xu, M; Wu, Z; Farrow, N A; Ramnarayan, K; Wang, J; Rideout, D; Yalamoori, V; Domaille, P; Underwood, D J; Trzaskos, J M; Friedman, S M; Newton, R C; Decicco, C P; Muckelbauer, J A

    2001-10-09

    The binding of tumor necrosis factor alpha (TNF-alpha) to the type-1 TNF receptor (TNFRc1) plays an important role in inflammation. Despite the clinical success of biologics (antibodies, soluble receptors) for treating TNF-based autoimmune conditions, no potent small molecule antagonists have been developed. Our screening of chemical libraries revealed that N-alkyl 5-arylidene-2-thioxo-1,3-thiazolidin-4-ones were antagonists of this protein-protein interaction. After chemical optimization, we discovered IW927, which potently disrupted the binding of TNF-alpha to TNFRc1 (IC(50) = 50 nM) and also blocked TNF-stimulated phosphorylation of Ikappa-B in Ramos cells (IC(50) = 600 nM). This compound did not bind detectably to the related cytokine receptors TNFRc2 or CD40, and did not display any cytotoxicity at concentrations as high as 100 microM. Detailed evaluation of this and related molecules revealed that compounds in this class are "photochemically enhanced" inhibitors, in that they bind reversibly to the TNFRc1 with weak affinity (ca. 40-100 microM) and then covalently modify the receptor via a photochemical reaction. We obtained a crystal structure of IV703 (a close analog of IW927) bound to the TNFRc1. This structure clearly revealed that one of the aromatic rings of the inhibitor was covalently linked to the receptor through the main-chain nitrogen of Ala-62, a residue that has already been implicated in the binding of TNF-alpha to the TNFRc1. When combined with the fact that our inhibitors are reversible binders in light-excluded conditions, the results of the crystallography provide the basis for the rational design of nonphotoreactive inhibitors of the TNF-alpha-TNFRc1 interaction.

  2. Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product

    PubMed Central

    Hung, Chuan-Tien; Kung, Yu-An; Li, Mei-Ling; Lee, Kuo-Ming; Liu, Shih-Tung; Shih, Shin-Ru

    2016-01-01

    The 5' untranslated region (5' UTR) of the enterovirus 71 (EV71) RNA genome contains an internal ribosome entry site (IRES) that is indispensable for viral protein translation. Due to the limited coding capacity of their RNA genomes, EV71 and other picornaviruses typically recruit host factors, known as IRES trans-acting factors (ITAFs), to mediate IRES-dependent translation. Here, we show that EV71 viral proteinase 2A is capable of cleaving far upstream element-binding protein 1 (FBP1), a positive ITAF that directly binds to the EV71 5' UTR linker region to promote viral IRES-driven translation. The cleavage occurs at the Gly-371 residue of FBP1 during the EV71 infection process, and this generates a functional cleavage product, FBP11-371. Interestingly, the cleavage product acts to promote viral IRES activity. Footprinting analysis and gel mobility shift assay results showed that FBP11-371 similarly binds to the EV71 5' UTR linker region, but at a different site from full-length FBP1; moreover, FBP1 and FBP11-371 were found to act additively to promote IRES-mediated translation and virus yield. Our findings expand the current understanding of virus-host interactions with regard to viral recruitment and modulation of ITAFs, and provide new insights into translational control during viral infection. PMID:27780225

  3. A valid strategy for precise identifications of transcription factor binding sites in combinatorial regulation using bioinformatic and experimental approaches

    PubMed Central

    2013-01-01

    Background Transcription factor (TF) binding sites (cis element) play a central role in gene regulation, and eukaryotic organisms frequently adapt a combinatorial regulation to render sophisticated local gene expression patterns. Knowing the precise cis element on a distal promoter is a prerequisite for studying a typical transcription process; however, identifications of cis elements have lagged behind those of their associated trans acting TFs due to technical difficulties. Consequently, gene regulations via combinatorial TFs, as widely observed across biological processes, have remained vague in many cases. Results We present here a valid strategy for identifying cis elements in combinatorial TF regulations. It consists of bioinformatic searches of available databases to generate candidate cis elements and tests of the candidates using improved experimental assays. Taking the MYB and the bHLH that collaboratively regulate the anthocyanin pathway genes as examples, we demonstrate how candidate cis motifs for the TFs are found on multi-specific promoters of chalcone synthase (CHS) genes, and how to experimentally test the candidate sites by designing DNA fragments hosting the candidate motifs based on a known promoter (us1 allele of Ipomoea purpurea CHS-D in our case) and applying site-mutagenesis at the motifs. It was shown that TF-DNA interactions could be unambiguously analyzed by assays of electrophoretic mobility shift (EMSA) and dual-luciferase transient expressions, and the resulting evidence precisely delineated a cis element. The cis element for R2R3 MYBs including Ipomoea MYB1 and Magnolia MYB1, for instance, was found to be ANCNACC, and that for bHLHs (exemplified by Ipomoea bHLH2 and petunia AN1) was CACNNG. A re-analysis was conducted on previously reported promoter segments recognized by maize C1 and apple MYB10, which indicated that cis elements similar to ANCNACC were indeed present on these segments, and tested positive for their bindings to

  4. Analysis of transcription-factor binding-site evolution by using the Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2016-12-01

    We investigate a quasi-species mutation-selection model of transcription-factor binding-site evolution. By considering the mesa and the crater fitness landscapes designed to describe these binding sites and point mutations, we derive an evolution equation for the population distribution of binding sequences. In the long-length limit, the evolution equation is replaced by a Hamilton-Jacobi equation which we solve for the stationary state solution. From the stationary solution, we derive the population distributions and find that an error threshold, separating populations in which the binding site does or does not evolve, only exists for certain values of the fitness parameters. A phase diagram in this parameter space is derived and shows a critical line below which no error threshold exists. We also investigate the evolution of multiple binding sites for the same transcription factor. For two binding sites, we perform an analysis similar to that for a single site and determine a phase diagram showing different phases with both, one, or no binding sites selected. In the phase diagram, the phase boundary between the one-or-two selected site phases is qualitatively different for the mesa and the crater fitness landscapes. As fitness benefits for a second bound transcription factor tend to zero, the minimum mutation rate at which the two-site phase occurs diverges in the mesa landscape whereas the mutation rate at the phase boundary tends to a finite value for the crater landscape.

  5. A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens

    PubMed Central

    Konar, Monica; Rossi, Raffaella; Walter, Helen; Pajon, Rolando; Beernink, Peter T.

    2015-01-01

    Factor H binding protein (FHbp) is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH) transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding of control anti-FHbp monoclonal antibodies. We sequenced the gene encoding FHbp from selected clones and introduced the mutations into a soluble FHbp construct. Using this approach, we identified several new mutant FHbp vaccine antigens that had very low binding of FH as measured by ELISA and surface plasmon resonance. The new mutant FHbp antigens elicited protective antibody responses in human FH transgenic mice that were up to 20-fold higher than those elicited by the wild-type FHbp antigen. This approach offers the potential to discover mutant antigens that might not be predictable even with protein structural information and potentially can be applied to other microbial vaccine antigens that bind host proteins. PMID:26057742

  6. Binding of factor VIII to von willebrand factor is enabled by cleavage of the von Willebrand factor propeptide and enhanced by formation of disulfide-linked multimers.

    PubMed

    Bendetowicz, A V; Morris, J A; Wise, R J; Gilbert, G E; Kaufman, R J

    1998-07-15

    von Willebrand factor (vWF) is a multimeric adhesive glycoprotein with one factor VIII binding site/subunit. Prior reports suggest that posttranslational modifications of vWF, including formation of N-terminal intersubunit disulfide bonds and subsequent cleavage of the propeptide, influence availability and/or affinity of factor VIII binding sites. We found that deletion of the vWF propeptide produced a dimeric vWF molecule lacking N-terminal intersubunit disulfide bonds. This molecule bound fluorescein-labeled factor VIII with sixfold lower affinity than multimeric vWF in an equilibrium flow cytometry assay (approximate KDs, 5 nmol/L v 0.9 nmol/L). Coexpression of propeptide-deleted vWF with the vWF propeptide in trans yielded multimeric vWF that displayed increased affinity for factor VIII. Insertion of an alanine residue at the N-terminus of the mature vWF subunit destroyed binding to factor VIII, indicating that the native mature N-terminus is required for factor VIII binding. The requirement for vWF propeptide cleavage was shown by (1) a point mutation of the vWF propeptide cleavage site yielding pro-vWF that was defective in factor VIII binding and (2) correlation between efficiency of intracellular propeptide cleavage and factor VIII binding. Furthermore, in a cell-free system, addition of the propeptide-cleaving enzyme PACE/furin enabled factor VIII binding in parallel with propeptide cleavage. Our results indicate that high-affinity factor VIII binding sites are located on N-terminal disulfide-linked vWF subunits from which the propeptide has been cleaved.

  7. Region-dependent dynamics of cAMP response element-binding protein phosphorylation in the basal ganglia

    PubMed Central

    Liu, Fu-Chin; Graybiel, Ann M.

    1998-01-01

    The cAMP response element-binding protein (CREB) is an activity-dependent transcription factor that is involved in neural plasticity. The kinetics of CREB phosphorylation have been suggested to be important for gene activation, with sustained phosphorylation being associated with downstream gene expression. If so, the duration of CREB phosphorylation might serve as an indicator for time-sensitive plastic changes in neurons. To screen for regions potentially involved in dopamine-mediated plasticity in the basal ganglia, we used organotypic slice cultures to study the patterns of dopamine- and calcium-mediated CREB phosphorylation in the major subdivisions of the striatum. Different durations of CREB phosphorylation were evoked in the dorsal and ventral striatum by activation of dopamine D1-class receptors. The same D1 stimulus elicited (i) transient phosphorylation (≤15 min) in the matrix of the dorsal striatum; (ii) sustained phosphorylation (≤2 hr) in limbic-related structures including striosomes, the nucleus accumbens, the fundus striati, and the bed nucleus of the stria terminalis; and (iii) prolonged phosphorylation (up to 4 hr or more) in cellular islands in the olfactory tubercle. Elevation of Ca2+ influx by stimulation of L-type Ca2+ channels, NMDA, or KCl induced strong CREB phosphorylation in the dorsal striatum but not in the olfactory tubercle. These findings differentiate the response of CREB to dopamine and calcium signals in different striatal regions and suggest that dopamine-mediated CREB phosphorylation is persistent in limbic-related regions of the neonatal basal ganglia. The downstream effects activated by persistent CREB phosphorylation may include time-sensitive neuroplasticity modulated by dopamine. PMID:9539803

  8. Response Element Composition Governs Correlations between Binding Site Affinity and Transcription in Glucocorticoid Receptor Feed-forward Loops.

    PubMed

    Sasse, Sarah K; Zuo, Zheng; Kadiyala, Vineela; Zhang, Liyang; Pufall, Miles A; Jain, Mukesh K; Phang, Tzu L; Stormo, Gary D; Gerber, Anthony N

    2015-08-07

    Combinatorial gene regulation through feed-forward loops (FFLs) can bestow specificity and temporal control to client gene expression; however, characteristics of binding sites that mediate these effects are not established. We previously showed that the glucocorticoid receptor (GR) and KLF15 form coherent FFLs that cooperatively induce targets such as the amino acid-metabolizing enzymes AASS and PRODH and incoherent FFLs exemplified by repression of MT2A by KLF15. Here, we demonstrate that GR and KLF15 physically interact and identify low affinity GR binding sites within glucocorticoid response elements (GREs) for PRODH and AASS that contribute to combinatorial regulation with KLF15. We used deep sequencing and electrophoretic mobility shift assays to derive in vitro GR binding affinities across sequence space. We applied these data to show that AASS GRE activity correlated (r(2) = 0.73) with predicted GR binding affinities across a 50-fold affinity range in transfection assays; however, the slope of the linear relationship more than doubled when KLF15 was expressed. Whereas activity of the MT2A GRE was even more strongly (r(2) = 0.89) correlated with GR binding site affinity, the slope of the linear relationship was sharply reduced by KLF15, consistent with incoherent FFL logic. Thus, GRE architecture and co-regulator expression together determine the functional parameters that relate GR binding site affinity to hormone-induced transcriptional responses. Utilization of specific affinity response functions and GR binding sites by FFLs may contribute to the diversity of gene expression patterns within GR-regulated transcriptomes.

  9. Molecular docking studies in factor XIa binding site

    NASA Astrophysics Data System (ADS)

    Balaji, Govardhan A.; Balaji, Vitukudi N.; Rao, Shashidhar N.

    2016-03-01

    Factor XIa inhibitors have been identified to have potential as anticoagulants with robust efficacy and low bleeding risks. In light of their significance and the availability of their 3-D X-ray data in the PDB, we present molecular docking studies carried out with a view to obtain docking protocols that will successfully reproduce the experimentally observed protein-ligand interactions in the case of various X-ray ligands. In this context, we have specifically investigated the efficacy of various cross-docking protocols in reproducing experimental data. Our studies demonstrate that an ensemble of the three apo proteins is capable of accurately docking a majority of the X-ray ligands accurately without invoking any additional conformational flexibility than that present in their experimental structures. Further, we demonstrate that such an ensemble is successfully able to enrich a collection of known active factor XIa inhibitors embedded in a decoy database of drug-like molecules.

  10. rVISTA 2.0: evolutionary analysis of transcription factor binding sites.

    PubMed

    Loots, Gabriela G; Ovcharenko, Ivan

    2004-07-01

    Identifying and characterizing the transcription factor binding site (TFBS) patterns of cis-regulatory elements represents a challenge, but holds promise to reveal the regulatory language the genome uses to dictate transcriptional dynamics. Several studies have demonstrated that regulatory modules are under positive selection and, therefore, are often conserved between related species. Using this evolutionary principle, we have created a comparative tool, rVISTA, for analyzing the regulatory potential of noncoding sequences. Our ability to experimentally identify functional noncoding sequences is extremely limited, therefore, rVISTA attempts to fill this great gap in genomic analysis by offering a powerful approach for eliminating TFBSs least likely to be biologically relevant. The rVISTA tool combines TFBS predictions, sequence comparisons and cluster analysis to identify noncoding DNA regions that are evolutionarily conserved and present in a specific configuration within genomic sequences. Here, we present the newly developed version 2.0 of the rVISTA tool, which can process alignments generated by both the zPicture and blastz alignment programs or use pre-computed pairwise alignments of several vertebrate genomes available from the ECR Browser and GALA database. The rVISTA web server is closely interconnected with the TRANSFAC database, allowing users to either search for matrices present in the TRANSFAC library collection or search for user-defined consensus sequences. The rVISTA tool is publicly available at http://rvista.dcode.org/.

  11. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus.

    PubMed

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-07-27

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains).

  12. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.

    PubMed

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A; Brodsky, Michael H; Sinha, Saurabh

    2013-09-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein-protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action.

  13. 5-Aminolaevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB).

    PubMed Central

    Giono, L E; Varone, C L; Cánepa, E T

    2001-01-01

    The first and rate-controlling step of the haem biosynthetic pathway in mammals and fungi is catalysed by the mitochondrial-matrix enzyme 5-aminolaevulinate synthase (ALAS). The purpose of this work was to explore the molecular mechanisms involved in the cAMP regulation of rat housekeeping ALAS gene expression. Thus we have examined the ALAS promoter for putative transcription-factor-binding sites that may regulate transcription in a cAMP-dependent protein kinase (PKA)-induced context. Applying both transient transfection assays with a chloramphenicol acetyltransferase reporter gene driven by progressive ALAS promoter deletions in HepG2, and electrophoresis mobility-shift assays we have identified two putative cAMP-response elements (CREs) at positions -38 and -142. Functional analysis showed that both CRE-like sites were necessary for complete PKA induction, but only one for basal expression. Co-transfection with a CRE-binding protein (CREB) expression vector increased PKA-mediated induction of ALAS promoter transcriptional activity. However, in the absence of co-transfected PKA, CREB worked as a specific repressor for ALAS promoter activity. A CREB mutant deficient in a PKA phosphorylation site was unable to induce expression of the ALAS gene but could inhibit non-stimulated promoter activity. Furthermore, a DNA-binding mutant of CREB did not interfere with ALAS promoter basal activity. Site-directed-mutagenesis studies showed that only the nearest element to the transcription start site was able to inhibit the activity of the promoter. Therefore, we conclude that CREB, through its binding to CRE-like sites, mediates the effect of cAMP on ALAS gene expression. Moreover, we propose that CREB could also act as a repressor of ALAS transcription, but is able to reverse its role after PKA activation. Dephosphorylated CREB would interfere in a spatial-disposition-dependent manner with the transcriptional machinery driving inhibition of gene expression. PMID:11139395

  14. Bile acids down-regulate caveolin-1 in esophageal epithelial cells through sterol responsive element-binding protein.

    PubMed

    Prade, Elke; Tobiasch, Moritz; Hitkova, Ivana; Schäffer, Isabell; Lian, Fan; Xing, Xiangbin; Tänzer, Marc; Rauser, Sandra; Walch, Axel; Feith, Marcus; Post, Stefan; Röcken, Christoph; Schmid, Roland M; Ebert, Matthias P A; Burgermeister, Elke

    2012-05-01

    Bile acids are synthesized from cholesterol and are major risk factors for Barrett adenocarcinoma (BAC) of the esophagus. Caveolin-1 (Cav1), a scaffold protein of membrane caveolae, is transcriptionally regulated by cholesterol via sterol-responsive element-binding protein-1 (SREBP1). Cav1 protects squamous epithelia by controlling cell growth and stabilizing cell junctions and matrix adhesion. Cav1 is frequently down-regulated in human cancers; however, the molecular mechanisms that lead to this event are unknown. We show that the basal layer of the nonneoplastic human esophageal squamous epithelium expressed Cav1 mainly at intercellular junctions. In contrast, Cav1 was lost in 95% of tissue specimens from BAC patients (n = 100). A strong cytoplasmic expression of Cav1 correlated with poor survival in a small subgroup (n = 5) of BAC patients, and stable expression of an oncogenic Cav1 variant (Cav1-P132L) in the human BAC cell line OE19 promoted proliferation. Cav1 was also detectable in immortalized human squamous epithelial, Barrett esophagus (CPC), and squamous cell carcinoma cells (OE21), but was low in BAC cell lines (OE19, OE33). Mechanistically, bile acids down-regulated Cav1 expression by inhibition of the proteolytic cleavage of 125-kDa pre-SREBP1 from the endoplasmic reticulum/Golgi apparatus and nuclear translocation of active 68-kDa SREBP1. This block in SREBP1's posttranslational processing impaired transcriptional activation of SREBP1 response elements in the proximal human Cav1 promoter. Cav1 was also down-regulated in esophagi from C57BL/6 mice on a diet enriched with 1% (wt/wt) chenodeoxycholic acid. Mice deficient for Cav1 or the nuclear bile acid receptor farnesoid X receptor showed hyperplasia and hyperkeratosis of the basal cell layer of esophageal epithelia, respectively. These data indicate that bile acid-mediated down-regulation of Cav1 marks early changes in the squamous epithelium, which may contribute to onset of Barrett esophagus

  15. Mechanisms of lung neutrophil activation after hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-kappa B, and cyclic AMP response element binding protein.

    PubMed

    Shenkar, R; Abraham, E

    1999-07-15

    Acute inflammatory lung injury occurs frequently in the setting of severe infection or blood loss. Accumulation of activated neutrophils in the lungs and increased pulmonary proinflammatory cytokine levels are major characteristics of acute lung injury. In the present experiments, we examined mechanisms leading to neutrophil accumulation and activation in the lungs after endotoxemia or hemorrhage. Levels of IL-1 beta, TNF-alpha, and macrophage inflammatory protein-2 mRNA were increased in lung neutrophils from endotoxemic or hemorrhaged mice compared with those present in lung neutrophils from control mice or in peripheral blood neutrophils from endotoxemic, hemorrhaged, or control mice. The transcriptional regulatory factors NF-kappa B and cAMP response element binding protein were activated in lung but not blood neutrophils after hemorrhage or endotoxemia. Xanthine oxidase inhibition, achieved by feeding allopurinol or tungsten-containing diets, did not affect neutrophil trafficking to the lungs after hemorrhage or endotoxemia. Xanthine oxidase inhibition did prevent hemorrhage- but not endotoxemia-induced increases in proinflammatory cytokine expression among lung neutrophils. Hemorrhage- or endotoxemia-associated activation of NF-kappa B in lung neutrophils was not affected by inhibition of xanthine oxidase. cAMP response element binding protein activation was increased after hemorrhage, but not endotoxemia, in mice fed xanthine oxidase-inhibiting diets. Our results indicate that xanthine oxidase modulates cAMP response element binding protein activation and proinflammatory cytokine expression in lung neutrophils after hemorrhage, but not endotoxemia. These findings suggest that the mechanisms leading to acute inflammatory lung injury after hemorrhage differ from those associated with endotoxemia.

  16. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  17. Binding of the polypyrimidine tract-binding protein-associated splicing factor (PSF) to the hepatitis delta virus RNA

    SciTech Connect

    Greco-Stewart, Valerie S.; Thibault, Catherine St-Laurent; Pelchat, Martin . E-mail: mpelchat@uottawa.ca

    2006-12-20

    The hepatitis delta virus (HDV) has a very limited protein coding capacity and must rely on host proteins for its replication. A ribonucleoprotein complex was detected following UV cross-linking between HeLa nuclear proteins and an RNA corresponding to the right terminal stem-loop domain of HDV genomic RNA. Mass spectrometric analysis of the complex revealed the polypyrimidine tract-binding protein-associated splicing factor (PSF) as a novel HDV RNA-interacting protein. Co-immunoprecipitation demonstrated the interaction between HDV RNA and PSF both in vitro in HeLa nuclear extract and in vivo within HeLa cells containing both polarities of the HDV genome. Analysis of the binding of various HDV-derived RNAs to purified, recombinant PSF further confirmed the specificity of the interaction and revealed that PSF directly binds to the terminal stem-loop domains of both polarities of HDV RNA. Our findings provide evidence of the involvement of a host mRNA processing protein in the HDV life cycle.

  18. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro.

    PubMed

    Roth, G; Kotzka, J; Kremer, L; Lehr, S; Lohaus, C; Meyer, H E; Krone, W; Müller-Wieland, D

    2000-10-27

    Sterol regulatory element-binding protein (SREBP)-1a is a transcription factor sensing cellular cholesterol levels and integrating gene regulatory signals mediated by MAP kinase cascades. Here we report the identification of serine 117 in SREBP-1a as the major phosphorylation site of the MAP kinases Erk1/2. This site was identified by nanoelectrospray mass spectrometry and peptide sequencing of recombinant fusion proteins phosphorylated by Erk1/2 in vitro. Serine 117 was verified as the major phosphorylation site by in vitro mutagenesis. Mutation of serine 117 to alanine abolished Erk2-mediated phosphorylation in vitro and the MAP kinase-related transcriptional activation of SREBP-1a by insulin and platelet-derived growth factor in vivo. Our data indicate that the MAP kinase-mediated effects on SREBP-1a-regulated target genes are linked to this phosphorylation site.

  19. Toward an atomistic model for predicting transcription-factor binding sites.

    PubMed

    Endres, Robert G; Schulthess, Thomas C; Wingreen, Ned S

    2004-11-01

    Identifying the specific DNA-binding sites of transcription-factor proteins is essential to understanding the regulation of gene expression in the cell. Bioinformatics approaches are fast compared to experiments, but require prior knowledge of multiple binding sites for each protein. Here, we present an atomistic force-field method to predict binding sites based only on the X-ray structure of a related bound complex. Specific flexible contacts between the protein and DNA are modeled by a library of amino acid side-chain rotamers. Using the example of the mouse transcription factor, Zif268, a well-studied zinc-finger protein, we show that the protein sequence alone, without the detailed experimental structure, gives a strong bias toward the consensus binding site.

  20. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor

    PubMed Central

    Sayou, Camille; Nanao, Max H.; Jamin, Marc; Posé, David; Thévenon, Emmanuel; Grégoire, Laura; Tichtinsky, Gabrielle; Denay, Grégoire; Ott, Felix; Peirats Llobet, Marta; Schmid, Markus; Dumas, Renaud; Parcy, François

    2016-01-01

    Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF. PMID:27097556

  1. De Novo Identification and Biophysical Characterization of Transcription Factor Binding Sites with Microfluidic Affinity Analysis

    PubMed Central

    Fordyce, Polly M.; Gerber, Doron; Tran, Danh; Zheng, Jiashun; Li, Hao; DeRisi, Joseph L.; Quake, Stephen R.

    2010-01-01

    Gene expression is regulated in part by protein transcription factors (TFs) that bind target regulatory DNA sequences. Predicting DNA binding sites and affinities from transcription factor sequence or structure is difficult; therefore, experimental data are required to link TFs to target sequences. We present a microfluidics-based approach for de novo discovery and quantitative biophysical characterization of DNA target sequences. We validated our technique by measuring sequence preferences for 28 S. cerevisiae TFs with a variety of DNA binding domains, including several that have proven difficult to study via other techniques. For each TF, we measured relative binding affinities to oligonucleotides covering all possible 8-bp DNA sequences to create a comprehensive map of sequence preferences; for 4 TFs, we also determined absolute affinities. We anticipate that these data and future use of this technique will provide information essential for understanding TF specificity, improving identification of regulatory sites, and reconstructing regulatory interactions. PMID:20802496

  2. Binding site number variation and high-affinity binding consensus of Myb-SANT-like transcription factor Adf-1 in Drosophilidae

    PubMed Central

    Lang, Michael; Juan, Elvira

    2010-01-01

    There is a growing interest in the evolution of transcription factor binding sites and corresponding functional change of transcriptional regulation. In this context, we have examined the structural changes of the ADF-1 binding sites at the Adh promoters of Drosophila funebris and D. virilis. We detected an expanded footprinted region in D. funebris that contains various adjacent binding sites with different binding affinities. ADF-1 was described to direct sequence-specific DNA binding to sites consisting of the multiple trinucleotide repeat . The ADF-1 recognition sites with high binding affinity differ from this trinucleotide repeat consensus sequence and a new consensus sequence is proposed for the high-affinity ADF-1 binding sites. In vitro transcription experiments with the D. funebris and D. virilis ADF-1 binding regions revealed that stronger ADF-1 binding to the expanded D. funebris ADF-1 binding region only moderately lead to increased transcriptional activity of the Adh gene. The potential of this regional expansion is discussed in the context of different ADF-1 cellular concentrations and maintenance of the ADF-1 stimulus. Altogether, evolutionary change of ADF-1 binding regions involves both, rearrangements of complex binding site cluster and also nucleotide substitutions within sites that lead to different binding affinities. PMID:20542916

  3. Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model.

    PubMed

    de-Carvalho, Jorge; Rodrigues, Rogério M M; Tomé, Brigitte; Henriques, Sílvia F; Mira, Nuno P; Sá-Correia, Isabel; Ferreira, Guilherme N M

    2014-04-21

    A novel quartz crystal microbalance (QCM) analytical method is developed based on the transmission line model (TLM) algorithm to analyze the binding of transcription factors (TFs) to immobilized DNA oligoduplexes. The method is used to characterize the mechanical properties of biological films through the estimation of the film dynamic shear moduli, G and G, and the film thickness. Using the Saccharomyces cerevisiae transcription factor Haa1 (Haa1DBD) as a biological model two sensors were prepared by immobilizing DNA oligoduplexes, one containing the Haa1 recognition element (HRE(wt)) and another with a random sequence (HRE(neg)) used as a negative control. The immobilization of DNA oligoduplexes was followed in real time and we show that DNA strands initially adsorb with low or non-tilting, laying flat close to the surface, which then lift-off the surface leading to final film tilting angles of 62.9° and 46.7° for HRE(wt) and HRE(neg), respectively. Furthermore we show that the binding of Haa1DBD to HRE(wt) leads to a more ordered and compact film, and forces a 31.7° bending of the immobilized HRE(wt) oligoduplex. This work demonstrates the suitability of the QCM to monitor the specific binding of TFs to immobilized DNA sequences and provides an analytical methodology to study protein-DNA biophysics and kinetics.

  4. Malaria parasites possess a telomere repeat-binding protein that shares ancestry with transcription factor IIIA.

    PubMed

    Bertschi, Nicole L; Toenhake, Christa G; Zou, Angela; Niederwieser, Igor; Henderson, Rob; Moes, Suzette; Jenoe, Paul; Parkinson, John; Bartfai, Richard; Voss, Till S

    2017-03-13

    Telomere repeat-binding factors (TRFs) are essential components of the molecular machinery that regulates telomere function. TRFs are widely conserved across eukaryotes and bind duplex telomere repeats via a characteristic MYB-type domain. Here, we identified the telomere repeat-binding protein PfTRZ in the malaria parasite Plasmodium falciparum, a member of the Alveolate phylum for which TRFs have not been described so far. PfTRZ lacks an MYB domain and binds telomere repeats via a C2H2-type zinc finger domain instead. In vivo, PfTRZ binds with high specificity to the telomeric tract and to interstitial telomere repeats upstream of subtelomeric virulence genes. Conditional depletion experiments revealed that PfTRZ regulates telomere length homeostasis and is required for efficient cell cycle progression. Intriguingly, we found that PfTRZ also binds to and regulates the expression of 5S rDNA genes. Combined with detailed phylogenetic analyses, our findings identified PfTRZ as a remote functional homologue of the basic transcription factor TFIIIA, which acquired a new function in telomere maintenance early in the apicomplexan lineage. Our work sheds unexpected new light on the evolution of telomere repeat-binding proteins and paves the way for dissecting the presumably divergent mechanisms regulating telomere functionality in one of the most deadly human pathogens.

  5. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis.

    PubMed

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama

    2004-09-01

    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  6. Identification of novel regulatory NFAT and TFII-I binding elements in the calbindin-D28k promoter in response to serum deprivation*

    PubMed Central

    Guo, Jianfei; Öz, Orhan K.

    2015-01-01

    Calbindin-D28k, a key regulator of calcium homeostasis plays a cytoprotective role in various tissues. We used serum free (SFM) and charcoal stripped serum (csFBS) culture media as models of cellular stress to modulate calbindin D28k expression and identify regulatory cis-elements and trans-acting factors in kidney and beta cells. The murine calbindin-D28k promoter activity was significantly upregulated under SFM or csFBS condition. Promoter analysis revealed evolutionary conserved regulatory cis-elements and deletion of 23nt from +117/+139 as critical for basal transcription. Bioinformatics analysis of the promoter revealed conserved NFAT and TFII regulators elements. Forced expression of NFAT stimulated promoter activity. Inhibition of NFAT transcriptional activity by FK506 attenuated calbindin-D28k expression. TFII-I was shown to be necessary for basal promoter activity and to act cooperatively with NFAT. Using chromatin immunoprecipitation (ChIP) assays, NFAT was shown to bind to both proximal and distal promoter regions. ChIP assays also revealed recruitment of TFII to the −36/+139 region. Knockdown of TFII-I decreased promoter activity. In summary, calbindin-D28k expression during serum deprivation is partly regulated by NFAT and TF-II. This regulation may be important in vivo during ischemia and growth factor withdrawal to regulate cellular function and maintenance. PMID:26260319

  7. Identification of novel regulatory NFAT and TFII-I binding elements in the calbindin-D28k promoter in response to serum deprivation.

    PubMed

    Hajibeigi, Asghar; Dioum, Elhadji M; Guo, Jianfei; Öz, Orhan K

    2015-09-25

    Calbindin-D28k, a key regulator of calcium homeostasis plays a cytoprotective role in various tissues. We used serum free (SFM) and charcoal stripped serum (csFBS) culture media as models of cellular stress to modulate calbindin D28k expression and identify regulatory cis-elements and trans-acting factors in kidney and beta cells. The murine calbindin-D28k promoter activity was significantly upregulated under SFM or csFBS condition. Promoter analysis revealed evolutionary conserved regulatory cis-elements and deletion of 23 nt from +117/+139 as critical for basal transcription. Bioinformatics analysis of the promoter revealed conserved NFAT and TFII regulators elements. Forced expression of NFAT stimulated promoter activity. Inhibition of NFAT transcriptional activity by FK506 attenuated calbindin-D28k expression. TFII-I was shown to be necessary for basal promoter activity and to act cooperatively with NFAT. Using chromatin immunoprecipitation (ChIP) assays, NFAT was shown to bind to both proximal and distal promoter regions. ChIP assays also revealed recruitment of TFII to the -36/+139 region. Knockdown of TFII-I decreased promoter activity. In summary, calbindin-D28k expression during serum deprivation is partly regulated by NFAT and TF-II. This regulation may be important in vivo during ischemia and growth factor withdrawal to regulate cellular function and maintenance.

  8. Activation of sterol regulatory element-binding protein 1c and fatty acid synthase transcription by hepatitis C virus non-structural protein 2.

    PubMed

    Oem, Jae-Ku; Jackel-Cram, Candice; Li, Yi-Ping; Zhou, Yan; Zhong, Jin; Shimano, Hitoshi; Babiuk, Lorne A; Liu, Qiang

    2008-05-01

    Transcriptional factor sterol regulatory element-binding protein 1c (SREBP-1c) activates the transcription of lipogenic genes, including fatty acid synthase (FAS). Hepatitis C virus (HCV) infection is often associated with lipid accumulation within the liver, known as steatosis in the clinic. The molecular mechanisms of HCV-associated steatosis are not well characterized. Here, we showed that HCV non-structural protein 2 (NS2) activated SREBP-1c transcription in human hepatic Huh-7 cells as measured by using a human SREBP-1c promoter-luciferase reporter plasmid. We further showed that sterol regulatory element (SRE) and liver X receptor element (LXRE) in the SREBP-1c promoter were involved in SREBP-1c activation by HCV NS2. Furthermore, expression of HCV NS2 resulted in the upregulation of FAS transcription. We also showed that FAS upregulation by HCV NS2 was SREBP-1-dependent since deleting the SRE sequence in a FAS promoter and expressing a dominant-negative SREBP-1 abrogated FAS promoter upregulation by HCV NS2. Taken together, our results suggest that HCV NS2 can upregulate the transcription of SREBP-1c and FAS, and thus is probably a contributing factor for HCV-associated steatosis.

  9. Pyrazole-based cathepsin S inhibitors with arylalkynes as P1 binding elements

    SciTech Connect

    Ameriks, Michael K.; Axe, Frank U.; Bembenek, Scott D.; Edwards, James P.; Gu, Yin; Karlsson, Lars; Randal, Mike; Sun, Siquan; Thurmond, Robin L.; Zhu, Jian

    2010-01-12

    A crystal structure of 1 bound to a Cys25Ser mutant of cathepsin S helped to elucidate the binding mode of a previously disclosed series of pyrazole-based CatS inhibitors and facilitated the design of a new class of arylalkyne analogs. Optimization of the alkyne and tetrahydropyridine portions of the pharmacophore provided potent CatS inhibitors (IC{sub 50} = 40-300 nM), and an X-ray structure of 32 revealed that the arylalkyne moiety binds in the S1 pocket of the enzyme.

  10. Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53

    PubMed Central

    Wong, Tuck Seng; Rajagopalan, Sridharan; Freund, Stefan M.; Rutherford, Trevor J.; Andreeva, Antonina; Townsley, Fiona M.; Petrovich, Miriana; Fersht, Alan R.

    2009-01-01

    Human mitochondrial transcription factor A (TFAM) is a multi-functional protein, involved in different aspects of maintaining mitochondrial genome integrity. In this report, we characterized TFAM and its interaction with tumor suppressor p53 using various biophysical methods. DNA-free TFAM is a thermally unstable protein that is in equilibrium between monomers and dimers. Self-association of TFAM is modulated by its basic C-terminal tail. The DNA-binding ability of TFAM is mainly contributed by its first HMG-box, while the second HMG-box has low-DNA-binding capability. We also obtained backbone resonance assignments from the NMR spectra of both HMG-boxes of TFAM. TFAM binds primarily to the N-terminal transactivation domain of p53, with a Kd of 1.95 ± 0.19 μM. The C-terminal regulatory domain of p53 provides a secondary binding site for TFAM. The TFAM–p53-binding interface involves both TAD1 and TAD2 sub-domains of p53. Helices α1 and α2 of the HMG-box constitute the main p53-binding region. Since both TFAM and p53 binds preferentially to distorted DNA, the TFAM–p53 interaction is implicated in DNA damage and repair. In addition, the DNA-binding mechanism of TFAM and biological relevance of the TFAM–p53 interaction are discussed. PMID:19755502

  11. Evaluating the impact of single nucleotide variants on transcription factor binding

    PubMed Central

    Shi, Wenqiang; Fornes, Oriol; Mathelier, Anthony; Wasserman, Wyeth W.

    2016-01-01

    Diseases and phenotypes caused by disrupted transcription factor (TF) binding are being identified, but progress is hampered by our limited capacity to predict such functional alterations. Improving predictions may be dependent on expanding the set of bona fide TF binding alterations. Allele-specific binding (ASB) events, where TFs preferentially bind to one of the two alleles at heterozygous sites, reveal the impact of sequence variations in altered TF binding. Here, we present the largest ASB compilation to our knowledge, 10 765 ASB events retrieved from 45 ENCODE ChIP-Seq data sets. Our analysis showed that ASB events were frequently associated with motif alterations of the ChIP'ed TF and potential partner TFs, allelic difference of DNase I hypersensitivity and allelic difference of histone modifications. For TF dimers bound symmetrically to DNA, ASB data revealed that central positions of the TF binding motifs were disproportionately important for binding. Lastly, the impact of variation on TF binding was predicted by a classification model incorporating all the investigated features of ASB events. Classification models using only DNase I hypersensitivity and sequence data exhibited predictive accuracy approaching the models with substantially more features. Taken together, the combination of ASB data and the classification model represents an important step toward elucidating regulatory variants across the human genome. PMID:27492288

  12. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  13. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    PubMed

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.

  14. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    PubMed Central

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  15. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants.

    PubMed

    Noguero, Mélanie; Atif, Rana Muhammad; Ochatt, Sergio; Thompson, Richard D

    2013-08-01

    The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin.

  16. Structural characterization of a unique interface between carbohydrate response element-binding protein (ChREBP) and 14-3-3β protein.

    PubMed

    Ge, Qiang; Huang, Nian; Wynn, R Max; Li, Yang; Du, Xinlin; Miller, Bonnie; Zhang, Hong; Uyeda, Kosaku

    2012-12-07

    Carbohydrate response element-binding protein (ChREBP) is an insulin-independent, glucose-responsive transcription factor that is expressed at high levels in liver hepatocytes where it plays a critical role in converting excess carbohydrates to fat for storage. In response to fluctuating glucose levels, hepatic ChREBP activity is regulated in large part by nucleocytoplasmic shuttling of ChREBP protein via interactions with 14-3-3 proteins. The N-terminal ChREBP regulatory region is necessary and sufficient for glucose-responsive ChREBP nuclear import and export. Here, we report the crystal structure of a complex of 14-3-3β bound to the N-terminal regulatory region of ChREBP at 2.4 Å resolution. The crystal structure revealed that the α2 helix of ChREBP (residues 117-137) adopts a well defined α-helical conformation and binds 14-3-3 in a phosphorylation-independent manner that is different from all previously characterized 14-3-3 and target protein-binding modes. ChREBP α2 interacts with 14-3-3 through both electrostatic and van der Waals interactions, and the binding is partially mediated by a free sulfate or phosphate. Structure-based mutagenesis and binding assays indicated that disrupting the observed 14-3-3 and ChREBP α2 interface resulted in a loss of complex formation, thus validating the novel protein interaction mode in the 14-3-3β·ChREBP α2 complex.

  17. Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data

    PubMed Central

    Jankowski, Aleksander; Tiuryn, Jerzy; Prabhakar, Shyam

    2016-01-01

    Motivation: Computational prediction of transcription factor (TF) binding sites in the genome remains a challenging task. Here, we present Romulus, a novel computational method for identifying individual TF binding sites from genome sequence information and cell-type–specific experimental data, such as DNase-seq. It combines the strengths of previous approaches, and improves robustness by reducing the number of free parameters in the model by an order of magnitude. Results: We show that Romulus significantly outperforms existing methods across three sources of DNase-seq data, by assessing the performance of these tools against ChIP-seq profiles. The difference was particularly significant when applied to binding site prediction for low-information-content motifs. Our method is capable of inferring multiple binding modes for a single TF, which differ in their DNase I cut profile. Finally, using the model learned by Romulus and ChIP-seq data, we introduce Binding in Closed Chromatin (BCC) as a quantitative measure of TF pioneer factor activity. Uniquely, our measure quantifies a defining feature of pioneer factors, namely their ability to bind closed chromatin. Availability and Implementation: Romulus is freely available as an R package at http://github.com/ajank/Romulus. Contact: ajank@mimuw.edu.pl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153645

  18. Nuclear factor-E2-related factor-1 mediates ascorbic acid induction of osterix expression via interaction with antioxidant-responsive element in bone cells.

    PubMed

    Xing, Weirong; Singgih, Anny; Kapoor, Anil; Alarcon, Catrina M; Baylink, David J; Mohan, Subburaman

    2007-07-27

    We recently found that deletion of the gulonolactone oxidase gene, which is involved in the synthesis of ascorbic acid (AA), was responsible for the fracture phenotype in spontaneous fracture mice. To explore the molecular mechanisms by which AA regulates osteoblast differentiation, we examined the effect of AA on osterix expression via Nrf1 (NF-E2-related factor-1) binding to antioxidant-responsive element (ARE) in bone marrow stromal (BMS) cells. AA treatment caused a 6-fold increase in osterix expression in mutant BMS cells at 24 h, which was unaffected by pretreatment with protein synthesis inhibitor. Sequence analyses of mouse osterix promoter revealed a putative ARE located at -1762 to -1733 upstream of the transcription start site to which Nrf potentially binds. A gel mobility shift assay revealed that nuclear proteins from AA-treated BMS cells bound to radiolabeled ARE much more strongly than nuclear extracts from AA-untreated cells. A chromatin immunoprecipitation assay with Nrf1 antibody confirmed the interaction of Nrf1 with the mouse osterix promoter. A reporter assay demonstrated that the promoter activity of mouse osterix containing an ARE was stimulated 4-fold by a 48-h treatment with AA in spontaneous fracture BMS cells. Treatment of mutant BMS cells with AA resulted in a 3.9-fold increase in the nuclear accumulation of Nrf1. Transfection of mutant BMS cells with Nrf1 small interfering RNA decreased Nrf1 protein by 4.5-fold, blocked AA induction of osterix expression, and impaired BMS cell differentiation. Our data provided the first experimental evidence that AA modulated osterix expression via a novel mechanism involving Nrf1 nuclear translocation and Nrf1 binding to ARE to activate genes critical for cell differentiation.

  19. Alteration of Cyclic-AMP Response Element Binding Protein in the Postmortem Brain of Subjects with Bipolar Disorder and Schizophrenia

    PubMed Central

    Ren, Xinguo; Rizavi, Hooriyah S.; Khan, Mansoor A.; Bhaumik, Runa; Dwivedi, Yogesh; Pandey, Ghanshyam N.

    2013-01-01

    Background Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). Methods We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n = 19), SZ (n = 20), and normal control (NC, n = 20) subjects. Results We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. Conclusion These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness. PMID:24148789

  20. Cyclic AMP response element-binding protein in post-mortem brain of teenage suicide victims: specific decrease in the prefrontal cortex but not the hippocampus.

    PubMed

    Pandey, Ghanshyam N; Dwivedi, Yogesh; Ren, Xinguo; Rizavi, Hooriyah S; Roberts, Rosalinda C; Conley, Robert R

    2007-10-01

    Abnormalities in both adenylyl cyclase (AC) and phosphoinositide (PI) signalling systems have been observed in the post-mortem brain of suicide victims. Cyclic AMP response element-binding protein (CREB) is a transcription factor that is activated by phosphorylating enzymes such as protein kinase A (PKA) and protein kinase C (PKC), which suggests that both AC and PI signalling systems converge at the level of CREB. CREB is involved in the transcription of many neuronally expressed genes that have been implicated in the pathophysiology of depression and suicide. Since we observed abnormalities of both PKA and PKC in the post-mortem brain of teenage suicide victims, we examined if these abnormalities are also associated with abnormalities of CREB, which is activated by these phosphorylating enzymes. We determined CRE-DNA binding using the gel shift assay, as well as protein expression of CREB using the Western blot technique, and the mRNA expression of CREB using a quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) technique in the prefrontal cortex (PFC), and hippocampus obtained from 17 teenage suicide victims and 17 matched normal control subjects. We observed that the CRE-DNA binding and the protein expression of CREB were significantly decreased in the PFC of teenage suicide victims compared with controls. There was also a significant decrease in mRNA expression of CREB in the PFC of teenage suicide victims compared with control subjects. However, there were no significant differences in CRE-DNA binding or the protein and mRNA expression of CREB in the hippocampus of teenage suicide victims compared with control subjects. These results suggest that the abnormalities of PKA, and of PKC, observed in teenage suicide victims are also associated with abnormalities of the transcription factor CREB, and that this may also cause alterations of important neuronally expressed genes, and provide further support of the signal transduction of abnormalities

  1. Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants.

    PubMed

    Lee, Hye Eun; Shin, Dongjin; Park, Sang Ryeol; Han, Sang-Eun; Jeong, Mi-Jeong; Kwon, Tack-Ryun; Lee, Seong-Kon; Park, Soo-Chul; Yi, Bu Young; Kwon, Hawk-Bin; Byun, Myung-Ok

    2007-02-23

    To identify components of the plant stress signal transduction cascade and response mechanisms, we screened plant genes using reverse Northern blot analysis, and chose the ethylene responsive element binding protein 1 (StEREBP1) for further characterization. To investigate its biological function in the potato, we performed Northern blot analysis and observed enhanced levels of transcription in response to several environmental stresses including low temperature. In vivo targeting experiments using a green fluorescent protein (GFP) reporter indicated that StEREBP1 localized to the nucleus of onion epidermal cells. StEREBP1 was found to bind to GCC and DRE/CRT cis-elements and both microarray and RT-PCR analyses indicated that overexpression of StEREBP1 induced expression of several GCC box-containing stress response genes. In addition, overexpression of StEREBP1 enhanced tolerance to cold and salt stress in transgenic potato plants. The results of this study suggest that StEREBP1 is a functional transcription factor that may be involved in abiotic stress responses in plants.

  2. Heat Shock Protein 90 Modulates Lipid Homeostasis by Regulating the Stability and Function of Sterol Regulatory Element-binding Protein (SREBP) and SREBP Cleavage-activating Protein.

    PubMed

    Kuan, Yen-Chou; Hashidume, Tsutomu; Shibata, Takahiro; Uchida, Koji; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2017-02-17

    Sterol regulatory element-binding proteins (SREBPs) are the key transcription factors that modulate lipid biosynthesis. SREBPs are synthesized as endoplasmic reticulum-bound precursors that require proteolytic activation in the Golgi apparatus. The stability and maturation of precursor SREBPs depend on their binding to SREBP cleavage-activating protein (SCAP), which escorts the SCAP-SREBP complex to the Golgi apparatus. In this study, we identified heat shock protein (HSP) 90 as a novel SREBP regulator that binds to and stabilizes SCAP-SREBP. In HepG2 cells, HSP90 inhibition led to proteasome-dependent degradation of SCAP-SREBP, which resulted in the down-regulation of SREBP target genes and the reduction in intracellular triglyceride and cholesterol levels. We also demonstrated in vivo that HSP90 inhibition decreased SCAP-SREBP protein, down-regulated SREBP target genes, and reduced lipids levels in mouse livers. We propose that HSP90 plays an indispensable role in SREBP regulation by stabilizing the SCAP-SREBP complex, facilitating the activation of SREBP to maintain lipids homeostasis.

  3. Activin inhibits binding of transcription factor Pit-1 to the growth hormone promoter.

    PubMed Central

    Struthers, R S; Gaddy-Kurten, D; Vale, W W

    1992-01-01

    Activin A is a potent growth and differentiation factor related to transforming growth factor beta. In somatotrophs, activin suppresses the biosynthesis and secretion of growth hormone (GH) and cellular proliferation. We report here that, in MtTW15 somatotrophic tumor cells, activin decreased GH mRNA levels and inhibited expression of transfected GH promoter--chloramphenicol acetyltransferase fusion genes. Deletion mapping of nucleotide sequences mediating this inhibition led to the identification of a region that has previously been characterized as binding the pituitary-specific transcription factor Pit-1/GHF-1. Characterization of nuclear factor binding to this region demonstrated that binding of Pit-1 to the GH promoter is lost on activin treatment. These results indicate that activin-induced repression of GH biosynthesis is mediated by the loss of tissue-specific transcription factor binding to the GH promoter and suggest a possible general mechanism for other activin responses, whereby activin regulates the function of other POU- or homeodomain-containing transcription factors. Images PMID:1454833

  4. Psoralens potentiate ultraviolet light-induced inhibition of epidermal growth factor binding

    SciTech Connect

    Laskin, J.D.; Lee, E.; Laskin, D.L.; Gallo, M.A.

    1986-11-01

    The psoralens, when activated by ultraviolet light of 320-400 nm (UVA light), are potent modulators of epidermal cell growth and differentiation. Previously, we reported that, in mammalian cells, these compounds bind to specific saturable high-affinity cellular receptor sites. In the present studies, we demonstrate that binding of psoralens to their receptors followed by UVA light activation is associated with inhibition of epidermal growth factor (EGF) receptor binding. Inhibition of EGF binding, which required UVA light, was rapid and dependent on the dose of UVA light (0.5-2.0 J/cm2), as well as the concentration of psoralens (10 nM to 1 microM). Higher doses of UVA light (2.0-6.0 J/cm2) by themselves were also inhibitory, indicating that psoralens potentiate the UVA-induced inhibition of EGF binding. A number of biologically active analogs of psoralen, including 8-methoxypsoralen, 5-methoxypsoralen, and 4,5',8-trimethylpsoralen, when activated by UVA light, were found to be inhibitors of binding. Inhibition of EGF binding by psoralens was observed in a variety of human and mouse cell culture lines known to possess psoralen receptors. In the epidermal-derived line PAM 212, at least two populations of receptors with different affinities for EGF were found. Psoralens and UVA light selectively inhibited binding to the higher-affinity EGF receptors, an effect analogous to that of the phorbol ester tumor promoters. As observed with phorbol esters, photoactivated psoralens appeared to inhibit EGF binding by an indirect mechanism. These data demonstrate that the psoralens and UVA light have direct biological effects on cell-surface membranes. Since EGF is a growth-regulatory peptide, the ability of psoralens and UVA light to inhibit EGF binding may underlie the biologic effects of these agents in the skin.

  5. The Study of Stability of Compression-loaded Multispan Composite Panel Upon Failure of elements Binding it to Panel Supports

    NASA Technical Reports Server (NTRS)

    Zamula, G. N.; Ierusalimsky, K. M.; Fomin, V. P.; Grishin, V. I.; Kalmykova, G. S.

    1999-01-01

    The present document is a final technical report under the NCC-1-233 research program (dated September 15, 1998; see Appendix 5) carried out within co-operation between United States'NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues similar programs, NCCW-73, NCC-1-233 and NCCW 1-233 accomplished in 1996, 1997, and 1998, respectively. The report provides results of "The study of stability of compression-loaded multispan composite panels upon failure of elements binding it to panel supports"; these comply with requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.

  6. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family

    PubMed Central

    Dai, Qi; Ren, Aiming; Westholm, Jakub O.; Duan, Hong; Patel, Dinshaw J.

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain (“BEN-solo” factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  7. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    PubMed

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2016-11-28

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.

  8. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.

    PubMed

    Bauer, Amy L; Hlavacek, William S; Unkefer, Pat J; Mu, Fangping

    2010-11-18

    An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription factor (TF). Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of SiteSleuth is a lower false positive rate.

  9. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants.

    PubMed

    Cheng, K; Koland, J G

    1998-02-15

    The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate. Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction.

  10. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants.

    PubMed Central

    Cheng, K; Koland, J G

    1998-01-01

    The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate.Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction. PMID:9461530

  11. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network

    PubMed Central

    Orian, Amir; van Steensel, Bas; Delrow, Jeffrey; Bussemaker, Harmen J.; Li, Ling; Sawado, Tomoyuki; Williams, Eleanor; Loo, Lenora W.M.; Cowley, Shaun M.; Yost, Cynthia; Pierce, Sarah; Edgar, Bruce A.; Parkhurst, Susan M.; Eisenman, Robert N.

    2003-01-01

    The Myc/Max/Mad transcription factor network is critically involved in cell behavior; however, there is relatively little information on its genomic binding sites. We have employed the DamID method to carry out global genomic mapping of the Drosophila Myc, Max, and Mad/Mnt proteins. Each protein was tethered to Escherichia coli DNA adenine-methyltransferase (Dam) permitting methylation proximal to in vivo binding sites in Kc cells. Microarray analyses of methylated DNA fragments reveals binding to multiple loci on all major Drosophila chromosomes. This approach also reveals dynamic interactions among network members as we find that increased levels of dMax influence the extent of dMyc, but not dMnt, binding. Computer analysis using the REDUCE algorithm demonstrates that binding regions correlate with the presence of E-boxes, CG repeats, and other sequence motifs. The surprisingly large number of directly bound loci (∼15% of coding regions) suggests that the network interacts widely with the genome. Furthermore, we employ microarray expression analysis to demonstrate that hundreds of DamID-binding loci correspond to genes whose expression is directly regulated by dMyc in larvae. These results suggest that a fundamental aspect of Max network function involves widespread binding and regulation of gene expression. PMID:12695332

  12. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation.

    PubMed

    Gao, Yanzhe; Yao, Jianhong; Poudel, Sumeet; Romer, Eric; Abu-Niaaj, Lubna; Leffak, Michael

    2014-12-26

    The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2-7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2-7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.

  13. Decreased Transcription Factor Binding Levels Nearby Primate Pseudogenes Suggest Regulatory Degeneration

    PubMed Central

    Douglas, Gavin M.; Wilson, Michael D.; Moses, Alan M.

    2016-01-01

    Characteristics of pseudogene degeneration at the coding level are well-known, such as a shift toward neutral rates of nonsynonymous substitutions and gain of frameshift mutations. In contrast, degeneration of pseudogene transcriptional regulation is not well understood. Here, we test two predictions of regulatory degeneration along a pseudogenized lineage: 1) Decreased transcription factor (TF) binding and 2) accelerated evolution in putative cis-regulatory regions. We find evidence for decreased TF binding levels nearby two primate pseudogenes compared with functional liver genes. However, the majority of TF-bound sequences nearby pseudogenes do not show evidence for lineage-specific accelerated rates of evolution. We conclude that decreases in TF binding level could be a marker for regulatory degeneration, while sequence degeneration in primate cis-regulatory modules may be obscured by background rates of TF binding site turnover. PMID:26882985

  14. AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors.

    PubMed

    Zhang, T; Kruys, V; Huez, G; Gueydan, C

    2002-11-01

    Tumour necrosis factor (TNF)-alpha mRNA contains an AU-rich element (ARE) in its 3' untranslated region (3'UTR), which determines its half-life and translational efficiency. In unstimulated macrophages, TNF-alpha mRNA is repressed translationally, and becomes efficiently translated upon cell activation. Gel retardation experiments and screening of a macrophage cDNA expression library with the TNF-alpha ARE allowed the identification of TIA-1-related protein (TIAR), T-cell intracellular antigen-1 (TIA-1) and tristetraprolin (TTP) as TNF-alpha ARE-binding proteins. Whereas TIAR and TIA-1 bind the TNF-alpha ARE independently of the activation state of macrophages, the TTP-ARE complex is detectable upon stimulation with lipopolysaccharide (LPS). Moreover, treatment of LPS-induced macrophage extracts with phosphatase significantly abrogates TTP binding to the TNF-alpha ARE, indicating that TTP phosphorylation is required for ARE binding. Carballo, Lai and Blackshear [(1998) Science 281, 1001-1005] showed that TTP was a TNF-alpha mRNA destabilizer. In contrast, TIA-1, and most probably TIAR, acts as a TNF-alpha mRNA translational silencer. A two-hybrid screening with TIAR and TIA-1 revealed the capacity of these proteins to interact with other RNA-binding proteins. Interestingly, TIAR and TIA-1 are not engaged in the same interaction, indicating for the first time that TIAR and TIA-1 can be functionally distinct. These findings also suggest that ARE-binding proteins interact with RNA as multimeric complexes, which might define their function and their sequence specificity.

  15. Extracting transcription factor binding sites from unaligned gene sequences with statistical models

    PubMed Central

    Lu, Chung-Chin; Yuan, Wei-Hao; Chen, Te-Ming

    2008-01-01

    Background Transcription factor binding sites (TFBSs) are crucial in the regulation of gene transcription. Recently, chromatin immunoprecipitation followed by cDNA microarray hybridization (ChIP-chip array) has been used to identify potential regulatory sequences, but the procedure can only map the probable protein-DNA interaction loci within 1–2 kb resolution. To find out the exact binding motifs, it is necessary to build a computational method to examine the ChIP-chip array binding sequences and search for possible motifs representing the transcription factor binding sites. Results We developed a program to find out accurate motif sites from a set of unaligned DNA sequences in the yeast genome. Compared with MDscan, the prediction results suggest that, overall, our algorithm outperforms MDscan since the predicted motifs are more consistent with previously known specificities reported in the literature and have better prediction ranks. Our program also outperforms the constraint-less Cosmo program, especially in the elimination of false positives. Conclusion In this study, an improved sampling algorithm is proposed to incorporate the binomial probability model to build significant initial candidate motif sets. By investigating the statistical dependence between base positions in TFBSs, the method of dependency graphs and their expanded Bayesian networks is combined. The results show that our program satisfactorily extract transcription factor binding sites from unaligned gene sequences. PMID:19091030

  16. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    PubMed Central

    2010-01-01

    Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS") but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) not to be biological transcription factor binding sites ("empirical TFBS"). We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation. PMID:20875111

  17. Stabilization of Oncostatin-M mRNA by Binding of Nucleolin to a GC-Rich Element in Its 3'UTR.

    PubMed

    Saha, Sucharita; Chakraborty, Alina; Bandyopadhyay, Sumita Sengupta

    2016-04-01

    Oncostatin-M (OSM) is a patho-physiologically important pleiotropic, multifunctional cytokine. OSM mRNA sequence analysis revealed that its 3'UTR contains three highly conserved GC-rich cis-elements (GCREs) whose role in mRNA stability is unidentified. In the present study, the functional role of the proximal GC-rich region of osm 3'-UTR (GCRE-1) in post-transcriptional regulation of osm expression in U937 cells was assessed by transfecting construct containing GCRE-1 at 3'-end of a fairly stable reporter gene followed by analysis of the expression of the reporter. GCRE-1 showed mRNA destabilizing activity; however, upon PMA treatment the reporter message containing GCRE-1 was stabilized. This stabilization is owing to a time-dependent progressive binding of trans-factors (at least five proteins) to GCRE-1 post-PMA treatment. Nucleolin was identified as one of the proteins in the RNP complex of GCRE-1 with PMA-treated U937 cytosolic extracts by oligo-dT affinity chromatography of poly-adenylated GCRE-1. Immuno-blot revealed time-dependent enhancement of nucleolin in the cytoplasm which in turn directly binds GCRE-1. RNA co-immunoprecipitation confirmed the GCRE-1-nucleolin interaction in vivo. To elucidate the functional role of nucleolin in stabilization of osm mRNA, nucleolin was overexpressed in U937 cells and found to stabilize the intrinsic osm mRNA, where co-transfection with the reporter containing GCRE-1 confirms the role of GCRE-1 in stabilization of the reporter mRNA. Thus, in conclusion, the results asserted that PMA treatment in U937 cells leads to cytoplasmic translocation of nucleolin that directly binds GCRE-1, one of the major GC-rich instability elements, thereby stabilizing the osm mRNA.

  18. PF1: an A-T hook-containing DNA binding protein from rice that interacts with a functionally defined d(AT)-rich element in the oat phytochrome A3 gene promoter.

    PubMed Central

    Nieto-Sotelo, J; Ichida, A; Quail, P H

    1994-01-01

    Phytochrome-imposed down-regulation of the expression of its own phytochrome A gene (PHYA) is one of the fastest light-induced effects on transcription reported in plants to date. Functional analysis of the oat PHYA3 promoter in a transfection assay has revealed two positive elements, PE1 and PE3, that function synergistically to support high levels of transcription in the absence of light. We have isolated a rice cDNA clone (pR4) encoding a DNA binding protein that binds to the AT-rich PE1 element. We tested the selectivity of the pR4-encoded DNA binding activity using linker substitution mutations of PE1 that are known to disrupt positive expression supported by the PHYA3 promoter in vivo. Binding to these linker substitution mutants was one to two orders of magnitude less than to the native PE1 element. Because this is the behavior expected of positive factor 1 (PF1), the presumptive nuclear transcription factor that acts in trans at the PE1 element in vivo, the data support the conclusion that the protein encoded by pR4 is in fact rice PF1. The PF1 polypeptide encoded by pR4 is 213 amino acids long and contains four repeats of the A-T hook DNA binding motif found in high-mobility group I-Y (HMGI-Y) proteins. In addition, PF1 contains an 11-amino acid-long hydrophobic region characteristic of HMG I proteins, its N-terminal region shows strong similarities to a pea H1 histone sequence and a short peptide sequence from wheat HMGa, and it shows a high degree of similarity along its entire length to the HMG Y-like protein encoded by a soybean cDNA, SB16. In vitro footprinting and quantitative gel shift analyses showed that PF1 binds preferentially to the PE1 element but also at lower affinity to two other AT-rich regions upstream of PE1. This feature is consistent with the binding characteristics of HMG I-Y proteins that are known to bind to most runs of six or more AT base pairs. Taken together, the properties of PF1 suggest that it belongs to a newly described

  19. Addition and correction: the NF-kappa B-like DNA binding activity observed in Dictyostelium nuclear extracts is due to the GBF transcription factor.

    PubMed

    Traincard, F; Ponte, E; Pun, J; Coukell, B; Veron, M

    2001-10-01

    We have previously reported that a NF-kappa B transduction pathway was likely to be present in the cellular slime mold Dictyostelium discoideum. This conclusion was based on several observations, including the detection of developmentally regulated DNA binding proteins in Dictyostelium nuclear extracts that bound to bona fide kappa B sequences. We have now performed additional experiments which demonstrate that the protein responsible for this NF-kappa B-like DNA binding activity is the Dictyostelium GBF (G box regulatory element binding factor) transcription factor. This result, along with the fact that no sequence with significant similarity to components of the mammalian NF-kappa B pathway can be found in Dictyostelium genome, now almost entirely sequenced, led us to reconsider our previous conclusion on the occurrence of a NF-kappa B signal transduction pathway in Dictyostelium.

  20. The bicoid mRNA localization factor Exuperantia is an RNA-binding pseudonuclease.

    PubMed

    Lazzaretti, Daniela; Veith, Katharina; Kramer, Katharina; Basquin, Claire; Urlaub, Henning; Irion, Uwe; Bono, Fulvia

    2016-08-01

    Anterior patterning in Drosophila is mediated by the localization of bicoid (bcd) mRNA at the anterior pole of the oocyte. Exuperantia (Exu) is a putative exonuclease (EXO) associated with bcd and required for its localization. We present the crystal structure of Exu, which reveals a dimeric assembly with each monomer consisting of a 3'-5' EXO-like domain and a sterile alpha motif (SAM)-like domain. The catalytic site is degenerate and inactive. Instead, the EXO-like domain mediates dimerization and RNA binding. We show that Exu binds RNA directly in vitro, that the SAM-like domain is required for RNA binding activity and that Exu binds a structured element present in the bcd 3' untranslated region with high affinity. Through structure-guided mutagenesis, we show that Exu dimerization is essential for bcd localization. Our data demonstrate that Exu is a noncanonical RNA-binding protein with EXO-SAM-like domain architecture that interacts with its target RNA as a homodimer.

  1. Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites

    PubMed Central

    Hemberg, Martin; Gray, Jesse M.; Cloonan, Nicole; Kuersten, Scott; Grimmond, Sean; Greenberg, Michael E.; Kreiman, Gabriel

    2012-01-01

    More than 98% of a typical vertebrate genome does not code for proteins. Although non-coding regions are sprinkled with short (<200 bp) islands of evolutionarily conserved sequences, the function of most of these unannotated conserved islands remains unknown. One possibility is that unannotated conserved islands could encode non-coding RNAs (ncRNAs); alternatively, unannotated conserved islands could serve as promoter-distal regulatory factor binding sites (RFBSs) like enhancers. Here we assess these possibilities by comparing unannotated conserved islands in the human and mouse genomes to transcribed regions and to RFBSs, relying on a detailed case study of one human and one mouse cell type. We define transcribed regions by applying a novel transcript-calling algorithm to RNA-Seq data obtained from total cellular RNA, and we define RFBSs using ChIP-Seq and DNAse-hypersensitivity assays. We find that unannotated conserved islands are four times more likely to coincide with RFBSs than with unannotated ncRNAs. Thousands of conserved RFBSs can be categorized as insulators based on the presence of CTCF or as enhancers based on the presence of p300/CBP and H3K4me1. While many unannotated conserved RFBSs are transcriptionally active to some extent, the transcripts produced tend to be unspliced, non-polyadenylated and expressed at levels 10 to 100-fold lower than annotated coding or ncRNAs. Extending these findings across multiple cell types and tissues, we propose that most conserved non-coding genomic DNA in vertebrate genomes corresponds to promoter-distal regulatory elements. PMID:22684627

  2. Characterization of calcineurin-dependent response element binding protein and its involvement in copper-metallothionein gene expression in Neurospora

    SciTech Connect

    Kumar, Kalari Satish; Ravi Kumar, B.; Siddavattam, Dayananda; Subramanyam, Chivukula . E-mail: csubramanyam@hotmail.com

    2006-07-07

    In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730 bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtained from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17 kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17 kDa protein matched with the regulatory {beta}-subunit of calcineurin (Ca{sup 2+}-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.

  3. The Arginine/Lysine-Rich Element within the DNA-Binding Domain Is Essential for Nuclear Localization and Function of the Intracellular Pathogen Resistance 1

    PubMed Central

    Yao, Kezhen; Wu, Yongyan; Chen, Qi; Zhang, Zihan; Chen, Xin; Zhang, Yong

    2016-01-01

    The mouse intracellular pathogen resistance 1 (Ipr1) gene plays important roles in mediating host immunity and previous work showed that it enhances macrophage apoptosis upon mycobacterium infection. However, to date, little is known about the regulation pattern of Ipr1 action. Recent studies have investigated the protein-coding genes and microRNAs regulated by Ipr1 in mouse macrophages, but the structure and the functional motif of the Ipr1 protein have yet to be explored. In this study, we analyzed the domains and functional motif of the Ipr1 protein. The resulting data reveal that Ipr1 protein forms a homodimer and that the Sp100-like domain mediates the targeting of Ipr1 protein to nuclear dots (NDs). Moreover, we found that an Ipr1 mutant lacking the classic nuclear localization signal (cNLS) also translocated into the nuclei, suggesting that the cNLS is not the only factor that directs Ipr1 nuclear localization. Additionally, mechanistic studies revealed that an arginine/lysine-rich element within the DNA-binding domain (SAND domain) is critical for Ipr1 binding to the importin protein receptor NPI-1, demonstrating that this element plays an essential role in mediating the nuclear localization of Ipr1 protein. Furthermore, our results show that this arginine/lysine-rich element contributes to the transcriptional regulation and apoptotic activity of Ipr1. These findings highlight the structural foundations of Ipr1 action and provide new insights into the mechanism of Ipr1-mediated resistance to mycobacterium. PMID:27622275

  4. The Hinge Region as a Key Regulatory Element of Androgen Receptor Dimerization, DNA Binding, and Transactivation

    DTIC Science & Technology

    2005-05-01

    led to a structure depicted in figure 1A. Two zinc coordinating modules that constitute the receptors DNA-binding domain, are involved in the...expression plasmid (reviewed in Claessens et al. 2001). This led first to the description of the PB-ARE-2 (Claessens et al. 1996), later of scARE and...constructs for specific mutants: has been done and is ongoing. This has led to most of the observations reported in section II of this report. iii.c

  5. Phosphorylation states of translational initiation factors affect mRNA cap binding in wheat.

    PubMed

    Khan, Mateen A; Goss, Dixie J

    2004-07-20

    Phosphorylation of eukaryotic translational initiation factors (eIFs) has been shown to be an important means of regulating protein synthesis. Plant initiation factors undergo phosphorylation/dephosphorylation under a variety of stress and growth conditions. We have shown that recombinant wheat cap-binding protein, eIF(iso)4E, produced from E. coli can be phosphorylated in vitro. Phosphorylation of eIF(iso)4E has effects on m(7)G cap-binding affinity similar to those of phosphorylation of mammalian eIF4E even though eIF(iso)4E lacks an amino acid that can be phosphorylated at the residue corresponding to Ser-209, the phosphorylation site in mammalian eIF4E. The cap-binding affinity was reduced 1.2-2.6-fold when eIF(iso)4E was phosphorylated. The in vitro phosphorylation site for wheat eIF(iso)4E was identified as Ser-207. Addition of eIF(iso)4G and eIF4B that had also been phosphorylated in vitro further reduced cap-binding affinity. Temperature-dependent studies showed that DeltaH(degrees) was favorable for cap binding regardless of the phosphorylation state of the initiation factors. The entropy, however, was unfavorable (negative) except when eIF(iso)4E was phosphorylated and interacting with eIF(iso)4G. Phosphorylation may modulate not only cap-binding activity, but other functions of eukaryotic initiation factors as well.

  6. A mutation at proline-115 in the A-factor receptor protein of Streptomyces griseus abolishes DNA-binding ability but not ligand-binding ability.

    PubMed Central

    Onaka, H; Sugiyama, M; Horinouchi, S

    1997-01-01

    A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) and its specific receptor protein (ArpA) are required for streptomycin production and aerial mycelium formation in Streptomyces griseus. A mutant strain HO1 that produced streptomycin and formed aerial mycelium and spores was derived from an A-factor-deficient mutant, S. griseus HH1. The phenotypes of mutant HO1 were found to result from a single amino acid replacement of ArpA; the proline residue at position 115 in the wild-type ArpA was replaced by serine, yielding mutant ArpA (P115S). The mutant ArpA (P115S) was still able to form a homodimer and possessed A-factor-binding ability but lost the ability to bind DNA. The properties of P115S suggest that ArpA consists of two independently functional domains, one for A-factor binding and one for DNA binding, and that proline-115 plays an important role in DNA binding. This is in agreement with the idea that A-factor binding to the COOH-terminal domain of ArpA causes a subtle conformational change of the distal NH2-terminal DNA-binding domain, resulting in dissociation of ArpA from DNA. PMID:9098075

  7. Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast.

    PubMed

    Lloyd, S Julie-Ann; Raychaudhuri, Sumana; Espenshade, Peter J

    2013-07-19

    The membrane-bound sterol regulatory element-binding protein (SREBP) transcription factors regulate lipogenesis in mammalian cells and are activated through sequential cleavage by the Golgi-localized Site-1 and Site-2 proteases. The mechanism of fission yeast SREBP cleavage is less well defined and, in contrast, requires the Golgi-localized Dsc E3 ligase complex. The Dsc E3 ligase consists of five integral membrane subunits, Dsc1 through Dsc5, and resembles membrane E3 ligases that function in endoplasmic reticulum-associated degradation. Using immunoprecipitation assays and blue native electrophoresis, we determined the subunit architecture for the complex of Dsc1 through Dsc5, showing that the Dsc proteins form subcomplexes and display defined connectivity. Dsc2 is a rhomboid pseudoprotease family member homologous to mammalian UBAC2 and a central component of the Dsc E3 ligase. We identified conservation in the architecture of the Dsc E3 ligase and the multisubunit E3 ligase gp78 in mammals. Specifically, Dsc1-Dsc2-Dsc5 forms a complex resembling gp78-UBAC2-UBXD8. Further characterization of Dsc2 revealed that its C-terminal UBA domain can bind to ubiquitin chains but that the Dsc2 UBA domain is not essential for yeast SREBP cleavage. Based on the ability of rhomboid superfamily members to bind transmembrane proteins, we speculate that Dsc2 functions in SREBP recognition and binding. Homologs of Dsc1 through Dsc4 are required for SREBP cleavage and virulence in the human opportunistic pathogen Aspergillus fumigatus. Thus, these studies advance our organizational understanding of multisubunit E3 ligases involved in endoplasmic reticulum-associated degradation and fungal pathogenesis.

  8. Initiation of zebrafish hematopoiesis by the TATA-box-binding protein-related factor, Trf3

    PubMed Central

    Hart, Daniel O.; Raha, Tamal; Lawson, Nathan D.; Green, Michael R.

    2007-01-01

    TATA-box-binding protein (TBP)-related factor 3, TRF3 (also called TBP2), is a vertebrate-specific member of the TBP family that has a conserved C-terminal region and DNA binding domain virtually identical to that of TBP1. TRF3 is highly expressed during embryonic development, and studies in zebrafish and Xenopus have shown that TRF3 is required for normal embryogenesis2,3. Here we show that Trf3-depleted zebrafish embryos exhibit multiple developmental defects and, in particular, fail to undergo hematopoiesis. Expression profiling for Trf3-dependent genes identified mespa, which encodes a transcription factor whose murine orthologue is required for mesoderm specification4, and chromatin immunoprecipitation verified that Trf3 binds to the mespa promoter. Depletion of Mespa resulted in developmental and hematopoietic defects strikingly similar to those induced by Trf3 depletion. Injection of mespa mRNA restored normal development to a Trf3-depleted embryo, indicating mespa is the single Trf3 target gene required for zebrafish embryogenesis. Zebrafish embryos depleted of Trf3 or Mespa also failed to express cdx4, a caudal-related gene required for hematopoiesis. Mespa binds to the cdx4 promoter, and epistasis analysis revealed an ordered trf3-mespa-cdx4 pathway. Thus, in zebrafish commitment of mesoderm to the hematopoietic lineage occurs through a transcription factor pathway initiated by a TBP-related factor. PMID:18046332

  9. Identification of candidate transcription factor binding sites in the cattle genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A resource that provides candidate transcription factor binding sites does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future 'omics studies to develop transcriptional regulation hypotheses. In order to generate this resour...

  10. Modeling Group IV elements with new transferable tight-binding models

    SciTech Connect

    Kwon, I.; Biswas, R.

    1993-10-01

    An outstanding problem in the computer-based microscopic description of Group IV materials, is the need for an accurate transferable model of the energetic and electronic properties of semiconductor structures. The three complementary approaches have been the ab-initio method including Car-Parinello simulations, the classical molecular dynamics method, and tight-binding molecular dynamics. While being very accurate, the ab-initio molecular dynamics has been performed on small systems ({approximately}100 atoms) for short time scales ({approximately}10 ps). On the other hand, classical potential models have had much success in describing melting of silicon, amorphous silicon structures, thin film growth and a variety of computationally intensive molecular dynamics simulations. However, the classical based models do not contain important electronic information which is essential in a variety of problems in electronic materials such as determining the gap states for structural defects. The accuracy of the classical models in configurations, far from the fitting database, may be uncertain. Our approach is to find transferable tight-binding models for silicon that are in between the ab-initio simulations and the classical models for molecular dynamics in level of sophistication.

  11. Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site.

    PubMed Central

    Brabletz, T; Pfeuffer, I; Schorr, E; Siebelt, F; Wirth, T; Serfling, E

    1993-01-01

    Transforming growth factor beta (TGF-beta) has a growth-inhibitory effect on numerous different cell types of the immune system, including T lymphocytes. We show in this study that the inhibitory action of TGF-beta on T lymphocytes is accompanied by a block of interleukin 2 (IL-2) gene expression which is mediated, at least in part, by inhibition of IL-2 promoter/enhancer activity. The functional analysis of cis-regulatory (proto-enhancer) elements of the IL-2 enhancer/promoter region showed that the most TGF-beta-responsive element maps to its so-called upstream promoter site. The proto-enhancer activity of the upstream promoter site element is also inhibited by cyclosporin A. The upstream promoter site DNA harbors two noncanonical, closely linked binding sequences for octamer and AP-1-like factors. Both sites are involved in the establishment of IL-2 enhancer activity. Since the activity of genuine octamer sites but not that of AP-1-binding sites is also impaired by TGF-beta and cyclosporin A in El4 T lymphoma cells, we conclude that both immunosuppressives interfere with the activity but not the DNA binding of octamer factors in T lymphocytes. Images PMID:8423782

  12. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8.

    PubMed

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L; Rosen, Barry P; Tamás, Markus J

    2015-12-28

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeast Saccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)] in vitro and in vivo and that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation.

  13. Novel Bioluminescent Binding Assays for Ligand–Receptor Interaction Studies of the Fibroblast Growth Factor Family

    PubMed Central

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand–receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand–receptor interaction studies. PMID:27414797

  14. Specific binding of nerve growth factor (NGF) by murine C 1300 neuroblastoma cells.

    PubMed

    Revoltella, R; Bertolini, L; Pediconi, M; Vigneti, E

    1974-08-01

    Murine C 1300 neuroblastoma cells bind with high avidity on their membrane surface the nerve growth factor (NGF), a protein capable of inducing differentiation of sympathetic nerve cells. The total binding capacity of NGF by the cells was quantitatively measured by a radioimmunoassay technique, using (125)I-labeled NGF. An average number of about 10(6) molecules of NGF could be bound, at saturation, by each cell with an average relative association constant of about 10(7) liters/mol. Using synchronized cells, it was found, however, that either the number of molecules of ligand bound or the avidity of the binding interaction between NGF and cells varied depending upon their growth cycle, the maximal-binding occurring during the G(1) and early S phase. Binding of [(125)I]NGF was suppressed by trypsin treatment of the cells, however new receptor sites were rapidly replaced onto the membrane surface within 1-2 h. Cells exposed to 3 M KCl released into the supernate a protein product exhibiting similar high avidity for NGF. Acrylamide gel electrophoresis suggested a restricted molecular heterogeneity of this product, with a major component in the 52,000 mol wt region. Antibodies made specific to this protein were capable, in the absence of the complement, of inhibiting the binding of [(125)I]NGF by the cells and in the presence of the complement they killed them.

  15. Ontogeny of basic fibroblast growth factor binding sites in mouse ocular tissues

    SciTech Connect

    Fayein, N.A.; Courtois, Y.; Jeanny, J.C. )

    1990-05-01

    Basic fibroblast growth factor (bFGF) binding to ocular tissues has been studied by autoradiographical and biochemical approaches directly performed on sections during mouse embryonic and postnatal development. Frozen sections of embryos (9 to 18 days), newborns, and adults (1 day to 6 months) were incubated with iodinated bFGF. One specific FGF binding site (KD = 2.5 nM) is colocalized with heparan sulfate proteoglycans of the basement membranes and is heparitinase sensitive. It first appears at Day 9 around the neural tube, the optic vesicles, and below the head ectoderm and by Day 14 of embryonic development is found in all basement membranes of the eye. At Day 16, very intensely labeled patches appear, corresponding to mast cells which have been characterized by metachromatic staining of their heparin-rich granulations with toluidine blue. In addition to the latter binding, we have also observed a general diffuse distribution of silver grains on all tissues and preferentially in the ecto- and neuroectodermic tissues. From Days 17-18, there is heterogeneous labeling inside the retina, localized in the pigmented epithelium and in three different layers colocalized with the inner and outer plexiform layers and with the inner segments of the photoreceptors. This binding is heparitinase resistant but N-glycanase sensitive and may represent a second specific binding site corresponding to cellular FGF receptors (KD = 280 pM). Both types of binding patterns observed suggest a significant role for bFGF in eye development and physiology.

  16. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    PubMed Central

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L.; Rosen, Barry P.

    2015-01-01

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeast Saccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)] in vitro and in vivo and that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation. PMID:26711267

  17. Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein

    PubMed Central

    Wang, Yong; Chu, Xiakun; Longhi, Sonia; Roche, Philippe; Han, Wei; Wang, Erkang; Wang, Jin

    2013-01-01

    Numerous relatively short regions within intrinsically disordered proteins (IDPs) serve as molecular recognition elements (MoREs). They fold into ordered structures upon binding to their partner molecules. Currently, there is still a lack of in-depth understanding of how coupled binding and folding occurs in MoREs. Here, we quantified the unbound ensembles of the α-MoRE within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein. We developed a multiscaled approach by combining a physics-based and an atomic hybrid model to decipher the mechanism by which the α-MoRE interacts with the X domain of the measles virus phosphoprotein. Our multiscaled approach led to remarkable qualitative and quantitative agreements between the theoretical predictions and experimental results (e.g., chemical shifts). We found that the free α-MoRE rapidly interconverts between multiple discrete partially helical conformations and the unfolded state, in accordance with the experimental observations. We quantified the underlying global folding–binding landscape. This leads to a synergistic mechanism in which the recognition event proceeds via (minor) conformational selection, followed by (major) induced folding. We also provided evidence that the α-MoRE is a compact molten globule-like IDP and behaves as a downhill folder in the induced folding process. We further provided a theoretical explanation for the inherent connections between “downhill folding,” “molten globule,” and “intrinsic disorder” in IDP-related systems. Particularly, we proposed that binding and unbinding of IDPs proceed in a stepwise way through a “kinetic divide-and-conquer” strategy that confers them high specificity without high affinity. PMID:24043820

  18. Core Binding Factor β Protects HIV, Type 1 Accessory Protein Viral Infectivity Factor from MDM2-mediated Degradation.

    PubMed

    Matsui, Yusuke; Shindo, Keisuke; Nagata, Kayoko; Yoshinaga, Noriyoshi; Shirakawa, Kotaro; Kobayashi, Masayuki; Takaori-Kondo, Akifumi

    2016-11-25

    HIV, type 1 overcomes host restriction factor apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins by organizing an E3 ubiquitin ligase complex together with viral infectivity factor (Vif) and a host transcription cofactor core binding factor β (CBFβ). CBFβ is essential for Vif to counteract APOBEC3 by enabling the recruitment of cullin 5 to the complex and increasing the steady-state level of Vif protein; however, the mechanisms by which CBFβ up-regulates Vif protein remains unclear. Because we have reported previously that mouse double minute 2 homolog (MDM2) is an E3 ligase for Vif, we hypothesized that CBFβ might protect Vif from MDM2-mediated degradation. Co-immunoprecipitation analyses showed that Vif mutants that do not bind to CBFβ preferentially interact with MDM2 and that overexpression of CBFβ disrupts the interaction between MDM2 and Vif. Knockdown of CBFβ reduced the steady-state level of Vif in MDM2-proficient cells but not in MDM2-null cells. Cycloheximide chase analyses revealed that Vif E88A/W89A, which does not interact with CBFβ, degraded faster than wild-type Vif in MDM2-proficient cells but not in MDM2-null cells, suggesting that Vif stabilization by CBFβ is mainly caused by impairing MDM2-mediated degradation. We identified Vif R93E as a Vif variant that does not bind to MDM2, and the virus with this substitution mutation was more resistant to APOBEC3G than the parental virus. Combinatory substitution of Vif residues required for CBFβ binding and MDM2 binding showed full recovery of Vif steady-state levels, supporting our hypothesis. Our data provide new insights into the mechanism of Vif augmentation by CBFβ.

  19. Human factoring the procedures element in a complex manufacturing system

    SciTech Connect

    Caccamise, D.J.; Mecherikoff, M.

    1993-06-01

    As a result of Human Factors evaluations of procedures associated with incidents at Rocky Flats Plant (RFP) it was determined that the existing procedure format created significant opportunities for confusion in their attempt to convey information about a work process. For instance, there was no mechanism to clearly identify the participants and their roles during the instructions portion of the procedure. In addition, procedure authors frequently used complex logic to convey a series of contingent actions within steps. It was also difficult to discern the actual procedure steps from other types of information in the procedure. These and other inadequacies prompted the Human Factors Engineering (HFE) department to propose solutions to these problems that followed well-researched principles of cognitive psychology, dealing with how humans process information. Format and style contribute to procedure usability, and therefore to safety and efficiency in operations governed by the procedures. Since it was difficult to tie specific performance failures to specific format and style characteristics and thereby dearly define costs and benefits, it was difficult on that basis to sell the idea that changes in procedure format and style were really necessary to improve safety and efficiency. In addition, we found that the socio-political systems governing this process, particularly at the subprocess interface level, were not functioning efficiently. Both the technological aspects of the process and the socio-political aspects were contributing to waste and considerable re-work. Fixing the customer feedback loop to the process owners not only minimized re-work and waste, but also provided the data to persuade subprocess owners to make the necessary changes that heretofore were being met with great resistance.

  20. A 3’UTR Pumilio binding element directs translational activation in olfactory sensory neurons

    PubMed Central

    Kaye, Julia A.; Rose, Natalie C.; Goldsworthy, Brett; Goga, Andrei; L'Etoile, Noelle D.

    2014-01-01

    Summary Prolonged stimulation leads to specific and stable changes in an animal’s behavior. In interneurons, this plasticity requires spatial and temporal control of neuronal protein synthesis. Whether such translational control occurs in sensory neurons is not known. Adaptation of the AWC olfactory sensory neurons of C. elegans requires the cGMP-dependent protein kinase EGL-4. Here we show that the PUF FBF-1 is required in the adult AWC for adaptation and in the odor-adapted animal, increases translation from the egl-4 3’ UTR. Further, the PUF protein may localize translation near the sensory cilia and cell body. Although the RNA-binding PUF proteins have been shown to promote plasticity in development by temporally and spatially repressing translation; this work reveals that in the adult nervous system, they can work in a different way to promote experience-dependent plasticity by activating translation in response to environmental stimulation. PMID:19146813

  1. Negative regulation of transcription in vitro by a glucocorticoid response element is mediated by a trans-acting factor.

    PubMed Central

    Langer, S J; Ostrowski, M C

    1988-01-01

    In vitro experiments with cell extracts prepared from a mouse mammary epithelial cell line demonstrated that a cis-acting glucocorticoid response element (GRE) of the mouse mammary tumor virus represses transcription from its homologous promoter. Competition transcription experiments, in which a molar excess of a restriction fragment that contains the GRE is added to the cell-free assay, revealed that a nuclear factor mediates in trans the negative regulation of mammary tumor virus transcription in vitro. Gel retention assays indicated that a factor in the extracts specifically recognizes the GRE. One unusual result of the gel retention studies was that heating the GRE probe to 65 degrees C before addition to a binding assay increases the formation of the specific protein-DNA complex 20-fold. Exonuclease III footprinting demonstrated that the sequences recognized by the factor are identical for either untreated or heat-treated probe. The footprinting also demonstrated that this factor recognizes sequences that are distinct from those recognized by the glucocorticoid receptor. A synthetic oligonucleotide based on the sequences identified by the footprinting experiments repressed the activity of a heterologous enhancer-promoter in vivo, as assayed by transient expression assays. We propose that this negative transcription element may control the basal level of expression of some glucocorticoid-modulated genes and may explain the insensitivity of certain tumor cells to steroid hormone action. Images PMID:2851730

  2. Binding Sites for Ets Family of Transcription Factors Dominate the Promoter Regions of Differentially Expressed Genes in Abdominal Aortic Aneurysms

    PubMed Central

    Nischan, Jennifer; Gatalica, Zoran; Curtis, Mindee; Lenk, Guy M.; Tromp, Gerard; Kuivaniemi, Helena

    2011-01-01

    Background Previously, we identified 3,274 distinct differentially expressed genes in abdominal aortic aneurysm (AAA) tissue compared to non-aneurysmal controls. As transcriptional control is responsible for these expression changes, we sought to find common transcriptional elements in the promoter regions of the differentially expressed genes. Methods and Results We analyzed the up- and downregulated gene sets with Whole Genome rVISTA to determine the transcription factor binding sites (TFBSs) overrepresented in the 5 kb promoter regions of the 3,274 genes. The downregulated gene set yielded 144 TFBSs that were overrepresented in the subset when compared to the entire genome. In contrast, the upregulated gene set yielded only 13 distinct overrepresented TFBSs. Interestingly, as classified by TRANSFAC®, 8 of the 13 transcription factors (TFs) binding to these regions belong to the ETS family. Additionally, NFKB and its subunits p50 and p65 showed enrichment. Immunohistochemical analyses in 10 of the TFs from the upregulated analysis showed 9 to be present in AAA tissue. Based on Gene Ontology analysis of biological process categories of the upregulated target genes of enriched TFs, 10 TFs had enrichment in immune system process among their target genes. Conclusions Our genome-wide analysis provides further evidence of ETS and NFKB involvement in AAA. Additionally, our results provide novel insight for future studies aiming to dissect the pathogenesis of AAA and have uncovered potential therapeutic targets for AAA prevention. PMID:20031636

  3. Recognition of distinct HLA-DQA1 promoter elements by a single nuclear factor containing Jun and Fos or antigenically related proteins.

    PubMed Central

    Neve Ombra, M; Autiero, M; DeLerma Barbaro, A; Barretta, R; Del Pozzo, G; Guardiola, J

    1993-01-01

    The activity of MHC class II promoters depends upon conserved regulatory signals one of which, the extended X-box, contains in its X2 subregion a sequence related to the cAMP response element, CRE and to the TPA response element, TRE. Accordingly, X2 is recognized by the AP-1 factor and by other c-Jun or c-Fos containing heterodimers. We report that the X-box dependent promoter activity of the HLA-DQA1 gene is down-modulated by an array of DNA elements each of which represented twice either in an invertedly or directly repeated orientation. In this frame, we describe a nuclear binding factor, namely DBF, promiscuously interacting with two of these additional signals, delta and sigma, and with a portion of the X-box, namely the X-core, devoid of X2. The presence of a single factor recognizing divergent DNA sequences was indicated by the finding that these activities were co-eluted from a heparin-Sepharose column and from DNA affinity columns carrying different DNA binding sites as ligands. Competition experiments made with oligonucleotides representing wild type and mutant DNA elements showed that each DNA element specifically inhibited the binding of the others, supporting the contention that DBF is involved in recognition of different targets. Furthermore, we found that DBF also exhibits CRE/TRE binding activity and that this activity can be competed out by addition of an excess of sigma, delta and X-core oligonucleotides. Anti-Jun peptide and anti-Fos peptide antibodies blocked not only the binding activity of DBF, but also its X-core and sigma binding; this blockade was removed by the addition of the Jun or Fos peptides against which the antibodies had been raised. In vitro synthesized Jun/Fos was able to bind to all these boxes, albeit with seemingly different affinities. The cooperativity of DBF interactions may explain the modulation of the X-box dependent promoter activity mediated by the accessory DNA elements described here. Images PMID:8493100

  4. Fibronectin Growth Factor-Binding Domains Are Required for Fibroblast Survival

    PubMed Central

    Lin, Fubao; Ren, Xiang-Dong; Pan, Zhi; Macri, Lauren; Zong, Wei-Xing; Tonnesen, Marcia G.; Rafailovich, Miriam; Bar-Sagi, Dafna; Clark, Richard A.F.

    2011-01-01

    Fibronectin (FN) is required for embryogenesis, morphogenesis, and wound repair, and its Arg–Gly–Asp-containing central cell-binding domain (CCBD) is essential for mesenchymal cell survival and growth. Here, we demonstrate that FN contains three growth factor-binding domains (FN-GFBDs) that bind platelet-derived growth factor-BB (PDGF-BB), a potent fibroblast survival and mitogenic factor. These sites bind PDGF-BB with dissociation constants of 10–100 nm. FN-null cells cultured on recombinant CCBD (FNIII8–11) without a FN-GFBD demonstrated minimal metabolism and underwent autophagy at 24 hours, followed by apoptosis at 72 hours, even in the presence of PDGF-BB. In contrast, FN-null cells plated on FNIII8–11 contiguous with FN-GFBD survived without, and proliferated with, PDGF-BB. FN-null cell survival on FNIII8–11 and noncontiguous arrays of FN-GFBDs required these domains to be adsorbed on the same surface, suggesting the existence of a mesenchymal cell-extracellular matrix synapse. Thus, fibroblast survival required GF stimulation in the presence of a FN-GFBD, as well as adhesion to FN through the CCBD. The findings that fibroblast survival is dependent on FN-GFBD underscore the critical importance of pericellular matrix for cell survival and have significant implications for cutaneous wound healing and regeneration. PMID:20811396

  5. G =  MAT: linking transcription factor expression and DNA binding data.

    PubMed

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-31

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.

  6. G = MAT: Linking Transcription Factor Expression and DNA Binding Data

    PubMed Central

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-01

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945

  7. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity

    PubMed Central

    Mazzoni, Esteban O; Mahony, Shaun; Closser, Michael; Morrison, Carolyn A; Nedelec, Stephane; Williams, Damian J; An, Disi; Gifford, David K; Wichterle, Hynek

    2013-01-01

    Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types. PMID:23872598

  8. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  9. Adenovirus DNA-binding protein forms a multimeric protein complex with double-stranded DNA and enhances binding of nuclear factor I.

    PubMed Central

    Stuiver, M H; van der Vliet, P C

    1990-01-01

    The 72-kilodalton adenovirus DNA-binding protein (DBP) binds to single-stranded DNA as well as to RNA and double-stranded DNA and is essential for the replication of viral DNA. We investigated the binding of DBP to double-stranded DNA by gel retardation analysis. By using a 114-base-pair DNA fragment, five or six different complexes were observed by gel retardation. The mobility of these complexes is dependent on the DBP concentration, suggesting that the complexes arise by sequential binding of DBP molecules to the DNA. In contrast to binding to single-stranded DNA, the binding of DBP to double-stranded DNA appears to be noncooperative. DBP binds to linear DNA as well as to circular DNA, while linear DNA containing the adenovirus terminal protein was also recognized. No specificity for adenovirus origin sequences was observed. To study whether the binding of DBP could influence initiation of DNA replication, we analyzed the effect of DBP on the binding of nuclear factor I (NFI) and NFIII, two sequence-specific origin-recognizing proteins that enhance initiation. At subsaturating levels of NFI, DBP increases the rate of binding of NFI considerably, while no effect was seen on NFIII. This stimulation of NFI binding is specific for DBP and was not observed with another protein (NFIV), which forms a similar DNA-multimeric protein complex. In agreement with enhanced NFI binding, DBP stimulates initiation of adenovirus DNA replication in vitro especially strongly at subsaturating NFI concentrations. We explain our results by assuming that DBP forms a complex with origin DNA that promotes formation of an alternative DNA structure, thereby facilitating the binding of NFI as well as the initiation of DNA replication via NFI. Images PMID:2293667

  10. New Evidences of Key Factors Involved in "Silent Stones" Etiopathogenesis and Trace Elements: Microscopic, Spectroscopic, and Biochemical Approach.

    PubMed

    Cavalu, Simona; Popa, Adriana; Bratu, Ioan; Borodi, Gheorghe; Maghiar, Adrian

    2015-12-01

    The knowledge of the key factors involved in etiopathogenesis of the gallstone disease requires chemical, structural, and elemental composition analysis. The application of different complementary analytical techniques, both microscopic and spectroscopic, are aimed to provide a more comprehensive determination of the gallbladder calculi ultrastructure and trace element identification. High sensitivity techniques such as electron microscopy (SEM), Fourier transform infrared (FTIR), electron paramagnetic resonance (EPR) spectroscopy, and X-ray diffraction (XRD) along with biochemical analysis are used in a new attempt to investigate various factors which play a regulatory role in the pathogenesis of gallstones. The microstructure of different types of gallbladder stones has specific characteristics which are related to the elemental composition. The binding of metal ions with bile salts and bilirubin plays important roles in gallstone formation as revealed by FTIR spectrum of calcium bilirubinate complex in pigment gallstones. The EPR results demonstrated the generation of bilirubin free radicals and variation of its electronic structure and conjugation system in the skeleton of bilirubin molecule during complex formation. EPR spectra of pigment gallstones demonstrate the coexistence of four paramagnetic centers including stable bilirubin free radical, Mn2+, Cu2+, and Fe3+ with distinct magnetic parameters and well-resolved hyperfine structure in the case of Mn2+ ions. The result confirms a macromolecular network structure with proteins and the formation of bilirubin-coordinated polymer. Bilirubin and bilirubinate free radical complexes may play an important role in pigment gallstone formation.

  11. Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B

    PubMed Central

    Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji

    2016-01-01

    ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication

  12. Structural differences between light and heavy rare earth element binding chlorophylls in naturally grown fern: Dicranopteris linearis.

    PubMed

    Wei, Zhenggui; Hong, Fashui; Yin, Ming; Li, Huixin; Hu, Feng; Zhao, Guiwen; Wong, Jonathan Woonchung

    2005-09-01

    Chloroplasts and chlorophylls were isolated from the leaves of Dicranopteris linearis, a natural perennial fern sampled at rare earth element (REE) mining areas in the South-Jiangxi region (southern China). The inductively coupled plasma-mass spectrometry (ICP-MS) results indicated that REEs were present in the chloroplasts and chlorophylls of D. linearis. The in vivo coordination environment of light REE (lanthanum) or heavy REE (yttrium) ions in D. linearis chlorophyll-a was determined by the extended X-ray absorption fine structure (EXAFS). Results revealed that there were eight nitrogen atoms in the first coordination shell of the lanthanum atom, whereas there were four nitrogen atoms in the first coordination shell of yttrium. It was postulated that the lanthanum-chlorophyll-a complex might have a double-layer sandwich-like structure, but yttrium-binding chlorophyll-a might be in a single-layer form. Because the content of REE-binding chlorophylls in D. linearis chlorophylls was very low, it is impossible to obtain structural characteristics of REE-binding chlorophylls by direct analysis of the Fourier transform infrared (FTIR) and ultraviolet (UV)-visible spectra of D. linearis chlorophylls. In order to acquire more structural information of REE-binding chlorophyll-a in D. linearis, lanthanum - and yttrium-chlorophyll-a complexes were in vitro synthesized in acetone solution. Element analyses and EXAFS results indicated that REE ions (lanthanum or yttrium) of REE-chlorophyll-a possessed the same coordination environment whether in vivo or in vitro. The FTIR spectra of the REE-chlorophyll-a complexes indicated that REEs were bound to the porphyrin rings of chlorophylls. UV-visible results showed that the intensity ratios of Soret to the Q-band of REE-chlorophyll-a complexes were higher than those of standard chlorophyll-a and pheophytin-a, indicating that REE-chlorophyll-a might have a much stronger ability to absorb the ultraviolet light. The MCD spectrum in

  13. Experimental analysis of elemental factors controlling the life of PAFCs

    SciTech Connect

    Watanabe, Masahiro; Miyoshi, Hideaki; Uchida, Hiroyuki

    1996-12-31

    Since 1991, 5MW-class and 1MW-class PAFC power plants have been demonstrated with the objective of accelerating development and commercialization by the Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) jointly with NEDO as one of MITI`s fuel cell programs. As a complimentary research project to the demonstration project, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. Our work has been performed in the Basic Research Project, as part of that project on PAFCs, with the cooperation of Yamanashi University supported by the Ministry of Education, Science and Culture, PAFC-TRA supported by NEDO and three PAFC makers. We have selected the following four subjects as the essential factors relating to the life-time, after a year-long study of the literature and the accumulation of a large number of data as to the practical operations of the cells, cell stacks and plants of PAFCs; i.e., (1) Mechanism of the degradation of electrocatalysts and the effect of the degradation on the electrode performances. (2) Effect of the electrolyte fill-level on the electrode performances. (3) Corrosion of cell constructing materials and the effect of the corrosion on the electrode performances. (4) The rate and mechanism of electrolyte loss under various operating conditions of a model cell. The paper briefly introduces the interim results which have been found on the above subjects at this time.

  14. Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters.

    PubMed Central

    Du, H; Roy, A L; Roeder, R G

    1993-01-01

    Earlier in vitro studies identified USF as a cellular factor which activates the adenovirus major late (Ad-ML) promoter by binding to an E-box motif located at position -60 with respect to the cap site. Purified USF contains 44 and 43 kDa polypeptides, and the latter was found (by cDNA cloning) to be a helix-loop-helix protein. In this report, we demonstrate a 25-to 30-fold stimulation of transcription via an upstream binding site by ectopic expression of the 43 kDa form of USF (USF43) in transient transfection assays. More recent data have also revealed alternate interactions of USF43 at pyrimidine-rich (consensus YYAYTCYY) initiator (Inr) elements present in a variety of core promoters. In agreement with this observation, we show here that USF43 can recognize the initiator elements of the HIV-1 promoter, as well as those in the Ad-ML promoter, and that ectopic expression of USF43 can stimulate markedly the corresponding core promoters (TATA and initiator elements) when analyzed in transient co-transfection assays. Mutations in either Inr 1 or Inr 2 reduced the USF43-dependent transcription activity in vivo. In addition, in vitro transcription assays showed that mutations in either or both of the Inr 1 and Inr 2 sequences of the HIV-1 and Ad-ML promoters could affect transcription efficiency, but not the position of the transcriptional start site. These results indicate that USF43 can stimulate transcription through initiator elements in two viral promoters, although the exact mechanism and physiological significance of this effect remain unclear. Images PMID:8440240

  15. Recent Insights into Insulin-Like Growth Factor Binding Protein 2 Transcriptional Regulation

    PubMed Central

    Park, Jae-Hyung; Bae, Jae-Hoon; Song, Dae-Kyu

    2017-01-01

    Insulin-like growth factor binding proteins (IGFBPs) are major regulators of insulin-like growth factor bioavailability and activity in metabolic signaling. Seven IGFBP family isoforms have been identified. Recent studies have shown that IGFBPs play a pivotal role in metabolic signaling and disease, including the pathogenesis of obesity, diabetes, and cancer. Although many studies have documented the various roles played by IGFBPs, transcriptional regulation of IGFBPs is not well understood. In this review, we focus on the regulatory mechanisms of IGFBP gene expression, and we summarize the findings of transcription factor activity in the IGFBP promoter region. PMID:28116872

  16. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    SciTech Connect

    Lilic,M.; Vujanac, M.; Stebbins, C.

    2006-01-01

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella.

  17. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    SciTech Connect

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  18. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  19. Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development

    PubMed Central

    Kaplan, Tommy; Li, Xiao-Yong; Sabo, Peter J.; Thomas, Sean; Stamatoyannopoulos, John A.; Biggin, Mark D.; Eisen, Michael B.

    2011-01-01

    Transcription factors that drive complex patterns of gene expression during animal development bind to thousands of genomic regions, with quantitative differences in binding across bound regions mediating their activity. While we now have tools to characterize the DNA affinities of these proteins and to precisely measure their genome-wide distribution in vivo, our understanding of the forces that determine where, when, and to what extent they bind remains primitive. Here we use a thermodynamic model of transcription factor binding to evaluate the contribution of different biophysical forces to the binding of five regulators of early embryonic anterior-posterior patterning in Drosophila melanogaster. Predictions based on DNA sequence and in vitro protein-DNA affinities alone achieve a correlation of ∼0.4 with experimental measurements of in vivo binding. Incorporating cooperativity and competition among the five factors, and accounting for spatial patterning by modeling binding in every nucleus independently, had little effect on prediction accuracy. A major source of error was the prediction of binding events that do not occur in vivo, which we hypothesized reflected reduced accessibility of chromatin. To test this, we incorporated experimental measurements of genome-wide DNA accessibility into our model, effectively restricting predicted binding to regions of open chromatin. This dramatically improved our predictions to a correlation of 0.6–0.9 for various factors across known target genes. Finally, we used our model to quantify the roles of DNA sequence, accessibility, and binding competition and cooperativity. Our results show that, in regions of open chromatin, binding can be predicted almost exclusively by the sequence specificity of individual factors, with a minimal role for protein interactions. We suggest that a combination of experimentally determined chromatin accessibility data and simple computational models of transcription factor binding may be

  20. Heparin-Binding Epidermal Growth Factor-like Growth Factor/Diphtheria Toxin Receptor in Normal and Neoplastic Hematopoiesis

    PubMed Central

    Vinante, Fabrizio; Rigo, Antonella

    2013-01-01

    Heparin-binding EGF-like growth factor (HB-EGF) belongs to the EGF family of growth factors. It is biologically active either as a molecule anchored to the membrane or as a soluble form released by proteolytic cleavage of the extracellular domain. HB-EGF is involved in relevant physiological and pathological processes spanning from proliferation and apoptosis to morphogenesis. We outline here the main activities of HB-EGF in connection with normal or neoplastic differentiative or proliferative events taking place primitively in the hematopoietic microenvironment. PMID:23888518

  1. Molecular Determinants of Epidermal Growth Factor Binding: A Molecular Dynamics Study

    PubMed Central

    Sanders, Jeffrey M.; Wampole, Matthew E.; Thakur, Mathew L.; Wickstrom, Eric

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF

  2. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    SciTech Connect

    Lu, Xun; Guanga, Gerald P; Wan, Cheng; Rose, Robert B

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G–5C–4 and central C0/G0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.

  3. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  4. Measurement of immunotargeted plasmonic nanoparticles' cellular binding: a key factor in optimizing diagnostic efficacy

    NASA Astrophysics Data System (ADS)

    Fu, Kun; Sun, Jiantang; Bickford, Lissett R.; Lin, Alex W. H.; Halas, Naomi J.; Yu, Tse-Kuan; Drezek, Rebekah A.

    2008-01-01

    In this study, we use polarized light scattering to study immunotargeted plasmonic nanoparticles which bind to live SK-BR-3 human breast carcinoma cells. Gold nanoparticles can be conjugated to various biomolecules in order to target specific molecular signatures of disease. This specific targeting provides enhanced contrast in scattering-based optical imaging techniques. While there are papers which report the number of antibodies that bind per nanoparticle, there are almost no reports of the key factor which influences diagnostic or therapeutic efficacy using nanoparticles: the number of targeted nanoparticles that bind per cell. To achieve this goal, we have developed a 'negative' method of determining the binding concentration of those antibody/nanoparticle bioconjugates which are targeted specifically to breast cancer cells. Unlike previously reported methods, we collected unbound nanoparticle bioconjugates and measured the light scattering from dilute solutions of these particles so that quantitative binding information can be obtained. By following this process, the interaction effects of adjacent bound nanoparticles on the cell membrane can be avoided simply by measuring the light scattering from the unbound nanoparticles. Specifically, using nanoshells of two different sizes, we compared the binding concentrations of anti-HER2/nanoshell and anti-IgG/nanoshell bioconjugates targeted to HER2-positive SK-BR-3 breast cancer cells. The results indicate that, for anti-HER2/nanoshell bioconjugates, there are approximately 800-1600 nanoshells bound per cell; for anti-IgG/nanoshell bioconjugates, the binding concentration is significantly lower at nearly 100 nanoshells bound per cell. These results are also supported by dark-field microscopy images of the cells labeled with anti-HER2/nanoshell and anti-IgG/nanoshell bioconjugates.

  5. Interplay between estrogen response element sequence and ligands controls in vivo binding of estrogen receptor to regulated genes.

    PubMed

    Krieg, Adam J; Krieg, Sacha A; Ahn, Bonnie S; Shapiro, David J

    2004-02-06

    To examine the role of the estrogen response element (ERE) sequence in binding of liganded estrogen receptor (ER) to promoters, we analyzed in vivo interaction of liganded ER with the imperfect ERE in the pS2 gene and the composite estrogen-responsive unit (ERU) in the proteinase inhibitor 9 (PI-9) gene. In transient transfections of ER-positive HepG2-ER7 cells, PI-9 was strongly induced by estrogen, moxestrol (MOX), and 4-hydroxytamoxifen (OHT). PI-9 was not induced by raloxifene or ICI 182,780. Quantitative reverse transcriptase-PCR showed that moxestrol strongly induced cellular PI-9 and pS2 mRNAs, whereas OHT moderately induced PI-9 mRNA and weakly induced pS2 mRNA. Chromatin immunoprecipitation experiments demonstrated strong and similar association of 17beta-estradiol-hERalpha and MOX-hERalpha with the PI-9 ERU and with the pS2 ERE. Binding of MOX-hERalpha to the PI-9 ERU and the pS2 ERE was rapid and continuous. Although MOX-hERalpha bound strongly to the PI-9 ERU and less well to the pS2 ERE in chromatin immunoprecipitation, gel shift assays showed that estrogen-hERalpha binds with higher affinity to the deproteinized pS2 ERE than to the PI-9 ERU. Across a broad range of OHT concentrations, OHT-hERalpha associated strongly with the pS2 ERE and weakly with the PI-9 ERU. ICI-hERalpha bound poorly to the PI-9 ERU and effectively to the pS2 ERE. Raloxifene-hERalpha and MOX-hERalpha exhibited similar binding to the PI-9 ERU and the pS2 ERE. These studies demonstrate that ER ligand and ERE sequence work together to regulate in vivo binding of ER to estrogen-responsive promoters.

  6. The far-upstream element-binding protein 2 is correlated with proliferation and doxorubicin resistance in human breast cancer cell lines.

    PubMed

    Wang, Ying-Ying; Gu, Xiao-Ling; Wang, Chao; Wang, Hua; Ni, Qi-Chao; Zhang, Chun-Hui; Yu, Xia-Fei; Yang, Li-Yi; He, Zhi-Xian; Mao, Guo-Xin; Yang, Shu-Yun

    2016-07-01

    Far-upstream element (FUSE)-binding protein 2 (FBP2) was a member of single-stranded DNA-binding protein family; it played an important role in regulating transcription and post-transcription and is involved in the regulation of C-MYC gene expression in liver tumors. However, the role of FBP2 in breast cancer and its mechanism has not been studied yet. Here, we discovered that FBP2 was up-regulated in breast cancer tissues and breast cancer cell lines. Moreover, immunohistochemistry analysis demonstrated that up-regulated FBP2 was highly associated with tumor grade, Ki-67, and poor prognosis, which was an independent prognostic factor for survival of breast cancer patients. At the cellular level, we found that FBP2 was correlated with cell cycle progression by accelerating G1/S transition, and knockdown of FBP2 could weaken cell proliferation, anchorage-independent cell growth, while enhancing the sensitivity of breast cancer cells to doxorubicin. More importantly, we found that activation of PI3K/AKT pathway could phosphorylate FBP2, and then make FBP2 shuttle from cytoplasm into the nucleus, which was the main mechanism of breast cancer cell proliferation and drug resistance. Taken together, our findings supported the notion that FBP2 might via PI3K/AKT pathway influence breast cancer progression and drug resistance, which might provide a new target for the design of anti-cancer drugs for breast cancer patients.

  7. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes.

    PubMed Central

    Zhou, J; Tang, X; Martin, G B

    1997-01-01

    In tomato, the Pto kinase confers resistance to bacterial speck disease by recognizing the expression of a corresponding avirulence gene, avrPto, in the pathogen Pseudomonas syringae pv. tomato. Using the yeast two-hybrid system, we have identified three genes, Pti4, Pti5 and Pti6, that encode proteins that physically interact with the Pto kinase. Pti4/5/6 each encode a protein with characteristics that are typical of transcription factors and are similar to the tobacco ethylene-responsive element-binding proteins (EREBPs). Using a gel mobility-shift assay, we demonstrate that, similarly to EREBPs, Pti4/5/6 specifically recognize and bind to a DNA sequence that is present in the promoter region of a large number of genes encoding 'pathogenesis-related' (PR) proteins. Expression of several PR genes and a tobacco EREBP gene is specifically enhanced upon Pto-avrPto recognition in tobacco. These observations establish a direct connection between a disease resistance gene and the specific activation of plant defense genes. PMID:9214637

  8. Sterol Regulatory Element-binding Protein (SREBP) Cleavage Regulates Golgi-to-Endoplasmic Reticulum Recycling of SREBP Cleavage-activating Protein (SCAP)*

    PubMed Central

    Shao, Wei; Espenshade, Peter J.

    2014-01-01

    Sterol regulatory element-binding protein (SREBP) transcription factors are central regulators of cellular lipogenesis. Release of membrane-bound SREBP requires SREBP cleavage-activating protein (SCAP) to escort SREBP from the endoplasmic reticulum (ER) to the Golgi for cleavage by site-1 and site-2 proteases. SCAP then recycles to the ER for additional rounds of SREBP binding and transport. Mechanisms regulating ER-to-Golgi transport of SCAP-SREBP are understood in molecular detail, but little is known about SCAP recycling. Here, we have demonstrated that SCAP Golgi-to-ER transport requires cleavage of SREBP at site-1. Reductions in SREBP cleavage lead to SCAP degradation in lysosomes, providing additional negative feedback control to the SREBP pathway. Current models suggest that SREBP plays a passive role prior to cleavage. However, we show that SREBP actively prevents premature recycling of SCAP-SREBP until initiation of SREBP cleavage. SREBP regulates SCAP in human cells and yeast, indicating that this is an ancient regulatory mechanism. PMID:24478315

  9. Purification and characterization of FBI-1, a cellular factor that binds to the human immunodeficiency virus type 1 inducer of short transcripts.

    PubMed

    Pessler, F; Pendergrast, P S; Hernandez, N

    1997-07-01

    The human immunodeficiency virus (HIV-1) promoter directs the synthesis of two classes of RNA molecules, short transcripts and full-length transcripts. The synthesis of short transcripts depends on a bipartite DNA element, the inducer of short transcripts (IST), located in large part downstream of the HIV-1 start site of transcription. IST does not require any viral product for function and is thought to direct the assembly of transcription complexes that are incapable of efficient elongation. Nothing is known, however, about the biochemical mechanisms that mediate IST function. Here, we report the identification and purification of a factor that binds specifically to the IST. This factor, FBI-1, recognizes a large bipartite binding site that coincides with the bipartite IST element. It is constituted at least in part by an 86-kDa polypeptide that can be specifically cross-linked to IST. FBI-1 also binds to promoter and attenuation regions of a number of cellular and viral transcription units that are regulated by a transcription elongation block. This observation, together with the observation that the binding of FBI-1 to IST mutants correlates with the ability of these mutants to direct IST function, suggests that FBI-1 may be involved in the establishment of abortive transcription complexes.

  10. Heparin binding preference and structures in the fibroblast growth factor family parallel their evolutionary diversification

    PubMed Central

    Jiang, Chao; Wilkinson, Mark C.

    2016-01-01

    The interaction of a large number of extracellular proteins with heparan sulfate (HS) regulates their transport and effector functions, but the degree of molecular specificity underlying protein–polysaccharide binding is still debated. The 15 paracrine fibroblast growth factors (FGFs) are one of the paradigms for this interaction. Here, we measure the binding preferences of six FGFs (FGF3, FGF4, FGF6, FGF10, FGF17, FGF20) for a library of modified heparins, representing structures in HS, and model glycosaminoglycans, using differential scanning fluorimetry. This is complemented by the identification of the lysine residues in the primary and secondary binding sites of the FGFs by a selective labelling approach. Pooling these data with previous sets provides good coverage of the FGF phylogenetic tree, deduced from amino acid sequence alignment. This demonstrates that the selectivity of the FGFs for binding structures in sulfated polysaccharides and the pattern of secondary binding sites on the surface of FGFs follow the phylogenetic relationship of the FGFs, and so are likely to be the result of the natural selection pressures that led to the expansion of the FGF family in the course of the evolution of more complex animal body plans. PMID:27030175

  11. Flanking sequence context-dependent transcription factor binding in early Drosophila development

    PubMed Central

    2013-01-01

    Background Gene expression in the Drosophila embryo is controlled by functional interactions between a large network of protein transcription factors (TFs) and specific sequences in DNA cis-regulatory modules (CRMs). The binding site sequences for any TF can be experimentally determined and represented in a position weight matrix (PWM). PWMs can then be used to predict the location of TF binding sites in other regions of the genome, although there are limitations to this approach as currently implemented. Results In this proof-of-principle study, we analyze 127 CRMs and focus on four TFs that control transcription of target genes along the anterio-posterior axis of the embryo early in development. For all four of these TFs, there is some degree of conserved flanking sequence that extends beyond the predicted binding regions. A potential role for these conserved flanking sequences may be to enhance the specificity of TF binding, as the abundance of these sequences is greatly diminished when we examine only predicted high-affinity binding sites. Conclusions Expanding PWMs to include sequence context-dependence will increase the information content in PWMs and facilitate a more efficient functional identification and dissection of CRMs. PMID:24093548

  12. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles.

    PubMed

    Portales-Casamar, Elodie; Thongjuea, Supat; Kwon, Andrew T; Arenillas, David; Zhao, Xiaobei; Valen, Eivind; Yusuf, Dimas; Lenhard, Boris; Wasserman, Wyeth W; Sandelin, Albin

    2010-01-01

    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database to date: the database now holds 457 non-redundant, curated profiles. The new entries include the first batch of profiles derived from ChIP-seq and ChIP-chip whole-genome binding experiments, and 177 yeast TF binding profiles. The introduction of a yeast division brings the convenience of JASPAR to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature. A curated catalog of mammalian TFs is provided, extending the use of the JASPAR profiles to additional TFs belonging to the same structural family. The changes in the database set the system ready for more rapid acquisition of new high-throughput data sources. Additionally, three new special collections provide matrix profile data produced by recent alternative high-throughput approaches.

  13. Structural basis for the regulation of insulin-like growth factors by IGF binding proteins.

    PubMed

    Siwanowicz, Igor; Popowicz, Grzegorz M; Wisniewska, Magdalena; Huber, Robert; Kuenkele, Klaus-Peter; Lang, Kurt; Engh, Richard A; Holak, Tad A

    2005-01-01

    Insulin-like growth factor binding proteins (IGFBPs) control the extracellular distribution, function, and activity of IGFs. Here, we report an X-ray structure of the binary complex of IGF-I and the N-terminal domain of IGFBP-4 (NBP-4, residues 3-82) and a model of the ternary complex of IGF-I, NBP-4, and the C-terminal domain (CBP-4, residues 151-232) derived from diffraction data with weak definition of the C-terminal domain. These structures show how the IGFBPs regulate IGF signaling. Key features of the structures include (1) a disulphide bond ladder that binds to IGF and partially masks the IGF residues responsible for type 1 IGF receptor (IGF-IR) binding, (2) the high-affinity IGF-I interaction site formed by residues 39-82 in a globular fold, and (3) CBP-4 interactions. Although CBP-4 does not bind individually to either IGF-I or NBP-4, in the ternary complex, CBP-4 contacts both and also blocks the IGF-IR binding region of IGF-I.

  14. Comparative study of binding of ovine complement factor H with different Borrelia genospecies.

    PubMed

    Kišová-Vargová, Lucia; Cerňanská, Dana; Bhide, Mangesh

    2012-03-01

    This study presents the binding of ovine factor H (fH) by various serotypes of Borrelia and simultaneously correlates their complement resistance to sheep serum. Affinity ligand binding assay was employed to study the binding of borrelial proteins to ovine recombinant fH and its truncated forms (short consensus repeat, SCR 7 and SCRs 19-20). From a repertoire of 17 borrelial strains, only two strains showed affinity to sheep fH. A ~28-kDa protein of Borrelia burgdorferi sensu stricto (B. burgdorferi s.s., strain SKT-2) bound full-length fH as well as SCRs 19-20. This fH-binding protein was further identified as complement regulator-acquiring surface protein of B. burgdorferi (BbCRASP-1) by MALDI-TOF analysis. Surprisingly, a ~26-kDa protein of Borrelia bissettii (DN127) showed affinity to full-length fH but not to SCR 7 and SCRs19-20. In complement sensitivity assay, both strains-SKT-2 and DN127-were resistant to normal sheep serum. Significant complement resistance of two Borrelia garinii strains (G117 and T25) was also observed; however, none of those strains was able to bind sheep fH. Our study underscores the need of further exploration of fH-mediated evasion of complement system by Borrelia in domestic animals.

  15. Identification of amino acids in the Dr adhesin required for binding to decay-accelerating factor.

    PubMed

    Van Loy, Cristina P; Sokurenko, Evgeni V; Samudrala, Ram; Moseley, Steve L

    2002-07-01

    Members of the Dr family of adhesins of Escherichia coli recognize as a receptor the Dr(a) blood-group antigen present on the complement regulatory and signalling molecule, decay-accelerating factor (DAF). One member of this family, the Dr haemagglutinin, also binds to a second receptor, type IV collagen. Structure/function information regarding these adhesins has been limited and domains directly involved in the interaction with DAF have not been determined. We devised a strategy to identify amino acids in the Dr haemagglutinin that are specifically involved in the interaction with DAF. The gene encoding the adhesive subunit, draE, was subjected to random mutagenesis and used to complement a strain defective for its expression. The resulting mutants were enriched and screened to obtain those that do not bind to DAF, but retain binding to type IV collagen. Individual amino acid changes at positions 10, 63, 65, 75, 77, 79 and 131 of the mature DraE sequence significantly reduced the ability of the DraE adhesin to bind DAF, but not collagen. Over half of the mutants obtained had substitutions within amino acids 63-81. Analysis of predicted structures of DraE suggest that these proximal residues may cluster to form a binding domain for DAF.

  16. Song-induced phosphorylation of cAMP response element-binding protein in the songbird brain.

    PubMed

    Sakaguchi, H; Wada, K; Maekawa, M; Watsuji, T; Hagiwara, M

    1999-05-15

    We have investigated the participation of cAMP response element-binding protein (CREB) in the response of the songbird brain to a natural auditory stimulus, a conspecific song. The cells in the two song control nuclei, the higher vocal center (HVC) and area X of zebra finches (Taeniopygia guttata), were intensely stained with an anti-CREB monoclonal antibody. Double-labeling studies showed that CREB immunoreactivity was detected only in area X-projecting neurons in the HVC. The cloned CREB cDNA from zebra finches (zCREB) is highly homologous to mammalian delta CREB. Phosphorylation of zCREB at Ser119 in area X-projecting HVC neurons was induced by hearing tape-recorded conspecific songs of zebra finches, but not by birdsongs of another species or white noise. These results raise the possibility that zCREB plays a crucial role in the sensory process of song learning.

  17. MORPHEUS, a Webtool for Transcription Factor Binding Analysis Using Position Weight Matrices with Dependency.

    PubMed

    Minguet, Eugenio Gómez; Segard, Stéphane; Charavay, Céline; Parcy, François

    2015-01-01

    Transcriptional networks are central to any biological process and changes affecting transcription factors or their binding sites in the genome are a key factor driving evolution. As more organisms are being sequenced, tools are needed to easily predict transcription factor binding sites (TFBS) presence and affinity from mere inspection of genomic sequences. Although many TFBS discovery algorithms exist, tools for using the DNA binding models they generate are relatively scarce and their use is limited among the biologist community by the lack of flexible and user-friendly tools. We have developed a suite of web tools (called Morpheus) based on the proven Position Weight Matrices (PWM) formalism that can be used without any programing skills and incorporates some unique features such as the presence of dependencies between nucleotides positions or the possibility to compute the predicted occupancy of a large regulatory region using a biophysical model. To illustrate the possibilities and simplicity of Morpheus tools in functional and evolutionary analysis, we have analysed the regulatory link between LEAFY, a key plant transcription factor involved in flower development, and its direct target gene APETALA1 during the divergence of Brassicales clade.

  18. Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions.

    PubMed

    O'Seaghdha, Maghnus; van Schooten, Carina J; Kerrigan, Steven W; Emsley, Jonas; Silverman, Gregg J; Cox, Dermot; Lenting, Peter J; Foster, Timothy J

    2006-11-01

    Protein A (Spa) is a surface-associated protein of Staphylococcus aureus best known for its ability to bind to the Fc region of IgG. Spa also binds strongly to the Fab region of the immunoglobulins bearing V(H)3 heavy chains and to von Willebrand factor (vWF). Previous studies have suggested that the protein A-vWF interaction is important in S. aureus adherence to platelets under conditions of shear stress. We demonstrate that Spa expression is sufficient for adherence of bacteria to immobilized vWF under low fluid shear. The full length recombinant Ig-binding region of protein A, Spa-EDABC, fused to glutathione-S-transferase (GST), bound recombinant vWF in a dose-dependent and saturable fashion with half maximal binding of about 30 nm in immunosorbent assays. Full length-Spa did not bind recombinant vWF A3 domain but displayed binding to recombinant vWF domains A1 and D'-D3 (half maximal binding at 100 nm and 250 nm, respectively). Each recombinant protein A Ig-binding domain bound to the A1 domain in a similar manner to the full length-Spa molecule (half maximal binding 100 nm). Amino acid substitutions were introduced in the GST-SpaD protein at sites known to be involved in IgG Fc or in V(H)3 Fab binding. Mutants altered in residues that recognized IgG Fc but not those that recognized V(H)3 Fab had reduced binding to vWF A1 and D'-D3. This indicated that both vWF regions recognized a region on helices I and II that overlapped the IgG Fc binding site.

  19. Exploiting ancestral mammalian genomes for the prediction of human transcription factor binding sites

    PubMed Central

    2012-01-01

    Background The computational prediction of Transcription Factor Binding Sites (TFBS) remains a challenge due to their short length and low information content. Comparative genomics approaches that simultaneously consider several related species and favor sites that have been conserved throughout evolution improve the accuracy (specificity) of the predictions but are limited due to a phenomenon called binding site turnover, where sequence evolution causes one TFBS to replace another in the same region. In parallel to this development, an increasing number of mammalian genomes are now sequenced and it is becoming possible to infer, to a surprisingly high degree of accuracy, ancestral mammalian sequences. Results We propose a TFBS prediction approach that makes use of the availability of inferred ancestral mammalian genomes to improve its accuracy. This method aims to identify binding loci, which are regions of a few hundred base pairs that have preserved their potential to bind a given transcription factor over evolutionary time. After proposing a neutral evolutionary model of predicted TFBS counts in a DNA region of a given length, we use it to identify regions that have preserved the number of predicted TFBS they contain to an unexpected degree given their divergence. The approach is applied to human chromosome 1 and shows significant gains in accuracy as compared to both existing single-species and multi-species TFBS prediction approaches, in particular for transcription factors that are subject to high turnover rates. Availability The source code and predictions made by the program are available at http://www.cs.mcgill.ca/~blanchem/bindingLoci. PMID:23281809

  20. DNA-binding specificity and in vivo targets of Caenorhabditis elegans nuclear factor I

    PubMed Central

    Whittle, Christina M.; Lazakovitch, Elena; Gronostajski, Richard M.; Lieb, Jason D.

    2009-01-01

    The conserved nuclear factor I (NFI) family of transcription factors is unique to animals and essential for mammalian development. The Caenorhabditis elegans genome encodes a single NFI family member, whereas vertebrate genomes encode 4 distinct NFI protein subtypes (A, B, C, and X). NFI-1-deficient worms exhibit abnormalities, including reduced lifespan, defects in movement and pharyngeal pumping, and delayed egg-laying. To explore the functional basis of these phenotypes, we sought to comprehensively identify NFI-1-bound loci in C. elegans. We first established NFI-1 DNA-binding specificity using an in vitro DNA-selection strategy. Analysis yielded a consensus motif of TTGGCA(N)3TGCCAA, which occurs 586 times in the genome, a 100-fold higher frequency than expected. We next asked which sites were occupied by NFI-1 in vivo by performing chromatin immunoprecipitation of NFI-1 followed by microarray hybridization. Only 55 genomic locations were identified, an unexpectedly small target set. In vivo NFI-1 binding sites tend to be upstream of genes involved in core cellular processes, such as chromatin remodeling, mRNA splicing, and translation. Remarkably, 59 out of 70 (84%) of the C. briggsae orthologs of the identified targets contain conserved NFI binding sites in their promoters. These experiments provide a foundation for understanding how NFI-1 is recruited to unexpectedly few in vivo sites to perform its developmental functions, despite a vast over-representation of its binding motif. PMID:19584245

  1. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    SciTech Connect

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.

  2. SNP2TFBS – a database of regulatory SNPs affecting predicted transcription factor binding site affinity

    PubMed Central

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-01

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/. PMID:27899579

  3. The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein

    PubMed Central

    Lyonnais, Sébastien; Tarrés-Soler, Aleix; Rubio-Cosials, Anna; Cuppari, Anna; Brito, Reicy; Jaumot, Joaquim; Gargallo, Raimundo; Vilaseca, Marta; Silva, Cristina; Granzhan, Anton; Teulade-Fichou, Marie-Paule; Eritja, Ramon; Solà, Maria

    2017-01-01

    The ability of the guanine-rich strand of the human mitochondrial DNA (mtDNA) to form G-quadruplex structures (G4s) has been recently highlighted, suggesting potential functions in mtDNA replication initiation and mtDNA stability. G4 structures in mtDNA raise the question of their recognition by factors associated with the mitochondrial nucleoid. The mitochondrial transcription factor A (TFAM), a high-mobility group (HMG)-box protein, is the major binding protein of human mtDNA and plays a critical role in its expression and maintenance. HMG-box proteins are pleiotropic sensors of DNA structural alterations. Thus, we investigated and uncovered a surprising ability of TFAM to bind to DNA or RNA G4 with great versatility, showing an affinity similar than to double-stranded DNA. The recognition of G4s by endogenous TFAM was detected in mitochondrial extracts by pull-down experiments using a G4-DNA from the mtDNA conserved sequence block II (CSBII). Biochemical characterization shows that TFAM binding to G4 depends on both the G-quartets core and flanking single-stranded overhangs. Additionally, it shows a structure-specific binding mode that differs from B-DNA, including G4-dependent TFAM multimerization. These TFAM-G4 interactions suggest functional recognition of G4s in the mitochondria. PMID:28276514

  4. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity.

    PubMed

    Kumar, Sunil; Ambrosini, Giovanna; Bucher, Philipp

    2017-01-04

    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/.

  5. PAR-1-Stimulated Factor IXa Binding to a Small Platelet Subpopulation Requires a Pronounced and Sustained Increase of Cytoplasmic Calcium †

    PubMed Central

    London, Fredda S.; Marcinkiewicz, Mariola; Walsh, Peter N.

    2008-01-01

    We previously reported that only a subpopulation of PAR-1-stimulated platelets binds coagulation factor IXa, since confirmed by other laboratories. Since calcium changes have been implicated in exposure of procoagulant aminophospholipids, we have now examined calcium fluxes in this subpopulation by measuring fluorescence changes in Fura Red/AM-loaded platelets following PAR-1 stimulation. While fluorescence changes in all platelets indicated calcium release from internal stores and influx of external calcium, a subpopulation of platelets displayed a pronounced increase in calcium transients by 15 seconds and positive factor IXa binding by 2 minutes, with calcium transients sustained for 45 minutes. Pretreatment of platelets with Xestospongin C to inhibit IP3-mediated dense tubule calcium release, and the presence of impermeable calcium channel blockers nifedipine, SKF96365 or LaCl3, inhibited PAR-1-induced development of a subpopulation with pronounced calcium transients, factor IXa binding, and platelet support of FXa generation, suggesting the importance of both release of calcium from internal stores and influx of extracellular calcium. When platelets were stimulated in EDTA for 5 to 20 minutes before addition of calcium, factor IXa binding sites developed on a smaller subpopulation but with unchanged rate indicating sustained opening of calcium channels and continued availability of signaling elements required for binding site exposure. While pretreatment of platelets with 100 μM BAPTA/AM (Kd 160 nM) had minimal effects, 100 μM 5, 5′-dimethylBAPTA/AM (Kd 40 nM) completely inhibited the appearance and function of the platelet subpopulation, indicating the importance of minor increases of cytoplasmic calcium. We conclude that PAR-1-stimulated development of factor IXa binding sites in a subpopulation of platelets is dependent upon release of calcium from internal stores leading to sustained and pronounced calcium transients. PMID:16752917

  6. MicroRNA-181b targets cAMP responsive element binding protein 1 in gastric adenocarcinomas.

    PubMed

    Chen, Lin; Yang, Qian; Kong, Wei-Qing; Liu, Tao; Liu, Min; Li, Xin; Tang, Hua

    2012-07-01

    MicroRNAs are a class of small endogenous non-coding RNAs that function as post-transcriptional regulators. In our previous study, we found that miR-181b was significantly downregulated in human gastric adenocarcinoma tissue samples compared to the adjacent normal gastric tissues. In this study, we confirm the down-regulation of miR-181b in human gastric cancer cell lines versus the gastric epithelial cells. Overexpression of miR-181b suppressed the proliferation and colony formation rate of gastric cancer cells. miR-181b downregulated the expression of cAMP responsive element binding protein 1 (CREB1) by binding its 3' untranslated region. Overexpression of CREB1 counteracted the suppression of growth in gastric cancer cells caused by ectopic expression of miR-181b. These results indicate that miR-181b may function as a tumor suppressor in gastric adenocarcinoma cells through negative regulation of CREB1.

  7. Regulation of steroid 5-{alpha} reductase type 2 (Srd5a2) by sterol regulatory element binding proteins and statin

    SciTech Connect

    Seo, Young-Kyo; Zhu, Bing; Jeon, Tae-Il; Osborne, Timothy F.

    2009-11-01

    In this study, we show that sterol regulatory element binding proteins (SREBPs) regulate expression of Srd5a2, an enzyme that catalyzes the irreversible conversion of testosterone to dihydroxytestosterone in the male reproductive tract and is highly expressed in androgen-sensitive tissues such as the prostate and skin. We show that Srd5a2 is induced in livers and prostate from mice fed a chow diet supplemented with lovastatin plus ezitimibe (L/E), which increases the activity of nuclear SREBP-2. The three fold increase in Srd5a2 mRNA mediated by L/E treatment was accompanied by the induction of SREBP-2 binding to the Srd5a2 promoter detected by a ChIP-chip assay in liver. We identified a SREBP-2 responsive region within the first 300 upstream bases of the mouse Srd5a2 promoter by co-transfection assays which contain a site that bound SREBP-2 in vitro by an EMSA. Srd5a2 protein was also induced in cells over-expressing SREBP-2 in culture. The induction of Srd5a2 through SREBP-2 provides a mechanistic explanation for why even though statin therapy is effective in reducing cholesterol levels in treating hypercholesterolemia it does not compromise androgen production in clinical studies.

  8. A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction.

    PubMed

    Fusco, Salvatore; Ripoli, Cristian; Podda, Maria Vittoria; Ranieri, Sofia Chiatamone; Leone, Lucia; Toietta, Gabriele; McBurney, Michael W; Schütz, Günther; Riccio, Antonella; Grassi, Claudio; Galeotti, Tommaso; Pani, Giovambattista

    2012-01-10

    Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD(+)-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-γ coactivator-1α and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes.

  9. Loss of Kv3.1 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice.

    PubMed

    von Hehn, Christian A A; Bhattacharjee, Arin; Kaczmarek, Leonard K

    2004-02-25

    The promoter for the kv3.1 potassium channel gene is regulated by a Ca2+-cAMP responsive element, which binds the transcription factor cAMP response element-binding protein (CREB). Kv3.1 is expressed in a tonotopic gradient within the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem, where Kv3.1 levels are highest at the medial end, which corresponds to high auditory frequencies. We have compared the levels of Kv3.1, CREB, and the phosphorylated form of CREB (pCREB) in a mouse strain that maintains good hearing throughout life, CBA/J (CBA), with one that suffers early cochlear hair cell loss, C57BL/6 (BL/6). A gradient of Kv3.1 immunoreactivity in the MNTB was detected in both young (6 week) and older (8 month) CBA mice. Although no gradient of CREB was detected, pCREB-immunopositive cells were grouped together in distinct clusters along the tonotopic axis. The same pattern of Kv3.1, CREB, and pCREB localization was also found in young BL/6 mice at a time (6 weeks) when hearing is normal. In contrast, at 8 months, when hearing is impaired, the gradient of Kv3.1 was abolished. Moreover, in the older BL/6 mice there was a decrease in CREB expression along the tonotopic axis, and the pattern of pCREB labeling appeared random, with no discrete clusters of pCREB-positive cells along the tonotopic axis. Our findings are consistent with the hypothesis that ongoing activity in auditory brainstem neurons is necessary for the maintenance of Kv3.1 tonotopicity through the CREB pathway.

  10. A novel nerve growth factor-responsive element in the stromelysin-1 (transin) gene that is necessary and sufficient for gene expression in PC12 cells.

    PubMed

    deSouza, S; Lochner, J; Machida, C M; Matrisian, L M; Ciment, G

    1995-04-21

    Stromelysin-1 (ST-1) is an extracellular matrix metalloproteinase whose expression is transcriptionally regulated by nerve growth factor (NGF) in the PC12 rat pheochromocytoma cell line. In this paper, we define sequences in the proximal ST-1 promoter that contain a novel NGF-responsive element(s). We show that this cis-acting promoter element can bind nuclear proteins from both untreated and NGF-treated PC12 cells in a specific and saturable manner and is sufficient to confer NGF-inducibility to a heterologous promoter. At least a portion of this NGF-responsive element lies within a 12-base pair region between positions -241 and -229 of the ST-1 promoter and bears no sequence homology to other known transcriptional elements. In contrast to what has been reported for fibroblasts, an AP1 site centered around position -68 does not seem to be involved in the growth factor regulation of ST-1 in PC12 cells. These results suggest that the NGF regulation of ST-1 gene expression involves different promoter elements, and possibly different transcription factors, from that described for ST-1 induction by other growth factors.

  11. Genetic effects of sterol regulatory element binding proteins and fatty acid-binding protein4 on the fatty acid composition of Korean cattle (Hanwoo)

    PubMed Central

    Oh, Dong-Yep; Lee, Jea-Young; Jang, Ji-Eun; Lee, Seung-Uk

    2017-01-01

    Objective This study identifies single-nucleotide polymorphisms (SNP) or gene combinations that affect the flavor and quality of Korean cattle (Hanwoo) by using the SNP Harvester method. Methods Four economic traits (oleic acid [C18:1], saturated fatty acids), monounsaturated fatty acids, and marbling score) were adjusted for environmental factors in order to focus solely on genetic effects. The SNP Harvester method was used to investigate gene combinations (two-way gene interactions) associated with these economic traits. Further, a multifactor dimensionality reduction method was used to identify superior genotypes in gene combinations. Results Table 3 to 4 show the analysis results for differences between superior genotypes and others for selected major gene combinations using the multifactor dimensionality reduction method. Environmental factors were adjusted for in order to evaluate only the genetic effect. Table 5 shows the adjustment effect by comparing the accuracy before and after correction in two-way gene interactions. Conclusion The g.3977-325 T>C and (g.2988 A>G, g.3977-325 T>C) combinations of fatty acid-binding protein4 were the superior gene, and the superior genotype combinations across all economic traits were the CC genotype at g.3977-325 T>C and the AACC, GACC, GGCC genotypes of (g.2988 A>G, g.3977-325 T>C). PMID:27492349

  12. Intermittent hypoxic exposure during light phase induces changes in cAMP response element binding protein activity in the rat CA1 hippocampal region: water maze performance correlates.

    PubMed

    Goldbart, A; Row, B W; Kheirandish, L; Schurr, A; Gozal, E; Guo, S Z; Payne, R S; Cheng, Z; Brittian, K R; Gozal, D

    2003-01-01

    Intermittent hypoxia (IH) during sleep, a characteristic feature of sleep-disordered breathing (SDB) is associated with time-dependent apoptosis and spatial learning deficits in the adult rat. The mechanisms underlying such neurocognitive deficits remain unclear. Activation of the cAMP-response element binding protein (CREB) transcription factor mediates critical components of neuronal survival and memory consolidation in mammals. CREB phosphorylation and DNA binding, as well as the presence of apoptosis in the CA1 region of the hippocampus were examined in Sprague-Dawley male rats exposed to IH. Spatial reference task learning was assessed with the Morris water maze. IH induced significant decreases in Ser-133 phosphorylated CREB (pCREB) without changes in total CREB, starting as early as 1 h IH, peaking at 6 h-3 days, and returning toward normoxic levels by 14-30 days. Double-labeling immunohistochemistry for pCREB and Neu-N (a neuronal marker) confirmed these findings. The expression of cleaved caspase 3 (cC3) in the CA1, a marker of apoptosis, peaked at 3 days and returned to normoxic values at 14 days. Initial IH-induced impairments in spatial learning were followed by partial functional recovery starting at 14 days of IH exposure. We postulate that IH elicits time-dependent changes in CREB phosphorylation and nuclear binding that may account for decreased neuronal survival and spatial learning deficits in the adult rat. We suggest that CREB changes play an important role in the neurocognitive morbidity of SDB patients.

  13. Thy-1 mRNA destabilization by norepinephrine requires a 3′ UTR cAMP responsive decay element and involves RNA binding proteins1

    PubMed Central

    LaJevic, Melissa D.; Koduvayur, Sujatha P.; Caffrey, Veronique; Cohen, Rhonna L.; Chambers, Donald A.

    2010-01-01

    Thy-1 is a cell surface protein important in immunologic and neurologic processes, including T cell activation and proliferation, and neuronal outgrowth. In murine thymocytes, Thy-1 is downregulated in response to norepinephrine (NE) through posttranscriptional destabilization of its mRNA mediated by βAR/AC/cAMP/PKA signaling. In this study we investigated factors involved in NE/cAMP mediated Thy-1 mRNA destabilization in S49 thymoma cells, and identified a region containing two copies of the AUUUA regulatory element (ARE), a motif commonly associated with mRNA decay, in the Thy-1 mRNA 3′ UTR. Insertion of the Thy-1 ARE region into a reporter gene, resulted in cAMP induced destabilization of the reporter gene mRNA. RNA-protein binding studies revealed multiple Thy-1 ARE binding proteins, including AUF1, HuR, and TIAR. RNA silencing of HuR enhanced cAMP mediated downregulation of Thy-1 mRNA, in contrast, silencing AUF1 had no effect. Immunoblotting revealed multiple proteins phosphorylated by PKA as a result of NE or cAMP signaling. These results reveal that the machinery of NE/cAMP modulation of Thy-1 mRNA decay involves a cAMP responsive ARE in its 3′ UTR and multiple site specific ARE binding proteins. These findings add to our knowledge of Thy-1 mRNA regulation and provide insight into the regulation of ARE containing mRNAs, which impacts stress-related immunosuppression. PMID:20412850

  14. The MAPPER2 Database: a multi-genome catalog of putative transcription factor binding sites

    PubMed Central

    Riva, Alberto

    2012-01-01

    The mapper2 Database (http://genome.ufl.edu/mapperdb) is a component of mapper2, a web-based system for the analysis of transcription factor binding sites in multiple genomes. The database contains predicted binding sites identified in the promoters of all human, mouse and Drosophila genes using 1017 probabilistic models representing over 600 different transcription factors. In this article we outline the current contents of the database and we describe its web-based user interface in detail. We then discuss ongoing work to extend the database contents to experimental data and to add analysis capabilities. Finally, we provide information about recent improvements to the hardware and software platform that mapper2 is based on. PMID:22121218

  15. Reconstruction of adenovirus replication origins with a human nuclear factor I binding site.

    PubMed

    Adhya, S; Shneidman, P S; Hurwitz, J

    1986-03-05

    Nuclear factor I is a host-coded DNA-binding protein that stimulates initiation of adenovirus DNA replication. To understand the mechanism of action of nuclear factor I, we have constructed, by recombinant DNA techniques, origins of replication in which the adenovirus type 5 nuclear factor I binding site (FIB site) has been replaced by a FIB site isolated from human genomic DNA (Gronostajski, R. M., Nagata, K., and Hurwitz, J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 4013-4017). Assays of such recombinants for initiation and elongation in vitro showed that nuclear factor I was active only when the FIB site was relatively close to the DNA terminus, i.e. the FIB site was centered at nucleotides 30-36 from the end of the DNA. Nuclear factor I was active in either orientation within this distance range. The presence of one or two additional FIB sites in the downstream region had no effect. The implications of these results for the mechanism of nuclear factor I action are discussed.

  16. Sperm and spermatids contain different proteins and bind distinct egg factors.

    PubMed

    Teperek, Marta; Miyamoto, Kei; Simeone, Angela; Feret, Renata; Deery, Michael J; Gurdon, John B; Jullien, Jerome

    2014-09-19

    Spermatozoa are more efficient at supporting normal embryonic development than spermatids, their immature, immediate precursors. This suggests that the sperm acquires the ability to support embryonic development during spermiogenesis (spermatid to sperm maturation). Here, using Xenopus laevis as a model organism, we performed 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry analysis of differentially expressed proteins between sperm and spermatids in order to identify factors that could be responsible for the efficiency of the sperm to support embryonic development. Furthermore, benefiting from the availability of egg extracts in Xenopus, we also tested whether the chromatin of sperm could attract different egg factors compared to the chromatin of spermatids. Our analysis identified: (1) several proteins which were present exclusively in sperm; but not in spermatid nuclei and (2) numerous egg proteins binding to the sperm (but not to the spermatid chromatin) after incubation in egg extracts. Amongst these factors we identified many chromatin-associated proteins and transcriptional repressors. Presence of transcriptional repressors binding specifically to sperm chromatin could suggest its preparation for the early embryonic cell cycles, during which no transcription is observed and suggests that sperm chromatin has a unique protein composition, which facilitates the recruitment of egg chromatin remodelling factors. It is therefore likely that the acquisition of these sperm-specific factors during spermiogenesis makes the sperm chromatin suitable to interact with the maternal factors and, as a consequence, to support efficient embryonic development.

  17. Transcriptional regulation of the mouse alpha A-crystallin gene: activation dependent on a cyclic AMP-responsive element (DE1/CRE) and a Pax-6-binding site.

    PubMed Central

    Cvekl, A; Kashanchi, F; Sax, C M; Brady, J N; Piatigorsky, J

    1995-01-01

    Two cis-acting promoter elements (-108 to -100 and -49 to -33) of the mouse alpha A-crystallin gene, which is highly expressed in the ocular lens, were studied. Here we show that DE1 (-108 to -100; 5'TGACGGTG3'), which resembles the consensus cyclic AMP (cAMP)-responsive element sequence (CRE; 5'TGACGT[A/C][A/G]3'), behaves like a functional CRE site. Transfection experiments and electrophoretic mobility shift assays (EMSAs) using site-specific mutations correlated a loss of function with deviations from the CRE consensus sequence. Results of EMSAs in the presence of antisera against CREB, delta CREB, and CREM were consistent with the binding of CREB-like proteins to the DE1 sequence. Stimulation of alpha A-crystallin promoter activity via 8-bromo-cAMP, forskolin, or human T-cell leukemia virus type I Tax1 in transfections and reduction of activity of this site in cell-free transcription tests by competition with the somatostatin CRE supported the idea that DE1 is a functional CRE. Finally, Pax-6, a member of the paired-box family of transcription factors, activated the mouse alpha A-crystallin promoter in cotransfected COP-8 fibroblasts and bound to the -59 to -29 promoter sequence in EMSAs. These data provide evidence for a synergistic role of Pax-6 and CREB-like proteins for high expression of the mouse alpha A-crystallin gene in the lens. PMID:7823934

  18. Introduction of the factor of partitioning in the lithogenic enrichment factors of trace element bioaccumulation in plant tissues.

    PubMed

    Sardans, Jordi; Peñuelas, Josep

    2006-04-01

    Bioindicators are widely used in the study of trace elements inputs into the environment and great efforts have been conducted to separate atmospheric from soil borne inputs on biomass accumulation. Many monitoring studies of trace element pollution take into account the dust particles located in the plant surface plus the contents of the plant tissues. However, it is usually only the trace element content in the plant tissues that is relevant on plant health. Enrichment factor equations take into account the trace element enrichment of biomasses with respect soil or bedrocks by comparing the ratios of the trace element in question to a lithogenic element, usually Al. However, the enrichment equations currently in use are inadequate because they do not take into account the fact that Al (or whichever reference element) and the element in question may have different solubility-absorption-retention levels depending on the rock and soil types involved. This constrain will become critical when results from different sites are compared and so in this article we propose that the solubility factors of each element are taken into account in order to overcome this constrain. We analysed Sb, Co, Ni, Cr, Pb, Cd, Mn, V, Zn, Cu, As, Hg, and Al concentration in different zones of Catalonia (NE Spain) using the evergreen oak Quercus ilex and the moss Hypnum cupressiforme as target species. We compared the results obtained in rural and non industrial areas with those from the Barcelona Metropolitan Area. We observed differences in Al concentrations of soils and bedrocks at each different site, together with the differences in solubility between Al and the element in question, and a weak correlation between total soil content and water extract content through different sites for most trace elements. All these findings show the unsuitability of the current enrichment factors for calculating lithospheric and atmospheric contributions to trace element concentrations in biomass tissues

  19. Inhibition by Siomycin and Thiostrepton of Both Aminoacyl-tRNA and Factor G Binding to Ribosomes

    PubMed Central

    Ll, Juan Modole; Cabrer, Bartolomé; Parmeggiani, Andrea; Azquez, David V

    1971-01-01

    Siomycin, a peptide antibiotic that interacts with the 50S ribosomal subunit and inhibits binding of factor G, is shown also to inhibit binding of aminoacyl-tRNA; however, it does not impair binding of fMet-tRNA and completion of the initiation complex. Moreover, unlike other inhibitors of aminoacyl-tRNA binding (tetracycline, sparsomycin, and streptogramin A), siomycin completely abolishes the GTPase activity associated with the binding of aminoacyl-tRNA catalyzed by factor Tu. A single-site interaction of siomycin appears to be responsible for its effect on both the binding of the aminoacyl-tRNA-Tu-GTP complex and that of factor G. PMID:4331558

  20. Conformational stability and DNA binding specificity of the cardiac T-box transcription factor Tbx20.

    PubMed

    Macindoe, Ingrid; Glockner, Laura; Vukasin, Paul; Stennard, Fiona A; Costa, Mauro W; Harvey, Richard P; Mackay, Joel P; Sunde, Margaret

    2009-06-12

    The transcription factor Tbx20 acts within a hierarchy of T-box factors in lineage specification and morphogenesis in the mammalian heart and is mutated in congenital heart disease. T-box family members share a approximately 20-kDa DNA-binding domain termed the T-box. The question of how highly homologous T-box proteins achieve differential transcriptional control in heart development, while apparently binding to the same DNA sequence, remains unresolved. Here we show that the optimal DNA recognition sequence for the T-box of Tbx20 corresponds to a T-half-site. Furthermore, we demonstrate using purified recombinant domains that distinct T-boxes show significant differences in the affinity and kinetics of binding and in conformational stability, with the T-box of Tbx20 displaying molten globule character. Our data highlight unique features of Tbx20 and suggest mechanistic ways in which cardiac T-box factors might interact synergistically and/or competitively within the cardiac regulatory network.

  1. Amblyomma americanum tick saliva insulin-like growth factor binding protein-related protein 1 binds insulin but not insulin-like growth factors.

    PubMed

    Radulović, Ž M; Porter, L M; Kim, T K; Bakshi, M; Mulenga, A

    2015-10-01

    Silencing Amblyomma americanum insulin-like growth factor binding protein-related protein 1 (AamIGFBP-rP1) mRNA prevented ticks from feeding to repletion. In this study, we used recombinant (r)AamIGFBP-rP1 in a series of assays to obtain further insight into the role(s) of this protein in tick feeding regulation. Our results suggest that AamIGFBP-1 is an antigenic protein that is apparently exclusively expressed in salivary glands. We found that both males and females secrete AamIGFBP-rP1 into the host during feeding and confirmed that female ticks secrete this protein from within 24-48 h after attachment. Our data suggest that native AamIGFBP-rP1 is a functional insulin binding protein in that both yeast- and insect cell-expressed rAamIGFBP-rP1 bound insulin, but not insulin-like growth factors. When subjected to anti-blood clotting and platelet aggregation assays, rAamIGFBP-rP1 did not have any effect. Unlike human IGFBP-rP1, which is controlled by trypsinization, rAamIGFBP-rP1 is resistant to digestion, suggesting that the tick protein may not be under mammalian host control at the tick feeding site. The majority of tick-borne pathogens are transmitted 48 h after the tick has attached. Thus, the demonstrated antigenicity and secretion into the host within 24-48 h of the tick starting to feed makes AamIGFBP-rP1 an attractive target for antitick vaccine development.

  2. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes.

    PubMed

    Uhl, Juli D; Zandvakili, Arya; Gebelein, Brian

    2016-04-01

    cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints.

  3. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes

    PubMed Central

    Uhl, Juli D.; Zandvakili, Arya; Gebelein, Brian

    2016-01-01

    cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. PMID:27058369

  4. Binding of the RING polycomb proteins to specific target genes in complex with the grainyhead-like family of developmental transcription factors.

    PubMed

    Tuckfield, Annabel; Clouston, David R; Wilanowski, Tomasz M; Zhao, Lin-Lin; Cunningham, John M; Jane, Stephen M

    2002-03-01

    The Polycomb group (PcG) of proteins represses homeotic gene expression through the assembly of multiprotein complexes on key regulatory elements. The mechanisms mediating complex assembly have remained enigmatic since most PcG proteins fail to bind DNA. We now demonstrate that the human PcG protein dinG interacts with CP2, a mammalian member of the grainyhead-like family of transcription factors, in vitro and in vivo. The functional consequence of this interaction is repression of CP2-dependent transcription. The CP2-dinG interaction is conserved in evolution with the Drosophila factor grainyhead binding to dring, the fly homologue of dinG. Electrophoretic mobility shift assays demonstrate that the grh-dring complex forms on regulatory elements of genes whose expression is repressed by grh but not on elements where grh plays an activator role. These observations reveal a novel mechanism by which PcG proteins may be anchored to specific regulatory elements in developmental genes.

  5. Sprouty 2 binds ESCRT-II factor Eap20 and facilitates HIV-1 gag release.

    PubMed

    Medina, G N; Ehrlich, L S; Chen, M H; Khan, M B; Powell, M D; Carter, C A

    2011-07-01

    The four ESCRT (endocytic sorting complexes required for transport) complexes (ESCRT-0, -I, -II, and -III) normally operate sequentially in the trafficking of cellular cargo. HIV-1 Gag trafficking and release as virus-like particles (VLPs) require the participation of ESCRTs; however, its use of ESCRTs is selective and nonsequential. Specifically, Gag trafficking to release sites on the plasma membrane does not require ESCRT-0 or -II. It is known that a bypass of ESCRT-0 is achieved by the direct linkage of the ESCRT-I component, Tsg101, to the primary L domain motif (PTAP) in Gag and that bypass of ESCRT-II is achieved by the linkage of Gag to ESCRT-III through the adaptor protein Alix. However, the mechanism by which Gag suppresses the interaction of bound ESCRT-I with ESCRT-II is unknown. Here we show (i) that VLP release requires the steady-state level of Sprouty 2 (Spry2) in COS-1 cells, (ii) that Spry2 binds the ESCRT-II component Eap20, (iii) that binding Eap20 permits Spry2 to disrupt ESCRT-I interaction with ESCRT-II, and (iv) that coexpression of Gag with a Spry2 fragment that binds Eap20 increases VLP release. Spry2 also facilitated release of P7L-Gag (i.e., release in the absence of Tsg101 binding). In this case, rescue required the secondary L domain (YPX(n)L) in HIV-1 Gag that binds Alix and the region in Spry2 that binds Eap20. The results identify Spry2 as a novel cellular factor that facilitates release driven by the primary and secondary HIV-1 Gag L domains.

  6. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements.

    PubMed

    Firth, J D; Ebert, B L; Ratcliffe, P J

    1995-09-08

    The oxygen-regulated control system responsible for the induction of erythropoietin (Epo) by hypoxia is present in most (if not all) cells and operates on other genes, including those involved in energy metabolism. To understand the organization of cis-acting sequences that are responsible for oxygen-regulated gene expression, we have studied the 5' flanking region of the mouse gene encoding the hypoxically inducible enzyme lactate dehydrogenase A (LDH). Deletional and mutational analysis of the function of mouse LDH-reporter fusion gene constructs in transient transfection assays defined three domains, between -41 and -84 base pairs upstream of the transcription initiation site, which were crucial for oxygen-regulated expression. The most important of these, although not capable of driving hypoxic induction in isolation, had the consensus of a hypoxia-inducible factor 1 (HIF-1) site, and cross-competed for the binding of HIF-1 with functionally active Epo and phosphoglycerate kinase-1 sequences. The second domain was positioned close to the HIF-1 site, in an analogous position to one of the critical regions in the Epo 3' hypoxic enhancer. The third domain had the motif of a cAMP response element (CRE). Activation of cAMP by forskolin had no effect on the level of LDH mRNA in normoxia, but produced a magnified response to hypoxia that was dependent upon the integrity of the CRE, indicating an interaction between inducible factors binding the HIF-1 and CRE sites.

  7. Atrial natriuretic factor mRNA and binding sites in the adrenal gland.

    PubMed Central

    Nunez, D J; Davenport, A P; Brown, M J

    1990-01-01

    The factor inhibiting aldosterone secretion produced by the adrenal medulla may be atrial natriuretic factor (ANF), since the latter abolishes aldosterone release in response to a number of secretagogues, including angiotensin II and K+. In this study we have shown that cells in the adrenal medulla contain ANF mRNA and therefore have the potential to synthesize this peptide. The presence of binding sites for ANF predominantly in the adrenal zona glomerulosa suggests that, if ANF is synthesized in the medulla and transferred to the cortex, it may affect mineralocorticoid status. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2146954

  8. GABP factors bind to a distal interleukin 2 (IL-2) enhancer and contribute to c-Raf-mediated increase in IL-2 induction.

    PubMed Central

    Avots, A; Hoffmeyer, A; Flory, E; Cimanis, A; Rapp, U R; Serfling, E

    1997-01-01

    Triggering of the T-cell receptor-CD3 complex activates two major signal cascades in T lymphocytes, (i) Ca2+-dependent signal cascades and (ii) protein kinase cascades. Both signal cascades contribute to the induction of the interleukin 2 (IL-2) gene during T-cell activation. Prominent protein kinase cascades are those that activate mitogen-activated protein (MAP) kinases. We show here that c-Raf, which is at the helm of the classic MAP-Erk cascade, contributes to IL-2 induction through a distal enhancer element spanning the nucleotides from positions -502 to -413 in front of the transcriptional start site of the IL-2 gene. Induction of this distal IL-2 enhancer differs from induction of the proximal IL-2 promoter-enhancer, since it is induced by phorbol esters alone and independent from Ca2+ signals. In DNA-protein binding studies, we detected the binding of transcription factors GABP alpha and -beta to a dyad symmetry element (DSE) of the distal enhancer, which is formed by palindromic binding sites of Ets-like factors. Introduction of point mutations suppressing GABP binding to the DSE interfered with the induction of the distal enhancer and the entire IL-2 promoter-enhancer, while overexpression of both GABP factors enhanced the IL-2 promoter-enhancer induction. Overexpression of BXB, a constitutive active version of c-Raf, and of further members of the Ras-Raf-Erk signal cascade exerted an increase of GABP-mediated promoter-enhancer induction. In conjunction with previously published data on c-Raf-induced phosphorylation of GABP factors (E. Flory, A. Hoffmeyer, U. Smola, U. R. Rapp, and J. T. Bruder, J. Virol. 70:2260-2268, 1996), these results indicate a contribution of GABP factors to the Raf-mediated enhancement of IL-2 induction during T-cell activation. PMID:9234696

  9. Crystal structure of the DNA binding domain of the transcription factor T-bet suggests simultaneous recognition of distant genome sites

    PubMed Central

    Liu, Ce Feng; Brandt, Gabriel S.; Hoang, Quyen Q.; Naumova, Natalia; Lazarevic, Vanja; Hwang, Eun Sook; Dekker, Job; Glimcher, Laurie H.; Ringe, Dagmar; Petsko, Gregory A.

    2016-01-01

    The transcription factor T-bet (Tbox protein expressed in T cells) is one of the master regulators of both the innate and adaptive immune responses. It plays a central role in T-cell lineage commitment, where it controls the TH1 response, and in gene regulation in plasma B-cells and dendritic cells. T-bet is a member of the Tbox family of transcription factors; however, T-bet coordinately regulates the expression of many more genes than other Tbox proteins. A central unresolved question is how T-bet is able to simultaneously recognize distant Tbox binding sites, which may be located thousands of base pairs away. We have determined the crystal structure of the Tbox DNA binding domain (DBD) of T-bet in complex with a palindromic DNA. The structure shows a quaternary structure in which the T-bet dimer has its DNA binding regions splayed far apart, making it impossible for a single dimer to bind both sites of the DNA palindrome. In contrast to most other Tbox proteins, a single T-bet DBD dimer binds simultaneously to identical half-sites on two independent DNA. A fluorescence-based assay confirms that T-bet dimers are able to bring two independent DNA molecules into close juxtaposition. Furthermore, chromosome conformation capture assays confirm that T-bet functions in the direct formation of chromatin loops in vitro and in vivo. The data are consistent with a looping/synapsing model for transcriptional regulation by T-bet in which a single dimer of the transcription factor can recognize and coalesce distinct genetic elements, either a promoter plus a distant regulatory element, or promoters on two different genes. PMID:27791029

  10. Evolution of DNA-Binding Sites of a Floral Master Regulatory Transcription Factor

    PubMed Central

    Muiño, Jose M.; de Bruijn, Suzanne; Pajoro, Alice; Geuten, Koen; Vingron, Martin; Angenent, Gerco C.; Kaufmann, Kerstin

    2016-01-01

    Flower development is controlled by the action of key regulatory transcription factors of the MADS-domain family. The function of these factors appears to be highly conserved among species based on mutant phenotypes. However, the conservation of their downstream processes is much less well understood, mostly because the evolutionary turnover and variation of their DNA-binding sites (BSs) among plant species have not yet been experimentally determined. Here, we performed comparative ChIP (chromatin immunoprecipitation)-seq experiments of the MADS-domain transcription factor SEPALLATA3 (SEP3) in two closely related Arabidopsis species: Arabidopsis thaliana and A. lyrata which have very similar floral organ morphology. We found that BS conservation is associated with DNA sequence conservation, the presence of the CArG-box BS motif and on the relative position of the BS to its potential target gene. Differences in genome size and structure can explain that SEP3 BSs in A. lyrata can be located more distantly to their potential target genes than their counterparts in A. thaliana. In A. lyrata, we identified transposition as a mechanism to generate novel SEP3 binding locations in the genome. Comparative gene expression analysis shows that the loss/gain of BSs is associated with a change in gene expression. In summary, this study investigates the evolutionary dynamics of DNA BSs of a floral key-regulatory transcription factor and explores factors affecting this phenomenon. PMID:26429922

  11. A molecular modeling study of inhibitors of nuclear factor kappa-B (p50) DNA binding

    NASA Astrophysics Data System (ADS)

    Pande, Vineet; Sharma, Rakesh K.; Inoue, Jun-Ichiro; Otsuka, Masami; Ramos, Maria J.

    2003-12-01

    Nuclear Factor-kappa B (NF-κB) is an inducible transcription factor of the Rel family, and is sequestered in the cytoplasm by the IκB family of proteins. NF-κB can exist in several dimeric forms, but the p50/p65 heterodimer is the predominant one. Activation of NF-κB by a range of stimuli including viral products, and oxidative stress, leads to phosphorylation and proteasome dependent degradation of IκB, leading to the release of free NF-κB. This free NF-κB then binds to its target sites (κB sites in the DNA) to initiate transcription. These κB sites are also present in the Long Terminal Repeat (LTR) of HIV-1, and hence NF-κB (p50 subunit) binding to LTR-DNA is critical in viral replication. Targeting direct p50-DNA binding, in this regard, is a novel approach to design anti-HIV gene expression inhibitors, which do not have the problem of resistance unlike in other anti-HIV strategies. The present study is a part of our search for leads for the specific inhibition of p50-DNA binding. We have been experimentally studying different types of these inhibitors, and in this work, we attempted to get a common definition of their structural mechanism onto p50-DNA binding. Using three different classes of inhibitors, we modelled their association with the DNA-Binding Region (DBR) of the p50 subunit of NF-κB. Docking studies were carried out using a genetic algorithm based program (GOLD). Further, to compare electrostatic complementarity in the association of the inhibitors with the DBR, Molecular Electrostatic Potentials (MEPs) were generated for the DBR and each inhibitor. The results of docking revealed a strong network of hydrogen bonding interactions for every active inhibitor, and the contrary for the less active ones. Further, the MEPs revealed that the DBR of p50 represents a surface of electropositive potential, and the active inhibitors represent a complementary electronegative surface. With the present modelling study we conclude that the principal

  12. A molecular modeling study of inhibitors of nuclear factor kappa-B (p50)--DNA binding.

    PubMed

    Pande, Vineet; Sharma, Rakesh K; Inoue, Jun-Ichiro; Otsuka, Masami; Ramos, Maria J

    2003-12-01

    Nuclear Factor-kappa B (NF-kappaB) is an inducible transcription factor of the Rel family, and is sequestered in the cytoplasm by the IkappaB family of proteins. NF-kappaB can exist in several dimeric forms, but the p50/p65 heterodimer is the predominant one. Activation of NF-kappaB by a range of stimuli including viral products, and oxidative stress, leads to phosphorylation and proteasome dependent degradation of IkappaB, leading to the release of free NF-kappaB. This free NF-kappaB then binds to its target sites (KB sites in the DNA) to initiate transcription. These kappaB sites are also present in the Long Terminal Repeat (LTR) of HIV-1, and hence NF-kappaB (p50 subunit) binding to LTR-DNA is critical in viral replication. Targeting direct p50-DNA binding, in this regard, is a novel approach to design anti-HIV gene expression inhibitors, which do not have the problem of resistance unlike in other anti-HIV strategies. The present study is a part of our search for leads for the specific inhibition of p50-DNA binding. We have been experimentally studying different types of these inhibitors, and in this work, we attempted to get a common definition of their structural mechanism onto p50-DNA binding. Using three different classes of inhibitors, we modelled their association with the DNA-Binding Region (DBR) of the p50 subunit of NF-kappaB. Docking studies were carried out using a genetic algorithm based program (GOLD). Further, to compare electrostatic complementarity in the association of the inhibitors with the DBR, Molecular Electrostatic Potentials (MEPs) were generated for the DBR and each inhibitor. The results of docking revealed a strong network of hydrogen bonding interactions for every active inhibitor, and the contrary for the less active ones. Further, the MEPs revealed that the DBR of p50 represents a surface of electropositive potential, and the active inhibitors represent a complementary electronegative surface. With the present modelling study we

  13. Sp1 Upregulates cAMP Response Element-Binding Protein Expression During Retinoic Acid-Induced Mucous Differentiation of Normal Human Bronchial Epithelial Cells

    PubMed Central

    Hong, Jeong Soo; Kim, Seung-Wook; Koo, Ja Seok

    2010-01-01

    Cyclic 3′,5′-adenosine monophosphate (cAMP) response-element (CRE) binding protein (CREB) is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA rapidly activates CREB without using retinoic acid (RA) receptors RAR and RXR in normal human tracheobronchial epithelial (NHTBE) cells. However, little is known about RA’s role in the physiologic regulation of CREB expression in the early mucous differentiation of NHTBE cells. Here, we report that RA upregulated CREB gene expression and that using 5′-serial deletion promoter analysis and mutagenesis analyses, two Sp1-binding sites located at nucleotides −217 and −150, which flank the transcription initiation site, were essential for RA induction of CREB gene transcription. Furthermore, we found that CREs located at nucleotides −119 and −98 contributed to basal promoter activity. Interestingly, RA also upregulated Sp1 in a time- and dose-dependent manner. Knockdown of endogenous Sp1 using small interfering RNA (siRNA) decreased RA-induced CREB gene expression. However, the converse was not true: knockdown of CREB using CREB siRNA did not affect RA-induced Sp1 gene expression. We conclude that RA upregulates CREB gene expression during the early stage of NHTBE cell differentiation and that RA-inducible Sp1 plays a major role in upregulating human CREB gene expression. This result implies that cooperation of these two transcription factors play a crucial role in mediating early events of normal mucous cell differentiation of bronchial epithelial cells. PMID:17937658

  14. Opposing Control by Transcription Factors MYB61 and MYB3 Increases Freezing Tolerance by Relieving C-Repeat Binding Factor Suppression1[OPEN

    PubMed Central

    Zhang, Yunqin; Miao, Zhenyan; Xie, Can; Meng, Xiangzhao; Deng, Jie; Mysore, Kirankumar S.; Frugier, Florian; Wang, Tao

    2016-01-01

    Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula. In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling. Among these, we showed that MtCBF4 directly activates the transcription of the COLD ACCLIMATION SPECIFIC15 (MtCAS15) gene. To gain insights into how MtCBF4 is transcriptionally regulated in response to cold, an R2R3-MYB TF, MtMYB3, was identified based on a yeast one-hybrid screen as binding directly to MYB cis-elements in the MtCBF4 promoter, leading to the inhibition of MtCBF4 expression. In addition, another MYB TF, MtMYB61, identified as an interactor of MtMYB3, can relieve the inhibitory effect of MtMYB3 on MtCBF4 transcription. This study, therefore, supports a model describing how MtCBF4 is regulated by antagonistic MtMYB3/MtMYB61 TFs, leading to the up-regulation of downstream targets such as MtCAS15 acting in cold acclimation in M. truncatula. PMID:27578551

  15. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics.

    PubMed

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-09-15

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression.

  16. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

    PubMed Central

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  17. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  18. A B-cell coactivator of octamer-binding transcription factors.

    PubMed

    Gstaiger, M; Knoepfel, L; Georgiev, O; Schaffner, W; Hovens, C M

    1995-01-26

    The octamer motif (ATGCAAAT) paradoxically plays a central role in mediating the activity of both B-cell specific and ubiquitous promoters. It has been widely assumed that the predominantly lymphoid-restricted octamer-binding factor Oct-2 mediates tissue-specific promoter activity, whereas the ubiquitously expressed Oct-1 mediates general promoter activity, but this view has been challenged. Here we use a modified yeast one-hybrid assay to isolate a B-cell factor, Bob1, which associates with either Oct-2 or Oct-1. In transfection experiments, this factor boosts Oct-1-mediated promoter activity and to a lesser extent, that of Oct-2. This coactivation is strictly dependent on the specific interaction with Oct-1 or Oct-2 because deletion of the octamer motif abolishes coactivation. We conclude that Bob1 could represent a new tissue-specific transcriptional coactivator which may convert a ubiquitously expressed transcription factor to a cell-type-specific activator.

  19. Peptide Chain Termination: Effect of Protein S on Ribosomal Binding of Release Factors

    PubMed Central

    Goldstein, J. L.; Caskey, C. T.

    1970-01-01

    The protein factor S, previously shown to stimulate polypeptide chain termination in bacterial extracts, has two effects upon the complex formed between ribosomes, release factor, and terminator (trinucleotide) codon: (1) in the absence of GTP or GDP, S stimulates formation of an [R·UAA·ribosome] intermediate, and (2) in the presence of GTP or GDP, S participates in dissociation of this intermediate. Factor S can stimulate fMet release from [fMet-tRNAf·AUG·ribosome] intermediates in either the presence or absence of GTP or GDP. A model is proposed which relates the in vitro effects of S ± GTP (or GDP) on fMet release to the effects of S ± GTP (or GDP) on the binding and dissociation of R factor from ribosomes. PMID:5289007

  20. Kaposi's sarcoma-associated herpesvirus Rta tetramers make high-affinity interactions with repetitive DNA elements in the Mta promoter to stimulate DNA binding of RBP-Jk/CSL.

    PubMed

    Palmeri, Diana; Carroll, Kyla Driscoll; Gonzalez-Lopez, Olga; Lukac, David M

    2011-11-01

    Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]) is the etiologic agent of Kaposi's sarcoma (KS) and lymphoproliferative diseases. We previously demonstrated that the KSHV lytic switch protein Rta stimulates DNA binding of the cellular RBP-Jk/CSL protein, the nuclear component of the Notch pathway, on Rta target promoters. In the current study, we define the promoter requirements for formation of transcriptionally productive Rta/RBP-Jk/DNA complexes. We show that highly pure Rta footprints 7 copies of a previously undescribed repetitive element in the promoter of the essential KSHV Mta gene. We have termed this element the "CANT repeat." CANT repeats are found on both strands of DNA and have a consensus sequence of ANTGTAACANT(A/T)(A/T)T. We demonstrate that Rta tetramers make high-affinity interactions (i.e., nM) with 64 bp of the Mta promoter but not single CANT units. The number of CANT repeats, their presence in palindromes, and their positions relative to the RBP-Jk binding site determine the optimal target for Rta stimulation of RBP-Jk DNA binding and formation of ternary Rta/RBP-Jk/DNA complexes. DNA binding and tetramerization mutants of Rta fail to stimulate RBP-Jk DNA binding. Our chromatin immunoprecipitation assays show that RBP-Jk DNA binding is broadly, but selectively, stimulated across the entire KSHV genome during reactivation. We propose a model in which tetramerization of Rta allows it to straddle RBP-Jk and contact repeat units on both sides of RBP-Jk. Our study integrates high-affinity Rta DNA binding with the requirement for a cellular transcription factor in Rta transactivation.

  1. Arabidopsis Sigma Factor Binding Proteins Are Activators of the WRKY33 Transcription Factor in Plant Defense[W

    PubMed Central

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-01-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif–containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens. PMID:21990940

  2. Identification of a Cis-Acting Element of ART1, a C2H2-Type Zinc-Finger Transcription Factor for Aluminum Tolerance in Rice1[OA

    PubMed Central

    Tsutsui, Tomokazu; Yamaji, Naoki; Feng Ma, Jian

    2011-01-01

    Rice (Oryza sativa) is one of the most aluminum (Al)-tolerant species among small-grain cereals. Recent identification of a transcription factor AL RESISTANCE TRANSCRIPTION FACTOR1 (ART1) revealed that this high Al tolerance in rice is achieved by multiple genes involved in detoxification of Al at different cellular levels. ART1 is a C2H2-type zinc-finger transcription factor and regulates the expression of 31 genes in the downstream. In this study, we attempted to identify a cis-acting element of ART1. We used the promoter region of SENSITIVE TO AL RHIZOTOXICITY1, an Al tolerance gene in the downstream of ART1. With the help of gel-shift assay, we were able to identify the cis-acting element as GGN(T/g/a/C)V(C/A/g)S(C/G). This element was found in the promoter region of 29 genes among 31 ART1-regulated genes. To confirm this cis-acting element in vivo, we transiently introduced this element one or five times tandemly repeated sequence with 35S minimal promoter and green fluorescent protein reporter together with or without ART1 gene in the tobacco (Nicotiana tabacum) mesophyll protoplasts. The results showed that the expression of green fluorescent protein reporter responded to ART1 expression. Furthermore, the expression increased with repetition of the cis-acting element. Our results indicate that the five nucleotides identified are the target DNA-binding sequence of ART1. PMID:21502187

  3. Trace Elements in Hair from Tanzanian Children: Effect of Dietary Factor

    SciTech Connect

    Mohammed, Najat K.; Spyrou, Nicholas M.

    2009-04-19

    Trace elements in certain amounts are essential for childrens' health, because they are present in tissues participating in metabolic reactions of organisms. Deficiency of the essential elements may result in malnutrition, impaired body immunity, and poor resistance to disease. These conditions might be enhanced against a background of additional adverse environmental factors such as toxic elements. The analysis of elements in childrens' hair will give information on the deficiency of essential elements and excess of toxic elements in relation to their diet. In this study, 141 hair samples from children (girls and boys) living in two regions of Tanzanian mainland (Dar es Salaam and Moshi) and the island of Zanzibar have been analysed for trace elements in relation to food consumption habits. The analysis was carried out using long and short irradiation instrumental neutron activation analysis (INAA) of the Nuclear Physics Institute at Rez, Czech Republic. Arithmetic and geometric means with their respective standard deviations are presented for 19 elements. Subgroups were formed according to age, gender, and geographic regions from which the samples were collected. Differences in concentrations for the groups and with other childhood populations were explored and discussed.

  4. Trace Elements in Hair from Tanzanian Children: Effect of Dietary Factor (abstract)

    NASA Astrophysics Data System (ADS)

    Mohammed, Najat K.; Spyrou, Nicholas M.

    2009-04-01

    Trace elements in certain amounts are essential for childrens' health, because they are present in tissues participating in metabolic reactions of organisms. Deficiency of the essential elements may result in malnutrition, impaired body immunity, and poor resistance to disease. These conditions might be enhanced against a background of additional adverse environmental factors such as toxic elements. The analysis of elements in childrens' hair will give information on the deficiency of essential elements and excess of toxic elements in relation to their diet. In this study, 141 hair samples from children (girls and boys) living in two regions of Tanzanian mainland (Dar es Salaam and Moshi) and the island of Zanzibar have been analysed for trace elements in relation to food consumption habits. The analysis was carried out using long and short irradiation instrumental neutron activation analysis (INAA) of the Nuclear Physics Institute at Rez, Czech Republic. Arithmetic and geometric means with their respective standard deviations are presented for 19 elements. Subgroups were formed according to age, gender, and geographic regions from which the samples were collected. Differences in concentrations for the groups and with other childhood populations were explored and discussed.

  5. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α

    PubMed Central

    Han, Hyeong-jun; Kwon, Nayoung; Choi, Min-A; Jung, Kyung Oh; Piao, Juan-Yu; Ngo, Hoang Kieu Chi; Kim, Su-Jung; Kim, Do-Hee; Chung, June-Key; Cha, Young-Nam; Youn, Hyewon; Choi, Bu Young; Min, Sang-Hyun; Surh, Young-Joon

    2016-01-01

    Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target. PMID:26784107

  6. Phytochrome B inhibits binding of Phytochrome-Interacting Factors to their target promoters

    PubMed Central

    Park, Eunae; Park, Jeongmoo; Kim, Junghyun; Nagatani, Akira; Lagarias, J. Clark; Choi, Giltsu

    2012-01-01

    Summary Phytochromes are red and far-red light receptors in plants that mediate critical responses to light throughout the life cycle. They achieve this in part by targeting negatively acting bHLH transcription factors called phytochrome-interacting factors (PIFs) for degradation within the nucleus. It is not known, however, if protein degradation is the primary mechanism by which phytochromes inhibit these repressors of photomorphogenesis. Here, we use ChIP analysis to show that phyB inhibits the regulatory activity of PIF1 and PIF3 by releasing them from their DNA targets. The N-terminal fragment of phyB (NG-GUS-NLS; NGB) also inhibits the binding of PIF3 to its target promoters. Unlike the full-length phyB, however, NGB does not promote PIF3 degradation, establishing the activity of NGB reflects its ability to inhibit PIFs’ binding to DNA. We further show that Pfr forms of both full-length phyB and NGB inhibit the DNA binding of PIF1 and PIF3 in vitro. Taken together, our results indicate that phyB inhibition of PIF function involves two separate processes, sequestration and protein degradation. PMID:22849408

  7. The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase.

    PubMed

    Tabib-Salazar, Aline; Liu, Bing; Doughty, Philip; Lewis, Richard A; Ghosh, Somadri; Parsy, Marie-Laure; Simpson, Peter J; O'Dwyer, Kathleen; Matthews, Steve J; Paget, Mark S

    2013-06-01

    RbpA is a small non-DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA-σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S